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Abstract

Gait recognition is a reliable biometric approach that uniquely identifies individuals based
on their natural walking patterns. It is widely used to recognize individuals who are
challenging to camouflage and do not require a person’s cooperation. The general face-
based person recognition system often fails to determine the offender’s identity when
they conceal their face by wearing helmets and masks to evade identification. In such
cases, gait-based recognition is ideal for identifying offenders, and most existing work
leverages a deep learning (DL) model. However, a single model often fails to capture a
comprehensive selection of refined patterns in input data when external factors are present,
such as variation in viewing angle, clothing, and carrying conditions. In response to
this, this paper introduces a fusion-based multi-model gait recognition framework that
leverages the potential of convolutional neural networks (CNNs) and a vision transformer
(ViT) in an ensemble manner to enhance gait recognition performance. Here, CNNs capture
spatiotemporal features, and ViT features multiple attention layers that focus on a particular
region of the gait image. The first step in this framework is to obtain the Gait Energy Image
(GEI) by averaging a height-normalized gait silhouette sequence over a gait cycle, which
can handle the left–right gait symmetry of the gait. After that, the GEI image is fed through
multiple pre-trained models and fine-tuned precisely to extract the depth spatiotemporal
feature. Later, three separate fusion strategies are conducted, and the first one is decision-
level fusion (DLF), which takes each model’s decision and employs majority voting for the
final decision. The second is feature-level fusion (FLF), which combines the features from
individual models through pointwise addition before performing gait recognition. Finally,
a hybrid fusion combines DLF and FLF for gait recognition. The performance of the multi-
model fusion-based framework was evaluated on three publicly available gait databases:
CASIA-B, OU-ISIR D, and the OU-ISIR Large Population dataset. The experimental results
demonstrate that the fusion-enhanced framework achieves superior performance.

Keywords: gait recognition; decision-level fusion; feature-level fusion; hybrid fusion; CNN;
vision transformer; attention
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1. Introduction
Biometrics is a technology that identifies individuals based on physiological and

behavioral characteristics [1]. Examples of biometric traits for human identification include
faces [2], fingerprints [3], irises [4], and gait [5]. Facial recognition identifies individuals
by analyzing and extracting facial features from images or videos, but its performance
can degrade under conditions such as poor illumination, low spatial resolution, occlusion,
or changes in facial expressions [6]. Fingerprint-based identification relies on the unique
ridge patterns of fingers and typically requires physical contact with a scanner, making it
less feasible in unconstrained or remote environments. Iris-based identification analyzes
the complex patterns in the colored ring of the eye, offering high precision but requiring
close-up, high-resolution imaging under infrared illumination. In contrast, gait recognition,
which identifies individuals based on their walking patterns, can be captured from a
distance without the participant’s cooperation and works effectively with low spatial
resolution [7]. Due to the unconscious nature of gait, it is difficult to disguise, making it
suitable for applications such as surveillance systems [8], digital forensics [9], and criminal
investigations [10].

Although gait recognition works effectively in controlled laboratory environments,
real-life scenarios present numerous challenging factors, known as covariates, that affect
recognition accuracy. For example, some covariates are related to the individual, such
as carried objects (COs) [11], shoes, and clothing [12], while others are related to the sur-
rounding environment, such as variations in viewing angle [13], occlusions [14,15], walking
surfaces, and shadows. All of these covariates significantly degrade the performance of
gait recognition [16].

In the early stages, gait recognition relied on handcrafted features, including model-
based and appearance-based approaches. Model-based approaches [17–19] have tried to
construct a model of the human body and observe the movements of separate body parts.
Model-based approaches require high computational resources as they generate a human
model, identify key body points, and necessitate high-resolution image sequences. In con-
trast, appearance-based approaches [5,20,21] analyze the sequence of silhouette frames
to extract the spatial or spatiotemporal features for identification. However, appearance-
based approaches require less computational power and are relatively easy to implement.
Moreover, they demonstrated superior performance in gait recognition. However, they
usually rely on a single model for feature extraction and often fail to capture essential
features in the presence of covariates.

Recently, deep learning (DL)-based methods, such as convolutional neural networks
(CNNs), have demonstrated outstanding performance in classification [22], detection [23],
and recognition [24]. This success is largely due to their ability to extract essential fea-
tures from input samples. Moreover, pre-trained CNN models such as GoogLeNet [25],
DenseNet [26], VGG [27], ResNet [28], and EfficientNet [29] have gained popularity among
researchers. These models, trained and fine-tuned on large-scale datasets, can extract fine-
grained and discriminative features that are critical for obtaining superior performance.
Although they all belong to the CNN family, they differ significantly in model depth,
computational efficiency, and overall effectiveness.

In addition, the introduction of the transformer-based approach [30] has led to sig-
nificant advancements in the natural language processing (NLP) domain, featuring an
encoder–decoder architecture with a self-attention mechanism. Later on, this concept
was implemented in DL using the encoder architecture (i.e., vision transformer (ViT) [31])
because of its versatility and performance. Instead of text, the images are split into non-
overlapping patches and sent in sequence, along with the positional embedding layer,



Symmetry 2025, 17, 1155 3 of 24

to the encoder layer for classification. The encoder’s self-attention determines which part
of the images the model should focus on.

The aforementioned CNN-based and attention-based models have been increasingly
applied to gait recognition in recent years [27,28,32–34]. For example, Mogan et al. [32] pro-
posed VGG16-MLP, incorporating a pre-trained VGG-16 [27] model along with a multilayer
perceptron (MLP) to improve recognition accuracy, while Pushpalatha et al. [33] used the
pre-trained model of ResNet-50 [28] for gait recognition, achieving superior performance
due to its architectural complexity and proper training. Later, an attention-based ViT was
employed in Gait-ViT [34], where a pre-trained model was employed for gait recognition.
Most research, however, relies on a single model, which hinders their ability to extract the
detailed features required to recognize complex spatiotemporal features in the presence
of covariates. To minimize the impact of covariates, the models must capture all relevant
patterns and accurately extract the necessary features. However, each model involves a
specific feature and limitations in capturing subtle changes. Therefore, a multi-model-based
approach that combines CNNs and ViT is needed for effective gait recognition.

To address the limitations of a single model, multi-biometric approaches [6,35–39] have
been explored by researchers. These approaches are based on fusion strategies that enhance
classification, identification, and recognition accuracy, as well as robustness. For example,
Kittler et al. [35] initially considered multiple face samples and then employed Bayesian
estimation theory to fuse these instances, demonstrating improved identity verification.
Mehraj et al. [40] proposed a multi-model biometric approach, where they employed
AlexNet [22] and VGG-16 [27] to extract gait features and then combined the features from
both models and used support vector machines (SVM) for final identification. Inspired by
earlier research, this study implements a multi-model fusion-based framework to improve
gait recognition accuracy. Specifically, this study leverages the strengths of five selected
pre-trained deep learning models (i.e., VGG-16 [27], ResNet-50 [28], GoogLeNet [25],
EfficientNet-B0 [29], and ViT [31]) in an ensemble manner to extract diverse features.
Key factors were considered when selecting these models (e.g., number of parameters,
complexity, effectiveness, computational requirements, etc.). For example, EfficientNet-
B0 [29] enables faster learning with a lower computational cost while providing optimal
performance. Similarly, VGG-16 [27] is straightforward to implement. Conversely, ViT [31]
offers the advantages of patch embeddings and transformer mechanisms, which enable the
extraction of data from each image patch, ensuring that detailed local features are captured.
However, a single model still faces several limitations, such as a limited representational
capacity and algorithmic assumptions, making it prone to poor generalization. Additionally,
single models often face issues with the bias–variance tradeoff and heterogeneous data
characteristics, resulting in decreased accuracy and adaptability in practical situations.

To overcome these shortcomings, we introduced a multi-model fusion-based frame-
work that utilizes different DL-based models to capture intrinsic patterns of the input data
and leverage the strengths of various state-of-the-art (SOTA) algorithms while mitigating
the weaknesses of individual models, which ultimately improves accuracy, generalization,
and robustness, even in the presence of covariates. Initially, the proposed framework takes
a gait energy image (GEI) (i.e., normalized silhouette sequences over a gait cycle, which
are averaged together at pixel levels) as an input. The reason for using GEIs is that they
exhibit the left–right symmetry assumption [41,42], particularly in the frontal (0°) or rear
(180°) views for the sagittal plane, which is very effective for gait recognition. Moreover,
the legs produce two high-energy vertical streaks in the GEIs feature because of motion
over the gait cycle. These streaks are often symmetrically placed about the centerline in
normal gait [41]. These regions are effective in localizing the dominant motion area, which
helps improve gait recognition accuracy in the presence of covariates. In the second step,
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all the selected DL models are utilized separately to fine-tune them and encode the GEI to
extract in-depth spatiotemporal features. Subsequently, to improve recognition accuracy,
decision-level fusion (DLF), feature-level fusion (FLF), and hybrid fusion (HF) strategies
are applied to merge the strengths of these models. Notably, DLF considers the decision
of each model and then employs a majority voting mechanism to ensure a reliable output.
Furthermore, FLF addresses diversity and robustness by combining the output features
of each model to predict the outcome. Particularly, both FLF and DLF are combined in
HF, utilizing the advantages of both fusion approaches to increase the performance score.
The significant contributions of this study can be outlined as follows:

• We present a multi-model fusion-based framework that leverages the capabilities of
five state-of-the-art (SOTA) deep learning models, including both CNN-based and
attention-based architectures, to extract intricate and fine-grained spatiotemporal
gait features.

• We employ three separate fusion strategies, feature-level fusion, decision-level fusion,
and hybrid fusion, to improve the accuracy of gait recognition. These approaches
ensure that the decisions of multiple models are consistent and that their unique
features enhance recognition performance.

• We demonstrate our proposed framework on the most popular and challenging
publicly available gait databases, the CASIA-B [43], OU-ISIR D [44], and OU-LP [45]
datasets, and we attain superior performance.

2. Related Work
2.1. Model-Based Approaches

In the early stages of model-based gait recognition, multiple models [46–48] were
developed to construct human-body shapes and analyze motion during walking manually.
These approaches extracted essential features from the hips, knees, ankles, and feet for per-
son recognition. For example, Bouchrika et al. [46] proposed a model-based approach [46]
that used elliptic Fourier descriptors to parameterize joint motion, capturing the nature of
human walking and finally extracting ankle, knee, and hip joints for indoor and outdoor
environments. Later, Yoo et al. proposed a method [47] that considered gait silhouette
sequences to construct a series of 2D stick-shape representations and then used a neural
network algorithm for human recognition.

In addition, some studies [17,49–51] have explored the idea that human skeleton data
serves as an ideal input for gait recognition models, with which a camera or depth sensor
can capture a person’s skeleton data. For example, Preis et al. [49] suggested a gait recogni-
tion approach that utilizes the Microsoft Kinect, which provides real-time human skeleton
generation and tracking data via an integrated depth sensor. Later, Bari et al. [50] intro-
duced a deep neural network-based gait recognition framework that employed Microsoft
Kinect to generate a skeleton gait sequence and extract view- and pose-invariant features,
such as joint relative cosine dissimilarity and joint relative triangle area, significantly
increasing performance.

Recent advancements in DL have also introduced graph convolutional networks
(GCNs) [52], which offer a broad scope of research in skeleton-based gait recognition. Sev-
eral recent studies [53–56] have already demonstrated the effectiveness of GCNs, achieving
superior accuracy in gait recognition tasks. For example, Teepe et al. [53] proposed Gait-
Graph, which leverages GCNs to extract robust spatio-temporal features from skeleton data
and demonstrated superior accuracy on the CASIA-B dataset. Later, they introduced Gait-
Graph2 [54], which employed multi-branch GCNs and residual networks to extract features
and achieved state-of-the-art (SOTA) recognition performance. In addition, Ray et al. [56]
proposed a fusion-based multi-modal framework that employed OpenPose, AlphaPose,
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and HRNet human pose estimation algorithms, and they utilized a residual graph convolu-
tional network (ResGCN) [57] for feature extraction. Model-based approaches, in particular,
offer advantages such as robustness against clothing variations, covariates, and cluttered
backgrounds by focusing on the underlying body structure. However, they typically re-
quire depth sensors or high-resolution image data, and pose estimation errors can degrade
recognition performance, especially in uncontrolled environments.

2.2. Appearance-Based Approaches

Appearance-based gait recognition approaches [58–62] acquire gait features from sil-
houettes or RGB images, which are then used to identify individuals. These approaches
are further divided into template-based and sequence-based approaches. Template-based
approaches focus on converting a binary gait sequence into a single template image that
contains spatiotemporal features. For example, Han and Bhanu [58] proposed a spatiotem-
poral gait representation known as the Gait Energy Image (GEI), in which a gait cycle
is first extracted from a height-normalized silhouette sequence, and the silhouettes are
then averaged over time to obtain a single GEI. Some examples are shown in Figure 1.
Subsequently, GEIs were extended in multiple ways, notably through methods such as the
gait history image (GHI) [59], chrono gait image (CGI) [61], gait entropy image (GEnI) [60],
and gait flow image (GFI) [62]. More specifically, GHI [59] captures spatial and temporal
features across quarter-cycle gait phases, while GEnI [60] encodes an entire gait cycle into a
single template image by computing entropy, demonstrating effectiveness under diverse
covariate conditions.

  

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. Example of gait silhouette sequences (every third frame of a sequence), with the rightmost
image representing the corresponding gait energy image (GEI). Rows (a–c) are from the CASIA-
B dataset, where (a) represents normal walking (NM), (b) represents walking with a bag (BG),
and (c) represents walking with a coat (CL). Rows (d,e) illustrate the DBhigh and DBlow walking
sequences from the OU-ISIR dataset, while the last row (f) showcases a walking sequence from the
OU-LP dataset.

Furthermore, deep learning (DL)-based approaches have employed these template-
based images for gait recognition [63–65]. For example, Xu et al. [63] introduced the Deep
Large Margin Nearest Neighbor (DLMNN) approach, which integrates a CNN with near-



Symmetry 2025, 17, 1155 6 of 24

est neighbor (NN) algorithms, demonstrating competitive performance. Junaid et al. [64]
proposed a customized ten-layer CNN that is less susceptible to occlusions and achieved su-
perior gait recognition accuracy. Later, Suthar et al. [65] employed a pre-trained lightweight
CNN model (i.e., MobileNetV3Small) that takes GEIs as input, extracts more refined fea-
tures, and uses various machine learning methods for gait recognition. In particular,
processing a single template image requires less storage space and lower computational
power. However, such approaches involve certain disadvantages, including limited perfor-
mance in real-world covariates conditions such as viewpoint changes, clothing variations,
or walking speed, due to the reliance on a single model.

Recently, sequence-based approaches [5,20,21,66,67] have been employed for gait
recognition, as they can effectively extract spatiotemporal features. For example, Gait-
Set [20] treated the silhouette sequence as a set and used multiple blocks of 2D CNNs
and 2D max-pooling layers to extract spatiotemporal features. These features were then
passed through a horizontal pyramid mapping mechanism that splits them horizontally to
obtain a stripe-based feature representation. Fan et al. [5] proposed GaitPart, which initially
utilized a part-based frame-level feature extractor to split the silhouette into several parts
and subsequently employed a micromotion capture module to obtain local spatiotemporal
features. These approaches predominantly suffer from limitations in obtaining global
representations because they consider only horizontal partition features. Conversely, Chen
and Li [66] proposed a dual-branch network, where one branch extracts multi-granularity
features from both local and global stances using a selective horizontal pyramid convolu-
tional network, while the other branch systematically investigates correlations between
neighboring silhouettes at both pixel and block levels to derive temporal features. Addi-
tionally, Uddin et al. [67] proposed a framework combining global, horizontal, and vertical
part-based feature extractors in two different pipelines: one employing 3D CNNs and
3D max-pooling layers, and the other consisting of 2D CNNs and 2D max-pooling layers,
with all features concatenated together. In particular, sequence-based approaches are gain-
ing popularity due to their effectiveness in 2D and 3D silhouette-based representations.
However, most sequence-based approaches require high computational resources, are vul-
nerable to occlusion and viewpoint variations, and are sensitive to temporal misalignment
in gait sequences. In addition, they often require complex training strategies and large
datasets. This motivates us to introduce a hybrid fusion-based framework that utilizes
GEI-based template images, requiring fewer computational resources and lower-resolution
data and offering greater robustness to covariates.

3. Proposed Framework
This paper presents a multi-model fusion-based framework for recognizing individ-

uals based on their gait features. Initially, we obtain the gait energy image (GEI) from
a gait cycle of a normalized silhouette sequence by averaging the silhouettes. Subse-
quently, five state-of-the-art deep learning models, including VGG-16 [27], ResNet-50 [28],
GoogLeNet [25], EfficientNet-B0 [29], and the vision transformer (ViT) [31], are fine-tuned
and employed to extract intricate spatiotemporal features that are crucial for recognition.
More specifically, we utilize three distinct fusion techniques: decision-level fusion (DLF),
feature-level fusion (FLF), and hybrid fusion (HF). In DLF, each model first generates
predictions for the extracted features, followed by majority voting to determine the final
decision. In contrast, FLF combines each model’s intermediate features and adds them
point-wise to make the final prediction. HF combines both strategies, where pairs of mod-
els are first fused at the feature level, followed by decision-level fusion. The proposed
framework is illustrated in Figure 2.
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Figure 2. Overview of the proposed multi-model fusion-based gait recognition framework, which
consists of three different fusion approaches: decision-level (bottom left), feature-level (bottom mid),
and hybrid (bottom right). In this framework, majority voting selects the class as the final decision
based on the maximum votes from individual models’ decisions. Feature fusion aggregates the
final features from multiple models through point-wise addition. The red lines represent the output
feature of VGG-16, blue denotes the vision transformer, green denotes ResNet-50, orange denotes
GoogLeNet, and pink denotes EfficientNet-B0.

3.1. Gait Energy Image

The gait energy image (GEI) [58] is widely featured for gait recognition models because
it effectively retains the spatiotemporal features essential for individual identification.
A GEI is obtained by averaging the normalized height and width silhouettes over the
corresponding gait cycle, where a gait cycle [68] is calculated from the first contact of one
foot with the ground to the next instance of contact with the same foot, encompassing
all movement phases during locomotion. GEIs are grayscale images, and they require
significantly fewer computational resources compared to RGB images. For a background-
subtracted, normalized binary silhouette sequence, the GEI can be computed using the
following formula:

G =
1
N

N

∑
t=1

St (1)

where N is the total number of binary images in a gait cycle, St denotes the silhouette
images at time t, and G denotes the generated GEI image. An example of silhouette
sequences and their corresponding GEIs is shown in Figure 1.



Symmetry 2025, 17, 1155 8 of 24

3.2. Framework Architecture

The proposed multi-model fusion framework aims to improve the accuracy of gait
recognition. This framework comprises four models from the CNN family, including
VGG-16, ResNet-50, GoogLeNet, EfficientNet-B0, and an attention-based model, ViT. These
models are sufficiently trained to demonstrate a correlation between extracted gait features
and respective class labels.

VGG-16 [27] is the first model utilized in the proposed framework. Although similar to
other CNN-based models, such as AlexNet [22], it features separate convolution layers and
different kernel sizes (i.e., 3 × 3). It has thirteen convolutional and three fully connected
layers (FCs), comprising a total of 16 weight layers. This network architecture is well
known for its effectiveness and simplicity, consisting of 3 × 3 filters throughout the entire
architecture. Despite its simplicity, VGG-16 has 138M parameters and performs remarkably
well on large-scale datasets for image recognition [27]. Due to its uniform design, featuring
all fixed kernel size convolution layers, it offers the advantage of capturing complex
hierarchical features, making it versatile for transfer learning. It utilizes an activation
function (i.e., rectified linear unit (ReLU)) for its convolutional layers to reduce the risk
of vanishing gradient problems. In our work, the input data (i.e., GEI) can be defined as
x ∈ RH×W×C, where (H, W) represent the image size, and C represents the total number
of channels, respectively. Then, x is fed through the VGG-16 model that gives logits (i.e.,
unnormalized scores for each class) as follows:

ylogits
VGG = VGG(x) (2)

where ylogits
VGG represents the logits of the image. Later, the argmax function is used to locate

the maximum probability of a class whose output can be represented as y f inal
VGG.

ResNet-50 [28] is a deep CNN comprising fifty layers, with the advantage of bottleneck
residual blocks, which were the basic version earlier (i.e., ResNet-18 and ResNet-34).
The architecture consists of a sequence of residual blocks that contain skip connections,
which bypass one or more layers to learn residual mappings instead of explicit mappings.
The advantage here is that it delivers proper training on the more complex network by
retaining the gradient flow during backpropagation for updating weights. ResNet-50 is
composed of convolutional layers, batch normalization, and ReLU activation, organized
into 16 bottleneck blocks. For gait image data, with a model, due to its efficacy, compactness,
and computational cost, it provides a tremendous performance in a recognition where input
x was fed through the model (i.e., ResNet-50), and it gives the logits feature as follows:

ylogits
ResNet = ResNet(x) (3)

and then the argmax function is applied to yield the final output (i.e., y f inal
ResNet).

GoogLeNet [25] is another remarkable architecture in the DL family with a more
profound architecture that is famous for its efficiency and high performance. The overall
network consists of twenty-two layers in total. What makes it different from other con-
ventional models is that the inception module allows it to extract more spatial features at
multiple scales simultaneously. Each inception module is a key innovation of GoogLeNet
and consists of multiple filters of various sizes (e.g., 1 × 1, 3 × 3, and 5 × 5), as well as
max pooling and average pooling layers. The network simultaneously captures features at
different spatial resolutions, as these filters are performed in parallel inside the same layer.
Later, instead of an FC layer, global average pooling was performed after the last inception
module to reduce the spatial dimensions, which is a key factor in reducing the total number
of parameters (i.e., approximately 5M) and addressing overfitting issues. In this work, we



Symmetry 2025, 17, 1155 9 of 24

fed the GEI (i.e., x) through the GoogLeNet model to obtain the logits feature, as shown in
the following equation:

ylogits
GNet = GNet(x) (4)

where GNet(.) is the fine-tuned GoogLeNet model, and finally, a simple argmax function
is employed for the final result, y f inal

GNet.
EfficientNet-B0 [29] is the first model in the EfficientNet group to achieve a high

accuracy percentage with a moderate number of parameters and computational cost. Its
fundamental innovation is the compound scaling strategy, which simultaneously increases
the network’s depth, width, and resolution, as opposed to scaling them incrementally. This
architecture features Mobile Inverted Bottleneck Convolutions (MBConv), which incorpo-
rate depthwise separable convolutions to reduce computational load. First, the input image
is fed through a simple convolutional layer and then a series of MBConv blocks, and finally,
it ends with a global average pooling layer. With only about 5.3M parameters, this model
further improves its learning ability with a swish activation function and a global average
pooling layer. The logic behind selecting this model is its accuracy, efficiency, and scalability.
For the input GEI image x, the EfficientNet-B0 model gives the final feature (i.e., logits)
as follows:

ylogits
ENet = ENet(x) (5)

where ENet(.) is the fine-tuned EfficientNet-B0 model, and finally, a simple argmax function
is utilized for the final outcome, y f inal

ENet.
Vision Transformer (ViT) [31] is the fifth model incorporated into this study. The ViT

architecture comprises three fundamental components: an embedding layer, a transformer
encoder, and a multi-layer perceptron (MLP). As shown in Figure 2, input image x ∈
RH×W×C was divided into 2D patches with a (P, P) resolution, where N = HW

P2 is the total
number of patches, and H, W, and C denote the height, width, and number of channels,
respectively. Later, patches are flattened and mapped into dimensions D with a trainable
linear projection that can be defined as follows:

z0 = [xclass; x1
pE; x2

pE; · · · ; xN
p E] + Epos (6)

where E ∈ R(P2·C)×D and Epos ∈ R(N+1)×D and xn
p is the n-th image patch and n ∈

{1, 2, 3..., N}. After that, the embedded images are fed through the transformer encoder.
The transformer encoder consists of L identical encoder blocks with two sub-layers in

each encoder block, namely MSA and MLP. The ℓ-th encoder layer takes the input sequence
from the previous layers, zℓ−1. First, layer normalization (LN) is performed, and then the
normalized features are fed through the MSA layer, as shown in the following formulas:

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1, . . . , L (7)

zℓ = MLP(LN(z′ℓ)) + z′ℓ, ℓ = 1, . . . , L (8)

The encoder’s last layer selects the first token in the sequence (i.e., z0
L) and uses LN to

create the picture representation r. The final recognition is performed by feeding r via a
minute MLP head, a single hidden layer with a sigmoid function. The logits ylogits

ViT are the
raw, unnormalized scores for each class, obtained through the following equation:

ylogits
ViT = LN(z0

L) (9)

Here, ylogits
ViT represents the logits (i.e., final feature), the raw output vector of class scores.

These logits are then passed through the MLP for further refinement, and the final results
(i.e., y f inal

ViT ) are produced.
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Feature-level fusion (FLF) is an approach that utilizes multiple models’ final extracted
features to enhance robustness and improve recognition accuracy by integrating features
through point-wise addition or concatenation. In our proposed framework, we conduct
point-wise addition of final features (i.e., logits) extracted from all five models: VGG-
16 [27], ViT [31], ResNet-50 [28], GoogLeNet [25], and EfficientNet-B0 [29]. The logits of
these models are ylogits

VGG , ylogits
ViT , ylogits

ResNet, ylogits
GNet , ylogits

ENet from VGG-16 [27], ViT [31], ResNet-
50 [28], GoogLeNet [25], and EfficientNet-B0 [29], respectively. As every model involves
separate output feature dimensions, we adjusted the final layers of all five models to
generate similar output dimensions, ensuring dimensional consistency across various DL
model architectures. This same output dimension enabled fusion, eliminating the need
for additional projection layers and ensuring smooth fusion processes while preserving
each model’s feature extraction capabilities. The FLF for gait recognition can be described
as follows:

ylogits
FLF = Padd(y

logits
VGG , ylogits

ViT , ylogits
ResNet, ylogits

GNet ,

ylogits
ENet )

(10)

where Padd(.) denotes the point-wise addition of the final features from ylogits
VGG , ylogits

ViT , ylogits
ResNet,

ylogits
GNet , and ylogits

ENet . In addition, ylogits
FLF denotes fused features, and the final output from this

approach is y f inal
FLF .

Decision-level fusion (DLF) represents a sophisticated multi-model fusion strategy
that integrates the outputs from various classifiers or models. This method leverages their
distinct decisions to yield an ultimate prediction through weighted or majority voting
mechanisms. In our proposed framework, we utilize the final output of each of the five fine-
tuned classifier models namely, y f inal

VGG from VGG-16 [27], y f inal
ResNet from ResNet-50 [28], y f inal

GNet

from GoogLeNet [25], y f inal
ENet from EfficientNet-B0 [29], and y f inal

ViT from ViT [31]. The DLF
can be expressed as follows:

y f inal
DLF = MV(y f inal

VGG, y f inal
ViT , y f inal

ResNet, y f inal
GNet,

y f inal
ENet)

(11)

where MV(.) represents majority voting, which takes y f inal
VGG, y f inal

ViT , y f inal
ResNet, y f inal

GNet , y f inal
ENet as

inputs and provides the final decision as y f inal
DLF .

Hybrid Fusion (HF) represents an advanced approach that integrates DLF and FLF to
mitigate their limitations, resulting in improved robustness and accuracy for applications
such as human gait recognition, image classification, and biometric identification. Hybrid
fusion operates in two phases. First, FLF integrates the salient features extracted from
multiple sources into a unified representation. These fused features are then processed
through classification or recognition pipelines. Subsequently, DLF combines the predictions
from multiple classifiers trained on the fused feature set. This method improves robustness
to input variations by integrating decisions from many models, hence ensuring greater
resilience to noise and outliers.

In our work, we employed two phases to obtain the final features from HF. Initially,
phase-1 consists of three stages; in Stage 1, we fused features from VGG-16 [27] and ViT [31]
to acquire ylogits

FLF1 , and in Stage 2 ResNet-50 [28] and GoogLeNet [25] to acquire ylogits
FLF2 and

then performed recognition to obtain the output decision from ylogits
FLF1 of D1 and from

ylogits
FLF2 of D2. In Stage 3, we evaluated the prominent output of EfficientNet-B0 [29] and its
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recognition result (i.e., y f inal
ENet), which we denote as D3. Finally, in phase-2, we utilized DLF

with these decisions (i.e., D1, D2, and D3) to derive the final output as y f inal
HF as follows:

ylogits
FLF1 = Padd(y

logits
VGG , ylogits

ViT ) (12)

ylogits
FLF2 = Padd(y

logits
ResNet, ylogits

GNet) (13)

y f inal
HF = MV(D1, D2, D3) (14)

where Padd(.) performs the pointwise addition, MV(.) performs majority voting, and y f inal
HF

is the final output from HF.

3.3. Loss Function

We employed the cross-entropy loss [69] in our multi-model fusion framework to
ensure the proper training of each model. Unlike regression-based losses such as mean
squared error (MSE), cross-entropy is explicitly designed for probabilistic models, making
it especially efficacious in multi-class recognition issues. This loss estimates the distance
between the predicted probability distribution and the original distribution, thereby pro-
moting a sharper alignment of the predicted probabilities with the ground-truth labels.
When y is the actual label, and ŷ is the predicted label, and then for multi-class recognition,
the cross-entropy loss can be defined as follows:

CSloss = −
T

∑
i=1

yi log(ŷi) (15)

Here, CSloss denotes the cross-entropy loss, T indicates the total number of classes,
and ŷi denotes the predicted probability for class i. The cross-entropy loss rises when the
predicted probability deviates from the actual class label. This promotes the model to
allocate greater probabilities to the accurate class while minimizing probabilities for the
incorrect ones.

4. Experiments and Discussions
4.1. Datasets

CASIA-B [43] is one of the widely used, publicly available gait databases. It consists
of 124 subjects, 93 females and 31 males. It comprises 11 viewing angles with 18° intervals
from 000° to 180°. There are ten sequences per subject in this dataset: six of them are nor-
mal walking sequences (i.e., NM #1-6), two of them carrying a bag (i.e., BG #1-2), and the
remaining two wearing a coat (i.e., CL #1-2). This database has 124 × 11 × 10 = 13,640 se-
quences, each comprising approximately 75 frames on average. Among these frames,
for each sequence, a single gait cycle is considered to generate a GEI, which means there
are 13,640 GEIs. During the experiments, the dataset is divided into three subsets: 80% for
training, 10% for validation, and 10% for testing, with the input normalized GEI image size
set to 128 × 128.

OU-ISIR D [44] consists of 185 subjects with 370 sequences observed from the side
view. This dataset investigates fluctuations in gait throughout several periods, specifically
how gait silhouettes of a similar phase alter throughout a sequence of periods. Based
on normalized autocorrelation (NAC), these gait sequences are clustered in two separate
groups: DBlow and DBhigh. Both groups comprise 100 subjects; DBlow has a fluctuating
walking gait sequence, whereas DBhigh has a stable walking sequence.

OU-LP [45] is one of the more extensive gait databases, comprising 4016 subjects
ranging in age from 1 to 94 years. The dataset was collected by the Institute of Scientific
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and Industrial Research (ISIR), Osaka University (OU), Japan. In our experiment, we
utilized the latest version of the OU-LP dataset (i.e., Version 2), where each subject has two
sequences, designated as A and B, and each sequence comprises four distinct observation
angles: 55°, 65°, 75°, and 85°.

4.2. Training Parameters and Test

We considered all the pre-trained versions of VGG-16 [27], ResNet-50 [28], GoogLeNet [25],
EfficientNet-B0 [29], and ViT [31] that were trained on ImageNet dataset. Later, we fine-
tuned these models on the three datasets (i.e., CASIA-B, OU-ISIR D, and OU-LP). Moreover,
we trained all the models for 50 epochs with early stopping options on the best validation
accuracy, and patience was set to 5 epochs. The input GEI dimensions were standardized
at 128 × 128 for all models to ensure an impartial evaluation, with a batch size of 32 and a
learning rate of 0.001, utilizing the Adam optimizer.

Our work utilized four separate GEI datasets, which mostly come with 128 × 128
resolution, and the pre-trained models’ default input requirements (224 × 224) [70]. We
implemented image resizing through a custom collate function, rather than modifying
the model architectures. Specifically, we employed bilinear interpolation to upscale GEI
images from 128 × 128 to 224 × 224. This approach preserves the original pre-trained
weights and architectural integrity of all models (VGG-16, ResNet-50, ViT, EfficientNet-B0,
and GoogLeNet) while ensuring compatibility with our dataset. The resizing operation is
performed dynamically during data loading, maintaining the aspect ratio and ensuring
consistent input dimensions across all models.

The experiments were conducted on a machine equipped with an NVIDIA GeForce
RTX 4090 GPU, running Ubuntu 24.04 and utilizing Python version 3.10.15. Data prepro-
cessing, including silhouette extraction and GEI generation, required approximately 1.5 h
for all the datasets. Model training was conducted over 50 epochs, with each epoch taking
approximately 2 min, resulting in a total training time of around 1.67 h. The inference
time per sample was approximately 25 ms. We evaluated the effectiveness of our proposed
framework and other existing models using the Rank-1 identification rate and the receiver
operating characteristic (ROC) curve, which indicates the trade-off between the false re-
jection rate (FRR) of genuine users and the false acceptance rate (FAR) of imposters at
varying thresholds. We also computed the equal error rate (EER), which represents the
point at which the FAR and FRR are equal and serves as a compact measure of overall per-
formance [6]. Moreover, we assessed additional classification metrics, including accuracy,
precision, recall, and F1-score [71].

4.3. Experimental Results
4.3.1. CASIA-B

The Rank-1 identification rate and equal error rate (EER) on the CASIA-B dataset
are shown in Tables 1 and 2, with the ROC curve presented in Figure 3a. ViT achieved a
Rank-1 rate of 46.81% and an EER of 12.82%, as it sometimes overlooks subtle gait cues,
such as leg swing differences or shoulder tilt, which can impact matching with the gallery
data. In contrast, GoogLeNet and EfficientNet-B0 achieved comparable Rank-1 rates of
53.62% and 69.06%, with EERs of 48.72% and 30.43%, respectively. VGG-16 and ResNet-50
obtained Rank-1 rates of 62.83% and 89.76%, with EERs of 46.20% and 3.78%, respectively,
outperforming other individual deep learning methods. Our proposed DLF, FLF, and HF
approaches achieved Rank-1 rates of 90.16%, 90.45%, and 92.07%, with corresponding EERs
of 3.02%, 3.68%, and 2.73%, significantly outperforming all standalone DL-based methods.
As HF combines both DLF and FLF strategies, it leverages the strengths of larger models,
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such as VGG-16 and ResNet-50, which are crucial for improving recognition performance
and reducing error rates.

Table 1. Average Rank-1 identification rate (%) on CASIA-B, OU-LP, OU-ISIR DBlow, and OU-ISIR
DBhigh datasets with 128 × 128 resolution of height-normalized GEIs.

Models CASIA-B OU-LP OU-ISIR DBlow OU-ISIR DBhigh

VGG-16 62.83 47.34 66.50 49.00

ViT 46.81 69.88 42.50 65.00

ResNet-50 89.76 59.96 73.00 75.00

GoogLeNet 53.62 63.44 51.00 52.00

EfficientNet-B0 69.06 64.34 63.00 64.00

DLF (ours) 90.16 71.55 86.50 91.00

FLF (ours) 90.45 77.80 93.00 90.00

Hybrid (ours) 92.07 87.14 93.50 93.00

Table 2. Equal error rate (EER) (%) on CASIA-B, OU-LP, OU-ISIR DBlow, and OU-ISIR DBhigh datasets.

Models CASIA-B OU-LP OU-ISIR DBlow OU-ISIR DBhigh

VGG-16 46.20 50.14 47.95 48.02

ViT 12.82 6.79 12.95 13.88

ResNet-50 3.78 10.71 5.13 6.01

GoogLeNet 48.72 8.56 50.46 46.04

EfficientNet-B0 30.43 6.97 37.90 32.47

DLF (ours) 3.02 6.17 3.88 1.92

FLF (ours) 3.68 5.49 1.62 1.18

Hybrid (ours) 2.73 4.08 1.94 1.41

The Rank-1 identification rate for each separate view angle shows significant im-
provement with our proposed methods. As shown in Table 3, ViT, which struggled with
subtle gait cues, achieved the lowest accuracy of 46.81%, with performance varying widely
across angles. In contrast, our proposed approaches DLF, FLF, and HF demonstrated
superior performance. The DLF approach achieved a mean recognition accuracy of 90.16%,
with impressive results at extreme angles, such as 90.32% at 0° and 84.68% at 180°. The FLF
approach further improved, reaching a mean accuracy of 90.45%, with consistently high
recognition across all angles, including 99.19% at 0°. The HF approach, combining both
DLF and FLF strategies, achieved the highest mean accuracy of 92.07%, demonstrating
the effectiveness of our fusion-based framework. Overall, our methods significantly out-
performed traditional models like VGG-16, ResNet-50, and EfficientNet-B0, which had
lower accuracies, particularly at challenging angles such as 72° and 108°, where their
performances were noticeably inconsistent.
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Table 3. Rank-1 identification rate (%) on the CASIA-B dataset with 128 × 128 resolution height-
normalized GEIs across all viewing angles.

Models 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

VGG-16 56.10 58.87 53.23 50.00 73.17 75.81 65.85 63.71 57.26 70.97 66.13 62.83

ViT 67.48 50.00 39.52 36.29 44.72 30.65 43.09 45.97 41.13 53.23 62.90 46.81

ResNet-50 88.37 95.16 88.71 82.26 90.24 87.10 90.24 90.32 84.68 94.35 95.97 89.76

GoogLeNet 61.63 62.42 30.65 54.03 50.00 42.42 61.32 59.81 63.81 52.42 51.32 53.62

EfficientNet-B0 64.88 70.48 64.03 70.48 67.32 68.06 69.76 71.29 72.10 68.06 73.23 69.06

DLF (ours) 90.32 87.10 86.29 91.13 91.87 91.94 91.87 88.71 93.55 94.35 84.68 90.16

FLF (ours) 99.19 95.97 90.32 85.48 86.99 85.48 87.80 86.29 87.10 93.55 96.77 90.45

Hybrid (ours) 93.50 91.13 90.32 92.74 91.87 86.29 94.31 92.74 93.55 91.94 94.35 92.07

In addition, the evaluation results, including the metrics accuracy, precision, recall,
and F1-score, are presented in Table 4 and Figure 4a. After fine-tuning, VGG-16 achieved
99.27% accuracy along with a 99.31% precision score. Conversely, ViT obtained an ac-
curacy of 99.12% and a precision score of 99.22%, the lowest among the five models,
likely due to insufficient inductive bias (e.g., lack of location and translation invariance).
We observed improvements across all evaluation metrics for ResNet-50, which achieved
99.56%, 99.64%, 99.56%, and 99.55%, respectively, for accuracy, precision, recall, and F1-
score. The lightweight GoogLeNet model obtained 99.34% accuracy, while EfficientNet-B0
achieved 99.63%, the highest among the five models. As EfficientNet-B0 uses MBConv
blocks with depthwise separable convolutions, it requires less computational power while
preserving representational capacity. In contrast, our proposed DLF attained 99.85% accu-
racy and 99.88% precision, exceeding all fine-tuned DL models. Furthermore, FLF and HF
achieved perfect 100.00% scores across all four metrics, demonstrating that our proposed
fusion-based framework can extract detailed spatiotemporal features. DLF demonstrated
slightly lower accuracy than FLF and HF, as it primarily relies on majority decisions, rather
than confidence scores; consequently, models like ViT and VGG-16, which obtained com-
paratively lower accuracy such as 99.12% and 99.27%, respectively, can negatively impact
DLF performance.

Table 4. Evaluation scores on the CASIA-B dataset with 128 × 128 resolution of height-normalized GEIs.

Models Accuracy [%] Precision [%] Recall [%] F1-Score [%]

VGG-16 99.27 99.31 99.27 99.24

ViT 99.12 99.22 99.12 99.10

ResNet-50 99.56 99.64 99.56 99.55

GoogLeNet 99.34 99.36 99.34 99.32

EfficientNet-B0 99.63 99.67 99.63 99.64

DLF (ours) 99.85 99.88 99.85 99.85

FLF (ours) 100.00 100.00 100.00 100.00

HF (ours) 100.00 100.00 100.00 100.00
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(a) CASIA-B (b) OU-LP

(c) OU-ISIR DBlow (d) OU-ISIR DBhigh

Figure 3. ROC curves for the proposed fusion framework and individual models on the CASIA-B,
OU-LP OU-ISIR DBlow, and OU-ISIR DBhigh. The curves plot the false rejection rate (FRR) against the
false acceptance rate (FAR), demonstrating each system’s ability to distinguish between genuine and
imposter samples.

(a) CASIA-B (b) OU-LP (c) OU-ISIR DBlow (d) OU-ISIR DBhigh 
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Figure 4. Comparison of the proposed fusion-based method with fine-tuned deep learning (DL)
models’ (i.e., VGG-16, ViT, ResNet-50, GoogLeNet, and EfficientNet-B0) performances on the CASIA-
B, OU-ISIR DBlow and DBhigh, and OU-LP datasets.

4.3.2. OU-LP

The Rank-1 identification rate and EER on the OU-LP dataset are shown in
Tables 1 and 2, along with the ROC curve in Figure 3b. We can observe that our pro-
posed methods significantly outperform other methods. For example, VGG-16, ResNet-50,
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and EfficientNet-B0 achieved Rank-1 accuracies of 47.34%, 59.96%, and 64.34%, respec-
tively, while ViT obtained 69.88%, the highest among these traditional models. In contrast,
our DLF approach achieved a Rank-1 rate of 71.55%, and FLF and HF further improved
accuracy, with a Rank-1 identification rate of 77.80% and 87.14%, respectively. In terms of
EER, our methods also performed better than traditional models, with Hybrid achieving
the lowest EER of 4.08%, outperforming all other models. FLF and DLF followed closely,
achieving EERs of 5.49% and 6.17%, respectively. These results highlight the effectiveness
of our proposed multi-model fusion strategies in improving both recognition accuracy and
reducing error rates on the challenging OU-LP dataset.

In addition, the evaluation results, including the metrics accuracy, precision, recall,
and F1-score, are presented in Table 5, and in Figure 4b, we can observe that VGG-16
obtained an accuracy of 99.64%, along with a precision of 99.45%. ViT works by splitting
the images into patches and then using an encoder to extract the feature, and it obtained
99.58%, 99.40%, 99.58%, and 99.46% accuracy, precision, recall, and F-1 score, respectively.
However, ResNet-50 obtained 99.95% accuracy and 99.93% F-1 score, making it superior to
all the fine-tuned models. However, EfficientNet-B0 failed to properly obtain the feature in
more extensive data and obtained only 98.93% accuracy. Another probable reason is that
EfficientNet-B0 involves fewer parameters than others, and the OU-LP dataset has higher
intra-class and lower inter-class variance, confusing the model in correctly predicting.
Similarly, GoogLeNet achieved a 99.06% accuracy and a 98.60% precision score because of
its lightweight design, which is insufficient for strong long-range feature modeling with
larger datasets. In contrast, our proposed DLF, FLF, and HF methods all achieved 99.97%
accuracy, 99.96% precision, 99.97% recall, and a 99.97% F1-score. This demonstrates that
our fusion-based approaches consistently outperform individual models. Among the three
fusion-based approaches, only HF showed stable results across all three datasets.

Table 5. Evaluation scores on the OU-LP dataset with 128 × 128 resolution of height-normalized GEIs.

Models Accuracy [%] Precision [%] Recall [%] F1-Score [%]

VGG-16 99.64 99.45 99.64 99.51

ViT 99.58 99.40 99.58 99.46

ResNet-50 99.95 99.92 99.95 99.93

GoogLeNet 99.06 98.60 99.06 98.75

EfficientNet-B0 98.93 98.40 98.93 98.58

DLF (ours) 99.97 99.96 99.97 99.97

FLF (ours) 99.97 99.96 99.97 99.97

HF (ours) 99.97 99.96 99.97 99.97

4.3.3. OU-ISIR D

The Rank-1 identification rate and EER for the OU-ISIR DBlow and DBhigh datasets
are shown in Tables 1 and 2. As expected, all fine-tuned models performed better on
DBhigh, which contains more consistent walking sequences, compared to DBlow, with more
varied walking patterns. For instance, VGG-16 achieved a Rank-1 rate of 49.00% on
DBhigh and 66.50% on DBlow, while ViT obtained 65.00% on DBhigh and 42.50% on DBlow.
ResNet-50 outperformed all other models with a Rank-1 rate of 75.00% on DBhigh and
73.00% on DBlow, showcasing its robustness with residual connections. EfficientNet-B0 and
GoogLeNet showed lower performance on DBlow, with Rank-1 accuracies of 63.00% and
51.00%, respectively. Our proposed DLF, FLF, and HF methods achieved Rank-1 accuracies
of 91.00%, 90.00%, and 93.00% on DBhigh, and 86.50%, 93.00%, and 93.50% on DBlow,
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respectively, demonstrating the effectiveness and reliability of our fusion-based approaches.
Among these, HF outperformed FLF, showing the most stability across all datasets.

In terms of other evaluation metrics such as accuracy, precision, recall, and F1-score,
which are presented in Table 6 and Figure 4c,d, ResNet-50 achieved the highest performance
across all metrics, with 100.00% accuracy, precision, recall, and F1-score on DBhigh. VGG-16
also performed well, with an accuracy of 99.63% on DBhigh but slightly lower results on
DBlow. ViT showed improved performance on DBhigh, achieving an accuracy of 99.00%
compared to 98.00% on DBlow. In contrast, GoogLeNet and EfficientNet-B0 demonstrated
lower performance on DBlow, as they struggled with the dataset’s variability. Our fusion-
based methods (DLF, FLF, and HF) consistently outperformed the individual models,
achieving perfect scores of 100.00% across all metrics on DBhigh, with HF providing the
most stable results across both datasets. FLF showed a slightly reduced accuracy of 99.75%
on DBlow, likely due to redundancy or conflicting features extracted via individual models,
which may have affected its performance in the noisy dataset.

Table 6. Evaluation scores on the OU-ISIR DBlow and DBhigh dataset with 128 × 128 resolution of
height-normalized GEIs.

Models
OU-ISIR DBlow OU-ISIR DBhigh

Accuracy
[%]

Precision
[%] Recall [%] F1-Score

[%]
Accuracy

[%]
Precision

[%] Recall [%] F1-Score
[%]

VGG-16 99.50 99.67 99.50 99.47 99.63 99.67 99.50 99.58

ViT 98.00 98.67 98.00 97.87 99.00 99.33 99.00 98.93

ResNet-50 99.67 99.61 99.83 99.47 100.00 100.00 100.00 100.00

GoogLeNet 99.50 99.67 99.50 99.47 99.50 99.67 99.50 99.47

EfficientNet-B0 98.00 98.67 98.00 97.87 98.50 99.00 98.50 98.40

DLF (ours) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

FLF (ours) 99.75 99.67 99.60 99.77 100.00 100.00 100.00 100.00

HF (ours) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

4.4. Comparison with Previous Studies

The performance of our proposed multi-model fusion-based approach is compared
with existing DL-based methods, including GEINet [72], Deep CNN [73], CNN [74], CNN-
2 [75], and Deep CNN-2 [76]. For a fair comparison, these methods were also trained under
the same settings: 80% for training, 10% for validation, and 10% for testing. The input GEI
image size was consistent across all models, set at 128 × 128 pixels for both height and
width. The evaluation results, including accuracy, are presented in Table 7 and Figure 5. We
can observe that GEINet [72] performs well, achieving an accuracy of 97.65%, while Deep
CNN [73] obtained an accuracy of 25.68%, and Deep CNN-2 [76] achieved an accuracy
of 86.17% on the CASIA-B dataset. Conversely, there is a significant improvement in
CNN [74] and CNN-2 [75], which achieved accuracies of 98.09% and 94.63%, respectively.
In contrast, our proposed DLF, FLF, and HF methods achieved the highest accuracies of
99.85%, 100.00%, and 100.00%, respectively. This means that DLF/FLF/HF surpass GEINet
by 2.20%/2.35%/2.35%. We believe that the multi-model fusion-based approach can
extract in-depth features and has the potential to handle multi-view and multi-sequence
datasets like CASIA-B, which includes GEIs from 11 different viewing angles and 10
diverse sequences.

Regarding the comparison on the OU-LP dataset, the experimental results for the
proposed multi-model fusion-based approach and existing methods are presented in Table 7
and Figure 5b. As shown, most existing methods struggle to extract accurate gait features,
leading to lower accuracy compared to our proposed fusion-based approach. For example,
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Deep CNN [73] achieved an accuracy of 5.60%, while CNN and Deep CNN-2 [76] obtained
48.32% and 45.52%, respectively. The low accuracy can be attributed to several factors.
First, the OU-LP dataset comprises 4016 subjects, which presents a significant large-scale
classification challenge. Second, aggressive max pooling operations and relatively small
feature maps (i.e., down from 136 × 136 to 5 × 5) likely result in a considerable loss of
crucial spatial information, which is essential for capturing fine-grained details in gait
recognition. Finally, the limited number of parameters (i.e., 20,932 trainable parameters)
is insufficient for capturing the subtle inter-class differences among the 4016 subjects.
In contrast, GEINet [72] achieved better accuracy than the other methods, attaining an
accuracy of 90.74%. However, we can observe that our proposed fusion-based approaches,
DLF, FLF, and HF, demonstrated a superior accuracy of 99.97%, highlighting that our fusion
approaches can effectively extract intricate features from a large-scale OU-LP dataset.

In addition, we can see that GEINet [72] achieved a higher accuracy than both Deep
CNN [73] and Deep CNN-2 [76], with an accuracy of 99.65% on the OU-ISIR DBlow dataset.
CNN [74] and CNN-2 [75] significantly improved accuracy, reaching 99.37% and 96.73%,
respectively. However, our proposed approach marginally improved accuracy for both
DLF and HF, achieving 100.00%. FLF obtained 99.75% accuracy due to the impact of feature
fusion, as most models struggled to capture spatiotemporal features because the OU-ISIR
DBlow dataset contains fluctuating data. Moreover, for the OU-ISIR DBhigh dataset, our
proposed DLF, FLF, and HF approaches surpassed GEINet [72], Deep CNN [73], and Deep
CNN-2 [76] by 0.07%, 12.30%, and 3.82%, respectively. Furthermore, we can observe that
the fusion-based approaches surpassed CNN [74] by 0.35% and CNN-2 [76] by 10.01%.

Table 7. Comparison of accuracy scores (%) on CASIA-B, OU-LP, OU-ISIR DBlow, and OU-ISIR DBhigh
datasets with existing established deep learning-based approaches.

Models
Accuracy [%]

CASIA-B OU-LP OU-ISIR DBlow OU-ISIR DBhigh

GEINet [72] 97.65 90.74 99.65 99.93

Deep CNN [73] 25.68 5.60 83.81 87.70

CNN [74] 98.09 89.17 99.37 99.65

CNN-2 [75] 94.63 48.32 96.73 89.99

Deep CNN-2 [76] 86.17 45.52 95.21 96.18

DLF (ours) 99.85 99.97 100.00 100.00

FLF (ours) 100.00 99.97 99.75 100.00

HF (ours) 100.00 99.97 100.00 100.00

(a) CASIA-B (b) OU-LP (c) OU-ISIR DBlow (d) OU-ISIR DBhigh 
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Figure 5. Comparison of the proposed fusion-based method with existing established deep learning
(DL) models’ performances on the CASIA-B, OU-ISIR DBlow and DBhigh, and OU-LP datasets.
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4.5. Discussions

Existing fusion approaches, such as decision-level fusion (DLF), feature-level fusion
(FLF), produce outputs based on simple majority voting, feature concatenation, or point-
wise addition. In contrast, hybrid fusion (HF) introduces several key techniques that
differentiate it from these traditional fusion strategies. HF combines the strengths of both
DLF and FLF, minimizing the risk of bias that could affect the output. To the best of our
knowledge, exploring a hierarchical fusion strategy for gait recognition has not been stud-
ied before; we propose a novel parallel three-stage fusion architecture. This architecture
integrates FLF in the first stages, followed by DLF in the final stage, as shown in Figure 2.
Moreover, our framework incorporates diverse architectural models, including five dif-
ferent DL-based models: VGG-16, ViT, ResNet-50, GoogLeNet, and EfficientNet-B0. Each
model represents distinct feature representations, where VGG-16, ResNet-50, GoogLeNet,
and EfficientNet-B0 represent convolutional-based features, while ViT focuses on attention-
based features. As a result, we observe that, in most cases, the HF approach outperforms
existing fusion techniques.

Regarding the CASIA-B and OU-LP datasets, the Rank-1 and EER, shown in
Tables 1 and 2, demonstrate that HF outperforms all individual models. On the CASIA-B
dataset, HF achieved an impressive Rank-1 rate of 90.67% and a low EER of 2.73%. Sim-
ilarly, on the OU-LP dataset, HF achieved a perfect accuracy of 99.97% with an EER of
4.08%. Compared to models such as VGG-16 for CASIA-B and OU-LP, as well as ResNet-50,
HF consistently provides better performance across all evaluation metrics. By combining
DLF and FLF, HF minimises bias and captures more intricate features, making it ideal for
large-scale, diverse datasets such as CASIA-B and OU-LP.

4.6. Ablation Study

This section presents ablation experiments on the CASIA-B dataset to determine the
optimal number and combination of models for our proposed HF strategy.

4.6.1. Impact of Number of Models Used in Fusion

In the proposed multi-model fusion-based method, selecting the optimal number of
models is crucial, as variations in the selected models can affect accuracy. As demonstrated
in Table 8, when using two models, a single fusion approach (i.e., FLF) achieves an accuracy
of 99.78%. When three models are used, both DLF and FLF are employed, resulting in an
accuracy of 99.85%. With four models, both FLF and HF achieve an accuracy of 99.93%.
Finally, when all five models are considered, both FLF and HF achieve perfect accuracy
(i.e., 100.00%), while DLF achieves a comparable accuracy of 99.85%. This decrease in DLF
accuracy is due to the influence of individual models making incorrect predictions, which,
through majority voting, may lead to erroneous final predictions.

Table 8. Performance comparisons of the ablation study due to the impact of several models (i.e.,
in numbers) on our fusion approaches. Here, “-” denotes the absence of accuracy in that approach
because of fulfilling the criteria for the correct number of models to apply that fusion approach.

Exp. No. No. of Models
Accuracy [%]

DLF FLF HF

1 2 - 99.78

2 3 99.85 99.85 -

3 4 - 99.93 99.93

4 5 99.85 100.00 100.00
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4.6.2. Impact of Different Models Combination in Hybrid Fusion

Hybrid fusion consists of decision-level fusion (DLF) and feature-level fusion (FLF),
where models initially perform FLF followed by DLF. Finally, all individual decisions are
considered for the final prediction, similar to the majority voting mechanism. As shown
in Table 9, we considered possible combinations of the selected models in HF, involving
three stages. Specifically, stages 1 and 2 perform FLF and generate initial decisions (i.e., D1
and D2); in stage 3, a single model makes its decision (i.e., D3). Finally, all intermediate
decisions are aggregated by DLF, with HF providing the final prediction. For the first three
combinations, as shown in Table 9 (i.e., Exp. No. 1-3), HF achieved slightly lower accuracy,
which are 99.85%, 99.78%, and 99.71%, respectively, due to weaker model combinations.
However, HF attained an accuracy of 100.00% in the remaining experiments.

Table 9. Performance comparisons of the ablation study due to different combinations in hybrid
fusion (HF). Here, Stage 1, Stage 2, and Stage 3 perform feature-level fusion and give decision (D1),
feature-level fusion and give decision (D2), and single model evaluation (D3). In the Final Fusion
(i.e., HF), decision-level fusion is employed on D1, D2, and D3.

Exp. No. Stage 1 (FLF) Stage 2 (FLF) Stage 3 (Single Model) Final Fusion (HF) Accuracy
[%]

1 VGG-16 + ViT ResNet-50 + GoogLeNet) EfficientNet-B0 DLF (D1, D2, D3) 99.85

2 VGG-16 + ResNet-50 ViT + GoogLeNet EfficientNet-B0 DLF (D1, D2, D3) 99.78

3 VGG-16 + GoogLeNet ViT + ResNet-50) EfficientNet-B0 DLF (D1, D2, D3) 99.71

4 VGG-16 + EfficientNet-B0 ViT + ResNet-50 GoogLeNet DLF (D1, D2, D3) 100.00

5 ViT + ResNet-50 VGG-16 + GoogLeNet EfficientNet-B0 DLF (D1, D2, D3) 100.00

6 ViT + GoogLeNet VGG-16 + ResNet-50 EfficientNet-B0 DLF (D1, D2, D3) 100.00

7 ViT + EfficientNet-B0 VGG-16 + ResNet-50 GoogLeNet DLF (D1, D2, D3) 100.00

8 ResNet-50 + GoogLeNet VGG-16 + ViT EfficientNet-B0 DLF (D1, D2, D3) 100.00

9 ResNet-50 + EfficientNet-B0 VGG-16 + ViT GoogLeNet DLF (D1, D2, D3) 100.00

10 GoogLeNet + EfficientNet-B0 VGG-16 + ViT ResNet-50 DLF (D1, D2, D3) 100.00

Regarding Exp. No. 4-10, we observe that our proposed HF achieved a perfect ac-
curacy of 100.00%. These combinations paired a CNN and a ViT-based model in both
Stage 1 and Stage 2 for feature-level fusion, ensuring robust local fine-grained feature
extraction, as well as global context modeling and long-range dependencies due to se-
quential feature representation using the attention-based model ViT. Moreover, including
lightweight models like EfficientNet-B0 or GoogLeNet in Stage 3 ensured efficiency and
architectural diversity for the final ensemble. As a result, these experiments (Exp. No. 4–10)
consistently achieved an accuracy of 100.00%, validating both the theoretical hypothesis
and the empirical performance gains.

5. Conclusions
This paper has proposed a multi-model fusion-based gait recognition framework that

leverages the strengths of multiple state-of-the-art deep learning models. Specifically, we
employed VGG-16, ResNet-50, ViT, GoogLeNet, and EfficientNet-B0, each contributing
unique characteristics to the framework. Four of these models (e.g., VGG-16, ResNet-50,
GoogLeNet, and EfficientNet-B0) belong to the family of convolutional neural networks
(CNNs), while ViT is an attention-based architecture.

To enhance gait recognition accuracy, we introduced three separate fusion approaches:
decision-level fusion, feature-level fusion, and hybrid fusion. Decision-level fusion operates
by applying majority voting in an ensemble manner, considering the predictions from all
five models. Feature-level fusion fused the feature representations extracted by each model
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to form a comprehensive feature representation for recognition. Hybrid fusion combines the
benefits of both decision-level and feature-level fusion, resulting in a robust framework that
effectively exploits the complementary strengths of the models. The framework leverages
the strengths of multiple models by incorporating feature and decision-level information,
resulting in superior accuracy across different benchmarks.
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