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Abstract 

For the geological disposal of highly contaminated wastes, medical or other sorts, clay barrier systems are 

commonly designed and used. The engineered liners contain buffer material which is often carefully 

proportioned mixtures of pure bentonite and sand. Bentonite is an active clay mineral with very low 

hydraulic conductivity and extremely high expansive properties, which benefits in controlling the 

downward migration of hazardous contaminants to groundwater. In the design of such composite buffer 

geomaterial, deformation and pore-flow analysis is a pivotal matter and has therefore been thoroughly 

investigated in the decades past. When unsaturated, the coupling hydraulic-mechanical behaviour of 

sand-bentonite mixtures are complex. Among possible reasons behind this complex behaviour is the 

dependency of hydraulic hysteresis and consolidation properties on size, shape and sorting of solids and 

pores in the soil’s skeleton, which are also rarely accounted for in most of the commonly used soil 

models.  

In this contribution, the hydro-mechanical behaviour of saturated and unsaturated sand-bentonite soil is 

investigated in the context of the recently developed Concept of Double Porosity (CDP). The geomaterial 

under study is assumed to consist of an incompressible, rigid, elastic solid skeleton surrounded by viscous 

water and gas fluids, and connected via a network of elastoplastic clayey bridge/buttress units. Roundness 

and sorting are varied for the sand constituent. The clay fraction (CF) is also varied across testing 

specimens. The experimental work here introduces two micromechanical models (small clay and large 

clay) which facilitates interpretation of macro-scale coupled hydromechanical behaviour of composite 

sand-bentonite geomaterials. The findings from this work will aid design practitioners through a tentative 

decision support system proposed in closing remarks.   

 
Keywords: Sand-bentonite, hydro mechanical, microstructure, suction, liner.   
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1. Introduction  

Bentonite belongs to the expansive smectite clay minerals, and is commercially available from 

modification of volcano ash. High swelling capacity and low hydraulic conductivity of bentonite makes it 

suitable for use as a sealing material in buffers around buried wastes and liners in landfills (Kaoser et al. 

2006). Bentonite’s low permeability is hoped to constrain the efflux of contaminants into the 

groundwater system. Nevertheless, Bentonite’s high swelling pressure, is a risk to the encapsulated 

containers; making sand-bentonite mixtures an attractive alternative buffer material (Wersin et al. 

2007). Compacted sand-bentonite mixtures (through dynamic or static compression – cf. Ito and Komin, 

2008) are commonly used as buffer constituent of landfill barrier systems owing to their good resistance 

to imposed thermal gradients, low likelihood of structural damage on freeze-thaw, and limited 

shrinkage-related volume change on cyclic wetting and drying (Kraus et al, 1997). Nonetheless, mixtures 

form mediums of bi-modal particle size distribution, the interplay of frame and bonding element within 

which controls the overall behaviour, that itself is fundamentally dependent on the relative proportion 

and properties of the constituting elements.   

Buffers are designed for a hydraulic conductivity of <         , a minimum admissible structural 

integrity (i.e. strength depending on the landfill geometry and adopted construction technique) and 

limited shrinkage cracking on moisture content variation which takes place during the service life of 

landfills (Tay et al., 2001). Studies of compressibility and strength in sand-bentonite composites were 

presented by Khoury et al. (1992) and Filz et al. (1999). The dependency of stress-state of consolidated 

sand-bentonite mixtures on compressibility and strength was surveyed in Evans et al., (1995). Blatz et al., 

(2002) and Romero et al., 2005 discussed the links between suction and microstructure. Tien et al. 

(2004) introduced one of the early forms of micromechanical models to be used in predicting the 

behaviour of compacted mixtures as a function of compaction conditions. The influence of compaction 

(i.e. placement) conditions on the potential of desiccation cracking were surveyed in the works of Kleppe 

and Olson (1985) and Tay et al. (2001). They suggested a critical threshold shrinkage strain of between 

4% to 10% above which sand-bentonite buffers start to crack with serious unwelcomed implications. 

They collectively showed that desiccation shrinkage increases linearly with compaction water content 

and bentonite content and is unaffected by density. Saturation prior to desiccation increases strains 

markedly for specimens compacted dry of optimum. The effect of confining pressure on the swelling and 

hence hydraulic conductivity of composite buffers were studied in Graham et al. (1989) and Wiebe et al. 

(1998). In recent years, the coupled hydro-mechanical properties of clays have been studied by many 

workers. Delage and Cui (2008) showed that solid-fluid physiochemical interactions in clay control the 

soil water characteristic curve (SWCC) and hydraulic hysteresis. Vanapalli et al. (1999) showed that the 

SWCC has high reliance on the placement water content, in SWCC appearing in different forms for clays 

compacted using similar compaction effort but different optimum, wet of optimum, and dry of optimum 

water contents. Apart from a few attempts (Agus, 2005, Agus and Schanz, 2005a) and works on 

microstructure-based water retention properties in composite soils, little emphasis has been put into 

investigating hydromechanical properties in sand-bentonite mixtures. In hydro-mechanical modelling of 

composite soils, Ideally, the solid phase and the interaction between the two pore space phases (i.e. 

macro- and micro) need to be considered explicitly, so too the interaction between rigid solids (sand), 

elasto-plastic bonding (bentonite) and pore-fluids.  
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The concept of double porosity CDP (also known in earlier literature as dual-domain, dual-region or 

multi-region) has recently been adopted in explaining the coupled hydro-mechanical response of 

unsaturated buffer composites. In taking the CDP, heterogeneous microstructure of soil medium is 

assumed to consist of two and multiple independent but connected continua. The porous medium is 

divided into a number of domains that are coupled through an interaction term mainly for simulating the 

transport of fluids between pore systems or continuums (Barenblatt et al., 1960, Gwo et al., 1995).  

Based on the fundamental concepts of the Concept of Double Porosity (CDP), one proceeds from the 

hypothesis that pore spaces have two micro and macro constituents that whilst being inter-connected, 

deform independently as a function of matric suction. For structured bi-modal soil systems (not 

dissimilar to that of sand-bentonite), Assadi-Langroudi and Jefferson (2013) recently discussed the links 

between the hydraulic hysteresis and grading in composite granular soils. They suggested that the 

changes to soil’s microstructure on cyclic wetting-drying is strictly limited to certain particle size intervals 

and is closely associated with certain pore size intervals. Thereby, certain pore size intervals control the 

matric suction. This highlights the significance of the CDP. As soil’s water content changes, 

microstructure changes, so too the air values and shape of the SWCC. Wetting-drying cycles result in 

sequences of flocculation and dispersion. For a calcareous clayey silt (composing of 20% calcium 

carbonate, 10% Kaolinite and 70% negatively skewed quartz silt) oedometric specimen, Assadi-Langroudi 

and Jefferson (2013) showed that the change to soil’s micro-structure on the first wetting-drying cycle is 

restricted to sub-20µm particle size interval, associated with the 0.02 to 3.55μm pore size interval, at 

which micro-fabric and thus soil water retention is most sensitive to slightest alterations in water 

content. On the dry stress-state surface, flocculation, dispersion, and grain breakage is most pronounced 

at 5 to 20µm particle size range. On wetting, changes to soil’s micro-fabric is most pronounced at 20 to 

30µm and sub-1µm particle size intervals. In addition to the shortfall in research into the hydraulic 

hysteresis in Sand-Bentonite systems, implications of shape and gradation of the sand constituent has 

also received very little attention. The particle and pore size distribution is an important micro-scale 

property that is associated with hydromechanical soil properties, including soil water retention and 

hydraulic permeability, skeletal compressibility and hydraulic hysteresis, all needed in design of liner 

systems. Predictive equations for soil water retention capacity based on the particle and pore size 

distribution have been presented in Arya and Paris, 1981, Juang and Holtz, 1986, Arya and Paris, 1982, 

Haverkamp and Parlange, 1982, Arya et al., 1999, Romero et al., 1999, Fredlund and Wilson, 1997, 

Mingbin et al., 2009. 

To better understand the hydromechanical response and their anomalies in bi-modal sand-bentonite 

system, this contribution reports on findings from a comprehensive experimental programme.  This 

paper surveys the hydromechanical properties of compacted sand-bentonite mixtures. It presents 

laboratory-scale experimental data on the hydraulic conductivity, water retention capacity, strength, 

large-strain stiffness, compressibility, compressive wave velocity, swelling and shrinkage (in two and 

three dimensions) of optimum compacted specimens and discusses the observations and anomalies. It is 

proposed that the complex, and often unexpected trends seen in the hydromechanical behaviour of 

sand-bentonite mixtures can be fully explained and hence predicted in the context of the Concept of 

Double Porosity. Sand particles’ shape and mutual packing state controls the microfabric of sand-

bentonite composite material, thereby controlling the hydromechanical characteristics of buffers.    
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22. Materials and Methods 
 
The sands used were Crushed Limestone from Beşparmak Mountains, North Cyprus, having 50% particles 
finer than 1.14mm (well-graded), and Sea Sand from Golden Beach, North Cyprus having 50% particles 
finer than 0.29mm (poorly-graded). Figure 1a shows the particle size distribution of the sand 
constituents. The clay was supplied by Karakaya Bentonite Inc. Turkey, which is quarried at Uzunisa-Ordu 
as a sodium bentonite clay (conforming with the TS EN 13500 non-treated). The mineralogical 
composition of the clay used is demonstrated in the X-Ray Diffraction spectra of Fig 1b. Cu cathode tube 
was used, generating high-energy short-wavelength radiations (about 1.54 Å) were applied to decrease 
the attenuation in air and hence the absorption by the soil sample. The Bragg's Law (nλ=2d sin θ) and the 
reference of mineral powder diffraction data were used to identify the target mineral types. The d-
spacings of interest included the 1.31 to 7.17 Å range for kaolinite, 1.83 to 3.58 Å for carbonates, and 
1.38 to 4.26 Å for quartz (n=1, =0.0061 nm, V=40 kV). The X-Ray Fluorescence analysis was used to 
detect elemental and chemical composition of the Bentonite component of test specimens. XRF (X-Ray 
Fluorescence) technology involves in detection of the emitted secondary (i.e. fluorescent) X-ray from a 
material, after excitement by high-energy X-ray or gamma ray. Analysis suggested that the natural 
Bentonite comprised of 61.3% SiO2, 17.8% Al2O3, 3% Fe2O3, 4.5% CaO, and 2.7% Na2O.  

Figure 1 [a] Particle size distribution of sand fragment, [b] X-Ray Diffraction micrograph for Bentonite: 
[I=Illite; Q=Quartz; F=Feldspar; C=Calcite; M=Montmorillonite]   
 
Sand-bentonite mixtures were prepared by adjusting the grading to contain pre-determined proportions 
in the sand and clay size ranges. Mixtures of air-dried clay with sand were prepared containing 0, 15, and 
25% clay, based on the oven-dry weight, to form six compositions. Particle size distribution parameters 
and index properties were measured in compliance with the ASTM procedure and are outlined in Table 1. 
Dry sand-clay powder was thoroughly mixed with predetermined mass of deionized water for at least 7 
minutes to permit the water to become uniformly distributed; wet mixes were then allowed to stand for 
at least 24 hours between initial mixing and specimen remoulding in sealed plastic bags. Wet mixes were 
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brought to the optimum water content and compacted using the standard proctor compactive effort to 

remould testing specimens (of varied dimensions).  

Table 1. Composition and physical properties of test specimens and their constituents: USCS = Unified Soil 

Classification System  

 Composition                          USCS LL PL PI              

Sand Clay - mm mm mm mm - - - % % %        % 

S-R
1 

S-A
2 

              

S1 100 0 0 2.88 0.18 0.24 0.29 0.32 1.78 1.00 SP NPI NPI NPI   
S2 0 100 0 2.74 0.17 0.59 1.14 1.5 8.82 1.37 SW NPI NPI NPI   
S3 85 0 15 2.70        74 22 52 16.6 17.0 
S4 75 0 25 2.64        93 24 70 17.2 15.0 
S5 0 85 15 2.79        64 21 44 18.5 14.0 
S6 0 75 25 2.74        104 24 80 17.9 12.0 
S7 0 0 100 2.51        461 41 420   

1
 sub-rounded     

2
 sub-angular  

 

The experimental program included index, standard proctor compaction, unconfined compression and 

ultrasonic pulse velocity (stiffness at large strains), saturated and unsaturated hydraulic conductivity, 

oedometer (free and constant volume swelling), 1D consolidation and shrinkage (at many scales). 

Geochemical and mineralogical composition of the clay component was studied using XRD and XRF 

analysis. Scanning Electron Microscopy was used to build a conceptual micromechanical model showing 

the packing state of test specimens. Vertical aligned cubic soil samples were cut and viewed under a 

Philips XL-30 LaB6 (General purpose 50x50 millimetre stage SEM). Test samples were air-dried under 

ambient laboratory conditions (23±2C) over a course of three to four weeks. Dried cubic samples were 

then split by hand into two pieces. The obtained semi-circular samples were split again, trimmed to 5-7 

mm sectors. Samples were then installed on aluminium stubs via hardener and resin. Loose particles were 

removed from the surface by turning the stub upside-down, several times. Samples were vacuumed to 

0.15torrs and then vacuum-coated with Platinum before imaging.  

To further refine the micromechanical models, Soil water characteristic curves were built for the four 

main testing specimens. Filter paper test was adopted as the experimental technique to build the Soil 

Water Retention Curves for four main testing specimens (S3, S4, S5, and S6). The data from the filter 

paper test was then statistically processed using van Genuchten (vGM) and Fredlund and Xing (FX) 

models.  

Filter paper test enables measurement of suction values in surplus of 1500kPa and is arguably the most 

widely used technique for measurement of suction for compacted soil samples. The sand-bentonite 

mixtures were compacted to maximum dry unit weight (using standard compaction effort) and saturated 

thereafter under 7kPa seating pressure in standard 50mm diameter oedometer rings. On completion of 

full saturation, the specimens were dried at room temperature (well-ventilated environmental room). 

Water content was frequently recorded along the drying course. The specimens were kept in intimate 

contact with Whatman No. 42 filter paper discs inside tightly sealed containers that were encapsulated in 

airtight Styrofoam boxes. The Styrofoam boxes were filled with glass wool and capped using sealing tapes 

to guarantee good insulation. The boxes were kept under constant 22°C temperature in an environmental 

chamber. Filter papers were weighed up every 7 to 10 days (equilibrium time) for suction determination. 

The matric suction – water content data was then fed into the van Genuchten (vGM) and Fredlund and 
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Xing (FX) models to build the SWRC curves. The Van Genuchten (1980) equation has been widely used by 

many workers, and is endorsed in Leong and Rahardjo (1997) and Fredlund and Xing (1994) as sets of 

equations that provide the finest SWRC models for a wide variety of soils. The equations are not 

equivalent to linear equations; the SWRC parameters were determined through nonlinear regression 

using a least-squares algorithm. The Soil Vision computer programme (Soil Vision Systems Ltd. 1999) was 

adopted for the regression analysis.  

Equation 1 formulates the Fredlund and Xing (1994) model, 

 

         
  

{  [  (
 
 
)
 

]}
                                                                                                                                    

 

Where w(ψ) is the gravimetric unsaturated water content,    represents the saturated gravimetric water 

content, ‘ ’ is a soil parameter linked to the Air Entry Value (AEV) (  ), ‘ ’ is a soil parameter relevant to 

the slope at the curvature point (near the air- entry value) on the SWRC, ‘ ’  is a soil parameter related to 

the residual water content (also see Vanpalli, 1999),   is soil suction in kPa, and      is correction factor 

as given in Equation 2.  

       
  (  

 
  

)

  [  (
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Where    demarcates soil suction in kPa that corresponds with the residual water content (  ). The Air 

Entry Value is the matric suction at which air commences to enter the largest pores in a soil (Fredlund and 

Xing, 1994) and occurs roughly at the SWRC’s point of maximum curvature, which itself is dependent on 

the amount of water in soil (Fredlund et al., 2011) and hence the soil packing state. 

The van Genuchten (1980) model is formulated in Equation 3: 

 

     
  

{       } 
                                                                                                                                                  

  
where    and   have the same definitions as in Equation 1, ‘ ’ is a soil parameter linked to the Air Entry 

Value (AEV) (  ), and ‘ ’ is a soil parameter relevant to the rate of water removal from the soil, when the 

AEV has been reached. The SWRC curves were built to further refine the micromechanical models as fully 

discussed in Section 3.  

3. Results  
3.1 Packing State  

It is believed that in specimens S3 and S4 (composite soil with well-graded sub-rounded sand fragments), 

illuviated clay platelets fully coat the smooth and rounded surface of sand particles. Coatings then extend 

and overlap to form inter-particle bridge units. Figure 2a shows the scanning electron microscopy image 

of specimen S3 at an intermediate magnification. A matrix of coated sub-rounded particles appears to 

have formed chains of quartz particles encapsulating large macro-pore spaces. In specimens S5 and S6 

(composite soils with poorly-graded sub-angular sand fragments), clay platelets accumulate at particle 
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contact points due to the relatively higher matric suction that is stemmed from interlocking sharp 

asperities. Figure 2b illustrates the scanning electron microscopy image of specimen S5, where sub-

angular quartz particles are clean and interconnected either via interlocking or clay aggregates at pore 

space trapdoors.  

 
Figure 2 [a] SEM image showing chains of interconnected clay coated sub-rounded quartz grains, [b] SEM 

image showing lightly clay coated sub-angular quartz grains bridged by clay coagulates 

 

This micromechanical model of the composite soils is graphically illustrated in Fig 3. 

 
Figure 3 micromechanical model of specimen groups S3-S4 and S5-S6 

 

3.2 Physio-mechanical Properties   

It is intuitively agreed that physio-mechanical properties of composite geomaterials are a function of their 

quartz fragment’s mean size, shape, grading (Assadi-Langroudi et al., 2014), and the packing state (i.e. 

microfabric). In accordance with the tenets of soil diagenesis, at low 15% clay content, rounded grains 

receive an even all-around clay coating whereas angular grains attract colloidal clay platelets at their 

sharp asperities, where clay then precipitates to form inter-particle coagulates, leaving behind a suite of 

a b

Specimens S3           Specimens S5

Specimens S4            Specimens S6
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interlocking clean (uncoated) and thus permeable grain-grain contacts (Fig 3, Specimens S3 and S5). This 

explains the direct relationship between sands’ roundness and liquid limit at low clay contents. At high 

clay contents, liquid limit attains an inverse relationship with roundness. Upon wetting, the clay coating 

units around spherical grains act as lubricants and facilitate the change in packing state to a denser fabric. 

Where clay fragments coat the sub-angular sand particles, the interlocking between quartz grains delay 

the wetting-induced packing state change, and hence the transition of soil from the semi-solid state into 

liquid (Fig 3, Specimens S4 and S6 – also see figures 2a and 2b).  

Higher orders of maximum dry density were achieved in specimens with sub-angular well-graded sand 

fragments. This shows the significance of particle shape in the packing state upon compaction. Higher 

orders of optimum water content were achieved at lower clay contents, which can be invoked to account 

for the absence of clay agglomerates at macro-pore phase, regardless of particle shape. This re-emphasis 

on role of changing clay content on rebalancing macro- and micro-pores relative proportion. The role of 

particle size and shape on large strain stiffness is demonstrated by unconfined compressive strength and 

ultrasonic pulse velocity test results combined. The results indicate that the unconfined compressive 

strength, elasticity modulus (large-strain stiffness) and compressive wave velocity are directly correlated 

with clay content. This can partly be due to the formation of long-range bonds. The implications of long-

range bonds are more pronounced when the sand fragment is of larger size, well-grading, and high 

angularity (Table 2).  

The influence of particle-level characteristics on compression was studied through 1D-oedometer tests 

on the four main composite mixtures (compacted at optimum water content). Specimens were initially 

allowed to swell under 7kPa seating pressure. The swelled specimens were subsequently loaded, 

incrementally and under confined condition, following the standard ASTM consolidation protocol. 

Consolidation parameters drawn are reported in Table 2.  The implications of bi-modal composition of 

testing specimens are reflected in the tri-linear form of the         curves (Fig 4a). Observations are 

consistent with the trends reported in the earlier work of Stewart et al. (2003). Particle shape appears to 

have no effect on the slope of the virgin (normal consolidation) line (   and    – compression index) 

and only a marginal effect on the slope of the rebound line (   – swelling index) at low clay contents (Fig 

2d). This is possibly due to the predominant frictional behaviour of soil at low clay contents and ties in 

with our earlier observations in the relationship between consistency limits, particle shape and clay 

content. The pronounced influence of sand particles interlocking for ‘small clay’ angular sand specimens 

also led to relatively lower order of consolidation settlement (in comparison with identical samples 

comprising sub-rounded sand particles). 

    

Table 2. Strength, stiffness, and compressibility parameters:   =strain at failure, E=Young’s Modulus,   = 

Undrained cohesion,   = Unconfined compression strength,    = compressive wave velocity,   = 

Compression index,    = swelling index 

Specimen    E                  

%                                      

         

S3 11.3 2070.8 586 117.0 234.0 0.5 0.2  0.02 
S4 8.1 4228.4 913 171.5 342.5 0.6 0.4  0.02 

S5 13.3 1872.2 664 124.5 249.0 0.5 0.2  0.01 
S6 9.0 5355.5 1144 226.5 482.0 0.8 0.8  0.04 
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Free swelling index (from confined free-swelling test) is plotted against the logarithm of wetting time in 

Fig 2c (also see also Table 3). Swelling index almost doubled for a 10% increase in clay content (from 15 to 

25%). The higher swelling potential is attributed to the activity of the Bentonite clay mineral. The time 

required for primary swelling to fully take place was also found directly proportional with the Bentonite 

content. Higher rates of the secondary swelling were logged at enhanced clay contents. Figure 2c 

suggests that angularity of sand fragment can improve the swelling potential, swelling pressure, and 

swelling rate. This could be partly due to the dilation effect. In structured soils with poorly sorted angular 

sand component, there are large inter-assemblage pores that are bonded with clay bridges. When clay 

component swells, there is little chance for the macro-pores to fully contract. This can further enhance 

the swelling potential. Greater swelling potential is welcomed when sand-bentonite mixtures are used as 

a component of clay liners. Greater placement dry unit weight and lower water content for specimens 

with crushed limestone sand could be a reason for the captured greater swelling. This is generally 

consistent with previous findings (see El-Sohby and Rabba (1981), Assadi-Langroudi and Yasrobi (2009)). 

 

 
Figure 4. [a] 1D consolidation e-logσ’ curve, [b] stress-strain patterns from unconfined compressive 

strength experiments, [c] swelling potential curves, [d] Variation of compression and swelling index  
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Saturated hydraulic conductivity of sand-bentonite mixtures was measured indirectly using the standard 

1D consolidation equations. Measured permeability values were generally low, possibly because of the 

clay fragment of soils coating and encrusting the quartz grains and pore network (also see Kumar and 

Yong (2002)). Clay content is inversely proportional with the saturated permeability, highlighting the role 

of clay fragment in limiting the flow through soil’s pore network. Greater angularity in sand was found to 

decrease the saturated permeability, exhibiting the role of sharp sands in interlocking and blocking the 

water pathways.  

 

Table 3. hydro-mechanical properties:    = Primary swelling index,   = Elapsed time for completion of 

primary swelling,   = Constant volume swelling pressure   

Specimen               

% % kPa m/s 

   7-880kPa 880-3520kPa 
* 

S3 28 5000 80 9.81E-09 4.13E-10 
S4 64 6000 850 1.45E-09 1.35E-10 

S5 40 7900 131 2.85E-09 1.71E-10 
S6 82 10000 1092 6.09E-10 1.16E-10 

*
Load steps of the oedometric test 

 

3.2 Structure-based Soil Water Retention and System Serviceability   

Compacted sand-bentonite composites are commonly used as liners in waste-containment structures as 

barriers in between groundwater and buried contaminants. The in-service water content in liners 

frequently vary, so too their volume. Loss of water often results in shrinkage and formation of 

unwelcomed cracks, the characteristics of which can be determined from Soil Water Retention Curves 

(SWRC) and shrinkage curve (i.e. gravitational water content versus void ratio) combined. A knowledge of 

soil’s hydraulic properties is needed for better flow and contaminant transport modelling.  

  

3.2.1 Soil-water Retention Curve 

This section introduces experimental and numerical methods used to capture hydraulic properties of 

testing composite materials, and discusses the results from a micro-to-macro perspective. The Soil Water 

Retention Curve relates the soil matric suction   to water content (by mass or volume). In desorption 

phase, water content of a soil decreases with increasing soil suction (i.e. drying protocol).  
Filter paper test was adopted as the experimental technique to build the SWRC curves for the four testing 

specimens. The data from the filter paper test was then statistically processed using van Genuchten 

(vGM) and Fredlund and Xing (FX) models.  

The SWRCs are drawn using fitting parameters from Equation 2 and Equation 3, through best-fitting of 

the filter paper test data using a least-squares algorithm (Van Genuchten 1980; Fredlund and Xing, 1994). 

Filter paper tests were conducted in compliance with the drying protocol (Fig 5a-b). The residual water 

content, AEV, and fitting parameters of the SWRCs and summarized in Table 4. The AEVs in specimens 

with sub-rounded well-sorted sand were found to be greater than AEVs in specimens of similar clay 

content but sub-angular poorly-sorted sand.  
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Figure 5: Soil Water Retention Curves [a] fit to van Genuchten (vGM) model; [b] fit to Fredlund and Xing 

(FX) model  

 

Table 4. Water Retention properties for the four testing specimens via van Genuchten (vGM) and 

Fredlund and Xing (FX) models: ‘ ’, ‘ ’ and ‘ ’ = soil parameters,    = residual water content,  

   = residual suction in kPa,    = Coefficient of Determination,     = Air Entry Value.    

Specimen Fredlund and Xing (1994) Van Genuchten (1980) 
              : 

% 
   : 
kPa 

           : 
% 

   : 
kPa 

             
S1       1.632

1
       

S2       0.533       

S3 120.8 0.93 1.18 2320.32 0.985 8.0 27.10 0.0005 0.6939 2.486 0.977 10.0 33.28 
S4 48.29 7.81 0.26 130.70 0.996 23.9 39.37 0.0300 3.0000 0.145 0.975 10.0 24.30 

S5 28.91 6.95 0.30 84.48 0.992 16.0 23.22 0.0429 3.0000 0.166 0.976 10.0 17.14 
S6 133.3 0.82 1.46 2505.34 0.996 8.2 21.22 0.0002 0.6052 4.877 0.993 10.0 24.30 

1
Fredlund and Wilson 1997 Pedo-Transfer Function model 

 
In Fig 6, average values of volumetric, axial, and diametric strains are plotted against drying time. The 

samples were compacted at optimum water content to maximum dry unit weights, and left to swell 

completely. The majority of shrinkage in soils was recorded within the first 6 days (8000 min). The results 

infer that clay inclusion decreases the shrinkage rate and increases elapsed drying towards maximum 

strains by 25%. Generally, the shrinkage rates decreased with drying time to almost zero by the eighth 

day (11000min). Shrinkage strains were found to be directly correlated with clay content and angularity 

of sand fraction (Fig 6d). Axial shrinkage strains were found to be double the value of diametric strains 

(Fig 6b, 6c).  
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Figure 6: Shrinkage and crack formation. [a] timed growth of volumetric strains, [b] timed growth of 

diametric strains, [c] timed growth of axial strains, [d] End-of-test crack patterns 

 

3.2.2 Shrinkage Curve  

Excessive tensile strains can trigger cracking in soils. Tensile strains can be stemmed from soil shrinkage 

on desiccation following loss of bulk water. In effect, cracks form when horizontal tensile strains caused 

by coagulation of clay platelets exceed beyond a threshold tensile strain, which is predominantly 

controlled by soils geochemical composition. Shrinkage limit in definition is the water content at soil’s 

minimum attainable volume (equivalent to the residual water content), and is generally expected to fall 

slightly below the plastic limit (Fredlund et al., 2011). The Shrinkage curve is obtained experimentally by 

reducing the water content from an initially high to an entirely dry condition. The shrinkage curves have a 

significant role in the explanation of SWRC results.  

Sand-bentonite mixtures compacted at their optimum water contents and saturated in oedometer cell 

(following one-dimensional swelling-consolidation) were air-dried and allowed to shrink at room 

temperature (22-25⁰C). The specimens were weighed periodically, and the average diameters and heights 

were recorded using a high precision Vernier calliper until specimens dried to their residual water 

contents. The water content and volumetric shrinkage were captured and calculated during and after 
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drying to generate the shrinkage curves (Fig 7). Through the drying/desiccation path, volume of water 
gradually decreased, thereby  curves cut through the degree of saturation contour lines from 100% 
to 60%.   

Figure 7 Shrinkage curves of composite sand-bentonite mixtures

The Soil Vision computer software (Soil Vision Systems Ltd. 1999) was used to plot the hyperbolic-shaped 
shrinkage curves. The software made use of the Frenlund et al. (1997, 2002) model for fitting the data 
from experiments (Equation 4).  

 

Where,  is the minimum void ratio ( ),  is slope of the tangent line (to  curve),  is the 
curvature of the curve, and  is the gravimetric water content. Here, the relationship between void ratio 
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and water content (i.e. shrinkage curve) was determined from captured volume change data, and is 

presented in Fig 7 alongside the degree of saturation contour lines (60%, 80% and 100%).  

The shrinkage curve supplies volumetric insights for a soil as it desiccates, whereby volumetric properties 

of soil can be calculated. Once fitted with the hyperbolic equation, the shrinkage curve allows an 

assessment of soil water-content-related volumetric properties. The fitting parameters for the four 

testing specimens are specified in Table 5. Clay content and angularity of sand fraction appeared to be 

inversely proportional to the shrinkage limit (  ) and minimum void ratio (    ). The difference between 

shrinkage limit and plastic limit increases with increasing clay content (Fig 7) and changes sands 

shape/grading.   
 

Table 5: Fitting shrinkage parameters calculated using Soil Vision:     = minimum void ratio,     = slope 

of the tangent line to     curve,     = curvature of the     curve,    = Coefficient of determination, 

   shrinkage limit 

Specimen                  : 
% 

S3 0.478 0.204 16.669 0.9887 0.20 
S4 0.417 0.174 3.181 0.9956 0.17 

S5 0.344 6.029 6.029 0.9901 0.16 
S6 0.342 2.306 2.306 0.9886 0.14 

 

3.2.3 Hydraulic Conductivity 

One other key design input parameter in clay liner systems is the unsaturated hydraulic conductivity 

which varies with soil suction (Fredlund et al. 1994). Van Genuchten established a closed-form equation 

(vGM) for the relative hydraulic conductivity function (kr=kψ/ks). Mualem (1986) revised the Van 

Genuchten equation into the statistical relative hydraulic conductivity model (MLM) that is described in 

Equation 5.  

 

   
{         [       ]  } 

[       ]
 
 

                                                                                                                        

 

Where ψ represents any soil suction value in kPa, and  ,  , and   are constant values.  

The estimated unsaturated hydraulic conductivity is plotted against soil suction using the vGM and MLM 

models in Fig 8. At low suction values, the mixtures with sea and crushed limestone sand with 15% 

bentonite content gave the highest permeability (in comparison with mixtures with 25% bentonite). The 

low hydraulic conductivity seen in mixtures at high pressures is probably due to compression of sand and 

bentonite particles and the subsequent decrease in void ratio. A zero unsaturated hydraulic conductivity 

was recorded for all sand bentonite samples at high suction. Clay content and sand fraction angularity 

appeared to be inversely proportional to the unsaturated hydraulic permeability.   
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Figure 8 Suction controlled hydraulic conductivity 

 

4. Discussion 
 

Properties of composite geomaterials are controlled by their quartz fragment’s mean size, shape, grading 

and the packing state (i.e. microfabric). From a micromechanical perspective, assuming a constant void 

ratio, a variation in clay content in sand-bentonite system will rebalance the macro- to micro-pores 

volume ratio. The subsequent alteration in the packing state however is controlled by sand particles 

shape and sorting. This section will chiefly examine the evidence as to whether the ‘Small Clay – Large 

Clay’ conceptual model proposed in Jefferson and Smalley (1995) - and had been crystallized before by 

many, unconsciously perhaps - might explain the physio-mechanical and hydro-mechanical properties of 

sand-bentonite systems too.  

4.1 Physio-Mechanical Characteristics 

At low clay contents (i.e. ‘Small Clay’), sand particles shape/grading were found not to have any control 

on the compression index, and only a marginal control on the swelling index of soils. This was attributed 

to the implications of particles’ interlocking and dominant frictional behaviour of soil in at low clay 
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contents. The interlocking is supplied by clean sand particles in direct contact, as clay fragments in ‘Small 

Clay’ system tends to be mainly accommodated at macro-pore phase. This layout also led to higher 

orders of optimum water content for ‘Small Clay’ specimens regardless of particle shape, as bulk water 

extends from micropores into macro-pores within inter-assemblage spaces. 

The threshold between frictional and non-fictional soil behaviour has received considerable attention. 

Jefferson and Smalley (1995) used an R-diagram framework to show soil behaviour is predominantly 

frictional when the ‘bond to weight ratio R’ drops to orders less than 1. They also claimed that for soils 

with an R≥1, the behaviour remains predominantly frictional and that increasing clay content initially 

produces short-range bonds (i.e. ‘small clay’ category). More recently, Assadi-Langroudi (2014) showed 

for loessic soils that soils with clay contents lower than 30% fall in the ‘small clay’ category. They surveyed 

the effect of particle shape on compressibility of clayey silts (with sub-angular silt grains), using transient 

loading-unloading oedometric experiments. For ‘small clay’ soils, they showed that the slope of the 

rebound line (swelling index) only marginally changes on varying clay content (6.3% and 6.2% rebound for 

5% and 20% clay content). From a Double Porosity Concept perspective, an excess negative pore water 

pressure forms upon unloading and subsequent decrease in net stress (also see Fredlund and Rahardjo, 

1993). This generates a pressure gradient, allowing pore water to flow from the macro-pore spaces into 

the micro-pore spaces. Clay intra-lattice spaces expand, pushing neighbouring quartz grains to move 

apart and triggering an elastic rebound. For testing specimens used in this study fit the ‘small clay’ class, 

clay platelets can be found in form of coagulate units at the sharp contact points of clean sand grains (Fig 

2b, 3). Upon unloading the elastic rebound takes place predominantly due to dilation. Clay coagulates 

expand on absorbing the macro-pore water into macro-pore spaces (Fig 2b). 

On transition of composite soils to ‘Large Clay’ from ‘Small Clay’, large strain stiffness and strength 

increase, due to the formation of long-range bonds. The latter bonds are stronger in presence of coarser 

angular sand fragments of well-grading. Whilst grain asperities enhance the strength of the composite 

materials, higher angularity also leads to greater degrees of swelling potential/pressure, volumetric, axial, 

and diametric shrinkage strains on moving from ‘Small Clay’ to ‘Large Clay’. These observations were in 

agreement with relatively greater void ratios measured for specimens with sub-angular sand particles 

(‘Large Clay’) on the drying path.  

4.2 Hydro-Mechanical Characteristics 

The AEVs in specimens with sub-rounded well-sorted sand were found to be greater than AEVs in 

specimens of similar clay content but sub-angular poorly-sorted sand. For a constant total volumetric 

water content, composite soils with sub-rounded well-sorted sand fragment tend to have lower micro-

level volumetric water content (  ) than that in identical composite soils with sub-angular poorly-sorted 

sand fraction. Air enters the macro-pores as    tends to the residual. The air entry values derived from 

the Fredlund and Xing (1994) model are directly related to clay content in specimens containing sub-

rounded well-sorted sand. This is consistent with the direct relationship established between liquid limit 

and clay content in presence of sub-rounded sand particles, and infers a close link between clay coating 

quality, particle shape, and the water retaining capacity. The relatively greater number of desiccation 

cracks in sand-bentonite composites with fine sub-angular sand (see Fig 6d) agrees with the decrease in 

the AEV from 23.2% to 21.2% on increasing bentonite content. The van Genuchten (1980) model could 
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not establish the links between particle shape and AEV, thereby was less compatible with composite bi-

modal soil systems, where particle shape plays a key role.  

Figure 9 illustrates the variation of void ratio with suction for testing specimens on the drying path. On 

examining Figure 9 in conjunction with Figure 7, the matric suction at shrinkage limit was approximated 

to fall within 1300 to 2100kPa range for specimens with sub-rounded sand fragments, and 110 to 

3500kPa range for specimens with sub-angular sand fragments. The suction at shrinkage limit is directly 

correlated with clay content.  

 
Figure 9 Variation in void ratio with suction on the drying path 

 

5. Conclusion   
Although previous studies have suggested for Sand-Bentonite buffer systems that sand’s size and shape 

almost always control the hydromechanical properties of geo-composite materials, this study 

demonstrates clear evidence for a threshold clay content below which size, shape, and sorting of frame 

elements (i.e. sand) have a marginal control; This threshold clay content is here demonstrated to induce 

two types of discretely different packing state.  

Core to understanding the behaviour of bi-modal composite geomaterials is a knowledge of structure-

based and suction-related physical, mechanical and hydraulic properties. An experimental programme 

was designed and performed to survey links between hydromechanical properties and microstructure for 

compacted sand-bentonite mixtures. Experimental results were presented for four main soil 

compositions commonly used in clay liner systems: compacted specimens of sand-bentonite made up of 

two different sand types (in shape, size and sorting) and bentonite content in range of 15 to 25%. A 

comparison shows that there is a fair measure of agreement between the findings here and similar 

previous published attempts. Sivapullaiah and Sridharan (1985) argued that there is more to sand particle 
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shape than sand particle size. It merits some discussion because it is possible that whilst grain size is 

indeed critical in determining the behaviour of sand-bentonite composite mixtures, over-emphasis on 

particle size and taking a purely macro-mechanical approach, deflects attention from the central fact that 

shape, size, sorting and fine-fraction combined control the hydro-mechanical response of composite 

geomaterials. 

Comprehensive experimental analysis of four sand-bentonite mixtures have differentiated two types of 

composite geomaterials, ‘Small Clay’ and ‘Large Clay’. ‘Small Clay’ composite soils are frictional as 

macropores house the clay coagulates, thereby, sand size, shape, and sorting gains only marginal 

importance in the order of optimum compaction water content, compression, rebound, shrinkage, and 

swelling properties, as these are dominantly controlled by the clay fraction of soils. Sand-Bentonite 

mixtures are however bi-modal (in particle and pore size distribution), thereby exhibiting structure-based 

hydromechanical properties when unsaturated. These enhance the control of sand size, shape and 

sorting on air entry value, hydraulic hysteresis, hydraulic conductivity, and suction at shrinkage limit. As 

such, the pattern, likelihood, and order of desiccation cracks in compacted sand-bentonite fills can be 

moderated by informed design of sand fraction, that includes sand size, shape and sorting as well as mass 

content. At high clay content and ‘large clay’ composites, sand with angular shape has higher 

compression and swelling index, constant volume swelling pressure and swelling rate, unconfined 

compression strength and large strain stiffness. Angularity decreases the shrinkage limit, saturated and 

unsaturated hydraulic conductivity, and lowers the air entry value. Presence of angular sand fragment 

adds to the likelihood and extent of desiccation cracking, increases the shrinkage strains (axial, diametric 

and volumetric), and decreases the shrinkage limit and minimum void ratio. The effect of sand’s particle 

shape on soil’s consistency limit is dependent on the clay content. A summary of findings from this study 

is schematically presented in Fig. 10.  
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Figure 10 Dependency of hydromechanical properties on particle shape  
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Highlights: 

 At a clay content range, sand shape/sorting control the Sand-Bentonite properties  

 Sand-Bentonite mixtures are bi-modal thereby having structure-based properties  

 Informed design of sand fraction will limit the formation of desiccation cracks 
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