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Introduction:
Commuting is an integral part of modern life for many people, shaping daily routines and
impacting overall well-being. With various transportation options, including driving, public
transport, walking, and cycling, commuters encounter various experiences and challenges in
their everyday journeys. Understanding how different modes of commuting affect stress levels
is essential for improving public health and informing transportation planning. This study
develops advanced machine-learning techniques to explore the connection between commuting 
methods and stress levels.
Methods:
This research examines how different c ommuting m odes a ffect st ress le vels us ing machine
learning methods. The study analyses data collected from 45 individuals who regularly commute
to work, focusing on driving, walking, cycling, and public transport modes. Non-invasive
wearable sensors were utilised to gather electroencephalography (EEG), blood pressure (BP),
and heart rate (HR) data for five consecutive days for each participant. Additionally, qualitative
data was collected using the Positive and Negative Affect Schedule (PANAS) questionnaire to
assess participants’ emotional responses before and after their commute. The research focuses
on developing a machine learning-based model to predict the commute’s impact and monitor
the stress level due to the commute mode. In research, objective and subjective factors shape the
research process and outcomes. Understanding the interaction between these factors is essential
for conducting thorough and reliable research that produces valid results. Our study utilises
datasets incorporating qualitative and quantitative data from questionnaires and human bio-
signals.
Results:
Similarly, this research developed various machine learning algorithms to detect stress 
levels based on commuting mode. The results indicate that the Linear Discriminant Analysis
technique achieved an accuracy of 88%, while Logistic Regression reached 90.66% accuracy.
The Boosted Tree algorithm produced the best performance, with an accuracy of 91.11%.
Furthermore, incorporating personalized parameters into the data improved the accuracy of
these algorithms in detecting stress levels. Cross-validation was also utilized to mitigate the
risk of overfitting, ensuring robust and reliable model performance.
Conclusions:
The findings reveal that human bio-signals tend to increase following commuting, irrespective
of the mode, with driving identified a s t he m ost s tressful o ption. C ommuters u sing passive
modes of transport experience elevated stress levels compared to those using active modes.
This research underscores the importance of understanding the connection between commuting
modes and stress, providing key insights into the potential health impacts of daily travel. The
development of an intelligent model to predict stress levels based on commuting mode offers
valuable contributions to public health and transportation planning, with the goal of enhancing
well-being and improving commuters’ quality of life.52
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1. Introduction54

The commute has become an integral part of our everyday lives. Most of the world’s major cities grapple55

with transportation and traffic issues, attributed to the rapid growth in human population and vehicles on the road.56

Technology can potentially aid in developing and managing sustainable commuting modes (Iyer, 2021). Commuting57

can often be regarded as one of the least enjoyable among various daily activities (Kahneman, Krueger, Schkade,58

Schwarz and Stone, 2004).59

Commuting is an integral aspect of daily life for working individuals, while children’s school-related travel remains60

unavoidable despite its adverse health effects. The correlation between the health impact and commuting distance is61

directly proportional: longer journeys yield more severe health consequences, while shorter commutes have a lesser62

effect. The government is actively advocating for active transportation modes to support public health initiatives. The63

UK government has implemented a scheme encouraging individuals to opt for walking and cycling over cars, aiming64

to shift towards more active modes of travel (Abou-Zeid, Witter, Bierlaire, Kaufmann and Ben-Akiva, 2012). This65

initiative seeks to improve public health and decrease car emissions. Cross-sectional data provides additional evidence66

supporting the health benefits associated with active transportation. The UK’s National Institute for Health and Care67

Excellence endorses active commuting through walking or cycling as a government-backed public health measure.68

Commuting exerts a crucial impact on physical and mental health, notably manifesting in stress, a critical concern69

associated with various forms of travel. The morning rush to work or school often fosters an unpleasant commuting70

experience, contributing to stress across nearly all commuting types. However, specific modes of transportation may71

exacerbate stress more than others. Pinpointing the specific stress-inducing factors within diverse commuting modes72

offers insights for policy interventions promoting sustainable transportation and effectively reducing stress levels.73

Stress, encompassing physical, emotional, and mental pressures, emerges in response to stimuli demanding attention74

or action. Daily life presents several stressors, including work, finances, relationships, parenthood, and everyday75

hassles, contributing notably to stress. While stress is unavoidable, preventive measures are pivotal in managing it76

(Bakker, Holenderski, Kocielnik, Pechenizkiy and Sidorova, 2012). Expert assessment remains crucial in evaluating77

an individual’s stress levels within their current context. Traditional questionnaires are commonly employed to78

subjectively assess and quantify stress levels, symptoms, and related factors (Jun and Smitha, 2016). Automated stress79

identification and detection using physiological signals can mitigate health risks and contribute to societal well-being80

(Deng, Wu, Chu, Zhang and Hsu, 2013). Developing an intelligent system leveraging physiological data for automatic81

stress detection is imperative to meet this need. Such a system should analyse physiological signals accurately,82

identifying stress presence and intensity without relying on manual assessment methods. The project’s overarching83

goal is to predict travel’s health impact using machine learning algorithms, enabling people to plan alternative or84

active travel modes to prevent health risks such as blood pressure and heart disease, ultimately safeguarding public85

health. Various AI techniques, including Linear Discriminant, Boosted Trees, and Logistic Regression algorithms, are86

employed to predict the health impact on participants commuting through different modes.87

The study focuses on the impact of commuting on physical and mental health, an issue of growing concern in88

urban areas worldwide due to increasing traffic congestion and associated stress levels. By leveraging machine learning89

techniques, the research aims to predict the health impact of commuting and promote alternative or active travel modes90

to mitigate health risks such as blood pressure and heart disease. This approach aligns with public health initiatives91

advocating for sustainable transportation options. The research integrates various data sources, including physiological92

signals, commuting patterns, and subjective assessments of stress levels, to understand the health impact of commuting.93

This approach enhances the depth and accuracy of the analysis. The study seeks to develop intelligent systems capable94

of automatically detecting stress using physiological signals, such as heart rate, blood pressure and EEG data. This95

study explores the social and neurophysiological effects of real-time commuting by leveraging machine learning to96

analyse brain waves and bio-signals. Commuting has become an essential and unavoidable part of daily life in modern97

society. Through this research, we aim to develop a novel model that uses bio-signals and an intelligent analytical98

approach to examine the health impacts of commuting.99

2. Related Literature Review100

Stress has ingrained itself into our daily lives, affecting most people at various points. However, persistent or101

heightened stress levels can disrupt our well-being and usual activities. Recent studies in transportation have focused102

heavily on the commuter’s personal experience. Our understanding of travel behaviour, particularly in the choice103

of transportation mode, now relies more on factors like an individual’s satisfaction with their journey, overall life104
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contentment, and the stress experienced during commuting (Abou-Zeid et al., 2012). Previous research indicates105

that severe traffic congestion stands as the primary contributor to air pollution in mega-cities, consequently elevating106

morbidity rates in metropolitan areas (Olayode, Tartibu and Okwu, 2021).107

A study utilised diverse machine learning techniques to identify stress through multi-modal data acquired from108

wearable sensors (Bobade and Vani, 2020). This research emphasises the urgency of early detection of mental stress to109

prevent various health complications linked to stress. Employing k-nearest neighbour, Linear Discriminant, Random110

Forest, Decision Tree, AdaBoost, and Kernel Support Vector Machine, the study achieved varying accuracies: 81.65%,111

93.20%, 84.32%, and 95.21%, respectively.112

A recent study aimed to employ machine learning techniques in the transportation sector to foster a sustainable113

society (Iyer, 2021). As the population grows, several cities grapple with numerous transport, traffic, and logistics-114

related challenges. AI technologies can be implemented in transportation to alleviate congestion, enhance the reliability115

of commuting experiences, and reduce stress. With escalating environmental concerns, AI has emerged as a solution116

to combat climate change and various other issues by modernising established industries and systems. It has facilitated117

the creation of environmentally friendly cities by aiding governments in preserving biodiversity and promoting human118

well-being.119

A study indicated that individuals using active modes of transportation, such as walking, cycling, or public transit,120

experienced greater psychological well-being and happiness than those who drove. Moreover, transitioning from121

driving to active modes of transport contributed to an increase in overall well-being. Interestingly, a longer journey122

duration benefited pedestrians, whereas the opposite was true for drivers. Driving, as revealed, demands continual123

focus and may lead to feelings of boredom, social isolation, and tension (Martin, Goryakin and Suhrcke, 2014).124

Another study conducted in Canada suggested a positive association between using active modes of commuting125

(walking/cycling) and improved well-being in contrast to passive commuting methods (Herman and Larouche, 2021).126

Active commuters exhibited a 35% lower likelihood of reporting dissatisfaction than passive commuters. Additionally,127

commuters who drove reported higher stress levels than those using active transport modes. Interestingly, regardless of128

whether the commute was active or passive, individuals using active modes reported greater post-commute satisfaction.129

However, commuter satisfaction decreased with longer commute duration (Chatterjee, Chng, Clark, Davis, De Vos,130

Ettema, Handy, Martin and Reardon, 2020). Similarly, transitioning from passive to active commute modes was131

associated with increased well-being (Knott, Panter, Foley and Ogilvie, 2018).132

Numerous studies have been conducted to investigate the detection of stress levels in humans, employing diverse133

approaches. Ghaderi et al. researched stress by studying various bio-signals such as heart rate, respiration levels, and134

galvanic skin responses from both the foot and hand (Ghaderi, Frounchi and Farnam, 2015). Conversely, another study135

focused solely on using Electrocardiogram (ECG) data to gauge stress levels (Liu and Ulrich, 2014). In this research,136

the team developed a stress level prediction model centred around ECG data. Additionally, an author conducted137

experiments to detect stress levels using various physiological parameters (Shanmugasundaram, Yazhini, Hemapratha138

and Nithya, 2019). This study suggested crucial human bio-signals, including blood pressure, heart rate, temperature,139

vocal tone, and humidity, played pivotal roles in stress detection.140

The study explored uncomfortable and stressful scenarios encountered while driving, employing a portable sensor141

system for data collection (Niermann and Lüdtke, 2021). This system captured various bio-signals, including heart142

rate, skin conductance, sitting position, and g-forces. The study aimed to establish correlations between self-reported143

subjective stress levels and the obtained sensor values by collecting these data points. The gathered data offered144

valuable insights into the physiological responses associated with stress during driving. Specifically, increased heart145

rate, elevated skin conductance levels, alterations in sitting position, and high g-forces were identified as potential146

indicators of stressful situations. A neural network model was employed to analyse and predict stress levels based on147

the collected data. This model predicted the stress that people would experience while driving by using the relationships148

found between biosignals and self-reported stress levels.149

Utilising this sensor system and neural network model, the research aimed to provide a quantitative and objective150

assessment of stress levels during driving. This approach sought to deepen our comprehension of stress-contributing151

factors in driving scenarios, potentially leading to developing interventions or strategies to mitigate stress and enhance152

safety and comfort during driving experiences. The study referenced conducted an analysis using physiological153

data to gauge the stress levels of drivers (Healey and Picard, 2005). This involved the continuous collection of154

Electrocardiogram (ECG), Electromyogram (EMG), skin conductance, and respiration data from drivers navigating155

open roads in greater Boston for a minimum of fifty minutes. The study aimed to uncover correlations between156

these physiological signals and observed stressors through two distinct analytical approaches. Results highlighted that,157
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for most participating drivers, skin conductance and heart rate metrics exhibited the most robust correlations with158

their stress levels. This finding suggests that physiological signals could be reliable indicators for assessing driver159

stress, especially in forthcoming vehicles equipped with physiological monitoring capabilities. Such metrics could160

be instrumental in managing noncritical in-vehicle information systems, ensuring their timing and presentation are161

optimised to minimise driver stress. Additionally, this data could enable continuous assessment of how road and traffic162

conditions impact drivers, leading to a deeper understanding of stress-inducing factors in driving environments.163

The research introduces a real-time, non-intrusive monitoring system to detect drivers’ emotional states by164

analysing their facial expressions (Gao, Yüce and Thiran, 2014). Ensuring the driver’s attentiveness and emotional165

state is crucial for driving safety and comfort. Specifically, the system aims to identify two primary negative166

emotions—anger and disgust—associated with stress. It detects individual emotions in each video frame and then167

assesses stress levels at the sequence level.168

Experimental results illustrate that the developed system effectively performs, even with simulated data and generic169

models. Additionally, the system incorporates an extra step for pose normalisation to minimise the impact of camera170

setup and pose variations, thereby improving the accuracy of emotion detection. Overall, this research presents a robust171

and real-time monitoring system capable of accurately discerning the driver’s emotional states through facial expression172

analysis. The system provides valuable insights into the driver’s emotional well-being by addressing stress-related173

emotions and integrating pose normalisation techniques, enhancing driving safety and comfort.174

Commuting to work has become an integral part of daily routines, and its various aspects, including travel mode,175

time, and distance, have been linked to predictors of stress and well-being. Studies have revealed correlations between176

commuting, higher blood pressure levels, and increased perceived stress (Gottholmseder, Nowotny, Pruckner and177

Theurl, 2009). In one research effort, data from working individuals was utilised to detect stress levels using different178

sensors (Nakashima, Kim, Flutura, Seiderer and André, 2015). These sensors collected diverse bio-signals such as heart179

rate, blood volume pulse, and eye movements. Similarly, an experiment measured stress levels by simulating events180

or tasks that induce stress, leading to physical or mental strain (Gedam and Paul, 2021). Observations during these181

stress-inducing events revealed notable rises in key bio-signals, including heart rate, blood pressure, and galvanic182

skin conductance. These physiological markers exhibited increases, indicating heightened physiological responses183

associated with the simulated stress-inducing situations.184

A research study employed machine learning techniques to detect participants’ stress levels, utilising data collected185

from smartwatches (Katarya and Maan, 2020). Parameters like HRV, blood pressure, skin temperature, and sleep186

patterns were harnessed to gauge and quantify stress levels. These diverse physiological indicators were amalgamated187

to assess stress levels effectively. The study applied multiple machine learning algorithms, including SVM and KNN,188

to the data, aiming to detect stress levels and compare the accuracy of the different techniques. Numerous studies have189

suggested that combining various bio-signals can enhance accuracy within machine learning algorithms compared190

to models using a single bio-signals (Sriramprakash, Prasanna and Murthy, 2017; Siirtola, 2019; Muaremi, Bexheti,191

Gravenhorst, Arnrich and Tröster, 2014).192

In summary, research on stress and commuting, machine learning applications in transportation, detecting stress193

levels through physiological signals, facial expression analysis for emotional state detection, and using bio-signals have194

shown substantial advancements. These studies link commuting factors with stress predictors, utilise physiological data195

for stress detection, and explore machine learning using multiple bio-signals, highlighting the potential for enhanced196

accuracy.197

3. Research Methodology198

The research focuses on developing a machine learning-based model to predict the commute’s impact and monitor199

the stress level due to the commute mode. In research, objective and subjective factors shape the research process200

and outcomes. Understanding the interaction between these factors is essential for conducting thorough and reliable201

research that produces valid results. Our study utilises a dataset incorporating qualitative and quantitative data from202

questionnaires and human bio-signals. Thus, several steps are carried out to determine the stress level, as explained203

below:204

3.1. Data Collection205

In this research, 45 healthy participants were recruited with a mean age of 32 years, which consists of 18 females and206

27 males. Using the simple random sampling method, the sample size required for our study was found to be 42 only.207
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However, several similar studies have been conducted with smaller participant numbers than our research. For instance,208

one study focused on detecting stress levels through machine learning and deep learning with multimodal physiological209

data from only 15 subjects (Attar, Balasubramanian, Subasi and Kaya, 2021). Another successful study utilized210

machine-learning-based signal processing on physiological signals for stress detection with data from just 17 drivers211

(Ghaderi et al., 2015). The study participants in our research were working people and had regular commute routines to212

work. They resided in various locations across London. For five consecutive days, non-invasive wearable technologies213

were employed to gather the participants’ bio-signals, including heart rate, BP, and electroencephalography signals.214

These wearable devices allow the collection of physiological data in a non-disruptive manner throughout the study215

duration. The EEG signal was recorded using the EEG headset, allowing for the continuous monitoring of brain216

activity throughout the commuting experience. This device captured and recorded the brain’s electrical activity,217

providing valuable EEG data for analysis and examination in the study (Sulaiman, Ying, Mustafa and Jadin, 2018).218

For each participant, we collected blood pressure and heart rate measurements before and after their commute over219

five consecutive days, yielding a total of 450 data points for each measure. Additionally, EEG data was recorded220

throughout the commute using the Neurosky headset, which sampled brain signals at 512Hz, which means the device221

records 512 datapoints per second. The average commute duration was 35 minutes. A questionnaire form called the222

Positive and Negative Affect Schedule (PANAS) was employed as part of the study, as shown in Figure 1. This223

questionnaire served as a measure to assess participants’ subjective experiences of positive and negative affect, allowing224

them to report their emotional states and feelings. The PANAS questionnaire provided valuable subjective data that225

complemented the objective physiological measurements collected in the study. The utilisation of this questionnaire226

as a self-reported measure of affect has gained broad acceptance in both community and clinical contexts (Watson,227

Clark and Tellegen, 1988; Clark, Tellegen et al., 1988). The PANAS has 10 positive and 10 negative items to ensure228

a balanced, comprehensive, and empirically validated measure of both types of affects, reflecting the complexity229

of human emotional experience. Survey results further indicated that active modes of commuting correlated with230

increased physical activity, lower BMI, and reduced risk of obesity (Flint, Cummins and Sacker, 2014; Larouche,231

Faulkner and Tremblay, 2016). Similarly, Heart rate and BP were obtained pre-commute and post-commute using the232

MySignal device. Additionally, EEG data was collected during the commute using the Neurosky EEG headset. Alpha233

and Beta bands were utilised from the EEG signal as presented in Figure 2.234

Figure 1: Subjective self-report questionnaire.

The collected data was divided into two sub-datasets. The first dataset comprised the key parameters, including BP,235

HR, and EEG signals. In addition to these primary parameters, the second dataset incorporated personalised factors236

such as height, alcohol and smoking status, age, weight, and weather conditions. By combining these personalised237

parameters, the second dataset provided a more comprehensive and personalised perspective on the relationship238

between stress and commuting.239

3.2. Feature Extraction240

In this study, heart rate, BP, and EEG signals were recorded to predict the impact of commuting on individuals.241

By comparing the post-commute values of blood pressure and heart rate with their respective pre-commute values, it242

was possible to determine if the participants experienced an increase, which indicates a state of stress. This analysis243
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Figure 2: Comparison of Alpha and beta wave from the EEG signal after the commute.

provided insights into the physiological response to commuting and its potential impact on stress levels. Similarly,244

when the centroid value of the Beta band is higher than the Alpha value, it denotes that the participants are stressed245

(Sulaiman et al., 2018).To apply various machine learning algorithms, pre-processed data was used for each method to246

evaluate the following research hypothesis: After commuting, if EEG beta low power is greater than alpha low power,247

the individual is stressed. This hypothesis was tested to detect stress levels following the commute. EEG and blood248

pressure data were collected from participants during their commute. The EEG data consists of five distinct frequency249

bands: delta, theta, alpha, and beta. For this study, only the alpha and beta bands were analysed, as the alpha band is250

associated with relaxation, while the beta band is linked to active thinking, alertness, or stress. Additionally, systolic251

blood pressure was selected from the recorded BP measurements, as it represents the pressure when the heart contracts252

to pump blood and is considered a stronger indicator of stress compared to diastolic pressure. Also, the PANAS result253

can help determine whether the participant is stressed or not (Merz, Malcarne, Roesch, Ko, Emerson, Roma and Sadler,254

2013). It is categorised into low and high stress to identify their stress level. The threshold value for each parameter is255

calculated. A combination of baseline and stress-condition data was collected to determine the threshold for identifying256

stress using bio-signals like blood pressure, heart rate, and EEG. First, baseline measurements were recorded when257

individuals were relaxed and non-stressed to establish normal ranges for each signal. Then, data was gathered under258

stress-inducing conditions to identify physiological changes. Statistical methods, such as mean and standard deviation259

differences between baseline and stress conditions, were used to establish thresholds. For example, elevated systolic260

blood pressure, an increased heart rate, and a shift in EEG activity (such as increased beta and decreased alpha power)261

were commonly associated with stress. These values were analysed using machine learning models to determine a262

threshold accurately distinguishing between stressed and non-stressed states. If the value of the bio-signal is higher263

than the threshold value, it is considered high stress.264

After the data collection phase, the next step involved defining the dependent and independent variables, which265

are crucial for constructing the machine-learning model. The choice of these variables was based on the research266

question and objectives of the study. In this machine-learning model, the dependent variable, also referred to as the267

target variable, was derived from the main parameters associated with changes in blood pressure, heart rate, and268

EEG (electroencephalogram) signals. These parameters indicated physiological responses to various stimuli, including269

stress and relaxation. The participant collected bio-signals, specifically blood pressure and heart rate, both before and270

after the commute to work. Additionally, continuous monitoring of the EEG signal was performed throughout the271

commute. These bio-signals served as primary indicators of physiological changes in response to different commute272

modes. Following the data collection phase, the target variables were derived from the collected data, focusing on273

assessing the impact of commute mode on the observed bio-signals. This involved analysing how variables such as274

blood pressure, heart rate, and EEG patterns varied with different modes of commuting, such as driving, cycling,275

or public transportation. Conversely, the independent variables, also known as features or predictors, encompassed276

a broader range of parameters beyond the bio-signals. These included demographic factors such as age, gender, and277

height and lifestyle factors like age, height, medication intake, weight, and smoking and alcohol status as shown in278

Table 1. These additional parameters were incorporated into the model to account for potential confounding variables279
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Table 1
The demographic information of the study population.

Parameter Mean Standard Deviation
Duration of commute 35.16 9.95
Age (Years) 32.28 8.42
Weight (Kg) 66.64 10.79
Height (cm) 168.52 12.17
Cigarettes (Per day) 0.73 1.51
Alcohol intake (Weekly units) 1.42 3.05
Temperature (Degree Celsius) 18.25 4.26

and provide a more comprehensive understanding of the factors influencing physiological responses during commuting.280

By incorporating both dependent and independent variables into the machine-learning model, we aimed to develop a281

predictive framework capable of assessing the impact of commute mode on bio-signals. This approach allowed for a282

more nuanced analysis of the relationship between commuting behaviour and health outcomes, ultimately informing283

strategies for promoting healthier and more sustainable transportation practices.284

4. Implementation285

A model based on machine learning techniques has been developed to execute the data set. Different pattern286

algorithms have been chosen to improve the performance. The analysis used Boosted Trees, Linear Discriminant,287

and Logistic regression algorithms. The analysis was conducted to treat the data and get the output. The data will be288

processed from the output file, which is input and loaded into the system for the results. The flow chart for the whole289

process of this study is shown in Figure 3.290

4.1. Metrics for evaluating classification performance291

4.1.1. Confusion Matrix292

The confusion matrix is the most commonly used evaluation metric for machine learning classification problems.293

It is a graphical representation of the classifier’s generated predictions and the actual values. A confusion matrix is a294

tabular representation that comprehensively summarises a classification model’s performance. It presents the counts of295

true positive, true negative, false positive, and false negative predictions made by the model. Examining the confusion296

matrix can gain valuable insights into the classifier’s performance, including accuracy, precision, recall, and F1 score.297

These metrics aid in evaluating the model’s ability to classify the data accurately.298

4.1.2. Precision299

Precision refers to the ratio of accurately predicted and expected positive instances. When the data set is unbalanced,300

meaning that one class is more prevalent than the others, relying solely on accurate categorisation can lead to misleading301

results. For example, a model can attain a high accuracy score by consistently predicting the most prevalent class for all302

outputs without acquiring substantial knowledge or insights from the data. To tackle this issue, precision is computed303

as a metric to identify the proportion of accurate positive predictions, as shown in Equation 1.304

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃∕𝑇𝑃 + 𝐹𝑃 (1)

4.1.3. Recall305

The true positive rate (TPR), also called recall, quantifies the percentage of true positive instances that are accurately306

classified. It is determined using a specific Equation 2.307

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃∕𝑇𝑃 + 𝐹𝑁 (2)

In this equation, TP represents the number of true positives (correctly predicted positive instances), and FN308

represents the number of false negatives (positive instances incorrectly predicted as negative). It calculates the recall309

or true positive rate by dividing the number of true positives by the sum of true positives and false negatives. It is a310
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Figure 3: Flow chart of the whole project.

useful metric for assessing the model’s ability to correctly identify positive instances, accounting for missed instances311

(false negatives).312

4.1.4. The Area under ROC Curve313

The performance of the algorithm can be evaluated by receiver-operator characteristic (ROC) (Hajian-Tilaki, 2013).314

ROC applies a threshold value for each output value. Each algorithm exhibits distinct true positive and false positive315

values. The data needs to undergo pre-processing, divided into different subsets. The dataset will be divided into three316

subsets: the training data, which will comprise 70% of the dataset; the validation data, which will represent 20%; and the317

remaining 10%, which will be allocated as the test data. The 70% training data allows the model to learn effectively,318

while the 20% validation set helps fine-tune the model and prevent over-fitting. The final 10% test set provides an319

unbiased assessment of the model’s performance on unseen data, ensuring it generalises well to new inputs.320

5. Results and Discussion321

In our study, we split the data into two separate data sets. The first set includes the key parameters, BP, HR, and322

EEG signals. On the other hand, the second data set comprises the BP, HR, EEG signals and additional personalised323

parameters gathered from the subjects.324

By splitting the data into these two categories, we can examine the impact of subjective parameters on the analysis325

separately from the objective parameters. This division allows us to compare and analyse the influence of subjective326

factors on the outcome variables while controlling for objective factors.327

The objective parameters (blood pressure, heart rate and EEG signal) provide direct physiological measurements328

that can be considered more concrete and less prone to bias or individual interpretation. On the other hand, subjective329
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Table 2
Confusion matrix of Boosted Trees for the first dataset.

Predicted Positive
values

Predicted Negative
values

True Positive
Values

95
(True Positive)

13
(False Positive)

True Negative
Values

14
(False Negative

103
(True Negative)

parameters (age, height, weight, and alcohol consumption) involve self-reported information that individual perceptions330

or reporting errors may influence. By analysing the two data sets separately, we can assess the relative importance of331

subjective parameters in explaining variations in the outcome variables compared to the objective parameters alone.332

This approach helps understand the complex relationship between different factors and their impact on the variables333

of interest.334

5.1. Using only the main parameters of Heart rate, BP, and EEG signals335

5.1.1. Boosted Tree336

It refers to an ensemble learning method that combines multiple decision trees to create a predictive model. Boosted337

trees are built sequentially, where each subsequent tree is constructed to correct the mistakes made by the previous trees.338

Boosting addresses the errors made by preceding decision trees. Boosting transforms weak decision trees into strong339

learners. In boosting, subsequent trees are constructed by considering previous trees’ mistakes. As a result, the trees340

are built sequentially, with each tree relying on the one that came before it. This approach is known as sequential341

learning, which is unsuitable for parallel computing. Once the model was trained, we achieved an accuracy 88% with342

five-fold cross validation. The Confusion matrix is utilised to evaluate the algorithm’s accuracy, which provides a343

comprehensive overview of the algorithm’s performance, showcasing the correct and incorrect predictions made for344

each class in a tabular format (Visa, Ramsay, Ralescu and Van Der Knaap, 2011). The model predicted 95 values were345

correct out of 108 for the first class. Similarly, the second class had 14 misclassified values out of 117. The overall346

performance of this algorithm is shown below in Table 2.347

The ROC curve was created to demonstrate the overall performance of this classifier in a graphical form, as shown348

in Figure 4.349

Figure 4: ROC curve of Boosted Trees for the first dataset.
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Table 3
Confusion matrix of Linear Discriminant for the first dataset.

Predicted Positive
values

Predicted Negative
values

True Positive
Values

94
(True Positive)

14
(False Positive)

True Negative
Values

22
(False Negative

95
(True Negative)

5.1.2. Linear Discriminant350

It is a machine learning technique frequently used for predictive analysis (Xanthopoulos, Pardalos and Trafalis,351

2013) (Balakrishnama and Ganapathiraju, 1998). As mentioned, in this study, we predict the impact of commuting352

based on the mode of commute using two datasets. Cross-validation was used to mitigate the risk of over-fitting. This353

approach ensured that the data was divided into five subsets, each serving as training and validation data in separate354

iterations. By rotating through the subsets, we obtained more reliable and robust performance estimates for our model355

(Moore, 2001). We achieved an accuracy of 84% using this classifier. This method correctly predicted 94 out of 108 for356

the first class. Similarly, 22 out of 117 were classified incorrectly for the second class. These graphical representations357

provide insights into the classifier’s performance, as shown in Table 3 and Figure 5 below:358

Figure 5: The ROC curve depicting the performance of Linear Discriminant for the first dataset.

5.1.3. Logistic Regression359

It is also a popular machine learning algorithm in predictive analysis (LaValley, 2008) (Sperandei, 2014). We360

used this classifier to train both datasets. This classifier performed very well, with an accuracy of 84.44% for the361

first dataset. The model accurately predicted 92 out of 108 instances for the first class. Similarly, 19 out of 117 were362

classified incorrectly for the second class. The Confusion matrix and ROC curve obtained using this classifier are363

shown in Table 4 and Figure 6.364
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Table 4
Confusion matrix of Logistic regression for the first dataset.

Predicted Positive
values

Predicted Negative
values

True Positive
Values

92
(True Positive)

16
(False Positive)

True Negative
Values

19
(False Negative

98
(True Negative)

Figure 6: ROC curve of Logistic regression for first dataset

Table 5
Confusion matrix of Boosted Tree for the second dataset.

Predicted Positive
values

Predicted Negative
values

True Positive
Values

96
(True Positive)

12
(False Positive)

True Negative
Values

8
(False Negative

109
(True Negative)

5.2. Using the main parameters of Blood pressure, Heart rate, EEG signals and personalized365

parameters366

5.2.1. Boosted Tree367

Similarly, the classifier was trained again using the second dataset. The second dataset was comprised of main368

parameters and personalised parameters. The dataset was partitioned into predictor and response variables to train369

the classifier using a five-fold cross validation approach. This process ensured that the data was divided into subsets370

and used for training and validation to enhance the model’s performance and reliability. Adding those personalised371

parameters helped improve the model’s performance to reach an accuracy of 91%. The model predicted 96 values372

correctly out of 108 for the first class. Similarly, only eight values were classified incorrectly for the second class out373

of 117. The confusion matrix and ROC curse have been plotted to show the model’s overall performance, as shown in374

Table 5 and Figure 7 below.375
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Figure 7: ROC curve of Boosted Trees for second data-set.

Table 6
Confusion matrix of Linear Discriminant for the second dataset.

Predicted Positive
values

Predicted Negative
values

True Positive
Values

94
(True Positive)

14
(False Positive)

True Negative
Values

13
(False Negative

104
(True Negative)

5.2.2. Linear Discriminant376

Likewise, the second dataset containing all personalised parameters was utilised to train the model. Initially, the377

dataset was classified into input and target variables and then trained using a five-fold cross validation technique to378

mitigate the risk of over-fitting (King, Orhobor and Taylor, 2021). Adding those personalised parameters helped to379

increase the model’s performance with an accuracy of 88%. The model accurately predicted 94 out of 108 instances for380

the first class. However, for the second class, it classified 13 instances incorrectly out of 117. The overall performance381

of the classifier is shown in Table 6 and Figure 8 below:382

5.2.3. Logistic Regression383

Similarly, the performance of this classifier improved even further with the second dataset. The model achieved384

an impressive accuracy of 90.66%, making it the top-performing algorithm among the evaluated ones. A confusion385

matrix summarises the performance of all the selected machine learning algorithms (Patro and Patra, 2014). It also386

helps to prevent bias in prediction (Kaur and Malhotra, 2008). The model accurately predicted 94 out of 108 instances387

for the first class. In contrast, the second class misclassified seven instances out of the 117. The performance of the388

Logistic regression using the Confusion matrix and ROC curve has been demonstrated in Table 7 and Figure 9 Below.389

5.3. Results of the PANAS questionnaire.390

This study utilised a questionnaire form (PANAS) to gather commuters’ feedback before and after their journey.391

The PANAS questionnaire holds major role in psychological assessment due to its ability to measure and distinguish392

between positive and negative emotional experiences. Its structured format and comprehensive set of items enable393

the assessment of an individual’s current emotional state, aiding in clinical evaluations across various mental health394

conditions, including depression, anxiety, and mood disorders. PANAS serves as a valuable tool in research, allowing395
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Figure 8: ROC curve of Linear Discriminant for the second dataset.

Table 7
Confusion matrix of Logistic regression for the second dataset.

Predicted Positive
values

Predicted Negative
values

True Positive
Values

94
(True Positive)

14
(False Positive)

True Negative
Values

7
(False Negative

110
(True Negative)

Figure 9: ROC curve of Logistic regression for the second dataset.
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Table 8
Comparison of positive and negative affect before and after the commute.

Positve Affect Negative Affect
Avg Pre-Commute 34.73 11.16
Avg Post-Commute 28.60 19.05

for the exploration of emotional patterns, personality traits, well-being, and the effects of interventions on emotional396

states. Overall, the integration of qualitative research methods using the PANAS questionnaire, alongside objective397

measurements enhance the comprehensiveness and validity of the study’s findings. By considering both subjective398

experiences and objective data, the research offers a holistic perspective on the effects of commuting modes on399

individuals’ well-being, highlighting the importance of promoting healthier and more sustainable transportation400

options The form utilised in this study included a range of descriptive words that captured the participants’ emotions401

and feelings, offering valuable insights into their subjective experiences within their environment. The PANAS scale402

employed for this purpose varied from 1 to 5, as depicted in Figure 1. Each participant completed the questionnaire403

before and after their journey. Based on the responses from the questionnaire, we computed the scores of positive and404

negative, as presented in the provided Table 8. The scores obtained from the PANAS questionnaire range from 10 to405

50, with bigger values indicating increased levels of affect experienced by the participants.406

After summing the positive and negative affect scores, average values for positive and negative affect scores both407

before and after their journey were determined. The results are presented in the provided Table 8.408

The analysis of PANAS results revealed that participants exhibited higher levels of positive affect before and after409

commuting. This finding indicates that participants’ moods and emotional states tended to be more positive before their410

commute. Likewise, the results showed that participants experienced higher levels of negative affect after commuting,411

suggesting increased stress among participants following their commute.412

6. Analysis and Critical Review413

This study provides an insightful examination of how commuting impacts an individual’s physical state, focusing414

on leveraging machine learning for stress prediction. By employing biometric data such as heart rate, blood pressure,415

and EEG signals, the research contributes to the growing field of automated health monitoring, particularly relevant in416

today’s increasingly urbanised and high-pressure environments. The approach holds significant potential for improving417

public health by offering a scalable way to monitor stress levels, which traditionally requires medical expertise and418

subjective self-reporting methods.419

In this research, a comprehensive experiment was conducted to choose the most effective machine-learning420

technique to predict the impact of commuting. We selected three algorithms based on a comprehensive literature review421

to accommodate the diversity in data types. Specifically, we employed both linear (linear discriminant and logistic422

regression) and non-linear methods (boosted trees). Linear models offered an interpretable framework, balancing423

performance with the ability to understand the direct relationship between each factor and stress. In contrast, non-linear424

models like boosted trees allowed us to capture complex interactions and non-linear effects, offering a complementary425

perspective on the data. This dual approach enabled us to assess which model type best captured the relationships426

among variables, providing a more comprehensive understanding of the data and facilitating a selection that balanced427

performance with interpretability. Including personalised parameters enhanced the model’s accuracy, demonstrating428

the importance of considering individual-specific variables as illustrated in Table 9.429

The analysis revealed a significant increase in physiological signals after commuting, irrespective of commute430

duration. Notably, the Boosted Trees model outperformed other approaches, achieving 91.11% accuracy. These findings431

suggest a clear connection between passive commuting and elevated stress levels, supporting previous research432

that links passive commuting to negative emotional states. The boosted Trees model achieved promising results433

for both data sets: the first dataset had main parameters (BP, HR and EEG), and the second contained main and434

personalised parameters. The confusion matrix was employed to assess the performance of all techniques, which435

provided a comprehensive overview of how well the methods correctly classified the instances and identified any436

misclassifications, as shown in Table 9. Also, to address concerns about overfitting due to potential data leakage, we437

applied the five-fold cross validation method with a specific strategy aimed at preventing subject-wise data leakage.438

This strategy, known as grouped five-fold cross validation ensured that data from a given participant did not appear439
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Table 9
Performance of machine learning techniques using various performance metrics.

Techniques Dataset Accuracy with 5-fold cross validation Accuracy without validation Precision Recall

Boosted Tree Dataset I 88.00% 89.2% 0.87 0.87
Dataset II 91.11% 91.80% 0.88 0.92

Linear Discriminant Dataset I 84.00% 84.6% 0.87 0.81
Dataset II 88.00% 88.8% 0.87 0.87

Logistic Regression Dataset I 84.44% 85.20% 0.85 0.92
Dataset II 90.66% 91.40% 0.87 0.93

in both training and validation sets within any fold. By isolating each subject within folds, we maintained statistical440

independence and avoided introducing bias due to repeated subject data. Five-fold cross validation reduces overfitting441

risks by training and validating across multiple folds, which exposes the model to a variety of data distributions and442

reduces dependency on a single train/test split. This iterative approach helped us identify and control for patterns that443

could lead to overfitting. In this research, we compared results obtained with and without cross-validation, further444

demonstrating the effectiveness of this approach in preventing overfitting.445

Similarly, one of the limitations of this study is the small dataset, which may limit the generalizability of the results.446

With fewer samples, the model can be prone to over-fitting, potentially capturing noise rather than the underlying447

patterns. Additionally, the health status of cyclists, who tend to be healthier overall, may have confounded the results,448

suggesting that they experienced less stress. To mitigate this issue, we employed cross-validation to ensure more reliable449

performance estimates and used regularisation techniques to control model complexity. In Figure 10, the performance450

of the different machine learning models when we employed the cross-validation method. Similarly, Figure 11 shows451

the performance of different machine learning models without cross-validation for both datasets.

Figure 10: Classification accuracy for Machine learning techniques for both datasets with Five-fold cros validation.

452

453 7. Conclusions
This study developed different machine learning algorithms to analyse and understand how commute-related454

factors impact individuals. Linear Discriminant Analysis, Boosted Trees, and Logistic Regression were trained on455
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Figure 11: Classification accuracy for Machine learning techniques for both datasets without validation.

two datasets: one containing key parameters such as blood pressure (BP), heart rate, and EEG signals, and another456

incorporating personalised factors like age, weight, commute duration, and weather conditions. These datasets provided457

a comprehensive view of how commuting affects human well-being. The Boosted Trees model performed best, with458

accuracies of 88% and 91.11% for the two datasets. Adding personalised parameters improved the performance of459

all machine learning models, reinforcing that passive commuting modes are more stressful than active ones. These460

findings support advocating for active commuting modes to reduce stress and enhance well-being.461

The research employed the PANAS (Positive and Negative Affect Schedule) questionnaire to gather partici-462

pants’ subjective perceptions of their commute. Results from the PANAS responses showed that commuting increased463

negative emotions, particularly after passive commutes like driving, where participants reported higher levels of464

negative affect. In contrast, active commuters, such as cyclists, experienced less stress. Notably, the negative impact465

of passive commuting was consistent regardless of commute duration, highlighting that mode of transport, rather than466

the length of the commute, plays a significant role in affecting emotional well-being.467

This research presents a comprehensive approach that combines advanced machine learning techniques with both468

469 objective physiological data and subjective self-reported emotional states to examine the effects of commuting on well-
470 being. The study distinguishes itself by analyzing a range of commute-related factors, including personalized variables
471 such as age, alcohol consumption, and commute duration, alongside key bio-signals such as heart rate and blood
472 pressure. The integration of the PANAS questionnaire adds a psychological dimension, enabling the study to capture
473 a holistic view of the commuter experience. Beyond achieving high accuracy in predicting stress levels with models
474 like Boosted Trees, the research reveals the distinct impacts of passive and active commuting modes, independent of
475 commute length. This application of machine learning for real-time stress detection through bio-signals positions the
476 study as a foundational step toward the development of intelligent, health-focused transportation systems that integrate
477 urban planning with health monitoring.The study’s contributions span fields s uch a s u biquitous c omputing, body
478 sensor technology, and wireless telehealth. By highlighting the unique effects of passive versus active commuting, this
479 research opens pathways toward autonomous systems capable of continuous stress monitoring, encouraging healthier
480 commuting behaviors and potentially mitigating related health risks. Overall, this research contributes to advancing

 sustainable transportation systems by promoting healthier commuting modes, with potential applications in 
u urban planning and public health.
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