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Abstract—Stress can be described as an alteration in our 
body that can cause strain emotionally, physically, or 
psychologically. It is a reaction from our body to something 
that demands attention or exertion.  It can be caused by 
various reasons depending on the physical or mental activity of 
the body. Commuting on a regular basis also acts as a source of 
stress. This research aims to explore the physiological effects of 
the commute with an application of a machine-learning 
algorithm. The data used in this research is collected from 45 
healthy participants who commute to work on a regular basis. 
A multimodal dataset containing medical data like biosignals 
(heart rate, blood pressure, and EEG signal) plus responses 
obtained from the questionnaire PANAS. Evaluation is based 
on the performance metrics that include confusion matrix, 
ROC/AUC, and classification accuracy of the model. In this 
research, several machine learning algorithms are applied to 
design a model which can predict the effect of a commute. The 
results obtained from this research suggest that whether the 
interval of commute was small or large, there was a significant 
rise in stress levels including the bio-signals 
(electroencephalogram, blood pressure and heart rate) after 
the commute. The results obtained from the employed machine 
learning algorithms predict that heart rate difference before 
and after commute will correlate with EEG signals in 
participants who have self-reported to be stress after the 
commute.  The random forest algorithm gave a very promising 
result with an accuracy of 91%, while the KNN and the SVM 
showed the accuracy of 78% and 80% respectively.  

Keywords—stress assessment, commuting, EEG, heart rate, 
blood pressure, wearable device 

I. INTRODUCTION  

Commutes to work are an unavoidable source of stress 
for many, as they can pose a risk to their physical and mental 
health and stress can also decrease the performance at work 
[1]. The ability to regulate one’s stress is an essential part of 
life and being aware of one’s level of stress is crucial for 
making informed decisions on how to alleviate stress such as 
allocating time to wind down. Stress can result through 
mental, physical, or emotional responses to unfavourable 
events that happen in our surroundings. Stress can result in a 
number of serious illnesses and cumulative stress can induce 
anxiety, cognitive impairments, irritability, fatigue, 
depression, social isolation, low self-esteem, immunological 
diseases, and many other health conditions [2]. Stress is also 
linked to cardiovascular disease due to lower heart rate 
complexity [3]. 

Electroencephalogram (EEG) helps in monitoring and 
measuring the various electrical processes in the human brain 
[4]. EEG signals are the representation of the electrical 
activities in the brain. These signals can be recorded and 
employed to detect various mental diseases such as stress. 
EEG signals are collected using non-invasive devices which 
use sensor probes placed on the scalp. These devices record 
the digital samples of the electrical activity detected on the 
surface of the head. However, due to being unintrusive and 
detecting signals from such a distance from the brain a lot of 
noise and interference can be recorded as well. Therefore, it 
is necessary to clean data rigorously employing filters to 
remove noise and increase signals to noise ratio.  

Heart rate is a crucial indicator when looking at levels of 
stress. The normal adult heart rate values lie between 60 and 
90 beats per minute [5]. Many recent studies show that heart 
rate is one of the factors to identify the stress. Stress can 
affect on several fundamental control mechanisms of stroke 
volumes such as diastolic function and systolic function, 
which can raise our heart rate and increase our BP [6]. 
Recent studies have developed various technologies to 
recognize stress levels. The stress level can be determined by 
several variables, including BP, heart rate (HR), pupil 
diameter, heart rate variability (HRV), and cortisol [7]. 

This research is focused on the investigation of 
identifying stressful commutes using the correlation between 
the difference in heart rate pre-commute and  post-commute 
and EEG readings in subjects that have experienced stressful 
commutes. The data entries are paired in accordance with our 
hypothesis and a form of control that only considered EEG 
data and stress labels to show the viability of accounting for 
EEG Beta low and heart rate correlation. The hypothesis was 
used to determine the effect of commuting on HR and EEG 
beta low signal correlation to predict stressful commutes. 

Participant stress was determined by comparing the 
participant’s positive PANAS score before and after the 
commute. If the participant’s positive score had dropped 
after their commute, then an assumption was made that 
something during their commute had induced stress and 
resulted in a decreased positive PANAS score. 

This allowed for the hypothesis to be structured as 
follows “It is expected that heart rate difference will correlate 
with EEG signals in participants who have self-reported to be 
stressed”. 



II. LITERATURE REVIEW 

Stress is a common physiological response experienced 
by people frequently in our daily life due to their 
surroundings [8]. Stress will rise when people feel 
challenged or threatened. It makes people feel difficult to 
adapt to and balance both the internal and external 
environment [8]. EEG technology has been designed to 
monitor the stress level of people using brain signals [4]. The 
autonomic nervous system (ANS), which is made up of the 
antagonistically controlled sympathetic nervous system 
(SNS) and parasympathetic nervous system (PNS), is also 
known to be stimulated abnormally by stress[9]. Numerous 
cutting-edge wearable technologies such as Olive, Breath 
Acoustics, and Spire have been developed to measure the 
stress level in our daily lives. [8].  

An offline LabView-based model was designed to 
analyse the EEG signals to monitor the stress level [4]. That 
model used a 1-channel EEG headset to record EEG and an 
mobile application was used to capture the recorded EEG 
signals. Their result shows that the Beta band of EEG will be 
higher than the Alpha band when people are stressed.  
Similar research was undertaken by Jaun and Ioannis where 
affect, mood, personality, and social context (individual vs 
group setting) were predicted using EEG signals and PANAS 
form [9]. This was achieved employing a SVM approach 
where fractal dimension features were extracted per EEG 
band as well as differential entropy per EEG band. Their 
literature indicated that these features were related to 
participant's emotional responses. They approached two 
scenarios that formed their dataset labels. Their results 
produced an accuracy of 68% using SVM with radial basis 
function with their arousal scenario and an accuracy of 61% 
using SVM with linear kernel function applied to their 
emotional valence scenario. 

Convolutional Neural Networks are one of the popular 
deep neural networks showing promising result in image 
classification in the recent decade [10]. The human visual 
cortex, whose layers of neurons form maps of features that 
later layers use to build ever more complex features, is the 
biological model for CNNs. It uses convolutional filters, also 
referred to as kernels, to create feature maps, these feature 
maps are created by moving a grid over the matrix 
(Generally from top left to bottom right, horizontally layer 
by layer) and performing a chosen filter. These feature maps 
are then subsampled using a grid in the same manner but this 
time using a pooling rule, for example, max pooling. Max 
pooling examines all individual values within the grid and 
takes the highest value to create a down-sampled feature 
map. The process of using a kernel to produce a feature map 
can be expressed as the sum of the element-wise product of 
two matrices, the target image, and the kernel respectively 
[11]. 

Recurrent Neural Networks (RNN) are neural networks 
that contain recurrent units and are used to learn temporal 
features relating to sequence and order. Sepp Hochreiter and 
Jürgen Schmidhuber created Long-Short-Term Memory 
units in 1997 in an effort to address the vanishing gradient 
problem. These units are used in modern RNNs [12]. Each 
LSTM unit feeds into the next as a directed graph while also 
feeding into itself allowing it to remember the order of inputs 
that have gone through it. LSTM networks have shown good 
results in tasks where the order is a key component such as 
handwriting recognition and speech recognition. 

Features are attributes that classes of objects share and 
can potentially be grouped by. Machine learning 
classification techniques aim to group objects by common 
features employing pattern recognition. One of the well-
known machine learning methods that can perform well in a 
range of applications is the support vector machine (SVM) 
[13]. SVM is like linearly separable machine learning 
techniques such as linear regression but instead, they use a 
non-linear hyperplane to do so. Which an SVM is training 
the hyperplane is fit to separate the data in N dimensions 
where N are the features. Relatively they perform very well 
on classification problems that are low on training samples. 

Wavelet transforms using different wavelets and their 
wavelet coefficient outputs have shown to be an effective 
means for EEG signal classification [14], [15]. Wavelets are 
used to define a signal through scaling and shifting to 
represent an approximation of a signal, like how the Discrete 
Fourier Transform can be used to approximate a signal using 
sinusoidal waves.  

K-fold cross-validation is common validation method 
that involves randomly permuting the dataset label pairings 
and dividing the resulting permutation into K many groups. 
The K many groups will be divided into training and testing 
portions, with the possibility of excluding N many K groups 
to further reduce bias. This is performed for all K groups 
where a model is fit in accordance with the random 
permutations of train and test data. The K groups and models 
should be kept completely isolated so there is no data 
leakage. This results in K many models being trained, and 
the accuracy is given as the mean accuracy of all the models, 
additionally, statistics such as mean confusion matrices or 
confusion matrices that include all the correct/false positives 
and negatives can be generated from multiple models. If 
performed with a K large enough can make a machine 
learning model almost deterministic as the result will 
converge towards the true accuracy given a dataset. 

EEG Beta Low power signals were broken down into 
their intrinsic mode functions using empirical mode 
decomposition. A function that satisfies the following 
requirements is said to have an intrinsic mode function. First, 
the dataset's extrema and zero-crossings must either be equal 
or have value differences of no more than one. Second, the 
envelope's mean value, which is determined by the local 
maxima and minima, must remain zero. Since empirical 
mode decomposition is symmetric with respect to 0 as 
specified in the second requirement, it is most frequently 
employed for Hilbert spectrum analysis[16]. 

Hilbert-Huang Transform uses the EMD to decompose a 
signal into intrinsic mode functions. Doing so allows for 
each intrinsic mode function to be analysed and produces an 
instantaneous frequency spectrum of the intrinsic mode 
functions [16]. Hilbert-Huang Transform has been used 
previously to pre-process EEG signals in order to improve 
the signal to noise ratio and enable meaningful features to be 
retrieved by machine learning methods such as CNN. EEG 
signals are non-stationary and are a good example to use 
HHT to extract time-frequency features. 

Similarly, research was conducted to study how the OM 
mantra affects the brain, aimed to observe delta waves within 
23 mediating test subjects using SVM, which classifies the 
presence of delta band brain waves by using statistical 
features from the recorded EEG signals. [17]. To investigate 



task-specific filters for categorization, an automatic sleep 
stage scoring system with single-channel EEG and 
convolutional neural networks was developed [18]. They 
achieved a mean F1 score of 81%, an individual sleep score 
of 82% and an overall accuracy of 74%. The results were 
gathered by using 20-fold cross-validation. The sleep stages 
which they classified included N1, N2 and N3 non-REM 
sleep, REM sleep and wake. 

Hybrid deep neural networks are used in a research paper 
to classify brain EEG signals to recognize human emotional 
states. A hybrid network is composed of convolutional and 
recurrent neural networks [18]. The EEG signals were 
classified into four separate classes, high/low arousal, and 
high/low valence. Using this architecture, they were able to 
achieve 75.21 accuracies. 

The non-invasive brain-computer interface was designed 
by a group of researchers to detect and classify human 
mental states using EEG signals [20].  In that research paper, 
EEG signals were used to classify the pilot’s mental states 
while flying during continuous decoding. Seven pilots' EEG 
data were gathered in a variety of simulated flight scenarios. 

A new kind of EEG classification network was proposed 
in a study to increase classification accuracy by end-to-end 
learning of the time and spatial aspects of EEG data[21]. The 
techniques presented describe an architecture that achieved 
an accuracy of 77.9% motor imagery, 89.91% and 88.31% 
for emotion classification. Similarly, an EEG classification 
method was proposed for classifying brain action states with 
a focus on advancing brain-computer interfaces and 
prosthetic control which employs the feature priority analysis 
and CNN [14]. In this method, EEG signals were classified 
using an already trained CNN known as AlexNet. 

 An EEG signal-based emotion recognition model was 
designed using the empirical mode decomposition method 
(EMD) to classify human emotion states using different 
machine learning techniques, [8]. SVM, linear discriminant 
analysis and Naive Bayes classifier were applied to those 
EEG data. EMD was used to separate the EEG signals into 
approximations of the intrinsic mode functions that make up 
the original signal. 

III. IMPLEMENTATION 

This study employs various machine learning techniques 
which are applied to design a model which can predict the 
stress level of humans after commuting using EEG signals. 
Receiver-operator characteristic (ROC) curve or AUC 
statistics and Confusion matrix were implemented to 
calculate the performance of the designed model. For each of 
the techniques, the data was first pre-processed dividing into 
training and testing data for each of the algorithm to validate 
the hypotheses. For the measured EEG Beta Low signal data 
there was only one band recorded which was while the 
participants were commuting to work. This posed a 
limitation where there was no discrete measurement of the 
participant’s EEG before the commute. From this, it was a 
reasonable assumption to presume that the first 10% of the 
EEG Beta Low signal data was pre-commute as the 
participant was still in the mindset of pre commute and as 
such the first 10% of the EEG signal data was used as Pre 
commute while the latter 90% was used for post commute. 
EEG recording was started once they are ready to start the 

commute. Heart rate and PANAS data were collected before 
starting the EEG recording. 

Two label sets were created, the hypothesis label set and 
the stress label set. The hypothesis label set sets out to try 
and show the correlation between EEG beta low brain waves 
and heart rate in participants who are stressed and grouping 
participants by the hypothesis condition will allow for the 
hypothesis to be tested. The stress label was used as a control 
to be able to compare the difference between the hypothesis 
labelling and classification based solely on stress. A 
participant was considered stressed if their positive PANAS 
score had decreased over the course of their commute. 

A. Feed Forward Neural Network 

Feed-forward neural networks also known as multi-layer 
perceptron are a very fundamental machine learning 
technique and are the basis of deep learning. ANNs are 
function approximators and can be used to fit a function to 
map a specific input to a specific output. ANNs are based 
loosely on biological neurons that pass on signals at different 
rates per node and can adaptively change how much signal 
gets passed on. The ANN architecture used was very simple 
using 9 input neurons (the same number as the number of 
features) with a single latent layer containing 10 neurons. 
The same data and label sets were used as with the SVM. 
The training, testing and validation split was 70%, 15%, and 
15% and achieved the accuracy as shown in Fig. 1 and Fig. 
2. We have used the train, test, and validation matrices. Test 
dataset is used to provide an unbiased evaluation of a final 
model fit on the training dataset.  

 
Figure 1. A confusion matrix to depict the results of the SVM trained using 
EMD values and hypothesis labels. 



 
Figure 2. Confusion matrix to depict the results of the SVM trained using 
EMD values and stress labels. 

B. Support Vector Machine 

To train the Support Vector Machine, nine statistical features 
were chosen from the dataset, seven of these features were 
extracted from the EEG Beta Low signals. The seven 
statistical features as band power, interquartile range, 
kurtosis, mean, median, standard deviation and variance 
were chosen from the EEG Beta Low signals. 
 

In this research, heart rate, blood pressure and EEG 
signals are collected from participants during their commute 
to work. Heart rate and blood pressure are two very relevant 
features in relation to human stress as they are correlated 
with stress levels [23]. The dataset contains before and after 
reading for HR and BP. 

Using the pre-commute and post-commute HR, a heart 
rate difference value was calculated for each participant 
describing the increase or decrease of the participant's heart 
rate after the participant’s journey.  

Similarly, systolic and diastolic blood pressure were 
recorded before and after the commute. Systolic blood 
pressure refers to the amount of pressure in the circulatory 
system when the heart muscles are pumping blood through it. 
Diastolic blood pressure refers to the amount of pressure in 
the system after one cardiac cycle, and measures the pressure 
in the system when the heart is in the brief period of rest in 
between cardiac cycles. 

All the statistical features extracted were normalized with 
respect to the values of their respective categorical set. 
Normalization of the feature variables allows for each 
statistical feature to hold equal weight when being used 
within machine learning models. Without normalization, 
situations are likely to occur where a feature has a much 
larger numerical value than another such as EEG brain signal 
values which are normally measured in microvolts and could 

be in the thousand and heart rate difference pre-commute and 
post-commute will be single or low double digits. 

Firstly, a label set was created using the hypothesis as a 
condition where if beta low after commute was greater than 
beta low before commute and the participant was stressed, 
they were labelled as positive in accordance with the 
hypothesis. If the participant's beta low was lower after 
commute compared to beta low before commute and the 
participant was not stressed, they were also labelled as 
positive in accordance with the hypothesis as both variables 
are correlating with the self-reported PANAS stress variable. 
As stated previously stress labels were created using the 
PANAS self-report, if the participant’s positive score had 
decreased after the commute, then it was assumed that they 
had a stressful commute in some way. 

The outputs of the SVM were validated using K-fold 
cross-validation, which was carried out at K of 10 to account 
for any potential bias or fluctuation. The SVM consistently 
gave the same accuracies at K of 10. The Radial Basis 
Function was the training function that was utilised to fit the 
SVM. 70% of the data were from the train, and 30% from the 
test. 

C. Predicting stressed state using PANAS stress labels 

As a form of control for the experiment, all the previous 
models were also trained using a dataset that contained the 
same data but was differently labelled. This dataset used the 
same EEG beta low band data but was labelled positive and 
negative in accordance with a stressful commute based 
solely on the participant’s pre and post PANAS scores. 
Doing so allows for the observation of the effect of labelling 
data in accordance with EEG beta low and heart rate 
correlation and provides a base comparison where the base 
case does not consider heart rate. Fig. 3 and Fig. 4 show the 
SVM trained on power values with the two label sets. Here 
the hypothesis accuracy is considerably lower than the stress 
label accuracy.   
 

 
Figure 3. Confusion matrix to depict the results of the SVM trained using 
raw power values and stress labels. 



 
Figure 4.A confusion matrix to depict the results of the SVM trained using 
raw power values and hypothesis labels. 

 

D. K-Nearest Neighbor 

A K-nearest neighbour classifier was trained using the 
four datasets and 2 labels resulting in 8 models being trained. 
The same datasets and label sets were used to train the KNN 
classifier. KNN classifiers use a K number of neighbours to 
classify classes. A K number is given where k is the number 
of the closest nodes to look at and then decide what class the 
node belongs to by the largest number of closest nodes of a 
specific type. Distance between nodes is usually the 
Euclidian distance. For this classifier, the K number chosen 
was 5. The KNN performed well with an accuracy of 83.75% 
and 79.7% for hypothesis and stress label respectively. 

IV. RESULTS AND DISCUSSION 

The accuracy for each model was calculated using: 

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ((𝑇𝑃+𝑇𝑁) / (𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁)) × 100%   (1) 

This method for calculating accuracy is a much more 
robust method of quantifying model performance as it 
considers all possible outcomes of a binary classifier as 
opposed to the more general true positives divided by total 
samples as shown in equation (1). 

The SVM trained with the lowest accuracies out of the 3 
models and trained with the lowest accuracy of 61.85% using 
stress labels and 66.2% for hypothesis labels. The ANN 
trained very well overall, producing good accuracy for both 
stress and hypothesis labels with the hypothesis labels 
scoring 87.50% The KNN performed well on average for all 
datasets and labels with an accuracy of 83.75% for 
hypothesis labels and 79.7% for stress label. 

Overall, the ANN trained with the highest accuracy for 
both stress and hypothesis labelled data with the hypothesis 
labels reaching 87.5% as shown in the Table I below. 

 

 

 

TABLE I. MACHINE LEARNING TECHNIQUES WITH ACCURACY FOR 
HYPOTHESIS AND STRESS LABEL. 

Model Validation Accuracy 

SVM, EMD IMF 1, Hypothesis label 66.20% 

SVM, EMD IMF 1, Stress label 61.85% 

ANN, EMD IMF 1, Hypothesis label 87.50% 

ANN, EMD IMF 1, Stress label 80.04% 

KNN, EMD IMF 1, Hypothesis label 83.75% 

KNN, EMD IMF 1, Stress label 79.7% 

V. CONCLUSION 

In this study, we used a variety of machine-learning 
techniques to create a smart model that can estimate how the 
commute will affect our bio signals. For classification 
models to be able to classify data there needs to be enough 
distinction and correlation. The hypothesized labels indicated 
participants who were expected to be stressed and the self-
reported stress labels are indications of people who say they 
are stressed. The results are mixed showing some high 
results for both hypothesis labels and stress labels. The 
hypothesis labels had higher accuracies than the three 
models. 

The hypothesis labels performed with the highest 
accuracy using an ANN performing at 87.5%. As the highest 
accuracy attained for each model was with the hypothesis 
labels this is supportive of the hypothesis that Beta Low 
brain waves correlate with heart rate in individuals who are 
stressed. 

Similarly, the outcome of the machine-learning 
approaches also supported our hypothesis, which held that if 
individuals reported a stressful commute, the heart rate 
difference between commuting will be correlated with EEG 
Beta Low power. We have used PANAS questionnaire as a 
subjective self-report quantitative measure. The result 
obtained from the PANAS suggested that there was rise in 
negative effect after the commute. Similarly, the positives of 
participants after commute were less positive after the 
commute to work. 

For future work, more variables could be considered 
when classifying stressful commutes or experimenting with 
identifying the general mood of participants using sequence 
to sequence to predict a participant’s sequence of PANAS 
values from the input of EEG brain signal data. 
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