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Abstract—Energy efficiency, particularly in Heating, Ventila-
tion, and Air Conditioning (HVAC) systems, is a critical challenge
in modern building management due to the increasing energy
demands and environmental impacts. This paper focuses on
developing optimized object detection models using machine
vision for occupancy detection in office environments, aiming to
improve HVAC efficiency. The primary objective is to compare
three models—YOLOv8n, YOLOv9c, and YOLOv10n—against
the Faster R-CNN baseline, emphasizing detection speed, com-
putational efficiency, and small object detection. Data collection
involved creating a custom dataset of 1,728 images from office
environments, annotated with eight object classes, including
persons and office devices. Preprocessing techniques such as
grayscale conversion, image resizing, and augmentation improved
the model’s ability to detect objects under various conditions,
including occlusion and varied camera angles. The models were
evaluated based on mAP@50, mAP@50-95, and detection speed.
YOLOv9c outperformed Faster R-CNN in speed and accuracy,
achieving a mAP@50 of 88.0% and mAP@50-95 of 59.8%,
making it the most balanced model. YOLOv8n demonstrated
the fastest detection speed, ideal for real-time applications, while
YOLOv10n, though less accurate, provided a strong trade-off
between speed and precision. Despite these successes, challenges
remain, particularly in small object detection and dataset size.
Future work includes expanding the dataset to 100,000 images,
improving detection of smaller objects, and integrating the object
detection models into real-time HVAC control systems. Moreover,
deployment on edge devices, transfer learning, and integration
with Building Management Systems (BMS) for dynamic HVAC
control represent promising areas for future research.

Index Terms—Occupancy Detection, HVAC, YOLO, Energy
Efficiency, Computer Vision

I. INTRODUCTION

Energy efficiency is a significant challenge in today’s
world due to the growing global demand for energy and
the associated environmental impact. Buildings are among
the largest energy consumers in the U.S., with significant
energy demand driven by their heating, ventilation, and air

conditioning (HVAC) systems. In 2018, HVAC systems ac-
counted for nearly 50% of the total electricity consumption
in buildings across the country [1]. This high energy usage
results from the need to maintain comfortable indoor climates,
in varying weather conditions. Additionally, energy is wasted
in large indoor areas due to centralized air conditioning,
irrespective of the presence of occupants. With millions of
residential, commercial, and industrial buildings relying on
energy-intensive HVAC systems, this sector plays a major role
in the overall energy footprint. Improving the efficiency of
HVAC systems and adopting smarter building technologies
could significantly reduce energy consumption, lower oper-
ational costs, and contribute to environmental sustainability
by reducing greenhouse gas emissions. One way to reduce
the energy consumption of HVAC is by controlling HVAC
units via demand-response control systems. Machine vision
and occupancy detection offer innovative solutions to reduce
energy consumption in buildings, by optimizing HVAC system
usage. By using edge technology equipped with cameras
and machine vision technology, systems can detect real-time
occupancy patterns in buildings, identifying when and where
spaces are in use. This allows HVAC systems to adjust heating,
cooling, and ventilation dynamically, supplying energy only
to occupied areas and reducing waste in unoccupied ones.
Accurate occupancy detection can be achieved by using ma-
chine vision [2]. RGB images provide rich visual data that
can accurately identify occupants, differentiate between people
and objects, and track movement within a space. This allows
systems to make real-time adjustments to HVAC based on
actual usage, reducing energy waste. Additionally, machine
vision can work without requiring invasive or intrusive sensors
on individuals, preserving privacy while maintaining function-
ality. Using the Internet of Things (IoT) with Edge Computing
further enhances privacy, by allowing the images gathered to
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be processed on-site rather than sending the raw data to a
cloud server. This also reduces system latency and computing
resource requirements. In this work, we will develop low-
cost IoT-based solutions to optimize energy consumption in
office environments by learning about environmental changes
using sensors and image processing on edge computing de-
vices to automate HVAC operations in real-time. However,
this paper focuses on accurate occupancy detection using
vision-based algorithms to estimate the number of people and
other equipment in an indoor space. By acquiring reliable
information on such objects, the next step is developing edge-
based solutions for automatically adjusting the heating and
cooling requirements of an indoor space while maintaining the
thermal comfort of an environment. Such an edge- computing-
based solution to energy conservation for the growing HVAC
industry will help combat climate change and achieve millen-
nium development goals. The rest of the paper is organized
as follows. Section II contains the literature review. Section
III explains the methodology from data collection to model
evaluation. Section IV contains the results. Section V contains
the conclusions and future work.

II. RELATED WORK

Previous work on building occupancy estimation has used
motion sensors [3,4,5], Infrared Proximity Sensors (PIR) [6],
CO2 concentration sensors [7] and thermal images [8,9,10].
These methods had limitations such as latency, false detection
and missing static objects or occupants [11]. Previous machine
vision methods had limitations such as high computational
loads, occlusion issues, small object detection, lighting issues,
camera placement issues and system generalisation. [12,13].
This paper explores what data is available to create a model
that can overcome these limitations.

III. METHODOLOGY

The methodology of this study includes data collection,
preprocessing, model development, and evaluation to create
and test optimized object detection models for occupancy
detection.

A. Data Collection

A custom dataset was created to capture real-world office
settings. Videos from sources like Pixabay provided diverse
office layouts and lighting. Frames were extracted at 1 fps from
16 videos, yielding 1,728 images with eight object classes:
person, cell phone, printer, mouse, computer, laptop, keyboard,
and tablet. This ensured detection of occupants and heat-
generating devices.

B. Data Pre-processing

Images were preprocessed using Roboflow for annotation,
augmentation, and standardization. Key steps included:

• Image Resizing: Standardizing images to 640x640 pix-
els.

• Cropping and Tiling: Cropping each image by 25-75%
and arranging into a 2x2 grid to emphasize areas of
interest.

• Grayscale Conversion: Reducing computational load
without affecting detection quality.

• Augmentation: Adding variety through flips, noise injec-
tion, and bounding box rotation.

C. Model Development

Three YOLO models (YOLOv8n, YOLOv9c, YOLOv10n)
were developed and trained alongside Faster R-CNN as a
baseline.

• Faster R-CNN: Used as a baseline model for comparison
purposes. Faster R-CNN has a high accuracy but a slow
detection time.

• YOLOv8n: Prioritized for speed with lightweight archi-
tecture and minimal parameters. Suited for edge device
deployment and real time object detection.

• YOLOv9c: Focused on balancing speed and accuracy,
making it ideal for scenarios requiring a balance between
performance and computational load.

• YOLOv10n: Targeted at scenarios where higher speed is
critical, though it sacrifices some detection accuracy.

Training Setup: Training took place on Google Colab using
GPU resources, with models trained for 100 epochs (YOLO
models) and 300 epochs (R-CNN).

D. Model Evaluation

Models were evaluated for precision, accuracy, speed, and
computational efficiency.

• mAP evaluation: Evaluated at mAP@50 and mAP@50-
95 for detection accuracy under various conditions.

• Precision and Recall: Precision assessed true positive
accuracy, while recall indicated the capture of actual
positives, critical for small/occluded objects.

• F1-Score: Balanced metric combining precision and re-
call.

• Detection Speed: Measured in ms/image to ensure suit-
ability for real-time applications.

• Computational Load: Assessed model size, GPU mem-
ory use, and edge device compatibility for efficient de-
ployment on low-power devices.

IV. EXPERIMENTAL RESULTS

The experiment results highlight the performance of dif-
ferent object detection models, including Faster R-CNN and
multiple versions of YOLO (YOLO V8n, YOLO V9c, and
YOLO V10n), in detecting occupancy from office environ-
ments. These models were evaluated on a created dataset to
measure their effectiveness in human detection under varying
conditions.

A. Dataset Description

The dataset consists of 1728 images from various office
settings, with many possible classes for object recognition.
The images were extracted at 1fps from 16 videos which
were found on free websites like Pixabay. Afterwards, the
images were manually annotated, and 8 classes were defined.
The 8 classes in this dataset are person, cell phone, printer,
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mouse, computer, laptop, keyboard and tablet. The images then
were resized to 640x640 followed by a static crop of 25%-
75%. Greyscale was applied, and the images were arranged
in a 2x2 grid (2 rows and 2 columns). After prepossessing
and data augmentation, the dataset was split into training,
validation and testing. The dataset was saved in COCO and
YOLO annotation format to finally be trained on the selected
models.Several object detection models such as Faster R-
CNN and different versions of YOLO were implemented. The
following subsection discusses the results of each model.

B. Model Evaluation

Faster R-CNN (Baseline): Fig.1 shows the training progres-
sion for the Faster R-CNN model. In this figure, the mean
average precision (mAP@50) and mAP@50-95 metrics over
the training epochs are displayed. The results indicate an
mAP@50 of 87.4% and an mAP@50-95 of 60%. The graph
shows a steady increase in precision during the early epochs,
followed by a plateau in the later epochs, suggesting that the
model converged as training progressed. Fig.2 shows the train-
ing performance of Faster R-CNN. It tracks loss functions such
as train/box loss and train/classification loss, both of which,
show a downward trend, indicating improvements in bounding
box prediction and classification accuracy. Validation metrics
fluctuate more but follow a downward trend, hinting at slight
overfitting on unseen data. Fig.3 shows the inference on unseen
data. The model accurately detected 3 occluded people and 1
laptop, but did not detect the other 4 people. Inference time
was 200ms.

Fig. 1. Mean Average Precision (mAP) for Faster R-CNN

Fig. 3. Inference Faster R-CNN

Fig. 2. Training Visualization for Faster R-CNN

YOLOv8n Model:

• mAP@50: 87.2%
• mAP@50-95: 59.4%

Fig.4 shows a sharp decline in training losses early on, with
steady improvements in precision and recall throughout the
training process. By around 100 epochs both mAP@50 and
mAP@50-95 metrics stabilize, signalling model convergence.
The precision-recall curve for YOLOv8n in Fig.5 shows
varying performance across object classes. The cell phone
class performed best with a precision of 0.988, while the tablet
class had the lowest precision at 0.761, indicating the model’s
difficulty in distinguishing tablets from similar objects. Fig.7
shows the YOLO V8 Nano model’s predictions on a test
set. The model successfully detects and labels various objects
such as ”person,” ”laptop,” ”tablet,” and ”cell phone.” Each
object is enclosed in a bounding box with a confidence score.
The model correctly identifies multiple instances of people
and laptops, with confidence scores ranging from 0.6 to 1.0.
For instance, it detects a ”person” with 0.9 confidence in the
centre and multiple ”laptops” with confidence as high as 1.0.
However, it seems to struggle with ”tablet” and ”cell phone”
detections, with confidence scores as low as 0.3 to 0.5. This
indicates the model is good at detecting larger, more distinctive
objects but faces challenges with smaller or more similar-
looking items like tablets and cell phones.

Fig. 4. Training Visualization for YOLO V8
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Fig. 5. Precision and Recall Curve YOLO V8 Nano

Fig. 6. YOLO V8 Nano Prediction on Test Data

YOLOv9c Model:
• mAP@50: 88.0%
• mAP@50-95: 59.8%
The training visualization of YOLOv9c in Fig.8 shows

consistent improvements in training losses and evaluation
metrics. The mAP@50 and mAP@50-95 metrics show sig-
nificant growth over the epochs with precision nearing 0.88
and recall above 0.75, indicating strong performance in object
detection. Fig.9, the precision-recall curve for YOLOv9c,
indicates high precision for cell phone detection (0.968),
while tablet detection is less precise at 0.798. The overall
performance is strong across most object categories, with
an average precision of 0.874 mAP@50. Fig.11 shows the
predictions made by YOLOv9c on a test dataset. The model
correctly identifies objects such as ”Computer,” ”Person,”
”Cell Phone,” and ”Laptop,” with confidence scores ranging
from 0.8 to 1.0. For example, multiple ”Computer” instances
are detected with high confidence (0.9), as well as ”Person”
and ”Laptop” instances with confidence levels as high as 1.0
and 0.9. The ”Cell Phone” class is identified with confidence

scores around 0.8, indicating reasonably accurate detection.
Overall, YOLOv9c demonstrates strong detection capabilities,
with consistently high confidence scores across most objects,
though occasional low-confidence detections (e.g., ”Laptop”
at 0.4) indicate the potential for further fine-tuning to improve
recognition of specific items.

Fig. 7. Training Visualization of YOLOv9c

Fig. 8. Precision and Recall curve of YOLOv9c

Fig. 9. Prediction of YOLOv9c on Test Data
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YOLOv10n Model:
• mAP@50: 81.6%
• mAP@50-95: 54.5%

The training visualization for YOLOv10n in Fig.12 demon-
strates similar trends in loss reduction as the model progresses
through training. Precision and recall improve consistently,
though the performance does not match that of YOLOv9c,
particularly in detecting smaller or occluded objects. The
precision-recall curve for YOLOv10n in Fig.13 shows weaker
performance for tablet detection, with a precision of 0.679.
The model achieves better results for larger objects like per-
sons and computers, with precision scores of 0.862 and 0.853,
respectively. In Fig.15 YOLOv10n correctly detects and labels
objects such as ”Computer,” ”Cell Phone,” and ”Person.” The
confidence scores for these predictions range from 0.3 to 1.0.
Notably, the model detects a ”Computer” with high confidence
(up to 1.0 in several instances) and consistently identifies
”Person” with confidence ranging from 0.5 to 1.0. However, it
struggles to identify the ”Cell Phone,” with confidence scores
as low as 0.4. This suggests that while YOLOv10n is effective
at detecting larger objects like ”Computer” and ”Person,” it
faces challenges when detecting smaller or less distinct objects
like ”Cell Phone,” leading to lower confidence scores in those
instances.

Fig. 10. Training Visualization of YOLOv10n

Fig. 11. Precision and Recall of YOLOv10n

Fig. 12. Prediction for YOLOv10n on Test Data

C. Comparison of All Models

The performance of four models—Faster R-CNN, YOLO
V8n, YOLO V9c, and YOLO V10n—was compared across
various metrics, including mean average precision (mAP),
recall, precision, F1 score, model parameters, and detection
speed. The results are presented in Tables I, II, and III. As
shown in Table I, the YOLO V9c model achieved the highest
mAP@50 score of 88% closely followed by Faster R-CNN
with 87.4% and YOLO V8n with 87.2%Ḣowever, YOLO
V10n showed a lower performance, with an mAP@50 score
of 81.6%Ḟor the more stringent mAP@50-95 metric, Faster R-
CNN performed the best with 60% followed by YOLO V9c at
59.8% and YOLO V8n at 59.4%ẎOLO V10n trailed behind
with 54.5%Ṫhese results suggest that while YOLO models,
particularly YOLO V9c, excel at higher precision (mAP@50),
Faster R-CNN provides more consistent performance across
varying IoU thresholds (mAP@50-95). In terms of recall and

TABLE I
COMPARISON OF MAP OF ALL FOUR MODELS

Model mAP@50 mAP@50-95
Faster R-CNN 87.4 60

YOLO V8n 87.2 59.4
YOLO V9c 88 59.8

YOLO V10n 81.6 54.5

precision (Table II), Faster R-CNN and YOLO V8n show
identical scores, both achieving a recall of 0.86 and precision
of 0.85, resulting in an F1 score of 0.855. YOLO V9c, while
exhibiting the highest precision (0.89), had a lower recall
(0.80), leading to a slightly lower F1 score of 0.84. YOLO
V10n performed equally in both recall and precision, with a
score of 0.81, resulting in a balanced F1 score of 0.81. These
results suggest that YOLO V9c tends to favor precision over
recall, while Faster R-CNN and YOLO V8n maintain a good
balance between both metrics.

The number of parameters and detection time for each
model are compared in Table III. Faster R-CNN, with 42 mil-
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TABLE II
EVALUATION METRICS OF ALL FOUR MODELS

Model Recall Precision F1 Score
Faster R-CNN 0.86 0.85 0.855

YOLO V8n 0.86 0.85 0.855
YOLO V9c 0.80 0.89 0.84

YOLO V10n 0.81 0.81 0.81

lion parameters, is by far the heaviest model, and its detection
time ranges between 150-250 ms. In contrast, YOLO V8n,
with only 7 million parameters, is the lightest model, achieving
the fastest detection speed between 10-20 ms. YOLO V9c
and YOLO V10n have moderate parameters, with 12 and 10
million, respectively, and their detection speeds are slightly
slower than YOLO V8n, ranging from 15-30 ms.

TABLE III
COMPARISON OF PARAMETERS AND DETECTION SPEED

Model Parameters (Million) Detection Time (ms)
Faster R-CNN 42 150-250

YOLO V8n 7 10-20
YOLO V9c 12 15-25

YOLO V10n 10 15-30

Faster R-CNN stands out for its strong mAP@50-95 per-
formance and consistent recall and precision, making it a
robust choice when high accuracy across varying thresholds is
needed. However, its large number of parameters and slower
detection times make it less ideal for real-time applications
like occupancy detection. YOLO V8n, while slightly behind
in mAP and F1 scores, is the fastest model with the fewest
parameters, making it highly efficient for real-time deploy-
ment. YOLO V9c provides a good balance, with the highest
mAP@50 and precision scores, though its recall is slightly
lower. YOLO V10n, while the least accurate in terms of
mAP, still offers a reasonable tradeoff between speed and
performance.

V. CONCLUSION

This research marks a significant step toward achieving a
vision-based occupancy detection system for HVAC optimiza-
tion. By developing edge-based models, it demonstrated that
higher precision could be achieved compared to the baseline
Faster R-CNN, particularly with YOLOv9c excelling in both
detection speed and accuracy. However, several areas remain
for improvement, such as expanding the dataset, incorporating
GAN-based data augmentation, and further optimizing the
models for edge devices. Addressing these challenges will be
crucial in making the system more robust, enabling real-time

occupancy detection that can efficiently contribute to energy-
saving HVAC systems. This research marks a significant step
toward achieving a vision-based occupancy detection system
for HVAC optimization. By developing edge-based mod-
els, it demonstrated that higher precision could be achieved
compared to the baseline Faster R-CNN, particularly with
YOLOv9c excelling in both detection speed and accuracy.
However, several areas remain for improvement, such as
expanding the dataset, incorporating GAN-based data augmen-
tation, and further optimizing the models for edge devices.
Addressing these challenges will be crucial in making the
system more robust, enabling real-time occupancy detection
that can efficiently contribute to energy-saving HVAC systems.
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