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Abstract—The goal of this project is to improve the application
of machine learning techniques in the summertime prediction
of thermal comfort in residential structures (for both present
and future weather situations). Using DesignBuilder’s integrated
simulation engine and simulated data, the research creates strong
prediction models with Random Forest and XGBoost algorithms.
Essential factors like building orientation, window-to-floor ratios,
U-values, and operating temperatures were examined using
exploratory data analysis, feature engineering, and thorough
data preparation. Mean Absolute Error (MAE) and R-squared
values were applied for the accurate and effective validation of
the models. The findings demonstrate significant potential for
early-stage decision making on building designs, for reducing
risk of overheating and opening the door to more sustainable
and comfortable living spaces. Future research endeavors aim to
enlarge the dataset, explore different Machine learning modeling
techniques, and enhance the models’ capability to predict and
mitigate overheating in different building kinds and climatic
conditions.

Index Terms— Machine Learning, Random Forest, XGBoost,
DesignBuilder, EnergyPlus, Building Orientation, Window to floor
ratio, Thermal Comfort, U-values, Overheating Prediction

I. INTRODUCTION

The rapid urbanization and climate changes are having
significant impact on the modern urban landscape. As cities
grow and their climates become more severe, maintaining
healthy living and working conditions in buildings within
urban settings is becoming increasingly difficult. Conventional
cooling methods such as air conditioning and passive cooling
techniques often fail to address the complex interrelationship
of building materials, architectural design and environmental
factors [1 - 3]. In addition to negatively affecting occupant
comfort, this reduction dramatically raises energy use and
carbon emissions [4].

With the help of data driven algorithms, Machine Learning
(ML) provides a revolutionary way to more accurately predict
and control building environments [5]. ML models can process
large amounts of data to identify the correlation, patterns and
make predictions from it, which are very useful for optimizing
building operations and thereby ensuring thermal comfort
inside the buildings. This research uses machine learning to
address the problem of buildings becoming warmer as global
temperature rises [6]. The main objective is to develop a
predictive model that integrates dynamic simulation standards

(CIBSE TM52 and CIBSE TM59) with real-time data analysis
[7], [8].

Latest innovations in ML have shown that thermal comfort
modeling holds great promise. High accuracy indoor envi-
ronmental condition predictions have been achieved through
the use of ML techniques like Random Forest, XGBoost
[5, 6]. Moreover, it appears that integrating adaptive models
that respond to real-time data is necessary for dynamically
controlling thermal environments [9, 10]. By combining these
advanced ML techniques, this research aims to improve the
predicted accuracy of thermal comfort model by focusing on
important variables including building orientation, material
properties and operative temperature.

II. LITERATURE REVIEW

A complicated mental state known as “thermal comfort” is
expressed as happiness with the thermal environment and is
impacted by a number of variables, such as garment insulation,
air speed, humidity, air temperature, radiant temperature and
metabolic rate [1]. The impact of thermal comfort on energy
usage and occupant well-being in building design has been
well studied [2], [3]. Many recommendations and standards,
including ASHRAE Standard 55, ISO 7730, and CIBSE TM
52/53, have been created over time to define and quantify
thermal comfort. These standards and guidelines include ex-
tensive requirements for acceptable thermal settings [1], [2],
[7], and [8]. Conventional methods of preserving thermal
comfort in buildings frequently depend on HAVC (Heating,
Ventilation, and Air Conditioning) systems having setpoints.
However, the changing character of thermal comfort which
is impacted by occupant behavior as well as environmental
factors is creating an increasing threat to these techniques
[3]. Recent developments in building technologies and the
expansion of data availability have resulted in more advanced
techniques for predicting controlling thermal comfort using
machine learning [4]. A data-driven method for modelling and
predicting thermal comfort is provided by machine learning,
allowing for more flexible and customized control over interior
conditions. In this domain, several kinds of machine learning
techniques have been examined; each has advantages and
disadvantages. The use of deep learning models to increase
the precision of thermal comfort prediction was shown by



Zhang et al. [4]. The necessity for machine learning models
that can take into consideration unique thermal preferences
and spatial variability was highlighted by Lala et al. [5].
Non-intrusive techniques were investigated by Ghahramani et
al. [6] for excellent prediction accuracy in personal comfort.
To maxmise thermal comfort and indoor air quality, Ma et
al. talked about combining machine learning techniques with
empirical and deterministic models [11]. The integration of
adaptive models that respond to real-time data is seen as
crucial for managing thermal environments dynamically. Jiang
et al. developed a personalized HVAC control system using
machine learning [9]. Their system learns from occupant
feedback and environmental data to adjust HVAC settings dy-
namically, ensuring optimal thermal comfort while minimizing
energy consumption. Similarly, Peng et al. applied machine
learning to HVAC system control, demonstrating significant
energy savings and improved occupant comfort [10]. Research
by Guenter et al. as well as Huchuk et al. emphasise the
necessity of occupancy prediction and intelligent building
management for energy savings [12], [13]. Huchuk et al.
focused on predictive control strategies that anticipate changes
in occupancy and environmental conditions, allowing HVAC
systems to adjust proactively [12]. To optimize building system
functioning Guenter et al. [13] utilizes occupancy patterns
and environmental data and able to achieve significant energy
savings. The imbalance between HVAC system energy con-
sumption and occupant happiness, especially in over-cooled
conditions is another major concern. Chaudhuri et al. [14]
developed a model for predicting thermal comfort which
are based on gender-specific for solving the problem. Also,
their research shows that different population groups have
different requirements for thermal comfort, which should be
consider while developing and using HVAC systems [15].
Studies by GAO et al. [16], [17] made contributions to the
field by implementing cutting-edge machine learning methods
like deep deterministic policy gradients and transfer learning
and improving the ability of the models to predict thermal
comfort in various building and climatic conditions. Zhao
et al. checked how AI-based predictive control can help out
in smart buildings [18]. Their research showed us that even
when environmental conditions changes, machine learning
can effectively optimise HVAC system efficiency and keep
thermal comfort. Song et al. [19] examined the impact of
psychological features on the thermal comfort who shown the
importance for models that consider both the psychological
and physical aspects of comfort. By using artificial intelligence
(AI) to evaluate thermal comfort in learning environments,
López-Pérez et al. showed how machine learning can enhance
both comfort and learning results [20]. The integration of
physiological and psychological aspects in HVAC control was
studied by Turhan et al. [21] who highlight the significance
of a comprehensive strategy for thermal comfort management.
To sum up the combination of machine learning and building
environmental data presents an ideal way for efficient and
sustainable management of indoor atmosphere [17], [18]. This
study highlights how important it is to create models that

can be interpreted, adjusted to different building contexts
and predicted [21], [22]. While earlier research has shown
that machine learning models can be used to predict thermal
comfort, many studies focused on just specific building types
or circumstances. Studies such as those conducted by Zhang
et al. (2019) [4] examined the use of deep learning to increase
the prediction accuracy of thermal comfort prediction, but they
did not investigate the prediction of overheating risks in the
context of future weather patterns. Similarly, Ghahramani et
al. (2020) [6] examined non-intrusive methods for predicting
personal comfort but did not examine the influence of window-
to-floor ratios and building orientation. This study builds
upon such previous research by offering multiple machine
learning models to predict overheating risks specifically in
residential building during supper conditions. In addition, the
incorporation of future climatic scenarios into this research
enhances its value for building managers and urban planners
by offering a useful tool (GUI) for real-time projections.

III. METHODOLOGY

The steps to create and check machine learning model that
predict thermal comfort in residential buildings are described
in the methodology section. The four main steps included
in this part are Data collection, data preprocessing, model
building and training, and. A flow chart summarises these steps
are shown in Fig.1.

Fig. 1: Steps of Methodology

A. Data Collection

We used DesignBuilder software along with EnergyPlus
simulation engine to create thermal comfort data for the cur-
rent year and future (2050) weather. This setup helps generate
detailed environmental data for a residential flat that has ma-
terials and design features from mid-century. The simulations
are mainly focused on summer conditions. They kept track
of hourly operating temperatures and the outside temperature
from May all the way through September. To make sure the
data really showed typical summer weather patterns, we used
CIBSE Design Summer Year (DSY) meteorological files.

a) DesignBuilder Software: DesignBuilder gives you re-
ally useful information about how a building performs in the
environment. It looks at things like carbon emissions, energy



use and thermal comfort. How does it do all this? Well, it uses
EnergyPlus, which is a strong simulation tool. This tool helps
with detailed thermal modelling. It even works with time steps
that are shorter than hour. This program follows the TM59
guidelines too. These guidelines are a special standard created
by CIBSE to help predict if a residential building might get
overheat.

b) Simulation Setup and Evaluation: For this study, we
checked the risk of overheating using the CIBSE TM59 rules
during summer conditions. It’s all about making sure building
stay comfy and cool. The CIBSE DSY weather file was
utilised for simulations from May to September. The TM59
methodology requires that results for living spaces should
not exceed 3% of occupied hours with temperatures above
comfort thresholds. For bedrooms, the operative temperature
should not rise above 26°C for more than 1% of the hours
from 10 p.m. to 7 a.m. to ensure comfort during sleeping
hours. Internal gains profiles, including occupancy, equipment,
heat gain, and heating, followed TM59 standards, with natural
ventilation applied when room temperatures exceeded 22°C
during occupied hours.

c) Description of the Case Study and Building Simula-
tion Modelling: The case study focused on a top-floor flat
in a seven-story building block in the London Borough of
Newham, southeast England. Constructed between 1950 and
1966, the building includes 100 flats with one- and two-
bedroom units. Typical 1960s construction materials’ specifi-
cations were used for the simulation model. The U-values were
set to 2.3 W/m²K for the roof, 1.2 W/m²K for internal floors,
1.5 W/m²K for external walls, and 2.8 W/m²K for glazing. The
flat has two exposed external surfaces, with the living room
facing south and a shaded terrace, and the kitchen facing north
with a shaded open corridor. The bedroom has south and east
exposures with a large unshaded window area on the south
side.

(a) (b)

(c) (d)

Fig. 2: (a,b) a picture of the case study house. (c) the 3D model of the case
study house. (d) flat floor plan from Designbuilder.

The primary variables collected included:

1) Temporal Features: Hour of the day, day of the week,
and month.

2) Building Physical Features: U-values for the roof, walls,
floor, and windows; window-to-floor ratio; building ori-
entation.

3) Environmental Interaction Features: Window openable
percentage, external temperature.

These features were chosen based on their relevance to ther-
mal comfort and their availability from the simulation tools.
In this study, external temperature serves as the prediction
variable, while the remaining variables are considered input
features.

B. Data Preprocessing

To prepare the gathered data for model development, data
preprocessing is essential. The steps included in the prepro-
cessing are follows:

1) Data Cleaning: Data cleaning is really about getting rid
of any wrong or messy information like numbers that
just don’t fit or places where info is missing. It helps
make sure that the data is correct and reliable which is
super important.

2) Feature Engineering: In this step we will create new
features to make the models prediction capability even
better. For example, adding new features like the per-
centage of the windows can be opened etc.

3) Normalization: In this step we scale the features to a
standard range which will ensure that all features equally
contribute to the models learning process.

C. Model Development and Training

In this study, we used four machine learning models for
predicting thermal comfort which are Random Forest Regres-
sor, XGBoost Regressor, Linear Regression, and Decision Tree
Regressor. The main reason for choosing these models are due
to their capacity to manage complex dataset with different
variety of features and their dependability. During the training
time Random Forest Regressor will create several decision
trees and take the average forecast of each tree.. Since it
has the capability to handle high-dimensional data, it is very
resistant to overfitting and provide insights into the relevance
of the features. Also the complexity of the model is less when
compared to the other black-box models which will help us
to understand how the features are learned for the accurate
prediction.

Similarly, XGBoost Regressor is popularfor its effectiveness
and super performance, particularly when dealing with com-
plex and large-scale data. The main technique involved in this
model is Gradient boosting in which the model is a sequential
model, it will learn by fixing the errors from previous ones and
goes. Also XGBoost can be used for wide range of machine
learning applications due to its optimisation capability and
scalability. Another main feature of XGBoost model is it
has the ability to manage missing data and it can avoid
overfitting by using regularisation techniques. As a baseline
model comparison, Linear Regression model was selected due



to its simplicity and interpretability. Linear Regression shows
better performance while used with simpler dataset because
the model assumes a linear connection between the features.
At last, Decision Tree Regressor was used, because of its
capability to handle continuous and categorical features. More
like to Random Forest, Decision Tree also have the flow-
chart like structure to make decisions and which enables a
clear understanding of how the model will predict. Due to the
efficiency and the ability to perform well in different domains
from healthcare analytics to financial, these models are kept
with high respect by the machine learning community. Apart
from the precise prediction, a clear understanding of the data
patterns is also expected, so that it can contribute for a finer
decision-making processes.

To identify the best parameters for each model, grid
search with cross-validation was used for hyperparameter tun-
ing. min samples leaf, max depth, min estimators were the
main parameters used for tuning Random Forest model, and
min samples split. Learning rate, max depth, n estimators,
and subsample were the main tuning parameters for the
XGBoost model. min samples split and max depth were used
for tunning Decision Tree Regressor. Decision Tree Regressor
was tuned using min samples split and max depth. For the
training process, the dataset was divided into training (80%)
and testing (20%) sets. The performance of the model is vali-
dated using a 10-fold cross-validation strategy by minimising
mean squared error(MSE). Finally, the trained model is tested
on the testing set.

D. Evaluation

Accuracy and performance of the models were evaluated
using a variety of metrics. Mean Absolute Error metrics
was used to measure the average magnitude of the predic-
tion mistakes, which helps in analyzing the accuracy of the
forecasts. The metrics Mean Squared Error(MSE) and Root
Mean Squared Error(RMSE) were chosen to offer a thorough
evaluation of the predicted accuracy and resilience of the
model. In MSE by squaring the errors we get a metric that
penalize greater errors more than smaller ones, The square
root of MSE, known as Root Mean Squared Error(RMSE),
shows the error using the same units as the original data..
The percentage of the dependent variables variance that can
be predicted from the independent variables is represented by
R-squared (R²) [4]. In particular, the models were compared to
determine their relative performance in terms of predictability
(Decision Tree Regressor), simplicity (Linear Regression) and
predictive strength (Random Forest and XGBoost). Highest
model performance is achieved when the model has low MAE,
MSE, and RMSE values and high R-squared values. Cross-
validation was performed using various random split of the
dataset. This method is used to enhance the models robustness.
As a results, it provides more accurate prediction and also help
to reduce the overfitting.

Fig. 3: User Interface for Real-Time Testing and Validation of Predictive
Models.

E. UI Development and Real-Time Testing

In this research, we have developed a simple Graphical User
Interface (GUI) to ensure the developed models prediction
have theoretical soundness ad practical applicability. With the
use of GUI we can test and validate all the four models in
real time, which will improves user engagement and easy to
use for building panners and the experts. The home screen
screenshot of the GUI is shown in Fig. 3.

The GUI offers several key features:

• Data Integration: Users can input the external temper-
ature data through the GUI as Excel files, which helps
utilize both the historical and real time weather data for
predictive modelling.

• Building Parameters: The GUI accepts building param-
eters input manually from users, such as proportion of
openable windows, window-to-floor ratios, and U-values
for various building components. Because of its adapt-
ability, users can model diverse situations and compre-
hend how various setups impact interior thermal comfort.

• Dynamic Living Space addition: This attribute allows
users to allocate new living spaces dynamically with
certain parameters. It clears the way to inspect thermal
comfort across a range of architectural design and orien-
tations, and also helps to maximise both occupant comfort
and energy efficiency.

• Real-Time Validation and Testing: GUI allows users to
rapidly obtain forecasts of the operating temperatures
for various living areas using the input parameters. Due
to this real-time testing and validation of the prediction
models can be achieved immediately which is essential
for determining how environmental and architectural fac-
tors affect interior temperatures

• Measure of Overheating: The amount of time each living
area spends in overheated conditions is measured using
an integrated overheating assessment tool. It determines
the proportion of time that each space surpasses these
requirements and outputs a Pass/Fail signal depending on
predetermined cutoff points, like the CIBSE TM59 over-
heating requirements. A Fail status is displayed by the
GUI if the living space overheats beyond the permitted
limits.



IV. RESULTS AND DISCUSSION

The results pf the developed machine learning models for
predicting thermal comfort are shown in this part, along with
a detailed analysis of the results. The main aim is to assess the
performance of the models such as Random Forest Regressor,
XGBoost Regressor, Linear Regression and Decision Tree Re-
gressor using the metrics-Mean Absolute Error(MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and
R-Squared (R2)-described in the approach.

Through the GUI the predictive analytics are converted in to
actionable insights which helps in improving the accessibility
and utility of the machine learning models.. The thermal com-
fort and energy efficiency in residential buildings is control in
a proactive manner by filling the gap between the results of
cutting-edge research and practical operational requirements.
Also this work make sure that the models created for this
research is workable and immediately applicable to the real-
world building . Building managers and designers may make
well-informed decisions faster using the GUI, which optimises
building designs to improve thermal comfort while meeting
energy efficient requirements.

A. Model Performance

The performance of all the four models is evaluated using
the test dataset.. The assessment metrics for the Random
Forest Regressor, XGBoost Regressor, Linear Regression and
decision Tree Regressor models are summarised in Table
1. The table shows the values of MAE,MSE, and RMSE
for the Random Forest Regressor are lower implying that it
has a better predictive capacity and can predict temperatures
more accurately, Thus the performance of the Random Forest
Regressor is much better than that of the XGBoost Regressor,
Linear Regression, and Decision Tree Regressor. Furthermore
higher R2 values indicate percentage of variation in the data
is greater in Random Forest Regressor compared to XGBoost
Regressor.

B. Analysis of Model Performance

a) Mean Absolute Error (MAE): The Random Forest
Regressors MAE value (0.12) is significantly low when com-
pared to the XGBoost Regressor (0.35), Linear Regression
(0.85), and Decision Tree Regressor (0.14), indicating that
the Random Forest Regressor produces predictions with less
average error.

b) Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE): Compared to XGBoost Regressor, which has
MSE and RMSE values of 0.24 and 0.49 respectively, the
Random Forest Regressors MSE values are lower at 0.05 and
0.21 respectively. With a MSE of 1.30 and RMSE of 1.14
the Linear Regression model shows the highest error rates,
making it less suitable for this application. With a MSE of
0.08 and RMSE of 0.29 the Decision Tree Regressor shows
a respectable performance but does not surpass the Random
Forest Regressor.

TABLE I: PERFORMANCE METRICS

Model MAE MSE RMSE R²

Random Forest Regressor 0.12 0.05 0.21 0.99

XGBoost Regressor 0.35 0.24 0.49 0.92

Linear Regression 0.85 1.30 1.14 0.58

Decision Tree Regressor 0.14 0.08 0.29 0.97

c) R-Squared (R²): Random Forest Regressor With an
R² of 0.99 captures 99% of the variation in the dependent
variable. In contrast, the XGBoost Regressor captures 92%
of the variance with an R² value of 0.92, while the Linear
Regression only captures for 58% (R² = 0.58), showing a poor
fit. With an R² value of 0.97 the Decision Tree Regressor
performs well, but still behind the Random Forest regressor.
This highlights the Random Forest Regressor’s better ability
to understand the relationships in the data.

C. Thermal Comfort Assessment

We compared the AI predictions with the simulated results
using PMV index for thermal comfort under various building
standards in order to give a deeper understanding of the
model’s performance.

TABLE II: THERMAL COMFORT IDENTIFIED FROM SIMULATION
AND AI PREDICTIONS

Room Type
Base Case PartL Passivhaus

(Sim) (AI) (Sim) (AI) (Sim) (AI)

Bedroom Fail for 141 h Fail for 90 h Fail for 94.5 h Fail for 43 h Fail for 90 h Fail for 43 h

Living Room Pass Pass Pass Pass Pass Pass

Kitchen Pass Pass Pass Pass Pass Pass

• Living Room and Kitchen: As indicated by the simulated
outcomes and AI predictions the living room and kitchen
maintain an appropriate level of thermal comfort in all the
conditions. This determines the predictive accuracy and
dependability for thermal comforts of AI models. From
the findings between the AI predictions and simulation,
it is clear that the model captures the critical parameters
impacting comfort levels. This helps validate the AI
model’s effectiveness in accurately predicting thermal
comfort in a range of settings and show the model’s
durability.

• Bedroom: 90 hours of discomfort has been predicted
by AI, where the simulated results show that for the
base case 141 hours of discomfort has been identified.
In the case of PartL with cavity insulation 43 hours
of discomfort has been predicted by AI and simulated
results shows 100 hours of discomfort. Similarly, for
the Passivhaus with EWI the AI predicts 43 hours of
discomfort and the simulated results shows 84.6 hours of



discomfort. This indicate that the AI model offers a more
optimistic assessment of thermal comfort by consistently
predicting few hours of discomfort. However, this shows
the AI’s capacity to more accurately understand complex
patterns and adjust quickly to changing circumstances
than static models.

D. Practical Implications

The results show that for predicting thermal comfort in
residential buildings Random Forest Regressor is the best
choice compared to the other 3 models. In addition to its high
accuracy, it is likely to be a dependable tool for real time
thermal comfort prediction, supporting building managers in
their decision-making about occupant comfort enhancement
and maintenance in naturally ventilated spaces.

• Adaptability: Due to its flexibility to manage a variety of
building kinds and climate conditions, it can be used in
wide range of applications. Furthermore its adaptability
helps to maintain ideal thermal comfort in a variety of
situations.

• Occupant Comfort: Occupant comfort is very important
in residential and commercial building, this is because
the increased thermal comfort boosts productivity and
occupant happiness. Accurate prediction allows Precise
prediction enables immediate adjustment to natural ven-
tilation techniques and which provides constant comfort
levels.

• Energy Efficiency: Energy saving can be achieved by
optimising natural ventilation systems with the use of pre-
cise predictions. Resulting more advantages like cheaper
operating costs , less dependence on mechanical cooling
systems and for environment.

E. Discussion

The ensemble learning approach of the Random Forest
Regressor which integrates many decision trees to improve
prediction accuracy is responsible for its good performance.
Also this approach helps to reduce the overfitting while han-
dling complex data with effectiveness. With its better accuracy
in predicting thermal comfort, the Random Forest Regressor
model shows the potential for real word use cases in building
management and design.

A Comparison between the simulated results and AI pre-
dictions offers valuable insights into thermal comfort in res-
idential buildings. The AI model predicts fewer hours of
discomfort in the bedroom compared to simulation. This
suggests a significant understanding of thermal dynamics due
to the models ability to capture difference in ambient factors
and behaviour elements that static simulations might miss.
This is crucial because thermal comfort has a significant
impact on the well-being and quality of sleep of occupants
in the bedroom. In contrast , living room and kitchen shows
more stable place for keeping thermal comfort due to the
consistency between AI and simulated results. This stability
is likely the result of well-designed architectural features such
as insulation types and ventilation details that the AI model

has correctly learned. With an impressive R² value of 0.99,
the model shows its reliability in predicting thermal comfort
across different scenarios and supports preventive measures to
enhance occupant comfort.

This project has achieved several important benchmarks,
making significant advances in thermal comfort prediction by
using sophisticated machine learning models such as Random
Forest Regressor. The models high accuracy allows for a real
time thermal comfort adjustments, providing a stronger foun-
dation for comfort maintenance than in traditional methods.
Artificial cooling can be minimised and proper airflow can
be maintained by precise prediction, which in turns reduce
the operation costs, energy preservation and benefits the en-
vironment. Additionally, occupants comfort can be enhanced
and maintained by making proper adjustments by the building
managers with the help of precise prediction. This is really
important in residential environment, where quality of life
is impacted by comfort. The results suggest that Ai can
play a crucial role in preserving constant comfort levels and
enhancing occupant satisfaction. Our model is useful for wide
range of applications and can be applied in different scenarios
only because of the model’s adaptability.

The dataset used in the study is limited to a single flat
in London, which restricts the ability to apply the findings in
different kinds of buildings and climate zones, Future research
should aim to expand the dataset by adding different building
types and different climates etc. Doing so would increase the
model’s adaptability and effectiveness in a variety of contexts.
Furthermore, adding more features like occupant behaviour,
building specific features like insulation types, and real-time
meteorological data might increase the model’s accuracy and
wider applicability.

Although the outcomes are promising, there are few areas
that could benefit further research and development:

• Feature Engineering: Incorporating additional features
related to occupant behaviour and external environmental
factors could further enhance model accuracy.

• Real-time Implementation: Developing a real-time imple-
mentation of the model could provide immediate feed-
back and adjustments to HVAC systems, further optimiz-
ing energy use and comfort.

In conclusion, research has shown that the Random Forest
Regressor has great potential for predicting residential building
thermal comfort. Because of its great precision and reliability
it will be a valuable tool for enhancing occupant comfort.
Future work will focus on expanding the dataset, adding
new features and developing real-time application in order to
increase the models accuracy.

V. CONCLUSION
This study focused on developing and evaluation machine

learning models such as Random Forest Regressor, XGBoost
Regressor, Decision Tree Regressor, and Linear Regression
for predicting thermal comfort in the residential buildings. .
The Random Forest Regressor shows the best performance
With a mean absolute error (MAE) of 0.12, mean square error



(MSE) of 0.005, root mean square error (RMSE) of o.21, and
an R-squared value of 0.99. The decision Tree Regressor also
performs well similar to Random forest with MAE of 0.14 and
R² of 0.97 making it a strong alternative to Random Forest.
However, the less effective model was Linear Regression.

The high accuracy of the Random Forest Regressor’s sug-
gest it has a wide range of practical applications such as
adjusting the HVAC settings to improve occupant comfort
and save energy. This is really important in terms of rising
global temperatures and rising energy costs. Future research
should be focused on adding more data, adding more fea-
tures like, occupant behaviour features, temperature features,
building features etc will helps to improve models prediction
capability and reliability.. Additionally developing a real time
applications and improving the models interpretability will be
crucial for its continued success.

The data used in this research is limited to a single res-
idential flat in the London. While the result are promising
with in this specific context, the research does not fully
address how well these findings can be applied to different
building types and climate zones. Future studies should aimed
to expand the dataset by adding more features like different
building types, different climatic conditions, environmental
features, occupant features etc. This extension would ensure
that the findings may be implemented globally by enabling
more comprehensive model validation over a various range of
scenarios. In general, the Random Forest Regressor achieve a
lot of potential for enhancing energy efficiency and occupant
comfort in residential structures, contributing to the creation of
smarter, healthier and more sustainable living environments.
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