

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Editors: Coates, Paul; Thum, Robert
Title: Generative modelling
Alternative title: Generative modelling Workbook
Year of publication: 1995
Citation: Coates, P. and Thum, R. (eds.) (1995) ‘Generative modelling.’ London:
University of East London

http://roar.uel.ac.uk/

generative modelling

Student Workbook

This Generative modelling Workbook was designed compiled and edited by
Robert Thum, UEL School of Architecture, under the direction of Paul Coates,
course director MSc Architecture:Computing & Design.

It was prepared with the assistance of a bursary from the educational develop-
ment initiative, UEL, as part of the MSc Architecture:Computing & Design course
material for part time students.

Acknowledgements

Introduction Paul Coates
 Robert Thum

Autolisp Robert Thum (stair,fern,Gasket)
 Paul Coates (Koch,Wander)
 Miles Walker (blocks Grammar, Latham)

Mini-Pascal Andrew Howe(door, gasket)
 Paul Coates (tree,pythagoras,wander)

GDL Phil Canon (table,tree,blocks)
 Barry Docker(blocks grammar)
Lingo Janet Insull (navigation)
 Paul Coates (tree,koch)

Prepared using AutoCad™ 12,Archicad ™4.5,MiniCad +™ 4.03,Macromind Director
™4.0, Quark Express™,Photoshop™,BBedit.Published by UEL 1995 printed by UEL
printing unit. All software running on Apple Macintosh™ computers.

Warning to Children

Children, if you dare to think
Of the greatness, rareness, muchness,
Fewness of this precious only
Endless world in which you say
You live, you think of things like this:
Blocks of slate enclosing dappled
Red and green, enclosing tawny
Yellow nets, enclosing white
And black acres of dominoes,
Where a neat brown paper parcel
Tempts you to untie the string.
In the parcel a small island,
On the island a large tree,
On the tree a husky fruit.
Strip the husk and pare the rind off:
In the kernel you will see
Blocks of slate enclosed by dappled
Red and green, enclosed by tawny
Yellow nets, enclosed by white
And black acres of dominoes,
Where the same brown paper parcel -
Children, leave the string untied!
For who dares undo the parcel
Finds himself at once inside it,
On the island, in the fruit,
Blocks of slate about his head,
Finds himself enclosed by dappled
Green and red, enclosed by yellow
Tawny nets, endorsed by black
And white acres of dominoes.

 Robert Graves

4

TREMOLETO (Tuscany)

 I went to Tremoleto in the summer of 64. It was a sort of holi-
day and an assignment. The hired villa was actually a small entrance
lodge that sat next to a large dusty building full of decaying eight-
eenth century furniture . I dutifully measured the large house, but
the village was more interesting.
 I took a series of black and white photographs all down the
one and only street. The buildings were placed in a jumbled neck-
lace of stone cubes, and each was different from the others. A pho-
tograph taken from one place would be entirely different from a
photo taken just a few yards away.
 I must say, I wasn’t only interested in architecture, and it was
on the last day that I quickly walked down the main street, tak-
ing photographs at random. Those grey washed out images were
nevertheless a haunting reminder for years of an environment that
seemed to have emerged from a well considered balance between
the people and their building techniques. Not just there, but in
Sienna, Volterra, and once you start looking, practically everywhere
that was untouched by the 'designers'.

Vernacular architecture was better than the real kind, when it came
to everyday stuff.

A Bottom up Approach to Life

The idea that human settlements should have evolved suitable
forms over many centuries was curiously absent from the textbooks
available to a young architectural student in 1963. All the examples
of good design were of plans attributed to some one or other, never
‘anon’. This was not because the authors had never seen or enjoyed
the traditional urban fabric of Europe (there was more of it around
in those days) but because they didn’t think it mattered. It seemed
to me that it did. But nobody had any good ideas about how you
made it. It looked as though nobody wanted to make it anymore
anyway.

Form as Process

Describing the actual form of something in terms of the processes
that lead to its formation sounds like a simple enough idea, but
it was not prevalent in the 1960’s. There were many attempts to

1

i
n

t
r

o

‘Architecture without Architects’

trol would have seemed lax to the mid 20th C developer. The failure
of the conventional top down approach to control was that it didn’t
seem to correspond to the actual social organisation of the people
it was supposed to be housing. What had happened was that ordi-
nary people had surrendered control over more and more aspects
of the design and layout of their houses and land, replacing the
original loose control for more and more rigid hierarchy, until they
became council tenants.
 So the project was to try to demonstrate that this control
could be transferred back again, to allow more room for individual
decisions, and especially to try to define the control in such a way
as not to predefine the actual geometry that might emerge.
 My first attempt was a game that would try to eke out the
forms of such buildings. It depended on a toy roulette wheel (sub-
sequently substituted by a book of random numbers) a 16mm cam-
era and fluorescent self adhesive green and red dots. (This was 1969
after all).

My Algorithm was

1• get a random number from the roulette wheel and say its the
x or horizontal grid coordinate
2• get another random number from the roulette wheel and say
its the y or vertical grid coordinate.
3• If there is room, stick down a luminous sticker at (x y), unless
 doing so would completely block another blob, in which case
 stick down a piece of street.
4• have another go.

The resultant agglomerations were not very convincing, and any-
way it took a long time to get anywhere near the density needed to
start ‘firing’ the rules about overlapping and so on - rather like hav-
ing to wait until everyone gets hotels in Monopoly.

This was time consuming, and seemed in need of automation.

The Idea of Computation

Is that we can define a series of steps which will guarantee the
transformation of the subject from its current state to a defined new
one after the computation. Computers were originally designed

2

not to be specific problem solving machines (like pocket calculators)
but general purpose step followers. With most normal computations
it is the end result we are interested in , but with the sort of compu-
tations that are possible with computers it is now possible to watch
and record the process itself.
 The process of computation , once observed sideways as it
were, shows up all sorts of bumps and nonlinearities, and different
states along the way . Conway’s life game, and Mandlebrot’s sets are
both good examples of a view from the side.
 So one might posit an ideal algorithm for a cluster of buildings
and just watch the actual examples from the side as it were, as some
of the many possibilities of actual arrangements of solid and space,
back yards and porches, shops, workshops and houses.

Computers as anarchy makers. Discuss!

The Reductionist Versus The Expansionist Paradigms.
 That is , it was proposed as a statement about one of the fun-
damental issues in mathematics, that of computability, and not as
an amusing way to create patterns. Classical mathematics evolved
in the days before computers, when the trick was to reduce the
amount of arithmetic to the minimum by a process of logical com-
pression. A mathematical statement is a very concise symbolic rep-
resentation of a whole series of relationships.
 This reductionist approach has been very successful, but there
is a class of problems (to do with infinite series and other ‘irreduc-
ible’ sets)that simply can’t be addressed. It seemed to Conway and
others (Neumann & Ulam) that there was a lot of interesting stuff in
there that classical reductionist maths was overlooking.
 The key thing about their innovation was to explore the effects
of applying some very simple transformation again and again along
the potentially infinite series that arises from some initial set. It is
no accident that ideas about cellular automata arose at the same
time as the development of fast reliable logic machines. In fact the
developments in computing theory that lead to the first practical
general purpose symbol manipulating machines were reliant on the
idea of the cellular automaton itself. Von Neumann is credited with
inventing both the idea of the computer as we know it and the idea
of cellular automata as an interesting area of study.
 The rules for the transformation from state to state are neces-
sarily local; no global rules can be invoked since there is no way

3

i
n

t
r

o

4

North African Town experiment

The Islamic City algorithm is :

You can build anywhere as long as you don’t block out
any existing building's access to the rest of the city.

This algorithm produces culs de sac which are the ultimate rem-
nants of a gradual filling up process. The open space shrinks until
only a small crinkly wiggle of space is left between 2 house deep
wadges. Cross sections through the liver often display similar
shapes. These branching shapes are to be contrasted with recur-
sive branch growing routines, here the branches are the emer-
gent result of the necessities of topology.
 First you get a sprinkle of isolated houses, then clumps
form and the space is broken up into a loose network . If you
keep firing houses at the system these networks can be broken,
it is a luxury to be able to get to everywhere else more than one
way.
 The idea of accessibility in these early experiments was
crudely represented by a row of 'street' cells. It was because eve-
ryone was trying to jet to just that one street that the culs de sac
formed the way they did. It is prohibitlevely time consuming to
test literally whether you can get from anywhere to anywhere
else, so you just see whether everyone can get to one (and the
same) place. This cuts down the search time by many orders of
magnitude.

Result of the Islamic
City algorithm following
the rule: You can build
anywhere as long as you
don’t block out any exist-
ing building's access to
the rest of the city.

of defining the ‘end product’(if there were, then the reductionist
approach would have worked anyway). The only global rules are
artificial restrictions on the size of the series, based on the limita-
tions of the finite machine the expansion is being calculated on.
The 2D life game is a development of the one dimensional example,
where the initial seed is a row of ons and offs - like a binary number.
The next number is created by a rule which substitutes 0 and 1
based on the immediate neighbours of the row above. In the life
game the initial ‘number’ is a two dimensional array of cells, either
alive or dead (1 or 0). The rules are:

If a dead cell has two alive neighbours then it becomes alive;

If an alive cell has three or more neighbours it dies
If an alive cell has less than 2 neighbours it dies

Once you run the life game on a computer you can explore a long
way along the series. Some surprising ‘end results’ were:

Stable states Binary or n cycle stable states

Gliders Eaters
Guns Puffers

The key fact here is that simple local rules can create complex global
outcomes. Randomly seeding the universe with cells usually creates
(perhaps fleetingly) most of these examples of emergent behaviour.

 In the classical world view you take a disparate and complex

situation and attempt to reduce it to a set of expressions, as terse as
possible, thus cutting out tedious and error prone iterative calcula-
tions. This holds good for mathematics, Architecture, music.

In this new world you take a simple function and expand it
into a disparate and complex situation - exactly the opposite.
Mathematicians have been using this paradigm since the 1950’s,
musicians are able to dispense with notation, but architecture is
still stuck in the classical reductionist mould (see any constructive
geometry based modeller).
 The expansionist paradigm has provided us with a way of
looking at form not as a ‘given’ but as emergent. Computers provide
us with the tools to carry out endless experiments.
 Paul Coates

 The purpose of this book is to introduce the idea of com-
puter generative modelling as a means of exploring key ideas in
the design of the built environment, by way of a series of worked
exercises in 3 languages (GDL, MiniPascal and AutoLisp) which go
beyond the standard customising issues to allow experimentation
with the automatic generation of form, or generative modelling.
 These examples are intended to do two things:

1) Explain the basic technical issues, assuming some use of intro-
ductory material provided by the software supplier.
3) Set out some useful concepts for exploring these ideas, such as
recursion, random numbers, shape grammars, cellular automata.
 Essential to the theme of the book is the idea of an algorithm,
and ways of implementing algorithms on a Cad system. The exigen-
cies of computers today means that to get something done we have
to make use of a computer language and do some coding, but it
should be remembered that the code is just a means to an end.

5

i
n

t
r

o

 The life game was invented by a mathematician,
 not a textile designer.

Birth

6

The Alpha syntax village generator

This is based on Bill Hillier’s original
idea of a three state automaton which
attempts to capture the essence of
‘unplanned’ organic village growth in
europe.

There are three types of cell, X,Y, and
‘nothing’. (unlike the life game where
there are two types - ‘alive’ or ‘dead’).
The idea is that there are two types of
space, closed private ‘inside’ space and
open public ‘outside’ space. They are
related such that each bit of private
space is related to a bit of public space

This is based on the natural assump-
tion that you need to be able to get to
your front door.

7

i
n

t
r

oexplain ‘settlement patterns’ and ‘urban fabric’ and ‘village types’
but the form creating processes were always non geometric. Where
geometry was invoked was once definitely ‘planned’ arrangements
were under discussion, with observable (and planned) geometrical
properties (squares, crescents facades, colonnades).
 The new idea was that there might be geometrical rules that
constrained and informed the eventual arrangement of ‘unplanned’
architecture as well as the planned sort. We thought that if you
could determine these more subtle determinants, then perhaps a
better understanding of how to add to and develop existing exam-
ples might develop. It was (and still is) a kind of particle physics of
Architecture.
 It seemed obvious that the outcomes observed were the result
of the interaction of many forces, each of which contributed to the
end disposition of the houses. The lie of the land, the size of the
available timbers,(for floors and roofs). But there was no obvious
way of analysing this apparently pleasing arrangement, no way of
understanding not just this but large segments of most of the urban
spaces of the region, including Sienna and Volterra.

The failure of the top down approach

 What seemed the most telling comparison for me was to con-
trast the spatial complexity and unending opportunities for new
spaces and places to be, in the most rudimentary village, with any
20th century housing that I knew of. There was no contest: on the
one hand complexity,variety and surprise, on the other sameness
boredom and banality. The problem seemed to be that increas-
ingly large amounts of cheap urban fabric were being designed
by increasingly smaller and smaller numbers of people. Inevitably
they decided to just do a little bit, and repeat it over and over again.
This contrasts with the bottom up way the existing arrangements
had evolved, where the arrangement of individual bits of the urban
landscape had been the result of many people’s decisions over time.

Bottom up Anarchic Organisation

Anarchy , when applied to the circumstances surrounding the
development of Italian hamlets, must be assumed to be something
less than the bomb carrying sort, but anything less than total con-

The next rule is that each bit of public
space is connected to all the others.

The result of running the system is the
gradual development of a network of
open space elements, with ‘houses’
attatched . The original version (illus-
trated in ‘The Social Logic of Space’)
was cellular, and all X and Y spaces
were the same size. In Bill Erickson’s
version the x and y space are square,
but can be at varying orientations.
Running the model generates a set of
connected objects, which can be seen
as ‘connection space’ and buidlings in
3D.

The hallmarks of the new science - fractals, chaos, and complexity-
are regulars in our media. Their colourful beauty and bizarre shapes
did not just intrigue scientists. Their significance goes beyond the
thrill of being strange mathematical creatures. They subversively
soften our traditional understanding of the world, our way of think-
ing. Their importance reaches beyond the realm of technology and
science, into our most fundamental social, moral, and philosophi-
cal beliefs. ‘It will force us to re-examine our place in the universe
and our role in nature’.(Langton, Artificial Life) In order to reach that
point it was, however, necessary to first break the mighty dogma
of the Newtonian era: the universality of the natural laws and deter-
minism.
 During the Newtonian era the dominating concept in science
was its ability to relate cause and effect. On the base of the natural
laws, it is possible to calculate the trajectory of a bullet or predict
astronomical events such as the collision of the Schumacher-Levi
comet with Jupiter. On the other hand there are other natural
phenomena that seem to be unpredictable and chaotic. A classi-
cal example is the weather. Innumerable and unsuccessful efforts
to calculate the weather lead to speculations that it is governed
by randomness. Yet, there was a strong belief that in general it was

quite possible to calculate a reliable weather forecast, with the help
of high performance computers and a dense network of weather
stations. Some of the first conclusions of complexity theory, howev-
er, dramatically altered this point of view. Simple deterministic sys-
tems are able to create a random behaviour. And this randomness
is system inherent. More data or closer look don’t make it disappear.
Random behaviour created by a deterministic system that is gen-
erated by rules , which themselves do not contain any element of
chance, seems to be a paradox. In principle the future is completely
determined by the past. But in reality small uncertainties such as
the slightest errors of measurement enter into calculations and are
amplified with the effect that although predictable in the short
term, it is unpredictable in the long run.
 For all that time the terms determinism and predictability were
equivalent. The Parisian mathematician and astronomer Simon de
Laplace captured the credo of the era of determinism most vividly
with what it today known as the ‘Laplace demon’.“If we can imag-
ine a consciousness great enough to know the exact locations and
velocities of all the objects in the universe at the present instant, as
well as all forces, then there could be no secrets from this conscious-
ness. It could calculate anything about the past and future from the

8

 Determinism versus Non-Linearity

laws of cause and effect.” (Peitgen, Chaos and Fractals)

The metaphor dominating this understanding of the world, is that
of a tremendously precise running clock, where the present state
is simply a result of the previous state and the cause for its future
state. Present, past, and future are tied together by causal relation.
The problem of exact prognosis is just a matter of the difficulty to
collect all the relevant data with the right precision. In this sense
reliable weather forecast was thought to be achievable through
a tighter net of weather stations and massive computations. The
maxim of classical natural science was shattered through the
insights of Werner Heisenberg in 1927 formulated in his ‘uncertainty
principle’. This principle states that it is impossible, even in theory,
to determine the exact position and velocity of an object simultane-
ously. This is true for systems of any size, but for systems of ordinary
size the uncertainties are too small to be observable. The impor-
tance of the principle lies in systems of subatomic level such as the
motion of electrons.

 Heisenberg wrote: “In the strict formulation of the causality
law - ‘When we know the present precisely, we can calculate the

future’ - it is not the final clause, but rather the premise, that is false.
We can not know the present in all its determining details.”

This was the first important blow against determinism. The other
came 30 year later when Ed Lorenz discovered the crux of numeri-
cal weather forecast, popularised by the term ‘butterfly effect’, which
is a metaphor for the exponential progression of errors. Lorenz
has shown through his studies that the conclusion of the causality
principle - the ability to calculate the future- is also wrong. Natural
laws and therefore determinism do not exclude the possibility of
randomness or chaos. A system that is precisely determined is not
necessarily predictable. And this is true for far simpler systems than
the weather. It can be observed in very simple feedback systems
such as the iteration of the quadratic equation of
 x—-> x*x + c
To visualise this system’s behaviour the resulting points of each
iteration are marked on the complex plan. Depending on the initial
value of x and the value of a it results not just in a random chaotic
behaviour, but more importantly in ordered patterns of unpredicta-
ble complexity. Ed Lorenz’s and Werner Heisenberg’s deconstruction
of the causality principle did not just bring true chaos and random-

9

i
n

t
r

o

The difference between traditional and new science manifests itself
in the difference between linearity and non-linearity. It seems inevi-
table to explain linear and non linear systems.
 A linear system can be sufficiently described by the behav-
iour of its constituent parts. In more scientific terms: they obey
the superposition principle. That allows the following method of
analysis: the linear system is broken down into smaller parts. To get
an understanding of the system as a whole these parts in isolation
become subject of study. Once all the parts are known in their char-
acter and behaviour, they are reassembled and provide a thorough
knowledge of the complete system.
 Nonlinear systems, in contrast, do not obey the superposition
principle. Their primary quality lies in the behaviour based on the
interaction of their constituent parts, rather than being property
of the parts. Breaking the system down and analysing the parts in
isolation does not enlighten the system’s mechanism. In fact, taking
the system apart can cause the loss of its characteristic behaviour.
Therefore the interesting properties of nonlinear systems are emer-
gent. That is, the global behaviour is a result of short range interac-
tions of many identical parts on a local level. Unlike the behaviour of
linear systems, their behaviour exhibits nonintuitive traits, it can not
be anticipated.
 ‘Life is a property of form, not of matter, a result of the organi-
sation of matter rather than something inherent in the matter
itself.’(Langton, Artificial Life) In Chris Langton, from the Santa Fe
Institute for Non Linear Studies point of view, a living system is a
sophisticated non linear system. Amino acids and other carbon
chain molecules are the systems components. Since none of these
are alive the understanding of these parts tells nothing about their
most interesting behaviour: Life. Life is the emergent behaviour
on the system’s global level created by local interaction of lifeless
molecules. Langton concludes: ‘Behaviours themselves constitute
the fundamental parts of nonlinear systems- virtual parts, which
depend on nonlinear interaction between physical parts for their
very existence.’(Langton, Artificial Life) These virtual parts are in the
centre of the study of nonlinear systems. But virtual parts exist in
different grades of complexity.
 ‘Life’ or life-like-behaviour, the virtual parts Chris Langton and
his fellow ALifers are searching for, are on the top of the list of pos-
sible behaviours of non linear systems. As a matter of fact, all the
possible behaviours can be assigned to three classes of behaviours.

10

 Feedback and Self-referential systems

i
n

t
r

oThe crystal state, the liquid state, and the gas state.

Crystal class: the system evolves into a finite state, a constant
pattern or form, some more interesting and complex than oth-
ers. The single parts are capable of organising themselves in very
sophisticated structural patterns. A snowflake is an example for
that class. No central force is assembling the water molecules, nor
do they carry a blueprint of the overall form. Patterns on a large
scale emerge entirely from local interactions of identical molecules.
The water molecules can configure an endless variety of different
shaped snowflakes depending on their initial condition. Interaction
on local level makes such self-organised structures extremely adap-
tive to different environments. They inherit the ability to grow
around obstacles in an ordered and ‘intelligent’ way.
The gas class: the system evolves into a random and chaotic behav-
iour. It is not dependent on the initial state, even a highly ordered
seed eventually ends up in cycles of random noise.
The liquid class: its the most interesting one, systems evolve into
structures of substantial spatial and temporal complex-
ity. Langton believes living organisms are example of such
systems. But even very simple systems such as the Conway
cellular automaton based ‘Game of Life’ shows complex ‘life-
like’ behaviour. Out of a few transition rules a whole world of
organisms emerges: constant configurations, moving, eat-
ing configurations, producing ones, and so on. An endless
variety. Hierarchies are created in a seemingly purposeful
behaviour. Society or flocks are examples of such nonlinear
systems. Their hierarchical structure and behaviour as a com-
plete organism emerges from rule based interaction of individuals.
A good illustration is the simulation of flocking behaviour of birds
by Craig Reynolds, a computer scientist working at Symbolics, a
graphics hardware manufacturer. In a virtual environment a large
number of autonomous but interacting objects - Reynolds calls
them ‘Boids’- move around in a highly ordered manner.(Kelly ,Out Of
Control) Obstacles are no problem for the flock of Boids, they split
up into sub-flocks, which reassemble themselves in a similar way to
the whole, move around the object and reunite into the original for-
mation. Can this be called an intelligent behaviour?
 The observation of such behaviour calls for the need to rede-
fine the term intelligence or intelligent behaviour. The intelligent
behaviour of the Boids is not the result of reasoning. The Boids do

not have an understanding of their environment, the notion of an
obstacle is alien to them. A single Boid, like a bird, while airborne
has no overarching concept of the shape of its flock. Moving in for-
mation and splitting up into organised subflocks happens without
thought. This intelligence is an emergent property. If we consider
the rules that each Boid follows:

 1. Maintain a minimum distance from other objects
 in the environment, including other Boids.
 2. Match velocities with Boids in your neighbourhood
 3. Move towards the perceived centre of mass of the
 Boids in your neighbourhood,

we can not, however, define this property.
These are the only rules governing the behaviour of the flock.
“Flockness” emerges from creatures completely oblivious of their
collective shape, size, or alignment.
 The Boids represent a biological system with the capability

of organising itself into adaptable and efficient structures that can
adjust to different environments; buildings and urban structures
embody the architectural system of an almost equal complexity.
Learning from the biological system, it could be argued that it is
possible to reinterpret what is perceived as difficulties, hindering
the design process, into the constituent forces of a complex system.
The design of the urban structure or buildings becomes then the
emergent property of the system. Instead of painstakingly design-
ing in a top down manner, architects could use the emergent ‘clev-
erness’ of such a system and observe the design constructing itself
in an effortless process. Equipped with rules the raw matter would
therefore organise itself in the most sensible and appropriate way.
 But before we can experiment with complexity and model

11

If you have never written a computer program before, then you will
be unfamiliar with the idea of instructing a machine to think for
you. We all solve problems and do it with a greater or lesser degree
of insight, but to make a computer do some thinking, we have to
abstract the basic building blocks of problem solving and see it as
something ‘out there’.
 The concept of the algorithm is the one we must grasp, in
order to get our minds in gear to start programming in any lan-
guage. Before you can make a computer do anything, you have to
give it some instructions. These instructions have to be given using
a language.
 All computer languages consist of just a few basic elements,
which are combined to express a method for completing some task.
They are artificial languages, which have their own SYNTAX and
LEXICON (method of combining words, and a dictionary of under-
stood words).
 When you combine these words into a set of syntactically cor-
rect expressions, so that the task is actually accomplished, you have

defined an algorithm.
 An algorithm is a set of instructions which, when followed
according to the conventions of the language guarantees the cor-
rect execution of the problem. A set of instructions are usually writ-
ten down as a program which the computer obeys. We can imagine
such a set of instructions as:
 Clear the screen
 Draw a line
 Make three beeps
In any program there is always an implicit flow of control which
determines the order in which these instructions are obeyed. In the
simplest languages this flow of control starts at the first line, and
continues, line by line until the last line is reached, just like reading
a text. If a program (such as the one above) is written in this way,
it will always do the same thing, and if you think about it , it will

12

 Thinking algorithmically

Self-organising structure based on a three
dimensional cellular automata. Generated with
AutoLisp and rendered in Strata Vision.

always produce the same result.
 1. Clear the screen
 2. Draw a line
 3. Make three beeps
Usually programs will require some input from the outside world,
and will do some calculations on these inputs, so that it makes
sense to have a way of representing values within the program.
These are known as variables - because the contents are variable,
from one run of the program to another.
 If a program doesn’t contain any variables , it will always give
the same result, and as a consequence it will be pointless to use it
more than once. This is stupid - why go to the trouble of writing a
program, just to use it once?
 Variables allow the program to do work on a variety of val-
ues, and thus produce a variety of outcomes. Often in a program
we need to make decisions and decide to do one thing or another
depending on the values of variables, we also need to do some
manipulation of the values.

The main elements of any language which allow us to do this are:
• Conditional statements

 IF <something is true> THEN do this
 ELSE do that

A conditional statement can be thought of as a switching point.
 If an algorithm contains a conditional statement, then the pro-
gram can do at least two different things, depending on the values
of it’s inputs. In the above IF - THEN - ELSE statement the stuff in
brackets <something is true> is known as a conditional expression,
which takes the form, usually of some comparison such as “is value
A less than value B”. Each language has it’s own syntax for condi-
tional expressions, but whatever it is, the result is always either TRUE

or FALSE.
•Control statements.

The flow of control, which in the simplest case just trundles down
line by line reading a text, can also be altered by breaking the whole
program down into small chunks, which you can choose to do in
different orders, depending on the conditions that obtain. For
instance, if we break up the algorithm into several functions we
could say

 Introduction

 IF (Louis Kahn) THEN Generate concrete towers
 ELSE Generate wooden shacks

where “Introduction” , “Generate concrete towers” & “Generate
wooden shacks” are three separate functions, coded as three chunks
of text. In this case, the introduction would always be executed, but

the rest of the process would depend on
the result of the truth or not of the asser-
tion “Louis Kahn”.
The main other control statements are to
do with LOOPING - ie. doing something
over and over again. Most languages pro-
vide constructs such as REPEAT ...UNTIL ,
WHILE <something is true>. Basically a

loop provides a way of reducing the amount of code you need to
write, since you only need to write it once, and the program will
cycle around reading & obeying it over and over again.Recursion is
a special case of looping, where a function calls itself - more on this
later.
 With any repetitive process we have to define an end condi-
tion which defines the terms under which the process will end, oth-
erwise the loop will go on for ever!

•Arithmetic/Geometric statements

These are needed to do sums and geometric calculations, so as to
manipulate the values to solve some problem or other. Most lan-
guages can add, subtract, divide , multiply, and a range of ready
made functions are usually available for things like square roots,

13

i
n

t
r

o

cosines, tangents, minimum & maximum etc. etc.

The Special Features of Built in Scripting Languages

All computer languages have these components, and the ones
we use are no exception, but in addition the built-in scripting lan-
guages of ArchiCad, MiniCad, and AutoCad have had a wide variety
of additional functions built on top which makes them much more
useful for creating form. These extra facilities come in two flavours;
1) Geometric manipulations
2) Access to the 3D database.
 These two aspects are interrelated, since being able to do
geometry in the abstract is useless, what we need is the ability to
do geometry to something which the language knows about. The
languages illustrated in the following sections (Autolisp, MiniPascal
and GDL) are embedded in their respective modelling packages,
and provide ways of searching and/or creating 3D lumps of stuff.
In order to do this ‘algorithmic production of form’ thing, we not
only have to design algorithms, but also have the ability to produce
form. Using a 3D modeller means that the technical problems of
building and maintaining a 3D database are taken care of by the
software itself, and we only have to worry about the algorithms.
 The geometric manipulations have to do with moving around

14

Rule based Kahn-like
architecture genera-
tions by Colin Wong.

a 3D world in X Y and Z coordinates, defining measuring systems
and calculating positions in space. These are necessary operations,
but to

have any degree of control over the evolving form, we also need to
know what objects already inhabit this space. To do this we need to
be able to make enquiries about the number, type and location of
forms. This allows us to make up rules that can express ideas such
as ‘on top of’, ‘between’, ‘2 Meters from’, ‘opposite’ and so on. It is one
of the most difficult tasks of the scriptwriter to be able to express
such concepts in a way the underlying software can understand,
and it is currently quite cumbersome using the software at our
disposal. The idea of the 3D database is also something which the
normally implicit human based thinking finds hard to grasp - why
can’t you just say ‘between the altar and the east door’ if that is
what you mean? Essentially the problem is that , while the model-
ler can remember and display the lumps of stuff, it can’t on it’s own
invest any one of such lumps with a meaning. We automatically
do this just by looking (we can see from the display that the dome
is upside-down, but the computer needs to be taught what that
means). Initially all three dimensional objects ‘inside’ the computer
are assigned to just a few broad classes, such as cuboid, polyhedron,
surface of revolution and so on. In any complex model there will be
hundreds of such objects. One way to give added meaning to an
object is to give it an unique name - quite literally in some cases, by
implication in other languages. Naming objects according to some
generative rules allows us to ‘know’ more about them when we

15

i
n

t
r

o

16

We will give here just a brief introduction to AutoLisp. You will
find a more detailed introduction to that language in the AutoLisp
Programmers Reference or in one of the many well written introduc-
tory books on the language, such as The ABC of AutoLisp by George
Omura.
 One reason for AutoCad’s popularity is its adaptability. Due to
its transparent architecture just about every aspect of AutoCad’s
operations can be controlled. The software is therefore open for cus-
tomisation to suit specific needs and allows full accessibility by Third
party developers. The centre piece of this adaptability is Autocad’s
built-in programming language, AutoLisp. AutoLisp is derived from
Common Lisp, an updated version of the oldest artificial-intelligence
programming language and is considered to be an easy to learn
programming language because of its simple syntax. With AutoLisp
people can write their own commands and redefine the existing
ones.
AutoLisp can be used as macro-building facility (Macros are scripts
that automate sequences of repetitive keystrokes) or as a software
development environment that allows you to devise complex pro-
grams, such as programs for the generative creation of form.

17

a
u

to
li

sp
s

y
n

t
a

x

AutoLisp

The Syntax of AutoLisp

 AutoLisp evaluates expressions. For instance, if you want to
add the numbers 3.5 and 2, you must enter the formula as followed
on the command line:

 (+ 3.5 2)

AutoLisp returns the value of the expression on the command line.
5.5. Everything, from the simplest expression to the most elaborate
program, must be written with this structure. Or in more general
terms an AutoLisp expression must include an operator, such as
the mathematical operators +, -, *, /, followed by arguments. All
AutoLisp expressions are enclosed by parentheses.
Important: Notice that you need a space between an operator and
each individual argument to distinguish them for the AutoLisp inter-
preter. (To visualise the space we use Δ) The expression above with
visualised space:

 +Δ3.5Δ2)

This is the correct way to insert the expression. You get an error
message if the expression is typed in like this:

 (+3.5Δ2)

No space between operator and the first argument causes confu-
sion: the term +3.5 is seen as an unknown operator for the AutoLisp
interpreter. In contrast it is permitted to use more spaces than nec-
essary:

 (Δ+Δ3.5Δ2Δ)

is correct, as well as

 (+ΔΔΔΔ3.5Δ2Δ).

18

(+ 3.5 2)

function

arguments

balanced parenthe-

This is an example of
an AutoLisp expres-
sion, the fundamen-
tal AutoLisp structure
consisting of a func-
tion and a number
of arguments (here
two).

Example
of a nested
expression.
AutoCad
evaluates the
arguments
first and then
applies them
to the opera-
tor or func-
tion.

(* 2 (+ 3.5 2))

(* 2 5.5)

11

function
arguments

arguments are
evaluated

then applied to
the function

Using nested expressions

AutoLisp evaluates everything inside the parenthesis. It checks the
value of each argument, for example for the number 3.5, 3.5 is
returned unchanged. Because of that expressions can also be used
as arguments:

 (* 2 (+ 3.5 2))

Here, the multiply function (*) is given two arguments. The integer
2 and the expression (+ 3.5 2). This type is called a nested expres-
sion, because one expression is contained within another. AutoLisp
evaluates the nested expression first and then applies the resulting
value together with the other argument to the function of the con-
taining expression. A program is a set of expressions that perform a
task when executed from the AutoCad command line. But they can
also be considered user-defined functions. Defun is the special func-
tion that allows you to define your own programs and functions.
Defun is treated like any other AutoLisp expression: It is enclosed by
parentheses and it has arguments. The first argument is the name
of the function, then a list of variables followed by expressions.
Usually the name has the form c:Name, the c: tells AutoLisp that this
function is to act like an AutoCad command. If the program name
is entered at the command line it will be executed as an AutoCad
command.
Important: Avoid giving your programs names reserved for
AutoLisp’s built-in functions. Otherwise you will override the built-in
functions so that you are not able to use them any more. Restarting
AutoCad restores the built-in functions.

Data types

Variables used in your program can be of different types of data. in
contrast to other programming languages, such as Pascal, AutoLisp
doesn’t require up-front definition of the type of variables you are
using in your program.The text box shows the most common data
types in AutoLisp

19

a
u

to
li

sp
s

y
n

t
a

x

Integer 38 a whole number used for
 counting things
Real Number 7.5463 a number with a floating point
 such as 3.14 used for coordi
 nates and dimensions
String “Paul” a series of characters, enclosed
 by double quotes
List (23 74 59) data elements, such as num-
bers, strings, points, listenclosed
 in parentheses
BOOLEAN t Just TRUE or FALSE - used in
 logical expressions as part of a
 conditional statement
Selection set <selection set: 5> a group of objects

20

The actual scripting happens within a text editor such as BBEdit- the
“bare bones” editor. It is handy to have both the text editor as well
as AutoCad running at the same time, so you can write and test an
AutoLisp script. To store an AutoLisp progra you save it as a text file
with the extension .LSP. Make sure that this text file is stored in the
AutoCad folder otherwise AutoCad will have difficulties in finding it.

21

a
u

to
li

sp
q

u
ic

k
st

a
rt

To write and test an Autolisp
script it is handy to have both
running at the same time. Select
the autolisp text file and the
Autocad drawing .

The AutoLisp program is stored as a text file. Save your BBEdit
file with the extension .LSP -in this example spiral.lsp- and put
it in the AutoCad folder. To run the program type (load”spiral”)
in the command line and press return.

Quickstart

The first program draws a simple spiral staircase by stacking solid
boxes on top of each other with an constantly increasing rotation
angle. Before you start AutoCad and a text editor (BBEdit) should
be open. Additionally you have to activate AutoCad’s solid modeller
AME within AutoCad.

The algorithm:

1. Housekeeping - delete all objects from drawing

 (command “erase” “all” “”)

erase is an AutoCad command. You can incorporate AutoCad com-
mands in your AutoLisp script by using the command function,
the name of the AutoCad command in double quotes, followed by
all the inputs and key strokes usually typed on the command line.
Using the erase command directly on the command line AutoCad
prompts Select objects. To clean the drawing you type all and
AutoCad prompts the number of found objects. Pressing the
return button will execute the deletion. “” represents the press of the
return button.

2. Initialising - set variables to their initial value

 (setq ang 0
 n 0)

ang is the variable for the angle with the starting value 0. n is the
increment.

3. REPEAT- the part in the repeat expression is executed 12 times:
• Define the corner points of the box.

 (setq p1 (list 0 0 n)
 p2 (list 2 4 (+ 1 n))

• Draw a box and name it thing.

 (setq thing (solbox p1 p2 “”)

NOTICE:The solbox command is part of the setq expression. thing is
the entity name for the solbox. This way of assigning an entity name
to an object is unique to AME objects.

22

 1.0 Spiral

The use of rotate is an other example of an AutoCad command uti-
lised in an AutoLisp script. The following line turns the object with
the name thing around point p1 by the angle ang.

 (command “rotate” thing “” p1 ang)

23

a
u

to
li

sp
e

x
e

r
c

is
e

s
c

r
ip

t
in

g

(defun C:ro ()
 (command “erase” “all” “”)
 (setq ang 0
 n 0)
 (repeat 12
 (setq p1 (list 0 0 n)
 p2 (list 2 4 (+ 1 n))
 thing (solbox p1 p2 “”)
 n (+ n 1))
 (command “rotate” thing “” p1 ang)
 (setq ang (+ ang 30))
)
)

 s c r i p t i n g

24

e
x

e
r

c
i

s
e

In order to make the routine more flexible it is necessary to prompt the
user for the main parameters. Important parameters here are: The size
of the blocks (defined by the corner points), the rotation angle, and the
number of runs through the loop. Use the getreal and getint functions
to make user input from the command line possible.

Did you complete assignment 1.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

1.
0

e
x

e
r

c
i

s
e

Shift the point of rotation from the inner left corner of the oblong to
the outer right corner.

Did you complete assignment 1.1? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

1.
1

25

a
u

to
li

sp
e

x
e

r
c

is
e

In the original spiral
example the rotation
point (p1) remains the
same throughout the
execution at the inner

In this exercise the point of
rotation has to be moved
dynamically to the outer
right corner of the oblong.
The rotation point p1
needs to be recalculated
throughout the loop.

The Chaos Game program draws a Sierpinski gasket point by point:
First the attractors are defined, in the case of the Sierpinski gasket
the three vertices of an isosceles triangle. The user then inserts the
gamepoint, by clicking on the screen. The following procedure is
repeated in a loop of predetermined length: random selection of
one attractor, calculation of the new gamepoint halfway between
selected attractor and recent gamepoint, and drawing of the new
game point.

The algorithm

1. Housekeeping

2. Set attractors- In the setq expression the three attractor points are
defined. With the layer AutoCad function you switch to another
layer. NOTICE: The layer rot has to be created in the AutoCad draw-
ing before running the program.

 (command "layer" "set" "rot" "")

Before the three attractors are drawn the PDMODE is set to 96 that
changes the way points are drawn on the screen.

 (command "pdmode" "96")
 (command "point" f1)
 (command "point" f2)
 (command "point" f3)

After that PDMODE and LAYER are set back to default.

 (command "pdmode" "0")
 (command "layer" "set" "0" "")

3. Insert gamepoint

 (setq gamepoint (getpoint "\nINSERT GAMEPOINT"))

getpoint allows you to insert a point by clicking on the drawing.

4. REPEAT
• In the repeat loop three operations are executed over and over

26

 2.0 The Chaos Game

again. An attractor is chosen, the new gamepoint calculated and
drawn. To choose an attractor the random number function rand is
used:

 (Defun rand (bot top / x z rn)
 .
 .
)

rand has two arguments bot and top. They define the bandwidth
of the random number. With (setq dice (rand 0 3)) the variable dice
is set to a random number between 0 and 3. The conditional state-
ment function cond determines according to dice which attractor
will be chosen.
The calculation of the new game point is also done in the cond
expression.

 (setq newgamepoint (polar f3 (angle gamepoint f3)
 (- 0 (/(distance f3 gamepoint) 2))))

newgamepoint is calculated as half the distance between current
game point and the chosen attractor by using the distance and the

polar function. 27

a
u

to
li

sp
s

c
r

ip
t

in
g

Snapshots of the Chaos
Game after 100 iterations,
1000 iterations and 10 000
iterations:The Sierpinski
gasket emerges slowly.

28

(Defun rand (bot top / x z rn)
 (if (NOT seed)(setq seed 758))
 (setq x (1+ (* seed 2197.0))
 z (fix (/ x 4096.0))
 seed (fix (- x (* z 4096.0)))
 r (* (/ seed 4096.0)(- top bot))
 n (+ bot r))
)
defun c:CHAOS()
 (setvar "cmdecho" 0)
 (command "erase" "all" "")
 (setq f1 (list 0 0 0)
 f2 (list 2 5 0)
 f3 (list 4 0 0))
 (command "layer" "set" "rot" "")
 (command "pdmode" "96")
 (command "point" f1)
 (command "point" f2)
 (command "point" f3)
 (command "pdmode" "0")
 (command "layer" "set" "0" "")
 (setq seed (getint"\nRANDOM NUMBER GENERATOR")
 gamepoint (getpoint "\nINSERT GAMEPOINT")
 dice (rand 0 3))
 (repeat 10000
 (cond ((< dice 1) (setq newgame-
point (polar f1 (angle gamepoint f1)(- 0 (/(distance f1 gamepoint 2)))))
 ((and (>= dice 1)(<= dice 2)) (setq newgamepoint (polar f2 (angle f2 gamepoint) (/(distance gamepoint f2) 2))))
 ((> dice 2) (setq newgamepoint (polar f3 (angle gamepoint f3)(- 0 (/(distance f3 gamepoint) 2)))))
)
 (command "point" newgamepoint)
 (setq gamepoint newgamepoint
 dice (rand 0 3))
)
)

after 100. iteration after 1000. iteration after 10000. iteration

p1

p2

p3

 s c r i p t i n g

29

a
u

to
li

sp
s

c
r

ip
t

in
g

e
x

e
r

c
is

e

e
x

e
r

c
i

s
e

Two ways of manipulation allow you to create an ifinite number of
interesting patterns. A) Alter the equation that calculates the new
game point. B) Change the number of attractors.

Did you complete assignment 2.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

2.
0

A) You find the equation to calculate the new
game point in the setq expression in the cond
statement of the repeat loop. Altering here can
produce suprising results.

B) The image above shows the Chaos game
played with four instead of three attractors.

The method above can create even more complex structures for
example a fern leaf. The algorithm and parameters are borrowed
from one of the most comprehensive books about fractals “Chaos
and Fractals, New Frontiers of Science”. Here is a brief description of
how the program works, however for a thorough understanding of
this method have a look at the book.
 In the same way as example 2.0 we have a gamepoint -here
the game point’s coordinates, x and y, are defined in the beginning
of the program and not inserted through mouse click by the user.
A number of transformations describe different ways to calculate
the new game point. This program has four such transformations:
One for the stem, one for the right leaf, one for the left, and one
for the top of the fern. First a random number r between 0 and 1 is
computed with the rand -function. According to the the value of r
transformation stem, right, left, or top is applied to the game point.
The point is drawn and the next iteration calculated.

30

 2.1 Another Chaos Game: The Fern

31

a
u

to
li

sp
s

c
r

ip
t

in
g

(defun rand) ..;random number function rand see previous example

(defun c:fern()
 (setvar “cmdecho” 0)
 (command “erase” “all” “”)
 (setq left 30 w 300
 wl (+ w left) e1 (* w 0.5)
 e2 (* w 0.57) e3 (* w 0.408)
 e4 (* w 0.1075) f1 (* w 0)
 f2 (* w -0.036) f3 (* w 0.0893)
 f4 (* w 0.27) x e1 y 0
 depth (getint “\nNUMBER OF ITERATION——“))
 (repeat depth
 (setq r (rand 0 1))
; transformation stem
 (if (< r 0.02)
 (progn
 (setq xn (+ e1 left)
 yn (- (+f1(* y 0.27)) wl)
 pu (list xn yn 0))
 (command “point” pu)
)
)
; transformation right leaf
 (if (and (>= r 0.02)(< r 0.17))
 (progn
 (setq xn (+(+ (* -0.139 x)(* 0.263 y)e2) left)
 yn (+ wl (+ (* x 0.246)(* 0.224 y) f2))
 pu (list xn yn 0))
 (command “point” pu)
)
)

 s c r i p t i n g

;transformation left leaf
 (if (and (>= r 0.17)(< r 0.3))
 (progn
 (setq xn (- (+ (* 0.17 x)(* -0.215 y) e3) left)
 yn (- wl (+ (* x 0.222) (* 0.176 y) f3))
 pu (list xn yn 0))
 (command “point” pu)
)
)
;transformation top
 (if (>= r 0.3)
 (progn
 (setq xn (+ (- (* x 0.781)(* 0.034 y) e4) left)
 yn (+ wl (+ (* -0.032 x)(* y 0.739) f4))
 pu (list xn yn 0))
 (command “point” pu)
)
)
 (setq x xn
 y yn)
) ; end of repeat
)

The recursive version of the Koch program is short and elegant, sim-
ply because it is able to rely on Autocad to keep track of the current
position and calculate the endpoint of a polar coordinate line for us.
The program has three main parts: KOCH II starts the program. All
the housekeeping and the setting of the variables are done here.
The initial motif is drawn by the function 'KOCH'.

 (defun c:KochII()
 (setvar "cmdecho" 0)
 (command "erase" "all" "")
 (command "regen")
 (koch 0.0 5.0 5)
)

The function ‘KOCH’ is called with the variables 0.0 = the starting
angle (horizontal), 5.0 = the length of the base triangle, and 5 = the
number of recursions.
 KOCH then draws a line from 1 1 to 1 1 (it's of zero length,
just to position the 'drawing point' so AutoCad has got somewhere
to start drawing from), setq creates a variable called turn which is
given the value 60 degrees, and then we call wiggle once each for
the three base sides if the triangle.

 (DEFUN koch(angl lngth depth)
 (setq origin (list 1 1)
 turn (/ pi 3))
 (command "LINE" origin origin "")
 (Wiggle angl lngth depth)
 (Wiggle (+ angl (* 2 turn)) lngth depth)
 (Wiggle (+ angl (* 4 turn)) lngth depth)
)

Drawing is done with the RELATIVE POLAR LINE command, which
has the syntax (line @ length < angle). The functions strcat and rtos
are unfortunately necessary to convert the internal representation
of our length variable into a line of text that the line command can
understand.

To make the nested brackets a bit more explicit boxes are drawn
around the various components in the diagram on the next page. 1
is the outer level which encloses the whole function, 2 is the condi-
tional expression, and 3 is the dependent part which is executed if
the cond expression isn't true - the main recursive calls.

32

 3.0. Recursive Koch Curve

0. Iteration

1. Iteration

(DEFUN Wiggle (ang lng dep)

 (cond

 ((= dep 0) (command "LINE" ""

 (strcat"@"(rtos lng)"<" (rtos ang)) "")

)

 (T (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (+ ang (* 2 turn)))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (Wiggle ang (/ lng 3) (- dep 1))

)

)

)

33

a
u

to
li

sp
s

c
r

ip
t

in
g

1

2

3

(DEFUN koch(angl lngth depth)
 (setq origin (list 1 1)
 turn 60)
 (command "LINE" origin origin "")
 (Wiggle angl lngth depth)
 (Wiggle (+ angl (* 2 turn)) lngth depth)
 (Wiggle (+ angl (* 4 turn)) lngth depth)
)

(DEFUN Wiggle (ang lng dep)
 (cond ((= dep 0) (command "LINE" " (strcat "@" (rtos lng)
 "<" (rtos ang)) "")
)
 (T (wiggle ang (/ lng 3) (- dep 1))
 (setq ang (- ang turn))
 (wiggle ang (/ lng 3) (- dep 1))
 (setq ang (+ ang (* 2 turn)))
 (wiggle ang (/ lng 3) (- dep 1))
 (setq ang (- ang turn))
 (Wiggle ang (/ lng 3) (- dep 1))
)
)
)

(DEFUN c:KochII()
 (setvar "cmdecho" 0)
 (command "erase" "all" "")
 (command "regen")
 (koch 0.0 5.0 5)
)

 s c r i p t i n g

2. Iteration

3. Iteration

34

(DEFUN Wiggle (0 9.0 2)
 (cond
 ((= 2 0) (command "LINE" " (strcat "@" (rtos lng)"<" (rtos ang)) "")
 (T
 (wiggle ang (/ lng 3) (- dep 1))
 (setq ang (- ang turn))
 (wiggle ang (/ lng 3) (- dep 1))
 (setq ang (+ ang (* 2 turn)))
 (wiggle ang (/ lng 3) (- dep 1))
 (setq ang (- ang turn))
 (Wiggle ang (/ lng 3) (- dep 1))

(DEFUN Wiggle (0 3 1)

 (cond

 ((= 1 0) (command "LINE" " (strcat "@" (rtos lng)"<" (rtos ang)) "")
 (T

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (+ ang (* 2 turn)))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (Wiggle ang (/ lng 3) (- dep 1))

)

)

)

(DEFUN Wiggle (0 1 0)

 (cond

 ((= 0 0) (command "LINE" " (strcat "@" (rtos lng)"<" (rtos ang)) "") (T

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (+ ang (* 2 turn)))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (Wiggle ang (/ lng 3) (- dep 1))

)

)

)

(DEFUN Wiggle (0 1 0)

 (cond

 ((= 0 0) (command "LINE" " (strcat "@" (rtos lng)"<" (rtos ang)) "")
 (T

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (+ ang (* 2 turn)))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (Wiggle ang (/ lng 3) (- dep 1))

)

)

(DEFUN Wiggle (0 1 0)

 (cond

 ((= 0 0) (command "LINE" " (strcat "@" (rtos lng)"<" (rtos ang)) "")
 (T

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (+ ang (* 2 turn)))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (Wiggle ang (/ lng 3) (- dep 1))

)

)

(DEFUN Wiggle (0 1 0)

 (cond

 ((= 0 0) (command "LINE" " (strcat "@" (rtos lng)"<" (rtos ang)) "")
 (T

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (+ ang (* 2 turn)))

 (wiggle ang (/ lng 3) (- dep 1))

 (setq ang (- ang turn))

 (Wiggle ang (/ lng 3) (- dep 1))

)

)

)

Not true (2 doesn’t equal 0)

Still not true (1<> 0)

TRUE (0 = 0)

Assume that the depth = 2 again, and the angle = 0, length = 9.0.
Than the flow through the program would look something like this.

line @ 1<0

line @ 1< -60

line @ 1<0

line @ 1< 60

1

2

31 2 3 4

4

35

e
x

e
r

c
is

e
a

u
to

li
sp

e
x

e
r

c
i

s
e

Experiment with different starting figure, a square instead of a triangle,
for example. That involves the change of the number of calls to wiggle
in the koch function as well as the alteration of their passed param-
eters. In order to change the motif the recursive calls in wiggle need to
be changed.

Did you complete assignment 3.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

3.
0

Different initiator
and motif give rise to
other self simular pat-

The program wander generates a random sequence of any number
of cubes. IMPORTANT: This code only works if you have made a
block called “lump” which is a cube of side 1, whose origin is at 0 0 0.
In order to avoid collision between existing and new cubes the posi-
tions of all cubes is stored in a check-list. The list function is used to
create a list containing a list ((0 0 0)). A new cube is drawn only if its
position to be is not found in this list. This use of list allows you to
keep track of objects in a drawing. Later we will learn how to extract
needed information out of AutoCads database, with the help of
selectionsets.

The algorithm

1. House ke e p ing
2. Initial setup- Sets up initial insertion point call it ‘last’ and put it
into biglist. Than the user is asked for a random seed and number of
repetitions.

 (setq seed (getint “seed for random series :”)
 n (getint “How many replays “)
 last ‘(0 0 0)
 biglist (list last)
 choice 0)
 (command “insert” “lump” last “” “” “0”)

3. Repeat- The loop controls the number of times the whole process
is done. Inside it are two main operations:
1) A random number between 1 and six is chosen and 1 is either
added to or taken away from the x y or z component of the last
point. The last point is a list of three numbers, and to manipulate
the list we must use CAR ,CADR and CADDR which isolate the
first(x) second(y) and third(z) elements of a list
(CAR(1 2 3)) is1, (CADR(1 2 3)) is 2 and (CADDR(1 2 3)) is 3.

 (repeat n (setq choice (+ (fix (* 6.0 (rand)))1))

 (cond ((= choice 1)(setq current (list (car last)(cadr last)(+ (caddr

last) 1))))

 .

 .

)

 (setq c 0 end (length biglist))

2) The While loop runs through the list of all insertions to check that
it doesn’t appear. If not then the function insertbox will add a cube
to the drawing, and append its insertionpoint to the list. The insert-
box function inserts the block at point ‘current’ and adds this point

36

 4.0 Wander

figure 4.1

The gestalt of wander can be changed even after the routine has drawn the shape on
the computer screen. wander draws the cube as AutoCad blocks. lump is the name
of the block. It is possible to alter the block at any stage. AutoCad then up dates the
drawing by replacing the old block with the redefined version of it. Figure 4.1 shows
the original block lump. In figure 4.2 the dimension of the cube has been slightly
increased. Where as in figure 4.3 lump is defined as a sphere with the insertionpoint (0
0 0) and a radius of 0.7 units.

to ‘biglist’.
 (while (and (< c end)(not (equal (nth c biglist) current)))
 (setq c(1+ c))
) ; end while
 (if (>= c (length biglist))(insertbox))

It’s worth looking at this loop in a bit more detail:
First, the list BIGLIST is constructed as a list of points, which are
themselves lists. If you run the WANDER program for 15 iterations,
and then use the ‘pling’ (!) operator to print out the contents of the
three lists Biglist, current and last on the AutoCad commandline you
will see something like this:

The biglist is seen to be made up of triples, (0 0 0) (0 0 1) etc. which
are the individual insertionpoints of each successful addition of a

cube and are themselves lists, making biglist a list of lists. Each one
is one unit away from the last one in either x y or z. Starting at (0 0
0) the first addition was in the Z axis, giving (0 0 1) and then in the Y
axis from there giving (0 1 1). Notice that current is the same list as
the penultimate one, and last is the same as the last one.
 To check to see whether we can place a block at the new loca-
tion the while loop runs through the list comparing each element in
biglist with current. To do this, we first put zero into a counter ‘c’ the
number of elements in biglist into the variable ‘end’.

 (setq c 0 end (length biglist))

The loop then uses

 (while (and (< c end)(not (equal (nth c biglist) current)))
 (setq c(1+ c)
)

which means “while the value of C is less than end, and the C’th ele-
ment of biglist is not equal to the current position, go on adding 1
to C”. Remember that each element of biglist is itself a list, so taking
the list shown above,

 (Nth 1 Biglist)

37

a
u

to
li

sp
s

c
r

ip
t

in
g

figure 4.3figure 4.2

command: !current
(-3 -1 4)

command: !last
(-3 -1 5)

38

(defun rand ; Random number function as in previous example

(Defun insertbox()
 (setq biglist(append biglist(list current))
 last current)
 (command “insert” “lump” current “” “” “0”)
)
(defun C:worm ()
 (setvar “cmdecho” 0)
 (setq rubbish(ssget “x”)
 seed (getint “seed for random series :”)
 n (getint “How many replays “)
 last ‘(0 0 0)
 biglist (list last)
 choice 0)
 (IF rubbish (command “erase” rubbish “”))

 (command “insert” “lump” last “” “” “0”)
 (repeat n (setq choice (+ (fix (* 6.0 (rand)))1))
 (cond ((= choice 1)(setq current (list (car last)(cadr last)(+ (caddr
last) 1))))
 ((= choice 2)(setq current (list (car last)(cadr last)(- (caddr
last) 1))))
 ((= choice 3)(setq current (list (car last)(+ (cadr last)
1)(caddr last))))
 ((= choice 4)(setq current (list (car last)(- (cadr last) 1)(caddr
last))))
 ((= choice 5)(setq current (list (+ (car last) 1)(cadr last)(caddr last))))
 ((= choice 6)(setq current (list (- (car last) 1)(cadr last) (caddr last))))
)
 (setq c 0 end (length biglist))
 (while (and (< c end)(not (equal (nth c biglist) current)))
 (setq c(1+ c))
) ; end while
 (if (>= c (length biglist))(insertbox))
) ;end repeat
)

 s c r i p t i n g

39

a
u

to
li

sp
e

x
e

r
c

is
e

e
x

e
r

c
i

s
e

Change the program so that adding on one direction is preferred to
the other five.

Did you complete assignment 4.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

4.
0

Image a shows wander essembling 70 cubes with
equal probability for all sixs directions. In image b
the probability of an addition in horizontal forward
direction was five times higher

figure b

figure a

40

 5.0 Scatter

Scatter is a simple random insertion loop. With the help of the rand
function it scatters down blocks with randomly varying dimen-
sions. scatter is made up of three parts the rand function which we
encountered in earlier examples, the function scatter and c:go.
 IMPORTANT: To run the program you need a block called “box”
which is a cube of side 1, whose origin is at 0 0 0.

The algorithm

1. Housekeeping- All the tidying up is done in c:go. This is the com-
mand function, you can type it's name in the command line and it
will start to execute. Here the user is prompted for an integer ('seed')
to start the random function rand, and the number of blocks, called
'counter'.

 (setq seed (getint”\nPlease enter a random number genera-
tor: “)
 counter (getint”\nEnter the number of boxes to be insert-
ed: “)
)

At the end scatter is called and passed the variable counter.

 (scatter counter)
2. Get scatterpoint
The scatter function uses a while loop, which is controlled by the
counter (counter) input by the user, passed as a parameter and here
called 'number'. Local variables are used to store the new random
position and scalefactors.

 (while (> number 0)
 (setq x (rand 0 10)
 z (rand 0 10)
 randompoint (list x y z)
 xscale (rand 1 5)
 yscale (rand 1 5)
 zscale (rand 1 3)
)

The box is then inserted, and the number decremented

 (command “insert” “box” randompoint “xyz” xscale yscale
zscale “0”)
 (setq number(1- number))

41

a
u

to
li

sp
s

c
r

ip
t

in
g

(defun rand) ;random number function as in previous examples

(defun scatter (number / x y z xscale yscale zscale)
 (while (> number 0)
 (setq x (rand 0 10) ;xcoordinate randomly between 1 and 10
 y (rand 0 10) ;ycoordinate randomly between 1 and 10
 z (rand 0 10) ;zcoordinate randomly between 1 and 10
 randompoint (list x y z) ;put in list called ‘randompoint’
 xscale (rand 1 5) ;stretch x between 1 & 3 times
 yscale (rand 1 5) ;stretch y between 1 & 3 times
 zscale (rand 1 3) ;stretch z between 1 & 5 times
)
 (command “insert” “box” randompoint “xyz” xscale yscale zscale “0”)
 (setq number(1- number))
)
)

(defun c:go()
 (setvar”cmdecho”0)
 (setq rubbish(ssget”x”))
 (if rubbish(command”erase”rubbish””))
 (setq rubbish nil
 seed (getint”\nPlease enter a random number generator: “)
 counter (getint”\nEnter number of boxes to be inserted: “)
)
 (scatter counter)
)

 s c r i p t i n g

The routine ‘near’ is an addition to the previous example. It is a
development of the "scatter" program that involves scanning the
database after the random cuboids have been inserted, so as to
demonstrate the use of the data manipulation functions. To prove
that they work, the program asks the user to click the mouse some-
where in the boxes (HOTSPOT), and then the 'nearest' boxes to the
mouseclick are rotated a fixed amount. Also a line is drawn from the
insertion point of each of thecuboids to the hotspot to show where
they are.

The algorithm
The addition consists of three parts eg, scan a nd rotateobject, with
eg being the main part. It . . The selectionset everything is built con-
taining all cuboids and the function scan is called.

1. Housekeeping- the eg replaces the function c:go and contains all
the housekeeping.

2. Create cuboids- From eg the previously defined function scatter
is called with counter as the argument.

 (scatter counter)

3. Define HOTSPOT- Then the user is asked to define HOTSPOT by
mouse-click. The variable HOTSPOT then is the list containing the
point that you click on.

 (setq hotspot (getpoint “click the mouse”)

4. Build selectionset- The selectionset containing all the objects in
the drawing is built and put in the variable everything.

 (setq everything (ssget ”x”))

5. Scan selectionset- The user defined function scan is called with
two required arguments: The selectionset everything and HOTSPOT.
The function begins with an IF statement which means that if the
selectionset is empty the whole function will be skipped.

 (if selectionset
 (progn

progn is a 'glue' function which joins the statements inside it
together so that they are all done when the IF is true.

42

 5.1 Near

43

a
u

to
li

sp

The repeat function loops through the selectionset. In the loop
each individual object is examined, using counter to choose succes-
sive objects. It finds the insertionpoint of the cuboids and the dis-
tance from the point the user clicked on. This information is stored
in the variables insertionpoint and faraway.

 (setq objecthandle (ssname selectionset counter)
 objectdata (entget objecthandle)
 insertionpoint (cdr (assoc 10 objectdata))
 faraway(distance hotspot insertionpoint)
)

If the distance is less than 60 units then draw a line from HOTSPOT
to insertionpoint of this object, and rotate it.

 (if (< faraway 60.0)
 (progn
 (command “line” insertionpoint hotspot “”)
 (rotateobject objectdata 0.7)
)
)

RotateObject is a little function that alters the rotation angle in the
block -passed as a parameter called this- to angle.

 (Defun rotateobject (this angle)
 (setq this (subst (cons 50 angle)(assoc 50 this)
this))
 (entmod this)
)

Manipulating the database is essential for generative modelling.
Here is a summary of the new functions the script makes use of:

To alter an object in the database
 subst substitute one element for another
 cons construct a dotted pair
 entmod modify entity
To extract data from the drawing
 ssname gets a handle to an object in the selection
 entget gets all the data about the object
 assoc extracts a particular bit of data

44

After the routine scatter has drawn 40 cuboids
in d3 space, and the user has defined a
hotspot by mouse click, all objects that have
their insertionpoint within a radius of 60 units
(white colour) are rotated by an predefined
angle.

45

a
u

to
li

sp
s

c
r

ip
t

in
g

(defun rand) ;see first example

(defun scatter) ; see previous example

(defun scan(selectionset hotspot /length,counter,objecthandle,objectdata)
 (if selectionset
 (progn
 (setq length(sslength selectionset)
 counter 0
)
 (repeat length
 (setq objecthandle(ssname selectionset counter)
 objectdata(entget objecthandle)
 insertionpoint(cdr(assoc 10 objectdata))
 faraway(distance hotspot insertionpoint)
)
 (if (< faraway 60.0)
 (progn
 (command “line” insertionpoint hotspot “”)
 (rotateobject objectdata 0.7)
)
)
 (setq counter (1+ counter))
)
)
)
)
(defun rotateobject(this angle)
 (setq this (subst (cons 50 angle)(assoc 50 this) this))
 (entmod this)
)
(defun c:eg()
 (setvar”cmdecho”0)
 (setq rubbish(ssget”x”))
 (if rubbish(command”erase”rubbish””))
 (setq rubbish nil
 seed (getint”\nEnter a random number generator: “)
 counter (getint”\nEnter the number of boxes t: “)
)

 (scatter counter)
 (setq hotspot (getpoint “click the mouse”)
 everything(ssget”x”))
 (scan everything hotspot)
)

s c r i p t i n g

46

e
x

e
r

c
i

s
e

In near point hotspot is a point in x-y plane. Ask user for the height to
be appended to the hotspot.

Did you complete assignment 5.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

5.
0

e
x

e
r

c
i

s
e

In the function rotateobject the angle of the object is altered. Choose
an other attribute to modify.(see table)

Did you complete assignment 5.1? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

5.
1

47

a
u

to
li

sp
e

x
e

r
c

is
e

Some adresses and their associated values:
 8 layer
 10 insertionpoint
 41 X scale factor
 42 Y scale factor
 43 Z scale factor
 50 rotation angle
 62 colour

William Latham is an artist who has been working in close asso-
ciation since 1987 with Stephen Todd, a programmer at the IBM
UK Scientific Centre in Winchester, together they are producing
"Evolutionary Art" using the computer. Latham was inspired by
natural systems, and how they often relied on very simple steps,
such as crystal growth, or the creation of stalagmites by water drip-
ping in underground caverns. Even biological processes are related
to simple geometry's as shown by D'Arcy Thompson (1961), and the
repeated small changes in mutation and natural selection give rise
to a huge variation of biological forms. Latham was aware that these
natural systems have a huge potential for creating artistic forms, he
wanted to exploit these by the creation of drawings based on ran-
dom dice throws for synthetic organic form.
 This program follows a similar approach and produces similar
three dimensional objects. They are generated using a simple set of
rules, these rules can be applied by choice or randomly.

The algorithm

1. Housekeeping- The function c:generator erases all entities and
inserts the first primitive. Variables are set and a call to growth is
made.

2. Repeat- Before the repeat-loop, variables for the rules are ran-
domly decided, using the random number function rand.

 (defun growth()
 (setq count(+ 1 count)
 num (fix(rand 4 15))
 rotate_factor (rand -270 270)

 growz_factor (rand -1 0.8)
)

Calls to the transformation-rule functions CLIMB, ROTATE, STACK,
MOVE and GROW are made.

 (repeat num
 (setq last (cdr (entget (entlast))))
 (stack)

 (grow)
 (entmake last)
)

48

 6.0 Growth Generator

At the end a recursive call to growth is made in an IF statement in
order to repeat the routine 10 times.

 (if (< count 10) (growth))

3. The rules- The five rule functions work all in a simular way. They
first establish data for the last entity added, adjusts the x, y, z or
angle data with variance and then makes a new entity with the new
values using the function entmod.

 (defun grow()
 (setq old_xscale (cdr(assoc 41 last))
 old_Yscale (cdr(assoc 42 last))
 old_Zscale (cdr(assoc 43 last))
 new_xscale (+ old_xscale growx_factor)
 new_yscale (+ old_yscale growy_factor)
 new_zscale (+ old_zscale growz_factor)
 last (subst (cons 41 new_xscale) (assoc 41
last)last)
 last (subst (cons 42 new_yscale) (assoc 42
last)last)
 last (subst (cons 43 new_zscale) (assoc 43

49

a
u

to
li

sp

50

(defun c:generator()
 (setvar "cmdecho" 0)
 (command "erase" (ssget "x") "")
 (command "insert" "box5" "0,0" "xyz" "1" "1" "1" "0")
 (setq count 0)
 (growth)
)

(defun growth()
 (setq count(+ 1 count))
 (setq num (getint "\nHow many blocks: "))

 (setq num (fix (rand 4 15)))
 rotate_factor (rand -270 270)
 stack_factor (rand 0 5)
 move_factor (rand -3 3)
 climb_factor (rand -5 1)
 growx_factor (rand -1 1.2)
 growy_factor (rand -1 1.2)
 growz_factor (rand -1 0.8))
 (repeat num
 (setq last (cdr (entget (entlast))))
 (stack)
 (move)
 (rotate)
 (climb)
 (grow)
 (entmake last)
)
 (command "zoom" "e")
 (if (< count 10) (growth))
)

(defun grow() ;rule function

51

a
u

to
li

sp
s

c
r

ip
t

in
g

 (setq old_xscale(cdr(assoc 41 last))
 old_Yscale(cdr(assoc 42 last))
 old_Zscale(cdr(assoc 43 last))
 new_xscale(+ old_xscale growx_factor)
 new_yscale(+ old_yscale growy_factor)
 new_zscale(+ old_zscale growz_factor)
 last (subst (cons 41 new_xscale) (assoc 41
last)last)
 last (subst (cons 42 new_yscale) (assoc 42 last)last)
 last (subst (cons 43 new_zscale) (assoc 43 last)last))
 (entmod last)
)

(defun climb(/ z) ;rule function
 (setq x (car (cdr (assoc 10 last)))
 y (cadr (cdr (assoc 10 last)))
 z (caddr (cdr (assoc 10 last)))
 new_position(list x y (+ z climb_factor))
 last (subst (cons 10 new_position)(assoc 10 last)last))
 (entmod last)
)

(defun rotate() ;rule function
 (setq old_angle(cdr(assoc 50 last))
 new_angle(- old_angle (dtr (/ rotate_factor num)))
 last (subst (cons 50 new_angle)(assoc 50 last)last))
 (entmod last)
)

(defun stack(/ x y z) ;rule function

 (setq x (car (cdr (assoc 10 last)))
 y (cadr (cdr (assoc 10 last)))
 z (caddr (cdr (assoc 10 last))))
 (setq new_position(list x (+ y stack_factor) z))
 (setq last (subst (cons 10 new_position) (assoc 10 last)last))
 (entmod last)
)

(defun move(/ x y z)
 (setq x(car(cdr(assoc 10 last))))
 (setq y(cadr(cdr(assoc 10 last))))
 (setq z(caddr(cdr(assoc 10 last))))
 (setq new_position(list (+ x move_factor) y z))
 (setq last (subst (cons 10 new_position)(assoc 10 last)last))
 (entmod last)
)

(Defun DTR(a)
 (* pi(? a 180))
)

s c r i p t i n g

52

e
x

e
r

c
i

s
e

In growth the various factors are obtained randomly from a set of con-
stants (0 5) -3 +3 etc. Define setq variables and get user input for the 7
factors and substitute the variables for the constants.

Did you complete assignment 6.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

6.
0

e
x

e
r

c
i

s
e

Add one other factor to change colour or layer.

Did you complete assignment 6.1? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

6.
1

53

a
u

to
li

sp
e

x
e

r
c

is
e

54

 7.0 Shape Grammar

figure 7.1

Example of the
random applica-
tion of rule 3, 4,
and 5 using the
main function
c:345

The aim here is to create a program that generates three dimen-
sional form using a simplified use of shape grammar rules (see
G.Stiney and see G.D.L. for complete analysis). The main vocabulary
elements of the grammar are to be three dimensional rectangular
blocks. The rules describe transformations of these blocks in space
by taking their symmetrical properties into account.
 The method used here for creating shape grammar incorpo-
rates the movement and rotation of the User Co-ordinate System
(UCS) in Autocad as shown in figure 7.1. Instead of actually moving
and rotating the blocks, the UCS is translated into the new posi-
tion and the new block inserted with (0 0 0) as the insertion point.
The program consist of four functions: The three functions rule3,
rule4, and rule5 contain information how to move the UCS and
then inserts two different sized blocks. The main function c:345
combines those three rules randomly, using the random number
function rand. But additionally the routine allows the user to run
the rules separately by calling the rule functions directly in the form
of (rule3). When this program has been loaded the following mes-
sages are displayed.

 (prompt "\n........box loaded")
 (prompt "\nType 345 to run all 3 rules")
 (prompt "\nor type RULE3 or RULE4 or RULE5 in brackets")

 (prompt "\nto run one rule at a time.")
The algorithm

The main function c:345 - This function has calls to RULE3, 4 and 5
each being chosen at random all have a 33% chance of occurrence.
At the end it displays a hidden 3D view of the generated form.
1. Housekeeping- The view is set to 3d view, everything on layer “0”
is erased. The global variable all is set to 1. all functions as an indi-
cation for the rule functions that they are used as part of the main
function and not as separate functions.

 (command "vpoint" "2,-3,2")
 (command "erase" (ssget "x" ' ((8 . "0"))) "")
 (setq all 1)

Resetting the the UCS to world and asking the user for the number
of replays is also part of the housekeeping.

 (command "ucs" "w")
 (setq allnum(getint "How many replays: "))

2. Initialisation- The first block is inserted.

 (command "insert" "wide" "0,0,0" "" "" "0")
3. Repeat- At the beginning of this loop a random number is set
between 0 and 1..

 (setq randnum(rand 0 1))

With a 33 % chance of occurrence calls are made to the rule func-
tions embedded in an if statement.

 (if (< randnum 0.33)(rule3))
 (if (> randnum 0.66)(rule4))
 (if (and(> randnum 0.33)(< randnum 0.66))(rule5))

4. Clean up- At the end the zoom “e” command makes sure that the
whole drawing is displayed before a hidden line rendering is initi-
ated.

 (command "zoom" "e")
 (command "hide")

The rule functions are all based on the same structure- The func-
tions are for inserting blocks in accordance with different transla-
tion rules (see figure 8.1, 8.2, and 8.3), they are called from the main
function c:345. Rules 3,4 + 5 can also be run separately by typing
the rule name at the command prompt enclosed with brackets ie.
(rule5).

1. Housekeeping- Embedded in an if-statement we find the same
housekeeping commands as in the main function. If a rule function
is called from c:345 then all has the value 1 and the housekeeping is
ingnored.

 (if (/= all 1)
 (progn
 (command "ucs" "w")

)
)

2. Repeat- In the loop the two blocks “wide” and “narrow” are insert-
ed after the UCS is moved and rotated using the ucs Autocad com-

55

a
u

to
li

sp

figure 7.2

Rule 3 - First three
steps and repeated
12 times (above)

Rule 4 - First three
steps and repeated
12 times (above)

figure 7.3

56

Rule 4 - First three
steps and repeated
12 times (above)

figure 7.4

mand.

 (command "ucs" "o" "4,-1,1" "ucs" "x" "90")
 (command "insert" "narrow" "0,0" "" "" "270")
meaning that the UCS’s origin is shifted into point (4 -1 1) and rotat-
ed around the x-axes by 90. Then block narrow is inserted. Block
wide is treated in the same fashion.

 (command "ucs" "o" "-2,3,1")
 (command "insert" "wide" "0,0,0" "" "" "0")

Note, that repeat is executed only once if entered from the main
function. (In c:345 variable num is set to 1)

3. Clean up- Same as in the main function. Again optional depend-
ing on how the rule function is entered.

 (if (/= all 1)
 (progn
 (command "zoom" "e")
 (command "hide")
)

)

57

a
u

to
li

sp
s

c
r

ip
t

in
g

(defun RULE5()
 (if (/= all 1)
 (progn
 (command "ucs" "w")
 (command "erase" (ssget "x" ' ((8 . "0"))) "")
 (setq num(getint "How many replays:"))

 (command "insert" "wide" "0,0,0" "" "" "0")
)
)

 (repeat num
 (command "ucs" "o" "4,-1,1" "ucs" "x" "90")
 (command "insert" "narrow" "0,0" "" "" "270")
 (command "ucs" "o" "-2,0,1")
 (command "insert" "wide" "0,0,0" "" "" "0")
)
 (if (/= all 1)
 (progn
 (command "zoom" "e")
 (command "hide")
)
)
)
(defun c:345(/ all)
 (command "vpoint" "2,-3,2")
 (command "erase" (ssget "x" ' ((8 . "0"))) "")
 (setq all 1)
 (command "ucs" "w")
 (setq allnum(getint "How many replays: "))
 (setq num 1)
 (command "insert" "wide" "0,0,0" "" "" "0")
 (repeat allnum
 (setq randnum(rand 0 1))
 (if (< randnum 0.33)(rule3))
 (if (> randnum 0.66)(rule4))
 (if (and(> randnum 0.33)(< randnum 0.66))(rule5))
)
 (command "zoom" "e")
 (command "hide")
)

(prompt "\n........box loaded")
(prompt "\nType 345 to run all 3 rules")
(prompt "\nor type RULE3 or RULE4 or RULE5 in brackets")
(prompt "\nto run one rule at a time.")

(defun rand ; using the random number function see example 2.0

(defun RULE3()
 (if (/= all 1)
 (progn
 (command "ucs" "w")
 (command "erase" (ssget "x" ' ((8 . "0"))) "")
 (setq num(getint "How many replays:"))
 (command "insert" "wide" "0,0,0" "" "" "0")
)
)
 (repeat num
 (command "ucs" "o" "4,-1,1" "ucs" "x" "90")
 (command "insert" "narrow" "0,0" "" "" "270")
 (command "ucs" "o" "-2,3,1")
 (command "insert" "wide" "0,0,0" "" "" "0")
)
 (if (/= all 1)
 (progn
 (command "zoom" "e")
 (command "hide")
)
)
)
(defun RULE4()
 (if (/= all 1)
 (progn
 (command "ucs" "w")
 (command "erase" (ssget "x" ' ((8 . "0"))) "")
 (setq num(getint "How many replays:"))
 (command "insert" "wide" "0,0,0" "" "" "0")
)
)
 (repeat num
 (command "ucs" "o" "4,-1,1" "ucs" "x" "90")
 (command "insert" "narrow" "0,0" "" "" "270")
 (command "ucs" "o" "-2,3,-1")
 (command "insert" "wide" "0,0,0" "" "" "0")
)
 (if (/= all 1)
 (progn
 (command "zoom" "e")
 (command "hide")
)
)
)

s c r i p t i n g

58

e
x

e
r

c
i

s
e

The oblongs narrow and wide are AutoCad blocks. Change their dimen-
sion so you end up with a very long narrow and a square wide. To make
it work you have to alter the ucs-command in the rule function.

Did you complete assignment 7.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

7.
0

e
x

e
r

c
i

s
e

Create your own shape grammars or adjust these ones to generate
your own form.

Did you complete assignment 7.1? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

7.
1

59

a
u

to
li

sp
e

x
e

r
c

is
e

60

61

62

Debugging

What happens when you make a mistake

As you start writing programs on your own, you will find out that
you are bound to make mistakes. Instead of the desired output the
autoCad command line is presenting you an error message. Then
you must go through your code line by line in order to detect the
offending expression.

Wrong number of parentheses

The most common error is due to the wrong number of parenthe-
ses
or the wrong positioning of parentheses in the program. Usually
you will get the following error messages:

 error: malformed list
or
 error: extra right paren

There is no easy remedy other than checking your program very
carefully for number and placement of brackets. BBEdit provides a
tool to check balanced bracket. Highlight one bracket and press B
and BBedit shows you the balanced bracket.

Another common error is to forget a space between the operator of
an expression and the arguments.

Misspelling of symbols is another common source of errors. All you
can do is examine the code carefully line by line. Often it is easier to
detect such errors on a piece of paper than on the computer screen,
especially working with long programs.

If you get the error message

error: Insufficient string space

usually you didn’t provide a closing quotation mark after a string
value. This tends to happen using the command function, for exam-
ple

63

a
u

to
li

sp
d

e
b

u
g

g
in

g

(command “erase” “all) missing “ after “all

Again, the only solution is to take a careful look.
If you attempt to feed the wrong type of argument to a function
you will get

error: bad argument type

AutoLisp helps you to find errors by printing the trouble caus-
ing line along with the error message. But sometimes this is not
enough. With ‘bad argument type’ error, for example it is not always
obvious which type a variable is during the execution of the pro-
gram.
The ‘pling’-function (exclamation mark) provides a means to check
what value the variable in question obtained before the program
aborted. Type on the command line:

! <Variable name>

With increasing length of the program, it becomes harder to keep
track of the changing values of variables. The princ function can be
used to print variables to the command line as the program runs. By
placing this function in strategic locations within your program, you
can see dynamically what your variables are doing as the programs
runs.

(princ “value of a”)(princ a)(princ)

In lengthy program more than one user defined function is used.
Sometimes it is important to know when a function is entered, what
values passed arguments have at the time of entering and what the
result of the function is. The trace function allows you to trace the
use of a function during the run of a program. In order to intialise
the function type the following on the command line:

(trace <name of function>)

The function untrace disables trace. Programs using recusion are
hard to follow. Here the trace function is especially instructive:

64

65

m
in

ip
as

ca
l

66

MiniCad

67

m
in

ip
as

ca
l

s
y

n
t

a
x

MiniPascal is a sub set of regular Pascal, and the best introduction
to that language is by means of one of the many well written intro-
ductory books on the language, in particular: Illustrating Pascal, by
Donald Alcock, Cambridge University Press, 1987
 MiniPascal omits pointers, arrays with dimensions greater
than 2, user defined types, records, and does not support recursion
directly (though recursive routines can be written using the data-
base as a stack - see tree program). It has a basic set of datatypes,
including the Handle, which permits access to all the entities of a
drawing.

The Syntax

 A minipascal program has a block structure. These blocks can
be nested inside each other. In MiniPascal the outermost block is
a PROCEDURE, which is called with a RUN statement. A procedure
block has two parts:
The DECLARATION where it is given a name and the list of variables
to be used and a BODY, where the statements to be executed are
written.
Pascal insists on pre declaring and typing all variables to be used in
a procedure. Putting the wrong type of data into a variable is always
an error, except in the special case of real and integer types which
can be assigned (and truncated or expanded automatically).

REAL a number with a floating point such as 3.14 used for

 coordinates and dimensions

INTEGER a whole number - used for counting things

STRING a series of characters- used for sending messages to

 people via alerts and putting names in records

BOOLEAN Just TRUE or FALSE - used in logical expressions

 as part of a conditional statement

HANDLE establishes a connection with a minicad object

 In general, most variables used as coordinate values, angles
and areas etc. should be REAL. Counters and other whole numbers

should be integer. The HANDLE is used to maintain a connection
with an object in the Minicad Database. This will be explored in the
tree and other examples.
One and two dimensional arrays are also allowed with the standard
syntax:

 ARRAY [1..n.1..m] of REAL;

Statements

A pascal program is made up of statements. A statement is a line of
text ending with a semi-colon (;). There are two types of statement,
SIMPLE and COMPOUND

 a := 1;

A simple statement is any line of syntactically correct pascal
which does one thing. A compound statement can be either a
PROCEDURE, a FUNCTION or a BLOCK statement. A BLOCK state-
ment is a series of statements surrounded by the words BEGIN and
END

 BEGIN
 a := 1;
 b:=2;
 c:= sqrt (a*b);
 END;
(notice that it ends in a semi colon)

Procedures

A PROCEDURE is a compound statement which has the following
structure:

Header part PROCEDURE somename (parameter list);
Declaration part VAR variablename:variable type;
Body of procedure BEGIN
(a block statement) statements;
 END;

In Minicad's development environment you write
a Procedure, inside which can be nested other pro-

cedures which can contain other procedures, all of which contain
compound statements which contain statements.
Built-in Library

Much of MiniPascal programming consists of using the built-in
library of procedures and functions which are listed as they should
be used in the header part - that is with type declarations .

Arc(X1,Y1,X2,Y2, #StartAngle, #ArcAngle : REAL);

LineTo(X,Y : REAL);

Functions are listed with their type

ObjectType(<Search Criteria>) : INTEGER;

For details on how to use the commands consult the MiniPascal
Manual.

 The first procedure illustrated is a simple list of MiniCad draw-
ing commands all of which are procedures called with the appropri-

68

The command editor provides buttons for accessing
a library of procedure names which can be pasted
directly into your code, so that you don't make any
spelling mistakes. The arguments are also listed in 'pro-
cedure declaration' style, so that you know how many
and what type of arguments to use.

Procedure thing;

VAR

BEGIN

END;

RUN(thing);

DECLARATION

B O D Y

69

m
in

ip
as

ca
l

s
y

n
t

a
x

q
u

ic
k

st
a

rt

Choose COMMAND... from the Data Menu, which will bring up this
dialog box.

Click on the NEW button
to create a new floating
Palette, which is a windoid
containing your commands.

Then provide a name for your first
command, that is the first Mini
Pascal procedure that you will
write. Hit the OK button.

In this command
windoid option-
double-click the
command name
which opens up
the Command
Editor where you
can type in your
code.

Quickstart

This short procedure, called DoorLec, draws a 2d door symbol: door
swing and door jamb. NOTICE: This command should be run on a
drawing set to metric at a scale 1:10 and units set to mm.
 The statements you put in between the BEGIN and END block
markers are read and acted upon by MiniCad. Here the statements
are all calls to internal MiniCad Graphics functions, which draw two
rectangles an arc and a line. There are no variables defined in the
declaration part, because there are no variables been used.

 Rect (0,0,37,100)
 Rect (763,0,800,100)
 Arc(-689,-626,763,826,#0,#90);
 MoveTo(37,100);
 LineTo(37,826);

The Group command ties all objects together in one selectable
entity.

 Group;

To run the routine DoorLec type the code in, using the MiniPascal
Command Editor. Then close the Editor dialogbox and double click

70

 1.0 Door

Command-windoid

71

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

Procedure DoorLec;
 Begin
 Rect (0,0,37,100)
 Rect (763,0,800,100)
 Arc(-689,-626,763,826,#0,#90);
 MoveTo(37,100);
 LineTo(37,826);
 Group;
 End;
Run(DoorLec);

 s c r i p t i n g

72

 1.1 Parametric Door

The parametric version of doorLec is slightly more advanced. By
using the DIALOG functions the user can be asked for information,
so that certain parameters are flexible. VARIABLES are used to store
them.

 VAR
 width, thick, doorwidth: REAL;

width will contain the width of the doorset, thick the thickness of
the wall doorwidth is door width (calculated by subtracting the
frame thickness from width).

 swing:BOOLEAN;

swing is of type Boolean (True or False) used in conditional state-
ments. It is TRUE if it's a right hand swing. The variables width, thick
and swing are set up:

 width:=DISTDIALOG('Width of doorset:','800');
 thick:=DISTDIALOG('Thickness of wall:','100');
 swing:=YNDIALOG('Right-hand swing?');

Using the conditional statements in the language we can execute
one part of the program or another

 IF swing THEN
 BEGIN
 ARC(width-37-doorwidth,thick-doorwidth,width-
37+door width,thick+doo
rwidth,#90,#90);
 MOVETO(width-37,d);
 LINETO(width-37,d+doorwidth);
 END
 ELSE
 BEGIN
 ARC(37-doorwidth,thick-doorwidth,37+doorwidth,
 thick+doorwidth,#0,#90);
 MOVETO(37,thick);
 LINETO(37,thick+doorwidth);
 END;

In this example the width of the doorframe is fixed at 37mm and is
drawn with two calls to the RECT procedure

 RECT(0,0,37,thick);

 RECT(width-37,0,width-,thick); 73

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

PROCEDURE Door2Lec;
 VAR

 width,thick,doorwidth:REAL;
 swing:BOOLEAN;
 BEGIN
 width:=DISTDIALOG('Width of doorset:','800');
 thick:=DISTDIALOG('Thickness of wall:','100');
 swing:=YNDIALOG('Right-hand swing?');
 RECT(0,0,37,thick);
 RECT(width-37,0,WIDTH,THICK);
 doorwidth:=width-2*37;
 IF swing THEN
 BEGIN
 ARC(width-37-doorwidth,thick-doorwidth,width-
 37+doorwidth,thick+doorwidth,#90,#90);
 MOVETO(width-37,thick);
 LINETO(width-37,thick+doorwidth);
 END
 ELSE
 BEGIN
 ARC(37-doorwidth,thick-doorwidth,37+
 doorwidth,thick+doorwidth,#0,#90);
 MOVETO(37,thick);
 LINETO(37,thick+doorwidth);
 END;
 GROUP;
 END;
RUN(Door2Lec);

 s c r i p t i n g

Running the command
Door2 with differing replys
to the dialogs, and hence
differing values for s,d and
swing.

74

e
x

e
r

c
i

s
e

When the wall thickness is large, the result are rather odd looking
shapes. It would be preferable if the width was some proportion of the
wall thickness. To do this we must do three things: 1) Declare a new
variable to hold the frame width; 2) Set up a calculation which puts the
wallwidth divided by 3 into this new variable; 3) Replace each occur-
rence of "37" (the current frame width) with the new variable name.

Did you complete assignment 1.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

1.
0

e
x

e
r

c
i

s
e

Alter the program to draw a three dimensional parametric door rather
than a 2d symbol.

Did you complete assignment 1.1? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

1.
1

75

m
in

ip
as

ca
l

e
x

e
r

c
is

e

76

 2.0 Tree

Tree structures are an example of a simple fractal: A geometrical
figure that consists of identical motif repeating itself on an ever-
reduced scale. Here the motif is a trunk separating into two side
branches. In the recursive process each branch acts as a trunk for
the following two smaller branches and so on. This program tree
demonstrates the use of a handle variable to maintain a connection
with a line object, so as to recursiveley draw a tree.

The algorithm:

1.Housekeeping - Delete all objects from drawing:

 ANGLEVAR;
 selectall;
 deleteobjs;

2. Initialise - Draws a vertical line using the LINE (length-angle) com-
mand:

 moveto(0,0);
 Line(1,#90);

3. Make a connection -establishes a link with this line .

 last:=Lnewobj;

4. REPEAT- The For- loop controls the number of times the branch-
ing process will be applied to candidate lines.

 FOR loop := 1 to 4 DO
 BEGIN

The contained while loop ensures that all but only all the unselected
lines at any stage are candidates (the new ones are all selected as
they are made - a Minipascal feature).

 WHILE (NOT Select) DO
 BEGIN

As each unselected line is acessed, it is first located, and angle and
length info are retrieved using the Hlength and Hangle funstions.

 GetSegPt1(last, X, Y);

77

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

figure 2.0 figure 2.1

 GetSegPt2(last, X1, Y1);
After info on last line in the MiniCad database is retrieved ang and
length can be calculated:

 Ang:=HAngle(last);
 length:=HLength(last)* 0.8;

Two new lines branching from the end of the line are drawn and the
handle is moved from the current line to the next line.

 moveto(x1,y1);line(length,#(ang+20)) ;
 moveto(x1,y1);line(length,#(ang-20)) ;
 last :=nextobj(last);

The status of each line is checked as it is acessed.

 select:= selected (last);

if a selcted line is reached, it indicates that the handle is now
attatched to one of the just created new lines. The while clause
monitors this condition by watching the value of select.

Once the inner loop is completed in this way,all the new lines are
deselected, and the process repeats

 DSelectAll;
 Select:=Selected(last);

The diagram above shows how the MinPascal database keeps tabs
on the lines by storing them in a list. The box with the dot in it is the
one used by the program , whose HANDLE is called ‘last’. As each
object is visited, two more are added to the end of the list, so the
one we are dealing with (the black spot) gets progressively further
and further behind the end of the list. nextobject moves the handle
on to the next object in the list by returning the handle of the cur-
rent object's next neighbour. In this case the handle is immediately
stored in the original variable that was used to reference the original
object.

78

procedure tree;
 VAR last: HANDLE;
 x,y,x1,y1,ang,length: REAL;

 select: BOOLEAN;
 loop: INTEGER;
 BEGIN

 ANGLEVAR;
 selectall;deleteobjs;redraw;
 moveto(0,0);
 Line(1,#90);
 last:=Lnewobj;
 DSelectAll;
 Select:=Selected(last);
 FOR loop := 1 to 4 DO
 BEGIN
 WHILE (NOT Select) DO
 BEGIN
 GetSegPt1(last, X, Y);
 GetSegPt2(last, X1, Y1);
 Ang:=HAngle(last);
 length:=HLength(last)* 0.8;
 moveto(x1,y1);line(length,#(ang+20)) ;
 moveto(x1,y1);line(length,#(ang-20)) ;
 last :=nextobj(last);
 Select:=Selected(last);
 END;
 DSelectAll;
 Select:=Selected(last);
 redraw;
 END;
 END;
run(tree);

 s c r i p t i n g

79

m
in

ip
as

ca
l

e
x

e
r

c
is

e

e
x

e
r

c
i

s
e

The number of times round the loop, the length of the line and the
reduction factor are all fixed values in this procedure. Use the DIALOG
functions to get values from the user.

Did you complete assignment 2.0.c? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

2.
0

80

 3.0 Koch Curve

This has been written to parallel the AutoLisp example, except that
instead recursively calling a line drawing routine we use a procedure
to draw the 4 new lines, then rub out the original one. The Koch
Curve example uses the same select/unselect method to control the
loop as the tree program.

The al gorithm:

1. Housekeeping- Clear the drawing.

 SelectAll;
 DeleteObjs;
 Redraw;

2. User input- Ask user for recursion depth.

 numIter:=IntDialog('number of recursions','3');

3. Initial figure- Draw three lines to form the initial triangle.

 moveto(0,0); line(9,#0);
 line(9,#120); line(9,#240);

4. Repeat-The For-loop controls the iteration depth of the curve
according to variable numIter.

 FOR Count :=1 TO NumIter DO
 BEGIN

The nested while-loop ensures that only the unselected lines are
subject of treatment.

 WHILE (NOT Select) DO
 BEGIN

After the functions HLength and HAngle are used to get information
on the line four new lines are inserted and the old one deleted.

 length:=HLength(this);
 ang := HAngle (this);
 LINE (length / 3, #ang); LINE (length / 3, #ang -
60);
 LINE (length / 3, #ang + 60); LINE (length / 3 ,#ang);
 this := NextObj(this);
 DelObject (PrevObj (this)) ;

81

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

PROCEDURE Koch7;
 VAR NumIter : INTEGER;
 X,Y,length,ang : REAL;
 this : HANDLE;
 Select : BOOLEAN;

 BEGIN
 SelectAll;DeleteObjs;REDRAW;
 NumIter := INTDIALOG('No. of Iterations:','3');
 MoveTo(0,0);
 line(9,#0);
 this :=LObject;
 line (9,#120);
 line (9,#240);
 Select := Selected (this);
 REDRAW;

 FOR Count :=1 TO NumIter DO

 BEGIN
 WHILE (NOT Select) DO
 BEGIN
 GetSegPt1(this,X,Y);
 length:=HLength(this);
 ang := HAngle (this);
 AngleVar;
 MOVETO(X,Y);
 LINE (length / 3 , #ang);
 LINE (length / 3 , #ang - 60);
 LINE (length / 3 , #ang + 60);
 LINE (length / 3 , #ang);
 this := NextObj(this);
 DelObject (PrevObj (this)) ;
 Select := Selected (this);
 END;
 DSelectAll;
 Select := Selected (this);
 REDRAW;
 END;
 END;
RUN(Koch7);

 s c r i p t i n g

82

V a r i a t i o n sK o c h ’s

K o c h - I s l a n d

Once all unselected lines
have been traversed, the
new lines are deselected
and they become candi-
dates for the treatment.

83

m
in

ip
as

ca
l

e
x

e
r

c
i

s
e

On the opposite page are a selection of possible variations. The best
known one, the Koch island (big image), involves only alteration of the
direction of the angle in the line(...) command. For other variations the
recduction ratio of the lines has to be recalculated. Here this is done
for you for the so called Koch Forest. Implement the calculation in the
program.

Did you complete assignment 3.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

3.
0

e
x

e
r

c
is

e

Calculation of reduction ratio

In the original koch curve example the length
of the motif is three times the length of a line.
Therefor the reduction factor is 1/3.
The Koch forest motif has the length a which can
be calculated as followed:
 a = l + l + (2 * cos 80)
see diagram.

a

l l

 cos 80

The Dragon Curve and the Levy Curve are based on the replace-
ment of lines by the same motif. The frenchman Paul Levy was one
of the first mathematicians to do research on what is today known
as fractals. The interesting thing about the Levy Curve, as shown is
figure 3.1.1, is that in it all previous stages can be found, starting
with the first iteration at the beginning of the meandering line to
the n-1 iteration in the center.

The program Koch is very similar to the previous example Dragon
curve. Both are based on the replacement of a original line by a
number of new lines, here two. The dragon curve is a development
of the Levy curve where the replacement rule is modified to take
place alternativeley one side or the other of the original line. This
is done using the variable sign. sign := -sign changes from 1 to -1

84

 3.1 Dragon Curve

+

-

Dragon Curve

levyCurve

85

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

PROCEDURE Dragon;
 VAR NumIter,Sign : INTEGER;
 X,Y,length,ang,SQR : REAL;
 handle : HANDLE;
 Select : BOOLEAN;

 BEGIN
 NumIter :=INTDIALOG('No. of Iterations:','6');
 SQR :=1/SQRT(2);
 MoveTo(0,0);
 LineTo(1000,0);
 handle := LObject;
 DSelectAll;
 Select :=Selected(handle);
 REDRAW;

FOR Count :=1 TO NumIter DO
 BEGIN
 Sign:=-1;
 WHILE (NOT Select) DO
 BEGIN
 GetSegPt1(handle ,X,Y);
 length :=HLength(handle);
 ang := HAngle(handle);
 AngleVar;
 MOVETO(X,Y);
 LINE(length * SQR, #ang + 45 * Sign);
 LINE(length * SQR , #ang - 45 * Sign);
 Sign :=-Sign;
 handle :=NextObj(handle);
 DelObject(PrevObj(handle));
 Select:=Selected(handle);
 END;
 DSelectAll;
 Select :=Selected(handle);
 REDRAW;
 END;
 Sysbeep;
END;
RUN(Koch6);

 s c r i p t i n g

The Sierpinski gasket is an other example of a fractal. Simular to the
Koch curve its creation is based on replacement of its constituent
parts. The algorithm here uses an approach that Peitgen et al call
the Multiple Reduction Copy Machine (MCRM). The user enters the
value for the loop controller NG. The initial triangle is drawn with
side length 1000 (variable L). The For- loop carries out the scaling
and duplicating of the current object (initially a black triangle), into
three copies, which are then grouped. This group is then acted on in
the same way, and so on for NG times.

Note: Duplicate offsets must be checked in preferences dialog box.

86

 4.0 Sierpinski Gasket

87

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

Procedure MRCMGasket;
 VAR
 NG,n : INTEGER;
 L : REAL;
 BEGIN
 selectall;DeleteObjs;
 Fillpat(2);
 CLOSEPOLY;
 L:=1000;
 NG:=INTDIALOG('No. of Levels:','2');
 POLY(L,#0,
 L,#120,
 L,#240);
 L:=L/2;
 FOR n:= 1 TO NG DO
 BEGIN
 SCALE(1/2,1/2);
 DUPLICATE(L,#-120);
 DUPLICATE(L,#0);
 selectall;
 GROUP;
 END;
 END;
RUN(MRCMGasket);

 s c r i p t i n g

88

e
x

e
r

c
i

s
e

Try Modifying the above routine to produce the Sierpinski carpet.
This will start with a square, have a scaling factor of one third, and use
seven duplicate procedures in the loop.

Did you complete assignment 4.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

4.
0

e
x

e
r

c
i

s
e

Instead of positioning the three triangles using move you can also use
rotation and mirroring as additional transformations. The first iteration
step looks simular to the original example, but then it should develop
in a quite different direction.

Did you complete assignment 4.1? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

4.
1

89

m
in

ip
as

ca
l

e
x

e
r

c
is

e

Rather different pattern
emerge if rotation is used
in addition to the move
transformation. In the
two examples shown on
this page the initial figure
was a black square and
not a triangle.

90

C

E 5.0 Pythagoras Tree

The routine pythagotree uses the same method as the Koch and
tree examples, getting the angle & length of a line and then draw-
ing 5 new lines to make a square and triangle. However, in this
example the point data is stored and retrieved from the Polygon
data structure.
Each call to the procedure reads the point data of the indexth vertex
of the polygon whose handle is passed to the procedure as this.

The algorithm:

1. Housekeeping- As usual, clean the drawing and set variables, here
by prompting the user.

 SelectAll;DeleteObjs;
 a:= AngDialog('angle ', '45') ;
 gens := IntDialog('Recursions', '3') ;

2. Initialise- Draw a square, get its handle. (see diagram A)

 closepoly;
 poly(0,0,0,1000,1000,1000,1000,0);
 thepoly := LNewObj ;

3. Construct next- Get the angle and length of the second line of
this polygon and construct two polygons- a square and a triangle
with Procedure (drawsquareNtriang). (B)

 DrawsquareNtriang(thepoly,1000,2);

4. Repeat- In a For-loop the following steps are repeated for as
many times as we asked for (in variable gens).

• Move the handle on to the triangle just drawn. (C)

 thepoly:=nextobj(thepoly);
 thepoly:=nextobj(thepoly);

•Use drawsquareNtriang with the first line of the triangle. (D)

 DrawsquareNtriang(thepoly,200+((gens-g)*200),1);

•Use drawsquareNtriang with the second line of the triangle. (E)

 DrawsquareNtriang(thepoly,200+((gens-g)*200),2);

91

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

procedure pythagotree;
 var thepoly: HANDLE;
 a: REAL;
 skip,gens,g: INTEGER;

 Procedure DrawsquareNtriang(this:HANDLE;index:INTEGER);
 VAR x,y,x1,y1,ang,length,newlength:REAL;
 aline: VECTOR;
 BEGIN
 anglevar;
 Dselectall;
 GetPolyPt(this,index, X, Y);
 GetPolyPt(this,index+1, X1, Y1);
 aline[1]:= x1-x;aline[2]:=y1-y;aline[3]:=0;
 ang:=Vec2Ang(aline) ;
 length:=Distance(X, Y, X1, Y1) ;
 closepoly;
 beginpoly;
 addpoint(x,y);
 addpoint(length,#(ang+90));
 Penloc(x,y);
 addpoint(length,#ang);
 Penloc(x1,y1);
 addpoint(length,#(ang-90));
 endpoly;
 closepoly;
 beginpoly;
 addpoint(x,y);
 newlength:=cos(deg2rad(a))*length;
 addpoint(newlength,#(ang+a));
 addpoint(x1,y1);
 endpoly;
 END;

 s c r i p t i n g

 BEGIN
 SelectAll;DeleteObjs;
 a:= AngDialog('angle ', '45') ;
 gens := IntDialog('Recursions', '3') ;
 closepoly;
 poly(0,0,0,1000,1000,1000,1000,0);
 thepoly := LNewObj ;
 DrawsquareNtriang(thepoly,1000,2);
 FOR g := 1 TO gens DO
 BEGIN
 thepoly:=nextobj(thepoly); thepoly:=nextobj(thepoly);
 DrawsquareNtriang(thepoly,1);
 DrawsquareNtriang(thepoly,2);
 END;
END;
RUN(pythagotree);

The result having set the angle
to 30 and recusion depth of 7.

With some alterations it is possible to transform the flat tree outline
into a three dimensional object. By extruding the lines onto another
layer they can be turned into vertical fences. So viewed in an axono-
metric view a composition of differently dimensioned cuboids and
prisms appears on the screen (see image).
The code remains the same, the boxed bits are the alterations.

92

 5.1 Pythagoras Tree 3d

93

m
in

ip
as

ca
l

s
c

r
ip

t
in

g

Procedure pythagotree;
VAR thepoly:HANDLE;
 a:REAL;
 skip,gens,g:INTEGER;
Procedure DrawsquareNtriang(this:HANDLE; height:REAL;
 index:INTEGER);
VAR x,y,x1,y1,ang,length,newlength:REAL;aline:VECTOR;

BEGIN
 anglevar;
 Dselectall;
 GetPolyPt(this,index, X, Y);
 GetPolyPt(this,index+1, X1, Y1);
 aline[1]:= x1-x;aline[2]:=y1-y;aline[3]:=0;
 ang:=Vec2Ang(aline) ;
 length:=Distance(X, Y, X1, Y1) ;
 closepoly;
 beginpoly;
 addpoint(x,y);
 addpoint(length,#(ang+90));
 Penloc(x,y);
 addpoint(length,#ang);
 Penloc(x1,y1);
 addpoint(length,#(ang-90));
 endpoly;
 closepoly;
 beginpoly;
 addpoint(x,y);
 newlength:=cos(deg2rad(a))*length;
 addpoint(newlength,#(ang+a));
 addpoint(x1,y1);
 endpoly;

 Domenu(Mcopy,nokey);
 layer('3d');
 Beginxtrd(0,height);
 Domenu(Mpaste,optionkey);
 Endxtrd;
 layer('2d');

END;

BEGIN
 layer('2d');
 SelectAll;DeleteObjs;
 layer('3d');
 SelectAll;DeleteObjs;
 layer('2d');
 SelectAll;DeleteObjs;
 a:= AngDialog('angle ', '45') ;
 gens := IntDialog('Recursions', '3') ;
 closepoly;
 poly(0,0,0,1000,1000,1000,1000,0);
 thepoly := LNewObj ;
 DrawsquareNtriang(thepoly,1000,2);
 FOR g := 1 TO gens DO
 BEGIN
 thepoly:=nextobj(thepoly); thepoly:=nextobj(thepoly);
 DrawsquareNtriang(thepoly, 200+((gens-g)*200), 1);
 DrawsquareNtriang(thepoly, 200+((gens-g)*200), 2);
 END;
END;
RUN(pythagotree);

 s c r i p t i n g

94

e
x

e
r

c
i

s
e

Alter the method of calculation for the height. Currently it is inversely
proportion to the generation number + 200. Change it to some other
relationship.

Did you complete assignment 5.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

5.
0

e
x

e
r

c
i

s
e

How would you alter the program so it grew a tree off each side of the
initial square.

Did you complete assignment 5.1? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

5.
1

95

m
in

ip
as

ca
l

e
x

e
r

c
is

e

96

 6.0 Wander

diagram 6.1

This program uses VECTORS which are Minipascals way of storing
and manipulating points. The array points is defined as a table of
3 columns by 100 rows, the columns represent x y & z coordinates,
each row is the insertion point of a cube (see diagram 6.1).
 The random function is equivalent to the Autolisp example,
and returns a random number between 0 and 1.
 Function same returns true if the coordinates in the indexth
row of array points are the same as those in the global vector vari-
able nextpoint.
 Insertcube sets the new vector nextpoint to be thispoint, and
adds it to the array points (after incrementing the counter total),
then draws the box.

algorithm

1. Housekeeping- After the usual housekeeping and user input

 selectall;deleteobjs;
 seed:=intdialog(‘random seed’,’333’);
 max:= intdialog(‘insertions’,’1’);
 total:=0;

the first point is set at 0,0,0.

 FOR loop:= 1 TO 3 DO thispoint[loop]:=0;

2. Choose- A random choice between 1 and 6 is used to calculate
the next position for an insertion,

 choice:= round(rand * 6) +1;

3. Repeat- The REPEAT...UNTIL loop controls the number of inser-
tions, based on user input of max.

 REPEAT
 nextpoint := thispoint; {copy current position}
 choice:= round(rand * 6)+1;
 IF choice = 1 then nextpoint [3] := thispoint [3] -1;

The nested while-loop uses the same logic as in the AutoLisp exam-
ple to check that the new point is not the same as any point stored
in the array points.

 WHILE((count <= total) AND(NOT same(count)))DO

97

m
in

ip
as

ca
l

figure 6.0

count:=count +1;
The array points is used to store the insertion points of each cube,
just like BIGLIST in the Autolisp example. Individual points are
stored in VECTORS, which are Minipascals own data type for x y z
triplets, and are equivalent to a one dimensional array of three ele-
ments.

The WHILE loop runs through each row of this table (using count as
the index to the row) and the boolean function same looks along
this row, comparing each element with each element of the vector
this.

 same := ((points[1,index]=round(this[1]))
 AND(points[2,index]=round(this[2]))
 AND(points[3,index]=round(this[3])));

This reads as : “The first value in the array points on row index is the
same as the rounded value of the first element in vector this
AND the second value in the array points on row index is the same
as the rounded value of the second element in vector this AND
the third value in the array points on row index is the same as the
rounded value of the third element in vector this.”

 This is an example of a boolean expression, because the
answer is either true or false. Notice that the value is assigned to
the name of the function, not a variable. This is so the function can
transfer the result back to the calling statement:

 (NOT same(count,nextpoint))

This means that if the two sets of coordinates are the same then
same will return TRUE. In which case NOT TRUE will equal FALSE. If

98

e
x

e
r

c
i

s
e

Rewrite Insertcube so that instead of inserting a cube of side 1, 1, 1, 1 it
draws a cross as shown in figure 6.2.

Did you complete assignment 6.0? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

6.
0

figure 6.3

figure 6.2

Something similar to figure 6.3 should appear on
the screen after wander is altered as asked in exer-
cise 6.0.

99

m
in

ip
as

ca
l

e
x

e
r

c
is

e
s

c
r

ip
t

in
g

procedure wander;
 VAR points : array[1..3,1..100] of INTEGER;
 thispoint,
 nextpoint: VECTOR;
 loop, count,t otal,
 choice,seed, max : INTEGER;
 FUNCTION Rand : REAL;
 VAR x : REAL ;
 z: INTEGER;
 BEGIN
 x := 2197 * seed;
 z :=TRUNC (x / 4096);
 seed :=TRUNC (x - (4096 * z));
 rand :=(seed / 4096);
 END;

 function same (index : integer) : BOOLEAN;
 BEGIN
 same := ((points [1,index] = round(nextpoint [1]))
 AND (points [2,index] = round(nextpoint [2]))
 AND (points[3,index]= round (nextpoint[3])));
 END;
PROCEDURE insertcube;
 VAR L: INTEGER;
 BEGIN
 total :=total + 1;
 thispoint := nextpoint;
 FOR L := 1 TO 3 DO points[L,total] := round(thispoint [L]);
 beginxtrd(thispoint[3],thispoint[3]+1);
 rect(thispoint [1], thispoint [2],
 thispoint [1]+1, thispoint [2]+1);
 endxtrd;
 redraw;
 END;

BEGIN

 selectall;deleteobjs;
 seed := intdialog('random seed','333');
 max := intdialog('insertions','1');
 total :=0;
 FOR loop := 1 TO 3 DO thispoint [loop]:=0;
 insertcube;

 REPEAT
 nextpoint := thispoint; {copy current

position}
 choice:= round(rand * 6)+1;
 IF choice = 1 then nextpoint [3] := thispoint [3] -1;
 IF choice = 2 then nextpoint [1] := thispoint [1] -1;
 IF choice = 3 then nextpoint [3] := thispoint [3] +1;
 IF choice = 4 then nextpoint [1] := thispoint [1] +1;
 IF choice = 5 then nextpoint [2] := thispoint [2] - 1;
 IF choice = 6 then nextpoint [2] := thispoint [2] +1;
 count:=1;
 WHILE ((count <= total) AND (NOT same
 (count))) DO count := count +1;
 IF count > total then insertcube;
 UNTIL total >= max;
 END;
run(wander);

 s c r i p t i n g

ness into the realm of natural science, but also opened up the way
to the study of non-linear systems, such as the iteration of x—-> x*x
+ c or the weather.
The first thing to realise is that it is not surprising to make a mistake,
but more or less inevitable. In really disastrous conditions you may
crash MinCad itself due to the parser getting indigestion from your
code.

There are two kinds of mistakes:

1) Syntax errors
 The first type is fairly simple to correct, providing that you
have a suitable reference work. It is important to realise that Pascal
is rather useless at telling you what is actually the matter , and one
error will inevitably generate several error messages. In general the
actual error will be one of
 a. leaving out a semicolon or a comma
 b. mis-spelling a procedure or function name
 c. forgetting to match your BEGINs and ENDs
The error output file is displayed with the "View Errors" button in
the Minipascal Editor.

2) Syntactically correct code that doesn't do what you want
 The main way to sort this sort of thing out is to try and discov-
er what is actually happening by using the Writeln (short for write
line) to write out the contents of your variables to the output file.

 GetSegPt1(last, X, Y);
 GetSegPt2(last, X1, Y1);
 writeln('x y & x1 y1',x,y,x1,y1);
and
 aline[1]:= x1-x;aline[2]:=y1-y;aline[3]:=0;
 ang:=Vec2Ang(aline) ;
 writeln('angle = ', ang);

In this fragment the two writeln statements output the value of the
four coordinates x y x1 & y1 on one line, and the calculated angle on
the next. The variables are listed out after an optional bit of text

 ('x y & x1 y1',

which is used to identify what would otherwise be an anonymous

100

Debugging

and possibly ambiguous list. The information is available in a file
called 'Output File', which you can look at with a text editor, or
append to the Minipascal edit window by selecting it via the "get
Text" button.
Number formatting

 x y & x1
 y10.000000000000000000000.0000000000000000000001
 angle = 90.00000000000000000000
 x y & x1 y10.000000000000000000001.0000000000000.273600
000000
 000000001.75180000000000000000
 angle = 109.99779115783476360000
 x y & x1

This example with it's long poorly laid out numbers shows that
number formatting is helpful in making the results more readable.
Pascal's formatting syntax is

 x:10:3
meaning 'write the contents of variable x using 10 characters to
write the number, three after the decimal place'. Using this format
leads to

 writeln('x y & x1 y1',x:10:3,y:10:3,x1:10:3,y1:10:3);
 writeln('angle = ', ang:10:3);
 x y & x1 y1 0.000 0.000 0.000 1.000
 angle = 90.000
 x y & x1 y1 0.000 1.000 -0.274 1.752
 angle = 109.998
 x y & x1 y1 0.000 1.000 0.274 1.752

Once you have got the values , it is necessary to follow through the
flow of the program, starting with the values you have output, and
try to understand how the results of the calculations are obtained.
If you still can't work out what's going wrong then adopt strategy 2
- •Commenting out chunks of code

 The { and } curly bracket characters are used to indicate that
the computer should ignore the bracketed code. They are provided
in order that you can include {COMMENTS} in your code so that you

101

m
in

ip
as

ca
l

d
e

b
u

g
g

in
g

102

103

g
.d

.l
.

104

G.D.L

105

s
y

n
t

a
x

g
.d

.l
.

Quickstart

In order to create a new GDL script select Open Library Part from
the File menu in ArchiCad. Select new in the dialogue box which
appears.

Click the new-
button will bring
you to the win-
dow on the left.
From here you
operated GDL:
Define param-
eter, type the
script, and run
the script.

This simple program creates a parametric rectangular table using
six parameters, the brick command and simple transformation. The
algorithm is simple: Go to certain position in space, draw brick,
move to next position, draw brick, move to next position........ END.
The six parameters define the dimension of the table: a - the length,
b - the width, c - the height, d - inset, e- thickness of legs, f - thick-
ness of the table top.

106

 1.0 Parametric table

The dialog box above
prompts the user for the
values of the parameters.
The variables A and B are
entered beside the bed sym-
bol, the rest in the scrolling
window below

Click the GDL Script -
button: The GDL script
can be edited in the text
window. Clicking the 3D
View -button brings up
the image.

107

g
.d

.l
.

s
c

r
ip

t
in

g

Addz (c-f)
Brick a,b,f
del 1
add d,d,0
brick e,e,(c-f)
del 1
add d,(b-d-e),0
brick e,e,(c-f)
addx a-(2*d)-e
brick e,e,(c-f)
addy -(b-(2*d)-e)
brick e,e,(c-f)
del top
End

 s c r i p t i n g

A further example for a scripted parametric objects includes the use
of a loop. This time six variables are in use: a- diameter of the table
top, c- table height, d- the number of legs, e- table top thickness,
f - inset, g- the thickness of the legs. The algorithm is sightly more
elegant than the one in the previous example: After the table top is
drawn the legs are created in a FOR NEXT-loop. This allows the user
to choose any number of legs.

108

 1.1 Round table

Different outputs produced by the program Round Table
varying in the number of table legs, inset, and length of
legs.

109

g
.d

.l
.

s
c

r
ip

t
in

g

addz (c-e)
cylind e, (a/2)
del 1
For s=1 to d step 1
 addx ((a/2)-(e+f))
 cylind (c-e), (g/2)
 del 1
 rotz (360/d)
next s
del top
end

 s c r i p t i n g

110

e
x

e
r

c
i

s
e

By changing the parameters you can get all sorts of tables. Try it

Did you complete assignment 2.0.c? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

1.
0

111

g
.d

.l
.

e
x

e
r

c
is

e

e
x

e
r

c
i

s
e

Did you complete assignment 2.0.c? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

1.
1

GDL supports recursion, once a macro has been saved and named,
by using the CALL syntax. If the macro called is the same one as the
one loaded into Archicad, then recursive algorithms can be devel-
oped. The first example is one where each instance of the macro
calls itself 5 times, after moving the coordinate system and reduc-
ing the side length to place a new block on each face of the current
block.
 This results in a tree like structure of gradually reducing boxes.
While this looks convincing in rendered form, the process naturally
results in blocks within other blocks. Archicad does not provide
clash detection facilities,and this illustrates the fundamental weak-
ness of GDL as a generative modelling system. There is no direct
way of finding out where things are.

The algorithm:

The script starts by moving the coordinate system by half the edge-
length and making a brick of side a. This manoeuvre is because the
origin of the cube is tracked as though it were in the middle of the
cube, whereas in reality it is the bottom left corner.

1. Move origin- In the beginning you move the coordinate system

origin in the centre of the cube. Moving the origin half the edge-
length in X, Y & Z will place it here.

 addx -a/2
 addy -a/2
 addz - a/2

2. Draw brick- The brick command makes the first, big brick

 brick a,a,a

3. The del 3 overrides these last 3 moves, and the addz a/2 moves
the coordinate system to the top face of the new cube, at the same
time the edgelength is reduced by the reduction factor d.

 del 3
 addz a/2
 let a=a*d

4. Stop condition- The conditional if statement checks if the edge-
length (a) is not less than the minimum length (e). If it is, go to label
2 and ends the program

112

 2.0 Recursive block adding

figure 2.0

 if a<e then 2
5. Recursive calls- Here starts the recursive bit: Move up half the new
edgelength (addz a/2) call this macro again (call "bricks" a,b,c,d,e).
This will create a smaller block on the top of the original one. Then
rotate the coordinate system 90 degrees in y and call this macro
again. This will place a block on the face of the original block. And
so on...

 addz a/2
 call "bricks" a,b,c,d,e
 Roty 90
 Call "bricks" a,b,c,d,e
 Rotx 90
 Call "bricks" a,b,c,d,e
 Rotx 90
 Call "bricks" a,b,c,d,e
 Rotx 90
 Call "bricks" a,b,c,d,e

113

g
.d

.l
.

The width of this block is a*d

The width of the first
block is a

1

2

3

4

1. Move origin in the centre of the cube.
2. Moving the origin half the edgelength in X Y & Z will place it here.
3. Move up half the new edgelength call this macro again. This will
create a smaller block on the top of the original one.
4. Rotate 90 degrees in y and call this macro again. Place a block on
the face of the original block.

figure 2.1

114

e
x

e
r

c
i

s
e

Did you complete assignment 2.0.c? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

2.
0

115

g
.d

.l
.

e
x

e
r

c
is

e

addx -a/2
addy -a/2
addz -a/2
brick a,a,a
del 3
addz a/2
let a=a*d
if a<e then 2
addz a/2
call "bricks" a,b,c,d,e
Roty 90
Call "bricks" a,b,c,d,e
Rotx 90
Call "bricks" a,b,c,d,e
Rotx 90
Call "bricks" a,b,c,d,e
Rotx 90
Call "bricks" a,b,c,d,e

2: end

 s c r i p t i n g

s
c

r
ip

t
in

g

This program creates a three dimensional tree in a recursive fashion.
The program has two parts: The main part, named elm tree, creates
a trunk and calls ‘winter’ four times, one for each main branch. win-
ter, the second part, draws the branches using recursion.

The algorithm of w inte r

1. Rotate the x axis between 10 and 35 degrees randomly

 rotx (10+rnd(25))

ie 10 plus a random number between 1 and 25
2. Make a cylinder and move to the end of the cylinder.

 cylind c,d
 addz c

3. If the branch length is small, but not so small as to warrant stop-
ping, jump to subroutine at label 4.

 if d<0.14 and d>f gosub 4

4. Reduce the branch length & radius by 80%.

 c=c*0.8
 d=d*0.8

5. If the branchlength is less than the limit then go to subroutine at
label 2. This effectively stops the execution and returns to the main,
calling part of the program.

 if d<f then 2

6. Call second part, ‘winter’- itself- recursively ‘g’ times, and each
time rotate in z by 360/g.

 for t=1 to g step 1
 rotz 360/g
 call "winter" a,b,c,d,e,f,g
 next t

 The parametric dialog box shows the current values of each vari-
able. By altering these values different forms of branching structure
can be generated.

116

 3.0 Recursive Tree

117

g
.d

.l
.

s
c

r
ip

t
in

g

!winter
 resol 6
 rotx (10+rnd(25))
 !shadow AUTO ON
 cylind c,d
 body 1
 addz c
 if d<0.14 and d>f gosub 4
 c=c*0.8
 d=d*0.8
 if d<f then 2

 for t=1 to g step 1
 rotz 360/g
 call "winter" a,b,c,d,e,f,g
 next t
END

 2:
 END

 4:
 resol 4
 !shadow off,off
 let g=5
 rotx 5
 return

!elm tree
!main part
 cylind 3,0.2
 addz 2.2
 rotx 10
 call "winter" a,b,c,d,e,f,g
 del 1
 addz 0.8
 rotz 180
 rotx 10
 call "winter" a,b,c,d,e,f,g
 del 1
 rotz 90
 rotx 10
 call "winter" a,b,c,d,e,f,g
 del 1
 rotz 180
 rotx 10
 call "winter" a,b,c,d,e,f,g
END

 s c r i p t i n g

118

e
x

e
r

c
i

s
e

Add a further call to winter to provide a fifth branch going straight up
to form a continuation of the trunk.

Did you complete assignment 2.0.c? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

3.
0

119

g
.d

.l
.

e
x

e
r

c
is

e

e
x

e
r

c
i

s
e

Devise further branching rules like the one in step 4 of winter

Did you complete assignment 2.0.c? Yes No
Did you need help? Yes No

What new topics did you learn?

What old topics did you rehearse?

T
u

to
rs

 c
o

m
m

e
n

ts

Help provided

3.
1

GDL Froebel shape grammar

These routines explore the joining possibilities(‘design grammars’
in the literature) of one block. They depend on the definition
of unique spatial relationships between symmetrical objects, as
described in Terry Knight & Ulrich Flemming’s papers (Knight 1990,
Flemming 1986). If the 6 faces are uniquely labelled, then it is pos-
sible to calculate the total number of joining possibilities for a block,
which in this case is 8 x 8 x 8 (= 512). This program allows you to
explore each possibility by choosing settings for the three main
controls, symmetry selectors 1 & 2 and rotation.

120

 4.0 Froebel Exploratorium

121

g
.d

.l
.

1000:! TRANSFORMATION
! move to corner
 add 4, 2, 1
!rotate
!y/x
 rotz -90
 roty 90
!Symmetry change
 mul -1, 1, 1
 add -a, 0, 0
return

! draw first brick
brick 4, 2, 1

!move
gosub 1000

!draw second brick
brick 4, 2, 1

!move to draw stack
del top
addx 12
r = 5
!start main program
!DRAW STACK
for s = 1 to 8
!changes colours
r = (r+10)
if r <= 99 goto 100
r = int(r/d)
100:
pen r
brick 4, 2, 1
gosub 1000
next s

end
!end main program

In this simple example one spatial relation is set up in subroutine
1000, which consists of:
 add 4, 2, 1
 rotz -90
 roty 90
 mul -1, 1, 1
 add -a, 0, 0

These transformations are set up once to draw the ‘exemplar’ (on
the left above) and then a stack of 8 blocks is drawn using a loop
 for s = 1 to 8

122 pen 94

block a, b, c
add (a-0.35), (b-0.35), (c+0.02)
pen 81
circle 0.25
del 1
add (a-0.5), (b-0.5), (-0.02)
pen 15
rect 0.4, 0.4

end

In this version the brick
is drawn usign the
macro “frb1” twice as a
fully labelled example.

The main transfor-
mation is carred out
repeatedly, in random-
ply chosen colours.

123

g
.d

.l
.

A full blown exploratorium for the two block single relationship
grammar.

The Algorithm

In the general case all possible transformations can be laid out as a
series of subroutines. The actual subroutines are chosen with values
for the variables F G & H, and exploit the ability of GDL to use a vari-
able as the argument to a GOSUB
In this case , the labels for the three sets of subroutines are arranged
in series 1..9,21..28,41..48. The values for F G & H are used with an
offset of 0 20 & 40 to address the correct label.
Thus if g = 3
p = g+40
x = f
q = h+20

then
GOSUB p
is equivalent to
GOSUB 43

The three transformations are arranged as three sets of 8
routines,providing 512 alternatives

124

!brick size see parameters
 p = g+40
 x = f
 q = h+20
! draw first brick
 call "frb1" a, b, c
!move
 gosub 1000
!draw second brick
 call "frb1" a, b, c
!move to draw stack
 del top
 addx e
 r = 5
!start main program
!DRAW STACK
 for s = 1 to d
!changes colours
 r = (r+10)
 if r <= 99 goto 100
 r = int(r/d)
 100: pen r
 brick a, b, c
 gosub 1000
 next s

end
!end main program

! TRANSFORMATION
 1000:
! move to corner
 gosub x
!rotate
 gosub q
!Symmetry change
 gosub p
 return
! move to corner
 1: add 0, 0, c
 mul -1, -1, 1
 return
 2: add a, 0, 0
 mul 1, -1, -1
 return
 3: add a, 0, c

 mul 1, -1, 1
 return
 4: add a, b, 0
 mul 1, 1, -1
 return
 5: add a, b, c
 return
 6: add 0, b, 0
 mul -1, 1, -1
 return
 7: add 0, b, c
 mul -1, 1, 1
 return
 8: add 0, 0, 0
 mul -1, -1, -1
 10:
 return
!rotate
! z/z
 21: rotz -90
 mul 1, -1, 1
 return
 22: !z/x
 rotz -90
 rotx 90
 return
 23: !y/z
 rotz -90
 rotx -90
 return
 24: !z/y
 rotz 90
 roty -90
 return
 25: !x/z
 rotz 90
 roty 90
 return
 26: !y/x
 rotz -90
 roty 90
 return
 27: !x/x
 roty 90
 mul 1,1, -1
 return

 28: !y/y
 rotx 90
 mul 1,-1, 1
 return
 29: !x/y
 rotz 90
 rotx -90
 return

!Symmetry change
 41: return
 42: mul 1, -1, 1
 add 0, -b, 0
 return
 43: mul -1, 1, 1
 add -a, 0, 0
 return
 44: mul -1, -1, 1
 add -a, -b, 0
 return
 45: mul 1, -1, -1
 add 0, -b, -c
 return
 46: mul 1, 1, -1
 add 0, 0, -c
 return
 47: mul -1, -1, -1
 add -a, -b, -c
 return
 48: mul -1, 1, -1
 add -a, 0, -c
Return

will be able to understand it next year. It is good form to comment
your code, simply so that you know what the various bits do. Using
the curly brackets to "hide" successive chunks of the code (which
have to be chosen carefully to leave a syntactically correct remnant)
should lead you to isolate that part which causes the problem by a
process of elimination.

125

i
n

t
r

o
a

u
to

li
sp

m
in

ip
as

ca
l

g
.d

.l
.

l
i

n
g

o
e

x
e

r
c

is
e

d
e

b
u

g
g

in
g

s
y

n
t

a
x

q
u

ic
k

st
a

rt
s

c
r

ip
t

in
g

ate arguments filled in with simple constants.

126

non-linear systems on the computer it is necessary to understand
the basic structure of such systems and learn how to implement
them in the computer .

127

i
n

t
r

o
a

u
to

li
sp

m
in

ip
as

ca
l

g
.d

.l
.

l
i

n
g

o
e

x
e

r
c

is
e

d
e

b
u

g
g

in
g

s
y

n
t

a
x

q
u

ic
k

st
a

rt
s

c
r

ip
t

in
g

128

 cdr strips off the front atom of a list

129

i
n

t
r

o
a

u
to

li
sp

m
in

ip
as

ca
l

g
.d

.l
.

l
i

n
g

o
e

x
e

r
c

is
e

d
e

b
u

g
g

in
g

s
y

n
t

a
x

q
u

ic
k

st
a

rt
s

c
r

ip
t

in
g

130

come to look them up later.
GDL - Geometric Description Language- is ArchiCad’s built in pro-
gramming language. Without a knowledge of GDL, ArchiCad user’s
are limited to the range of objects that can be created using the
ArchiCad toolbox. However using GDL allows access to a variety
of shapes which would not otherwise available. GDL facilitates
the creation of 3 dimensional parametric objects. Objects contain
three parts: A two dimensional symbol, a three dimensional shape,
and a description of the objects properties. The 2D symbol may be
defined parametrically as well as the 3D shape.

The Syntax

GDL offers a full range of facilities which allow the programmer to
evaluate a condition and select alternative solutions. The syntax of
GDL is fairly simple. A convenient object creation and debugging
environment allows authors of GDL scripts to create new objects
simply. GDL is a very simple language with only 26 variables the let-
ters A to Z, and no variable typing. All scripts begin at the top of the
text window (there is no explicit BEGIN) and control can be altered
by:

 GOTO <label>

or
 GOSUB <label>

where <label> is a number . The label is placed in front of the line to
be jumped to followed by a colon

 2:
The execution of the program ends when the file ends, or the END
statement is reached.
GDL allows the use of conditional statements. Conditional expres-
sions take the form:

 IF <conditional expression> THEN <label>

for example:

 IF a<e THEN 2

Loops are made with the FOR - NEXT statement:

 FOR<index var>=<startvalue>TO<endvalue>[STEP<increment
value>]

 NEXT <index variable>
All object creation takes place at the origin of the three dimensional
coordinate system. If you want to avoid placing things in the same
place, you have to move the origin of the coordinate system. This
can be done in three ways:

 ADD,xn,yn,zn

which moves the origin n units in either one or all of the dimen-
sions. ADDX, ADDY, ADDZ are all optional expressions if you only
want to move in one direction. Thus

 ADDX 10
 ADDY 5
 ADDZ 1.5

is equivalent to

 ADD 10,5,1,5

 ROT rx,ry,rz

which rotates the coordinate system about each axis (ROTZX ROTY
and ROTZ are equivalents)

 MUL mx,my,mz

which scales the coordinate axes. 1 leaves things as they are (MULX
MULY MULZ again are equivalents). Using negative numbers allows
reflection (-1 to reflect without scaling).

 DEL n

The DEL n command is provided to “undo” any number of these
transformations. DEL TOP removes all transformations. This is useful
to get back to square one.
In the Froebel blocks example the transformations are used to
define a spatial relation, which can be achieved by some combina-
tion of moves, rotations and reflection / mirroring.

26 parameters are provided which can be a limitation in creating

131

i
n

t
r

o
a

u
to

li
sp

m
in

ip
as

ca
l

g
.d

.l
.

l
i

n
g

o
e

x
e

r
c

is
e

d
e

b
u

g
g

in
g

s
y

n
t

a
x

q
u

ic
k

st
a

rt
s

c
r

ip
t

in
g

	Gen Mod cs
	cookbook

