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Abstract: A novel tweakable nanocomposite was prepared by spark plasma sintering followed by
systematic oxidation of carbon nanotube (CNT) molecules to produce alumina/carbon nanotube
nanocomposites with surface porosities. The mechanical properties (flexural strength and fracture
toughness), surface area, and electrical conductivities were characterized and compared. The
nanocomposites were extensively analyzed by field emission scanning electron microscopy (FE-SEM)
for 2D qualitative surface morphological analysis. Adding CNTs in ceramic matrices and then
systematically oxidizing them, without substantial reduction in densification, induces significant
capability to achieve desirable/application oriented balance between mechanical, electrical, and
catalytic properties of these ceramic nanocomposites. This novel strategy, upon further development,
opens new level of opportunities for real-world/industrial applications of these relatively novel
engineering materials.

Keywords: ceramic nanocomposite; carbon nanotubes; alumina nanocomposite; porous nanocomposite;
mechanical properties; electrical properties

1. Introduction

Carbon nanotubes (CNTs) are hollow cylindrical molecules (Figure 1) that consist of two-dimensional
hexagonal lattice of carbon atoms, bent and joined in one direction [1]. Owing to their superlative
combination of high surface area, large aspect ratio and excellent thermal, electrical and mechanical
properties, CNTs have received significant interest among ceramic researchers [2–7]. In particular, for
alumina–CNT nanocomposites, improved electrical [2], mechanical [3–5], and thermal [6] properties and
utilization of CNTs for grain refinement and sintering aid [7] have been reported.

CNTs, however, have not been analyzed extensively for their potential in ceramic nanocomposite
membranes and/or porous structures to an extent where real-world/industrial applications could span
out. In general, CNTs were impregnated into membranes or grown on structural materials for processing
possible new types of filters and membrane technologies [8–12]. In terms of the ceramic filters, CNTs
grown on micromachined Si/SiO2 [13] and glass fibers [14] have already demonstrated good filtration
efficiencies. Addition and then subsequent modification of CNTs on alumina pores/porous structures
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has been the most common and widely explored method for producing ceramics nanocomposite
membranes [15]. To analyze the filtration properties of these nanocomposites, Parham et al. grew
CNTs on porous ceramic matrix consisting of mainly alumina and silica and demonstrated a high
efficiency of yeast filtration (98%), around 100% for heavy metal ion removal from water and excellent
particulate filtration from air [16]. The same group also grew CNTs in another study on porous alumina
and reported higher compression strength for the porous alumina nanocomposites [17].Molecules 2019, 24, x FOR PEER REVIEW 2 of 11 
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All of these previously published research efforts on alumina–CNT nanocomposites yielded 
mechanically weak filter structures when compared with bulk/monolithic alumina materials. 
Diffusion properties and catalytic activity of ceramic membranes/filters are normally tailored via 
changes in pore geometry, volume, and surface chemistry. This enables change in catalytic 
performance or the sorption capacity for a specific gaseous molecule [15]. However, in this report, 
we demonstrate a simple approach to produce strong, highly versatile and efficient alumina–CNT 
nanocomposite structures by manipulating surface porosity via systematic oxidation of CNTs at the 
grain boundaries. Such approach has not been explored nor demonstrated prior to this report, to the 
best of the authors’ knowledge. Here, we present a simple customization of CNT content after 
sintering, yielding desirable and application-oriented balance between mechanical, electrical, and 
catalytic properties. This is the first report which demonstrates such customization feature for 
superlative CNT filled ceramic nanocomposites. 

2. Materials and Methods  

High purity (99.9%) multiwall CNTs (Ossila M2009D1 with outer diameters of 15 nm and 
lengths ranging 10–30 µm) were dispersed in dimethylformamide, DMF [18] using high power tip 
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All of these previously published research efforts on alumina–CNT nanocomposites yielded
mechanically weak filter structures when compared with bulk/monolithic alumina materials. Diffusion
properties and catalytic activity of ceramic membranes/filters are normally tailored via changes in pore
geometry, volume, and surface chemistry. This enables change in catalytic performance or the sorption
capacity for a specific gaseous molecule [15]. However, in this report, we demonstrate a simple approach
to produce strong, highly versatile and efficient alumina–CNT nanocomposite structures by manipulating
surface porosity via systematic oxidation of CNTs at the grain boundaries. Such approach has not been
explored nor demonstrated prior to this report, to the best of the authors’ knowledge. Here, we present a
simple customization of CNT content after sintering, yielding desirable and application-oriented balance
between mechanical, electrical, and catalytic properties. This is the first report which demonstrates
such customization feature for superlative CNT filled ceramic nanocomposites.

2. Materials and Methods

High purity (99.9%) multiwall CNTs (Ossila M2009D1 with outer diameters of 15 nm and
lengths ranging 10–30 µm) were dispersed in dimethylformamide, DMF [18] using high power tip
ultrasonication for 45 minutes and then hand-mixed with alumina nanopowder (Sigma–Aldrich,
London, UK: gamma phase; particle size <50 nm; surface area 35–43 m2 g−1; melting point 2040 ◦C; and
density 3.97 g cm−3) for 10 minutes. The liquid mixture was rotation ball milled for 10 h. It was then
dried at 70 ◦C for 12 h using a rotary drier containing milling media (4 mm alumina balls), followed by
vacuum oven drying at 100 ◦C for 50 h. To avoid re-agglomeration of CNTs during lengthy drying, the
alumina balls (milling media) were added during rotary drying. The dried nanocomposite powder
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was ground and sieved at 150 mesh and then placed again in the vacuum oven at 100 ◦C for another
50 h to thoroughly remove the solvent from the mixed powder.

Monolithic alumina and alumina–5 wt% CNT nanocomposite pellets (diameter 20 mm and
thickness 5 mm) were prepared by spark plasma sintering (SPS) using LABOX 350 (Sinter Land Inc,
Nagaoka, Japan) furnace in vacuum to prevent the loss of CNTs during sintering. A pressure of 100 MPa
was applied concurrently with the heating (rate 60 ◦C min−1) and released at the end of the sintering
period, which was 10 min. Sintering temperature for all nanocomposites was 1250 ◦C. A pulsed DC
current with 5 µsec ON and 5 µsec OFF was used without any pause.

All of the sintered samples were ground down to 4000 grit using a SiC paper. Relative blackness
(color intensity) after oxidation was quantified using Alicona Infinite focus microscope via Adobe
Photoshop CC2015 software. The densities of the ground samples were measured using the Archimedes’
water buoyancy method and verified by a manual Heliulm multipycnometer (Quantachrome UK).
All samples were then thoroughly dried in an oven at 80 ◦C for 24 h for removal of any moisture. All
nanocomposite samples were then oxidized (heating rate 10 ◦C min−1) in an SNOL 3/1100 LHM01
laboratory furnace at 600 ◦C for various durations. The samples were cooled in an open furnace
after the holding duration was completed and then diamond macro polished using 10 micron paste.
The monolithic alumina and oxidized nanocomposite samples were then examined in a field emission
scanning electron microscope (FE-SEM). The oxidized and polished surfaces were gold coated and
observed in an ultra-high resolution analytical FE-SEM (Hitachi, SU-70) using a 20 keV electron beam.
A separate batch of monolithic and nanocomposite samples were diamond polished and thermally
etched at 1550 ◦C for 10 min for measuring grain sizes. Using FE-SEM, grain sizes were characterized
after sintering and oxidation for monolithic alumina and nanocomposites respectively by the linear
intercept method [19] using Equation (1).

D = 1.56 (L/MN) (1)

where D is the average grain size, L is the total length of test line used for calculation, N is the number
of intercepts, and M is the magnification of the photomicrograph. About 660 intercepts were taken in
consideration for each measurement.

For all mechanical and electrical characterizations, at least seven samples of each composition
were examined for greater confidence. Fracture toughness characterizations were carried out for
alumina and nanocomposite samples according to standard ASTM C1421 (standard test method for
determination of fracture toughness of advanced ceramics at ambient temperature). Single Edge
V-Notch Beam (SEVNB) method was employed using parallelepiped samples (3 mm × 4 mm × 30 mm)
and a loading span distance of around 17 mm. All samples were machined and notches were produced
using a diamond saw (Accutom-50). For all samples, the notch was in the range of 0.7–1.1 mm in
depth and around 195 µm in width. The root radius of the notch for each sample was about 9–10 µm
with a V-notch angle of around 19◦. The flexural strength was examined by three-point bending test.
The testing was performed using a DS-II multifunctional desktop tester with a cross-head speed of
0.04 mm min−1 for enhanced accuracy. The flexural strength FS was calculated using Equation (2) [20]:

FS = 3PL/2bh2 (2)

where P is the load at the fracture point, L is the span length, b is the sample breadth, and h is the
sample thickness.

For evaluating electrical conductivity, a bar (dimensions 17 mm × 3 mm × 5 mm) was cut from
each sintered oxidized nanocomposite pellet using precision and deformation-free cutting machine
(Accutom-50). Around 500 microns of material was removed from all surfaces of sample by fine grinding.
Four-point method was employed by using a resistivity/Hall measurement system (Quantum Design,
PPMS, Model 6000) for measuring the electrical conductivities of the nanocomposites. For pure alumina
samples, high resistance meter (HP 4329A) was used to measure the conductivity. The connecting wires
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in the experimental setup were permanently bonded by using silver paste in order to avoid any contact
resistance for this analysis. The specific surface area (SSA) was measured via Brunauer–Emmett–Teller
(BET) theory using the Gemini 2360 analyzer, which is a fully automatic multi-point surface area
analyzer utilizing flowing-gas technique. The technique used physical adsorption of nitrogen gas
molecules on the solid surface of ceramic nanocomposite. All SSA measurements were carried out in
accordance to ISO 9277:2010.

3. Results and Discussion

Monolithic alumina and alumina nanocomposite samples used in this study are presented in Table 1.
The weight percentage of CNTs were 5% for all the nanocomposite samples. Relative blackness/color
intensity is a semi-quantitative way of measuring the amount of left over CNTs after oxidation as well. It
should be noted here that there is always some deposition of carbon from the carbon paper in contact with
the powder during sintering, hence a relative scale was used for estimating the color intensities to give
some qualitative understanding about the amount of carbonaceous content in relatively white/greyish
pure alumina sintered pellet. Significant refinement in grain size was observed because of the addition
of CNTs owing to a phenomenon reported previously as well [7]. CNTs have also been reported to
support densification of alumina as observed in this work (Table 1) and previously published [7,21].

Table 1. Alumina and alumina–CNT nanocomposites used in this work.

Sample
Name

wt% of
CNTs

Grain Size,
Before

Oxidation

Oxidation Time
(mins) After

Sintering

Relative Color
Intensity After
Oxidation (%)

Theoretical
Density (%),

After Oxidation

Specific Surface
Area (m2/g)

A 0 5.3 ± 1.7 µm NA 0 NA 1.9 ± 0.2
B 5 78 ± 36 nm 0 100 99.9 4.9 ± 0.5
C 5 84 ± 32 nm 5 92 99.5 15.3 ± 0.2
D 5 90 ± 43 nm 10 80 99.0 22.9 ± 0.3
E 5 85 ± 65 nm 15 72 98.7 26.3 ± 0.6
F 5 89 ± 46 nm 20 61 98.5 37.9 ± 0.7

Figures 2–4 present electrical and mechanical properties of the samples A–F described in Table 1.
A clear variation between the theoretical density, electrical conductivity, and mechanical properties can
be noted in Table 1 and from the analysis of Figures 2–4. The emphasis prior to this study has always
been on increasing the mechanical and electrical properties of these nanocomposites by varying the
content of CNT molecules during dispersion/homogenization stage and prior to sintering. The oxidation
(in air) of CNTs after sintering resulted in burn-out or removal of CNTs from the nanocomposite samples
as reported elsewhere as well [21].

Surface area is a major aspect in catalysis and related technologies [16,17]. Apart from the chemistry,
the surface area of a catalyst is responsible for affecting the rate of reaction. It is well understood that
chemical reactions involving a catalyst occur on the surface of the catalyst and the catalyst works by
lowering the overall activation energy of the process or reaction. CNT molecules-supported catalysts
have also been widely explored in various research efforts [16,17]. Comparing sample B and F, it can
be observed that a surface area of more than seven times was available in sample F (Table 1) without
significant drop in mechanical properties (Figures 3 and 4) as such. CNTs reside at the grain boundaries
of alumina in the nanocomposites which has been confirmed previously [2]. With the oxidation of
CNT molecules or elimination from the gain boundaries in samples B to F, customizable surface area
and properties can be achieved for specific applications as noted in Table 1.

The addition of CNT molecules for improving electrical conductivity of insulating materials like
polymers [22,23] and ceramics [2,24] is widely appreciated. The axial electrical conductivity of CNTs
was reported to be extremely high, reaching 2 × 107 S/m [25], comparable to that of silver, copper, gold,
and aluminum (107 S/m) [26]. The electrical conductivity of alumina–CNT nanocomposite increased
with decreasing grain boundary area because of the increased number of conductive pathways
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formed by the CNT molecules [2]. This is also due to the CNTs’ fibrous nature/high aspect ratio and
very high electron mobility within CNTs [2]. It can be observed from Figure 2, that the electrical
conductivity decreases with the increase in oxidation temperature because of the removal of the
electrically conductive elements from the nanocomposites. For instance, a reduction of 57% was
observed in the electrical conductivity of nanocomposites with just 20 minute of oxidation time after
sintering and achieving full densification. It should be noted here that the burn out of CNT molecules
is also responsible for slightly lowering the densification as well, as reported in Table 1.Molecules 2019, 24, x FOR PEER REVIEW 5 of 11 
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From the application perspectives, ceramics with such tailorable or customizable electrical
conductivities have many industrial applications, such as, ceramic heaters (and other high-temperature/

thermoelectric applications), electric discharge machining (EDM), static charge dissipation, batteries,
lightning protection, electromagnetic interference (EMI) shielding in electronic, mechanical, structural,
chemical, and vacuum applications [2,27]. In particular, alumina with added electrically conductive
fillers has been used to fabricate substrates for handling semiconductor wafers that require static
protection [27]. The present research demonstrated the strategy of post-sintering oxidation and initiating
removal of intertangled networks of CNTs and yielding lower electrical conductivities for the bulk
nanocomposite, upon further development, could offer significant customization to these applications.

Like electrical properties (Figure 2), similar trend can also be noted for the mechanical properties
(Figures 3 and 4). All the previous research and attempts to modify such properties in CNT based
ceramics primarily focused on the homogenization strategies and volume content of CNT molecules.
This report discusses a simple but effective post-sintering strategy where a desirable balance between
mechanical, electrical, and catalytic properties of the materials can be achieved by careful removal
of CNTs from the grain boundaries of ceramic matrices. For example, to achieve a certain portfolio
of mechanical properties, the possibility of lowering flexural strength and fracture toughness up
to 13% and 35% respectively in these nanocomposites have been demonstrated in Figures 3 and 4.
For monolithic ceramics, there has always been a strong dependency of mechanical properties like
flexural strength and fracture toughness on the relative density of ceramics [28,29]. However, because
of the presence of CNTs at the grain boundaries of alumina, such dependency is significantly minimized
as observed in Figures 3 and 4. It should be noted here that the grain refinement [21], crack pinning
and bridging mechanisms [2,30,31] in these nanocomposites are attributing to these key observations.
In general, and as widely appreciated [2–6], the superior electrical and mechanical properties reported
in Figures 2–4 are due to the high aspect ratios and intrinsic chicken wire (strong sp2 covalent bonds)
structure (Figure 1) of CNTs [1].

Field emission scanning electron micrographs of polished and oxidized materials are presented in
Figure 5. CNT molecules intrinsically possess graphitic lubricating surface properties [7,32,33]. A clear
difference in surface morphology can be observed between monolithic alumina and nanocomposite
sample (Figure 5a–c). From the comparative analysis of Figure 5b–f, it can be observed that longer the
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oxidation durations, higher the grain pluck outs after macro polishing and vice versa. CNTs create an
intertangled network of strong nanowires which hold all the alumina grains in place. Upon removal of
CNT molecules from the grain boundaries and because of their lubricating surface properties, it is
easier to create more uneven surfaces as can be seen from Figure 5f. Also, from these representative
FE-SEM images (Figure 5c–f), a good level of homogenized distribution of CNTs can be evidenced.
Such good and uniform levels of homogenization is essential for utilization of these structures in
catalytic applications [34].Molecules 2019, 24, x FOR PEER REVIEW 8 of 11 
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The existence of CNTs and other forms of fullerenes after sintering were confirmed in our previous
studies [35,36]. CNT molecules were found to be well preserved in alumina after sintering up to 1900 ◦C
and with a pressing pressure of 100 MPa [36]. The results via high resolution electron microscopy, X-ray
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diffraction, and Raman spectroscopy [36]. In the same study, multiwall carbon nanotubes maintained
their high aspect ratio and fibrous nature even after being sintered in boron carbide at 2000 ◦C for 20
min. It should also be noted here that the existence of good quality CNT molecules in nanocomposites
(after sintering) can also be indirectly confirmed by enhancement of electrical and mechanical properties,
where results/values reported in Table 1 and Figures 2–4 are comparable to those already reported in
literature [2–4].

To recapitulate briefly, adding CNT molecules in ceramic matrices and then systematically oxidizing
them induces significant capability to customize mechanical, electrical, and catalytic properties of these
materials (Figures 2–4). Oxidation of CNTs, an irreversible process, offers a post sintering manipulation
capability to ceramic nanocomposites. The present study enables tailoring capability by achieving
a good balance between the specific surface area of CNT molecule supported materials and their
bulk structural mechanical and electrical properties. Further development of this strategy for these
superlative carbon based materials would lead toward their practical applications.

4. Conclusions

The post-sintering manipulative nature of CNT molecules-based ceramic nanocomposites is
demonstrated in this work. Such customization of key electrical and mechanical properties has always
been reported by changing the carbonaceous content in these nanocomposites in all of the previous
reports. This work demonstrates a simple but very effective strategy to tailor the surface area, mechanical
properties (flexural strength and toughness), and electrical conductivity of ceramics for desired
combination of properties using appropriate oxidation durations. A strong dependency of CNT content
on surface area, mechanical properties (flexural strength and toughness), and electrical conductivity was
observed which could be manipulated after sintering as demonstrated here. The ability to change these
properties after sintering and without compromising on the structural integrity opens new opportunities
for real-world/industrial applications for this family of relatively novel engineering materials.
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