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Abstract
Missing data are a major plague of medical databases in general, and
of Intensive Care Units databases in particular. The time pressure of
work in an Intensive Care Unit pushes the physicians to omit randomly
or selectively record data. These different omission strategies give rise
to different patterns of missing data and the recommended approach of
completing the database using median imputation and fitting a logistic
regression model can lead to significant biases. This paper applies a new
classification method, called robust Bayes classifier, that does not rely on
any particular assumption about the pattern of missing data and compares
it to the traditional median imputation approach using a database of 324
Intensive Care Unit patients.
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1. Introduction

The primary role of intensive care units (icus) is to monitor and stabilize the vital
functions of patients with life-threatening conditions. In order to aid icu nurses and
intensivists with this work, scoring systems have been developed to express the overall
state of an icu patient as a numerical value that is then used to develop a classification
rule that classifies a patient as being at risk or not. Such scoring systems typically
depend on parameters that are estimated from a database of cases and one feature of
these data sets is that, often, they have missing values. One suggestion as to why a
patient attribute remains unrecorded is that an intensivist assumes the variable to be
clinically normal on the basis of some other observations and, therefore, not worthy
of confirmation. Although this clinical-normality assumption has been criticized [2],
the mortality rate is higher in those patients with completed records. Since abnormal
physiological values are associated with increased risk, it has been argued that this
supports the clinical-normality assumption. In addition to this, we suspect that there
are random omissions due to the pressure of work within an icu; thus, it may be the case
that the incompleteness of an icu data set is due to a mixture of different missing-data
mechanisms.

Modeling such a missing data mechanism can be an extremely difficult task and
one solution is to resort to a simplifying assumption about the process underlying the
missing data. One typical assumption is that data are missing in such a way that the
observed data are still a representative sample, on a whole, so that it becomes sensible
to replace the missing entries by imputed ones [16]. However, when data are missing
in an informative way, such technique can bias the estimate of the parameters of the
model used to define the scoring system, thus degrading its classification accuracy.

Based on a completely different approach to modeling incomplete data sets is the
theory of robust Bayesian estimation of [14] and its application to classification tasks
[13]. The fundamental principle of this theory is that, with no information about the
missing data mechanism, an incomplete data set can only constrain the set of estimates
that can be induced from all its possible completions and, consequently, classification
rules derived from incomplete data sets need to account for this uncertainty. One scoring
system that obeys this principle is the Robust Bayes classifier (here on denoted by rbc)
introduced in [13]. The uncertainty on the set of estimates, due to the incompleteness of
the data sets, implies that the parameters defining a rbc are estimated by probability
intervals rather than point-valued probabilities computed under a specific model for the
missing data. The second feature of the rbc is its ability to classify cases by reasoning
with probability intervals. The interval-based classification is based on a propagation
algorithm that computes posterior probability intervals containing all the scoring values
that could be obtained from the exact computation of all possible completions of the
training set, and one of two possible methods to rank probability intervals. One method
is very robust and classify one case only when all assumptions about the missing data
mechanism yield the same classification rule. The second method weaken this condition
to improve classification coverage but may result in a loss of accuracy. A decision-
theoretic criterion then allows one to select the best interval-ranking method by trading
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off accuracy and coverage. Extensive evaluations presented in [13] have shown that the
rbc is an effective alternative to other scoring systems.

In this paper we compare a scoring system based on a logistic regression model,
derived by replacing the missing values with imputed data, with a scoring system based
on the rbc. We extend the results in [13] to define a decision-theoretic criterion that
takes into account different costs of misclassification and compare the methods in a data
set of 324 icu patients.

2. Prognostic Models

In this section we describe two prognostic models: logistic regression and the Naive
Bayesian Classifier.

2.1 Logistic Regression Models

APACHE II [5] is a subjective linear combination based on demographic and physi-
ological attributes, which increases as the state of a patient declines. In spite of its
subjectivity, posterior probabilities of a defined outcome have been estimated by having
APACHE II as a logistic-regression covariate [3]. In 1985 [8], APACHE II was replaced
with the logistic regression model, in which the probability of an icu patient surviving
is modeled as a logit function of m covariates x1, ..., xm via the function

p(s|x1k, ..., xmk) =
exp[w0 +

∑m
i=1 wixik)]

1 + exp[w0 +
∑m

i=1 wixik)])
· (1)

The event s denotes the icu patient surviving whilst at the hospital, so that the prob-
ability that the patient does not survive, that we will denote by s̄, is computed as
1 − p(s|x). The xik are values of the covariates that, in the model in Equation 1, are
not supposed to interact, and the values wi are parameters that can be estimated from
available data, using Maximum Likelihood estimators [10]. Once the parameters wi are
estimated from a data set of cases, the model in Equation 1 can be used for prediction of
a patient outcome, by selecting the outcome with the largest probability, or for defining
a number of objective scoring systems, which have proved to perform better than those
obtained subjectively [1].

2.2 The Naive Bayes Classifier

Outcome prediction can be transformed into a classification task by regarding the co-
variates x1, ..., xm as attributes of two alternative classes s and s̄ representing the patient
outcome. In this section, we focus attention to a Naive Bayes Classifier (nbc) [7, 12]
which is a supervised classification model that assumes the conditional independence
of the attributes given the class. We describe the nbc in the context of two classes,
although the nbc can be used more generally, when the number of classes is greater
than two.

A nbc is defined by the marginal probabilities {p(s), 1 − p(s)} of the two patient
outcome and by the conditional probabilities p(xik|s) and p(xik|s̄) of each attribute
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value xik given the two classes s and s̄. These probabilities can be easily estimated from
the data as relative frequencies or adjusted relative frequencies to account for prior
information, when the attribute are discrete variables. As the logistic regression model
in Equation 1, the nbc can be used to evaluate the posterior probability that a patient
survives, given a set of attribute values ek = {x1k, ..., xmk} as

p(s|ek) =
∏m

i=1 p(xik|s)p(s)
∏m

i=1[p(xik|s)p(s) + p(xik|s̄)(1− p(s))]
. (2)

This probability is then used for predicting the outcome of a patient on the basis of
his/her attribute values or to define some scoring system, as discussed in the previous
section.

3. Missing Data

When some entries in the data set are reported as unknown, the estimation of the
parameters wi in the logistic regression model 1 and of the probabilities {p(s), 1− p(s)}
of the two patient outcome as well as the conditional probabilities p(xik|s) and p(xik|s̄)
in the nbc can be done by using imputation [9]. Imputation essentially consists of
replacing the unknown entries by some value generated from an imputation model that
depends on the assumption made about the missing data mechanism. Here, we follow the
classification introduced by Rubin [15] in which data are said to be missing completely
at random if the probability that an entry is missing in the data set is independent of the
other values, observed or not; data are said to be missing at random if the probability
that an entry is missing in the data set is a function of the values observed in the data
set; and data are said to be informatively missing if the probability that an entry is
missing is a function of the values observed or not in the data set.

In the context of icu data, entries in the data set are missing completely at random
when they are caused by random omissions, as for instance due to work pressure. Data
that are omitted due to the assumption of clinical normality can be described as being
missing at random, because the intensivist assumes the omitted variables to be clinically
normal on the basis of some other observation and, therefore, not worth confirmation.
This situation is different from deliberately omitting values that were measured. This
last case would yield data that are informatively missing.

The assumption about the missing data mechanism affects the way that either the
logistic regression model or the nbc are induced from the available data. Under the
missing completely at random or the missing at random assumption, the data available
are still a “representative sample”. In both cases, the available data are sufficient to fill
in — either deterministically or stochastically — the missing entries. When neither of
these two assumptions hold, their enforcement can introduce severe bias, and a correct
model building relies on the knowledge of the process responsible for the missing data.
[17] provide examples of the bias due to an indiscriminate use of imputation.

Clearly, the solution is to use the correct imputation model, but this is not always
possible because of lack of information about the process that caused missing data. In
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the next section, we describe a method for robust classification that does not require
any specific model for the missing data mechanism.

4. Robust Classification

The robust Bayesian estimator introduced by [14] is a novel approach that allows one to
estimate the probabilities {p(s), p(xik|s), p(xik|s̄)} specifying the nbc without making
any assumption about the missing data mechanism. This feature seems to be the appro-
priate solution to the complexity of missing data mechanisms involved in icu databases.
This estimator is based on a new view of incomplete data: with no information on the
pattern of missing data, an incomplete data set can only constrain the set of estimates
that can be induced from the database. Hence, the robust Bayesian estimator returns
probability estimates that are robust with respect to the missing data mechanism by
providing probability intervals that contain the estimates learned from all possible com-
pletions of the incomplete database. The calculation of these interval estimates is done
very efficiently by computing virtual frequencies that correspond to extreme comple-
tions of the incomplete data. Compared to imputation, the robust Bayesian estimator
does not rely on a single model for the missing data, but provides sets of estimates
consistent with all possible missing data mechanisms from which the incomplete data
at hand could have been obtained.

However, in order to use the estimates computed by the robust Bayesian estimator to
produce a robust prognostic model, we need to find a solution to the following problems:

1. The evaluation of the posterior probability in Equation 2 requires the probabilities
{p(s), p(xik|s), p(xik|s̄)} to be point valued;

2. The use of intervals prevents the use of the standard criterion of selecting the
class with the highest posterior probability, because the posterior probabilities
are intervals rather than single values.

Ramoni and Sebastiani [13] describe an exact algorithm for extending Equation 2 to
probability intervals. The algorithm maintains the same computational complexity
needed to evaluate Equation 2 and returns the probability interval [p(s|e); p(s|e)] that
contains all the values p(s|e) we would obtain from the possible completions of the
data. From this interval, one can then derive the probability interval containing all
values 1− p(s|e) as [1− p(s|e); 1− p(s|e)].

Ramoni and Sebastiani [13] also proposed two methods for ranking probability inter-
vals, so that the prediction can be done by choosing the patient outcome associated with
the highest ranked interval. The first method is based on the strong dominance score
which is derived under the stochastic dominance criterion of [6]. The strong dominance
score associated with the interval [p(s|e); p(s|e)] is 1 if and only if the minimum posterior
probability p(s|e) is higher than the maximum posterior probability p(s̄|e) of the other
patient outcome, and it is 0 otherwise. If neither of the two conditions is met, the strong
dominance score is not defined. In other words, the strong dominance score predicts the
outcome of an icu patient as survival if p(s|e) > p(s̄|e) and since p(s̄|e) = 1 − p(s|e),
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this reduces to prediction of a patient survival if p(s|e) > 0.5. If p(s|e) < 0.5, then
the prediction is that the patient will not survive while, if p(s|e) < 0.5 < p(s|e), the
patient outcome cannot be predicted. Strong dominance is a robust criterion, as it is
independent of the missing data mechanism. However, this criterion is unable to classify
cases when intervals are overlapping and we therefore have to weaken it in order to gain
classification ability. The second interval ranking method proposed in [13] makes the
minimal assumption that all missing data mechanisms are equally possible to define the
complete-admissible score associated with the interval [p(s|e); p(s|e)]

su(s|e) =
p(s|e) + p(s|e)

2
.

From the score su(s|e), we derive the score su(s̄|e) = 1 − su(s|e) associated with the
probability interval [p(s̄|e); p(s̄|e)]. This score predicts survival of a patient if su(s|e) >
su(s̄|e) and, hence, if su(s|e) > 0.5.

Either the strong dominance or the complete-admissible score provide a sensible basis
for robust classification. They both have pros and cons: strong dominance is safe at
the price of leaving the outcome of some patients unclassified; the complete-admissible
score increases the classification ability with the risk of loosing robustness. We can
provide a rule to help one choose the best interval-based classification strategy. The
intuition behind this rule is that accuracy is more valuable than coverage and, hence,
we would not prefer a method that predicts a patient outcome randomly just because
it always makes a prediction. The rationale is that we expect the consequence of a
wrong prediction to be worse than the inability to make an automated prediction. This
argument can be used formally, to help one choose between the strong dominance or
the complete-admissible score by introducing misclassification costs and costs incurred
for the inability to classify one case.

We begin by noting that the goodness of a classification system is typically measured
via the classification accuracy θ and the coverage γ. The former is the probability of
correctly classifying a case while the latter is the probability of classifying one case. Let
θd denote the accuracy of the rbc with the strong dominance score, say rbcd, and let γd

be its coverage. Similarly, let θu be the accuracy of the rbc with the complete-admissible
score, say rbcu. Suppose that the cost incurred for not being able to classify a patient
is a quantity Ci, while the cost for a wrong classification is Cw. Since the former event
occurs with probability 1 − γd and the latter occurs with probability (1 − θd)γd, the
expected cost incurred on using the rbcd is

C(rbcd) = Cw(1− θd)γd + Ci(1− γd)

if correct classification has no associated costs. On the other hand, the expected cost
incurred on using the rbcu, achieving 100% coverage with accuracy θu, is

C(rbcu) = Cw(1− θu).

If we decide to use the system with minimum expected cost, the rbcd is to be preferred
to the rbcu when C(rbcd) ≤ C(rbcu) that is true if and only if
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θu − θdγd ≤ (1− γd)(1− Ci/Cw).

For example, if Ci = Cw, the best decision is to choose the rbcd whenever θu ≥ θdγd.
In practical applications, the quantities θd, θu and γd can be estimated from the data
available by running some cross validation experiment [4].

This principled way to choose the classification system with minimum expected cost
can also be used to help one compare other methods. For example, in Section 2, we
described logistic regression as the current model to define a scoring system used for
predicting whether an icu patient is at risk of death or not. Suppose the quantity θl

is the accuracy of logistic regression based classification, with expected cost (1− θl)Cw.
The comparison between the accuracies θl and θu is cost-independent, as we compare
C(rbcu) = Cw(1 − θu) with Cw(1 − θl) and the minimum expected cost is achieved
by the system having the highest accuracy. If we now compare the expected costs of
the rbcd and logistic regression, we have that the latter is to be preferred whenever
θl − θdγd ≥ (1− Ci/Cw).

This principled way to compare classification systems is based on the assumption
that the cost incurred in classifying an icu patient as at risk of dying when he is not
is equal to the cost incurred in classifying an icu patient as not being at risk of dying
when he is. In real life, the two costs are different and we can describe them in the cost
matrix below

Patient true Patient predicted outcome
outcome Survives Not Survive
Survive 0 Css̄

Not Survive Cs̄s 0

In this cost matrix, the quantity Css̄ is the cost incurred in predicting death of a patient
who survives while Cs̄s is the cost incurred in predicting the survival of a patient who
then dies. Let θss denote the probability of predicting the survival of a patient who
indeed does and let θs̄s̄ be the probability of predicting the death of a patient who
unfortunately dies. The overall accuracy θ of a system can be break down into

θ = θssp(s) + θs̄s̄(1− p(s)) (3)

where p(s) denotes the prior probability that a patient survives. In words, Equation 3
expresses the accuracy θ as the weighted sum of the probability of predicting the event
s, given that s will occur, and of the probability of predicting the event s̄, given that s̄
will occur. The quantity 1−θss and 1−θs̄s̄ can be used to compute the overall expected
costs incurred in using the rbcd as

C(rbcd) = {Css̄(1− θd,ss)p(s) + Cs̄s(1− θd,s̄s̄)(1 − p(s))}γd + (1− γd)Ci

while, for example, the overall expected cost incurred in using the rbcu is given by
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C(rbcu) = Css̄(1− θu,ss)p(s) + Cs̄s(1− θu,s̄s̄)(1− p(s))

and the overall expected cost incurred in using logistic regression is given by

C(Logistic) = Css̄(1− θl,ss)p(s) + Cs̄s(1− θl,s̄s̄)(1 − p(s))

The choice of the best classification system can then be let depend on a cost analysis.
The quantities θss and θs̄s̄ can be estimated from the sensitivity and specificity of the
classification system, that are typically derived from the confusion matrix below

Patient true Patient predicted outcome
outcome Survives Not Survive Total
Survive n(s, s) n(s, s̄) n(s)

Not Survive n(s̄, s) n(s̄, s̄) n(s̄)

The value n(s, s) and n(s̄, s̄) represent the frequencies of cases correctly classified in a
test set (or a cross-validation experiment) with a global number of n = n(s)+n(s̄) cases,
while n(s, s̄) and n(s̄, s) are the frequencies of wrong classifications divided according
to the type of classification error made. The ratio n(s, s)/n(s) is known as sensitivity
while the ratio n(s̄, s̄)/n(s̄) is known as specificity. The prior probability p(s) can be
estimated as n(s)/n. When the system cannot classify all cases in the test set, then
the confusion matrix refer to the subset of cases that were classified. Clearly, the cost
analysis requires the specification of the costs Css̄, Cs̄s and Ci or, at least, of the ratios
r1 = Css̄/Cs̄s and r2 = Ci/r1.

5. Experimental Evaluation

This section reports an experimental comparison between a logistic regression model
and the robust Bayes classifier on a icu database. We first describe the data set and
the procedure used compare the two models.

5.1 Material and Methods

The 324 patients comprising the data set were present in the adult icu at St Thomas’
Hospital, London, from January 1997 to July 1997. The 11 variables in the data set
are listed in Table 1, and the values are those recorded during the first 24-hours of each
patient’s stay in icu. The data set is incomplete, of the 11 × 327 cells of the data set,
75 (2%) are empty, resulting in 67 (20%) incomplete rows.

Contrary to the robust Bayes classifier that does not need any assumption about the
missing data mechanism, the estimation of the parameters wi of the logistic regression
model relies on some explicit model for the missing data to allow for imputation. We
imputed the missing entries in the data set, under the assumption that data were missing
completely at random. Hence, the missing entries of each covariate were replaced by a
reference value computed from the marginal distribution of the covariate itself. Since
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Variable name Data type Code
Age (years) Continuous —
Artificial ventilation required Nominal “1” = true; “2” = false
Type of inotrope support Ordinal “0” = no intotropes; “1” =

dopamine; “2” = adrenaline
only; “3” = adrenaline plus
other inotrope(s)

Serum bilirubin (mmol/l) Continuous —
Acute renal failure Nominal “1” = true; “2” = false
24-h urine volume Ordinal “0” = (0 - 50ml); “1” = (51 -

300ml) ; “2” = (> 300ml)
Surgical category Nominal “1” = elective (mostly car-

diothoracic); “2” = emergency
(medical patients); “3”= emer-
gency (general surgery)

Creatinine Continuous —
Left ventricular intercept Continuous —
Glasgow coma score Ordinal 1,2,...,15
Alive whilst in hospital Nominal “1” = true; “2” = false

Table 1: The attributes of interest

the covariates have skewed distributions, we replaced the missing entries by the observed
median of each variable, that is less sensitive to outliers.

The comparison of predictive accuracy of the two models was carried out by running
a 5-fold cross validation experiment. We divided the data set in 5 mutually exclusive
data sets D1, ...,D5 of approximately the same size. For each data set Di, we estimated
both the logistic regression model and the robust classifier on the data set D in which
we removed the cases in Di and we then used the two models to predict the outcome
of patients in Di. Each logistic regression model was estimated using the S-Plus glm
function with the argument family=binomial. In each case, we fitted additive logistic
regression models without employing interaction terms. Each robust Bayes classifier was
estimated using the program RoC1 that implements the robust classification described
in Section 4. Continuous variables were discretized in four equally spaced intervals of the
logarithmic transformation of the observed values. The variable denoting the Glasgow
Coma score was recoded into three categories representing low (≥ 4), middle (5 − 12)
and high value (≥ 13).

For this study, a patient is classified as not surviving in hospital if his posterior prob-
ability for death while in hospital is greater than 0.5 according to the logistic regression
model. On the other hand, the robust Bayes classifier under the strong dominance cri-
terion classifies a patient as not surviving if the minimum probability of not surviving
is greater than 0.5. The robust Bayes classifier under the complete-admissible score
predicts the patient outcome as that one corresponding to the probability interval with
the largest mid-point.

1available at http://kmi.open.ac.uk/projects/bkd
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Logistic rbcu rbcd

Predicted Predicted Predicted
True s s̄ s s̄ s s̄ Fail Total

s 210 22 202 30 170 13 49 232
s̄ 42 50 39 53 26 39 27 94

Table 2: Confusion matrix for the three classification methods. s denotes survival
while s̄ denotes not survival. Fail refers to the cases that were not classified by the
rbcd.

As each data set Di contains the observed outcome, we evaluated the performance
of the two models by comparing their estimated accuracy and coverage, and by making
a cost analysis. The estimated accuracy is the average number of cases that were
correctly classified in the test sets. The coverage is the ratio between the number of
cases classified and the total number of cases in the data set. Hence, the coverage of the
logistic regression model is 100%, as well as the coverage of the robust Bayes classifier
that uses the complete-admissible score. The coverage of the robust Bayes classifier
that uses the strong dominance score is the ratio between the number of cases that were
classified and the size of the data set. We also provide 95% confidence limits for these
figures, based on an asymptotic approximation of a Binomial distribution.

5.2 Results

Table 2 displays the confusion matrix for the prediction based on logistic regression, on
the rbcd and on the rbcu. The average classification accuracy of the logistic regres-
sion model was 80.25%±2.15. The classification accuracy of the robust Bayes classifier
that uses the strong dominance criterion increases to 84.25%±2.05. The price of such in-
creased accuracy is a decreased coverage of 76.54%±2.06. Using the complete-admissible
score, we increased the coverage of the robust Bayes classifier to 100% by reducing the
accuracy to 78.70%±2.15, which is inferior to the accuracy achieved by logistic regres-
sion. Both specificity and sensitivity of the rbcd (92.90% and 60.00%) are higher than
those of the classification based on logistic regression (90.52% and 54.35%) and the
rbcu (87.06% and 57.61%). However, the rbcd is unable to predict the outcome of
21.12% of patients who survived while at the hospital and 29.35% of patients who died.
A summary of these results is in Table 3.

Although the overall accuracy of the rbcu is inferior to that achieved with logistic
regression, it is interesting to note that the rbcu made better predictions on the outcome
of the patients who died while at the hospital. Hence, either a cost-free comparison of
logistic regression with the rbcu or a comparison based on the assumption that the
costs Css̄ and Cs̄s are equal results in choosing logistic regression as the best prognostic
system. However, if we, more realistically, assume that the costs Css̄ and Cs̄s are
different, the comparison of logistic regression with the rbcu depends on the comparison
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of the expected costs that are

C(rbcu) = Css̄0.1294 × 0.716 + Cs̄s0.4240 × 0.284
C(Logistic) = Css̄0.0948 × 0.716 + Cs̄s0.4565 × 0.284

and the rbcu yields a smaller cost if Cs̄s ≥ 4347.83Css̄. Here, we have used prior
probability p(s) = 0.716 as deduced from the confusion matrix 2. The comparison of
logistic regression and the rbcu with the rbcd needs to take into account the cost
Ci incurred in not being able to give a machine-based prediction. This overall cost is
computed as

C(rbcd) = {Css̄0.071 × 0.738 + Cs̄s0.4 × 0.262}0.7654 + 0.2346Ci

where 0.738 = p(s) as deduced from the subset of cases classified by the rbcd. If
we suppose that the costs Css̄ and Cs̄s are equal to Cw, logistic regression gives better
prediction than the rbcu so that the choice of the system with minimum costs is limited
between the rbcd and logistic regression. The rbcd yields smaller costs than logistic
regression if Cw ≥ 3.05Ci and, hence, we evaluate the cost of a wrong classification to be
at least 3.05 times bigger the cost of not being able to give an automatic prediction. The
comparison between the three systems becomes more complex when the costs Css̄ and
Cs̄s are supposed to be different. The cost analysis leads to choose the rbcd whenever

C(rbcd) ≤ min{C(rbcu);C(Logistic)}

and hence whenever

0.041Css̄ + 0.08Cs̄s + 0.2346Ci ≤ min{0.0927Css̄ + 0.1204Cs̄s; 0.0679Css̄ + 0.1296Cs̄s}.

For example, if Cs̄s = 5, 000Css̄, so that the rbcu yields smaller costs than logistic
regression, then the comparison between the rbcu and the rbcd leads to choose the rbcd

whenever C(rbcd) ≤ C(rbcu) which holds when 400.01Css̄ + 0.2346Ci ≤ 602.0927Css̄,
and therefore when Css̄ ≥ 0.0012Ci. On the other hand, an evaluation Cs̄s = 1, 000Css̄

implies that logistic regression achieves higher accuracy than the rbcu with smaller
costs. Therefore, the choice reduces to compare the rbcd with logistic regression and
the former is to be preferred whenever 80.041Css̄ + 0.2346Ci ≤ 129.668Css̄ and, hence,
when Css̄ ≥ 0.005Ci.

Accuracy Sensitivity Specificity Coverage
θ θss θs̄s̄ γ

rbcd 0.8425 0.9290 0.6000 0.7654
rbcu 0.7870 0.8706 0.5761 1.0000
Logistic 0.8025 0.9052 0.5435 1.0000

Table 3: Estimates of the overall accuracy, sensitivity and specificity, and coverage in
the three models.
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One point worth noting is that, in [13], the difference in accuracy achieved by the
rbcd and the rbcu compared to the standard nbc that works under the missing at
random assumption was used to evaluate the impact that such assumption has on the
classification accuracy. Here, since we are comparing different models with different ways
of treating the missing data, the different accuracy values cannot be attributed to the
assumption made by logistic regression that data are missing completely at random.
To evaluate the effect of this assumption we computed the accuracy, sensitivity and
specificity of the standard nbc with the same data sets and the values achieved are
θ̂ = 0.7685, θss = 0.8534 and θs̄s̄ = 0.5543. Compared to the same values achieved by
the rbcu and the rbcd, these figures are all smaller and support the hypothesis that the
missing completely at random assumption reduces the classification accuracy, probably
because the real missing data mechanism is more complex.

6. Conclusions

A conservative approach, with no commitment to a particular missing data mechanism,
improves the predictive accuracy in our example data set but leaves unclassified a quota
of the cases. When we increase the coverage by adopting weaker criteria, the accuracy
reduces to a level comparable to the accuracy achieved by logistic regression with me-
dian imputation. These findings suggest that, in practical applications, a conservative
approach increases the accuracy of the predictions. The unclassified cases can be left
for more careful consideration to a human expert, possibly aided by the predictions
obtained under weaker criteria. A careful cost analysis also helps the choice of the
prognostic system by taking into account different consequences of wrong predictions.

The fact that, even under strong dominance, the accuracy is limited to 84.25%±2.05
questions the ability of the models considered to represent the real dependence of the
patient outcome on the 10 attributes recorded in the data set. Building improved logistic
regression models from the incomplete data can be seriously biased by the imputation
method adopted. The robust Bayes classifier can be improved by selecting relevant
attributes on the basis of their predictive relevance, without making assumptions on the
missing data mechanism. Preliminary results seem to suggest that a careful selection
of attributes having a significant predictive relevance can further increase the accuracy
of the robust Bayes classifier. Another aspect that needs further investigation is the
accuracy of the measurement of the Glasgow Coma Score, as noted already by [11].
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