
Efficient Computation of European Option Prices and their Sensitivities
with the Complex Fourier Series Method

Abstract

Highly accurate approximation pricing formulae and option Greeks are obtained for European-type

options using a complex Fourier series. We assume that risky assets are driven by exponential

Lévy processes and affine stochastic volatility models. We provide a succinct error analysis to

demonstrate that we can achieve an exponential convergence rate in the pricing method in many

cases as long as we choose the correct truncated computational interval. As a novel pricing method,

we also numerically demonstrate that the complex Fourier series performs either favourably or

comparably with existing techniques in numerical experiments.
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1. Introduction

A number of empirical studies suggest that a risky asset’s log return exhibits asymmetric lep-

tokurtosis (Rubinstein, 1985, 1994; Bates, 1991, 1996). In other words, the log return is skewed

to the left and has a higher peak and two heavier tails than a normal distribution. Moreover,

Rubinstein (1985, 1994) indicate that the implied volatility tends to rise for options that are deeply10

in(out)-of-the-money. This attribute is famously called the volatility smile. Due to these two dis-

tinctive empirical attributes, the Black-Scholes model, which assumes that a risky asset’s log returns

follow a normal distribution and have constant volatility, is not realistic enough to model option

prices in financial markets. To improve on the Black-Scholes model in asset pricing, a vast array of

models, such as time-changed Brownian motions (e.g., Variance Gamma process Madan and Seneta15

1990; Madan and Milne 1991; Madan et al. 1998), have been proposed to incorporate asymmetric

leptokurtic asset log returns. Moreover, to model the volatility smile in option pricing, popular

models, e.g., affine stochastic volatility and affine jump-diffusion models (Duffie et al., 2000) and

models based on Lévy processes, have been developed and adopted in financial practice. Most

of these new models (apart from the Merton jump-diffusion (Merton, 1976) and variance gamma20

Madan and Seneta 1990; Madan and Milne 1991; Madan et al. 1998) do not have a closed-form

probability density function (PDF) but a corresponding analytical characteristic function. Thus,

option pricing is now more challenging than ever. To price options using the new models, different
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numerical methods are naturally employed. According to their popularity, we can roughly classify

these methods into three categories: Monte Carlo simulation, finite difference (FD) schemes and25

Fourier transform methods.

Among the three categories, Monte Carlo methods are the easiest to implement. However,

the disadvantage of using Monte Carlo methods is that their approximations always contain some

randomness, whereas a closed-form formula will always yield the same result (cf. Carmona and

Durrleman, 2003). Furthermore, the fast numerical simulation of Lévy trajectories is itself a non-30

trivial problem. Monte Carlo simulation may not be exactly correct, as it suffers from simulation

error and potential errors in the least-squares method for American options under a Lévy process

as reported by Longstaff and Schwartz (2001).

The FD method is another fairly popular numerical method of option pricing when, prior to the

exercise, the prices satisfy a certain partial differential equation (PDE), such as the classical Black35

and Scholes equation, or a partial integro-differential equation (PIDE), such as the classical Black

and Scholes equation with an infinite integral term (cf. Andersen and Andreasen, 2000; Almendral,

2004; d’Halluin et al., 2004; Hirsa and Madan, 2004; Almendral and Oosterlee, 2005, 2006, 2007;

Cont and Voltchkova, 2005; d’Halluin et al., 2005; Ikonen and Toivanen, 2007a,b; Wang et al.,

2007; Tankov and Voltchkova, 2009; O’Sullivan and O’Sullivan, 2013). The general disadvantage of40

these methods is that they can guarantee only algebraic convergence rates (e.g., Hirsa and Madan,

2004; d’Halluin et al., 2005; Almendral and Oosterlee, 2007), in contrast to Fourier transform

methods (Fang and Oosterlee, 2008), which ensure exponential convergence rates in many stochastic

processes. Furthermore, using an FD scheme to discretise the integral in the pricing PIDE may not

be an ideal algorithm. The FD scheme works well if the Lévy measure is integrable, corresponding45

to a process of finite intensity, but fails to perform if the integral has a non-integrable singularity

at 0. In that case, the integral is generally divided into a local part containing the singularity of

the Lévy measure and a non-local part that can be handled by classical quadrature techniques,

such as the trapezoidal rule. The discretisation of the local part is more delicate and in the most

general case requires a second-order Taylor expansion of the unknown function. The contribution50

of the small (or smallest) jumps is sometimes approximated by effective diffusion terms (Cont and

Voltchkova, 2005; Wang et al., 2007), although this procedure is criticised by Levendorskĭi (2004)

and Kudryavtsev and Levendorskĭi (2009), who argue that it can lead to sizeable numerical errors.

Also working in the FD context, Almendral and Oosterlee (2007) rewrite the PIDE as a sum of two

weakly singular Volterra operators through an integration by parts and use established (but quite55

involved) numerical techniques to address the latter. Their method shows second-order convergence

in numerical experiments with finite variation Lévy processes from the CGMY class (Carr et al.,

2002), but at present, this approach does not apply to infinite variation processes. As the FD

scheme is not a good numerical method to solve PIDE under infinite variation processes, a series

of papers using a radial basis function (RBF) interpolation scheme were proposed by Chan and his60

colleagues to solve a PIDE pricing formula (Brummelhuis and Chan, 2014; Chan and Hubbert, 2014;
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Chan, 2016). Specifically, Brummelhuis and Chan (2014) use a multi-quadric as a basis function to

compute the action of the integral operator on a single function. Since the radial basis function is

explicit, they can exploit its properties to explicitly de-singularise the integral and convert it to a

form that is amenable to classical quadrature techniques. In that paper, a second-order convergence65

rate is achieved in numerically pricing both American and European options.

Fourier transform methods for European options were introduced by Carr and Madan (1991).

Their main focus was on pricing a single asset option under the VG model with the fast Fourier

transform (FFT). Their basic framework has since been adapted to a variety of option payoffs

and a host of asset return models for which the characteristic function is known. In their work,70

they also provide a solution for solving singularities occurring in the Fourier transform of an non-

integrable payoff function. This monumental contribution inspired the later research of Lewis

(2001), Lipton (2002) and Lord et al. (2008). Among the Fourier transform methods, those of

Oosterlee and his collaborators have attracted considerable attention (Fang and Oosterlee, 2008,

2009, 2011; Leentvaar and Oosterlee, 2008; Ruijter et al., 2013; Zhang and Oosterlee, 2013; Ruijter75

and Oosterlee, 2015). In their work, they adopt the Fourier cosine series (COS) to price options

or derivatives that have different contingency claims and are characterised by path dependence

and/or early exercise features. The implementation of the methods is relatively simple but elegant

and is capable of pricing options under different stochastic processes as long as their characteristic

function exists. The main achievement of these methods is that they can, in many cases, maintain an80

exponential convergence rate when pricing options, e.g., European options. Moreover, the methods

also exhibit the ability to accurately price options under infinite variation processes.

As an alternative to the COS method and other Fourier transform methods, the complex Fourier

series (CFS) we propose in this paper is intended to derive highly accurate approximation pricing

formulae for European-type options under exponential Lévy processes and affine stochastic volatility85

models. The main contribution of the method is that it not only retains an exponential convergence

rate in European option prices with fewer Fourier terms but also is as accurate as or even better

than the COS method. Like the COS method, the CFS method can price options accurately

under infinite variation processes, whereas the FD method fails to do so. Unlike the Monte Carlo

methods, the CFS method can avoid randomness in its pricing solution because of closed-form90

pricing formulae. Finally, we do not limit ourselves to a pricing formula for a European vanilla

option but formulate a more generalised formula for any option that has a complex payoff structure,

such as asymmetric/symmetric power option payoffs or an option on a forward or futures contract.

Based on the approximation pricing formulae, we also derive the Greeks, the quantities representing

the sensitivity of the price of options.95

This paper is organised as follows. Section 2 reviews the basic properties of the characteristic

function of a stochastic process and complex Fourier series. Section 3 investigates how to construct

a truncated interval to gain greater accuracy in the CFS method with less computational resources,

establishes the CFS approach and applies it to European-type options. In section 4, we derive the
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CFS expression of payoff functions and the Greeks. We conduct an error analysis in section 5.100

Section 6 presents numerical examples using European-type options. In particular, we contrast the

proposed scheme with the COS method and the CONV method. We conclude in section 7 and

present the financial stochastic models and some of their cumulants in Appendix A and Appendix

B, respectively.

2. A Crash Course in Characteristic Functions and Complex Fourier Series105

In this section, we briefly introduce some important properties of the characteristic functions

of random variables and classical complex Fourier series. For further details, we refer readers to

Boyd (2003), Schoutens (2003) and Cont and Tankov (2004).

2.1. Characteristic Functions and Their Properties

The characteristic function φX(z) = E
[
eizX

]
of a real-valued random variable X is defined

for arbitrary real numbers z as the expectation of the complex valued transformation eizx, where

i =
√
−1 is the imaginary unit. If fX(x) is the PDF of the random variable, then the integral is

E
[
eizX

]
:= φX(z) =

∫ +∞

−∞
eixzfX(x)dx, z ∈ R. (1)

At a given z, φX(z) is a single random variable. Some properties of characteristic functions are that110

φX(0) = 1 and |φX(z)| ≤ 1. Moreover, the characteristic function always exists and is continuous.

Most important, φX(z) uniquely determines fX(x). Because the PDF decays to zero as x → ∞,
we can truncate the infinite integration to [a, b] ∈ R without losing significant accuracy, i.e.,

E[eizX ] := φX(z) ≈
∫ b

a
eizxfX(x)dx. (2)

We discuss the choice of [a, b] in section 4. If X has kth moment (k ∈ {0, 1, 2, . . .}) satisfying the

condition E[|X|k] ≤ ∞, then the moment-generating function is115

E[Xk] =
1

ik
dkφX(z)

dzk

∣∣∣∣
z=0

. (3)

Furthermore, if we set z equal to iu, where u ∈ R, we have a different form of (3) such that

E[Xk] =
dkφX(−iu)

duk

∣∣∣∣
u=0

. (4)
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In a similar fashion, the cumulants ck of X can be defined via the following cumulant-generating

function:

ck =
1

ik
∂k log φX(z)

∂zk

∣∣∣∣
z=0

. (5)

Finally, as characteristic functions turn convolution into multiplication (cf. Lukacs, 1987), if X and

Y are two independent random variables with characteristic functions φX(z) and φY (z), respec-120

tively, then the characteristic function of X + Y is given by φX+Y (z) = φX(z)φY (z).

2.2. Complex Fourier Series

A periodic function f(t) defined on an interval [−π, π] that has a CFS representation must

satisfy the Dirichlet conditions:

1. f(t) is single-valued with a finite number of discontinuities in [−π, π].125

2. f(t) has a finite number of extrema in [−π, π].

3. The absolute value of f(t) is integrable in [−π, π] such that
∫ π

0 |f(t)|dt exists.

4. f(t) is 2π-periodic.

Suppose that f(t) satisfies the conditions; the CFS representation is given by

f(t) =
∞∑

k=−∞
bke

ikt with bk =
1

2π

∫ +π

−π
f(t)e−iktdt. (6)

Now, if we extend the series to support any real function on a finite interval [a, b] and satisfying130

the Dirichlet conditions, the complex Fourier series expansion can be defined:

f(x) = Re

( ∞∑
k=−∞

bke
i 2π
b−akx

)
with bk =

1

b− a

∫ b

a
f(x)e−i

2π
b−akxdx. (7)

If we truncate the summation and allow a summation truncation error, we have

f(x) ≈ fk(x) = Re

(
N∑

k=−N
bke

i 2π
b−akx

)
. (8)

Finally, as f(x) is a real function, Equation (8) becomes

fk(x) = Re

(
2

N∑
k=0

bke
i 2π
b−akx − b0

)
. (9)

As we see in the next section, we use Equation (9) to represent the option prices on a finite interval

[a, b]. It is clear that the general option prices, either on a forward (futures) or not, are continuous,135
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have a finite number of extrema and must be integrable in a finite interval. Moreover, as the

option prices are truncated in a finite interval, we assume accordingly that the option prices are

also periodic.

3. Truncated Intervals and Complex Fourier Series Expression of European Option

Prices140

In this section, we derive closed-form formulae for European-style options using the CFS method.

We first assume an incomplete market consisting of one risky asset {St}t≥0 (notable exceptions are

when the Lévy process is Brownian motion–the classical Black and Scholes model–or a Poisson

process) with a continuous dividend at a constant rate q and a risk-free rate r. As this is an

incomplete market (cf. Cont and Tankov, 2004), there exist infinitely many equivalent martingale145

measures Q under which prices of derivative assets are equal to discounted expectations of future

payoffs. We assume that the market has already chosen one of the possible risk-neutral measures,

and expectations E will always be taken with respect to this chosen measure. Under this risk-neutral

measure, the asset price process evolves as

E[ST ] = E
[
Ste

LT−Lt
]

= Ste
(r−q)(T−t). (10)

where LT − Lt is either a Lévy process or an affine stochastic volatility process. If we have a150

European option (an option that is exercised only at maturity), the underlying asset of which is

driven by {St}t≥0, and the current log-price x := logSt, we can express the option price V (x, t) at

time t with its contingent claim paying out G(ST ) at maturity T ≥ t as follows:

V (x, t) = e−r(T−t)E [G(ST )|St = ex] = e−r(T−t)
∫ +∞

−∞
G(ex+z)f(z)dz, (11)

where z ∈ LT − Lt. Furthermore, if we choose an interval [a, b] satisfying Equation (2) and use a

change of variables and setting y = x + z and dy = dx, we transform Equation (11) into a new155

formula such that

V (x, t) ≈ e−r(T−t)
∫ b

a
G(ey)f(y − x)dy. (12)

Before we show the CFS pricing formula of any European-type option, we show how to choose

a good truncated interval to ensure that the equality (2) can hold while the CFS pricing formula

can remain accurate. The performance of the CFS method is indeed sensitive to the choice of the

truncated interval. If the interval’s size is fairly small, then the resulting option prices will be inac-

curate. Conversely, if the interval is too large, more terms are required in the series expansions to

reach a certain degree of accuracy. Hence, to ensure high accuracy of option prices for a reasonable

size of a truncated interval [a, b], we adopt and modify the ideas suggested by Fang and Oosterlee
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(2009) to create [a, b]. In brief, Fang and Oosterlee (2009) proposed to use the following formulas:

[a, b] =

[
(c1 + xt)− L

√
c2 +

√
c4, (c1 + xt) + L

√
c2 +

√
c4

]
.

Here, c1, c2, and c4 are the first, second and fourth stochastic process cumulants respectively, L

is any constant number chosen from [10, 12], and xt := log(St/K) if St represents the risky asset

price driven by the same stochastic process at t and K is short for the strike price. Their idea is

clearly excellent, but to obtain a better truncated interval to fit in the CFS framework, we improve160

on their approach and propose Algorithm 1. If at t, St stands for the risky asset price again, F fwd

denotes the forward price, and F fut stands for the futures price, we construct a formula of D that

is the value of log(St/K), log(F fwdt /K) or log(F futt /K) such that, by trial and error,

b = |c1 + L
√
c2 +

√
c4 + |D||

a = −b (13)

Algorithm 1: Truncated interval

The closed-form formulas for c1, c2, and c4 are shown in Table B.18 in Appendix B. However,

in the Heston model (cf. Appendix A), we use an absolute value of c2 and ignore the value of c4165

due to the negative value of c2 and the lengthy representation of c4 (cf. Fang and Oosterlee, 2008).

We therefore have c1 + L
√
|c2| rather than c1 + L

√
c2 +

√
c4 in Algorithm 1.

Once we have a truncated interval, we can turn our attention to formulating our CFS pricing

formulae for different European-type options.

Theorem 1. When a dividend-paying risky asset price process (St)t≥0 with an analytical charac-170

teristic function φ(·) has a current asset price of ex = S, risk-free interest rate r and compounded
continuous dividend q, a complex Fourier expansion pricing formula of a European-type option
driven by this process with maturity time T and strike price K is

V (x, t) =e−r(T−t)−ζxRe

(
2

N∑
k=1

B̂ke
i 2π
b−akx + B̂0

)
(14)

with

B̂k = 1
b−aĜ

(
− 2πk

(b−a) − ζi
)
φ
(

2πk
(b−a) + ζi

)
, B̂0 = 1

b−aĜ (−ζi)φ (ζi) , (15)

where [a, b] satisfies the condition (2), ζ is a damping factor and Ĝ(·) is the Fourier transform of175

the payoff function.

Proof: We first multiply a damping factor exp(ζx), where ζ is any number of R but not equal to
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zero, by V (x, t) to obtain a product of U(x, t) such that

eζxV (x, t) = U(x, t). (16)

Then, we express U(x, t) with a CFS expansion defined as

U(x, t) = 2
N∑
k=0

Ûke
i 2π
b−akx − Û0 (17)

= 2
N∑
k=1

Ûke
i 2π
b−akx + Û0 (18)

with

Ûk =
1

b− a

∫ b

a
U(x, t)e−i

2π
b−akxdx =

1

b− a

∫ b

a
V (x, t)e−i(

2π
b−ak+ζi)xdx. (19)

To seek the closed-form Fourier expression of Ûk, we define ω̃k = 2π
b−ak+ζi, y−x = χ and dχ = dx.

Then, based on the result of (12), we have

Ûk ≈ e−r(T−t)
1

b− a

∫ b

a

∫ b

a
G(ey)f(y − x)e−iω̃k(x)dydx (20)

≈ e−r(T−t) 1

b− a

∫ b

a

∫ b

a
G(ey)f(χ)e−iω̃k(y−χ)dydχ. (21)

Since
∫ b
a f(χ)eiω̃kχdχ ≈ φ(ω̃k) (cf. Equation (2)), denoting

∫ b
a G(ey)e−iω̃kydy as Ĝ(−ω̃k), we can

further infer that

Ûk = e−r(T−t)
1

b− a

∫ b

a
G(ey)e−iω̃kydy

∫ b

a
f(χ)eiω̃kχdχ (22)

≈ e−r(T−t) 1

b− a
Ĝ(−ω̃k)φ(ω̃k) (23)

= e−r(T−t)
1

b− a
Ĝ

(
− 2π

b− a
k − ζi

)
φ

(
2π

b− a
k + ζi

)
(24)

Based on the result above, if we express Û with the form of Equation (18) to maintain fewer

exponential function terms, we can see that

U(x, t) = 2

N∑
k=1

Ûke
i 2π
b−akx + Û0 (25)

= e−r(T−t)

(
2

N∑
k=1

1

b− a
Ĝ (−ω̃k)φ (ω̃k) e

i 2π
b−akx +

1

b− a
Ĝ(−ω̃0)φ(ω̃0)

)
(26)
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= e−r(T−t)

(
2

N∑
k=1

1

b− a
Ĝ

(
− 2π

b− a
k − ζi

)
φ

(
2π

b− a
k + ζi

)
ei

2π
b−akx

+
1

b− a
Ĝ(−ζi)φ(ζi)

)
. (27)

Finally, as V (x, t) is a real function, we denote B̂(·) as 1/(b − a)Ĝ(·)φ(·) and divide U(x, t) by

exp (ζx), and accordingly, the complex Fourier option pricing formula becomes

V (x, t) =e−r(T−t)−ζxRe

(
2

N∑
k=1

B̂ke
i 2π
b−akx + B̂0

)
(28)

with

B̂k = 1
b−aĜ

(
− 2πk
b−a − ζi

)
φ
(

2πk
b−a + ζi

)
, B̂0 = 1

b−aĜ (−ζi)φ (ζi) . (29)

Q. E. D.180

Remark 2. exp(ζx) is a damping factor that acts like the one introduced in Carr and Madan
(1991). Moreover, it cannot be equal to zero because if it is, Ĝ does not exist when k = 0. By trial
and error, the value of ζ is chosen as 0.5.

Apart from a chooser option, Theorem 1 can be applied to any options that have payoff functions

listed in Table 1. As a chooser option contract allows the holder to decide whether it is a call or185

put prior to the expiration date, its CFS pricing formula is slightly different from Equation (14).

Nevertheless, we can still adopt the idea of Theorem 1 to derive the formula.

Corollary 3. A European chooser option with exercise time Tc < T allows the holder to choose,
at time Tc, between a put of P (x, Tc) and a call of C(x, Tc) with identical maturity T and strike K.
Its payoff at T is therefore max (P (x, Tc), C(x, Tc)) . A CFS pricing formula of this option can be
expressed as follows:

VChooser(x, t) = P (x, t) + C(x, t) (30)

where

P (x, t) = e−r(T−t)−ζxRe

(
2

N∑
k=1

B̂ke
i 2π
b−akx + B̂0

)
and

C(x, t) = e−r(Tc−t)−ζxRe

(
2

N∑
k=1

B̂1,ke
i 2π
b−akx + B̂1,0

)
with

B̂k = 1
b−aĜ

(
− 2πk
b−a − ζi

)
φ
(

2πk
b−a + ζi

)
, B̂0 = 1

b−aĜ (−ζi)φ (ζi) (31)
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Table 1: Complex Fourier transforms for a variety of financial contingency claims.

Financial Contingency Claim Payoff Function Fourier Transform

G(ey) or G1(ey)
∫ b

a
G(ey)e−iω̃kydy or

∫ b

a
G1(ey)e−iω̃kydy

Call (ey −K)+ Ke−iω̃k(logK)
(

e(1−iω̃k)b−1
1−iω̃k

− eiω̃kb−1
iω̃k

)
Put (K − ey)+ −Ke−iω̃k(logK)

(
e(1−iω̃k)a−1

1−iω̃k
− eiω̃ka−1

iω̃k

)
Covered Call min(ey,K) Ke−iω̃k(logK)

(
e(1−iω̃k)a−1

1−iω̃k
− eiω̃ka−1

iω̃k

)
Cash-or-Nothing Call 1ey≥K e−iω̃k(logK)

(
eiω̃kb−1

iω̃k

)
Cash-or-Nothing Put 1ey≤K −e−iω̃k(logK)

(
eiω̃ka−1

iω̃k

)
Asset-or-Nothing Call ey1ey≥K e−iω̃k(logK)

(
e(1−iω̃k)b−1

1−iω̃k

)
Asset-or-Nothing Put ey1ey≤K −e−iω̃k(logK)

(
e(1−iω̃k)a−1

1−iω̃k

)
Asymmetric Call (eny −Kn)1ey≥K Kne−iω̃k(logK)

(
e(n−iω̃k)b−1

n−iω̃k
− eiω̃kb−1

iω̃k

)
Asymmetric Put (Kn − eny)1ey≤K −Kne−iω̃k(logK)

(
e(n−iω̃k)a−1

n−iω̃k
− eiω̃ka−1

iω̃k

)
Symmetric Call (ey −K)n1ey≥K e−iω̃k(logK)

∑n
j=0

(
n
j

)
(−K)n−j

(
e(j−iω̃k)b−1

j−iω̃k

)
Symmetric Put (K − ey)n1ey≤K −e−iω̃k(logK)

∑n
j=0

(
n
j

)
(K)j(−1)n−j

(
e(n−j−iω̃k)a−1

n−j−iω̃k

)
Chooser Call (ey−q(T−Tc) −Ke−r(T−Tc))+ Ke−r(T−Tc)e−iω̃kK̃

(
e(1−iω̃k)b−1

1−iω̃k
− eiω̃kb−1

iω̃k

)
,

where K̃ = logK − (r − q)(T − Tc)
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and

B̂1,k = 1
b−aĜ1

(
− 2πk
b−a − ζi

)
φ
(

2πk
b−a + ζi

)
, B̂1,0 = 1

b−aĜ1 (−ζi)φ (ζi) . (32)

Proof: By using the put-call parity C(x, Tc) +Ke−r(T−Tc) = P (x, Tc) +STce
−q(T−Tc) at Tc, we can

easily see that the payoff of a chooser option at Tc is

max
(
C(x, Tc), P (x, Tc)

)
= P (x, Tc) + max

(
STce

−q(T−Tc) − e−r(T−Tc)K, 0
)
.

To determine the first put option at time t, we take discounted risk-neutral expectations of the190

payoff and make use of the fact that e−r(Tc−t)E (P (x, Tc)) = P (x, t). Using the CFS approximation

scheme, P (x, t) is given by

P (x, t) = e−r(T−t)−ζxRe

(
2
∑N

k=1 B̂ke
i 2π
b−akx + B̂0

)
(33)

Here, B̂k and B̂0 are defined as Equation (29) in Theorem 1. For the call price, we have to take

into account that the call is exercised at time Tc with strike e−r(T−Tc)K. Hence,

C(x, t) = e−r(Tc−t)−ζxRe

(
2
∑N

k=1 B̂1,ke
i 2π
b−akx + B̂1,0

)
(34)

with195

B̂1,k = 1
b−aĜ1

(
− 2πk
b−a − ζi

)
φ
(

2πk
b−a + ζi

)
, B̂1,0 = 1

b−aĜ1 (−ζi)φ (ζi) . (35)

We express Ĝ1(·) in detail in the next section. In Equation (35), the time variable (time-to-

maturity) in φ(·) should be set to Tc − t. Finally, by combining the results of P (t, x) and C(t, x),

the result of Equation (30) follows. Q. E. D.

Given the simplicity of Equation (14), it is easy to price an option on a forward contract with the

current forward price F fwdt . In general, the key idea is to use the spot price-forward relationship:

F fwdt = Ste
(r−q)(T−t)

F fwd = Se(r−q)(T−t). (36)

As a function of the log-forward x̂ := log(F fwd), we can further simplify the equation to

x =
x̂

(r − q)(T − t)
. (37)

Corollary 4. For a European option on a forward contract with the same conditions as in

11



Theorem 1 and F and S equal to exp(x̂) and exp(x), respectively, the CFS pricing formula is200

Vfwd(x̂, t) = e
−r(T−t)− ζ

(r−q)(T−t) x̂Re

(
2
∑N

k=1 B̂ke
i 2π
(b−a)(r−q)(T−t)kx̂ + B̂0

)
(38)

with

B̂k =
1

b− a
Ĝ

(
− 2πk

b− a
− ζi

)
φ

(
2πk

b− a
+ ζi

)
, B̂0 =

1

b− a
Ĝ (−ζi)φ (ζi) , (39)

Ĝ

(
− 2πk

b− a
− ζi

)
=

∫ b

a

G(ey)e−i(
2πk
b−a+ζi)ydy, Ĝ (−ζi) =

∫ b

a

G(ey)e−i(ζi)ydy. (40)

Proof: To prove the corollary, we substitute Equation (37) into Equation (14), and Equation (38)

and Equation (39) will follow. Q. E. D.

Based on Equation (38) and Equation (39), it is straightforward to derive a formula for a

call/put on futures prices. Therefore, we have the following corollary:

Corollary 5. A European option on a futures contract. Suppose that there is a constant205

risk-free interest rate r and a log futures price log(F fut) = x of a particular underlying that has a
traceable characteristic function. Then, a CFS pricing formula states the price for a European call
option of maturity T on a futures contract with strike price K and delivery date T ′ (with T ′ ≥ T )
as follows:

Vfut(x̂, t) = e−r(T−t)−ζxRe

(
2
∑N

k=1 B̂ke
i 2π
b−akx + B̂0

)
(41)

with

B̂k =
1

b− a
Ĝ

(
− 2πk

b− a
− ζi

)
φ

(
2πk

b− a
+ ζi

)
, B̂0 =

1

b− a
Ĝ (−ζi)φ (ζi) , (42)

Ĝ

(
− 2πk

b− a
− ζi

)
=

∫ b

a

G(ey)e−i(
2πk
b−a+ζi)ydy, Ĝ (−ζi) =

∫ b

a

G(ey)e−i(ζi)ydy. (43)

Proof: As in Equation (36), we first exploit the fact that the futures price F fut starting at t210

with delivery date T ′ is given by F fut = S and r = q. Then, considering both log(F fut) = x

and logS = x, we replace x with x in both Equation (14) and Equation (29). We can therefore

formulate Equation (41) and Equation (42). Q. E. D.

Note that T ′ does not appear in the formulae even though it could be greater than T . This is

because futures contracts are marked to market, and thus the payoff is realised when the option is215

exercised.

4. Complex Fourier Series Expression of Payoff Functions and Greeks Derivation

In this section, we demonstrate some essential algebraic steps of the Fourier transform of payoff

functions Ĝ(−ω̃k) =
∫ b
a e
−iω̃kyG(ey)dy in Equation (23). As we define G(ey) in a finite interval

12



[a, b] rather than [−∞,∞], Ĝ(−ω̃k) accordingly exists in L1
1 space. If we use a vanilla call payoff220

function as a sample to derive its Fourier transform, the algebraic steps are as follows:

Ĝ(−ω̃k) =

∫ b

a
e−iω̃ky(ey −K)+dy

= K

∫ b−logK

0
e−iω̃k(y+logK)(ey − 1)dy

= Ke−iω̃k(logK)

(
e(1−iω̃k)(b−logK) − 1

1− iω̃k
+
e−iω̃k(b−logK) − 1

iω̃k

)
(44)

In the integral, we replace the upper limit b − logK with b, as we define b in Algorithm 1, which

is larger or equal to b− logK, later in this section. Hence, Ĝ(−ω̃k) can be rewritten as

Ke−iω̃klogK

(
e(1−iω̃k)b − 1

1− iω̃k
+
e−iω̃kb − 1

iω̃k

)
.

Applying the same idea, the Ĝ(−ω̃k) of a vanilla put payoff is

−Ke−iω̃klogK

(
e(1−iω̃k)a − 1

1− iω̃k
− eiω̃ka − 1

iω̃k

)
.

Note that Ĝ(−ω̃k) exists because |ω̃k| = | 2π
b−ak + ζi|, where ζ is any number of R but not equal

to zero. This explains why we multiply the factor exp(ζx) by V (x, t) in Equation (16), as we

can guarantee the existence of Ĝ(ω̃k). Applying the steps above, we are able to derive the Fourier

transform of different option payoffs. The results are shown in Table 1. As the call price C(x, Tc)

in the chooser option is exercised at time Tc with strike e−r(T−Tc)K, it is worth mentioning the

derivation of the algebraic steps of Ĝ1(·) in Equation (34). If we first set K̃ = logK−(r−q)(T−Tc),
then we have

Ĝ1(−ω̃k) =

∫ b

a
e−iω̃ky(ey−q(T−Tc) −Ke−r(T−Tc))+dx

≈ Ke−r(T−Tc)e−iω̃kK̃
(
e(1−iω̃k)b − 1

1− iω̃k
+
e−iω̃kb − 1

iω̃k

)
(45)

If we consider options on a forward (futures) contract, the general forms of Ĝ and Ĝ1 are the same

as those shown in Table 1 but with slightly different values of [a, b]. The choice of [a, b] will be

1In mathematics, L1 spaces are function spaces defined using the 1-norm ‖x‖ =
∑N
i=1 |xi| , where x is a vector,

for finite-dimensional vector spaces, which are sometimes called Lebesgue spaces.
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discussed later in this section.

Now, we turn our attention to deriving option Greeks. Although accurately valuing financial225

claims plays a key role in financial modelling, the risk management (hedging) of these derivative

instruments is equally important. Financial institutions manage option risk when they sell options

to their clients through the analysis of “Greek letters”. Greek letters are defined as the sensitivities

of the option price to a single-unit change in the value of either a state variable or a parameter.

Such sensitivities can represent the different dimensions of the risk associated with an option. In230

this paper, we focus only on deriving Delta, ∆, the rate of change in the option value with respect to

changes in the underlying asset’s price, and Gamma, Γ, the rate of change in Delta with respect to

changes in the underlying price. Other Greeks, such as Theta, can be derived in a similar fashion;

however, depending on the particular characteristic function, the derivation expression might be

rather lengthy. We omit them here, as many terms are repeated.235

Delta is the first derivative of the value V (x, t) of the option with respect to the underlying

instrument’s price S. Hence, differentiating Equation (14) with respect to S, we have

∆t =
∂V (x, t)

∂S
=
∂V (x, t)

∂x

∂x

∂S

= e−r(T−t)Re

(
2

N∑
k=1

(
i

2π

b− a
k − ζ

)
B̂ke

(i 2π
b−ak−ζ−1)x

− ζB̂0e
−(ζ+1)x

)
. (46)

In a similar fashion, we can obtain Γt by differentiating ∆t with respect to S again, such that

Γt =
∂2V (x, t)

∂S2
=
∂∆t

∂S
=
∂∆t

∂x

∂x

∂S
. (47)

Hence,

Γt = e−r(T−t)Re

(
2

N∑
k=1

(
i

2π

b− a
k − ζ − 1

)(
i

2π

b− a
k − ζ

)
B̂ke

(i 2π
b−ak−ζ−2)x

+ (ζ + 1)ζB̂0e
−(ζ+2)x

)
. (48)

Based on the above formulas, the Delta ∆fwd
t (∆fut

t ) and Gamma Γfwdt (Γfutt ) of options on a

forward (futures) contract are as follows:

∆fwd
t = e−r(T−t)Re

(
2

N∑
k=1

1

(r − q)(T − t)

(
i

2π

b− a
k − ζ

)
B̂ke

(
i 2π
(r−q)(T−t)(b−a)k−

ζ
(r−q)(T−t)−1

)
x̂

14



− ζ

(r − q)(T − t)
B̂0e

−
(

ζ
(r−q)(T−t)+1

)
x̂

)
. (49)

∆fut
t = e−r(T−t)Re

(
2

N∑
k=1

(
i

2π

b− a
k − ζ

)
B̂ke

(i 2π
b−ak−ζ−1)x − ζB̂0e

−(ζ+1)x

)
. (50)

Γfwdt = e−r(T−t)Re

(
2

N∑
k=1

(
i

2π

(r − q)(T − t)(b− a)
k − ζ

(r − q)(T − t) − 1

)
1

(r − q)(T − t)

(
i

2π

b− ak − ζ
)

× B̂ke
(
i 2π
(r−q)(T−t)(b−a) k−

ζ
(r−q)(T−t)−2

)
x̂

−
(

ζ

(r − q)(T − t) − 1

)
ζ

(r − q)(T − t) B̂0e
−
(

ζ
(r−q)(T−t)+2

)
x̂

)
. (51)

Γfutt = e−r(T−t)Re

(
2

N∑
k=1

(
i

2π

b− ak − ζ − 1

)(
i

2π

b− ak − ζ
)
B̂ke

(i 2π
b−a k−ζ−2)x

+ (ζ + 1)ζB̂0e
−(ζ+2)x

)
. (52)

It is also easy to obtain the formula for Vega, ∂V
∂yt
, where yt is the initial value of the volatility

at time t. For example, for the Heston model, as y0 is the initial value of the volatility in (A.25),

we derive Vega as follows:

∂V (x, y0, t)

∂y0
= e−r(T−t)−ζx

(
Re

[
2

∞∑
k=1

∂B̂k
∂y0

ei
2π
b−akx +

∂B̂0

∂y0

])
, (53)

with

∂B̂k
∂y0

=
1

b− a
Ĝ

(
− 2πk

b− a
− ζi

) ∂φ
(

2πk
b−a + ζi, y0

)
∂y0

,
∂B̂0

∂y0
=

1

b− a
Ĝ (−ζi) ∂φ (ζi, y0)

∂y0
, (54)

where φ contains the parameter y0.

5. Error Analysis

In this section, we demonstrate that the total error from pricing European-type options can be

made very small by choosing a suitably large interval [a, b]. As long as a PDF is supported on [a, b]240

and is everywhere smooth2 except at a point that has discontinuity in one of its derivatives, the

exponential convergence rate is guaranteed in the complex Fourier expansions.

Before we launch our error analysis, we standardise the mathematical notations to make the

2We say that a PDF is everywhere smooth if f(x) ⊂ C∞[a, b], where C∞is an infinitely differentiable space and
[a, b] ∈ R.
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analysis more comprehensible. In section 3, the CFS pricing formula for European options can be

written as the following two interchangeable formulas:245

V (x, t) = e−r(T−t)−ζxRe

(
2
∑N

k=1 B̂ke
i 2π
b−akx + B̂0

)
(55)

or

V (x, t) = e−r(T−t)−ζxRe

(
2
∑N

k=0 B̂ke
i 2π
b−akx − B̂0

)
, (56)

with

B̂k =
1

b− a
Ĝ (−ω̃k)φ (ω̃k) , B̂0 =

1

b− a
Ĝ (−ω̃0)φ (ω̃0) , ω̃k =

2πk

(b− a)
+ ζi. (57)

When we derive the CFS pricing formulas in Section 3, we use the forms of Equation (55), as we

wish to reduce the number of the ei
2π
b−akz terms appearing in the formulas. However, ultimately, in

the error analysis, we instead use Equation (56) for comprehensibility.

There are three types of approximation errors in any call/put option in this paper.250

1. The integration truncation error:

ε1 :=

∣∣∣∣(∫ +∞

−∞
G(ez+x)f(z)dz −

∫ b

a
G(ez+x)f(z)dz

)∣∣∣∣ (58)

2. The error related to approximating 1
b−a

∫ b
a G(ey)e−iω̃kydy

∫ b
a f(z)eiω̃kzdz in (22) with B̂k =

1
b−aĜ (−ω̃k)φ (ω̃k) in (23):

ε2 :=

∣∣∣∣∣eζx
(

2

N∑
k=0

(
1

b− a

∫ b

a
G(ey)e−iω̃kydy

∫ b

a
f(z)eiω̃kzdz

)
ei

2π
b−akx−

1

b− a

∫ b

a
G(ey)e−iω̃0ydy

∫ b

a
f(z)eiω̃0zdz

)
−

(
eζx

(
2

N∑
k=0

B̂ke
i 2π
b−akx − B̂0

))∣∣∣∣∣ (59)

3. The series truncation error:

ε3 :=

∣∣∣∣∣
∫ b

a
G(ez+x)f(z)dz − eζx

(
2

N∑
k=0

B̂ke
i 2π
b−akx − B̂0

)∣∣∣∣∣
=

∣∣∣∣∣2eζx
∞∑

k=N+1

B̂ke
i 2π
b−akx

∣∣∣∣∣ (60)

If we introduce the concept of the cumulative probability density function (CDF) F (z) such that

f(z)dz = dF (z), we can simplify the integration truncation error as follows:
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ε1 =

∣∣∣∣(∫ +∞

−∞
G(ez+x)f(z)dz −

∫ b

a
G(ez+x)f(z)dz

)∣∣∣∣
=

∣∣∣∣(∫ a

−∞
G(ez+x)f(z)dz +

∫ +∞

b
G(ez+x)f(z)dz

)∣∣∣∣ .
≤
∣∣∣∣(∫ a

−∞

∂G(ez+x)

∂z
(F (z))dz

)∣∣∣∣+

∣∣∣∣∫ +∞

b

∂G(ez+x)

∂z
(1− F (z))dz

∣∣∣∣ (61)

≈ 0 : (if z = a, b,−∞,+∞) (62)

We can see that ε1 is both bounded and approaches zero as long as [a, b] is chosen reasonably such

that 1 − F (b) ≈ 0 when b < +∞ or F (a) ≈ 0 when a > −∞. We are also able to adapt the

same idea to investigate the bound of ε2. Accordingly, taking into account | exp(iω̃kz)| ≤ 1, we first

investigate the error

ε2 :=

∣∣∣∣∫ b

a
f(y)e−iω̃kzdz − φ (ω̃k)

∣∣∣∣
in ε2. If we expand the equation above, we obtain

ε2 :=

∣∣∣∣∫ b

a
f(z)eiω̃kzdz − φ (ω̃k)

∣∣∣∣ (63)

≤
∣∣∣∣(∫ a

−∞
f(y)dy +

∫ ∞
b

f(z)dz

)∣∣∣∣ (64)

= |F (∞)− F (b) + F (a)− F (−∞)| (65)

≈ 0 : (if y = a, b,−∞,∞). (66)

Based on the result above and the existence of the closed-form expression of Ĝ(−ω̃k) =
∫ b
a G(ey)e−iω̃kydy

in the Fourier space, we obtain

ε2 :=

∣∣∣∣∣eζx
(

2
N∑
k=0

(
1

b− a

∫ b

a
G(ey)e−iω̃kydy

∫ b

a
f(z)eiω̃kzdz

)
ei

2π
b−akx−

1

b− a

∫ b

a
G(ey)e−iω̃kydy

∫ b

a
f(z)eiω̃0zdz

)
−

(
eζx

(
2

N∑
k=0

B̂ke
i 2π
b−akx − B̂0

))∣∣∣∣∣ (67)

=

∣∣∣∣∣eζx
(

2

N∑
k=0

1

b− a
Ĝ (−ω̃k)

(∫ b

a
f(z)eiω̃kzdz − φ(ω̃k)

)
ei

2π
b−akx−

1

b− a
Ĝ (−ω̃0)

(∫ b

a
f(z)eiω̃0zdz − φ(ω̃0)

))∣∣∣∣∣ (68)

≤

∣∣∣∣∣eζx
(

2
N∑
k=0

1

b− a
Ĝ (−ω̃k)−

1

b− a
Ĝ (−ω̃0)

)∣∣∣∣∣ε2. (69)
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Finally, the series truncation error is also bounded and can be formulated as follows:

ε3 =

∣∣∣∣∣2eζx
∞∑

k=N+1

B̂ke
i 2π
b−akx

∣∣∣∣∣ ≤ 2eζx
∞∑

k=N+1

∣∣∣B̂k∣∣∣ . (70)

According to Theorem 4 (Luke, 1969, 271), Luke suggests that |
∑∞

k=N+1 bke
i 2π
b−akz| vanishes at least

(N+1) times in [a, b]. Hence, ε3 is bounded and approaches zero when N increases. Furthermore,

according to Proposition 4.3 (Fang and Oosterlee, 2008, 11), since the complex Fourier series has

geometrical convergence, we can see that

ε3 < P exp(−(N − 1)ν),

where ν > 0 is a constant and P is a term that varies less than exponentially with N.

Before we illustrate the total error bound when approximating any true European-type option

price V (x, t) defined as

ε :=

∣∣∣∣∣V (x, t)− e−r(T−t)−ζxRe

(
2

N∑
k=0

B̂ke
i 2π
b−akx − B̂0

)∣∣∣∣∣ , (71)

we first summarise the whole approximation procedure of European-type option prices and note

where ε1, ε2, and ε3 lie. We start by seeking a definite interval [a, b] that allows us to approximate

V (x, t) defined on [−∞,∞] in (11) with the form

V (x, t) ≈ e−r(T−t)
∫ b

a
G(ex+z,K)f(z)dz,

in (12). The interval [a, b] we propose satisfies condition (2). As a result, we obtain our first

approximation error ε1. As V (x, t) is now approximated in [a, b], this implies that we can construct a255

CFS expansion of V (x, t), like the one in (56). Then, because including a characteristic function φ(·)
in the CFS expansion allows for a more accurate approximation, we have ε2, an approximation error

of 1
b−a

∫ b
a G(ey)e−iω̃kydy

∫ b
a f(z)eiω̃kzdz in (22) with B̂k in (23). Finally, ε3 is the series truncation

error ε3 in (56).

Finally, combining the results of ε1, ε2 and ε3, we can first determine the total error bound ε of

the European-type option; hence, we have an inequality of

ε =

∣∣∣∣∣e−r(T−t)
(∫ +∞

−∞
G(ez+x)f(z)dz − eζxRe

(
2

N∑
k=0

B̂ke
i 2π
b−akx − B̂0

))∣∣∣∣∣
≤ |e−r(T−t)|

(∣∣∣∣∫ +∞

−∞
G(ez+x)f(z)dz −

∫ b

a
G(ez+x)f(z)dz

∣∣∣∣
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+ eζx

∣∣∣∣∣2
N∑
k=0

1

b− a
Ĝ

(
− 2πk

(b− a)
− ζi

)(∫ b

a
f(z)e

i
(

2πk
(b−a)+ζi

)
z
dz

)
ei

2π
b−akx

− 1

b− a
Ĝ (−ζi)

(∫ b

a
f(z)ei(ζi)zdz

)
−

(
2

N∑
k=0

B̂ke
i 2π
b−akx − B̂0

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=N+1

2eζxB̂ke
i 2π
b−akx

∣∣∣∣∣
)

≤ |e−r(T−t)|(ε1 + ε2 + ε3)

< |e−r(T−t)|(ε1 + ε2 + P exp(−(N − 1)ν)) (72)

Unfortunately, according to Fang and Oosterlee [cf. Proposition 4.2 and Lemma 4.3], the luxury260

of having an exponential convergence rate is lost if the rate becomes algebraic when we apply

the complex Fourier expansion series around/at a discontinuity regarding one of its derivatives in a

probability density function, such as VG’s. In this case, a new bound can be constructed as follows:

ε3 <
P̂

(N − 1)β−1
. (73)

Here, P̂ is a constant and β ≥ n ≥ 1 (n is the algebraic index of convergence of ei
2π
b−akz). Using the

aforementioned error bound, we can see that the total error bound ε is bounded by

|e−r(T−t)|

(
ε1 + ε2 +

P̂

(N − 1)β−1

)
(74)

A chooser option is a combination of a call and a put with different time-to-maturity for each

option. Hence, as the Fourier transforms of both payoff functions exist in the chooser option, we265

can directly apply (72) and (74) to conclude that the total error bound of a chooser option is

bounded and tends to zero when the number of the ei
2π
b−akz terms increases. Finally, the total error

of any option on a forward (futures) contract is also bounded by (72) and (74) because the CFS

pricing formulae (38) and (41) are exactly the same as that of (14) but with input values of x̂ and

x, respectively.270

6. Numerical Results

In this section, we demonstrate the performance of the CFS method through a number of

numerical experiments. The purpose of this section is to test whether the error convergence analysis

presented in section 5 is in line with the numerical findings in this section. Moreover, we also test

the theoretical capability of the CFS method to price any deep in(out)-of-the-money European-type275

options under different models.
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As the CGMY model with the condition that the parameter Y is close to 2 represents a distri-

bution with very heavy tails (cf. Appendix A), it is worth testing whether it is feasible or possible

for this method to address this extreme condition. Throughout the experiments, we choose long

and short maturities to test the CFS method. We compare our results generated by the CFS280

method with those of the COS method (Fang and Oosterlee, 2008) and the CONV method (an

FFT method, Lord et al. 2008). When we implement the CONV method, we use Simpson’s rule

for the Fourier integrals to achieve fourth-order accuracy. From these numerical experiments and

comparisons with other methods, we confidently demonstrate the stability and robustness of the

CFS method for both normal and extreme conditions. In all numerical experiments, by trial and285

error, if we set ζ = 0.5 in the multiplication factor exp(ζx), we can guarantee the existence of Ĝ(·)
and Ĝ1(·). Furthermore, to avoid confusion, in the experiments, we use parameter N and denote

the number of terms of the CFS method and the COS method and the number of grid points for

the CONV method. All CPU times presented (in milliseconds) are determined after averaging the

computational times of 150 experiments. A MacBook Pro is used for all experiments with a 2.8290

GHz Intel Core i7 CPU and two 8GB DDR SDRAMs (cache memory). The code is written in

MATLAB R2011b.

In all tables, we examine only the time-to-maturity T of the European options in the range

from 0.1 to 10. The parameter L in the truncated interval [a, b] is also chosen in the range of 10

to 12. In general, allowing for larger values of L yields a larger range of truncated intervals and295

leads to larger values of N to reach the same level of accuracy. Each table presents comparisons

of the methods in terms of CPU time usage and the maximum absolute error in ascending order

of N. In all tables, we can see that there is little difference between the CFS method and the COS

method in terms of CPU time usage; however, the CONV method unquestionably consumes more

CPU time than the other two to yield a desirable result in each experiment.300

To investigate the error convergence, in the first six tables of the numerical experiments, we test

and compare the CFS method with the COS method and the CONV method for vanilla calls using

the BS model (Table 2), vanilla puts with the Meixner model (Table 3), a cash-or-nothing call using

the BS model (Table 4), a cash-or-nothing put using the FMLS model (Table 5), an asymmetric

put using the NIG model (Table 6), a symmetric put using the BS model (Table 7) and a chooser305

option using the BS model (Table 8). Overall, from the numerical experiments, we can see that

the CFS method outperforms both the COS method and the CONV method because the CFS

method yields an extremely small maximum absolute error with a small value of N . In addition,

the exponential convergence rate obtained in the experiments is consistent with the theoretical

findings in section 5. In Table 3, we vary the strike prices among three values (80, 100 and 120)310

to test the feasibility of the methods. Surprisingly, the COS method cannot yield a convergence

rate with the large maximum error expected with the strike price at 80 in Table 3. This result

contradicts the error analysis suggested in Fang and Oosterlee (2008). The results in Table 2 and

Table 3 suggest that the CONV method requires substantial amounts of CPU time and large N
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Table 2: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for
European calls using the BS model, parameters as in Fig. 1; K = 80, 100, and 120; reference val.= 20.799226309 . . .,
3.659968453 . . ., and 0.044577814 . . ., respectively.

N 8 16 32 64 128
CFS msec. 0.099 0.123 0.211 0.412 0.734

max abs. error 1.623E-01 2.776E-04 5.684E-14 1.984E-14 1.984E-14
COS msec. 0.102 0.193 0.231 0.442 0.754

max abs. error 4.427E-01 5.913E-03 9.139E-08 1.887E-14 1.887E-14
CONV msec. 0.112 0.189 0.211 0.432 0.774

max abs. error 76.297 64.561 22.754 1.040 0.2659

Table 3: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for Euro-
pean puts using the Meixner model, parameters as in Fig. 2; K = 80, 100, and 120; reference val.= 7.811229572E−14,
0.00861873646 . . . , and 16.453464059 . . ., respectively.

N 16 32 64 128 256 512
CFS msec. 0.123 0.211 0.412 0.734 1.071 1.932

max abs. error 0.1556 1.642E-04 1.380E-03 7.740E-07 1.249E-16 1.249E-16
COS msec. 0.124 0.221 0.442 0.824 1.121 2.032

max abs. error 1.788E-02 2.864E-02 2.864E-02 2.864E-02 2.864E-02 2.864E-02
CONV msec. 0.211 0.432 0.774 0.921 1.189 2.345

max abs. error 4.7689 1.856 1.044 0.741 0.264 2.825E-02

to reach a fourth-order convergence rate. All results in the two tables are illustrated graphically315

in Figures 1 and 2. It is also notable that the reference value suggested by Fang and Oosterlee

(2008) is not correct when we price a cash-or-nothing call using the BS model. As we benchmark

the value using a standard (a MATLAB Financial Toolbox function called cashbybls), it should be

0.00277554137 . . . , as shown in Table 4. The second row of the table related to the CPU time and

the maximum absolute error of the COS method is copied from Fang and Oosterlee (2008). The320

COS method does not appear to be a good choice for evaluating the option because it requires

N = 80 to reach a maximum absolute error of 6.35E − 04; however, only N = 32 is required to

yield a maximum absolute error of 1.462E − 16 in the CFS method.

The CFS method is comparable to the COS method when it addresses pricing far deep (in)-out-

of-the-money options. Tables 9 (a far deep in-the-money option using the BS model) and 10 (a far325

deep out-of-the-money option using the Merton model) show that the CONV method is incapable

Table 4: Error convergence and CPU time comparing the CFS method with the COS method for European cash-
or-nothing calls using the BS model with S=100, K = 120, r = 0.05, q = 0, T = 0.1, and σ = 0.2; reference
val.= 0.00277554137 . . . . The parameters are taken from Fang and Oosterlee (2008).

N 8 16 32 64 128
CFS msec. 0.313 0.343 0.391 0.430 0.523

max abs. error 2.012E-03 1.161E-05 1.461E-16 1.461E-16 3.599E-17
N 40 60 80 100 120

COS msec. 0.330 0.334 0.376 0.428 0.486
max abs. error 2.46E-02 1.64E-02 6.35E-04 6.85E-06 2.44E-08
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Table 5: Error convergence and CPU time of the CFS method for a European cash-or-nothing put using the FMLS
model with S = 100, K = 120, r = 0.03, q = 0.01, T = 10, σ = 0.1486, α = 1.5597, and L = 10; reference
val.= 15.035244109 . . . . The parameters are taken from Fang and Oosterlee (2008).

N 8 16 32 64 128
CFS msec. 0.314 0.329 0.401 0.450 0.601

max abs. error 2.025E-04 1.341E-08 1.361E-16 1.361E-16 1.36E-16

Table 6: Error convergence and CPU time of the CFS method for a European asymmetric put option with a payoff
of (S3

T − K3) put using the NIG model; S = 90, K = 100, r = 0.03, q = 0, T = 0.5, α = 6.1882, β = −3.8941,
δ = 0.1622, and L = 10; reference val.= 203704.644879212 . . . .

N 8 16 32 64 128
CFS msec. 0.245 0.399 0.614 0.8423 1.801

max abs. error 6.025E-1 1.213E-05 1.343E-14 1.343E-14 1.343E-14

Table 7: Error convergence and CPU time of the CFS method for a European symmetric call option with a payoff of
(ST −K)2 put using the BS model; S = 120, K = 100, r = 0.02, q = 0.2, T = 1, σ = 0.25, and L = 10; reference val.
= 384.974699787 . . . .

N 8 16 32 64 128
CFS msec. 0.413 0.589 0.714 0.9233 2.100

max abs. error -28.5925 1.665E-03 1.819E-12 1.819E-12 1.819E-12

Table 8: Error convergence and CPU time of the CFS method for a European Chooser option using the BS model;
S = 5, K = 1, r = 0.1, q = 0.01, Tc = 0.5T = 1, σ = 0.2, and L = 10; reference val.= 4.024540221 . . . .

N 8 16 32 64 128
CFS msec. 0.240 0.391 0.623 0.8523 1.901

max abs. error 2.173E-02 1.834E-02 3.660E-04 2.226E-11 0
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Figure 1: CFS vs. CONV and COS in error convergence for pricing European call options using the GBM model
with S = 100, r = 0.1, q = 0, T = 0.1, σ = 0.25, L = 10 and K = 80 (left figure), = 100 (middle figure) and = 120
(right figure). The parameters are taken from Fang and Oosterlee (2008).
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Figure 2: CFS vs. CONV and COS in error convergence for pricing European put options using the Meixner model
with S = 100, r = 0.06, q = 0, T = 0.5, α = 0.02982825, δ = 0.57295483, β = 0.12716244, L = 12, and K = 80 (left
figure), = 100 (middle figure) and = 120 (right figure). Parameters are taken from Schoutens (2002).

Table 9: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for a
European deep in-the-money call using the BS model with S = 100 and K = 50; reference val. = 50.49750831254 . . . .
The parameters are taken from Figure 1.

N 32 64 128 256 512 1028
CFS msec. 0.231 0.431 0.714 1.081 2.111 2.965

max abs. error 0.343 0.309 9.323E-03 6.250E-07 5.911E-14 2.311E-14
COS msec. 0.235 0.441 0.754 1.186 2.211 3.265

max abs. error 0.143 0.509 7.323E-03 6.45E-07 5.922E-13 2.451E-13
CONV msec. 0.211 0.412 0.734 1.189 2.311 3.245

max abs. error 99.995 99.995 99.995 99.995 99.995 99.995

of pricing the option and that both the CFS and COS methods are very accurate and yield an

exponential convergence rate. The nature of the moneyness levels we consider here is quite extreme

and, practically, is not common in financial markets. The purpose of having Tables 9 and 10 is to

show the robustness of the CFS method theoretically.330

In Tables 11 and 12, it is clear that the maximum absolute errors of both the CFS method

and the COS method are similar for European calls using the VG model. We have an exponential

convergence rate when T = 1 but an algebraic convergence rate when T = 0.1 because, as illustrated

in Figure 3, the recovered VG density function has an abrupt point at the origin when T = 0.1.

In terms of testing the methods for European calls using the Heston model, an affine stochastic335

volatility model, the CFS method converges more quickly than the COS method to reach a desirably

Table 10: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for a
European deep out-of-the-money put using the Merton model with S = 100, K = 50, r = 0.05, q = 0.2, T = 0.25,
σ = 0.15, λ = 0.1, µJ = 0, σJ = 0.45 and L = 10; reference val. = 0.0166841187 . . . .

N 32 64 128 256 512 1028
CFS msec. 0.241 0.441 0.764 1.121 2.011 3.015

max abs. error 0.251 0.0423 5.061E-04 5.643E-11 1.211E-13 1.211E-14
COS msec. 0.231 0.431 0.674 1.361 2.411 3.215

max abs. error 0.355 0.06575 7.011E-04 7.733E-11 2.311E-14 5.455E-14
CONV msec. 0.257 0.456 0.687 1.121 2.245 3.347

max abs. error 5.276E-03 5.335E-03 5.337E-03 5.337E-03 5.337E-03 5.337E-03
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Table 11: Error convergence and CPU time comparing the CFS method with the COS method for a European call
using the VG model with S = 100, K = 90, r = 0.1, T = 1, q = 0, σ = 0.12, θ = −0.14, and ν = 0.2; reference val.
= 19.099354724 . . . . The parameters are as in Fang and Oosterlee (2008).

N 32 64 96 128 160
CFS msec. 0.223 0.429 0.634 0.8023 1.674

max abs. error 1.043E-04 4.32E-07 5.040E-09 1.483E-10 1.114E-11
COS msec. 0.235 0.441 0.654 0.7923 1.534

max abs. error 5.099E-04 1.308E-06 2.129E-08 1.723E-09 5.542E-11

Table 12: Error convergence and CPU time comparing the CFS method with the COS method for a European call
using the VG model. The parameters are as in Table 11 but with T = 0.1; reference val. 10.993630572 . . . .

N 32 64 128 256 512 1024
CFS msec. 0.223 0.439 0.794 1.231 1.974 2.131

max abs. error 4.086E-03 4.227E-03 5.576E-04 2.315E-04 1.237E-4 7.941E-05
COS msec. 0.223 0.450 0.894 1.234 2.074 2.431

max abs. error 1.530E-03 5.010E-04 1.170E-05 7.171E-05 7.260E-05 7.256E-05

small maximum absolute error, as shown in Tables 13 and 14. Moreover, as shown in Figure 4, we

obtain algebraic convergence for the CFS method due to the appearance of a non-smooth point at

the origin when T = 1.

As there are no reference values available for the CGMY model, the reference values for these340

models are computed using the CFS method, with N = 222. In the numerical experiments for

the CGMY model (cf. Tables 15, 16 and 17), although the reference values are generated using

the CFS method, the differences between them and those generated using the COS method are

approximately 1E − 14. As shown in Figure 5, the error convergence of the CFS method under

the CGMY model is exponential and superior to that of the CONV method and the COS Method.345

In Table 17, when the value of Y is equal to 1.98 (implying that the model is heavily fat-tailed),

the CFS method remains able to very effectively cope with this extreme condition. To the best of

our knowledge, apart from the COS method, no numerical method can accurately price options for

very large Y ≈ 2 in a robust manner.
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Figure 3: Recovered Densities of the VG experiments; the parameters are as in Table 11 and Table 12.
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Table 13: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for a
European call using the Heston model with S = 100, K = 100, r = 0, T = 1 q = 0, u0 = 0.0175, u = 0.0398,
λ = 1.5768, η = 0.5751, ρ = 0.5711 and L = 12; reference val. = 5.785155450 . . . . The parameters are as in Fang and
Oosterlee (2008).

N 64 128 256 512 1024 2048
CFS msec. 0.429 0.634 0.8023 1.674 2.145 4.125

max abs. error 0.1803 1.399E-02 8.740E-05 1.599E-08 1.599E-08 1.599E-08
COS msec. 0.429 0.624 0.7023 1.604 2.235 4.525

max abs. error 0.6380 2.685E-02 3.343E-03 1.370E-05 1.508E-08 1.562E-08
CONV msec. 0.456 0.777 1.341 2.565 3.567 6.786

max abs. error 7.381E-02 0.2834 5.563E-02 1.399E-02 3.497E-03 8.741E-04

Table 14: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for
a European call using the Heston model. The parameters are as in Table 13 but with T = 10; reference val.
= 22.318945791 . . . .

N 64 128 256 512 1024 2048
CFS msec. 0.428 0.635 0.8103 1.644 2.245 4.105

max abs. error 4.994E-02 6.280E-04 7.603E-09 1.544E-10 1.544E-10 1.544E-10
COS msec. 0.430 0.624 0.902 1.614 2.235 4.595

max abs. error 1.069 1.018E-02 4.890E-05 3.81231E-10 1.545E-10 1.545E-10
CONV msec. 0.456 0.801 1.345 2.865 3.667 6.986

max abs. error 0.3954 0.6231 0.7225 0.7691 0.7917 0.8028

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

0

0.5

1

1.5

2

2.5

3

3.5

4

De
nsi

ty o
f th

e H
est

on 
mo

del

T=1
T=10

Figure 4: Recovered density functions of the Heston experiments; the parameters are taken from Table 13 and Table
14.

Table 15: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for a
European call option using the CGMY model. The parameters are as in Figure 5 but with Y = 0.5; reference val.
= 19.812948842 . . . .

N 16 32 64 128 256 512
CFS msec. 0.221 0.434 0.744 1.171 1.320 1.601

max abs. error 0.168 1.485E-03 6.564E-07 3.155E-12 0 0
COS msec. 0.230 0.452 0.834 1.201 1.523 1.834

max abs. error 0.528 1.240E-02 2.800E-05 3.595E-09 1.207E-10 1.207E-10
CONV msec. 0.344 0.528 0.917 1.316 1.623 1.931

max abs. error 1.078 0.817 2.089E-01 5.176E-02 1.291E-02 3.226E-03
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Table 16: Error convergence and CPU time in a comparison of the CFS method with the COS and CONV methods
for a European call option using the CGMY model. The parameters are as in Figure 5 but with Y = 1.5; reference
val. = 49.790905468 . . . .

N 8 16 32 64 128
CFS msec. 0.124 0.221 0.434 0.744 1.171

max abs. error 1.538 9.68E-04 2.700E-13 0 0
COS msec. 0.130 0.230 0.452 0.834 1.201

max abs. error 0.9303 2.86E-02 1.240E-05 3.410E-13 3.410E-13
CONV msec. 0.329 0.344 0.528 0.917 1.316

max abs. error 5.245 0.776 0.760 1.756 2.434

Table 17: Error convergence and CPU time comparing the CFS method with the COS and CONV methods for a
European option using the CGMY model. The parameters are as in Figure 5 but with Y = 1.98; reference val.
= 99.999905509 . . . .

N 8 16 32 64 128
CFS msec. 0.124 0.221 0.434 0.744 1.171

max abs. error 5.866E-01 7.640E-05 0 0 0
COS msec. 0.130 0.230 0.452 0.834 1.201

max abs. error 1.532 2.551E-02 1.7870E-06 3.81231E-10 6.843E-10
CONV msec. 0.329 0.344 0.528 0.917 1.316

max abs. error 289.45 593.12 838.93 998.08 798.08
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Figure 5: CFS vs. CONV and COS in error convergence for pricing European call options using the CGMY model
with S = 100, K = 100, r = 0.1, T = 1 q = 0, C = 1, G = 5, M = 5, Y = 0.5, L = 12 and Y = 0.5 (left figure), = 1.5
(middle figure) and = 1.98 (right figure). The parameters are taken from Fang and Oosterlee (2008).
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7. Conclusion and Discussion350

In this paper, we introduced the CFS method to derive European-style option pricing formulas.

This method can be used when both the characteristic function of the underlying price process

and its payoff functions are analytically traceable. The CFS method is based on the notion of

representing option prices with a truncated series sum of complex exponential functions and their

respective coefficients. The CFS method yields numerical computations of the pricing formulas355

that are easy to implement and highly efficient.

We performed an error analysis in addition to deriving the CFS method. In the error analysis, we

first showed that choosing a suitably large interval [a, b] plays a crucial role in reducing the integra-

tion truncation error (58) and the error related to approximating 1
b−a

∫ b
a G(ey)e−iω̃kydy

∫ b
a f(z)eiω̃kzdz

with B̂ (59). Moreover, combined with the analysis of the truncated summation error (60), we360

gained an exponential convergence rate for a smooth PDF. This theoretical finding is in accordance

with the numerical experimental results. However, when the PDF of the underlying process has a

discontinuity in one of its derivatives, algebraic convergence was expected and proven as such in

the error analysis; this result was also observed in the numerical experiments. Our error analysis

differs from that of Fang and Oosterlee (2008), as we clearly show that all truncation errors–(58),365

(59) and (60) are equally pivotal in determining the convergence rate of the CFS method.

In the numerical experiments, in terms of the accuracy of pricing in(out)-of-the-money options,

the performance of the CFS method was occasionally the same as and frequently better than that

of the COS method (e.g., Table 4). Additionally, in some numerical results, the COS method was

unable to yield a convergence rate as the number of the cosine terms N increased. This result370

contradicts the error analysis of Fang and Oosterlee (2008). Finally, very rapid computing times

are reported here for Lévy models and affine stochastic volatility both with and without jumps.

For N < 150, all numerical results (except for the VG model with T = 0.1) were accurate up to 9

digits and obtained in less than 0.5 milliseconds of CPU time.

Although the theoretical analysis/numerical results presented here have demonstrated the effec-375

tiveness of the CFS method, it might be further developed in three ways. First, whether the CFS

method can be applied to price European-type basket options is an interesting research question.

A basket option is a financial derivative, and the risk of its underlying asset is a weighted sum

of the different assets that have been grouped together in the basket. Based on the properties

of basket options, pricing such options entails the well-known higher-dimensional problem and is380

therefore subject to the curse of dimensionality. One possible method for solving this problem is to

apply parallel partitioning (Leentvaar and Oosterlee, 2008), a computational algorithm that allows

for rapid computation of higher-dimensional problems, to the CFS method. Second, we note that

some underlying process PDFs, with a short time to maturity, such as that of VG, can ruin the

exponential convergence rate of the CFS method when it is used to recover the PDF because the385

PDF has a discontinuity in one of its derivatives. In future work, to avoid this problem, we can
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apply filters (Vandeven, 1991; Tadmor and Tanner, 2005) to the CFS method; this strategy is a

numerical method for modifying the Fourier coefficients to maintain an exponential convergence

rate of Fourier series expansions. Finally, the accuracy of the CFS pricing formulae depends on the

choice of ζ of the damping factor exp(ζx), and ζ is chosen by trial and error in this paper. As we390

see it as the future development of the CFS method, we will look into finding the optimal value of

ζ theoretically.

Appendix A. Stochastic Processes in Financial Markets

In this section, we briefly review four popular stochastic processes—the exponential Lévy process

and affine stochastic volatility model. The example processes we demonstrate in this section are395

either relatively commonly applied in financial markets or are difficult to implement for option

pricing via other numerical methods. Our CFS approximation method is not limited to the examples

we present in this section but can be used for any process when its characteristic function exists. A

standard reference for these processes is Schoutens (2003) or Cont and Tankov (2004). Throughout

this section, to ensure that each process is a martingale process, we also define a risk-fee drift of400

γct as (r − q)t+ ω and ω, a drift-compensation term, which is equal to log φ(−i)− (r − q)t.

Appendix A.1. Exponential Lévy Processes

Appendix A.1.1. The Brownian process

Suppose that we have the BSM model (a geometric Brownian process) Black and Scholes (1973)

and Merton (1973) LBS
t with a drift γc = r − q − 1

2σ
2 given by405

LBSM
t = γct+ σWt, (A.1)

where Wt is a risk-neutral Brownian motion with W0 = 0 and σ is the volatility. Then, the

characteristic function of this process is

E[eizL
(BSM)
t ] := φ(z)

= exp

(
t

(
izγc −

1

2
σ2z2

))
, z ∈ R. (A.2)

Appendix A.1.2. The Lévy Jump-diffusion Model

A Lévy jump diffusion process is a Lévy process in which the jump component is given as a

compound Poisson process. It can be represented in the following form:

L
(JD)
t := γct+ σWt +

Nt∑
i=1

Yi, (A.3)
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where γc ∈ R is a drift term; σ > 0, (Wt)t≥0 denotes Brownian motion; (Nt)t≥0 is an independent

Poisson process with intensity λ; and (Yi)i≥1 is an independent, identically distributed (i.i.d.)410

sequence of random variables that are independent of both (Nt)t≥0 and (Wt)t≥0.

Appendix A.1.3. The Merton Model

The classical Merton jump-diffusion model with Gaussian jumps (Merton, 1976) was introduced

to include jumps in the modelling of log-prices Xt. In this model, Yi are normally distributed

N(µJ , σ
2
J). Thus, this is a Lévy process with the following characteristic function:

E
[
eizL

(MJ)
t

]
:= φ(z)

= exp

(
t

(
izγc −

σ2z2

2
+ λ

(
e−σ

2
Jz

2/2+izµJ − 1
)))

, z ∈ R. (A.4)

Appendix A.1.4. The Kou Model

Another jump-diffusion-type Lévy model is the Kou model (Kou, 2002), which uses double-

exponentially distributed jump size variables Yi. The characteristic function of this process is

E
[
eizL

(Kou)
t

]
:= φ(z)

= exp

(
t

(
izγc −

σ2z2

2
+ λ

( pα1

α1 − iz
+

(1− p)α2

α2 + iz
− 1)

))
, z ∈ R, (A.5)

where p ∈ [0, 1] represents the probability of a jump and α1 and α2 control the decay of the tails

of the distribution of positive and negative jump sizes, respectively. The two processes represent415

finite activity because ν(R) <∞, but they represent infinite variation if σ > 0.

Appendix A.1.5. The Normal Inverse Gaussian Model

The normal inverse Gaussian (NIG) distribution is characterised by a normal inverse Gaussian

mixing distribution. The characteristic function of NIG is given by

E
[
eizL

(NIG)
t

]
:= φ(z)

= exp

(
t

(
izγc −

1

2
σ2z2 + δ

(√
α2 − β2 −

√
α2 − (β + iz)2

)))
, z ∈ R. (A.6)

Appendix A.1.6. The Meixner Model

The Meixner Model was studied and introduced by Schoutens and Teugels (1998) and Grigelionis

(1999). The application of this model to finance was properly developed in Schoutens (2002). The

density of the Meixner density distribution function is defined as

fMex(z;α, β, d) =
(2 cos(β/2))2d

2απΓ(2d)
exp

(
βz

α

) ∣∣∣Γ(d+ i
z

α

)∣∣∣2 ,
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where α > 0, −π < β < π, d > 0. The characteristic function of the Meixner model is given by

E
[
eizL

(Mex)
t

]
:= φ(z) (A.7)

= exp

(
izγct

)(
cos(β/2)

cosh((αz − iβ)/2))

)2dt

, z ∈ R. (A.8)

Appendix A.1.7. The Variance Gamma Model420

The variance gamma or the VG process (Madan and Seneta, 1990; Madan and Milne, 1991;

Madan et al., 1998) is a subordinate version of Brownian motion (cf. Cont and Tankov, 2004). The

most important feature of this model is that the Brownian motion is evaluated in random time t∗

(determined by an independent increasing Lévy process—a gamma process) rather than in calendar

time, t. Suppose that the VG process b(t∗; θ, σ) is defined as θt∗ + σWt∗ , where the random time425

t∗ is given by a gamma process Gamma(t; 1, υ) with a unit mean and variance υ, θ is a drift at t∗,

and Wt∗ denotes standard Brownian motion. Then, we define the VG process with a drift term γc

as follows:

L
(VG)
t = γct+ θGamma(t; 1, υ) + σWGamma(t;1,υ), (A.9)

where ω is the compensation term. A characteristic function for the variance gamma process is

E
[
eizL

(VG)
t

]
:= φ(z) (A.10)

= exp

(
izγct

)(
1

1− iθυz + σ2υ
2 z2

) t
υ

, z ∈ R. (A.11)

The Lévy density function of the VG process can also be defined as430

ν(VG)(dx) =


µ2−
υ−

exp(−µ−/υ−|x|)
|x| dx, x < 0,

µ2+
υ+

exp(−µ+/υ+|x|)
|x| dx, x ≥ 0,

(A.12)

or

ν(VG)(dx) =

 C exp(−G|x|)/|x|dx, x < 0,

C exp(−M |x|)/|x|dx, x ≥ 0.
(A.13)

C = 1/υ > 0, M = 1/ϑ+ > 0, G = 1/ϑ− > 0, ϑ+ − ϑ− = θυ and ϑ+ϑ− = σ2υ/2. From the Lévy

measure, the VG process has infinite activity and finite variation (cf. Cont and Tankov, 2004).

As it is an infinite activity jump process, the VG process is versatile enough to include both small

jumps (to mimic a Brownian component) and large jumps. Consequently, unlike the jump-diffusion435

model, a Brownian component is no longer necessary in the VG process.
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Appendix A.1.8. The CGMY Model

Carr et al. (2002) introduced a class of infinitely divisible distributions (also known as a tempered

stable process Cont and Tankov 2004), which is an extended version of the VG process, in 2002.

The Lévy measure for the CGMY process is given by440

ν(CGMY)(dx) =

 C exp(−G|x|)/|x|Y+1dx, x < 0,

C exp(−M |x|)/|x|Y+1dx, x > 0.
(A.14)

C > 0, G > 0, M > 0, and Y < 2. The parameter Y captures the fine structure of the process.

For Y < −1, we obtain a compound Poisson process that has finite variation and finite activity.

However, when Y ∈ [0, 1), the process has infinite activity and finite variation, which is similar to

the VG process (we can see that when Y = 0, this process is equivalent to the VG process). For

Y ∈ [1, 2), the process has infinite activity and infinite variation. Based on the different values of445

Y , there are three different types of characteristic functions in the CGMY process. We summarise

these in the following list:

E
[
eizL

(CGMY)
t

]
:= φ(z) (A.15)

= exp

(
t(izγc +

∫ ∞
−∞

(eizx − 1− izx)ν(dx))

)
z ∈ R. (A.16)

• If Y = 0,

φ(z) = exp

(
izγc − C

((
iz

G
+ log

(
1 +

iz

G

))
+

(
− iz
M

+ log
(
1− iz

M

))))
, (A.17)

• if Y = 1,

φ(z) = exp

(
izγc + C

(
(G+ iz) log

(
1 +

iz

G

)
+ (M − iz) log

(
1− iz

M

)))
, (A.18)

• and if Y ∈ (0, 2)/{1},

φ(z) = exp

(
izγc + CΓ(−Y )GY

((
1 +

iz

G

)Y
− 1− izY

G

)

+ CΓ(−Y )MY

((
1− iz

M

)Y
− 1 +

izY

M

))
. (A.19)
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We can also extend the CGMY model by adding a diffusion component, resulting in the following

new form:

LCGMYe
t = LCGMY

t + σWt, σ > 0, (A.20)

with a characteristic function given by

E
[
eizL

(CGMYe)
t

]
:= exp

(
t
σ2z2

2

)
φ(z). (A.21)

Appendix A.1.9. Finite Moment Log Stable450

The Finite Moment Log Stable (FMLS) process is a Lévy process with infinite activity that was

proposed by Carr and Wu (2003) to model S&P 500 index options where the volatility skew does

not flatten as the time to maturity increases. The characteristic function of FMLS is described by

E[eizL
(FMLS)
t ] := φ(z)

= exp
(
t
(
izγc − (izσ)α sec

(πα
2

)))
. (A.22)

The tail index α ∈ (1, 2] is designed to control the tail behaviour of a PDF, and σ describes the

width of the PDF. If α = 2, the FMLS process coincides with the BS model, where the BS volatility

σBS is related to the dispersion measure for the FMLS model volatility σFMLS such that an equality

is constructed as σBS =
√

2σFMLS.

Appendix A.2. Stochastic Volatility Model455

There is a significant amount of literature in the research field of stochastic volatility (SV)

models (e.g., Hull and White, 1987; Heston, 1993; Lewis, 2000; Lord and Kahl, 2010; Ackerer et al.,

2016; Fonseca and Martini, 2016). In this paper, we use the one-dimensional affine Heston model

(Heston, 1993), an affine stochastic volatility model, and its characteristic function (Lord and Kahl,

2010) as an example to demonstrate the feasibility of using the CFS method on pricing options

under the SV models. The Heston SDE is defined as follows:

dLt = γcdt+
√
ytdW1,t, (A.23)

dyt = λ(ȳ − yt)dt+ η
√
ytdW2,t, (A.24)

where Lt and yt denote the stochastic log-asset price variable and the variance of the asset price

process, respectively. In this process, the speed of mean reversion λ, the mean level of variance ȳ

and the volatility of volatility η are constant values greater than or equal to zero. Additionally,

the Brownian motions W1,t and W2,t are correlated with the correlation coefficient ρs. It is worth
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mentioning the model characteristic function due to its relative complexity:

E
[
eizL

(Heston)
t

]
:= φ(z)

= exp

(
izγct+

y0

η2

(
1− eEt

1− FeEt
(λ− iρsηz − E)

)
+

λȳ

η2

(
t(λ− iρsηz − E)− 2 log(

1− Fe−Et

1− F
)

))
, z ∈ R (A.25)

with

E =
√

(λ− iρsηz) + (z2 + iz)η2,

F =(λ− iρsηz − E)/(λ− iρsηz + E).

This characteristic function is uniquely specified because we take
√

(x+ yi) such that its real part

is nonnegative and restrict the complex logarithm to its principal branch. In this case, as Lord and

Kahl (2010) prove, the resulting characteristic function is the correct one for all complex numbers

z in the analytic strip of the characteristic function. In the SDE, we have two possible conditions

with respect to λ, ȳ and η:

2λȳ ≥ η2, (A.26)

2λȳ < η2. (A.27)

The model satisfies the Feller property if (A.26) holds; otherwise, (A.27) holds. If a process fulfils

the property, the process never hits zero, but if it does not, this means that the process can reach

0. Condition (A.27) is a very important property for the Heston SDEs because the SDEs can

only have a unique solution when we specify a boundary condition at 0. In mathematical finance,

the chosen boundary condition is that the process remains at 0. We define this as the absorbing460

boundary condition. When the process reaches 0 and is allowed to leave 0, we call it a reflecting

boundary. These two boundary conditions are crucial for pricing early-exercise options, including

American options and barrier options.

Appendix B. Table of Cumulants

In Table B.18, we show the first c1, second c2, and fourth c4 cumulants of the GB model, the

Merton model, the Kou model, the Meixner Model, the NIG model, the VG model, the CGMYe

model and the FMLS model. However, as Fang and Oosterlee (2008) suggest, due to the lengthy

representation of c4, we only present the first two cumulants of the Heston model. In the CGMYe

model, we only present the cumulants when Y ∈ (0, 2)/{1} because when Y = 0, the CGMYe

model becomes the Kou model, and when Y = 1, it becomes the VG model. To obtain a pure
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CGMY process, we can set σ equal to zero. Given the characteristic functions, the cumulants can

be generally computed using

ck =
1

ik
∂k log φ(z)

∂zn

∣∣∣∣
z=0

.
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Lévy models

BS c1 = (r − q + ω)t c2 = σ2t, c4 = 0, ω = −0.5σ2

Merton c1 = (r − q + ω − λµj)t
c2 = (σ2 + λ(σ2

J + µ2
J))t

c4 = tλ(6σ2
Jµ

2
J + µ4

J + 3σ4
Jλ)

ω = −0.5σ2 − λ
(
eσ

2
J/2+µJ − 1

)
Kou c1 = (r − q + ω + pλ/α1 + λ(1− p)/α2)t

c2 = (2λp
α2
1

+ 2λ(1−p)
α2
2

)t

c4 = 24λ( p
α5
1

+ 1−p
α5
2

)t

ω = −0.5σ2 + λ
( pα1

α1+1 + (1−p)α2

α2−1 − 1)

Meixner c1 = (r − q + ω)t+ αdt tan(β/2)

c2 = α2dt
2 (cos−2 β/2)− (αdt tan(β/2))2

c4 = 3−2 cos2(β/2)
d − 4 sin(β/2)

√
2/dt(αdt tan(β/2))− 3(α

2dt
2 (cos−2 β/2))2+

12(α
2dt
2 (cos−2 β/2))(αdt tan(β/2))2 − 6(αdt tan(β/2))4

ω =
(

cos(β/2)
cos((α+β)/2)

)2dt

NIG c1 = (r − q + ω)t+ δtβ/
√
α2 − β2

c2 = δtα2(α2 − β2)−3/2

c4 = δtα2(α2 + 4β2)−3/2(α2 − β2)−7/2

ω = −0.5σ2 − δ(
√
α2 − β2 −

√
α2 − (β + 1)2)

VG c1 = (r − q + θ + ω)t
c2 = (σ2 + υθ2)t
c4 = 3(σ4υ + 2θ4υ3 + 4σ2θ2υ2)t
ω = 1

υ log(1− θυ − σ2υ/2)

CGMYe c1 = (r − q + ω)t
c2 = (σ2 + CΓ(2− Y )(MY−2 +GY−2)t
c4 = (CΓ(4− Y )(MY−4 +GY−4)t

ω = −0.5σ2 +
(
CΓ(−Y )GY

((
1 + 1

G

)Y − 1− Y
G

)
+ CΓ(−Y )MY

((
1− 1

M

)Y − 1 + Y
M

))
FMLS c1 = (r − q + ω)t

c2 = 0
c4 = 0
ω = (−1)α+1σα sec(πα/2)

Affine stochastic volatility model

Heston c1 = (r − q)t+ (1− e−λt) ȳ−y02λ − 0.5ȳt
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