[bookmark: _Toc7085779][bookmark: _GoBack]S
Supplementary materials for:


In infancy, it’s the extremes of arousal that are ‘sticky’: naturalistic data challenge purely homeostatic approaches to studying self-regulation

1 Supplementary Methods	2
1.1 Demographic details	2
1.2 Autonomic ECG data parsing	3
1.3 Parsing of other autonomic variables	6
1.3.1 Heart-Rate Variability (HRV)	6
1.3.2 Actigraphy	6
1.4 Arousal composite	6
1.5 Home/Awake coding	8
1.5.1 Home/not home	8
1.5.2 Sleeping/waking	8
1.6 Skew in original data	8
2 Supplementary Results	9
2.1 Analysis 1 – alternative control analysis	9
2.2 Replication of Analysis 1 with individual autonomic measures.	10
2.3 Analysis 1 – effect of removing autocorrelation from data	12
2.4 Analysis 2 – analysis at different epoch durations	14




[bookmark: _Toc43815529]1 Supplementary Methods	
[bookmark: _Toc7085780][bookmark: _Toc43815530]1.1 Demographic details

Exclusion criteria were: complex medical conditions, skin allergies, heart conditions, parents below 18 years of age, and parents receiving care from a mental health organisation or professional. We also excluded families in which the primary day-time care was performed by a male parent, because the numbers were insufficient to provide an adequately gender-matched sample. 

Table S1: Demographic details for the sample
	Infant age (days) – mean
	351.9

	                   - SE
	
	4.6

	
Gender (% male)
	39.3

	
	
	

	Infant Ethnicity (%)
	White British
	51.9

	
	Other white
	11.4

	
	Afro-Caribbean
	8.9

	
	Asian, Indian & Pakistani
	10.1

	
	Mixed - White/Afro-Caribbean
	2.5

	
	Mixed - White/Asian
	7.6

	
	Other mixed
	7.6

	
	
	

	Household Income (%)
	Under £16k
	30.4

	
	£16-£25k
	29.1

	
	£26-£35k
	11.4

	
	£36-£50k
	12.7

	
	£51-£80k
	8.9

	
	>£80k
	7.6

	
	
	

	Maternal education (%)
	Postgraduate
	34.2

	
	Undergraduate
	49.4

	
	FE qualification
	2.5

	
	A-level
	3.8

	
	GCSE
	5.1

	
	No formal qualifications
	2.5

	
	Other
	1.3














[image: ]
Figure S1: photographs of: a) equipment used b) a child wearing the equipment

[bookmark: _Toc43815531][bookmark: _Toc7085782][bookmark: _Toc7085781]1.2 Autonomic ECG data parsing 

ECG was recorded at 250Hz. Due to technical problems with the ECG recording leads (N=9) and to problems with attaching the ECG recording electrodes securely (N=2), the ECG data were unavailable for 11 of the 93 participants originally tested. 

Analysis of the Inter-Beat Intervals (IBIs) was performed using custom-built Matlab scripts. These scripts were designed through an extensive piloting process to be optimal for the ECG device used for this study. First, data were parsed using a simple amplitude threshold (see e.g. (Aurobinda, Mohanty, & Mohanty, 2016) for a similar approach), with R peaks identified as moments where the raw ECG signal exceeded the threshold value. Initially, the threshold value was set high; the same process was then repeated at incrementally decreasing thresholds. 

At each threshold value, the R peaks identified were automatically subjected to the following checks. These threshold values were set following extensive piloting and visual inspection of our infant ECG data using the visualisation shown in Figure S2. i) minimum temporal threshold: does the R peak occur at a time interval of greater than 300 msecs since the previous R peak (corresponding to a heart rate of 200 BPM); ii) maximum temporal threshold: does the R peak occur at a time interval of less than 850 msecs since the previous R peak (corresponding to a heart rate of 70 BPM); iii) maximum rate of change: when we calculate the R to R interval between this peak and the subsequent peak, and compare it with the R to R interval between this peak and the previous peak, is this difference less than 300msecs? In setting these threshold values, careful attention was paid to visual inspection to determine the maximum and minimum ‘genuine’ heart rates observed in our infant data; in setting the maximum rate of change criterion, careful attention was paid to identify the maximum rate of vagally mediated heart rate changes in infants.

Figure S2 shows a sample screenshot from the Matlab processing algorithm that was used. Two separate types of artefact are shown. The first, highlighted by the call-out figures at a and d, are instances where the ECG signal for a particular beat was lower than the threshold, and a genuine beat was missed. It can be seen that in both instances, the R peaks either side of this missing beat have been automatically identified, and excluded. These artifacts were identified based on the maximum temporal threshold criterion in example a and d, and additionally based on the maximum rate of change criterion in example d. The second, highlighted by the call-out figures at b and c, are instances where the ECG signal exceeded the amplitude threshold, and an incorrect R peak was identified. In both instances, the incorrect beat has been identified based on the minimum temporal threshold criterion, and the R peaks either side of this incorrect beat have been identified and excluded. Please note also that the sample below has been selected in order to demonstrate how the program identified the most common artefacts in the data. Overall, the occurrence of both types of artefact in our data is relatively rare, as is shown in Figure S3, below. 

These three criteria were applied separately to data after it had been parsed at each threshold value. Following this, at each threshold value, the proportion of candidate R peaks that were rejected was compared with the proportion of candidate R peaks that passed all three criteria. The threshold value with the lowest proportion of rejected candidate R peaks was chosen as the threshold used for that participant. 

In addition, and as a further check, a trained coder who was naïve to study hypotheses double coded a randomly selected subsample of 1000 beats for 20% of the participants, coding them as genuine or artefactual. Cohen’s kappa was calculated to measure inter-rater reliability between the manual coding and the automatic coding, based on the best-fitting threshold level. This was found to be 0.97, which is high (McHugh, 2012).  

The same process was also performed to a second derivative of the raw ECG signal after it had been smoothed using the Matlab algorithm fastsmooth.m (see Figure S2). However, when applied to our data this process produced a higher rate of R peaks identified as artefactual compared with the parsing described above, and so it was not used. 

[image: ]
Figure S2: Sample screenshot from ECG parsing algorithm. 60 seconds’ data is shown. From top to bottom: i) raw ECG signal. Coloured dots show the results of the three checks described in the main text, below (see legend); ii) smoothed second derivative of ECG signal. This measure was not used as our pilot analyses found it to be less effective than applying the processing to the raw signal; iii) raw (unprocessed) actigraph data. This information was only used for visual inspection, and was not used in parsing; iv) RR intervals (in BPM), with rejected data segments excluded. 

Figure S3 below shows a histogram of the proportion of candidate R peaks rejected for each participant, based on the best-fitting threshold value. The median (st. err.) is 1.07 (0.36) % data rejected. This relatively low figure was achieved through very close attention during the piloting phase to the selection and placement of the ECG electrodes, to the design of the device, and the gain settings on the recording device.


[image: ]
Figure S3: Histogram showing the proportion of rejected R peaks (as identified using the three criteria described above).


[bookmark: _Toc43815532]1.3 Parsing of other autonomic variables 

[bookmark: _Toc43815533]1.3.1 Heart-Rate Variability (HRV)
HRV was calculated using the PhysioNet Cardiovascular Signal Toolbox (Vest et al., 2018). In these scripts, which performed a completely separate analysis of the ECG data, a 60-second window with an increment of 60 seconds was implemented, and the default settings were used with the exception that the min/max inter-beat interval was set at 300/750 ms for the infant data and 300/1300 ms for the adult data. The Root Mean Square of Successive Differences (RMSSD) measure was taken to index Heart Rate Variability, but other frequency domain measures were additionally inspected and showed highly similar results, as expected (Vest et al., 2018).

[bookmark: _Toc43815534]1.3.2 Actigraphy
Actigraphy was recorded at 30Hz. To parse the actigraphy data we first manually inspected the data, then corrected artifacts specific to the recording device used, then applied a Butterworth low-pass filter with a cut-off of 0.1 Hz to remove high-frequency noise, and then averaged from three dimensions into one. Actigraphy data were available for all participants tested. 


[bookmark: _Toc43815535]1.4 Arousal composite

Previous research has shown significant patterns of tonic and phasic covariation between different autonomic measures collected from infants (Wass, Clackson, & de Barbaro, 2016; Wass, de Barbaro, & Clackson, 2015). Here, we include plots showing that the present dataset replicated and extended these results. The plots only show the sections of the data when participants were at home, comparing sections in which the infants were awake and asleep. Figure S2a shows cross-correlation plots examining the relationship between heart rate and movement. In both waking and sleeping sections the zero-lag correlation is 0.5. Figure S2c shows how these zero-lagged correlations vary on a per-participant basis. S2b shows an illustrative sample from a single participant. Sleeping sections show very low movement levels and lower heart rate. Of note, heart rate and movement do still inter-relate during the sleeping sections of the data (Figure S2c), albeit that the variability in heart rate and movement is lower. Figure S2 d)-f) show similar relationships between heart rate and heart rate variability, illustrating the strong and consistent negative relationships that were observed between these variables, as predicted.  


[image: ]
Figure S4: Illustrating the relationship between the individual physiological measures included in the composite measure. a) Cross-correlation of the relationship between HR and Movement. b) Scatterplot from a sample participant. Each datapoint represents an individual 60-second epoch of data. c) Histograms showing the average zero-lagged correlation between 60-second epochs, calculated on a per-participant basis and then averaged. d)-f) Equivalent plots for Heart rate and Heart rate variability. 

Extensive previous research has identified fractionation, and differentiation, within our autonomic response systems (Janig & Habler, 2000; Kreibig, 2010; Lacey, 1967; Levenson, 2014; Quas et al., 2014) – suggesting, for example that the sympathetic and parasympathetic subdivisions operate, to an extent, in a non-additive manner (Samuels & Szabadi, 2008). Although indubitable, these findings should be seen as rendering incorrect our treatment here of autonomic arousal as a one-dimensional construct. Like many other arguments concerned with general versus specific factors, the question is rather one of the relative proportions of variance that can be accounted for by a single common factor in comparison with the variance accounted for by the sum of specific factors (Graham & Jackson, 1970) (see also (Calderon, Kilinc, Maritan, Banavar, & Pfaff, 2016)).

As a result of these considerations, the three autonomic measures were collapsed into a single composite measure for Analysis 1. To do this, the actigraphy data was first subjected to a log transform (Thomas & Burr, 2008), to correct the raw results, which showed a strong positive skew (Wass et al., 2016; Wass et al., 2015) (see also SM section 1.6, below). Second, all three variables were converted to z-scores. Third, the HRV data were inversed because of the overall negative relationships noted between HRV and the other two measures (see Figure S4). Fourth, the three z-scores were averaged. 

On the occasions where heart rate data were excluded due to artifact, data from actigraphy alone was used for the composite variable. Note that these occasions were relatively rare (accounting for a median ~=1% of all data - see Figure S3), and that the zero-lag cross-correlation between movement and heart rate across all available data was high (~=.5 – see Figure S4).  
  

[bookmark: _Toc43815536]1.5 Home/Awake coding

[bookmark: _Toc43815537]1.5.1 Home/not home 
Coding of when participants were at home was performed using the GPS monitors built into the recording devices. The position of the participant’s home was calculated based on the postcode data that they supplied, and any GPS samples within a 50m area of that location were treated as Home (corresponding to the accuracy of the GPS devices that we were using). 

[bookmark: _Toc43815538]1.5.2 Sleeping/waking 
To identify samples in which infants were sleeping, parents were asked to fill in a logbook identifying the times of infants’ naps during the day. This information was manually verified by visually examining the actigraphy and ECG data collected, on a participant by participant basis. Actigraphy, in particular, shows marked differences between sleeping and waking samples (see Figure 1 in main text), which allowed us to verify the parental reports with a high degree of accuracy. N=4 of the participants recorded did not sleep during the day that we were recording. 
 

[bookmark: _Toc43815539]1.6 Skew in original data

One feature of the original data that our control analysis does not exactly replicate is that the original data showed a consistent mild negative skew (see Figure S5). This is because the data were z-scored using all of the data available per participant, per day. The present analyses, however, only examine segments of the data while the participants were at home and awake. Because the sleeping segments that were excluded showed markedly lower overall arousal, the remaining z-scored data showed mean values consistently greater than 0, with a negative skew. We have not replicated this feature of our data in the control analysis, which uses data with the same mean and variance as the original data, but with no skew. However, we cannot see how this feature of our data may have contributed to the observed results. 

In Figure S5 we also include plots of the different individual measures included in the composite variable. We applied the exact same transformations to the data as we did when calculating the composite variable (see section 1.4 above) – i.e., conducting a log transform of the actigraph data and inversing the HRV data. Results show that, generally, all individual measures show the same negative skew as the overall arousal composite – although heart rate data across epoch durations from 1 to 60 seconds do not show the same pattern. 

[image: ]
Figure S5: Violin plot showing mean skew in original data, sorted by epoch bin size. In each case, skewness is shown on the y-axis, and epoch duration on the x-axis. a) overall arousal composite; b) heart rate; c) heart rate variability; d) actigraphy. 


[bookmark: _Toc43815540]2 Supplementary Results
[bookmark: _Toc43815541]2.1 Analysis 1 – alternative control analysis

In addition to the method described in the main text for calculating the surrogate control dataset, an alternative method was also calculated, in which the temporal order of each time series was simply randomised in order to remove temporal interdependencies in the data. The results of this analysis are shown in Figure S6. Overall, as can be seen by comparing the plots of the control data between Figures S6 and Figure 4 in the main text, the patterns observed using the two methods for generating surrogate data are highly similar. The patterns of significant difference between the observed and surrogate data are also highly similar (compare Figure S6d with 4e in the main text). 

[image: ]
Figure S6: Alternative control analysis for Analysis 1, in which the surrogate control data were generated simply by randomising the temporal order of each time series in order to remove temporal interdependencies in the data. a) is equivalent to Figure 4a in the main text; b) is identical to 4c in the main text; c) is identical to 4d in the main text; d) is identical to 4e. 

[bookmark: _Toc43815542]2.2 Replication of Analysis 1 with individual autonomic measures. 

In order to assess whether the results obtained from analysis 1 were contingent on the use of the composite arousal variable, the results from the main analysis were repeated based on the three individual autonomic measures that went into the composite – see Figures S7, S8 and S9. A number of differences between these different individual measures can be seen. These are contingent on the different patterns of autocorrelation present in the different measures: lowest for actigraph and highest for heart rate variability (particularly for the 1, 10 and 30 second epoch durations, given that the measure was calculated using a 60-second moving window). Measures with stronger autocorrelation show flatter U-shaped-curves at shorter epoch durations. However, the feature of interest for this paper is the significant differences between bins 1 and 5 and intermediate bins. This feature is present for all measures, at all but the longest epoch durations, consistent with the pattern noted overall for the arousal composite.  

Also of note, and since heart rate variability is inversely correlated with the other measures (see Figure S4, above), bin 5 of the heart rate variability data will correspond most closely to bin 1 of the heart rate and actigraphy data. However, since the U-shaped pattern is symmetrical, this feature hardly influences our results. 

[image: ]
Figure S7: Same as Figure 4 in the main text, but calculated based on heart rate data alone. 

[image: ]
Figure S8: Same as Figure 4 in the main text, but calculated based on heart rate variability data alone


[image: ]
Figure S9: Same as Figure 4 in the main text, but calculated based on Actigraphy data alone


[bookmark: _Toc43815543]2.3 Analysis 1 – effect of removing autocorrelation from data 

One possibility that we wished to examine was that the autocorrelation present in the data may have influenced our results. To address this possibility, we removed the autocorrelation from the arousal data by fitting autoregressive models and calculating the residuals. We then repeated the main analysis (see e.g. (Feldman, Greenbaum, & Yirmiya, 1999; Feldman, Magori-Cohen, Galili, Singer, & Louzoun, 2011; Jaffe et al., 2001; Suveg, Shaffer, & Davis, 2016) for similar approaches). This analysis was performed based on data binned into 60-second epochs, to minimise computational time. 

First, we plotted the partial auto-correlation (PACF) functions of the arousal data (Fig S10a). The PACF is similar to the ACF (Fig 2d), but at each lag it controls for previous auto-correlations (Chatfield, 2004). Only the lag 1 PACF term was above the threshold conventionally used to indicate significant PACF terms (Chatfield, 2004; Gottman, 1981), indicating that the data show univariate autoregressive tendencies. 

Next, best-fit bivariate polynomials were calculated for each time series independently, in order to remove linear and quadratic trends, and the residuals obtained were subjected to the Dickey-Fuller test to check that they showed stationarity, which they did. The residuals were used in subsequent analyses. Next, in order to remove the autocorrelation component, univariate autoregressive models were fitted to each time series separately, and the residuals were calculated. Figure S10b shows data from an individual participant to which this analysis has been applied. The residuals from these univariate autoregressive models were then used for subsequent analyses. 

The data were then binned using the same process as shown in the original text. Figure S10c shows the same adapted Poincaré plot as shown in Figure 3a in the main text. In this version, it can be seen that the data no longer cluster around the 1:1 line, further confirming that the autocorrelation has been removed effectively.  

Next, the exact same series of steps was applied as for analysis 1 as shown in Figure 4 of the main text.  Only epoch durations of 60 seconds or greater are shown, as the analysis was calculated based on data binned into 60-second epochs. Just as with the data from the individual arousal measures shown in section 2.1 above, it can be seen that the lower autocorrelation present in the data have affected the results of the analyses, but the key pattern of bins 1 and 5 being higher than other bins is still present in the data. 

[image: ]
Figure S10: a) PACF function of the arousal composite, calculated based on 60-second epochs. Error bars show standard error. Red dashed line shows the approximate cut-off for significance of PACF components (Chatfield, 2004). b) Sample plots of raw data from a single participant before and after autoregressive model fitting; c) Adapted Poincaré plot of the data (equivalent to Figure 3a in the main text); d) Equivalent to Figure 4a in the main text. Only epoch durations of 60 seconds or longer are shown, as the analysis was based on data already downsampled to 60 second epochs; e) Equivalent to Figure 4b in the main text; f) Equivalent to Figure 4c; g) Equivalent to Figure 4d; h) Equivalent to Figure 4e; i) Equivalent to Figure 4f. 



[bookmark: _Toc43815544]2.4 Analysis 2 – analysis at different epoch durations

As an additional analysis, we repeated the main analyses from Analysis 2, but using variable epoch durations. The same variable epoch durations were used as in Analysis 1. Results can best be seen by comparing the results from the analysis shown in Figure 5 (which was based on 60-second epoch durations) with those shown here. Although results from the control analyses are not shown here for reasons of space, these all shown the same linear pattern observed in Figure 5f in the main text – i.e., regression to the mean. The key features of interest are the deviations from the pattern predicted by regression to the mean. It the analyses presented in the main text, we noted that extreme low and high bins show lower rates of change than intermediate bins, in contrast to the pattern predicted by regression to the mean. The same pattern can be observed consistently across different epoch durations. At longer epoch durations, these differences are generally no longer significant – most likely because the lower overall number of epochs available is associated with reduced statistical power. It should also be noted – again, consistent with the pattern reported in the main text – that the pattern is generally stronger at extreme low levels of arousal compared with extreme high levels. 
[image: ]
Figure S11: Same as Figure 5, but repeated using variable epoch durations. Results obtained using different epoch durations are shown as separate rows. The left column of plots (vector plots) is equivalent to those shown in Figure 5e in the main plot. The middle column is equivalent to those shown in Figure 5g; the right column is equivalent to those shown in Figure 5i. 
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