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Abstract  

Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages 

glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose 

in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, 

and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin 

and insulin-like growth factor-1 are widely expressed in the central nervous system. Their 

widespread presence in the brain underscores the varied and critical functions of insulin signaling 

there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and 

absorption of catecholamines, and controlling the expression and positioning of gamma-

aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. 

Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain 

aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways 

are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein 

kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein 

kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review 

aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR 

disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic 

markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic 

interventions targeting these intersecting pathways. 

Keywords: Alzheimer's disease, Type 2 Diabetes, Insulin resistance, insulin, Insulin-like growth 

factor 

  



1. Introduction 

Alzheimer's disease (AD) is a degenerative neurological condition that profoundly impacts 

individuals' mental, emotional, physical, and social well-being. In 2020, AD was responsible for 

134,242 deaths in the United States (US), as per the Centers for Disease Control and Prevention 

(CDC) data [1]. The World Health Organization (WHO) has highlighted that of the 50 million 

people worldwide living with dementia, AD accounts for 60-70% of these cases [2]. As noted by 

the Alzheimer's Association, AD ranks as the fifth primary cause of death for Americans aged 

above 65 and holds sixth place for all age groups [3]. Unfortunately, there's still no definitive cure 

for AD [2,3]. Nonetheless, by identifying specific biomarkers, it may be possible to pinpoint at-

risk individuals and better understand the disease's progression. 

One of the underlying mechanisms of AD is the accumulation of Amyloid beta peptide (Aβ) 

outside neurons and the accumulation and clumping of tau proteins within neurons [4–6]. Other 

significant markers of AD can include brain shrinkage, especially in the hippocampus and 

neocortex [7], and extensive white matter hyperintensities (WMH) [8]. The disease has also been 

linked to diminished neurotransmitter levels like acetylcholine, norepinephrine, and dopamine 

[9,10]. AD is a complex disease influenced by genetics and various environmental or non-genetic 

contributors [11–13]. Some of these factors encompass aging, cardiovascular conditions, type 2 

diabetes (T2DM), metabolic syndrome (MS), obesity, depression, post-menopausal stage in 

women, cognitive stagnancy, poor lipid levels, smoking, drug misuse, and unhealthy diets 

[2,11,14–16]. These elements can instigate disease-causing pathways such as oxidative stress, 

mitochondrial issues, chronic inflammation, inefficient glucose use, and brain insulin resistance 

(IR) [17–19]. The precise mechanism of this connection remains elusive. It might relate to shared 

genetic factors or other underlying elements that lead to the manifestation of the disease [20,21]. 



One promising approach to uncovering these mechanisms is metabolomics, which identifies 

disease-associated metabolic characteristics [22–24]. This method is beneficial as it mirrors 

broader biological processes like genomics and proteomics [23]. By integrating metabolomics data 

with genomics and proteomics data, researchers can gain a more complete understanding of the 

complex interplay between genes, proteins, and metabolites. For example, changes in metabolite 

levels can be linked to specific genetic variants or protein expression patterns, providing insights 

into the functional consequences of these changes. In recent research, the author reviewed common 

metabolomics markers related to cardiometabolic diseases, finding that around 40 markers were 

shared across these conditions [25].  

This review aimed to explore the potential shared metabolic traits between AD and IR disorders. 

It delves into the relationship between AD and IR disorders, their overlapping genetic markers, 

and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions 

targeting these intersecting pathways.  

2. Molecular Pathophysiology of AD 

AD, the leading cause of dementia globally, is more common in western and developed nations 

[26]. It can be classified into two primary types based on etiology: familial AD (fAD) and sporadic 

AD (sAD). fAD, representing a small minority (approximately 2%) of cases, is characterized by 

autosomal-dominant inheritance patterns linked to mutations in specific genes, notably those 

encoding apolipoprotein E (apoE-ε4), presenilin-1 (PSEN1), presenilin-2 (PSEN2), and amyloid 

precursor protein (APP) [27]. In contrast, sAD, the predominant form of AD encompassing 

roughly 98% of cases, arises from a complex interplay of genetic predispositions, epigenetic 

modifications, and environmental exposures. Most individuals with sAD are older with multiple 

health conditions, including obesity and cardiovascular issues like stroke and T2DM, which may 



further exacerbate their AD [28]. Delving deeper into the intertwined molecular pathways of AD 

and T2DM could enhance diagnostic methods for diabetic patients and reveal potential treatments 

targeting both neuronal and pancreatic β-cell deterioration. 

2.1.The Role of Aβ and Tau 

Neuroinflammation, tau neurofibrillary tangles (NFT), and Aβ neuronal plaques are the primary 

pathological factors of AD [29]. Aβ plaques, the defining characteristic of AD, are derived from 

the APP, a protein predominantly located within the central nervous system (CNS) [30]. APP can 

be processed through two pathways: the secretory and the amyloidogenic. The secretory pathway 

involves cleavages by α-secretase, linked to ADAM-7 and ADAM-10, and then by γ-secretase 

[31]. In contrast, the amyloidogenic pathway begins with β-secretase (BACE1) cleavage, followed 

by γ-secretase cleavage, producing Aβ peptides. These peptides aggregate quickly, with Aβ42 

being the most neurotoxic due to its high aggregation propensity [32]. While Aβ plaques and fibrils 

were initially thought to be the primary toxic agents in AD, recent findings suggest Aβ oligomers 

play a more crucial role in neurotoxicity [33]. 

Tau NFT, the second primary hallmark of AD, consist of aggregated hyperphosphorylated tau 

proteins. Tau, critical for axonal activity maintenance in neurons, needs phosphorylation to 

function correctly. In AD, tau is over-phosphorylated, with its levels being about three times higher 

than in healthy brains. This precise balance of phosphorylation is maintained by a combination of 

kinases and phosphatases. Key kinases, such as glycogen synthase kinase-3 beta (GSK3β) and 

cyclin-dependent kinase 5 (CDK5), contribute significantly to AD-related tau phosphorylation, 

with evidence pointing towards cooperative actions of various kinases [34]. On the other end, 

phosphatases like phosphoprotein phosphatase 2A (PP2A) target tau to counteract its 

hyperphosphorylation. Hyperphosphorylated tau disrupts microtubule-dependent functions, 



including the trafficking of neurotrophins, leading to neuronal complications. While some studies 

suggest hyperphosphorylated tau might protect neurons from apoptosis, the resultant functional 

loss makes neurons more vulnerable to other AD-related damages [34]. 

3. Insulin 

Human insulin, a peptide hormone with 51 amino acids divided into two chains, is produced in the 

β-cells located in the islets of Langerhans. This hormone prevents prolonged high blood sugar 

levels, or hyperglycemia, by being released into the bloodstream when there's a spike in glucose, 

whether internally sourced or externally [35]. In body tissues, insulin plays multiple roles. It aids 

in glucose use, limits the liver's glucose generation, and enhances glucose entry into cells. This is 

achieved by shifting glucose transporters like glucose transporter type 4 (GLUT 4) from inside the 

cell to the cell surface [36]. Moreover, insulin is involved in cellular growth, maturation, and 

protein creation. As a constructive hormone, insulin supports the absorption of fatty and amino 

acids and facilitates energy storage. Still, it also hinders activities such as glycolysis, fat breakdown, 

and protein breakdown [37]. 

While insulin's presence is noticeably lower in the cerebrospinal fluid (CSF) than in blood plasma, 

the two are somewhat correlated. This association indicates that the brain's insulin primarily 

originates from the insulin circulating in the blood [38]. Insulin can travel from the blood to the 

brain, passing through the blood-brain barrier (BBB) capillary cells, following a specific and 

capacity-limited process that's receptor-dependent [39]. Once in the brain, insulin connects with 

the insulin receptor, forming a complex. This complex then moves through the brain to the 

endothelial cells via transcytosis. The efficiency of this transport can be affected by factors like 

diet, obesity, inflammation, diabetes, and blood triglyceride levels [40,41]. Moreover, animal 

research has discovered that fasting decreases CSF insulin levels, which rise post-meal [42,43]. 



3.1.The Role of Insulin in the Brain 

Insulin receptors are present in all brain cell types, with varying expression in specific brain regions, 

as demonstrated in animal studies pinpointing regions like the hippocampus, cerebral cortex, and 

cerebellum [44–46]. While human brains also exhibit these receptors [47,48], alterations in insulin 

signaling within the CNS might hasten brain aging, impact plasticity, and contribute to 

neurodegeneration [49].  

3.1.1. Insulin Signaling in the Brain 

Insulin and insulin-like growth factor 1 (IGF-1) interact with their receptors, notably the insulin 

receptor and the IGF-1 receptor (IGF-1R), which have a broad presence in the brain [50]. Research 

on animals reveals the significant expression of insulin receptors in regions like the olfactory bulb, 

hippocampus, and hypothalamus, among others. Conversely, in mouse brains, IGF-1R displays 

prominent expression in the hippocampus, neocortex, and thalamus [51,52]. These receptors can 

combine in the brain to enhance their signaling processes [53]. Further classification of insulin 

receptors reveals two primary isoforms: IR-A, prevalent in the adult nervous system, and IR-B, 

which predominantly exists in tissues such as adipose, liver, and muscles [54]. Notably, both IGF-

1 and IGF-2 can be associated with the insulin receptor [55], and these insulin receptors are found 

in neurons and glial cells alike. 

The intricate process of insulin signaling is initiated when insulin binds to its tyrosine kinase 

receptor, a complex composed of two alpha and beta subunits [56]. The binding action prompts 

several cellular responses, one of which is activating the phosphoinositide 3-kinase (PI3K)/protein 

kinase B (AKT) pathway, which is pivotal for metabolism, protein synthesis, and cell survival 

[55,57]. This pathway plays diverse roles, from DNA replication and protein synthesis to 



maintaining mitochondrial health [58,59]. Another critical signaling mechanism is the mitogen-

activated protein kinase (MAPK) pathway, which is triggered by the binding of the growth factor 

receptor-bound protein-2 (Grb-2) [60]. This pathway manages the functions of several 

transcription factors and proteins, influencing processes like glucose metabolism and cell division 

[60]. 

3.1.2. Insulin and Brain Glucose Metabolism 

 
In the brain, neurons primarily utilize glucose through GLUT 3, but they also express other insulin-

regulated glucose transporters like GLUT 4 and GLUT 8, found specifically in areas including the 

hippocampus and hypothalamus [61]. Insulin promotes GLUT 4's translocation to the plasma 

membrane, enhancing glucose intake, which is crucial for cognitive functions like memory [62]. 

Moreover, during periods of intense metabolic needs, such as learning, the AKT pathway 

facilitates GLUT 4's translocation, highlighting the potential impact of disrupted insulin-mediated 

glucose transport on cognition [63,64]. Insulin's brain activity governs neuronal metabolism and 

modulates peripheral metabolic processes in organs like the liver and adipose tissue through 

hormonal actions in the hypothalamus, influencing pathways such as hepatic glucose production 

and lipolysis [65]. 

3.1.3. Insulin and Cognition 

Insulin's presence in regions of the brain, such as the frontal cortex and the hippocampus, 

emphasizes its pivotal role in learning and memory. Studies have shown that spatial learning 

modifies insulin receptor expression in the hippocampus, and administering insulin can lead to 

observable improvements in memory. While these effects have been documented in both animal 

models and human subjects, the precise mechanisms by which insulin influences cognitive 

function remain to be fully elucidated [61]. Insulin appears to affect hippocampal synaptic 



plasticity, promoting mechanisms like long-term potentiation (LTP) [66] and long-term depression 

(LTD) [67], both crucial for memory formation. Molecular mechanisms regulated by insulin, such 

as the expression of the N-methyl-D-aspartate (NMDA) receptor, which is controlled by insulin-

stimulated pathways like extracellular signal-regulated kinase 1/2 (ERK1/2) [68] or PI3-K [69], 

play roles in this process. Moreover, synaptic remodeling, integral to neuronal adaptability, is also 

influenced by insulin signaling [70,71]. 

Learning seems to modify the expression and function of insulin receptors in specific brain areas. 

Animal research points towards the upregulation of insulin receptor mRNA in the hippocampal 

CA1 region following spatial memory training, leading to heightened insulin receptor presence in 

the hippocampus [61,72]. Furthermore, insulin might significantly influence memory and learning, 

impacting the placement of IRs within the hippocampus. Beyond cognition, insulin's signaling 

might also regulate emotional states. For instance, rats with diminished hypothalamic insulin 

receptors showcased symptoms resembling depression and anxiety [72]. Conversely, insulin 

administration in mice bolstered object memory and displayed anxiety-reducing effects [73]. Such 

findings underline the significance of hippocampal insulin receptors in normal cognitive functions 

[74]. 

3.1.4. The Effects of Insulin on Neurons 

Insulin receptors are notably present in both postsynaptic and presynaptic regions of synapses, 

emphasizing their key role in neural communication. The hormone acts on neurons through the 

MAPK and AKT signaling pathways, contributing to neuron outgrowth, modulating 

catecholamine release and uptake, and influencing the expression and localization of γ-

aminobutyric acid (GABA) [75,76]. GABA is central to various functions like sleep, learning, 

memory, reproductive system activity, food intake regulation, body weight, and even neural 



activities in the frontal cortex [77,78]. Additionally, insulin modulates the expression of both 

NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors [79] and has 

a hand in activity-driven synaptic plasticity, guiding processes such as long-term potentiation and 

depression via interactions with NMDA receptor signaling and the AKT pathway [67]. 

Moreover, insulin has a pivotal role in shaping excitatory synapses' development and sustainability, 

fostering dendritic spine formation [80,81]. The hormone's ability to regulate AKT and GSK3β is 

crucial for maintaining the equilibrium between long-term potentiation and depression [82]. 

Insulin further supports neuronal health by counteracting apoptosis through the activation of the 

AKT pathway [83] and impacts the phosphorylation of the forkhead box O (FOXO) transcription 

factor, which manages the expression of cell death-promoting agents. Studies using 

intrahippocampal microinjections of insulin in animals showed that cognitive performance varies 

with the dosage: high insulin concentrations considerably improve spatial learning and memory, 

while low concentrations hinder cognitive abilities [84]. 



 

Figure 1: Insulin signaling pathway and AD; Inflammation: The activation of eNOS, mediated by the PI3K/Akt pathway, has been identified as 

a potential inhibitor of VCAM-1 expression in endothelial cells. This process is integral in reducing inflammatory responses. BBB Disruption: 
Research indicates that GSK3β inhibition can enhance the stability of tight junctions in the blood-brain barrier (BBB). Furthermore, insulin has 

been shown to bolster BBB integrity through the PI3K/Akt/GSK3β pathway. Aβ Accumulation: It's been observed that insulin exposure can 

promote the degradation of Aβ. This occurs through an increase in insulin-degrading enzyme (IDE) expression in astrocytes, triggered by the 
activation of the ERK-mediated pathway. In contrast, in neurons, Aβ exposure has been linked to the induction of IR. This resistance is characterized 

by the inhibition of IRS1, PDK-dependent Akt activation, and the activation of the p38 pathway. Our preliminary laboratory data suggests that Aβ 

might exert similar effects on these pathways in BBB endothelial cells. Aβ: Amyloid beta, RAGE: Receptor for Advanced Glycation Endproducts, 
ROS: Reactive Oxygen Species, MKK3: Mitogen-Activated Protein Kinase Kinase 3, MKK6: Mitogen-Activated Protein Kinase Kinase 6, NF-

κB: Nuclear Factor kappa-light-chain-enhancer of activated B cells, IR: Insulin Receptor, IRS1: Insulin Receptor Substrate 1, PKCs: Protein Kinase 

C , PI3K (p85, p110): Phosphoinositide 3-Kinases (regulatory subunit p85, catalytic subunit p110), PTEN: Phosphatase and Tensin Homolog, 
PDK1: 3-Phosphoinositide Dependent Protein Kinase-1, Akt: Protein Kinase B, GSK3β: Glycogen Synthase Kinase 3 beta, HO-1: Heme Oxygenase 

1, eNOS: Endothelial Nitric Oxide Synthase, VCAM-1: Vascular Cell Adhesion Molecule 1, TNF-α: Tumor Necrosis Factor alpha, TNFR: Tumor 

Necrosis Factor Receptor, JNK: c-Jun N-terminal kinase, IKKγ: IκB kinase gamma, IκBβ: Inhibitor of kappa B beta, IκB: Inhibitor of kappa B, 
ERK: Extracellular signal-Regulated Kinases, MEK: Mitogen-Activated Protein Kinase Kinase, Raf: RAF proto-oncogene serine/threonine-protein 

kinase, GRB2: Growth Factor Receptor-Bound Protein 2 

 

3.1.5. Effects of Insulin on Glial Cells and Hippocampal Adult Neurogenesis 

Astrocytes, the primary homeostatic cells in the human brain's grey matter, utilize GLUT 1 for 

glucose transport and can also supply neurons with lactate as an energy source during 

hypoglycemic events, a mechanism termed the astrocyte-neuron lactate shuttle [85,86]. These cells 



display the presence of insulin receptors and other downstream signaling molecules like AKT and 

MAPK, which are activated by insulin and IGF-1. Extended exposure to high insulin levels can 

lead to decreased insulin receptor expression in glial cells, though neuronal insulin receptor 

expression remains consistent. Furthermore, insulin plays a pivotal role in astrocytes by adjusting 

the release of inflammatory cytokines in response to inflammation triggers [87]. Insulin also 

impacts oligodendrocytes through AKT signaling, influencing their proliferation, differentiation, 

and myelination, with IGF activation of the AKT pathway promoting axonal coverage [88]. 

Microglial inflammatory reactions are intricately regulated by insulin, which can both enhance and 

inhibit various inflammatory cytokine secretions [87]. 

Neurogenesis is an ongoing process in mammals, particularly evident in the sub-granular zone of 

the hippocampus, where neural stem cells (NSCs) multiply and evolve to form new neurons 

[89,90]. This hippocampal neurogenesis is integral for learning and memory functions, and 

disruptions in this process in neurodegenerative diseases have been linked to cognitive 

impairments [91]. The activation of the insulin/IGF-1 pathway helps regulate neuroblast activity 

[92,93], and both insulin and IGF-1 foster neurogenesis by guiding NSC proliferation, 

differentiation, and survival [94]. Nevertheless, sustained overactivation of the insulin/IGF-1 

pathways can lead to early depletion of the NSC pool [95]. The effects of insulin on the neural 

stem niche can vary, being either beneficial or harmful, depending on the timing and duration of 

its activation [96]. 

4. Brain IR 

4.1.Definition and assessment  

IR refers to the decreased efficacy of tissues in responding to insulin, often evaluated using the 

Homoeostatic Model Assessment for IR (HOMA-IR) method, though the hyperinsulinemic-



euglycaemic (HI-EG) clamp is considered the gold standard [97–99]. In this technique, insulin and 

dextrose are infused to assess insulin sensitivity, with any change in insulin concentrations in the 

CNS being noted. The HI-EG clamp, combined with MRI or similar tools, helps understand 

insulin's brain effects and its peripheral sensitivity [100]. Some limitations, like potentially reduced 

insulin reaching the CNS, are noted [101]. As an alternative, intranasal insulin delivers insulin 

directly to the CNS [102]. Using intranasal insulin with controlled stimuli (e.g., food images), 

studies have revealed a link between peripheral IR and decreased CNS responsiveness [103]. 

Various factors, including diet and peripheral metabolism treatments, can influence CNS insulin 

sensitivity, underlining a tight link between insulin function in the body and brain [103]. 

At a molecular scale, IR might result from factors like diminished insulin receptors or interruptions 

in the insulin signaling process. Insulin operates predominantly through the Ras-MAPK and PI3K-

Akt pathways [104]. Activation of an insulin receptor can lead to the activation or inhibition of the 

PI3K-Akt pathway, depending on the phosphorylation site. The balance between phosphorylated 

substrates can serve as an IR marker, a technique that's shown promise in AD research [105,106]. 

Another promising technique for gauging brain IR involves analyzing neuronal-enriched 

extracellular vesicles in plasma to identify changes in insulin signaling [107]. This method has 

shown increased markers of IR in patients with T2DM and AD [108]. 

4.2.Systemic and brain IR 

A connection between T2DM and brain dysfunction has long been recognized. Early observations 

from the 1920s identified memory, processing speed, and arithmetic deficiencies in T2DM patients 

[109]. By the 1980s, formal studies began linking more severe cognitive deficits, such as memory 

problems, with higher haemoglobin A1c levels in the bloodstream [110]. These findings were 

bolstered by later research that highlighted challenges in complex attention, information 



processing, and executive function in T2DM patients [111–115]. These cognitive impairments 

seemed more pronounced in older individuals with extended diabetes duration, poor glycaemic 

control, diabetic complications, and accompanying conditions like hypertension and depression. 

Interestingly, emerging evidence also points to cognitive and structural brain changes in young 

T2DM patients, suggesting both age-related neurodegeneration and early disease processes play 

roles in the observed deficits [116–119]. 

Advanced neuroimaging tools have uncovered significant differences in brain structures and 

functions in those with T2DM compared to non-diabetic individuals [120]. People with 

longstanding T2DM exhibit increased instances of both large-vessel atherosclerosis and stroke, 

and small-vessel ischaemic diseases. Additionally, cerebral atrophy, especially in areas related to 

cognition, is more prevalent among the elderly with IR and T2DM than those without these 

conditions [121]. When using FDG-PET scans, middle-aged and older individuals with IR (either 

having T2DM or on the cusp of developing it) and still possessing standard cognition display 

regional cortical hypometabolism in critical cognitive regions often associated with AD [122]. 

The specific mechanisms driving the observed cognitive impairments and neuroimaging 

differences in T2DM remain uncertain. While some suggest these changes may result from brain 

IR, others point to co-existing conditions often found in T2DM, such as inflammation, 

dyslipidaemia, or hypertension, which may affect brain function independently of insulin 

signalling. The BBB function also appears to be compromised in T2DM. There's evidence to 

suggest that systemic IR can impact BBB function, which might reduce brain insulin levels and 

impact neural activity [123]. Additionally, T2DM can also lead to BBB damage, increasing its 

permeability to various substances [124,125]. Animal studies further suggest a link between 

systemic and brain IR. However, human studies yield inconclusive results, with some highlighting 



potential brain IR in obesity [126] and others pointing to BBB transport issues rather than genuine 

brain IR as the cause. Intriguingly, certain interventions, like intranasal insulin administration, 

have shown promise in normalizing brain function and improving cognitive performance in T2DM 

patients, hinting at possible therapeutic avenues [127]. 

 

5. IR and AD 

Brain IR at a cellular level might manifest as compromised neuroplasticity and neurotransmitter 

release, leading to both metabolic dysregulation and cognitive or mood disturbances [97]. 

Remarkably, the metabolic anomalies seen in T2DM mirror those in AD brains, prompting some 

researchers to propose that AD is essentially a cerebral variant of diabetes, termed "type 3 diabetes" 

[128,129]. 

5.1.IR and Tau Phosphorylation 

The Tau protein may be implicated in the irregularities of insulin signaling and consequent brain 

pathologies [130]. Recognized as the primary constituent of NFT in AD patients [131], the human 

brain contains six distinct Tau isoforms due to alternative splicing [132]. Classified as a 

microtubule-associated protein (MAP) [133], Tau aids in microtubule assembly and stability, 

crucial for various cellular functions including cell morphogenesis and intracellular trafficking 

[134]. Despite its release into extracellular spaces, the function of extracellular Tau remains 

enigmatic [135]. 

Tau's activity is predominantly regulated by phosphorylation, and it holds over 85 sites potentially 

subject to this process [136]. Intriguingly, both Tau gene expression and the Tau protein's 

phosphorylation respond to insulin and IGF stimulations [137]. AD-afflicted brains notably exhibit 



Tau hyperphosphorylation, with over 40 identified phosphorylation sites, of which 28 are 

exclusively phosphorylated. This hyperphosphorylation might be attributed to imbalances between 

various kinases and phosphatases. Specifically, GSK3-β, which phosphorylates Tau at more than 

30 sites, is central to the emergence of AD and neurofibrillary tangle (NFT) [138]. Furthermore, 

defective insulin or IGF-1 signaling might augment Tau phosphorylation, with additional 

connections to pathways like Wnt signaling and oxidative stress, both intertwined with IR [139]. 

Such hyperphosphorylation alters Tau's conformation, undermining its microtubule-binding 

capacity and leading to its aggregation within neurons. These aggregates are the foundational 

elements of diseases termed tauopathies. This accumulation is not benign; hyperphosphorylated 

Tau obstructs the normal protein's interactions with microtubules, disrupting cell morphology and 

organelle transport [140]. Exacerbating the scenario, animal studies hint at Tau's role in regulating 

brain insulin signaling, suggesting that Tau dysfunction could culminate in brain IR, significantly 

impacting cognitive and metabolic functions in AD patients [141]. As AD advances, Tau 

pathologies are discernible, initially in the brainstem and entorhinal cortex, eventually spreading 

to the hippocampus [142,143]. Interestingly, a complete absence of Tau is also detrimental, 

correlating with increased brain iron accumulation and potentially contributing to disorders like 

Parkinson’s disease [144]. 

5.2.IR and Aβ Pathology 

APP is a multifunctional membrane protein present in various tissues, especially within the 

synapses of neurons in the CNS. It serves several roles including synapse formation, neuron 

adaptability, antimicrobial activity, and iron transportation. The processing of APP follows two 

distinct pathways: the majority (90%) undergoes the non-amyloidogenic process, while the 

remainder goes through the amyloidogenic route. Notably, insulin facilitates the non-



amyloidogenic processing by modulating APP's phosphorylation. Thus, disruptions in insulin 

signaling can amplify the buildup of the problematic Aβ protein [145]. Furthermore, both insulin 

and Aβ are broken down by the insulin-degrading enzyme (IDE), and diminished insulin signaling 

can lead to decreased Aβ degradation due to the reduced levels of IDE [146]. 

In the non-amyloidogenic route, APP is cleaved by α-secretase, yielding specific fragments 

(sAPPα and CTFα). In contrast, the amyloidogenic pathway, more prevalent in acidic endosomes, 

sees APP being acted upon by β-secretase, creating distinct N-terminal and C-terminal fragments. 

The latter undergoes another cleavage, releasing Aβ fragments into the extracellular space. Once 

outside the cell, these Aβ fragments are prone to forming various aggregates, culminating in β-

amyloid plaques [147]. The Aβ peptide chains come in various lengths: Aβ38, Aβ40, and Aβ42. 

Familial or early-onset AD is linked to mutations in the PS1/PS2 genes and APP, coupled with 

inheriting the ApoE-ε4 allele. These genetic factors amplify the production of Aβ42, thereby 

elevating Aβ peptide deposition in the brain. However, the mechanisms leading to Aβ 

accumulation in sporadic AD cases remain under rigorous scrutiny [148,149]. 

Functionally, the native APP aids memory and learning processes via its synaptic actions and 

dendritic spine formation [150]. Under normal conditions, Aβ is released outside neurons during 

their activity and is regulated by surrounding proteases [151]. But aberrations in the cleavage 

position can elevate the neurotoxic Aβ42 variant. As a downstream effect, these Aβ peptides can 

cluster, forming fibrils and amyloid plaques that hinder cell communication and induce cell death. 

Studies indicate that an overabundance of neurotoxic Aβ mirrors memory lapses seen in AD 

patients, largely because of the disruption of neural adaptability from intraneuronal Aβ 

accumulation [152]. This detrimental influence on neurons might be due to the activation of 



immune-inflammatory responses in glial cells, leading to the engulfment of neuronal structures 

[153]. Hence, the internal buildup of Aβ is pivotal in various synaptopathies.  

Insulin plays a pivotal role in the metabolism of the APP, which subsequently affects the balance 

between the production and breakdown of Aβ. A deficiency or inactivity of insulin can lead to the 

formation of NFT and induce oxidative stress on cells [154]. Additionally, diminished insulin 

levels correlate with elevated Aβ concentrations, leading to the formation of amyloid plaques in 

the brain. The IDE is responsible for breaking down several molecules, including insulin and Aβ 

[155]. Disturbances in IDE function, marked by increased immunoreactivity around senile plaques 

and decreased IDE expression in the AD patient's hippocampus, can contribute to AD progression 

[156]. This enzyme's role in regulating insulin and Aβ levels in the brain is significant, with animal 

models revealing that an overexpression of IDE can lead to conditions like hyperinsulinemia and 

heightened Aβ brain levels, ultimately impacting insulin signaling and resistance [157]. 

The effects of Aβ oligomers on brain function have been extensively studied in animal models. 

Specifically, Aβ42 peptides have been found to induce liver IR in certain transgenic mice, 

highlighting the potential of inhibiting Aβ42 synthesis as a treatment strategy [158]. When Aβ 

oligomers were introduced directly to rodent neurons, synaptic loss and neuronal dysfunctions 

were observed, which might be a precursor to memory impairments [159]. Moreover, introducing 

these oligomers into primates' brains resulted in behavioral alterations and AD-like pathologies 

[160]. Such introductions also caused inflammatory responses and metabolic disruptions, as 

observed in models where Aβ oligomers were injected intracerebrally [161]. Interestingly, 

research on a monkey model of T1DM revealed increased Aβ levels, particularly in the 

hippocampus, coupled with decreased concentrations of the Aβ-degrading enzyme, neprilysin 

[162]. Additionally, diet-induced IR in the brain seems to be intertwined with Aβ pathology in AD 



mouse models. While factors leading to IR, such as metabolic stress or inflammation due to 

unhealthy diets, might directly accelerate Aβ accumulation, the role of insulin signaling in this 

context appears less direct [163]. 

Insulin's interaction with Aβ metabolism extends to influencing Aβ peptide trafficking and 

promoting its secretion, while also hindering its degradation by IDE. The relationship between 

insulin and APP metabolism may be mediated through signaling pathways like MAPK [164]. 

Paradoxically, Aβ can disrupt insulin signaling, either by competing for insulin receptor binding 

sites or diminishing its binding efficacy [165]. Such accumulation of Aβ can further amplify Tau 

hyperphosphorylation, instigating tauopathies. The neurotoxic activities of Aβ underscore its 

detrimental effects on the nervous system. For instance, intracellular Aβ can disrupt signaling 

pathways, enhancing tau hyperphosphorylation and, in turn, fostering APP processing and Aβ 

buildup [166]. 

5.3.IR and Inflammation 

Inflammation is intrinsically linked to the onset and progression of AD. Central to the 

neuroinflammation theory of AD is the accumulation of Aβ, which triggers the release of 

inflammatory molecules by persistently activated glial cells [167]. In the cerebrospinal fluid of 

those with AD, inflammatory proteins like IL-1, IL-6, TNF-α, and TGF-β are often present in 

elevated amounts [168]. The term "neuroinflammation" refers to the activation of brain cells, 

notably microglia and astrocytes, leading to the release of inflammatory and harmful agents [169]. 

As the main immune players in the brain, microglial cells, when activated, are indicative of central 

inflammation, which could foretell brain diseases [170]. The importance of neuroinflammation is 

seen across various neurodegenerative disorders, with evidence suggesting it significantly 



advances the neurodegeneration seen in AD, leading to neuronal damage, oxidative stress, and 

impaired synaptic function [171]. 

Further complicating the situation is the role of IR in perpetuating neuroinflammation. Peripheral 

IR might influence AD pathology by acting on neurodegeneration [172]. This resistance boosts 

the expression of IDE and encourages the buildup of advanced glycation end products (AGEs), 

which are modified proteins and fats formed through a reaction with glucose [173]. Notably, 

individuals with IR have increased AGE levels [174]. AGEs are harmful and have been discovered 

in AD hallmark structures like amyloid plaques and NFT. Furthermore, AGEs can cause vascular 

issues in the brain and act on the receptor for AGEs (RAGE) [175]. RAGE's expression, which is 

higher in those with AD and T2DM, interacts with AGEs and Aβ to amplify inflammatory 

reactions, impairing the brain's vascular system and exacerbating neurodegenerative processes 

[176]. Macrophages, vital components of the neuroinflammatory landscape, release inflammatory 

agents that disrupt insulin signaling, further linking inflammation and IR [177]. While insulin can 

counteract some inflammatory actions and even promote the synthesis of particular neuronal 

proteins, multiple factors, including apoE-ε4, affect insulin signaling in the brain, contributing to 

AD's progression [178]. 

5.4.IR and Oxidative Stress 

IR can drive oxidative stress through multiple mechanisms, including imbalances in carbohydrate 

and lipid metabolism, enhanced activation of GSK-3β, and disruptions in cellular survival, energy 

equilibrium, and mitochondrial function [179]. Furthermore, brain IR diminishes the expression 

of vital molecules like choline acetyltransferase and neurotrophin, correlating with elevated levels 

of modified Tau and Aβ42 [180]. Factors such as hypoxia and ischemia can further induce 

oxidative stress, which in turn amplifies the production of reactive species like ROS and RNS. 



These reactive species can inflict harm on crucial cellular components, including lipids, proteins, 

and DNA, leading to neurotoxic consequences [181,182]. Notably, the onset of neurodegeneration 

is characterized by oxidative damage, which is linked to mitochondrial dysfunction seen in AD 

[183,184]. Oxidative stress typically manifests when the cellular generation of reactive species 

surpasses the antioxidant defenses, or when the body can't efficiently clear the excessive ROS and 

RNS [185]. 

Mitochondria, essential for processes like energy metabolism and free radical production, play a 

pivotal role in aging and neurodegenerative disease prevention. However, dysfunctional 

mitochondria are less efficient in ATP production but produce heightened ROS levels, which could 

be central to the oxidative imbalance in AD [17]. The enzymes involved in metabolic processes 

including the respiratory chain, glycolysis, and Krebs cycle deteriorate in AD brains. The resulting 

diminished activity impairs glucose metabolism, culminating in reduced ATP synthesis, neuronal 

dysfunction, synaptic loss, and neurodegeneration [17,186]. Interestingly, the early AD phase is 

marked by heightened mitochondrial enzyme activity and oxidative stress, even before the evident 

accumulation of amyloid plaques in animal AD models [187]. Despite these findings, the exact 

relationship between Aβ oligomers, mitochondrial activity, and ROS production remains 

ambiguous due to inconsistent results from past studies [188], necessitating further research to 

ascertain the initiating factors. 

5.5.IR and Cognitive Impairment 

IR and brain insulin deficiency have been implicated in cognitive dysfunction. In individuals with 

AD, insulin levels in the brain and CSF are reduced, while plasma levels are elevated, possibly 

due to compromised signal transduction [189,190]. Insulin's role in long-term neural protection 

makes its deficiency detrimental, potentially leading to neurodegeneration. Though IR is believed 



to be an early factor in cognitive impairment, the exact mechanism remains elusive. Some 

postulated contributors include changes in APP metabolism, increased Tau protein, brain 

inflammation, the involvement of the ApoE ε4 allele, and IR-induced disruptions in hippocampal 

plasticity [191]. Brain IR might independently heighten the risk of cognitive issues [192]. Notably, 

insulin plays a crucial role in synaptic neurotransmission, influencing learning and memory, 

especially via GABA receptors [192]. In AD animal models, disrupted insulin signaling has been 

linked to memory deficits [193], and in prediabetic patients, cognitive decline, particularly in 

memory, appears more tied to IR than elevated blood sugar levels [194]. The interplay between 

brain IR and AD pathology, specifically through IRS-1 dysfunction potentially induced by Aβ 

oligomers, warrants further exploration [195]. 

Brain plasticity, the ability to adapt structurally and functionally to environmental cues, may be 

influenced by various factors, including insulin signaling. Altered insulin signaling can impact 

brain plasticity and further IR [96]. For example, in middle-aged people who are cognitively 

asymptomatic but have euglycemic hyperinsulinemia, IR is linked to increased brain glucose 

absorption [196] as well as reduced cortical perfusion and blood flow [197]. Such resistance 

correlates with diminished cerebral glucose metabolism, which might be predictive of memory 

performance decline [198]. Cognitive alterations and brain functions are also influenced by age 

[199]. Insulin plays a crucial function in stimulating the uptake of glucose into neurons by causing 

GLUT 4 to translocate to the membrane of the neuron. This activity is critical for improving spatial 

memory and is necessary in conditions requiring a high metabolic demand, such as learning [200]. 

Disruptions in this insulin-regulated glucose transport mechanism could lead to cognitive deficits 

[200]. The full spectrum of IR's impact on cognition remains to be fully elucidated, necessitating 

more research. 



5.6. IR and Cholinergic Deregulation 

Acetylcholine, a crucial neurotransmitter, plays a significant role in several central nervous system 

functions, including attention, memory, motivation, and arousal. The cholinergic projections 

originating from the nucleus basalis of Meynert (NBM) to the cerebral cortex are implicated in 

cognitive function and the regulation of blood flow. Direct electrical stimulation of the NBM has 

been shown to trigger a widespread increase in cortical blood flow (CBF), as evidenced by multiple 

studies [201,202]. Furthermore, peripheral sensory input can activate the NBM, thereby increasing 

CBF, a process mediated by acetylcholine and its muscarinic and nicotinic receptors [203]. 

In AD, cholinergic dysfunction of these projections is observed, along with neuronal loss in the 

NBM [203]. Pharmacological inhibition of the enzyme that degrades acetylcholine, leading to an 

increase in its presynaptic levels, has been found to have positive effects on cognition and behavior 

in AD patients. Interestingly, a decrease in the expression of cholinergic receptors has been noted 

in the hippocampus of autopsied brains of individuals with T2DM and in corresponding mouse 

models [204]. Consequently, it has been hypothesized that cholinergic alterations may be involved 

in the modified pathology of AD patients who also have T2DM [205]. 

Recent studies have suggested that IR could induce AD via cholinergic dysfunction. In a study 

using APP-KI and APP/IR-dKI mice, IR was found to exacerbate cognitive dysfunction and alter 

cerebral blood flow (CBF) regulation, which was associated with downregulation of nicotinic 

acetylcholine receptor alpha7 (nAChRα7) expression and function [202,206,207]. Reduced 

expression of nAChRα7 has been reported to impair cognitive functions, including long-term 

memory [208]. Furthermore, gene expression analyses revealed that the expression of neuronal 

activity markers (Egr1 and Nptx2) and Chrna7 was reduced in APP/IR-dKI mice compared with 

APP-KI mice. Insulin signaling in the brain affects neuronal activity [209], and reduced expression 



of EGR1 has been reported in the frontal cortex of AD patients [210]. Considering that EGR1 is 

involved in cholinergic function [210], reduced expression of Egr1 in APP/IR-dKI could reflect 

cholinergic malfunction in these mice. Therefore, IR could induce AD via cholinergic dysfunction, 

and targeting the insulin/IR pathway-specific cascade may be an effective strategy for the 

treatment of AD. 

5.7.Hyperglycemia and Its Consequences on AD Pathologic Development 

Hyperglycemia, often seen in T2DM patients, can have significant implications for AD 

pathogenesis. Repeated episodes of transient hyperglycemia can disturb neuronal balance by 

affecting KATP channels and elevating Aβ levels [211]. Aging and imbalances in glucose 

metabolism can lead to the formation of advanced glycation end-products (AGEs), which are 

notably higher in AD patients with diabetes [212]. These AGEs, especially the prevalent 

glyceraldehyde-AGEs, are toxic to neurons [213] and interact with receptors RAGEs found in 

various brain cells. These interactions can mediate inflammatory effects, influence Aβ transport 

across the blood-brain barrier, and boost Aβ formation [214,215]. Additionally, AGEs can 

stimulate tau hyperphosphorylation via the RAGEs-GSK3β signaling pathway [216]. Studies have 

shown that direct injection of AGEs into mice brains led to AD-like symptoms, including memory 

decline and increased tau phosphorylation [217,218]. 

6. Genetics variabilities shared between AD and IR disorders 

Several studies have highlighted the genetic intersections between AD and IR disorders. Research 

has shown a genetic link involving the fat mass and obesity-associated (FTO) gene, particularly 

with single-nucleotide polymorphisms (SNPs) like rs3751812, which has associations with 

obesity-related brain volume deficits [20] and other IR disorders, such as MS and T2DM [219,220]. 



The FTO gene has a potential role in AD pathogenesis through its influence on hormones like 

ghrelin and leptin, impacting hunger signals and weight gain, which subsequently can lead to IR, 

MS, and T2DM [221,222]. Increased levels of the ghrelin hormone have also been linked to 

reduced cognitive function, suggesting its potential involvement in AD pathogenesis [223,224]. 

Additional research has identified other genetic variants associated with both T2DM and AD. 

Wang et al. discovered eight novel pleiotropic SNPs that correlate with both conditions, 

highlighting their role in pathways related to oxidative stress, mitochondrial dysfunction, and 

phosphoinositide-3-kinase (PI3K) regulation [225]. Other SNPs, such as rs6859 and rs2075650, 

have associations with obesity, dyslipidemia, ischemic stroke (IS), and coronary artery disease 

(CAD) [226–230], both of which are AD risk factors and are metabolically linked to IR disorders. 

Similarly, the IDE gene and its rs1887922 SNP have associations with AD and T2DM, possibly 

due to its impact on Aβ accumulation and hepatic insulin degradation [231–233]. Another gene of 

interest is the ApoE gene, which interacts with multiple risk factors and has a significant 

correlation with AD, particularly in individuals with T2DM, hypertension, and other conditions 

[234–237]. The rs11136000 SNP in the APOJ/CLU gene, which encodes for clusterin, is another 

point of interest due to its role as an AD biomarker, especially in patients with IR disorders [238]. 

The intricate genetic interplay between AD and IR disorders underscores the need for a more in-

depth understanding of their shared pathways and mechanisms. 

7. Therapy 

7.1. Pharmacological treatment 

Research indicates that insulin plays a pivotal role in maintaining brain health, and imbalances in 

insulin regulation, both peripherally and within the brain, may be implicated in the onset of AD 

and associated cerebrovascular conditions. This understanding opens up a new avenue for 



therapeutic exploration, focusing on elevating insulin availability in the CNS or enhancing its 

sensitivity, aiming to thwart or postpone AD and related ailments. This discussion will initially 

delve into intranasal insulin, which offers a direct intervention for the brain, and will subsequently 

transition into other strategies that bolster insulin sensitivity both centrally and systemically (Table 

1). 

7.1.1. Intranasal insulin 

Administering insulin peripherally, as done in diabetes treatments, can pose risks of hypoglycemia 

in non-diabetic individuals and may not effectively reach the brain due to the BBB. Hence, 

researchers have been examining the use of intranasal insulin delivery. This method allows insulin 

to bypass the BBB, traveling to the brain through olfactory and trigeminal perivascular channels. 

In studies with healthy adults, intranasal insulin demonstrated effects on various CNS measures, 

such as EEG and functional MRI [103]. Moreover, rodent AD models revealed that intranasal 

insulin could mitigate disease pathology and conserve both short-term and long-term memory 

[239]. Preliminary human trials have shown improvements in episodic memory in both cognitively 

healthy participants and those with mild cognitive impairment or AD, although results varied with 

the APOE genotype and the duration of treatment [240–243]. 

A particular study involving 104 participants administered either two doses of intranasal insulin 

or a placebo for 120 days. Both insulin doses enhanced performance on the “AD Assessment Scale-

Cognitive subscale (ADAS-Cog12)”, which gauges overall cognition. Additionally, both doses 

maintained functional capabilities and improved cerebral glucose uptake as detected by FDG-PET. 

Intriguingly, post-hoc analyses indicated that intranasal insulin's effects might be influenced by 

factors such as the APOE genotype and gender, with males possibly benefiting more from higher 



doses [244,245]. However, the underlying mechanisms for these variable responses, especially 

those related to APOE, haven't been thoroughly investigated in human trials [246,247]. 

An ambitious multi-site trial was conducted with 289 participants with mild cognitive impairment 

or AD, assessing the safety and efficacy of intranasal insulin over a year, followed by an open-

label extension of six months [248]. This study faced challenges with its delivery devices. The 

initial device, which had been used in prior AD research [245,249], was replaced due to 

malfunctions by a newer device [250]. Outcomes showed contrasting results between the two 

devices. The newer device's cohort did not display significant benefits with insulin treatment, 

whereas the initial device's group showed improved cognitive performance. These conflicting 

outcomes underscore the need to prove direct access of insulin to the CNS, suggesting that the 

choice of delivery device is crucial in therapeutic intranasal applications. The study also 

highlighted the potential therapeutic promise of intranasal insulin in AD, as evidenced by notable 

differences in ADAS-Cog12 scores and CSF biomarkers, emphasizing the importance of further 

research in this area [251,252]. 

7.1.2. Insulin sensitisers 

Rather than boosting insulin levels, another approach focuses on enhancing tissue responsiveness 

to existing insulin levels. Metformin, a widely-used drug for T2DM, has shown potential in mouse 

AD models by improving memory and reducing markers of the disease, along with enhanced brain 

insulin signaling [253,254]. In a 12-month trial with non-diabetic individuals with mild cognitive 

impairment, metformin showed some promise in memory outcomes, but not in other key measures 

[255], leading to a further ongoing trial (NCT04098666). PPAR agonists, another class of insulin 

sensitizers, have yielded inconsistent results. While a pilot study saw memory improvements with 

rosiglitazone [256], subsequent trials revealed selective benefits based on genetic factors or no 



significant cognitive effects [257,258]. Moreover, a large-scale trial involving pioglitazone was 

halted due to ineffectiveness (NCT01931566), although detailed results remain unpublished. In 

essence, while insulin sensitizers show some potential, robust evidence of their efficacy in AD 

remains limited. 

7.1.3. GLP-1 receptor agonists 

Hormones that stimulate insulin secretion, such as GLP-1 receptor agonists, play a crucial role in 

maintaining blood sugar balance. In the brain, GLP-1 receptor agonists are present and are 

responsible for promoting cell growth and proliferation, while also offering protection from 

excitotoxic cell death and programmed cell death [259,260]. These agonists, used in enhancing 

peripheral insulin sensitivity, serve as treatments for T2DM [261]. One such agonist, Liraglutide, 

has been put forward as a potential therapeutic avenue for AD [262]. Studies in mice revealed that 

liraglutide administration led to enhanced memory retention and increased neuronal density in the 

hippocampus [263]. Further, a primate study indicated that liraglutide offered protection against 

the loss of insulin receptors, countered synaptic dysfunction, and mitigated the presence of 

hyperphosphorylated tau [264]. However, in a clinical setting involving 18 AD patients, 26 weeks 

of daily subcutaneous liraglutide injections preserved brain glucose metabolism in contrast to a 

placebo but showed no notable changes in cognitive function or Aβ accumulation [265]. Currently, 

a phase 2 clinical trial spanning 12 months is underway to evaluate the impacts of daily liraglutide 

treatments on AD patients, with the primary objective being FDG-PET outcomes and secondary 

focuses on cognitive scores and various imaging markers (NCT01843075).



 

Table 1: Clinical trials of pharmacological therapy 

Class Study ID Design Groups Population Findings 

PPAR-γ 

agonist 

Watson et al., 

2005 [256] 

Double-

blind RCT 

Placebo (n=10) Mild AD or aMCI Subjects receiving rosiglitazone exhibited better-delayed recall (at 

Months 4 and 6) and selective attention (Month 6) 
Rosiglitazone 

(n=20) 

Risner et al., 

2006 [257] 

Parallel, 

multicentre 

RCT 

Placebo 

(n=122) 

Mild to moderate AD APOE epsilon4 non-carriers exhibited cognitive and functional 

improvement in response to RSG 

Rosiglitazone 

(n=389) 

Gold et al., 

2010 [266] 

Parallel, 

multicentre 

RCT 

Placebo 

(n=159) 

Mild to moderate AD No significant treatment difference was detected in ADAS-Cog; 

however, a significant difference was detected in the CIBIC+ 

Rosiglitazone 

(n=394) 

Tzimopoulou 

et al., 2010 

[267] 

Parallel, 

multicentre 

RCT 

Placebo (n=38) Mild to moderate AD Rosiglitazone was linked to an initial rise in brain glucose 

metabolism but did not show any significant biological or clinical 

signs of slowing AD progression over one year. 
Rosiglitazone 

(n=38) 

Harrington et 

al., 2011 

(REFLECT-2 

and -3) [258] 

Parallel 

RCT 

Placebo 

(n=940) 

Mild to moderate AD Rosiglitazone did not show significant efficacy in cognitive or 

global function as an adjunct to AChEIs, and its safety profile was 

as expected, with edema being the most common adverse event. Rosiglitazone 

(n=1882) 

Hanyu et al., 

2009 [268] 

Parallel 

RCT 

Placebo (n=17) AD and aMCI with 

DM 

ADAS-Jcog scores decreased significantly in the pioglitazone 

group, and WMS-R logical memory-I scores increased 

significantly compared to the control group.  
Pioglitazone 

(n=15) 

Hanyu et al., 

2010 [269] 

Parallel 

RCT 

Placebo (n=17) Mild AD with DM The pioglitazone group showed a notable reduction in ADAS-Jcog 

scores and TNF-α levels over six months. Pioglitazone 

(n=17) 

Geldmacher 

et al., 2011 

[270] 

Parallel 

RCT 

Placebo (n=13) AD without DM Peripheral edema was more common in patients treated with 

pioglitazone compared to placebo, and no significant differences in 

laboratory measures or clinical efficacy were found. 
Pioglitazone 

(n=12) 

Sato et al., 2011 

[271] 

Parallel 

RCT 

Placebo (n=10) Mild AD with DM Pioglitazone led to cognitive and parietal lobe blood flow 

improvements, stabilized disease progression, and enhanced insulin 

sensitivity. 
Pioglitazone 

Intranasal 

insulin 

Reger et al., 

2008 [241] 

Parallel 

RCT 

Placebo (n=12) Mild AD or MCI Insulin led to improved verbal memory, attention, and functional 

status, while increasing fasting plasma concentrations of beta-Insulin (n=13) 



amyloid peptide Aβ40, thus altering the Aβ40/42 ratio, without 

affecting fasting glucose and insulin levels 

Craft et al., 

2012 [245] 

Parallel 

RCT 

Placebo (n=30) Mild AD or aMCI Insulin improved delayed memory and maintained functional 

abilities in AD patients, with younger participants also seeing 

preservation in general cognition, without significant changes in 

cerebrospinal fluid biomarkers, and no severe adverse events. 

Insulin (n=74) 

Kellar et al., 

2021 [272] 

Parallel 

RCT 

Placebo (n=20) Mild AD or MCI Insulin significantly slowed the progression of white matter 

hyperintensity volume in deep and frontal brain regions over 12 

months. 
Insulin (n=20) 

Rosenbloom et 

al., 2021 [273] 

Parallel 

RCT 

Placebo (n=16) Mild AD or aMCI There was no significant difference in cognitive and functional 

measures between the glulisine and saline treatment groups over 6 

months; however, the glulisine group experienced higher rates of 

nasal irritation and respiratory symptoms, with no differences in 

blood sugar control or hypoglycemia rates. 

Insulin (n=19) 

Kellar et al., 

2022 [274] 

Parallel 

RCT 

Placebo (n=20) Mild AD or MCI Insulin increased interferon-γ and eotaxin levels, and decreased 

interleukin-6 compared to placebo. Insulin (n=18) 

Craft et al., 

2017 [249] 

Parallel 

RCT 

Placebo (n=12) Mild AD or MCI Regular insulin improved memory at two and four months 

compared to placebo, preserved brain volume on MRI, and reduced 

the tau-P181/Aβ42 ratio, while detemir showed no significant 

effects, and neither treatment impacted daily functioning. 

Insulin detemir 

(n=12) 

Regular 

Insulin (n=12) 

GLP-1 Mullins et al., 

2019 [275] 

Parallel 

RCT 

Placebo (n=9) Patients with high 

probability AD based 

on CSF 

Exenatide increased nausea and decreased appetite compared to 

placebo, and it reduced glucose and GLP-1 during tests but showed 

no significant differences in clinical and cognitive measures, MRI 

results, or most biomarkers, except for a reduction in Aβ42 in 

extracellular vesicles. 

Exenatide 

(n=9) 

Watson et al., 

2018 [276] 

Parallel 

RCT 

Placebo (n=16) Normal late middle-

aged individuals with 

subjective cognitive 

complaints 

Liraglutide treatment improved connectivity within the default 

mode network compared to placebo, with no cognitive differences 

detected between groups 
Liraglutide 

(n=25) 

Gejl et al., 2017 

[277] 

Parallel 

RCT 

Placebo (n=20) Mild AD Baseline brain glucose transport and metabolism rates negatively 

correlated with disease duration and positively with cognitive 

function; GLP-1 analog treatment significantly increased these 

rates to levels seen in healthy individuals, supporting the 

hypothesis that it restores glucose transport at the blood-brain 

barrier. 

Liraglutide 

(n=18) 

ADAS-Jcog: Alzheimer’s Disease Assessment Scale-Cognitive subscale, WMS-R: Wechsler Memory Scale-Revised logical memory-I, CIBIC+: Clinician's 

Interview-Based Impression of Change plus caregiver input, TNF-α: Tumor necrosis factor-alpha, AD: Alzheimer's disease, AChEIs: Acetylcholine esterase 

inhibitor, aMCI: amnestic mild cognitive impairment, CSF: Cerebrospinal fluid 



7.2. Non-pharmacological approaches 

Lifestyle modifications, encompassing diet and exercise, have emerged as pivotal players in 

managing peripheral IR. Since 2015, these interventions have been theorized to also provide 

preventive or therapeutic avenues for AD. Individuals with diets high in simple carbohydrates and 

saturated fats face a heightened risk for AD compared to those favoring lean proteins and poly-

unsaturated fats [278]. A study showcased that a diet saturated with fats and simple sugars affected 

CSF insulin levels, reflecting patterns associated with AD. Conversely, diets low in fats and sugars 

normalized insulin levels in those with mild cognitive impairment to those seen in healthy 

participants [279]. Moreover, dietary shifts have been observed to influence CSF Aβ42 metrics 

[279]. In another investigative lens, dietary restrictions seemed to enhance the brain’s response to 

food cues post-intranasal insulin administration [103]. It's worth noting that diet can modulate 

several risk factors tied to AD, such as brain and peripheral IR, inflammation, and vascular 

complications [280]. 

Recent systematic reviews have spotlighted dietary regimens that are rich in polyunsaturated fatty 

acids, nuts, and plant-centric foods while curtailing saturated fats, animal proteins, and refined 

sugars. Adherence to these dietary guidelines was linked with superior peripheral insulin 

sensitivity and diminished risk of age-induced cognitive decline and AD [278,281,282]. However, 

the direct influence of diet in augmenting brain insulin functionality remains a pivotal question for 

subsequent studies. In parallel, exercise, a potent modulator of peripheral IR, holds promise in 

curtailing AD risks [283]. Animal-centric studies have suggested that physical activity augments 

brain insulin sensitivity, alleviating several neural complications [284,285]. Yet, human-centric 

studies that corroborate these findings are limited, marking a significant realm for future 

exploration. 



Conclusion 

Research on insulin signaling in the brain has expanded rapidly, examining its role in both typical 

aging and conditions like T2DM and AD. IR, either at a cellular level or systemically, denotes a 

diminished physiological response to insulin, leading to cognitive, mood, and neurological 

disturbances in the brain. While both T2DM and AD exhibit links to brain IR, their direct 

correlation remains ambiguous. Amidst the escalating global crises of T2DM and AD, with 

profound human and economic impacts, there's an urgent call for a deeper understanding of their 

intertwined pathophysiology. Determining if T2DM and AD are distinct outcomes of shared IR 

origins or interconnected in a detrimental cycle is pivotal. A multidisciplinary approach to 

uncovering the complexities of IR across the body and brain will enhance our grasp and treatment 

strategies for both conditions. 
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