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ABSTRACT 

 

This thesis is a study of methods of transforming coordinates between geodetic datums, the 

methods being generally known as datum transformations. 

 

Direct methods are described and categorised as conformal, near-conformal and non-

conformal.  New variations on all three types are included in the direct methods: SMITSWAM 

(which avoids changes of coordinate-type), partially-conformal variants of Standard & 

Abridged Molodensky, and normalised generalisations of multiple regression equations (5 

types).  Reverse transformations are extensively covered, as are methods of derivation.  In 

both cases, new algorithms are included. 

 

Direct methods, with the exception of multiple regression equations, do not capture distortions 

in datum transformations.  The thesis therefore includes a review of composite methods which 

extract a trend model and apply a surface-fitting technique (SFT) to the residuals.  Sometimes 

the SFT is used as a gridding method, producing regularly-spaced data that can be interpolated 

as a final stage of the composite process. 

 

The SFTs selected for detailed study include new variations on inverse-distance-to-a-power 

weighting and nearest-neighbour interpolation.  These are called HIPFEAD and LIVONN 

respectively.  In both cases, the variations are shown to have advantages in terms of accuracy 

of fit.  Least-squares collocation and radial basis functions are shown to produce reusable 

vectors – described here as “revamped signals” – that enable interpolation without gridding. 

 

Where the composite methods are used for gridding, it is shown that geodetic coordinates can 

be used, avoiding the need for projected grid coordinates.  The interpolation options applied 

are piecewise-bilinear and piecewise-bicubic, the latter being an algorithm (believed to be 

new) that uses up to 12 “grid” points. 

 

Case studies were considered using 6 datasets, two for Great Britain, one each for Western 

Australia, Ghana, Sweden and Slovenia.  These showed beneficial properties of the new 

methods, both in the direct and composite categories.  They also enabled comparisons of 

transformation methods generally. 
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DEFINITIONS 

 

anisotropy state of having a physical property which has a different value 

when measured in different directions. 

ArcGIS Name of a “geographic information system for working with 

maps and geographic information” maintained by the 

Environmental Systems Research Institute. 

basis functions functions which are used in a linear combination to make a 

mathematical model. 

geoid hypothetical solid figure whose surface corresponds to mean 

sea level and its imagined extension under (or over) land areas. 

geoid height height of geoid above ellipsoid, so is dependent on geodetic 

datum. 

geoid model mathematical representation of the geoid for a specific area, or 

for the whole earth.  Since it consists of geoid heights, it is 

dependent on geodetic datum. 

gridding process of converting data to data defined on a regular mesh. 

gridded data data defined at points on a regular mesh. 

horizontal in a plane tangential to a reference ellipsoid at a local point.  

This is a deliberately loose definition for use in this thesis and 

would not be appropriate in the context of physical geodesy. 

isotropy state of having a physical property which has the same value 

when measured in different directions. 

L1 norm sum of magnitudes. 

largest quantity with the highest modulus.  This use of the word 

“large” treats -996 as being larger than +995.  It also treats 5, 

-5 and the complex number 3+4i as equally large. 

level see horizontal. 

LSS name of a “complete land survey, terrain modelling, volume, 

design and visualisation package” produced by McCarthy 

Taylor Systems Limited. 

magnitude size irrespective of sign. 

monomial product of non-negative powers, for example 1, x, 𝑥2, xy, 

𝑥3𝑦4.  This definition is adopted in preference to “polynomials 

with a single term” (which would include terms like 6𝑥3𝑦4). 



xi 

normalised constrained to be in the range -1 to 1.  For example, 0.5(x-14) 

is a normalised version of a variable x whose range of values 

is 12 to 16. 

orthometric height height above geoid. 

partially-linear description of a near-conformal 3D transformation in which 

the rotation matrix has been linearised but the linearised matrix 

as a whole is multiplied by the scale factor: 

(1 + 𝛥𝑆) [

1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

] 

polynomial linear combination of monomials. Examples include 3 − 𝑥 +

4.84576𝑥2 + 6.87519𝑥3  and 𝑥 + 3.5𝑦 − 𝑥𝑦 + 6𝑥3𝑦4 +

7.5𝑥2𝑦5.  This definition allows powers of more than one 

variable. 

rearrangement-type 
formula 

reverse formula based on rearrangement.  For example, the 

rearrangement-type formula for the inverse of y = 2x3 - 1 is x 

= [(y+1)/2]1/3. 

rigid type of transformation that preserves shape and size.  In this 

thesis it allows for translation and rotation, but not reflection 

(because the context is geodetic datum transformations). 

rotation rotation in the sense of a position vector moving counter-

clockwise when viewed from the positive side of the origin.  

This means that a clockwise rotation is negative in sign.  (Some 

sources adopt the opposite convention.)  In this thesis, rotation 

means transformation (overall change) rather than rotating 

motion. 

same-formula inverse inverse of a formula that uses the original form with different 

parameters. 

shape parameter parameter that controls the rate-of-change of a real-valued 

function: changing its value stretches or compresses the curve 

in the graphical representation. 

simple same-formula 
inverse 

same-formula inverse (usually approximate) which applies the 

parameters of the original formula with opposite signs. 

smooth having a continuous derivative (in the case of a function of one 

variable) or having continuous partial derivatives (in the case 

of a function of more than one variable). 
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vertical parallel to the normal to a reference ellipsoid at a local point. 

This is a deliberately loose definition for use in this thesis and 

would not be appropriate in the context of physical geodesy.  

However, vertical and horizontal should be regarded as 

mutually perpendicular. 

weighted average linear combination of terms where the coefficients are non-

negative and add up to 1. 
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ABBREVIATIONS 

 

AGD84 Australian Geodetic Datum 1984. 

AP/SE absolute value of a parameter divided by its standard error. 

ArcGIS (See Definitions.) 

BC bicubic. 

BL bilinear. 

BLM bilinear model. 

BT48 Borneo Triangulation 1948. 

CF coordinate frame. 

C𝑛 continuous with continuous derivatives up to and including the nth order.  

Where the domain of the function has two or more dimensions, 

“derivatives” means partial derivatives. 

CORS Continuously Operating Reference Station. 

DMA US Defense Mapping Agency. 

D48 Datum 1948 (used in Slovenia). 

D96 Datum 1996 (used in Slovenia). 

EEH Equivalent-enlargement hypothesis. 

ERLTO eliminating ratios less than one. 

ETRFnn European Terrestrial Reference Frame 19nn.  The full year is included for 

2000 onwards. 

ETRS89 European Terrestrial Reference System 1989. 

FLBW fully-linear Bursa-Wolf.  For this version of the Bursa-Wolf transformation, 

the scaling is only applied to the diagonal of the linearised rotation matrix. 

FLMB fully-linear Molodensky-Badekas.  For this version of the Molodensky-

Badekas transformation, the scaling is only applied to the diagonal of the 

linearised rotation matrix. 

GDA94 Geocentric Datum of Australia 1994. 

GDBD2009 Geocentric Datum Brunei Darussalam 2009. 

GGD Georgia Geodetic Datum. 

GNSS Global Navigation Satellite Systems. 

GPS NAVSTAR Global Positioning System. 

GRS67 Geodetic Reference System 1967. 

GRS80 Geodetic Reference System 1980 or Reference Ellipsoid 1980. 

HICFEAD hybrid inverse cubic function embodying accelerated decline. 



xiv 

HIPFEAD hybrid inverse power function embodying accelerated decline. 

HISFEAD hybrid inverse square function embodying accelerated decline. 

IAMVAM inverse Abridged Molodensky via applied misclosure. 

IAMVVAM inverse Abridged Molodensky variation via applied misclosure. 

ICSM Intergovernmental Committee on Surveying and Mapping. 

IERS International Earth Rotation and Reference Systems Service. 

IMQ inverse multiquadric. 

ISMVAM inverse Standard Molodensky via applied misclosure. 

ISMVVAM inverse Standard Molodensky variation via applied misclosure. 

ITRFnn International Terrestrial Reference Frame 19nn.  The full year is included 

for 2000 onwards. 

ITRS International Terrestrial Reference System. 

IUGG International Union of Geodesy and Geophysics. 

LIVONN linear interpolation variant on nearest neighbour. 

LSC least-squares collocation. 

LSS (See Definitions.) 

MDNN median distance to nearest neighbour, taken over a set of data points. 

MDZ median distance to zero, taken over a set of data points. 

ML multilog. 

MQ multiquadric. 

MRE multiple regression equation. 

NAD27 North American Datum 1927. 

NGA US National Geospatial-Intelligence Agency. 

NIMA US National Imagery and Mapping Agency. 

NCS natural cubic spline. 

NSB not strictly bounded.  An NSB interpolating function can take values outside 

the range given at data points. 

OSGB36 Ordnance Survey Great Britain 1936. 

ppm parts per million. 

PCV Partially-conformal variation 

PV position vector. 

PLBW partially-linear Bursa-Wolf.  For this version of the Bursa-Wolf 

transformation, the scaling is applied to the whole of the linearised rotation 

matrix. 
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PLMB partially-linear Molodensky-Badekas.  For this version of the Molodensky-

Badekas transformation, the scaling is applied to the whole of the linearised 

rotation matrix. 

RBF radial basis function. 

RD residual distance.  This will be same as positioning error if the residuals are 

errors. 

RHD residual horizontal distance.  This will be same as horizontal positioning 

error if the residuals are errors. 

𝑟𝑚𝑎𝑥 limit-of-influence.  Distance beyond which data has no influence. 

RMS root-mean-square. 

RT90 Rikets koordinatsystem 1990. 

SAD69 South American Datum 1969. 

SFI same-formula inverse.  The original formula is used with different 

parameters. 

SFT surface-fitting technique. 

SI simple inverse (used when SSFI isn’t quite appropriate). 

SMITSWAM Standard Molodensky In Two Stages With Applied Misclosure. 

SSFI simple same-formula inverse.  The original formula is used but the signs of 

the original parameters are reversed. 

SWEREFyy Swedish Reference Frame (where yy is 93 or 99). 

TPC thin plate spline. 

TRF Terrestrial Reference Frame. 

TRS Terrestrial Reference System. 

VBA Visual Basic for Applications. 

WGS72 World Geodetic System 1972.  This is the name of the ellipsoid as well as 

the name of the datum. 

WGS84 World Geodetic System 1984.  This is the name of the ellipsoid as well as 

the name of the datum. 

3PC 3-parameter conformal. 

4Q 4-quadrant. 

7PC 7-parameter conformal.  
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CHAPTER 1: GENERAL CONCEPTS AND OVERVIEW 

 

1.1  Background 

Our knowledge of the earth’s shape and size is fundamental to mapping and the description of 

position worldwide.  This knowledge has greatly improved over time resulting in numerous 

models of the earth and mapping coordinate systems.  Today, with the advent of satellite 

positioning systems, the determination of a global model of the earth is possible.  It is also not 

difficult to establish the position of a point using this technology.  However, relating it to 

measurements made in the past is, to say the least, problematic.  The mapping in many 

countries has been associated to different earth models over time, and the coordinates of a 

point will differ according to the model adopted at the time. 

 

This study is about mathematical relationships between positioning systems.  They arise from 

a multitude of positioning systems or datums that are in use for precise mapping and 

navigation.    A datum transformation is the process of converting the coordinates of points 

from one earth model to another.  It requires knowledge of the individual models and the 

coordinates of points established in that model. There are several ways in which the 

transformation can take place and these are investigated here. 

 

An example can be found in the mapping of Great Britain which was started in 1747.  The first 

network of points, the principle triangulation, came about during 1791-1853.  The original 

network was a triangulation with all angles measured but only one distance (5.190 miles, 

equivalent to 8.352km).  The network was ill-conditioned, so a new re-triangulation took place 

during 1936-1962; the computation was done in parts, due to the lack of computing power.  

Since then, electronic measurement of distances has become possible, satellite positioning 

techniques have been developed, and the ability to compute large systems of equations has 

become easy.  These have identified great weaknesses in the GB mapping system that users 

of the data were unaware of and have not affected their use.  The choice was therefore to 

republish all the mapping or to provide a means to overcome these issues when necessary.   

Ordnance Survey, after consultation with its users, produced ways of transforming the older 

1936-based coordinates to comply with satellite positioning.  

 

In general, older datums around the world were defined in terms of local areas, typically an 

individual country or a group of countries.  Positions were determined from astronomical 

observations and by traditional survey techniques (distance & angle measurement and 
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levelling) followed by computations designed to minimise the effect of measurement errors.  

Satellites have revolutionised surveying methods, leading to 

• increasingly precise knowledge about the size & shape of the earth and its gravity field, 

and 

• increasingly accurate measurement of positions. 

This has led to the definition of new datums with global coverage. 

 

The use of Global Navigation Satellite Systems (GNSS) is now commonplace, with almost 

every mobile telephone and tablet including a receiver capable of determining global position 

to a few metres in its datum.   Without correction or transformation, the displayed position 

will not relate to current mapping when the latter is in another datum (which is often the case). 

 

Precise GNSS receivers are in common use by the surveying profession as techniques have 

improved to give centimetre precision in real-time.  As a result, there has been an increasing 

requirement for surveys to be connected to the national or project coordinate systems which 

are defined by the use of Continuously Operating Reference Stations (CORSs).  For example, 

Ordnance Survey has established OS Net, a network of some 120 CORSs; this provides 

Ordnance Survey’s own surveying teams with access to the new national datum, ETRS89, 

with data for postprocessing available free on its website, and with real-time data available via 

commercial partners to users in the field.  However, the mapping data continues to be in 

another datum, OSGB36, and so transformation is needed to combine their use. 

 

In addition to the requirement noted above, datum transformations are needed for the 

following purposes: 

• Positions known in a local datum sometimes need to be transformed into positions in 

a global datum for use in navigation systems. 

• Positions determined by satellites in a global system sometimes need to be transformed 

into positions in a local datum for use by a national mapping agency. 

• Positions known in one local datum need to be computed in terms of another local 

datum if a country wishes to adopt the latter as a replacement datum. 

 

Modelling datum transformations is an inexact science, for reasons discussed in Section 1.6. 

 

Research into datum transformations has given rise to thousands of papers from geoscientists 

around the world.  An overview of the current status of research is given in Section 1.8. 
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1.2  Aims and objectives  

Foremost among the aims was a comprehensive overview of geodetic datum transformations 

that introduced new methods and compared them with existing methods.  The purpose of the 

former was to improve on existing methods for accuracy and/or ease of computation. 

 

The scope included methods of inverting transformations (applying transformations in the 

reverse direction) with the aim of introducing new ones and improving existing ones.  The 

scope also included methods of deriving transformations (from sets of points common to two 

datums) with the aim of introducing new ones where existing methods were problematic. 

 

In practice, the “optimum” transformation is often determined by the accuracy required for a 

particular purpose and the most practical method to achieve it.  The thesis compares different 

transformations from six case studies for accuracy and practicality. 

 

Accuracy is measured by root-mean-square (RMS) of residuals.  Where there are sufficient 

data points for some to be set aside for independent verification, the RMS is computed from 

test points.  Other measures of probable accuracy include the extent or absence of extrapolation 

effects and the model behaviour as illustrated in contour maps.  Practicality is mainly about 

ease of computation.  This affects derivation of transformation as well as application.  Far 

more transformations with 3 or 7 parameters have been derived than those The growing 

number of derived transformations based on advanced surface-fitting techniques is still far 

fewer than simpler models with 3 or 7 parameters (see, for example, ESRI [2012]) so the latter 

are stronger candidates for software tools with worldwide application. 

 

Besides comparing existing transformation methods, the case studies aim is to confirm that 

the new transformation methods have advantages over the methods they are adapted from: 

either greater accuracy without a major increase in computation or a more economical route 

to the same accuracy.  In the case of Great Britain (2D), for example, accuracy levels were 

sought that improved on the 0.1m level obtainable from OSTN15. 

 

The case studies are based on 6 datasets, two for Great Britain, one each from Western 

Australia, Ghana, Sweden and Slovenia.  Although availability of data was a consideration, 

the selection was designed to reflect the variety of transformation requirements that occur in 
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practice.  Hence the differences in size-of-region, coverage-of-region, number of points and 

presence (or otherwise) of heights. 

 

The case studies include the following: 

• accuracy statistics of the transformations derived; 

• comparisons with published transformations (where available) for supplementary 

verification; 

• observations on aspects of the results which are related to distinctive aspects of the 

data (eg mathematically-generated heights in Ghana); 

• modifications of transformations where made necessary by characteristics of the data 

(eg clusters of control points in Australia and Great Britain); 

 

Section 1.8 reviews the literature that describes existing knowledge about datum 

transformations, although further evaluation of relevant publications is provided within 

particular sections to aid understanding.  Section 1.9 provides details of how this study builds 

on existing knowledge. 

 

1.3  The geodetic datum 

Before proceeding further, the basic concepts need a formal introduction. 

 

A geodetic datum is a system for precisely measuring locations on Earth (or other planetary 

body). An alternative name which has increased in usage is terrestrial reference system (TRS).   

 

Geometrically speaking, a geodetic datum is a representation of the earth that includes an 

ellipsoid of revolution about a polar (Z) axis and axes (X and Y) in the equatorial plane such 

that the positive X-axis defines zero longitude.  The ellipsoid is fitted to the earth according to 

whether the datum is intended for local or global use.  For a local datum, the ellipsoid is 

designed to fit the geoid closely in the local area.  For a global datum, the ellipsoid is designed 

to give the best possible fit to the global geoid.  Either way, the definition of the datum must 

define (either directly or indirectly) 

• the size, shape and centring of the ellipsoid, 

• the direction of the polar axis, and 

• the zero meridian. 
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Figure 1-1 shows the axes used for Cartesian coordinates (X, Y, Z).  The geodetic coordinates 

(ϕ, λ, h) are shown in Figures 1-1 and 1-2.  It should be noted that h is individually known as 

ellipsoidal height rather than geodetic height. 
 

 
  
Figure 1-1: Ellipsoid showing Cartesian 
axes, the ellipsoidal normal through point P 
and the geodetic longitude (λ) of P. 

 

Figure 1-2:  Meridian plane containing 
point P showing the ellipsoidal normal 
through P, the geodetic latitude (ϕ) of P 
and the ellipsoidal height (h) of P. 

 
Table 1-1: Ellipsoidal notation conventions 

a Semi-major axis 
b Semi-minor axis 
f Flattening: (a-b)/a 
e Eccentricity: √𝑎2 − 𝑏2/𝑎  so that 𝑒2 = (𝑎2 − 𝑏2)/

𝑎2  and 𝑒2 = 2𝑓 − 𝑓2. 
𝑒′ Second eccentricity: √𝑎2 − 𝑏2/𝑏 
 (𝑒′)2 so that 𝜀 = (𝑎2 − 𝑏2)/𝑏2 = 𝑒2/(1 − 𝑒2). 

 

Global datums are geocentric, which is to say that the centre of the reference ellipsoid is the 

earth’s centre of gravity.  Only in the era of satellite surveying has it been possible to identify 

where that point is.  In recent years, some geocentric ellipsoids have been adopted for local 

datums to replace older ones. 

 

A concept closely related to geodetic datums is the “terrestrial reference frame” (TRF) consisting 

of a network of reference points with known coordinates.  They are sometimes referred to as 

datums, but it is more accurate to regard them as datum realisations.  They are tied to the point 

in time (or epoch) when positions in the network were computed, on the basis that slight changes 

can occur due to tectonic-plate movement.  (This is not a consideration when a datum is defined 

in terms of a region which is tied to a tectonic plate.)  The relationships between datum 
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realisations – and between a geodetic datum and a geodetic datum realisation – can also be 

considered as datum transformations. 

 

There are hundreds of geodetic datums and datum realisations.  Table 1-2 contains those 

referred to in this thesis.  Similarly, Table 1-3 lists the ellipsoids referred to in the thesis. 
 

Table 1-2: Selected Datums And Their Ellipsoids 
Datum (or Realisation) Ellipsoid 

Adindan Clarke 1880 Modified 
Accra War Office 1924 (aka War Office 1926) 
Australian Geodetic Datum 1984 (AGD 84) Australia National (1966) 
Arc 1950 Clarke 1880 (Arc) 
Arc 1950 (Zaire) Clarke 1880 Modified 
BT48 Everest (Borneo) 
Cόrrego Alegre International 1924 
Croatian State Coordinate System (HDKS) Bessel 1841 
Croatian Terrestrial Reference System (HTRS96) Reference Ellipsoid 1980 (GRS80) 
D48 Bessel 1841 
D96 [name adopted by Slovenia for ETRS89] Reference Ellipsoid 1980 (GRS80) 
European Terrestrial Reference System 1989 (ETRS89) Reference Ellipsoid 1980 (GRS80) 
Fatu Iva 1972 International 
Genova 1902 Bessel 1841 
Geocentric Datum of Australia 1994 (GDA94) Reference Ellipsoid 1980 (GRS80) 
Geocentric Datum Brunei Darussalam 2009 (GDBD2009) Reference Ellipsoid 1980 (GRS80) 
Georgia Geodetic Datum (GGD) Reference Ellipsoid 1980 (GRS80) 
Indian Everest (India) 
International Terrestrial Reference Frame 1996 (ITRF96) Reference Ellipsoid 1980 (GRS80) 
Ireland 1965 (aka Geodetic Datum of 1965) Airy Modified 
Leigon Clarke 1880 Modified 
North American Datum 1927 (NAD27) Clarke 1866 
North American Datum 1983 (NAD83) Reference Ellipsoid 1980 (GRS80) 
Ordnance Survey Great Britain 1936 (OSGB36) Airy (1830) 
Pulkovo 1942 Krassovsky (1940) 
Réseau Géodésique de la Réunion 1992 (RGR 1992) Reference Ellipsoid 1980 (GRS80) 
Réunion 1947 International 1984 
Rikets koordinatsystem 1990 (RT90) Bessel 1841 
South American Datum 1969 (SAD69) GRS67 (Truncated) 
SWEREF93 Reference Ellipsoid 1980 (GRS80) 
World Geodetic System 1972 (WGS72) World Geodetic System 1972 (WGS72) 
World Geodetic System 1984 (WGS84) World Geodetic System 1984 (WGS84) 

 
Table 1-3: Ellipsoids And Their Parameters 

Ellipsoid a (in metres) e2 1/f b (in metres) 
Airy (1830) 6377563.396 0.00667054000000 299.3249647 6356256.90924 
Airy Modified 6377340.189 0.00667054000000 299.3249647 6356034.44794 
Australia National (1966) 6378160.000 0.00669454185000 298.2500000 6356774.71921 
Bessel 1841 6377397.155 0.00667437223000 299.1528128 6356078.96282 
Clarke 1866 6378206.400 0.00676865800000 294.9786982 6356583.79999 
Clarke 1880 (Arc) 6378249.145 0.00680348102000 293.4663077 6356514.96639 
Clarke 1880 Modified 6378249.145  0.00680351128000 293.4650000 6356514.86956 
Everest (Borneo) 6377298.556 0.00663784663000 300.8017000 6356097.55030 
Everest (India) 6377301.243 0.00663784607000 300.8017255 6356100.23016 
GRS67 (Truncated) 6378160.000 0.00669454185000 298.2500000 6356774.71921 
International 6378388.000 0.00672267002000 297.0000000 6356911.94614 
Krassovsky (1940) 6378245.000 0.00669342162000 298.3000000 6356863.01878 
Reference Ellipsoid 1980 (GRS80) 6378137.000 0.00669438002290 298.2572221 6356752.31414 



8 

South American 1969 6378160.000 0.00669454185000 298.2500000 6356774.71921 
War Office 1924 (aka War Office 1926) 6378300.000 0.00674534332000 296.0000000 6356751.68918 
World Geodetic System 1972 (WGS72) 6378135.000 0.00669431778000 298.2600000 6356750.52001 
World Geodetic System 1984 (WGS84) 6378137.000 0.00669437999013 298.2572236 6356752.31425 

 
Datums that predate the satellite era had limitations for 3-dimensional positioning.  Traditional 

surveying methods for determining latitude and longitude were very different to the levelling 

methods used to determine orthometric heights.  The latter are heights above the geoid which 

is a physical entity, albeit a theoretical one that approximates mean sea level and extends it 

into land areas.  Orthometric heights can only be converted to ellipsoidal heights if there is a 

geoid model providing the separation between ellipsoid and geoid (called geoid height).  

Ellipsoidal heights obtained in this way are far less accurate than those obtained by GNSS for 

geocentric reference ellipsoids. 

 

The Geodetic Reference System 1980 (GRS80) has a special significance.  It was adopted by 

the International Union of Geodesy and Geophysics (IUGG) at its XIV General Assembly in 

December 1979.  It was designed to represent the size, shape and gravity field to an accuracy 

adequate for geodetic, geophysical, astronomical and hydrographic applications.  The GRS80 

ellipsoid is a part of that system. 

 

The World Geodetic System 1984 (WGS84) was defined by the US National Imagery and 

Mapping Agency (NIMA) as a geocentric datum.  The reference ellipsoid, also called WGS84, 

is a variant of GRS80 (same value of a, a difference of 0.00011m in b) and its orientation was 

aligned to the orientation given in 1984 by the forerunner of the International Earth Rotation 

and Reference Systems Service (IERS).  The IERS alignment has been updated in periodic re-

definitions of WGS84 as a datum realisation (or TRF).  The realisations of WGS84 are 

described in detail in NGA (2014). 

 

IERS produces the International Terrestrial Reference System (ITRS) which is – in a loose 

sense – a geodetic datum or TRS whose reference ellipsoid is GRS80.  In practice, points are 

positioned in terms of realisations or TRFs.  Each one is named International Terrestrial 

Reference Frame nnnn, which is shortened to ITRFnn for those with Epoch 19nn.0 and 

ITRF20nn for those with Epoch 20nn.0. 

 

Some of the newer datums intended for mapping a region are based on a particular ITRF, so 

that the effect of tectonic motion is removed.  Examples include North American Datum 1983, 

Geocentric Datum of Australia 1994 and European Terrestrial Reference System 1989 
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(ETRS89).  The latter is called a TRS rather than a TRF, and this reflects the fact that has its 

own realisations (eg ETRF89, ETRF2000, ETRF2014). 

 

It is important to draw a distinction between datum transformation methods and coordinate 

conversion methods.  In this paper, a datum transformation converts coordinates in one datum 

to coordinates in another (eg 𝜙𝑁𝐴𝐷27, 𝜆𝑁𝐴𝐷27, ℎ𝑁𝐴𝐷27 → 𝜙𝑊𝐺𝑆84, 𝜆𝑊𝐺𝑆84, ℎ𝑊𝐺𝑆84).   The 

phrase “coordinate conversion” implies a conversion of one type of coordinate to another (eg 

, , h → X, Y, Z) within a particular datum. 

 

1.4  Coordinate types within a datum 

The previous section introduced geodetic and Cartesian coordinates within a datum.  This 

section describes the relationship between them and their relationship to other types of 

coordinates within a geodetic datum. 

 

1.4.1  Geodetic and Cartesian coordinates 

Geodetic and Cartesian coordinates are the most commonly used 3-dimensional coordinates. 

 

The equations for converting geodetic coordinates to geocentric Cartesian coordinates are as 

follows. 

           𝜈 = 
𝑎

√1−𝑒2 sin2𝜙
. (1-1) 

           𝑋 = (𝜈 + ℎ) cos 𝜙 cos 𝜆. (1-2) 

           𝑌 = (𝜈 + ℎ) cos𝜙 sin 𝜆. (1-3) 

           𝑍 = [𝜈(1 − 𝑒2) + ℎ] sin𝜙. (1-4) 

The derivation of these equations can be found, for example, in Section 5-3 of Heiskanen and 

Moritz (1967).    

 

The reverse process for converting Cartesian coordinates to geodetic coordinates is less 

straightforward.  The oldest-known process is the iterative approach that is recommended in 

Section 5-3 of Heiskanen and Moritz (1967).  Ruffhead (2016) expressed the algorithm in terms 

of the distance (r) from the polar axis: 

           𝑟 = √𝑋2 + 𝑌2; (1-5) 

          𝜆 = arctan2[𝑋, 𝑌] (1-6) 

unless 1210/ar  , in which case  should be set to 0.  (Longitude is actually indeterminate 

when X and Y are both zero.)   Figure 1-3 shows the range of the arctan2 function. 
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Figure 1-3: The four-quadrant arctan2 function. 
 

Unless |𝑍| < 𝑎/1012 (in which case  should be set to 0) the following iterative approach is 

used to compute . 

            𝜙 = arctan [
𝑍

(1−𝑒2)𝑟
]  as a first estimate. (1-7) 

            𝜙′ = 𝜙, so that ϕ is a copy that can be compared with the next estimate. (1-8) 

            𝜈 = 
𝑎

√1−𝑒2sin2𝜙′
 . (1-9) 

            𝜙 = arctan [
𝑍+𝑒2𝜈sin𝜙′

𝑟
] . (1-10) 

 

Assignments (1-8) to (1-10) are performed up to 5 times until |−|<10-12radians. 
 

If ||</4, 

          ℎ = 
𝑟

cos𝜙
 −𝜈, (1-11) 

otherwise 

          ℎ = 
𝑍

sin𝜙
 −𝜈 ⋅ (1 − 𝑒2). (1-12) 

 

There are two reasons for the “5 times” limit on latitude computation.  Firstly, it prevents the 

possibility that cumulative round-off error might prevent the measured difference in 

approximations from falling below the specified tolerance.  Secondly, the sufficiency of the limit 

has been established by the convergence tests carried out for this study; these covered the full 

range of latitudes and 3 levels of heights (see Figure 1-4).  The 5th iteration is only needed for 

full coverage of aerial points. 
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Figure 1-4: Iterations required for Cartesians-to-latitude conversion for the 
full range of latitudes at height levels 100m, 2000km and 30000km. 

 

A near-exact alternative method of converting Cartesians to latitude was proposed by Bowring 

(1976). This uses the semi-minor axis b and the quantity  = e2/(1-e2). The calculation-of-

latitude stage is replaced by 
           𝑢 = arctan[(𝑍/𝑟) ⋅ (𝑎/𝑏)] , (1-13) 

 

where r is defined by (1-5), and 
           𝜙 = arctan[(𝑍 + 𝜀𝑏 sin3 𝑢)/(𝑟 − 𝑒2𝑎 cos3 𝑢)]. (1-14) 

 

Fukushima (1999) recommended a variation in the implementation of Bowring’s method. 

Based on trigonometric identities, it is designed to optimise the computation of latitude from 

Cartesians.  The calculation-of-latitude stage is replaced by 
           𝑇 = (𝑍/𝑟) ⋅ (𝑎/𝑏), (1-15) 

where r is defined by (1-5),  

           𝐶 = 
1

√1+𝑇2
 , (1-16) 

 

           𝑆 = 𝐶𝑇, (1-17) 

and  
            𝜙 = arctan[𝑍 + 𝜀𝑏𝑆3)/(𝑟 − 𝑒2𝑎𝐶3)]. (1-18) 

 
Since 1970, analytical methods that avoid iteration have been proposed by, for example, Paul 

(1973), Borkowski (1989), and Vermeille (2002, 2004, 2011).  They are, of course, only exact 

theoretically because rounding-off always occurs in their implementation.  An extensive list 

of studies on (, , h)(X, Y, Z) coordinate conversions can be found in Featherstone and 

Claessens (2008). 

 

For the height computation, the test ||</4 is one of many that can be used to avoid a small 

denominator.  Between latitudes 84, |cos| will exceed 0.1, so (1-11) could be used every 

time. 
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1.4.2  Grid coordinates 

For some purposes, geodetic coordinates (, ) are converted to plane coordinates (eastings 

and northings) by a map projection.  Among the recognised projections are Bonne, Cassini-

Soldner, Laborde, Lambert Conformal Conic, Mercator and Transverse Mercator (including 

Universal Transverse Mercator or UTM). 

 

Some authors use (E, N) to denote grid coordinates in the eastern and northern directions, 

which avoids ambiguity provided E and N are not being used for other purposes.  Other authors 

use (x, y) and don’t always make clear whether x is measured in the eastern or northern 

direction.  Snyder (1987) specifies the X-axis as pointing in the eastern direction and the Y-

axis as pointing in the northern direction. He does note, however, that “Many British texts use 

X and Y axes interchanged, not rotated, from this convention”. 

 

For the most popular map projections, there are highly accurate inverse algorithms for 

converting grid coordinates back to (, ).  A wide range is covered by Snyder (1987). 

 

For some lesser-known projections, the inverse algorithm is not very accurate.  In such cases, 

the approximate geodetic coordinates can be improved by a generalisation of the Newton-

Raphson method for solving non-linear equations.  This involves the inversion of a matrix of 

partial derivatives.  This approach was first proposed by Ruffhead (1998) who applied it to the 

Syrian Stereographic projection (Thomas, 1947).  It was subsequently applied to three 

commonly-used cartographic projections by Ipbüker and Bildirici (2002), and then to several 

pseudo-cylindrical projections by Ipbüker (2009). 

 

1.4.3  Local Cartesian coordinates 

In the case of a local geodetic datum, it is sometimes convenient to convert the geocentric 

Cartesian coordinates (X, Y, Z) to Cartesian coordinates (X, Y, Z) with a local point P0 as 

origin.  As shown in Figure 1-5, the axes of the local Cartesian coordinates are parallel to the 

geocentric axes. 
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Figure 1-5: Axes of local Cartesian coordinates at P0. 

 

Given coordinates (X0, Y0, Z0) at P0, the relationship between geocentric and local Cartesian 
coordinates is given by 

           [
𝑋′

𝑌′

𝑍′
] = [

𝑋 − 𝑋0
𝑌 − 𝑌0
𝑍 − 𝑍0

]. (1-19) 

 
1.4.4 Local level coordinates 

In the case of a local geodetic datum, it is sometimes convenient to convert the geocentric 

Cartesian coordinates (X, Y, Z) to coordinates (X, Y, Z) in a “local level system”. A local 

point P0 is chosen as origin and the Z-axis is the ellipsoidal normal to the ellipsoid through 

that point.  The X-axis points east along the parallel of latitude through P0  and the Y-axis 

points north along the median through P0, as shown in Figure 1-6.  Some sources differ in their 

description of the system; Cross et al (1982, page 8) uses the term “topocentric, vertical 

coordinates” and has the local X-axis pointing north. 

 

Vertical lines in the locality of P0 have approximately the same direction as the Z-axis, so the 

perpendicular plane containing the X-axis and Y-axis is approximately horizontal.  It may be 

considered a quasi-horizontal plane, hence the term “local level system”. 

 

 

Figure 1-6: Axes of local 
level coordinates at P0. 

 

The coordinate conversion process can be regarded as three stages: 
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           [
𝑋
𝑌
𝑍
] → [

𝑋(1)
𝑌(1)
𝑍(1)

] → [

𝑋(2)
𝑌(2)
𝑍(2)

] → [
𝑋 ′

𝑌′

𝑍′
] (1-20) 

where the intermediate vectors contain the coordinates computed from the 1st and 2nd stages, 

hence the subscripts “(1)” and “(2)”. 

 

The first stage is a translation based on the Cartesian coordinates (X0, Y0, Z0) of P0: 

           [
𝑋(1)
𝑌(1)
𝑍(1)

] = [

𝑋 − 𝑋0
𝑌 − 𝑌0
𝑍 − 𝑍0

] (1-21) 

 

The second stage is a counter-clockwise rotation of 𝜋/2 + 𝜆0 about the new Z-axis, making 

the X-axis point east and bringing the Y-axis into the north-south plane containing the 

ellipsoidal normal (so that the normal makes an angle 𝜙0 with the negative Y-axis): 

           [
𝑋(2)
𝑌(2)
𝑍(2)

] = [
cos(𝜋/2 + 𝜆0) sin(𝜋/2 + 𝜆0) 0

− sin(𝜋/2 + 𝜆0) cos(𝜋/2 + 𝜆0) 0
0 0 1

] [

𝑋(1)
𝑌(1)
𝑍(1)

] (1-22) 

 

The third stage is a counter-clockwise rotation of 𝜋/2 − 𝜙0  about the new X-axis (which may 

be easier to visualise as a clockwise rotation of 𝜋/2 − 𝜙0 about the negative X-axis), bringing 

the Z-axis into the ellipsoidal normal and making the Y-axis point north: 

          [
𝑋′

𝑌′

𝑍′
] = [

1 0 0
0 cos(𝜋/2 − 𝜙0) sin( 𝜋/2 − 𝜙0)

0 − sin( 𝜋/2 − 𝜙0) cos( 𝜋/2 − 𝜙0)
] [

𝑋(2)
𝑌(2)
𝑍(2)

] (1-23) 

 

From these stages it is easily shown that 

           [
𝑋′

𝑌′

𝑍′
] = [

− sin 𝜆0 cos 𝜆0 0
− sin𝜙0 cos 𝜆0 −sin𝜙0 sin 𝜆0 cos 𝜙0
cos 𝜙0 cos 𝜆0 cos𝜙0 sin 𝜆0 sin𝜙0

] [

𝑋 − 𝑋0
𝑌 − 𝑌0
𝑍 − 𝑍0

] (1-24) 

 

Hofmann-Wellenhof and Moritz (2006) notes that the coordinates are sometimes denoted as 

ENU coordinates, indicating east, north and up.  It is therefore surprising that they swap the 

horizontal components, so that north precedes east.  As a result, their conversion matrix for 

global-to-local conversion is 

[

−sin𝜙0cos𝜆0 −sin𝜙0sin𝜆0 cos𝜙0
−sin𝜆0 cos𝜆0 0

cos𝜙0cos𝜆0 cos𝜙0sin𝜆0 sin𝜙0

]. 

(The transpose is given in their equation 5-66 as the conversion matrix for local to global 

coordinates.) 

 

The reverse process to (1-24) can be computed exactly from the following equation: 



15 

           [
𝑋
𝑌
𝑍
] = [

𝑋0
𝑌0
𝑍0

] + [

−sin𝜆0 −sin𝜙0cos𝜆0 cos𝜙0cos𝜆0
cos𝜆0 −sin𝜙0sin𝜆0 cos𝜙0sin𝜆0
0 cos𝜙0 sin𝜙0

] [
𝑋′
𝑌′
𝑍′

] (1-25) 

 

To preserve right-hand axes, this study has opted to have the X-axis pointing east and the Y-

axis pointing north, in accordance with Figure 1-6.  This is in line with the convention for the 

“local geodetic frame” adopted by Soler (1976, page 7).  Not surprisingly, the rotation matrix 

converting “geocentric to local system” (ibid, page 14) matches that of (1-25). 

 

Soler and Hothem (1988, page 90) adopts (e, n, u) as the local geodetic frame coordinates, 

ensuring a right-handed system.  Their specification of the origin is “any point P(λ, ϕ, h) 

referred to a given ellipsoid” (ibid, page 90).  This generic assumption is adopted here.  As a 

result, P0 might be a point on the reference ellipsoid (as in Figure 1-6) or a ground point (ie on 

Earth’s surface).  It might even be a point inside the reference ellipsoid, as in Andrei (2006), 

in which case the quasi-horizontal plane through P0 intersects the ellipsoid. 

 

Veis (1960, page 125) defines local coordinates in the same way as Soler and Hothem, the 

origin being a ground point projected onto the ellipsoid via the ellipsoidal normal.  

Furthermore, Veis’s equation 86 (ibid, page 125) is equivalent to equation (1-24) above.  

However, some authors were determined to define a right-handed system in a different way 

with X representing the north-south direction.  Rapp (1993, page 68) and Leick (1995, page 

480) define the Veis system to be south, east, up.  (That is actually Veis’s system rotated by 

90 about the upwards axis.) 

 

1.5  Coordinate conversions within the datum transformation process 

Coordinate transformations between datums sometimes involve only a single type of position 

coordinates in each datum.  In such cases the datum transformation is a direct process, as 

illustrated in Figure 1-7. 

 
Figure 1-7: Direct transformation, involving only 
one type of position coordinates. 

 

However, there are occasions when datum transformation models cannot be applied directly 

to the type of coordinates being transformed.  In such cases a multi-stage process is needed, 
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as illustrated in Figure 1-8.  Coordinate conversions need to be applied both before and after 

the transformation.   

 
Figure 1-8: Multi-stage transformation process, 
involving more than one type of position 
coordinates. 

 
A typical example is when the object is to transform geodetic coordinates from Datum A to 

Datum B and the transformation model is based on Cartesian coordinates.  The geodetic 

coordinates in Datum A are converted to Cartesian coordinates before the transformation.  The 

transformed Cartesian coordinates are converted to geodetic coordinates in Datum B. 

 

1.6  Transformation requirements 

The purpose of a datum transformation is to provide a mathematical or computational means 

to transform the coordinates of a point from one datum to another.  In general, this is not an 

exact science, because the differences in coordinates at known points between datums are 

largely a reflection of different methods of measurement.  This is due partly to the limitations 

of pre-satellite methods and partly due to different satellite methods (eg Doppler, GPS).  What 

might be a suitable type of transformation between one pair of datums might be totally 

unsuitable between a different pair. 

 

Another reason for different types of transformation is variation in accuracy requirements.  For 

accuracy within a few metres, a simple model may suffice and may be preferred for ease of 

implementation.  For the maximum attainable accuracy, something more complicated is 

usually needed. 

 

The type of transformation needed is sometimes influenced by the size and shape of the area 

common to both datums.  A model which is a function of (ϕ, λ), for example, may need more 

latitude-dependent terms than longitude-dependent terms if the north-south extent greatly 

exceeds the east-west extent. 
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Sometimes the data points common to both datums only cover a relatively small fraction of 

the area for which the transformation is required, possibly because of historic survey data 

being lost.  In this instance, transformations with a limited extrapolation effect are the safest 

choice. 

 

Some transformations only involve two-dimensional coordinates; others involve three-

dimensional coordinates.  The distinction is not entirely clear-cut as Cartesian coordinates (X, 

Y, Z) can be used to transform horizontal coordinates (ϕ, λ) if dummy height values are 

introduced to facilitate coordinate conversions. 

 

One type of transformation is the conformal transformation which preserves shape: angles 

between lines are unchanged and distances change – if at all – by the same proportional 

amount. 

 

A special case is the rigid transformation which preserves size and shape: angles between lines 

and distances are unchanged. 

 

Some transformations are near-conformal and, if assumptions behind approximations are 

valid, they are virtually indistinguishable from conformal transformations.  Examples include 

Standard Molodensky, Abridged Molodensky, Bursa-Wolf and Molodensky-Badekas, which 

are described in Chapter 2. 

 

There are also non-conformal transformations which allow for an element of distortion.  

Examples are given in Chapters 2 and 7 and include: 

• An affine transformation, which preserves the ratio of the lengths of parallel line 

segments.  It does not necessarily preserve angles between lines or distances between 

points, but it does preserve ratios of distances between points lying on a straight line. 

• A pair or trio of multiple regression equations which represent a component of a datum 

shift as a linear combination of simple functions (usually monomials). 

• A composite method.  Datum shifts at data points are treated as a trend model plus a 

residual shift, the latter to be determined by a surface-fitting technique (SFT).  This 

can be made into a software tool to estimate datum shifts wherever they are required 

or it can be used as a one-off process to estimate datum shifts at regularly-spaced points 

to enable straightforward interpolation. Transformations that conclude with 
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interpolation in the local grid-square are sometimes referred to as “grid look-up” (see, 

for example, Greaves [2004], Chen [2005]).  They include OSTN02 and OSTN15. 

 

The variety of surface-fitting techniques, generally designed to interpolate data at irregularly-

spaced points, means that composite methods alone cover a large number of transformation 

methods, each with its own distinctive characteristics.  Choosing the best one to represent 

datum shifts is inevitably going to be a matter of trial-and-error with different results in 

different cases. 

 

It follows that any study of datum transformations needs to cover a wide range of methods to 

do justice to the wide variety of practical situations.   

 

1.7  Knowledge gap and problem statement 

The underlying problem is fitting a function over a region, given a finite set of physical data 

which is itself prone to errors.  This is particularly true of results from older survey methods 

that were heavily reliant on angle measurement and preceded some or all of the distance-

measurement technology that has evolved in the last 60-70 years.  The relative positions of 

points in a survey network are known less accurately from historic observations in an old 

datum than from more recent observations in a newer datum; hence the element of mismatch 

in configuration. 

 

Applying a simple model that fits the data approximately, may fail to capture one or more 

distortions in the relationship between datums.  Conformal transformations between OSGB36 

and modern satellite-based datums are not capable of reflecting the scale variations in the 

northern parts of Great Britain. 

 

Applying a sophisticated model that fits the data exactly may prove to be unrealistic.  

Measurement errors of opposite sign at points which are near to each other can lead to 

distortions in the model which do not reflect the physical reality. 

 

Even a sophisticated model that is designed to fit data approximately can be a bad reflection 

of reality.  In Ghana’s Golden Triangle, the data for the Accra datum and WGS84 only covers 

the inner part of the region, so the extrapolation effect has to be considered which rules out 

several types of function. 
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The challenge is to try and model datum transformations in a way that balances these 

considerations whilst being computationally comprehensible. 

 

1.8  Review of transformation methods 

There are published overviews of basic transformation methods that aim to be comprehensive, 

but in general they are incomplete.  For example, Rapp (1993) and Varga et al (2017) both 

omit transformations of grid coordinates, and Knippers (2009) omits truly conformal 3D 

transformations.  The latter two sources also contain errors (noted in Chapters 2 and 3).  

Perhaps the most comprehensive overview of basic methods is Ruffhead and Whiting (2020) 

which corresponds closely to Sections 2.1 to 2.13 of this thesis. 

 

Where transformation methods have been published, there is a notable tendency for different 

authors to quote different forms and not acknowledge that the alternative form exists.  One 

example of this, with citations, is given in Section 2.6 with different versions of the Helmert 

(3D conformal) transformation.  Another, again with citations, is given in Section 2.8 with the 

fully-linear and partially-linear versions of the Bursa-Wolf transformation 

 

NGA (2014) recommends a wide range of Standard Molodensky transformations from local 

datums to WGS84, most of them published in 1987-1997.  Although these transform geodetic 

coordinates directly (without conversions to and from Cartesian coordinates), they only 

approximate to conformal transformations.   

 

Both the Standard and Abridged Molodensky Datum Transformation Formulae use parameters 

ΔX, ΔY and ΔZ.  As noted in DMA (1987a), these are traditionally derived from the mean 

differences between Cartesian coordinates.  Molnár and Timár (2005), however, derived ΔX, 

ΔY & ΔZ from the actual Abridged Molodensky formulae for latitude & longitude shifts. 

 

Building on the work of Appelbaum (1982), multiple regression equations (MREs) are 

provided in NIMA (2000) and NGA (2014) as a method of transforming local-datum 

coordinates to WGS84 coordinates.  However, some of Appelbaum’s methodology has been 

applied too literally, and the unimaginative definition of intermediate variables (combined 

with insufficient thought to the rounding of coefficients) has a knock-on effect on accuracy.  

NGA doesn’t always correctly state the regions for which the MREs are valid.  Also, its stated 

method of using MREs in reverse does not reverse the transformation exactly. 
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MREs for datum transformations have also been published by Dawod and Alnaggar (2000), 

Gledan and Azzeidani (2014) and González-Matesanz et al (2003).  As with NIMA (2000) 

and its sequel NGA (2014), none of them has considered variations on MREs to reduce the 

perceived need for high-order polynomials which tend to cause instability. 

 

Other researchers have studied the reversibility of transformations in a rather piecemeal 

fashion.  Iliffe and Lott (2008) appear to be alone in considering the reversibility of several 

transformations.  However, their criterion is whether the same formula can be re-used in a 

particular way in the reverse direction. 

 

The derivation of basic transformations depends on whether they are linear with respect to 

their parameters.  Those that are linear have usually been determined by the least-squares 

optimisation formulae in the introduction to Chapter 4, which can also be found in Bomford 

(1980) and Cross (1983).  Some authors prefer “total least-squares” involving corrections to 

observed coordinates; see, for example, Pan et al (2015) and Laari et al (2016). 

 

Multiple regression equations of the type proposed by Appelbaum (1982) and NIMA (2000) 

go beyond least-squares by reviewing and revising the set of polynomials used in the 

transformation; after each least-squares optimisation, tests are performed to determine which 

terms are statistically significant.  Section 7.2.4.3.3 of DMA (1987a) has a description of how 

this is done for the NIMA/NGA MREs, a “stepwise regression” process.  The complexity of 

the method is reflected in the number of authors (eg Kutoglu [2009b], Mitsakaki et al [2006], 

Ayer et al [2010]) who opted for a predetermined set of polynomials and applied no statistical-

significance tests. 

 

Optimising non-linear transformations has been the subject of much research.  Methods 

published by Awange, Paláncz and others are listed in Sections 5.1 and 5.4.  They have adverse 

characteristics ranging from missing details and questionable results to techniques which are 

not easily understood. 

 

As noted in Section 1.3, the position of a point in a local datum relative to a global coordinate 

system can change over time.  As a result, a transformation between a local datum and datum 

realisations is dependent on time, making it a dynamic (as opposed to static) transformation. 
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A transformation method can be made dynamic by doubling the number of transformation 

parameters.  Each parameter is replaced by its value at a particular epoch and its rate of change 

(which becomes a multiple of elapsed time).  Examples of this approach can be found in 

Dawson and Woods (2010), NGA (2014, Section 7.3) and Rabah et al (2016).  

 

Such a rigorous analysis of dynamic transformations is probably unnecessary for practical 

purposes.  If static transformations are known between a local datum and realisations at two 

different epochs, the respective transformed coordinates can easily be interpolated with respect 

to time if an intermediate transformation is required.  Consequently, this thesis concentrates 

on static transformations.  

 

The application of surface-fitting techniques to datum transformations, combined with a 

detailed comparison, has been undertaken by Grgić et al (2016).  They used 12 techniques 

available in software packages, notably Surfer.  Their comparisons only apply to 2D datum 

shifts in Croatia and there are in any case mistakes (noted in Sections 7.7 and 7.10).  They 

used a 7-parameter trend model (which required coordinate conversions to and from Cartesian 

coordinates) and converted coordinates to a projected grid for the purpose of piecewise bilinear 

interpolation. 

 

The use of piecewise bilinear interpolation over rectangular grids appears to be standard for 

grid look-up transformation methods.  There is an acknowledgement by Iliffe and Lott (2008, 

page 106) that bicubic interpolation would give smoother results, but they conclude that the 

“additional complexity” of using 16 surrounding points is not worth it. 

 

Least-squares collocation is a surface-fitting technique used by Grgić et al (2016), Deakin et 

al (1994), El-Mewafi (2015) and others for approximating datum shifts.  In general, they use 

a correlation model where even faraway points have an effect on interpolation, albeit a small 

one.  In the course of this study, no instances were found of finite covariance functions being 

used in this application, despite the existence of such functions in Sansò and Schuh (1987). 

 

Of the surface-fitting techniques in Surfer tested by Grgić, several had already been applied to 

datum transformations.  Examples include: 

• Kriging in South Africa (Merry and Whittal [1998]); 

• rubber sheeting in Great Britain (Ordnance Survey [2018]) and in Slovenia (Berk and 

Komadina (2013]); 
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• minimum curvature in North America (Dewhurst [1990]). 

All these examples except Slovenia are grid look-up transformations. 

 

Inverse distance to a power is another surface-fitting technique used by Grgić et al (2016), and 

it also has the characteristic that faraway points affect interpolation.   

 

Of the other techniques in Surfer (2002), Nearest Neighbour has the advantage of retaining 

data-point values when “gridding” (interpolating at mesh points).  The disadvantage is 

discontinuities which lead to the final interpolated surface to alternate between too flat and too 

steep. 

 

1.9  Novelty and contribution to knowledge 

This thesis not only acknowledges the different versions of the Helmert transformation but 

establishes the relationship between them (Section 2.6).  It does the same with the fully-linear 

and partially versions of Bursa-Wolf (Section 2.8).  In both cases, practical applications are 

given: the inverse transformation of Helmert in Section 3.6) and the derivation of partially-

linear Bursa-Wolf (Section 4.8). 

 

This thesis describes the SMITSWAM method introduced in Ruffhead (2016).  SMITSWAM 

converts geodetic coordinates directly but improves on Standard Molodensky by being fully 

conformal (Section 2.14).   

 

The derivation of Abridged Molodensky parameters in Molnár and Timár (2005) was the 

inspiration for the new partially-conformal variations on the Abridged Molodensky formulae 

defined in Section 2.16.  ΔX, ΔY and ΔZ are optimised in different ways for different 

components of the transformation: one trio of ΔX, ΔY and ΔZ for transforming (ϕ, λ), another 

trio of ΔX, ΔY and ΔZ for transforming height.  This thesis also provides similar variations for 

Standard Molodensky formulae (Section 2.15).  In both cases, the new formulae enable a 

closer fit to actual data, and applying the formulae involves no more computation than the 

traditional versions. 

 

This thesis addresses the weaknesses in the MREs compiled in NIMA (2000) and NGA (2014).  

Section 3.13 advocates a method that reverses MRE transformations exactly.  Proper 

normalisation of both intermediate variables is recommended in Section 2.17.  That section 

also new types of MREs consisting of piecewise low-order polynomials which form a smooth 
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patchwork, thereby reducing the perceived need for high-order polynomials which tend to 

cause instability. 

 

This thesis treats reversibility as the existence of a reverse procedure which is computationally 

accurate relative to the formula(e) of any particular forward transformation.  Chapter 3 

addresses this issue for all the basic transformation methods.  The reverse transformations in 

Sections 3.4 to 3.6 and 3.13 to 3.17 are new.  Others are derived from first principles and, apart 

from the reverse transformation of Bursa-Wolf (see paragraph on Aktuğ in Section 3.8), it is 

not known whether they exist in sources other than those researched for this thesis. 

 

New methods have been found for optimising non-linear transformations.  Sections 5.1 and 

5.2 describe a four-stage algorithm to derive Helmert transformations (Sections 5.1 and 5.2); 

this is based on distance analysis to resolve scale followed by optimisation of a rigid 

transformation.   Sections 5.3 and 5.4 describe algorithms to optimise affine transformations 

with 8 or 9 parameters; these also involve optimisation of rigid transformations, but scale is 

resolved by effective application of an “equivalent enlargement hypothesis”. 

 

Optimising the new types of MRE in Section 2.17 is very much an analogous process to 

optimising the traditional MREs described in Section 2.13.  However, rather than attempt the 

complex “stepwise regression” to apply the criteria of statistical significance, Section 5.5 

proposes the simpler “eliminating ratios less than one” (ERLTO), in which the absolute value 

of each derived coefficient is compared with its standard error. 

 

The use of surface-fitting techniques by Grgić et al (2016) in composite transformation 

methods used was a major influence on this study.  However, the analysis in this thesis differs, 

in that unnecessary coordinate conversions are avoided and a smoother alternative to 

piecewise-bilinear interpolation is applied in the final stage.  The full list of differences is: 

• The trend model consists of bilinear functions of latitude and longitude rather than a 

7-parameter conformal model, thereby removing the need to convert to and from 

Cartesian coordinates. 

• The surface-fitting techniques are applied to geodetic coordinates (ϕ, λ) rather than 

projected grid coordinates. 

• Original software was used for surface-fitting, although account was taken of method 

descriptions in Surfer (2002). 
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• Bicubic as well as bilinear interpolation was applied to the regularly-spaced datum 

shifts computed by the composite methods. 

 

As an alternative to bilinear interpolation, the use of piecewise bicubic interpolation over 

rectangular grids is examined in Section 6.3.  It is shown that only 12 surrounding points 

(rather than 16) are required, and modifications are provided when not all 12 are available.  

Three possible implementations are proposed, one of which simplifies interpolation by use of 

a surrounding corridor. 

 

Least-squares collocation was studied as a surface-fitting technique with the signal 

representing the datum shift after the removal of a “trend” model.  To eliminate the influence 

of faraway points on interpolation, two Sansò-and-Schuh finite covariance functions were 

applied to this type of signal, as was the more usual Gaussian function (Section 7.1).  All types 

were analysed in the case studies, in which the selected trend model was bilinear. 

 

Section 7.13 introduces a new variation to inverse-distance-to-a power interpolation, namely 

Hybrid Inverse Power Function Embodying Accelerated Decline (HIPFEAD).  This 

introduces a limit-of-influence, thereby increasing the weight of nearby points in the 

interpolation process.  The subtype Inverse Square Function Embodying Accelerated Decline 

(HISFEAD) also has potential use as a localised supplement to other methods to prevent 

exaggerated distortion (Sections 7.13 and 8.3). 

 

Section 7.14 introduces the new Linear Interpolation Variation On Nearest Neighbour 

(LIVONN).  This shares the Nearest-Neighbour method’s advantage of retaining data-point 

values when “gridding”.  However, LIVONN replaces the discontinuities of Nearest 

Neighbour with transitions which bring interpolation closer to reality. 

 

Chapter 7 explores the possibility of re-using a surface-fitting model whenever new estimates 

of datum shifts are required, instead of relying on grid look-up at regularly-spaced 

computation points (which is approximating from approximations).  To this end, the 

computation and storage of a “revamped signal vector” is proposed for least-squares 

collocation and radial basis functions, enabling a more direct approach without repeating the 

whole derivation process. 
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It is intended that these findings will be of value to the worldwide geoscientific community as 

it continues to develop and apply transformations between geodetic datums (including 

realisations). 

 

With the exception of the LSS package used for contour maps, all the software was written by 

this researcher, using Excel Visual Basic For Applications.  A selection of key macros and 

subroutines is described in Appendix G. 
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Part Two: Methods 
 
 

 
 



27 

CHAPTER 2: BASIC TRANSFORMATION METHODS 

 

Geodetic datum transformations are generally attempts to model the changes that are evident 

from the differing coordinates of common points.  Very often, they are between a local and 

global datum, but they can also be between two local datums. The subscripts s and t are used 

to indicate source datum and target datum respectively.  The symbol , as in , denotes the 

“shift” which is added to the source coordinate to obtain the target coordinate. 

 

Transformations can usually be placed into one of the following categories: 

• An individual method that is relatively easy to apply and has its own distinctive name, 

such as a conformal transformation with 3 (or 7) parameters. 

• A transformation-enhancement method which is designed to eliminate or reduce the 

residuals from an individual method; it would be a method in its own right if the 

identity function was treated as the individual method. 

• A composite method which is an individual transformation followed by one or more 

enhancement methods. 

 

The methods in this chapter are the first type, and are generally meant to fit data points in a 

least-squares sense rather than exactly.  They can be used: 

• for representing a transformation for which there is little or no distortion; 

• for representing transformations where the accuracy requirement is not too stringent; 

• to provide a “trend” model which leaves residuals to be fitted in some other manner. 

 

Most methods in this chapter involve up to 12 parameters with geometrical meaning.  The 

exception is multiple regression equations; these are intended to capture distortion more 

effectively than a conformal or affine transformation, and accuracy-of-fit is largely determined 

by the number of terms.  MREs with a relatively small number of terms can be used as a trend 

model in the sense described above.  As such they were considered by Varga et al (2017). 

 

Sections 2.1 to 2.13 describe known methods.  Sections 2.14 to 2.17 describe new methods. 

 

The list of transformations in Varga et al (2017) was a record of those used in a particular case 

study involving Croatia.  Nevertheless, it came close to providing a comprehensive list of basic 

methods.  The methods covered in Sections 2.1 to 2.13 match that list apart from: 

• The inclusion of 2-dimensional conformal and affine transformations. 
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• The exclusion of composite methods designed to correct distortions in datum 

transformations; these are considered in Chapter 7. 

 

In this chapter, each transformation method is described in terms of the coordinates to which 

it is actually applied.  Where those coordinates are Cartesian, it means that 

• geodetic coordinates (, , h) in the source datum need to be converted to Cartesian 

coordinates (X, Y, Z) before transformation, and 

• the transformed Cartesian coordinates need to be converted to geodetic coordinates in 

the target datum. 

 

From equations (1-2) to (1-4), it is clear that the first of those stages is problematic if the source 

datum does not provide ellipsoidal heights.  If that datum is locally defined, there are three 

possibilities: 

• Neither orthometric nor ellipsoidal heights are known. 

• Orthometric heights are available from levelling, but there is no local information on 

the separation between ellipsoid and geoid. 

• Orthometric heights are available from levelling and a geoid model is available to 

convert them into ellipsoidal heights, although they are likely to be poor-quality 

approximations compared to ellipsoidal heights obtained from GNSS. 

 

The datum transformations in this chapter are two-dimensional or three-dimensional.  

However, it should be noted that sometimes a three-dimensional method is used to obtain a 

two-dimensional result, making it a “2D-via-3D” transformation.  If a three-dimensional 

model was obtained from data with ellipsoidal-height differences of poor quality, it will – at 

best - only be suitable for approximating horizontal datum shifts.  When 2D-via-3D 

transformations are performed, the initial ellipsoidal heights are usually set to zero if no 

approximate values are available.  The effect of doubtful or poor-quality height values on 

latitude and longitude is quite small, at least on the evidence of examples considered in 

Sections 2.3. 

 

The properties of the transformations are given, in particular whether they are conformal, near-

conformal or non-conformal.  Conformal models, alternatively known as similarity 

transformations, preserve shape; a special case is a rigid transformation that preserves shape 

and size.  Near-conformal models fall short of full conformality, usually because of 

simplifications in the formulae used.  A special case of the non-conformal type is the affine 
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transformation, which preserves collinearity along a straight line; it allows for changes in 

angles and lengths, so there can be different scale changes in different directions. 

 

Each method described in this Chapter is treated as a direct transformation of the type shown 

in Figure 1-7.  Even where it commonly used as the central stage of a multi-stage 

transformation (Figure 1-8), the assumption is that the coordinate conversions are covered in 

Chapter 1. 

 

2.1  Conformal transformation in 2 dimensions 

A conformal grid-to-grid transformation has 4 parameters: two translations, one scale factor and 

one rotation.  The model is applied to grid coordinates. 

For this type of transformation to give satisfactory results, there needs to be a strong 

resemblance between the projections which generate the grids.  In particular, the variations in 

scale factor across the area of interest must be proportional to each other.  The dataset in sub-

appendix C.7.7 is an example that meets this requirement.  This issue is discussed in more 

detail in Iliffe and Lott (2008, 4.5.2).  

 

The position-vector rotation convention, shown in Figure 2-1, is the one adopted here.  Some 

authors prefer the coordinate-frame rotation convention shown in Figure 2-2 which has the 

opposite effect. 

 
Figure 2-1: Rotation convention for 
a position vector in the Oxy plane 
when the axes are regarded as fixed. 

 
Figure 2-2: Rotation convention 
for the coordinate frame Oxy when 
P is regarded as fixed. 

 
The transformation equation is 

           [
𝑥𝑡
𝑦𝑡
] = [

𝛥𝑥
𝛥𝑦
] + 𝑆 [

cos 𝜃 − sin θ
sin 𝜃 cos θ ] [

𝑥𝑠
𝑦𝑠
]. (2-1) 

This is exactly equivalent to 

           [
𝑥𝑡
𝑦𝑡
] = [

𝛥𝑥
𝛥𝑦
] + [

𝑎1 −𝑎2
𝑎2 𝑎1

] [
𝑥𝑠
𝑦𝑠
] (2-2) 

so that x, y, 𝑎1 and 𝑎2 form an equivalent set of parameters to x, y, S and . 
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Equation (2-2) can be rewritten in the following form, which is linear with respect to x, y, 𝑎1 

and 𝑎2. 

           [
𝑥𝑡
𝑦𝑡
] = [

1 0 𝑥𝑠 −𝑦𝑠
0 1 𝑦𝑠 𝑥𝑠

] [

𝛥𝑥
𝛥𝑦
𝑎1
𝑎2

]. (2-3) 

An example of a conformal grid transformation is shown in Figure 2-3.  Using five points that 

form the vertices of a polygon, it illustrates a translation, scale change and rotation.  In this 

case the rotation is negative. 
 

 
Figure 2-3: Illustration of a conformal grid transformation. 

 

If the rotation convention is opposite to that shown in Figure 2-1, then each of the square 

matrices in equations (2-1) and (2-2) is replaced by its transpose, as is the submatrix of 𝑥𝑠 and 

𝑦𝑠 terms in (2-3). 

 

2.2  Affine transformation in 2 dimensions 

An affine grid-to-grid transformation has 6 parameters: 𝛥𝑥, 𝛥𝑦, 𝑎1, 𝑎2, 𝑎3, 𝑎4.  The model is 

applied to grid coordinates, and there needs to be a strong resemblance between the projections 

which generate the grids (as there is for the dataset in sub-appendix C.7.7).  The basic equation 

is 

           [
𝑥𝑡
𝑦𝑡
] = [

𝛥𝑥
𝛥𝑦
] + [

𝑎1 𝑎2
𝑎3 𝑎4

] [
𝑥𝑠
𝑦𝑠
]. (2-4) 

This can be rewritten as 

           [
𝑥𝑡
𝑦𝑡
] = [

1 0 𝑥𝑠 𝑦𝑠 0 0
0 1 0 0 𝑥𝑠 𝑦𝑠

]

[
 
 
 
 
 
𝛥𝑥
𝛥𝑦
𝑎1
𝑎2
𝑎3
𝑎4 ]
 
 
 
 
 

 (2-5) 
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2.3  Rigorous 3-parameter conformal transformation 

It is customary to reserve the description “3-parameter conformal transformation” for the 

transformation with three translation components, X, Y and Z (or 𝑇𝑋, 𝑇𝑌 and 𝑇𝑍).  The 

transformation of WGS72 to WGS84 falls outside this category, as it involves 3 parameters of 

different type (one translation, one rotation and one scale change). 

 

In this paper, the method is called “3PC” (sometimes prefaced by “rigorous” as a reminder).   

It is applied to geocentric Cartesian coordinates (X, Y, Z).  The basic equation is 

            [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

𝑋𝑠
𝑌𝑠
𝑍𝑠

]. (2-6) 

 

The Cartesian coordinates may have been obtained from geodetic coordinates where 

ellipsoidal heights are either dummy values or poor estimates.  Full 3-stage computations were 

carried out for this study based on 4 transformations in NIMA (2000).  Table 2-1 shows how 

𝜙𝑡  and 𝜆𝑡 were affected by a 500m change in ellipsoidal height.  The effect is small and is 

proportionately smaller for lesser changes in h.  This demonstrates that 𝜙𝑡  and 𝜆𝑡 from the 

3PC transformation are relatively insensitive to uncertainty about ℎ𝑠. 

 

Table 2-1: Effect of  ellipsoidal-height changes (0→500m) on transformed latitude 
and longitude, using ΔX, ΔY, ΔZ shifts published in NIMA (2000) and NGA (2014) 

Country covered by points 
shown in Figure 2-4 

Datum transformation applied 
at h = 0 and h = 500m 

RMS Effect on 
Latitude 

RMS Effect 
on Longitude 

Great Britain (35 points) OSGB36→WGS84 0.0031m 0.0073m 
Australia (75 points) AGD84→WGS84 0.0125m 0.0101m 
Congo (54 points) Arc 1950→WGS84 0.0199m 0.0040m 
India (81 points) Indian→WGS84 0.0065m 0.0146m 

 

 

Iliffe and Lott (2008, Section 4.3.2) summarise the limitations and merits of 3PC as follows: 

 

“For most classically defined and realised coordinate reference systems, one would 

expect errors of perhaps 5 to 10 m or more to result when using such a three-parameter 

transformation to convert GPS-derived data into a local mapping system.  It has the 

advantage of being a compact transformation, however, and it is how simple hand-held 

GPS devices store and apply the details of transformations to many national mapping 

coordinate reference systems.” 
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2.4  Standard Molodensky transformation 

This method is documented in Molodensky et al (1962).  It is a close approximation to the 3-

parameter conformal transformation, so it is best classified as near-conformal.  Its main 

attraction is that it is applied to geodetic coordinates. 

 

The equations used by Standard Molodensky are truncated series expansions.  A detailed 

derivation can be found in Deakin (2004).  For some purposes the reduced accuracy is 

acceptable because of relative simplicity; conversion to and from Cartesian coordinates is not 

required.  It is recommended in NIMA (2000) and NGA (2014).   and  are given below 

in radians, but can easily be converted to arc-seconds or degrees. 
           𝛥𝜙 = [−𝛥𝑋 sin𝜙𝑠 cos 𝜆𝑠 − 𝛥𝑌 sin𝜙𝑠 sin 𝜆𝑠 

                     +𝛥𝑍 cos 𝜙𝑠 + 𝛥𝑎(𝜈𝑠𝑒𝑠2 sin𝜙𝑠 cos 𝜙𝑠)/𝑎𝑠  

                     +𝛥𝑓(𝜌𝑠𝑎𝑠/𝑏𝑠 + 𝜈𝑠𝑏𝑠/𝑎𝑠) sin𝜙𝑠 cos 𝜙𝑠]/(𝜌𝑠 + ℎ𝑠) (2-7) 

where 

             𝜌𝑠 = 
𝑎𝑠(1−𝑒𝑠

2)

(1−𝑒𝑠
2sin2𝜙𝑠)

3 2⁄  . (2-8) 

           𝛥𝜆 =   
−𝛥𝑋 sin 𝜆𝑠+𝛥𝑌 cos𝜆𝑠

(𝜈𝑠+ℎ𝑠) cos𝜙𝑠
 (2-9) 

where 𝜈𝑠 is given by (1-1) applied in the source datum. 
           𝛥ℎ = 𝛥𝑋 cos𝜙𝑠 cos 𝜆𝑠 + 𝛥𝑌 cos𝜙𝑠 sin 𝜆𝑠 

                    +𝛥𝑍 sin 𝜙𝑠 − 𝛥𝑎(𝑎𝑠/𝜈𝑠) + 𝛥𝑓(𝑏𝑠/𝑎𝑠)𝜈𝑠 sin2 𝜙𝑠. (2-10) 

 

Kinneen and Featherstone (2004) notes that “depending on one’s viewpoint”, Standard 

Molodensky can be regarded as having three or five parameters.  Some geodesists treat a and 

f as 4th and 5th parameters.  However, these quantities are differences between ellipsoid-

defining constants, so are unlike X, Y and Z.  There are only 3 parameters in the 3PC 

method that (2-7)-(2-9) approximate.  Only X, Y and Z (or 𝑇𝑋, 𝑇𝑌 and 𝑇𝑍) are determined 

by an optimisation process from common data points.  Accordingly, Standard Molodensky is 

regarded as a 3-parameter transformation in this study. 

 

For the purpose of analysing Standard Molodensky – and similar methods – four transformations 

whose parameters are given in NIMA (2000) were selected, for both Ruffhead (2016) and this 

study: 

• Ordnance Survey of Great Britain 1936 (OSGB36) to WGS84 over Great Britain; 

• Australian Geodetic Datum 1984 (AGD84) to WGS84 over Australia; 

• Arc 1950 (Zaire) to WGS84 over Congo; 
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• Indian Datum to WGS84 over India and Nepal. 

 

The test points chosen for this study are shown in Figure 2-4.  They differ from those used in 

Ruffhead (2016) in that this time they are aligned more precisely with the areas they were 

designed to cover.  The revised computations for this study show that the Standard Molodensky 

approximations agree with the conformal model to within maximum differences of 0.027m in 

latitude, 0.047m in longitude, 0.016m in height and 0.050m in 3D distance.  The RMS of the 3D 

distance differences is 0.019m. 

 

  
 

 

 

 

Figure 2-4:  Test points selected for the new study of NIMA/NGA Standard 
Molodensky transformations between local datums (OSGB36, AGD84, Arc 1950, 

Indian) and WGS84.  Ellipsoidal heights used were 0, 500m, 2km and 10km. 
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Equations (2-7) and (2-8) both depend on ellipsoidal heights, and sometimes these are either 

dummy values or poor estimates.  Standard Molodensky transformations were compared 

between ellipsoidal heights 0 and 500m for the points in Figure 2-4.  The results in Table 2-1 

were duplicated completely to the precision shown.  The effect is small and is proportionately 

smaller for lesser changes in h.  This demonstrates that 𝜙𝑡 and 𝜆𝑡 from Standard Molodensky 

are relatively insensitive to uncertainty about ℎ𝑠. 

 

2.5  Abridged Molodensky transformation 

This is a close approximation to the 3-parameter conformal transformation, although less so 

than Standard Molodensky.  It is best classified as near-conformal.  Its main attraction is that 

it is applied to geodetic coordinates. 

 

The “Abridged” version had been selected by DMA for use with WGS66.  DMA (1987a, 

section 7.2.4.3.2) noted that “the Abridged Molodensky Datum Transformation Formulas have 

been used more extensively that the Standard Formulas”, but on grounds of accuracy firmly 

recommended the latter in “any new software involving the Molodensky Datum 

Transformation Formulas”.  Accordingly, DMA (1991) and its successors NIMA (2000) & 

NGA (2014) do not mention Abridged Molodensky.  Nevertheless, it continues to be used.  As 

pointed out by Iliffe and Lott (2008, Section 4.4.2) the differences between Abridged and 

Standard are not significant “in the context of a 3-parameter transformation, which has a 

typical accuracy in the order of 5 to 10 m”. 

 

The equations do not use the ellipsoidal heights and it is not uncommon for the 3rd equation 

to go unused.  A detailed derivation can be found in Deakin (2004).   and  are given 

below in radians, but can easily be converted to arc-seconds or degrees. 
           𝛥𝜙 = [−𝛥𝑋 sin𝜙𝑠 cos 𝜆𝑠 − 𝛥𝑌 sin𝜙𝑠 sin 𝜆𝑠 

   +𝛥𝑍 cos 𝜙𝑠 + (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎) sin 2𝜙𝑠]/𝜌𝑠. (2-11) 

           𝛥𝜆 = 
−𝛥𝑋 sin𝜆𝑠+𝛥𝑌 cos𝜆𝑠

𝜈𝑠 cos𝜙𝑠
 . (2-12) 

           𝛥ℎ = 𝛥𝑋 cos𝜙𝑠 cos 𝜆𝑠 + 𝛥𝑌 cos𝜙𝑠 𝑠𝑖𝑛 𝜆𝑠 

             +𝛥𝑍 sin 𝜙𝑠 + (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎) sin
2 𝜙𝑠 − 𝛥𝑎. (2-13) 

 

The radii of curvature  and  are given by (1-1) and (2-8) respectively. 

 
The test points chosen for this study are the same as those shown in Figure 2-4.  (The differences 

from those used in Ruffhead (2016) are explained in Section 2.4.)  The revised computations for 
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this study show that the Abridged Molodensky approximations agree with the conformal model 

to within maximum differences of 0.687m for latitude, 0.627m for longitude, 0.125m for height 

and 0.735m for 3D distance.  The RMS of the 3D distance differences is 0.125m. 

 

For points on the ellipsoid, the longitude error is the same as that for Standard Molodensky, 

which is to be expected from a quick comparison of (2-12) with (2-9).  Longitude error for 

Abridged Molodensky increases as ellipsoidal height increases.  The latter property is also true 

of latitude error. 

 

The case for regarding this method as having three parameters rather than five is the same as 

that given for Standard Molodensky in Section 2.4. 

 

2.6 Rigorous 7-parameter conformal transformation 

In addition to the 3 translation parameters, this method applies 3 rotations (𝑅𝑋, 𝑅𝑌 and 𝑅𝑍) and 

a scale change ΔS.  It is the most general form of the 3-dimensional conformal transformation, 

unless local Cartesian coordinates are built into the method.  It is applied to geocentric 

Cartesian coordinates (X, Y, Z). 

 

For rotations to be unambiguous, a sign convention needs to be specified.  There are two 

possibilities: 

• Position vector (PV) rotations, describing rotation of position vectors about Cartesian 

axes; 

• Coordinate frame (CF) rotations, describing rotation of Cartesian axes when points are 

considered as fixed. 
 

 
Figure 2-5: Rotation conventions for 
position vectors in the OYZ plane, 
the OZX plane and the OXY plane. 

 
Figure 2-6: Rotation conventions 
for the coordinate frame when P is 
regarded as fixed. 

 



36 

Position vector rotations are illustrated in Figure 2-5.  The sign convention adopted here is 

that positive rotations are counter-clockwise about Cartesian axis when viewed from the 

positive side of the origin, as in Figure 2-5.  One characteristic is that a positive rotation about 

the Z-axis has the effect of increasing longitude.  Ordnance Survey (2018, 37) says of PV 

rotations, “It is the form in most common use in Europe (particularly in the oil and gas 

industry), is used by the International Association of Geodesy (IAG) and recommended by 

ISO (2007) and is EPSG dataset coordinate operation method code 1033”.  This is the 

convention adopted for this thesis. 

 

An alternative school of thought prefers to use coordinate frame rotations.  According to this, 

the sign convention is that positive rotations of the axis-planes are counter-clockwise when 

viewed from the positive side of the origin, as in Figure 2-6.  CF rotation parameters are 

opposite in sign to those of PV.  Ordnance Survey (2018, 37) says the CF convention “is 

common in the USA oil and gas industry and is EPSG dataset coordinate operation method 

code 1032”. 

 

The rigorous 7PC method is referred to as the Helmert transformation in a number of sources, 

including Fan (2005), Hofmann-Wellenhof and Moritz (2006), Sjöberg (2013) and Watson 

(2005).  However, the method is so often used in a simplified form, described below in Section 

2.8, that the simplified form is often called a Helmert transformation.  See, for example, NATO 

(2001), Zgonc (2006), Knippers (2009) and Andrei (2006).  This paper only uses “Helmert” 

for the rigorous 7PC transformation, but also uses “rigorous 7PC” where there is a possible 

danger of ambiguity. 

 

The generic 7PC equation is 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + (1 + 𝛥𝑆)𝐑 [

𝑋𝑠
𝑌𝑠
𝑍𝑠

] (2-14) 

where R is a rotation matrix. 

 

The precise form of R depends on the order in which the rotations 𝑅𝑋, 𝑅𝑌  and 𝑅𝑍 are applied.  

As Harvey (1986, page 107) observes: “In general, successive rotations of a body about fixed 

axes are not commutative.  Thus the order of the rotations is important unless the rotations are 

small.”  In theory there are six possible permutations, but available evidence indicates that 

only two are used in practice. 
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• One permutation is where 𝑅𝑋 is applied to the position vector first and 𝑅𝑍 last. This is 

the permutation described by Harvey (1986, page 107) as “the most commonly 

applied”.  It is the permutation used in Deakin (2006), Dewitt (1996), Fan (2005), 

Harvey (1986), Hofmann-Wellenhof and Moritz (2006), Reit (1998), Varga et al 

(2017), Watson (2005), Wolf and Ghilani (1997).  For the purposes of this study, and 

in compliance with Ruffhead (2021a) and Ruffhead (2021b), this permutation is 

Version 1.  Accordingly, Helmert Version 1 is the 7-parameter conformal 

transformation that uses this permutation of rotations. 

• The other permutation is where 𝑅𝑍 is applied to the position vector first and 𝑅𝑋 last, as 

in Awange and Grafarend (2002), Sjoberg (2013) and Wang et al (2018).  For the 

purposes of this study, and in compliance with Ruffhead (2021a) and Ruffhead 

(2021b), this permutation is Version 2.  Accordingly, Helmert Version 2 is the 7-

parameter conformal transformation that uses this permutation of rotations. 

 

In the case of Version 1, R is given by 

           𝐑𝑍𝑌𝑋 = [
𝑐𝑍 −𝑠𝑍 0
𝑠𝑍 𝑐𝑍 0
0 0 1

] [
𝑐𝑌 0 𝑠𝑌
0 1 0
−𝑠𝑌 0 𝑐𝑌

] [
1 0 0
0 𝑐𝑋 −𝑠𝑋
0 𝑠𝑋 𝑐𝑋

]. (2-15) 

Following the shorthand notation used in Deakin (2006), 𝑐𝑋 denotes cos𝑅𝑋, 𝑠𝑋  denotes sin𝑅𝑋, 

etc.  It is easily verified that 

           𝐑𝑍𝑌𝑋 = [
𝑐𝑌𝑐𝑍 𝑠𝑋𝑠𝑌𝑐𝑍 − 𝑐𝑋𝑠𝑍 𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍
𝑐𝑌𝑠𝑍 𝑐𝑋𝑐𝑍 + 𝑠𝑋𝑠𝑌𝑠𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 − 𝑠𝑋𝑐𝑍
−𝑠𝑌 𝑠𝑋𝑐𝑌 𝑐𝑋𝑐𝑌

]. (2-16) 

 

In the case of Version 2, R is given by 

           𝐑𝑋𝑌𝑍 = [
1 0 0
0 𝑐𝑋 −𝑠𝑋
0 𝑠𝑋 𝑐𝑋

] [
𝑐𝑌 0 𝑠𝑌
0 1 0
−𝑠𝑌 0 𝑐𝑌

] [
𝑐𝑍 −𝑠𝑍 0
𝑠𝑍 𝑐𝑍 0
0 0 1

] (2-17) 

where 𝑐𝑋 denotes cos𝑅𝑋, 𝑠𝑋  denotes sin𝑅𝑋, etc.  It is easily verified that 

           𝐑𝑋𝑌𝑍 = [

𝑐𝑌𝑐𝑍 −𝑐𝑌𝑠𝑍 𝑠𝑌
𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍 𝑐𝑋𝑐𝑍 − 𝑠𝑋𝑠𝑌𝑠𝑍 −𝑠𝑋𝑐𝑌
𝑠𝑋𝑠𝑍 − 𝑐𝑋𝑠𝑌𝑐𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍 𝑐𝑋𝑐𝑌

] (2-18) 

 

The sine terms in equations (2-15) to (2-18) change sign if the rotation convention is CF (as 

in Figure 2-6) rather than PV. 

 

As an aside, the rotation matrices in (2-16) and (2-18) both have an interesting property.  If 

𝑅𝑋, 𝑅𝑌  and 𝑅𝑍 are replaced by 𝑅𝑋 ± 180°, ±180° − 𝑅𝑌, and 𝑅𝑍 ± 180°, the rotation matrix is 

completely unchanged.  This is academic for geodetic datum transformations where rotations 

are quoted in arc-seconds rather than degrees.  However, it has potential significance in other 
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areas of Geomatics, where rotations can be larger than 90º.  Fan (2005, page 5) mentions the 

equivalence property for Helmert Version 1. 

 

Special cases of the rigorous 7PC transformation include: 

• The 4-parameter conformal model based on X, Y, Z and scale factor S; this is 

actually linear with respect to the parameters. 

• The 4-parameter rigid transformation based on  X, Y, Z and rotation 𝑅𝑍. 

• The 5-parameter conformal model based on X, Y, Z, rotation 𝑅𝑍 and scale factor 

S. 

• The 6-parameter rigid transformation based on X, Y, Z and rotations 𝑅𝑋, 𝑅𝑌  and 

𝑅𝑍. 

The equations of the 7-parameter method are easily modified for these cases. 

 

Prior to Ruffhead (2021b), one issue that appears to have been unexplored is the possible 

equivalence of rotation-parameter sets between Versions 1 and 2.  If rotation parameters have 

been derived for use in one version, is there an equivalent set which has the same effect when 

used in the other version?  If so, one obvious practical application is where software is based on 

the opposite version to the version for which the rotation parameters are known. 

 

As a working hypothesis, it was assumed that any given orientation of a rigid body in three-

dimensional space can be achieved by rotations about fixed axes in any order.  (This does not 

mean that the values of those rotations are independent of the order in which they applied.)  

The matter of formal mathematical proof will be addressed later. 

 

It follows that if the rotation matrix is derived by either version of Helmert, there exists an 

alternative set of rotations such that the rotation matrix derived by the other version is the 

same.  The following Helmert conversion algorithms demonstrate how those alternative 

rotations are computed.  They have already appeared in Ruffhead (2021b). 

 

2.6.1  Rotation-parameter conversion from Version 1 to Version 2 

Since two sets of rotations are involved, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 denote the original rotations and 𝑅𝑋′ , 𝑅𝑌
′ , 

𝑅𝑍
′  denote the converted rotations.  In this case, the initial Version-1 rotations 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍 

are applied as per (2-15).  By (2-16), 

           [
𝑟1,1 𝑟1,2 𝑟1,3
𝑟2,1 𝑟2,2 𝑟2,3
𝑟3,1 𝑟3,2 𝑟3,3

] = [

𝑐𝑌𝑐𝑍 𝑠𝑋𝑠𝑌𝑐𝑍 − 𝑐𝑋𝑠𝑍 𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍
𝑐𝑌𝑠𝑍 𝑐𝑋𝑐𝑍 + 𝑠𝑋𝑠𝑌𝑠𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 − 𝑠𝑋𝑐𝑍
−𝑠𝑌 𝑠𝑋𝑐𝑌 𝑐𝑋𝑐𝑌

]. (2-19) 
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Bearing in mind (2-18), the first objective is to find  𝑐𝑋′ , 𝑠𝑋′ , 𝑐𝑌′ , 𝑠𝑌′ , 𝑐𝑍′ , 𝑠𝑍′  such that 

           [
𝑐𝑌′ 𝑐𝑍′ −𝑐𝑌′ 𝑠𝑍′ 𝑠𝑌′

𝑠𝑋′ 𝑠𝑌′ 𝑐𝑍′ + 𝑐𝑋′ 𝑠𝑍′ 𝑐𝑋′ 𝑐𝑍′ − 𝑠𝑋′ 𝑠𝑌′ 𝑠𝑍′ −𝑠𝑋′ 𝑐𝑌′

𝑠𝑋′ 𝑠𝑍′ − 𝑐𝑋′ 𝑠𝑌′ 𝑐𝑍′ 𝑐𝑋′ 𝑠𝑌′ 𝑠𝑍′ + 𝑠𝑋′ 𝑐𝑍′ 𝑐𝑋′ 𝑐𝑌′
] = [

𝑟1,1 𝑟1,2 𝑟1,3
𝑟2,1 𝑟2,2 𝑟2,3
𝑟3,1 𝑟3,2 𝑟3,3

]. (2-20) 

   

Equating the expressions for 𝑟1,3, 

           𝑠𝑌′ = 𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍. (2-21) 

On the basis that 𝑠𝑌′  is the sine of 𝑅𝑌′ , 
           (𝑐𝑌′ )2 = 1 − (𝑠𝑌′ )

2 = 1 − (𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍)
2. (2-22) 

Making the assumption that |𝑅𝑌′ | ≤ 90°, which will always be the case for geodetic datum 

transformations, 

           𝑐𝑌′ = √1 − (𝑠𝑌′ )2. (2-23) 

Equating the expressions for 𝑟3,3, 𝑟2,3, 𝑟1,1, 𝑟1,2 respectively, 

           𝑐𝑋′ 𝑐𝑌′ = 𝑐𝑋𝑐𝑌, (2-24) 

           𝑠𝑋′ 𝑐𝑌′ = 𝑠𝑋𝑐𝑍 − 𝑐𝑋𝑠𝑌𝑠𝑍, (2-25) 

           𝑐𝑌′ 𝑐𝑍′ = 𝑐𝑌𝑐𝑍, (2-26) 

           𝑐𝑌′ 𝑠𝑍′ = 𝑐𝑋𝑠𝑍 − 𝑠𝑋𝑠𝑌𝑐𝑍. (2-27) 

Since 𝑐𝑌′  is positive, the Version-2 rotations can be computed from 
            ,  ,  . (2-28) 

 

The arctan2[x,y] function is arctan(y/x) in the range -180 to 180 such that it always has the 

same sign as x.  Programming languages usually have a function corresponding to arctan2.  In 

VBA, a user-defined version is needed; suitable code can be found, for example, in Ruffhead 

(2016).  The use of arctan2 rather than arctan is not strictly necessary when rotations are known 

to be small, but its presence here is to enable generalisation. 

 

While (2-21) to (2-28) are necessary to establish an equivalent set of Version-2 rotations, they 

are not sufficient without a mathematical proof of the identities in 𝑟2,1, 𝑟2,2, 𝑟3,1, 𝑟3,2 arising from 

(2-20).  This is given in Appendix A. 

 

When Helmert transformations are used in the wider field of geomatics, the rotations are not 

necessarily numerically smaller than 90º.  It does no harm to compute 𝑐𝑌′  from (2-23), making it 

positive, making 𝑅𝑌′  numerically smaller than 90º, and enabling the application of (2-28).  After 

all, there is an equivalent set of Version-2 rotations which makes 𝑅𝑌′  larger than 90º. 
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The only problem occurs when 𝑐𝑌′  = 0 because (2-28) will leave 𝑅𝑋′  and 𝑅𝑍′  undefined.  From 

(2-24) and (2-26), this scenario only occurs if 𝑐𝑌 = 0 or 𝑐𝑋 = 𝑐𝑍 = 0.  This in turn only occurs 

if  𝑅𝑌 is an odd multiple of 90º or 𝑅𝑋 and 𝑅𝑍 are both odd multiples of 90º.  Extensive 

manipulation of trigonometrical identities enabled the compilation of Table 2-2. 

 

Table 2-2: Special cases of Helmert Version 1 → Helmert Version 2 rotation conversions  
 
Helmert Version-1 

rotations 

Helmert Version-2 
rotations (not 

necessarily unique)  

 
Selected trigonometrical identities that assist the proof that the 

rotation matrices are the same 
𝑅𝑋 𝑅𝑌 𝑅𝑍 𝑅𝑋

′  𝑅𝑌
′  𝑅𝑍

′   
90º 𝑅𝑌 90º 90º 90º −𝑅𝑌  
90º 𝑅𝑌 -90º 𝑅𝑌 -90º -90º  
-90º 𝑅𝑌 90º -90º -90º 𝑅𝑌  
-90º 𝑅𝑌 -90º 𝑅𝑌 90º -90º  
𝑅𝑋 90º 𝑅𝑍 -90º 𝑅𝑋 − 𝑅𝑍 

 +90° 

90º sin( 𝑅𝑋 − 𝑅𝑍 + 90°) = cos( 𝑅𝑋 − 𝑅𝑍) = 𝑐𝑋𝑐𝑍 + 𝑠𝑋𝑠𝑍; 
cos( 𝑅𝑋 − 𝑅𝑍 + 90°) = − sin( 𝑅𝑋 − 𝑅𝑍) = 𝑐𝑋𝑠𝑍 − 𝑠𝑋𝑐𝑍. 

𝑅𝑋 -90º 𝑅𝑍 90º 𝑅𝑋 + 𝑅𝑍 
 −90° 

90º sin( 𝑅𝑋 + 𝑅𝑍 − 90°) = − cos( 𝑅𝑋 + 𝑅𝑍) = 𝑠𝑋𝑠𝑍 − 𝑐𝑋𝑐𝑍; 
cos( 𝑅𝑋 + 𝑅𝑍 − 90°) = sin( 𝑅𝑋 + 𝑅𝑍) = 𝑠𝑋𝑐𝑍 + 𝑐𝑋𝑠𝑍. 

 

2.6.2  Rotation-parameter conversion from Version 2 to Version 1 

Since two sets of rotations are involved, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 denote the original rotations and 𝑅𝑋′ , 𝑅𝑌
′ , 

𝑅𝑍
′  denote the converted rotations.  In this case, the initial Version-2 rotations 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍 

are applied as per (2-17).  By (2-18), 

           [
𝑟1,1 𝑟1,2 𝑟1,3
𝑟2,1 𝑟2,2 𝑟2,3
𝑟3,1 𝑟3,2 𝑟3,3

] = [

𝑐𝑌𝑐𝑍 −𝑐𝑌𝑠𝑍 𝑠𝑌
𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍 𝑐𝑋𝑐𝑍 − 𝑠𝑋𝑠𝑌𝑠𝑍 −𝑠𝑋𝑐𝑌
𝑠𝑋𝑠𝑍 − 𝑐𝑋𝑠𝑌𝑐𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍 𝑐𝑋𝑐𝑌

]. (2-29) 

Bearing in mind (2-16), the first objective is to find 𝑐𝑋′ , 𝑠𝑋′ , 𝑐𝑌′ , 𝑠𝑌′ , 𝑐𝑍′ , 𝑠𝑍′  such that 

           [
𝑐𝑌′ 𝑐𝑍′ 𝑠𝑋′ 𝑠𝑌′ 𝑐𝑍′ − 𝑐𝑋′ 𝑠𝑍′ 𝑠𝑋′ 𝑠𝑍′ + 𝑐𝑋′ 𝑠𝑌′ 𝑐𝑍′

𝑐𝑌′ 𝑠𝑍′ 𝑐𝑋′ 𝑐𝑍′ + 𝑠𝑋′ 𝑠𝑌′ 𝑠𝑍′ 𝑐𝑋′ 𝑠𝑌′ 𝑠𝑍′−𝑠𝑋′ 𝑐𝑍′

−𝑠𝑌′ 𝑠𝑋′ 𝑐𝑌′ 𝑐𝑋′ 𝑐𝑌′
] = [

𝑟1,1 𝑟1,2 𝑟1,3
𝑟2,1 𝑟2,2 𝑟2,3
𝑟3,1 𝑟3,2 𝑟3,3

]. (2-30) 

Equating the expressions for 𝑟3,1, 

           𝑠𝑌′ = 𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑠𝑋𝑠𝑍. (2-31) 

On the basis that 𝑠𝑌′  is the sine of 𝑅𝑌′ , 
           (𝑐𝑌′ )2 = 1 − (𝑠𝑌′ )

2 = 1 − (𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑠𝑋𝑠𝑍)
2. (2-32) 

Making the assumption that |𝑅𝑌′ | ≤ 90°, which will always be the case for geodetic datum 

transformations, 

           𝑐𝑌′ = √1 − (𝑠𝑌′ )2. (2-33) 

Equating the expressions for 𝑟3,3, 𝑟3,2, 𝑟1,1, 𝑟2,1 respectively, 

           𝑐𝑋′ 𝑐𝑌′ = 𝑐𝑋𝑐𝑌, (2-34) 

            𝑐𝑌′ 𝑠𝑋′ = 𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍, (2-35) 

           𝑐𝑌′ 𝑐𝑍′ = 𝑐𝑌𝑐𝑍, (2-36) 

            𝑐𝑌′ 𝑠𝑍′ = 𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍. (2-37) 

Since 𝑐𝑌′  is positive, the Version-1 rotations can be computed from 
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            ,  ,  . (2-38) 

 

The comment about the use of the arctan2 function which follows (2-28) also applies here.  
 

While (2-31) to (2-38) are necessary to establish an equivalent set of Version-1 rotations, they 

are not sufficient without a mathematical proof of the identities in 𝑟1,2, 𝑟1,3, 𝑟2,2, 𝑟2,3 arising from 

(2-30).  This is given in Appendix A. 

 

When Helmert transformations are used in the wider field of geomatics, the rotations are not 

necessarily numerically smaller than 90º.  It does no harm to compute 𝑐𝑌′  from (2-33), making it 

positive, making 𝑅𝑌′  numerically smaller than 90º, and enabling the application of (2-38).  After 

all, there is an equivalent set of Version-2 rotations which makes 𝑅𝑌′   larger than 90º. 

 

The only problem occurs when 𝑐𝑌′  = 0 because (2-38) will leave values 𝑅𝑋′  and 𝑅𝑍′  undefined.  

From (2-34) and (2-36), this scenario only occurs if 𝑐𝑌 = 0 or 𝑐𝑋 = 𝑐𝑍 = 0.  This in turn only 

occurs if  𝑅𝑌 is an odd multiple of 90º or 𝑅𝑋 and 𝑅𝑍 are both odd multiples of 90º.  Extensive 

manipulation of trigonometrical identities enabled the compilation of Table 2-3. 

 
Table 2-3: Special cases of Helmert Version 2 → Helmert Version 1 rotation conversions  

 
Helmert Version-2 

rotations 

Equivalent Helmert 
Version-1 rotations (not 

necessarily unique)  

 
Selected trigonometrical identities that assist the proof that the 

rotation matrices are the same 
𝑅𝑋 𝑅𝑌 𝑅𝑍 𝑅𝑋

′  𝑅𝑌
′  𝑅𝑍

′   
90º 𝑅𝑌 90º 𝑅𝑌 -90º 90º  
90º 𝑅𝑌 -90º 𝑅𝑌 90º -90º  
-90º 𝑅𝑌 90º 𝑅𝑌 90º 90º  
-90º 𝑅𝑌 -90º -90º -90º −𝑅𝑌   
𝑅𝑋 90º 𝑅𝑍 -90º 𝑅𝑋 + 𝑅𝑍 

+90° 

-90º sin( 𝑅𝑋 + 𝑅𝑍 + 90°) = cos( RX + 𝑅𝑍) = 𝑐𝑋𝑐𝑍 − 𝑠𝑋𝑠𝑍; 
cos( 𝑅𝑋 + 𝑅𝑍 + 90°) = − sin( 𝑅𝑋 + 𝑅𝑍) = −(𝑠𝑋𝑐𝑍 + 𝑐𝑋𝑠𝑍). 

𝑅𝑋 -90º 𝑅𝑍 90º 𝑅𝑋 − 𝑅𝑍
− 90° 

 

-90º sin( 𝑅𝑋 − 𝑅𝑍 − 90°) = − cos( 𝑅𝑋 − 𝑅𝑍) = −(𝑐𝑋𝑐𝑍 + 𝑠𝑋𝑠𝑍); 
cos( 𝑅𝑋 − 𝑅𝑍 − 90°) = sin( 𝑅𝑋 − 𝑅𝑍) = 𝑠𝑋𝑐𝑍 − 𝑐𝑋𝑠𝑍. 

 

2.7  Rigorous localised 7-parameter conformal transformation 

This is a similar method except that the rotations are related to a local centroid (𝑋𝑚, 𝑌𝑚, 𝑍𝑚).  

In effect, it is applied to local Cartesian coordinates.  The rotation convention adopted here is 

shown in Figure 1-3 and discussed in Section 2.6. 

 

The transformation equation takes the form 

            [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [

𝑋𝑚
𝑌𝑚
𝑍𝑚

] + [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + (1 + 𝛥𝑆)𝐑 [

𝑋𝑠 − 𝑋𝑚
𝑌𝑠 − 𝑌𝑚
𝑍𝑠 − 𝑍𝑚

] (2-39) 
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where the rotation matrix R is given by (2-15) and (2-16) or by (2-17) and (2-18). 

 

Perhaps the best name for this transformation is “localised 7PC”.  It is, however, an alternative 

implementation of the non-localised version.  Equation (2-39) can easily be converted into the 

form (2-14), with a change to the values of the translation parameters but not to the scaling or 

rotations.  Conversely, equation (2-14) can be converted into the form (2-39). 

 

Special cases of this 7-parameter conformal transformation include: 

• The 4-parameter conformal model based on X, Y, Z and scale factor S; this is 

actually linear with respect to the parameters. 

• The 4-parameter rigid transformation based on X, Y, Z and rotation 𝑅𝑍. 

• The 5-parameter conformal model based on X, Y, Z, rotation 𝑅𝑍 and scale factor 

S. 

• The 6-parameter rigid transformation based on X, Y, Z and rotations 𝑅𝑋, 𝑅𝑌, 𝑅𝑍. 

The equations of the 7-parameter method are easily modified for these cases. 

 

Mention should be made of 7-parameter conformal transformations from 𝑋𝑠′ , 𝑌𝑠′, 𝑍𝑠′  to 𝑋𝑡′ , 𝑌𝑡′, 

𝑍𝑡
′   when 𝑋′, 𝑌′ and 𝑍′ are local level coordinates as described in subsection 1.4.4.  This study 

treats the local level coordinates as east, north & up, and relates them to geocentric Cartesians 

by equations (1-24) & (1-25).  Subsection 1.4.4 noted that Rapp (1993, page 68) and Leick 

(1995, page 480) treat the local level coordinates as south, east and up; the process of 

transforming these coordinates has come to be known as the Veis transformation. 

   

2.8  Simplified 7-parameter conformal transformation (Bursa-Wolf) 

The transformation associated with Bursa (1962) and Wolf (1963) is a simplified version of 

the 7PC transformation.  It is applied to geocentric Cartesian coordinates (X, Y, Z).  The fully-

linear version of Bursa-Wolf, abbreviated here as FLBW, takes the form shown in (2-40) 

below.  It matches the form quoted by Ge et al, (2013), Kashani (2006), McCarthy (1996) and 

Yusheng (2014), although not all use the PV rotation convention. 

 

Bursa-Wolf is wrongly described as conformal by Soycan and Soycan (2008), Okwuashi and 

Eyoh (2012) and Dhungana and Lama (2018).  The equation is based on (2-14) but 

assumptions are needed about ΔS, 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍 being small, less than 2 in the case of the 

latter three.  (This requirement is sometimes overlooked, as in Knippers [2009].)  Treating the 
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rotations as being in radians, second-order terms such as ΔS·RX and RYRZ are deemed to be 

negligible and the transformation is regarded as near-conformal.  The equation takes the form 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

1 + 𝛥𝑆 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 + 𝛥𝑆 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1 + 𝛥𝑆

] [

𝑋𝑠
𝑌𝑠
𝑍𝑠

] (2-40) 

 

As the designation “fully-linear” suggests, this expression is linear with respect to the parameters 

X, Y, Z, ΔS,  𝑅𝑋, 𝑅𝑌 and 𝑅𝑍.  This becomes more obvious when (2-40) is rewritten in the 

following way. 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [

𝑋𝑠
𝑌𝑠
𝑍𝑠

] + [
1
0
0
   

0 0 𝑋𝑠
1 0 𝑌𝑠
0 1 𝑍𝑠

  

0 𝑍𝑠 −𝑌𝑠
−𝑍𝑠 0 𝑋𝑠
𝑌𝑠 −𝑋𝑠 0

]

[
 
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛥𝑆
𝑅𝑋
𝑅𝑌
𝑅𝑍 ]
 
 
 
 
 
 

 (2-41) 

 

Sets of parameters for Bursa-Wolf transformations can be found in 

• ESRI (2012) which covers a wide range used in ArcGIS; 

• NGA (2008) which covers many used by NATO. 

 

If the rotation convention is CF (as in Figure 2-6) rather than PV, then each rotation in equation 

(2-40) needs a change of sign.  The same applies to the coefficients of 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍 in 

equation (2-41). 

 

Bursa-Wolf is sometimes quoted in a partially-linear form in which only the rotation matrix has 

been linearised.  The abbreviation used here is PLBW, and the transformation formula is 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + (1 + 𝛥𝑆) [

1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

] [

𝑋𝑠
𝑌𝑠
𝑍𝑠

]. (2-42) 

ESRI (2008), Deakin (2006), Gacoki and Aduol (2002) and Iliffe and Lott (2008) are among 

the sources which prefer this form.  The methods used in the latter 3 sources to derive the 

PLBW parameters are described in Section 4.8. 

 

If the rotations in (2-40) and (2-42) are given the superscripts FLBW and PLBW respectively, 

then a necessary and sufficient condition for the formulae to be equivalent is that 

           [
𝑅𝑋
𝐹𝐿𝐵𝑊

𝑅𝑌
𝐹𝐿𝐵𝑊

𝑅𝑍
𝐹𝐿𝐵𝑊

] = (1 + 𝛥𝑆) [

𝑅𝑋
𝑃𝐿𝐵𝑊

𝑅𝑌
𝑃𝐿𝐵𝑊

𝑅𝑍
𝑃𝐿𝐵𝑊

]. (2-43) 

This means that the FLBW rotations are less accurate approximations to the true rotations than 

the PLBW rotations, in the sense that the scaling introduces an additional source of error. 
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Another consequence of the relationship between the two forms of Bursa-Wolf is that (2-43) 

can be used as a substitution to convert PLBW into a fully-linear form. 

 

Rapp (1993, 61) quotes a study by Malys (1988) on the numerical impact of the small angle 

approximation used in (2-14).  He compared the elements of that linearised rotation matrix 

with those of the rigorous rotation matrix given above in (2-16).  He found that the 

disagreement between corresponding elements was at the level of 0.510-11 when the rotation 

angles were on the order of 1; at the level of 0.510-10 when the angles were on the order of 

3; and at the level of 0.510-9 when the angles were on the order of 9.  It was noted that “an 

error of 0.510-9 propagates into a coordinate error on the order of 3mm”.  However, NGA 

(2008) shows that rotation angles larger than 9 do occur occasionally. 

 

Iliffe and Lott (2008, Section 4.3.3) observes that “The 7-parameter transformation methods 

are most commonly encountered when transforming data acquired in a modern system such 

as GPS to a national coordinate reference system... Errors in the order of one, two or more 

metres might be encountered, depending on the extent of the area covered and the age of the 

original survey.”  Bursa-Wolf is the version of the 7-parameter transformation that occurs most 

in software packages and (like 3PC) enables them to store & apply the details of 

transformations to many national mapping coordinate reference systems. 

 

2.9  Simplified localised 7-parameter conformal transformation (Molodensky-Badekas) 

The Molodensky-Badekas method is a simplified version of the rigorous localised 7PC 

transformation based on a local centroid (𝑋𝑚, 𝑌𝑚, 𝑍𝑚).  In effect, the transformation is applied 

to local Cartesian coordinates. 

  

The transformation formula is based on (2-39) but assumptions are made about ΔS, 𝑅𝑋, 𝑅𝑌 and 

𝑅𝑍 being small (less than 2 in the case of the latter three).  Treating the rotations as being in 

radians, second-order terms such as ΔS·RX and RYRZ are deemed to be negligible and the 

transformation is regarded as near-conformal.  The fully-linear version of Molodensky-

Badekas, abbreviated here as FLMB, takes the form shown in (2-44) below. 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [

𝑋𝑚
𝑌𝑚
𝑍𝑚

] + [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

1 + 𝛥𝑆 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 + 𝛥𝑆 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1 + 𝛥𝑆

] [

𝑋𝑠 − 𝑋𝑚
𝑌𝑠 − 𝑌𝑚
𝑍𝑠 − 𝑍𝑚

]. (2-44) 
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As the designation “fully-linear” suggests, this expression is linear with respect to the parameters 

X, Y, Z, ΔS, 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍.  This becomes more obvious when (2-44) is rewritten in the 

following way. 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [

𝑋𝑠
𝑌𝑠
𝑍𝑠

] + [
1
0
0
   

0 0 𝑋𝑠 − 𝑋𝑚
1 0 𝑌𝑠 − 𝑌𝑚
0 1 𝑍𝑠 − 𝑍𝑚

  

0 𝑍𝑠 − 𝑍𝑚 −(𝑌𝑠 − 𝑌𝑚)
−(𝑍𝑠 − 𝑍𝑚) 0 𝑋𝑠 − 𝑋𝑚
𝑌𝑠 − 𝑌𝑚 −(𝑋𝑠 − 𝑋𝑚) 0

]

[
 
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛥𝑆
𝑅𝑋
𝑅𝑌
𝑅𝑍 ]
 
 
 
 
 
 

. (2-45) 

 

Section 4.1 of Varga et al (2017) says this is a 7-parameter method that some would call a 10-

parameter transformation.  Some authors refer to it as a “7+3” model.  This distinguishes the 

7 parameters derived by least-squares (translation, scale-change and rotations) from the 3 

centroid coordinates (obtained by a simple formula). 

 

Because of its use of coordinate differences, equation (2-45) avoids the large numbers that 

occur in equation (2-41).  The contrast is even more marked in normal equations based on (2-

45) and (2-41).  The computations carried out with both methods during this study (with 

double precision) suggest that the large numbers are not a problem. 

 

It can be argued that Molodensky-Badekas is an alternative implementation of Bursa-Wolf.  

Al Marzooqi et al (2005, Section 2.4.3) describes them as theoretically identical.  Equation 

(2-44) can easily be converted into the form (2-40), although the values of the translation 

parameters will change.  Conversely, equation (2-40) can be converted into the form (2-44).  

The relationship between the translation parameters arising from the two methods can easily 

be shown to be 

           [
𝛥𝑋FLBW

𝛥𝑌FLBW

𝛥𝑍FLBW
] = [

𝛥𝑋FLMB

𝛥𝑌FLMB

𝛥𝑍FLMB
] − [

𝛥𝑆 −𝑅𝑍 𝑅𝑌
𝑅𝑍 𝛥𝑆 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 𝛥𝑆

] [

𝑋𝑚
𝑌𝑚
𝑍𝑚

]. (2-46) 

 

This has been noted in vector-matrix notation by Deakin (2006, page 20). 

 

If the rotation convention is the opposite of that shown in Figure 2.4, then each rotation in 

equation (2-44) needs a change of sign.  The same applies to the coefficients of 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍 

in equation (2-45). 
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Molodensky-Badekas is sometimes quoted in a partially-linear form in which only the rotation 

matrix has been linearised.  The abbreviation used here is PLMB, and the transformation formula 

is 

 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [

𝑋𝑚
𝑌𝑚
𝑍𝑚

] + [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + (1 + 𝛥𝑆) [

1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

] [

𝑋𝑠 − 𝑋𝑚
𝑌𝑠 − 𝑌𝑚
𝑍𝑠 − 𝑍𝑚

]. (2-47) 

 

Deakin (2006), Iliffe and Lott (2008) and Kutoglu (2009a) are among the sources which prefer 

this form.  As with Bursa-Wolf, the partially-linear form would be linearised further when the 

parameters are optimised by least-squares: the products 𝛥𝑆𝑅𝑋, 𝛥𝑆𝑅𝑌 and 𝛥𝑆𝑅𝑍 are deemed to 

be negligible, which they usually are. In effect, the fully-linear form is used to derive the 

optimum parameters even when the partially-linear form to apply the transformation. 

 

If the rotations in (2-44) and (2-47) are given the superscripts FLMB and PLMB respectively, 

then a necessary and sufficient condition for the formulae to be equivalent is that 

           [
𝑅𝑋
FLMB

𝑅𝑌
FLMB

𝑅𝑍
FLMB

] = (1 + 𝛥𝑆) [

𝑅𝑋
PLMB

𝑅𝑌
PLMB

𝑅𝑍
PLMB

]. (2-48) 

This means that the FLMB rotations are less accurate approximations to the true rotations than 

the PLBW rotations, in the sense that the scaling introduces an additional source of error. 

 

Another consequence of the relationship between the two forms of Molodensky-Badekas is 

that (2-48) can be used as a substitution to convert PLMB into a fully-linear form. 

 

2.10  8-parameter affine transformation 

This transformation was proposed in Andrei (2006).  This transformation is based on 3 

translation components, 3 rotations and 2 scale factors. The scale factors are for “vertical” 

distance and distance in the “horizontal” plane.  The rationale behind this is that older geodetic 

datums used different measuring techniques for horizontal networks and levelling networks.  

Horizontally, in the plane OXY, the transformation is near-conformal. 

 

This requires a change in each coordinate system to a “local level system” discussed in 

subsection 1.4.4 above.  However, equation (1-24) uses a local point (𝜙0, 𝜆0, ℎ0) and its 

geocentric Cartesian coordinates (𝑋0, 𝑌0, 𝑍0).  Given that there are two datums involved, it is 

necessary to have local points (𝜙𝑠,0, 𝜆𝑠,0, ℎ𝑠,0) & (𝜙𝑡,0, 𝜆𝑡,0, ℎ𝑡,0), in the respective datums and 

their corresponding geocentric Cartesian coordinates (𝑋𝑠,0, 𝑌𝑠,0, 𝑍𝑠,0) & (𝑋𝑡,0, 𝑌𝑡,0, 𝑍𝑡,0).  The 
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conversion method used by Andrei (2006) is to compute the Cartesian coordinates of the local 

points from the average values from the coordinates in the dataset; (𝜙𝑠,0, 𝜆𝑠,0, ℎ𝑠,0) and 

(𝜙𝑡,0, 𝜆𝑡,0, ℎ𝑡,0) are then computed by Cartesian-to-geodetic conversion (eg by the method 

described in subsection 1.4.1). 

 

The adaptation of (1-24) for converting (𝑋, 𝑌, 𝑍) to local level coordinates (𝑋′, 𝑌′, 𝑍′)  in the 

source and target datums is as follows. 

                       [
𝑋𝑠
′

𝑌𝑠
′

𝑍𝑠
′

] = [

−sin𝜆𝑠,0 cos𝜆𝑠,0 0

−sin𝜙𝑠,0 cos𝜆𝑠,0 −sin𝜙𝑠,0 sin𝜆𝑠,0 cos𝜙𝑠,0
cos𝜙𝑠,0 cos𝜆𝑠,0 cos𝜙𝑠,0 si𝑛𝜆𝑠,0 sin𝜙𝑠,0

] [

𝑋𝑠 − 𝑋𝑠,0
𝑌𝑠 − 𝑌𝑠,0
𝑍𝑠 − 𝑍𝑠,0

] ; (2-49) 

 

                       [
𝑋𝑡
′

𝑌𝑡
′

𝑍𝑡
′

] = [

−sin𝜆𝑡,0 cos𝜆𝑡,0 0

−sin𝜙𝑡,0 cos𝜆𝑡,0 −sin𝜙𝑡,0 sin𝜆𝑡,0 cos𝜙𝑡,0
cos𝜙𝑡,0 cos𝜆𝑡,0 cos𝜙𝑡,0 si𝑛𝜆𝑡,0 sin𝜙𝑡,0

] [

𝑋𝑡 − 𝑋𝑡,0
𝑌𝑡 − 𝑌𝑡,0
𝑍𝑡 − 𝑍𝑡,0

] . (2-50) 

 

The reverse coordinate conversions are adaptations of equation (1-25): 

                      [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

𝑋𝑠,0
𝑌𝑠,0
𝑍𝑠,0

] + [

−sin𝜆𝑠,0 −sin𝜙𝑠,0 cos𝜆𝑠,0 cos𝜙𝑠,0 cos𝜆𝑠,0
cos𝜆𝑠,0 −sin𝜙𝑠,0 sin𝜆𝑠,0 cos𝜙𝑠,0 si𝑛𝜆𝑠,0
0 cos𝜙𝑠,0 sin𝜙𝑠,0

] [

𝑋′𝑠
𝑌′𝑠
𝑍′𝑠

] ; (2-51) 

 

                       [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [

𝑋𝑡,0
𝑌𝑡,0
𝑍𝑡,0

] + [

−sin𝜆𝑡,0 −sin𝜙𝑡,0 cos𝜆𝑡,0 cos𝜙𝑡,0 cos𝜆𝑡,0
cos𝜆𝑡,0 −sin𝜙𝑡,0 sin𝜆𝑡,0 cos𝜙𝑡,0 si𝑛𝜆𝑡,0
0 cos𝜙𝑡,0 sin𝜙𝑡,0

] [

𝑋𝑡
′

𝑌𝑡
′

𝑍𝑡
′

] . (2-52) 

 

The transformation is applied to local level coordinates (X, Y, Z) which are sometimes called 

ENU coordinates.   

           [
𝑋𝑡
′

𝑌𝑡
′

𝑍𝑡
′

] = [
𝛥𝑋′

𝛥𝑌′

𝛥𝑍′
] + 𝐑 [

𝑆ℎ 0 0
0 𝑆ℎ 0
0 0 𝑆𝑣

] [

𝑋𝑠
′

𝑌𝑠
′

𝑍𝑠
′

] (2-53) 

The rotation matrix will be in terms of  𝑅𝑋′, 𝑅𝑌′ and 𝑅𝑍′ rather than 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍.  Apart 

from that, it will take the form (2-15) or (2-17), depending on the order of rotations. 

 

The 8-parameter affine transformation examined by Varga et al (2017) is, however, in terms 

of geocentric Cartesian coordinates, making it a special case of the 9-parameter affine 

transformation.  Its scale factors are 𝑆𝑋, 𝑆𝑌 and 𝑆𝑍, but with 𝑆𝑌 = 𝑆𝑍.  There is no obvious 

rationale for equal scale factors in the plane parallel to the Equatorial plane and a different 

scale factor in the polar direction.  This version of Andrei’s transformation will not be 

considered further, except as an intermediate model in the derivation of 9-parameter affine 

transformations. 
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2.11  9-parameter affine transformation 

This transformation is based on 3 translation components, 3 rotations and 3 scale factors.  The 

scale factors, 𝑆𝑋, 𝑆𝑌 and 𝑆𝑍, are in the directions of the axes OX, OY and OZ.  The 

transformation is applied to geocentric Cartesian coordinates (X, Y, Z).  It is not conformal. 

 

Differences in scale might arise if there are differences between horizontal scale and vertical 

scale.  If, for example, the direction of one of the axes is within 25 of the local vertical 

directions, then that will be the axis upon which the vertical scale factor has the greatest 

influence and the horizontal scale factor the least influence. 

 

There are several ways in which the 3 rotations can be combined into rotation matrix R.  They 

can be applied rigorously as in equation (2-15) or equation (2-17).  Alternatively, the rotation 

matrix may be in a linearised form as in equation (2-42). 

 

Irrespective of how R is defined, the formula for the transformation takes one of two forms. 

 

The “SR” version, which is used by Han (2010), Paláncz et al (2008), Späth (2004) and Varga 

et al (2017), is 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

𝑆𝑋 0 0
0 𝑆𝑌 0
0 0 𝑆𝑍

] 𝑹 [

𝑋𝑠
𝑌𝑠
𝑍𝑠

]. (2-54) 

 

The “RS” version, which is used by Andrei (2006), Fan (2009) and Paláncz and Piroska 

(2011), is 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + 𝐑 [

𝑆𝑋 0 0
0 𝑆𝑌 0
0 0 𝑆𝑍

] [

𝑋𝑠
𝑌𝑠
𝑍𝑠

]. (2-55) 

This can alternatively be written as 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + 𝐑 [

𝑆𝑋𝑋𝑠
𝑆𝑌𝑌𝑠
𝑆𝑍𝑍𝑠

]. (2-56) 

 

2.12  12-parameter affine transformation 

This transformation is based on 3 translation components and the 9 elements of a 3-by-3 

matrix.  It is applied to geocentric Cartesian coordinates (X, Y, Z).  It is not conformal. 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 𝑎9

] [

𝑋𝑠
𝑌𝑠
𝑍𝑠

] (2-57) 
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Normally, 𝑎1, 𝑎5 and 𝑎9 will be close to 1 and the other 𝑎𝑖 will be close to 0.  The 

transformation is linear with respect to the parameters, since (2-57) can be rewritten in the 

following form. 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [

1 0 0 𝑋𝑠 𝑌𝑠 𝑍𝑠 0 0 0 0 0 0
0 1 0 0 0 0 𝑋𝑠 𝑌𝑠 𝑍𝑠 0 0 0
0 0 1 0 0 0 0 0 0 𝑋𝑠 𝑌𝑠 𝑍𝑠

]

[
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝑎1
⋮
𝑎9 ]
 
 
 
 
 

 (2-58) 

 

2.13  Multiple regression equations and similar polynomial formulae 

This type of transformation refers to equations that express datum shifts as polynomial 

functions of latitude and longitude.  They are called multiple regression equations (MREs) if 

they are derived in a particular way, which is described in Section 4.13.  Essentially, it means 

restricting the terms used in each polynomial to those which are statistically significant. 

 

Some authors refer to polynomial functions of latitude and longitude as MREs, irrespective of 

how they are derived.  The 6-term equations quoted in Kutoglu (2009b) and Mitsakaki et al 

(2006) appear to have been based on a decision to restrict the terms to those whose powers 

add up to 2 or less; the 10-term equations quoted in Ayer et al (2010) appear to have been 

based on a decision to restrict the terms to those whose powers add up to 3 or less.  By those 

criteria, these functions are not MREs.  However, MREs can be regarded as a sub-type of 

polynomial formulae, because that is what they are when they are applied. 

 

Ordnance Survey (2002) published formulae with top power 3 for transforming “Irish Grid” 

to ETRS89 (more accurately, Ireland 1965 to ETRS89).  The equations retain all 16 terms 

without regard for statistical significance, and are described as polynomial transformations 

rather than MREs.  Their adoption for continued use was noted in Ordnance Survey (2020), 

and they were included in the software package Grid InQuest II which covers datum 

transformations in Great Britain and Ireland. 

 

Strictly speaking, multiple regression equations are linear combinations of basis functions that 

need not be monomials or even polynomials.  However, all the basis functions used in datum-

shift MREs encountered during this research have been monomials (apart from some of the 

new types introduced in Section 2.17). 
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The US Defense Mapping Agency (DMA) derived a series of MREs for transforming a 

number of local datums to the World Geodetic System 1984 (WGS 84).  It should be noted 

that in 1996 DMA was merged with other bodies into what is now the National Geospatial-

Intelligence Agency (NGA).  Until 2003 NGA was called the National Imagery and Mapping 

Agency (NIMA). 

 

The MREs in NGA (2014) and NIMA (2000) were originally published by DMA (1991, 

Appendix D).  These formulae are for transformations to WGS84 from “seven major 

continental datums, covering continental-size land areas with large distortion”. A more 

complete set of MREs covering 54 datum transformations around the world can be found in 

Sections 19 and 20 of DMA (1987b). 

 

Multiple regression equations for the datum shifts   and  take the general form 

           𝛥𝜙(") = ∑ 𝑎𝑖,𝑗𝑈
𝑖𝑉𝑗𝑖,𝑗 ; (2-59) 

           𝛥𝜆(") = ∑ 𝑏𝑖,𝑗𝑈
𝑖𝑉𝑗𝑖,𝑗 . (2-60) 

The summations are finite and usually have fewer than 30 terms.  U and V are intermediate 

coordinates which are linear functions of 𝜙𝑠 and 𝜆𝑠 respectively.  By tradition, the same scaling 

constant is used for both of 𝜙𝑠 and 𝜆𝑠.  The value of this constant, K, is purely a matter of 

computational convenience; DMA used fractions of , notably /60 (=0.05235988) for the 

continental datums in Appendix D of DMA (1991).  The resulting formulae for U and V are: 

           𝑈 = 𝐾(𝜙in deg − 𝜙off), (2-61) 

            𝑉 = 𝐾(𝜆in deg − 𝜆off), (2-62) 

where  𝜙off and 𝜆off are offsets based on a point near the centre of the area of application. 

 

The formulae for applying the shifts   and  to the source-datum coordinates are as follows. 
          𝜙𝑡 = 𝜙𝑠 + 𝛥𝜙; (2-63) 

           𝜆𝑡 = 𝜆𝑠 + 𝛥𝜆. (2-64) 

 

MREs of the form (2-59) and (2-60) were first proposed by Appelbaum (1982).  He suggested 

similar summations for shifts in ellipsoidal heights and shifts in Cartesian coordinates.  MREs 

can also be used to model datum shifts for grid coordinates; see Soycan (2005).  In all cases, 

the intermediate variables used in the polynomials are based on latitude and longitude. 

 

Because of the nature of polynomials, it is very important that their use as datum 

transformation models is restricted to the areas for which they are designed. 
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2.14  SMITSWAM 

SMITSWAM is a new method, or rather an alternative implementation of the rigorous 3PC 

transformation.  It stands for “Standard Molodensky In Two Stages With Applied Misclosure” 

and was introduced by Ruffhead (2016).  It is applied to geocentric Cartesian coordinates (X, 

Y, Z) but produces the results of the rigorous 3PC transformation.  This avoids the need to 

convert geodetic coordinates to Cartesian coordinates in the source datum and Cartesian 

coordinates to geodetic coordinates in the target datum. 

 

The first application of Standard Molodensky produces the transformation 
           (𝜙𝑠, 𝜆𝑠, ℎ𝑠) → (𝜙𝑡

𝑆𝑀, 𝜆𝑡
𝑆𝑀 , ℎ𝑡

𝑆𝑀). (2-65) 

The second application can be regarded as “Simple Same-Formula Inverse” as it is from the 

target datum to the source datum, and the original X, Y, Z, a and f are replaced by their 

negatives. It produces the transformation 

           (𝜙𝑡SM, 𝜆𝑡SM, ℎ𝑡SM) → (𝜙𝑠
SSFI, 𝜆𝑠

SSFI, ℎ𝑠
SSFI). (2-66) 

 

The new approximation to the transformed position is obtained by subtracting half the 

misclosure from the first approximation: 

           𝜙𝑡
SMITSWAM = 𝜙𝑡

SM − (𝜙𝑠
SSFI − 𝜙𝑠)/2. (2-67) 

           𝜆𝑡
SMITSWAM = 𝜆𝑡

SM − (𝜆𝑠
SSFI − 𝜆𝑠)/2. (2-68) 

           ℎ𝑡
SMITSWAM = ℎ𝑡

SM − (ℎ𝑠
SSFI − ℎ𝑠)/2. (2-69) 

 

Ruffhead (2016) showed that for four local datums being transformed to WGS84, these 

approximations agreed closely with the conformal model.  The revised computations for this 

thesis, using the test points in Figure 2-4, show SMITSWAM approximations agree with the 

conformal model to within maximum differences of 0.0000166m in latitude, 0.0000001m in 

longitude, 0.0000065m in height and 0.0000179m in 3D distance.  The RMS of the 3D distance 

differences is 0.0000092m. 

 

Section 2.3 considered the possibility that ellipsoidal heights are either dummy values or poor 

estimates.  The equivalence of 3PC and SMITSWAM means that Table 2-1 applies to 

SMITSWAM.  This demonstrates that 𝜙𝑡  and 𝜆𝑡 from SMITSWAM are relatively insensitive 

to uncertainty about ℎ𝑠. 
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2.15  Variations on Standard Molodensky transformation 

The partially-conformal variation (PCV) on Standard Molodensky is a new method with up to 

7 parameters, not counting a or f.  It is applied to geodetic coordinates.  The full set of 

parameters consists of 

• translation parameters 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟 for use in the horizontal-shift equations 

(2-7) and (2-9); 

• rotation parameter 𝑅𝑍 for application to the longitude after the Standard Molodensky 

longitude formula; 

• translation parameters 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 for use in the vertical-shift equation (2-10). 

 

If all 7 parameters are used, the transformation formulae are 
   𝛥𝜙 = [−𝛥𝑋ℎ𝑜𝑟 sin 𝜙𝑠 cos 𝜆𝑠 − 𝛥𝑌ℎ𝑜𝑟 sin𝜙𝑠 sin 𝜆𝑠 

+𝛥𝑍ℎ𝑜𝑟 cos 𝜙𝑠 + 𝛥𝑎(𝜈𝑠𝑒𝑠
2 sin𝜙𝑠 cos𝜙𝑠]/𝑎𝑠 

+𝛥𝑓(𝜌𝑠𝑎𝑠/𝑏𝑠 + 𝜈𝑠𝑏𝑠/𝑎𝑠) sin𝜙𝑠 cos𝜙𝑠]/(𝜌𝑠 + ℎ𝑠). (2-70) 

           𝛥𝜆 = 𝑅𝑍 + 
−𝛥𝑋ℎ𝑜𝑟 sin 𝜆𝑠+𝛥𝑌ℎ𝑜𝑟 cos 𝜆𝑠

(𝜈𝑠+ℎ𝑠) cos𝜙𝑠
. (2-71) 

𝛥ℎ = 𝛥𝑋𝑣𝑒𝑟 cos 𝜙𝑠 cos 𝜆𝑠 + 𝛥𝑌𝑣𝑒𝑟 cos 𝜙𝑠 sin 𝜆𝑠 

         +𝛥𝑍𝑣𝑒𝑟 sin 𝜙𝑠 − 𝛥𝑎(𝑎𝑠/𝜈𝑠) + 𝛥𝑓(𝑏𝑠/𝑎𝑠)𝜈𝑠 sin2 𝜙𝑠. (2-72) 

 

The rationale behind this method is that 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝑅𝑍 are chosen to minimise the 

horizontal residual shifts and that 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 are chosen to minimise the vertical 

residual shifts.  How this is done is described in Section 4.15. 

 

A case study involving 44 points common to OSGB36 and WGS84 showed that the 

improvement in accuracy relative to Standard Molodensky can be as much as 69%. 

 

The transformation has the following properties: 

• Horizontally, it is as conformal as Standard Molodensky, which means it is near-

conformal horizontally. 

• The equations are linear with respect to the parameters, with no approximation of the 

Z-rotation. 

• The equations bypass Cartesian coordinates. 

• The equations involve no more computations than Standard Molodensky apart from 

the addition of the rotation parameter. 

 

There are two special cases of this generalised transformation: 
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• The 4-parameter transformation based on X, Y, Z and rotation 𝑅𝑍; the same 

translation parameters are either used in the horizontal & vertical equations or the 

vertical equation is not used. 

• The 6-parameter transformation based on 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 

with no rotation. 

 

The 7-parameter transformations in Sections 2.6 and 2.8 both included the special case of 4 

parameters consisting of 3 translations and a Z-rotation.  However, in both cases, the rotation 

was applied before the translations.  In addition, Bursa-Wolf applies the rotation 

approximately. 

 

2.16  Variations on Abridged Molodensky transformation 

The partially-conformal variation (PCV) on Abridged Molodensky is a new method with up 

to 7 parameters, not counting a or f.  It is applied to geodetic coordinates.  The full set of 

parameters consists of 

• translation parameters 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟 for use in the horizontal-shift equations 

(2-11) and (2-12); 

• rotation parameter 𝑅𝑍 for application to the longitude after the Abridged Molodensky 

longitude formula; 

• translation parameters 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 for use in the vertical-shift equation (2-13). 

 

If all 7 parameters are used, the transformation formulae are 
           𝛥𝜙 = [−𝛥𝑋ℎ𝑜𝑟 sin 𝜙𝑠 cos 𝜆𝑠 − 𝛥𝑌ℎ𝑜𝑟 sin 𝜙𝑠 sin 𝜆𝑠 

                         +𝛥𝑍ℎ𝑜𝑟 cos 𝜙𝑠 + (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎) sin 2𝜙𝑠]/𝜌𝑠. (2-73) 

           𝛥𝜆 = 𝑅𝑍 + 
−𝛥𝑋ℎ𝑜𝑟 sin 𝜆𝑠+𝛥𝑌ℎ𝑜𝑟 cos 𝜆𝑠

𝜈𝑠 cos𝜙𝑠
. (2-74) 

           𝛥ℎ = 𝛥𝑋𝑣𝑒𝑟 cos 𝜙𝑠 cos 𝜆𝑠 + 𝛥𝑌𝑣𝑒𝑟 cos 𝜙𝑠 sin 𝜆𝑠 

                    +𝛥𝑍𝑣𝑒𝑟 sin 𝜙𝑠 + (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎) sin2 𝜙𝑠 − 𝛥𝑎. (2-75) 

 

The rationale behind this method is that 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝑅𝑍 are chosen to minimise the 

horizontal residual shifts and that parameters 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 are chosen to minimise the 

vertical residual shifts.  How this is done is described in Section 4.16. 

 

A case study involving 44 points common to OSGB36 and WGS84 showed that the 

improvement in accuracy relative to Abridged Molodensky can be as much as 69%. 
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The transformation has the following properties: 

• Horizontally, it is as conformal as Abridged Molodensky, which means it is near-

conformal horizontally. 

• The equations are linear with respect to the parameters, with no approximation of the 

Z-rotation. 

• The equations bypass Cartesian coordinates. 

• The equations involve no more computations than Abridged Molodensky apart from 

the addition of the rotation parameter. 

 

There are two special cases of this generalised transformation: 

• The 4-parameter transformation based on X, Y, Z and rotation 𝑅𝑍; the same 

translation parameters are either used in the horizontal & vertical equations or the 

vertical equation is not used. 

• The 6-parameter transformation based on 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 

with no rotation. 

 

The 7-parameter transformations in Sections 2.6 and 2.8 both included the special case of 4 

parameters consisting of 3 translations and a Z-rotation.  However, in both cases, the rotation 

was applied before the translations.  In addition, Bursa-Wolf applies the rotation 

approximately. 

 

2.17  Fully-normalised multiple regression equations (5 types) 

Ruffhead (2018) noted the widespread practice of using a single scaling factor to obtain the 

intermediate coordinates U and V, even when the change in latitude between the area’s 

extremities in degrees differs from the change in longitude.  This means that either or both of 

U and V could vary outside the range -1 to 1. 

 

Some MREs have been chosen with an unnecessarily small scaling constant, resulting in 

coefficients that are unnecessarily large.  One example is the HDKS→HTRS96 transformation 

for Croatia in Varga et al (2017). The constant 3 is applied to the values in radians of the 

relative latitude and relative longitude.  The result is that U varies from -0.11815 to 0.09129 

and V varies from -0.15327 to 0.16089. 

 

This study favours full normalisation of multiple regression equations in the sense that the 

intermediate coordinates U and V are fully normalised in the region of interest.  In general, 
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this means that – when defining the intermediate coordinates – two scaling constants are used.  

This was recommended for the development of future MREs by Ruffhead (2018). 
            𝑈 = 𝐾1(𝜙in deg − 𝜙off); (2-76) 

            𝑉 = 𝐾2(𝜆in deg − 𝜆off). (2-77) 

 

This would permit true normalisation of U and V because the scaling constants could be defined 

to ensure that both intermediate coordinates span the range -1 to 1 in the region of interest, as 

illustrated in Figure 2-7.  That would provide a computational justification for deriving the 

coefficients in the polynomial formulae to the same number of decimal places, since all the 

monomials 𝑈𝑖𝑉𝑗 would: 

• span the range 0 to 1 when i and j are both even; 

• span the range -1 to 1 in all other cases. 
 

 
Figure 2-7: Axes for fully-normalised 
U and V based on the extremities of the 
region of interest. 

 

In the case of Croatia, noted above, the derivation of scaling factors would be as follows.  The 

latitude limits are approximately 42.5N and 46.5N, a latitude range of 2 either side of 

44.5N.  The longitude limits are approximately 013.5E and 019.5E, a longitude range of 3 

either side of 016.5E.  The natural choice of intermediate coordinates would therefore be 

            𝑈 = 0.5(𝜙in deg − 44.5) (2-78) 

            𝑉 = 0.333333(𝜆in deg − 16.5) (2-79) 

 

Fully-normalised multiple regression equations can take the form of linear combinations of 

monomials 𝑈𝑖𝑉𝑗 as in (2-59) and (2-60).  This is, in fact, one of five types described in this 

section.  The other four variations are completely new.  Three of them have the characteristic 

that some of the monomials are specific to a sub-region of the area shown in Figure 2-7.  That 

means they can be used more than once with different coefficients, and all three types can be 

created without discontinuities in the MREs or their partial derivatives. 
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The justification for regional variations is they allow more low-order monomials in the MREs 

and reduce the need for high-order MREs.  They represent a compromise between polynomials 

and spline functions, although the only “joins” occur along either or both of the axes shown in 

Figure 2-7. 

 

A further type of multiple regression equation uses Chebyshev polynomials as basis functions 

instead of monomials.  These are polynomials bounded by -1 and 1 over the interval [-1,1] but 

they oscillate between the limits in a similar fashion to trigonometric functions.  They are 

described and illustrated in Appendix F. 

 

In general, an ordinary MRE can be converted into a Chebyshev MRE and vice versa.  The 

Chebyshev MRE with all possible terms up to degree n that fits data in a least-squares sense 

should be equivalent to the ordinary MRE with all possible terms up to degree n that fits the 

same data.  However, the formulae will cease to be equivalent when terms deemed statistically 

insignificant are removed. 

 

The five types described below can be used in combinations.  The types used for the latitude 

shift and the longitude shift do not necessarily have to be the same. 

 

2.17.1 Ordinary multiple regression equations (Ord MREs) 

In this instance, the MREs of the normalised U and V can be expressed as follows: 
           𝛥𝜙(") = ∑ ∑ 𝑎𝑖,𝑗𝑈

𝑖𝑉𝑗𝑛
𝑗=0

𝑛
𝑖=0 ; (2-80) 

           𝛥𝜆(") = ∑ ∑ 𝑏𝑖,𝑗𝑈
𝑖𝑉𝑗𝑛

𝑗=0
𝑛
𝑖=0 . (2-81) 

In each case, there are theoretically (𝑛 + 1)2 terms, where n is the highest power of U or V.  

In practice, several of the coefficients are likely to be zero.  The reason for that is either the 

elimination of statistically insignificant terms or a decision to limit the number of high-order 

terms.  It could be a combination of both reasons. 
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Table 2-4: Maximum size of an ordinary multiple regression equation 
Maximum power of U and V Maximum number of terms 

1 4 
2 9 
3 16 
4 25 
5 36 
6 49 
7 64 
8 81 
9 100 

 

One consequence of (2-80), (2-81) and the inequality |𝑈𝑖𝑉𝑗| ⩽ 1 is that the L1 norm of 

coefficients provides an upper bound on the magnitude of the computed shift: 

                       |𝛥𝜙(′′)| ⩽ ∑ |𝑎𝑖,𝑗|; (2-82) 

                       |𝛥𝜆(′′)| ⩽ ∑ |𝑏𝑖,𝑗|. (2-83) 

In reality, these upper bounds should be treated with caution.  It will be shown in the case 

studies that the computed shifts from Ordinary MREs tend to be much smaller than the L1 

norms suggest. 

 

2.17.2 North/south multiple regression equations (N/S MREs) 

In this instance, the MREs of the normalised U and V can be expressed as follows: 
           𝛥𝜙(") = ∑ ∑ 𝑎𝑖,𝑗𝑈

𝑖𝑉𝑗𝑛
𝑗=0

1
𝑖=0 + ∑ ∑ 𝑎𝑖,𝑗,𝑁[𝑈

𝑖𝑉𝑗]𝑁
𝑛
𝑗=0

𝑛
𝑖=2 + ∑ ∑ 𝑎𝑖,𝑗,𝑆[𝑈

𝑖𝑉𝑗]𝑆
𝑛
𝑗=0

𝑛
𝑖=2 ; (2-84) 

           𝛥𝜆(") = ∑ ∑ 𝑏𝑖,𝑗𝑈
𝑖𝑉𝑗𝑛

𝑗=0
1
𝑖=0 + ∑ ∑ 𝑏𝑖,𝑗,𝑁[𝑈

𝑖𝑉𝑗]𝑁
𝑛
𝑗=0

𝑛
𝑖=2 +∑ ∑ 𝑏𝑖,𝑗,𝑆[𝑈

𝑖𝑉𝑗]𝑆
𝑛
𝑗=0

𝑛
𝑖=2 . (2-85) 

 

 
Figure 2-8: Monomials specific to north and 
south zones, for use in N/S MREs. 

 
The subscripts N and S used on the square-bracketed monomials indicate that they are only 

non-zero (respectively) north and south of the V-axis.  This is illustrated in Figure 2-8.  The 

zone-specific monomials are all divisible by 𝑈2, so their values and partial derivatives with 

respect to U are zero along the V-axis.  This ensures that both functions have C1 continuity. 
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In each case, there are theoretically 2n(n+1) terms, where n is the highest power of U or V.  As 

with Ord MREs, several of the coefficients are likely to be zero. 
 

Table 2-5: Maximum size of a north/south multiple regression equation 
Maximum power 

of U and V 
Maximum number of 
ordinary monomials 

Maximum number of 
zone-specific monomials 

Maximum number of 
terms 

2 6 6 12 
3 8 16 24 
4 10 30 40 
5 12 48 60 
6 14 70 84 

 

N/S MRE models can be assumed to be 1.1% faster than Ord MRE models.  This is because 

N/S models are wholly analogous to those discussed in the next subsection for which timed 

computations were carried out. 

 

2.17.3 East/west multiple regression equations (E/W MREs) 

In this instance, the MREs of the normalised U and V can be expressed as follows: 
           𝛥𝜙(") = ∑ ∑ 𝑎𝑖,𝑗𝑈

𝑖𝑉𝑗1
𝑗=0

𝑛
𝑖=0 + ∑ ∑ 𝑎𝑖,𝑗,𝐸[𝑈

𝑖𝑉𝑗]𝐸
𝑛
𝑗=2

𝑛
𝑖=0 + ∑ ∑ 𝑎𝑖,𝑗,𝑊[𝑈

𝑖𝑉𝑗]𝑊
𝑛
𝑗=2

𝑛
𝑖=0 ; (2-86) 

           𝛥𝜆(") = ∑ ∑ 𝑏𝑖,𝑗𝑈
𝑖𝑉𝑗1

𝑗=0
𝑛
𝑖=0 + ∑ ∑ 𝑏𝑖,𝑗,𝐸[𝑈

𝑖𝑉𝑗]𝐸
𝑛
𝑗=2

𝑛
𝑖=0 + ∑ ∑ 𝑏𝑖,𝑗,𝑊[𝑈

𝑖𝑉𝑗]𝑊
𝑛
𝑗=2

𝑛
𝑖=0 . (2-87) 

The subscripts E and W used on the square-bracketed monomials indicate that they are only 

non-zero (respectively) east and west of the U-axis.  This is illustrated in Figure 2-9.  The 

zone-specific monomials are all divisible by 𝑉2, so their values and partial derivatives with 

respect to V are zero along the U-axis.  This ensures that both functions have C1  continuity. 

 

Figure 2-9: Monomials 
specific to east and west 
zones, for use in E/W 
MREs. 

 

 

In each case, there are theoretically 2n(n+1) terms, where n is the highest power of U or V.  As 

with Ord MREs, several of the coefficients are likely to be zero. 

 



59 

Table 2-6: Maximum size of an east/west multiple regression equation 
Maximum power 

of U and V 
Maximum number of 
ordinary monomials 

Maximum number of zone-
specific monomials 

Maximum number of 
terms 

2 6 6 12 
3 8 16 24 
4 10 30 40 
5 12 48 60 
6 14 70 84 

 

Timed computations were carried out to compare E/W MREs models with Ord MREs with 

the same number of terms.  The former was 1.1% faster.  The E/W MREs’ overhead of 

selecting sector and formulae is more than offset by the fact that they use fewer terms than 

Ord MREs at any given point. 

 

2.17.4 Four-quadrant multiple regression equations (4Q MREs) 

In this instance, the MREs of the normalised U and V can be expressed as follows: 
𝛥𝜙(") = ∑ ∑ 𝑎𝑖,𝑗𝑈

𝑖𝑉𝑗𝑛
𝑗=0

1
𝑖=0 + ∑ ∑ 𝑎𝑖,𝑗𝑈

𝑖𝑉𝑗1
𝑗=0

𝑛
𝑖=2 +  

∑ ∑ 𝑎𝑖,𝑗,𝑁𝐸[𝑈
𝑖𝑉𝑗]𝑁𝐸

𝑛
𝑗=2

𝑛
𝑖=2 + ∑ ∑ 𝑎𝑖,𝑗,𝑆𝐸[𝑈

𝑖𝑉𝑗]𝑆𝐸
𝑛
𝑗=2

𝑛
𝑖=2 +

∑ ∑ 𝑎𝑖,𝑗,𝑆𝑊[𝑈
𝑖𝑉𝑗]𝑆𝑊

𝑛
𝑗=2

𝑛
𝑖=2 + ∑ ∑ 𝑎𝑖,𝑗,𝑁𝑊[𝑈

𝑖𝑉𝑗]𝑁𝑊
𝑛
𝑗=2

𝑛
𝑖=2  ; 

(2-88) 

𝛥𝜆(") = ∑ ∑ 𝑏𝑖,𝑗𝑈
𝑖𝑉𝑗𝑛

𝑗=0
1
𝑖=0 + ∑ ∑ 𝑏𝑖,𝑗𝑈

𝑖𝑉𝑗1
𝑗=0

𝑛
𝑖=2 +

∑ ∑ 𝑏𝑖,𝑗,𝑁𝐸[𝑈
𝑖𝑉𝑗]𝑁𝐸

𝑛
𝑗=2

𝑛
𝑖=2 + ∑ ∑ 𝑏𝑖,𝑗,𝑆𝐸[𝑈

𝑖𝑉𝑗]𝑆𝐸
𝑛
𝑗=2

𝑛
𝑖=2 +

∑ ∑ 𝑏𝑖,𝑗,𝑆𝑊[𝑈
𝑖𝑉𝑗]𝑆𝑊

𝑛
𝑗=2

𝑛
𝑖=2 + ∑ ∑ 𝑏𝑖,𝑗,𝑁𝑊[𝑈

𝑖𝑉𝑗]𝑁𝑊
𝑛
𝑗=2

𝑛
𝑖=2 . 

(2-89) 

 

The subscripts NE, SE, SE and NW used on the square-bracketed monomials indicate the 

quadrants in which they are non-zero.  This is illustrated in Figure 2-10.  The quadrant-specific 

monomials are all divisible by 𝑈2𝑉2, so their values and partial derivatives are zero along 

each axis.  This ensures that both functions have C1 continuity. 

 

 
Figure 2-10: Monomials specific to quadrants, 
for use in 4Q MREs. 
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In each case, there are theoretically 4(𝑛2 − 𝑛 + 1) terms, where n is the highest power of U 

or V.  As with Ord MREs, several of the coefficients are likely to be zero. 

 

Table 2-7: Maximum size of a four-quadrant multiple regression equation 
Maximum power 

of U and V 
Maximum number of 
ordinary monomials 

Maximum number of 
quadrant-specific monomials 

Maximum number 
of terms 

2 8 4 12 
3 12 16 28 
4 16 36 52 
5 20 64 84 

 

Timed computations were carried out to compare 4Q MREs models with Ord MREs with the 

same number of terms.  The former was 3.5% faster.  The 4Q MREs’ overhead of selecting 

quadrant and formulae is more than offset by the fact that they use fewer terms than Ord MREs 

at any given point. 

 

2.17.5 Chebyshev multiple regression equations (Cheb MREs) 

In this instance, the MREs of the normalised U and V can be expressed as follows: 
           𝛥𝜙(") = ∑ ∑ 𝑎𝑖,𝑗𝑇𝑖(𝑈)𝑇𝑗(𝑉)

𝑛
𝑗=0

𝑛
𝑖=0 ; (2-90) 

           𝛥𝜆(") = ∑ ∑ 𝑏𝑖,𝑗𝑇𝑖(𝑈)𝑇𝑗(𝑉)
𝑛
𝑗=0

𝑛
𝑖=0 . (2-91) 

The terms 𝑇𝑖(𝑥) are Chebyshev polynomials of degree i, and are defined in Appendix F.  In 

each of the above equations, there are theoretically (𝑛 + 1)2 terms, where n is the highest 

power of U or V (and also the highest degree of the Chebyshev polynomials).   In practice, 

several of the coefficients are likely to be zero.  That could be the result of terms being 

eliminated as statistically insignificant, or it could be the result of a decision to limit the 

number of high-order terms.  It could be a combination of both reasons. 

 

Table 2-8: Maximum size of a Chebyshev multiple regression equation 
 
 

 
 
 

 

 

Computational tests on Cheb MREs showed that they take up about 2.5 times the processing 

times of Ord MREs with the same number of terms.  This is because generating Chebyshev 

polynomials involves more arithmetic than generating monomials. 

Maximum power of U and V Maximum number of terms 
1 4 
2 9 
3 16 
4 25 
5 36 
6 49 
7 64 
8 81 
9 100 
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One consequence of (2-90), (2-91) and the inequality |𝑇𝑖(𝑈)𝑇𝑗(𝑈)| ⩽ 1 is that the L1 norm of 

coefficients provides an upper bound on the magnitude of the computed shift: 

                       |𝛥𝜙(′′)| ⩽ ∑ |𝑎𝑖,𝑗|; (2-92) 

                       |𝛥𝜆(′′)| ⩽ ∑ |𝑏𝑖,𝑗|. (2-93) 

This means that a shift computed from an ordinary MRE will have its magnitude bounded by 

the L1 norm of the coefficients of the equivalent Chebyshev MRE.  The case studies will show 

this is generally much lower that the L1 norm of the coefficients of the ordinary MRE. 
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CHAPTER 3: REVERSE TRANSFORMATIONS 

 

This chapter considers the reversibility of different methods.  A transformation from one 

geodetic datum to another is usually an approximate model which does not fit points known 

in both systems exactly.  A reverse (or inverse) transformation will – at best – be equally 

inaccurate.  The best that can be achieved is total consistency between the forward and reverse 

transformations, in the sense that one followed by the other will result in the original 

coordinates with no misclosure. 

 

Iliffe and Lott (2008) also discusses whether various transformations are reversible.  However, 

their yardstick for reversibility is whether “the same formula can be used for converting from 

system A to system B and from B to A, but with some or all of the transformation applied with 

the opposite sign” (page 133).  The yardstick used in this chapter is whether there exists a 

reverse formula which is computationally accurate relative to the forward method. 

 

For the purpose of this chapter, a reverse transformation is exact if it is totally consistent with 

the forward method, and approximate if it is not.  In other words, the accuracy being described 

is accuracy relative to the forward transformation. 

 

One type of inverse is a same-formula inverse (SFI) where the same formula is applied to 

compute the inverse but with different parameters.  It is not always possible to find parameters 

that give an exact result.  Sometimes a reverse transformation can be obtained – usually with 

approximate results – by applying the original formula(e) with the signs of the original 

parameters reversed.  This study follows Ruffhead and Whiting (2020) in designating that as 

a simple same-formula inverse (SSFI). 

 

In several cases, the reverse transformation is expressed as a rearrangement-type formula.  

This uses the very basic principle that if 𝑦 = 𝑓(𝑔(𝑥)) and f & 𝑔 are invertible then 𝑥 =

𝑔−1(𝑓−1(𝑦)).  This applies to relationships between scalar quantities, relationships between 

vectors and relationships between matrices. 

 

In this chapter, the subscripts s and t are used to indicate the source datum and target datum of 

the original transformation.  In the context of inverse transformations, coordinates with 

subscript t are mapped into coordinates with subscript s. 
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3.1  Conformal transformation in 2 dimensions 

The reverse transformation (𝑥𝑡, 𝑦𝑡) → (𝑥𝑠, 𝑦𝑠) can be obtained exactly by rearranging equation 

(2-1) with a reversal of the rotation: 

           [
𝑥𝑠
𝑦𝑠
] = 

1

𝑆
 [ cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

] [
𝑥𝑡 − 𝛥𝑥
𝑦𝑡 − 𝛥𝑦

] (3-1) 

An equivalent form can be found by rearranging equation (2-2) and applying the inverse 

matrix: 

           [
𝑥𝑠
𝑦𝑠
] = 

1

𝑎1
2+𝑎2

2 [
𝑎1 𝑎2
−𝑎2 𝑎1

] [
𝑥𝑡 − 𝛥𝑥
𝑦𝑡 − 𝛥𝑦

] (3-2) 

 

If the coordinate-frame rotation convention of Figure 2-2 is used instead of the position-vector 

convention of Figure 2-1, then each of the square matrices in equations (3-1) and (3-2)) is 

replaced by its transpose. 

 

3.2  Affine transformation in 2 dimensions 

The reverse transformation (𝑥𝑡, 𝑦𝑡) → (𝑥𝑠, 𝑦𝑠) can be obtained exactly by rearranging equation 

(2-4) and applying the inverse matrix: 

           [
𝑥𝑠
𝑦𝑠
] =  

1

𝑎1𝑎4−𝑎2𝑎3
 [
𝑎4 −𝑎2
−𝑎3 𝑎1

] [
𝑥𝑡 − 𝛥𝑥
𝑦𝑡 − 𝛥𝑦

]. (3-3) 

 

3.3 Rigorous 3-parameter conformal transformation  

The inverse transformation simply requires X, Y and Z to be of opposite sign to their values 

for the forward transformation.  Alternatively, the original parameters can be subtracted: 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

𝑋𝑡
𝑌𝑡
𝑍𝑡

] − [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] (3-4) 

 

3.4  Standard Molodensky transformation 

Because this is an approximate version of the conformal 3-parameter transformation, negating 

the values of X, Y, Z, a and f will not perform the reverse transformation exactly.  The 

reason is that the forward shifts in (2-7), (2-9) and (2-10) depend on the quantities 𝜙𝑠, 𝜆𝑠 and 

ℎ𝑠 which are not known when the start coordinates are in the “target” datum.  The test 

computations for this thesis established that if the forward transformation is applied to the 

results thus obtained, the misclosures can be as large as -54 mm in latitude, -93 mm in longitude 

-32 mm in height, and 100 mm in 3D.   However, there is a process (with some similarities to 

SMITSWAM) that is exact for all practical purposes.  Its provisional name is “Inverse 

Standard Molodensky Via Applied Misclosure” (ISMVAM). 
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Firstly, the SSFI Standard Molodensky transformation is applied, which means that the 

original X, Y, Z, a and f are replaced by their negatives.  The quantities a, b,  and  will, 

of course, be computed in terms of the target datum rather than the source datum.  (If the 

ellipsoidal heights are unknown, dummy height values, eg zeroes, should be used for this stage.)  

In terms of notation, the process is described in (3-5). 
           (𝜙𝑡 , 𝜆𝑡 , ℎ𝑡) → (𝜙𝑠

SSFI, 𝜆𝑠
SSFI, ℎ𝑠

SSFI). (3-5) 

Standard Molodensky is then applied to the result. 
           (𝜙𝑠SSFI, 𝜆𝑠SSFI, ℎ𝑠SSFI) → (𝜙𝑡

SM, 𝜆𝑡
SM, ℎ𝑡

SM). (3-6) 

The new approximation to the inversely-transformed position is obtained by subtracting the 

misclosure from the first approximation: 

           𝜙𝑠ISMVAM = 𝜙𝑠
SSFI − (𝜙𝑡

SM − 𝜙𝑡). (3-7) 

           𝜆𝑠ISMVAM = 𝜆𝑠SSFI − (𝜆𝑡SM − 𝜆𝑡). (3-8) 

           ℎ𝑠ISMVAM = ℎ𝑠SSFI − (ℎ𝑡SM − ℎ𝑡). (3-9) 

Further computation is unnecessary.  This conclusion is based on the computations for this 

thesis using the sets of points in Figure 2-4; see Table 3-1.  Applying Standard Molodensky 

to the corrected approximation produces WGS84 coordinates less than 0.000011m from the 

originals.  The 3D distances between coordinates are less than 0.000012m.    ISMVAM should 

therefore be seen as a corrective process rather than an iterative one.  One interesting property 

is that ISMVAM produces the same errors as the SSFI Standard Molodensky (relative to the 

conformal 3P transformation) but with opposite sign.      

 

An alternative description of the process is as follows: 

• Apply SSFI Standard Molodensky to the “target” coordinates to obtain the first 

estimate of the “source” coordinates. 

• Apply forward Standard Molodensky to the first estimate to check its accuracy. 

• Set the misclosure to the “check” coordinates minus the original coordinates. 

• Subtract the misclosure from the first estimate to obtain a corrected estimate. 

 

Table 3-1: Accuracy of Inverse Standard Molodensky Process Via Applied Misclosure 
(measured by misclosure after forward Standard Molodensky is applied to corrected 

estimate) 
 Largest 3D 

misclosure 
Largest latitude 

misclosure 
Largest longitude 

misclosure 
Largest height 

misclosure 
OSGB36  WGS84 0.0025mm -0.0014mm -0.0023mm -0.0004mm 
AGD84  WGS84 0.0002mm -0.0002mm -0.0002mm -0.0000mm 
Arc 1950 (Zaire)  WGS84 0.0041mm -0.0035mm -0.0001mm -0.0025mm 
Indian Datum  WGS84 0.0118mm -0.0049mm -0.0105mm -0.0053mm 
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3.5 Abridged Molodensky transformation 

Because this is an approximate version of the conformal 3-parameter transformation, negating 

the values of X, Y, Z, a and f will not perform the reverse transformation exactly.  The 

reason is that the forward shifts in (2-11), (2--12) and (2-13) depend on the quantities 𝜙𝑠, 𝜆𝑠 

and ℎ𝑠 which are not known when the start coordinates are in the “target” datum.    The test 

computations for this thesis established that if the forward transformation is applied to the 

results thus obtained, the misclosures can be as large as -56 mm in latitude, -96 mm in longitude 

-33 mm in height, and 104 mm in 3D.  However, there is a process (with some similarities to 

SMITSWAM) that is exact for all practical purposes. Its provisional name is “Inverse 

Abridged Molodensky Via Applied Misclosure” (IAMVAM). 

 

Firstly, the SSFI Abridged Molodensky transformation is applied, which means that the 

original X, Y, Z, a and f are replaced by their negatives.  The quantities a, b,  and  will, 

of course, be computed in terms of the target datum rather than the source datum. (If the 

ellipsoidal heights are unknown, dummy height values, eg zeroes, should be used for this stage.)  

In terms of notation, the process is described in (3-10). 
           (𝜙𝑡 , 𝜆𝑡 , ℎ𝑡) → (𝜙𝑠

SSFI, 𝜆𝑠
SSFI, ℎ𝑠

SSFI). (3-10) 

Applied Molodensky is then applied to the result. 
           (𝜙𝑠SSFI, 𝜆𝑠SSFI, ℎ𝑠SSFI) → (𝜙𝑡

AM, 𝜆𝑡
AM, ℎ𝑡

AM). (3-11) 

The new approximation to the inversely-transformed position is obtained by subtracting the 

misclosure from the first approximation: 
           𝜙𝑠IAMVAM = 𝜙𝑠

SSFI − (𝜙𝑡
AM − 𝜙𝑡). (3-12) 

           𝜆𝑠IAMVAM = 𝜆𝑠SSFI − (𝜆𝑡AM − 𝜆𝑡). (3-13) 

           ℎ𝑠IAMVAM = ℎ𝑠SSFI − (ℎ𝑡AM − ℎ𝑡). (3-14) 

Further computation is unnecessary.  This conclusion is based on the computations for this 

thesis using the sets of points in Figure 2-4; see Table 3-2.  Applying Abridged Molodensky 

to the corrected approximation produces WGS84 coordinates less than 0.000013m from the 

originals.  The 3D distances between coordinates are less than 0.000014m.    IAMVAM should 

therefore be seen as a corrective process rather than an iterative one. 

 

An alternative description of the process is as follows: 

• Apply SSFI Abridged Molodensky to the “target” coordinates to obtain the first 

estimate of the “source” coordinates. 

• Apply forward Abridged Molodensky to the first estimate to check its accuracy. 

• Set the misclosure to the “check” coordinates minus the original coordinates. 
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• Subtract the misclosure from the first estimate to obtain a corrected estimate. 

 
Table 3-2: Accuracy of Inverse Abridged Molodensky Process Via Applied Misclosure 

(measured by misclosure after forward Abridged Molodensky is applied to corrected 
estimate) 

 Largest 3D 
misclosure 

Largest latitude 
misclosure 

Largest longitude 
misclosure 

Largest height 
misclosure 

OSGB36  WGS84 0.0026mm -0.0014mm -0.0023mm -0.0004mm 
AGD84  WGS84 0.0001mm 0.0000mm -0.0001mm -0.0000mm 
Arc 1950 (Zaire)  WGS84 0.0054mm -0.0046mm 0.0001mm -0.0028mm 
Indian Datum  WGS84 0.0140mm -0.0052mm -0.0128mm -0.0054mm 

 

3.6  Rigorous 7-parameter conformal transformation 

For the Helmert transformation, only the most general case of 7 parameters needs to be 

considered.  The special cases noted in Section 2.6 involve 4, 5 or 6 parameters, which is 

equivalent to saying that up to 3 of the usual 7 parameters are zero.  Such a possibility does 

not affect the reverse transformation process. 

 

The reverse transformation (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) → (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) can be obtained exactly by rearranging 

(2-14): 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = 
1

(1+𝛥𝑆)
 𝐑−1 [

𝑋𝑡 − 𝛥𝑋
𝑌𝑡 − 𝛥𝑌
𝑍𝑡 − 𝛥𝑍

] (3-15) 

where R is given by either (2-16) or (2-18).   

 

Aktuğ (2009, page 48) acknowledges that a matrix formula equivalent to equation (3-15) can 

be used to compute the reverse transformation.  He uses it to derive SFI parameters, that is, 

parameters that can be used in the basic transformation formula to achieve the inverse.   

However, it is simpler – and therefore preferable – to turn (3-15) into an implementable form. 

 

The inverse of R is its transpose.  If R is given by (2-15) and (2-16), then its inverse is given 

by 

           𝐑𝑍𝑌𝑋−1 = [

𝑐𝑌𝑐𝑍 𝑐𝑌𝑠𝑍 −𝑠𝑌
𝑠𝑋𝑠𝑌𝑐𝑍 − 𝑐𝑋𝑠𝑍 𝑐𝑋𝑐𝑍 + 𝑠𝑋𝑠𝑌𝑠𝑍 𝑠𝑋𝑐𝑌
𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 − 𝑠𝑋𝑐𝑍 𝑐𝑋𝑐𝑌

]. (3-16) 

If R is given by (2-17) and (2-18), then its inverse is given by 

           𝐑𝑋𝑌𝑍−1 = [

𝑐𝑌𝑐𝑍 𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍 𝑠𝑋𝑠𝑍 − 𝑐𝑋𝑠𝑌𝑐𝑍
−𝑐𝑌𝑠𝑍 𝑐𝑋𝑐𝑍 − 𝑠𝑋𝑠𝑌𝑠𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍
𝑠𝑌 −𝑠𝑋𝑐𝑌 𝑐𝑋𝑐𝑌

]. (3-17) 

Reit (1998, page 404) has a formula similar to equation (3-15), but only applies it to the case 

where 𝐑 = 𝐑𝑍𝑌𝑋. 
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If the coordinate-frame rotation convention of Figure 2-6 is used instead of the position-vector 

convention of Figure 2-5, then each sine term in equations (3-16) and (3-17) needs a change 

of sign. 

 

Grgić et al (2016) considered the possibility of using the Helmert transformation in reverse.  

They noted, quite correctly, that the parameters would be slightly different in magnitude from 

the forward parameters, so that merely changing the signs would not be enough.  Their method 

of deriving the reverse parameters requires a second least-squares optimisation, and their 

results are not computationally exact relative to the forward transformation. 

 

Although equation (3-15) provides a simple and exact method of computing the reverse 

transformation, it is possible to obtain reverse parameters that enable the Helmert formula to 

be applied in the other direction (target to source coordinates).  In other words, given forward 

parameters X, Y, Z, S, 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍, there are corresponding same-formula inverse 

parameters 𝛥𝑋SFI, 𝛥𝑌SFI, 𝛥𝑍SFI, 𝑆SFI, 𝑅𝑋SFI, 𝑅𝑌SFI and 𝑅𝑍SFI which make the Helmert formula 

exact relative to the forward transformation.  The proof, which has already appeared in Ruffhead 

(2021b), is given in subsections 3.6.1 and 3.6.2 below. 

 

3.6.1  Same-formula inverse parameters for Version 1 of Helmert 

From (3-15) and the fact that R is orthogonal, 

             [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = 
1

(1+𝛥𝑆)
 𝐑T [

−𝛥𝑋
−𝛥𝑌
−𝛥𝑍

] + 
1

(1+𝛥𝑆)
 𝐑T [

𝑋𝑡
𝑌𝑡
𝑍𝑡

] (3-18) 

 

The algorithm in Section 2.6.1 is used to compute the equivalent Version-2 rotations 𝑅𝑋′ , 𝑅𝑌′  

and 𝑅𝑍′ , and the corresponding trigonometric ratios 𝑐𝑋′ , 𝑠𝑋′ , etc. 

           𝐑T = {[
𝑐𝑍 −𝑠𝑍 0
𝑠𝑍 𝑐𝑍 0
0 0 1

] [
𝑐𝑌 0 𝑠𝑌
0 1 0
−𝑠𝑌 0 𝑐𝑌

] [
1 0 0
0 𝑐𝑋 −𝑠𝑋
0 𝑠𝑋 𝑐𝑋

]}

T

 

                 = {[
1 0 0
0 𝑐𝑋′ −𝑠𝑋′

0 𝑠𝑋′ 𝑐𝑋′
] [
𝑐𝑌′ 0 𝑠𝑌′

0 1 0
−𝑠𝑌′ 0 𝑐𝑌′

] [
𝑐𝑍′ −𝑠𝑍′ 0

𝑠𝑍′ 𝑐𝑍′ 0
0 0 1

]}

T

 

                  = [
𝑐𝑍′ 𝑠𝑍′ 0

−𝑠𝑍′ 𝑐𝑍′ 0
0 0 1

] [
𝑐𝑌′ 0 −𝑠𝑌′

0 1 0
𝑠𝑌′ 0 𝑐𝑌′

] [
1 0 0
0 𝑐𝑋′ 𝑠𝑋′

0 −𝑠𝑋′ 𝑐𝑋′
]. 

Since 𝑠𝑋′  = −sin( − 𝑅𝑋
′ ) and –𝑠𝑋′  = sin( − 𝑅𝑋

′ ), etc, it follows that 
           𝑅𝑋SFI = −𝑅𝑋′ ,  𝑅𝑌

SFI = −𝑅𝑌
′ ,  𝑅𝑍

SFI = −𝑅𝑍
′ . (3-19) 

From (3-18), 
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           𝑆SFI = 
1

1+𝛥𝑆
 = 1 + 

(−𝛥𝑆)

1+𝛥𝑆
 (3-20) 

and 

           [
𝛥𝑋SFI

𝛥𝑌SFI

𝛥𝑍SFI
] = 

1

(1+𝛥𝑆)
 𝐑T [

−𝛥𝑋
−𝛥𝑌
−𝛥𝑍

] (3-21) 

which can be expressed as 

           [
𝛥𝑋SFI

𝛥𝑌SFI

𝛥𝑍SFI
]= 

1

(1+𝛥𝑆)
 [

𝑐𝑌𝑐𝑍 𝑐𝑌𝑠𝑍 −𝑠𝑌
𝑠𝑋𝑠𝑌𝑐𝑍 − 𝑐𝑋𝑠𝑍 𝑐𝑋𝑐𝑍 + 𝑠𝑋𝑠𝑌𝑠𝑍 𝑠𝑋𝑐𝑌
𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 − 𝑠𝑋𝑐𝑍 𝑐𝑋𝑐𝑌

] [
−𝛥𝑋
−𝛥𝑌
−𝛥𝑍

]. (3-22) 

This completes the computation of the SFI parameters for Version 1. 

 

Aktuğ (2009, page 48) describes a derivation of the inverse datum transformation, but claims 

that “the scale and the rotation parameters will be the same as the direct transformation 

parameters with opposite signs”.  He is mistaken on both counts.  Equation (3-20) disproves 

his conclusion about scale change, and his consideration of rotations makes no allowance for 

the order in which they are applied. 

 

If the software for 3D conformal transformations in position-fixing devices is based solely on 

the basic formula Helmert Version 1, the SFI parameters can be fed into the stored data for 

reverse transformations.  In particular, parameters for WGS84 to local datums can be derived 

once-and-for-all from the parameters for local datums to WGS84, and then used in the same 

way. 

 

The method of deriving same-inverse parameters for Version 1 of Helmert can be extended to 

applications in geomatics where rotations are not necessarily numerically smaller than 90º.  The 

starting point is any set of Version-2 rotations 𝑅𝑋′ , 𝑅𝑌′  and 𝑅𝑍′  which generate the same rotation 

matrix (without regard for whether or not they are unique).  Table 2-2 covers the exceptional 

cases for which the main algorithm in subsection 2.6.1 doesn’t work.  Formulae (3-19) to (3-22) 

retain their validity in all such cases. 

 

3.6.2  Same-formula inverse parameters for Version 2 of Helmert 

Equation (3-15) applies in this case also. 

 

The algorithm in Section 2.6.2 is used to compute the equivalent Version-1 rotations 𝑅𝑋′ , 𝑅𝑌′  

and 𝑅𝑍′ , and the corresponding trigonometric ratios 𝑐𝑋′ , 𝑠𝑋′ , etc.  The SFI parameters can be 

obtained from equations (3-19), (3-20) and (3-21), the proofs being entirely analogous to those 

given in Section 3.6.1.  The only difference is that the expanded version of (3-21) is 
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             [
𝛥𝑋SFI

𝛥𝑌SFI

𝛥𝑍SFI
] = 

1

(1+𝛥𝑆)
 [
𝑐𝑌𝑐𝑍 𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍 𝑠𝑋𝑠𝑍 − 𝑐𝑋𝑠𝑌𝑐𝑍
−𝑐𝑌𝑠𝑍 𝑐𝑋𝑐𝑍 − 𝑠𝑋𝑠𝑌𝑠𝑍 𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍
𝑠𝑌 −𝑠𝑋𝑐𝑌 𝑐𝑋𝑐𝑌

] [
−𝛥𝑋
−𝛥𝑌
−𝛥𝑍

]. (3-23) 

This completes the computation of the SFI parameters for Helmert Version 2. 

 

If the software for 3D conformal transformations in position-fixing devices is based solely on 

the basic formula Helmert Version 2, the SFI parameters can be fed into the stored data for 

reverse transformations.  In particular, parameters for WGS84 to local datums can be derived 

once-and-for-all from the parameters for local datums to WGS84, and then used in the same 

way. 

 

The method of deriving same-inverse parameters for Version 2 of Helmert can be extended to 

applications in geomatics where rotations are not necessarily numerically smaller than 90º.  The 

starting point is any set of Version-1 rotations 𝑅𝑋′ , 𝑅𝑌′  and 𝑅𝑍′  which generate the same rotation 

matrix (without regard for whether or not they are unique).  Table 2-3 covers the exceptional 

cases for which the main algorithm in subsection 2.6.2 doesn’t work.  Formulae (3-19) to (3-21) 

and (3-23) retain their validity in all such cases. 

 

3.7  Rigorous localised 7-parameter conformal transformation 

Only the most general case of 7 parameters needs to be considered.  The special cases noted 

in Section 2.7 involve 4, 5 or 6 parameters, which is equivalent to saying that up to 3 of the 

usual 7 parameters are zero.  Such a possibility that does not affect the reverse transformation 

process. 

 

The reverse transformation (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) → (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) can be obtained exactly by rearranging 

(2-39): 

             [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

𝑋𝑚
𝑌𝑚
𝑍𝑚

] + 
1

(1+𝛥𝑆)
 𝐑−1 [

𝑋𝑡 − 𝑋𝑚 − 𝛥𝑋
𝑌𝑡 − 𝑌𝑚 − 𝛥𝑌
𝑍𝑡 − 𝑍𝑚 − 𝛥𝑍

] (3-24) 

where R is given by either (2-16) or (2-18).  In each case, the inverse of R is its transpose, 

given by (3-16) or (3-17). 

 

When the transformation involves local level coordinates, the process of obtaining 𝑋𝑠′ , 𝑌𝑠′ and 

𝑍𝑠
′  from 𝑋𝑡′ , 𝑌𝑡′ and 𝑍𝑡′   is wholly analogous to the reverse-transformation process of Helmert.  

This covers what is described in Rapp (1993) and Leick (1995) as the Veis transformation.  

(See subsection 1.4.4 and Section 2.7.) 
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It should be noted that the inverse datum transformation cannot be based on the assumption 

that “the scale and the rotation parameters will be the same as the direct transformation 

parameters with opposite signs”.  This quote from Aktuğ (2009, page 48) was disproved in 

Section 3.6 in relation to Helmert, and the same reasons apply here. 

  

3.8  Bursa-Wolf 

For the fully-linear version of Bursa Wolf, the reverse transformation (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) →

(𝑋𝑠, 𝑌𝑠, 𝑍𝑠) can be obtained exactly by rearranging (2-40): 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

1 + 𝛥𝑆 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 + 𝛥𝑆 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1 + 𝛥𝑆

]

−1

[

𝑋𝑡 − 𝛥𝑋
𝑌𝑡 − 𝛥𝑌
𝑍𝑠 − 𝛥𝑍

]. (3-25) 

 

Aktuğ (2009, page 48) acknowledges that a matrix formula equivalent to equation (3-25) can 

be used to compute the reverse transformation.  He uses it to derive SFI parameters, that is, 

parameters that can be used in the basic transformation formula to achieve the inverse.  

However, it is simpler – and therefore preferable – to apply equation (3-25) itself as the reverse 

formula.  The exact inverse matrix can be computed from Cramer’s Rule, using the 

substitution 𝑆 = 1 + 𝛥𝑆. 

           [
𝑆 −𝑅𝑍 𝑅𝑌
𝑅𝑍 𝑆 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 𝑆

]

−1

= 
1

𝐷
 [

𝑆2 + 𝑅𝑋
2 𝑅𝑋𝑅𝑌 + 𝑅𝑍𝑆 𝑅𝑋𝑅𝑍 − 𝑅𝑌𝑆

𝑅𝑋𝑅𝑌 − 𝑅𝑍𝑆 𝑆2 + 𝑅𝑌
2 𝑅𝑌𝑅𝑍 + 𝑅𝑋𝑆

𝑅𝑋𝑅𝑍 + 𝑅𝑌𝑆 𝑅𝑌𝑅𝑍 − 𝑅𝑋𝑆 𝑆2 + 𝑅𝑍
2

] (3-26) 

where the determinant D is given by 
           𝐷 = 𝑆3 + (𝑅𝑋

2 + 𝑅𝑌
2 + 𝑅𝑍

2)𝑆. (3-27) 

 

If the coordinate-frame rotation convention of Figure 2-6 is used instead of the position-vector 

convention of Figure 2-5, then each rotation in equations (3-25) and (3-26) needs a change of 

sign. 

 

For the partially-linear version of Bursa-Wolf, the reverse transformation (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) →

(𝑋𝑠, 𝑌𝑠, 𝑍𝑠) can be obtained exactly by rearranging (2-42): 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = 
1

1+𝛥𝑆
 [
1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

]

−1

[

𝑋𝑡 − 𝛥𝑋
𝑌𝑡 − 𝛥𝑌
𝑍𝑠 − 𝛥𝑍

]. (3-28) 

The exact inverse matrix can be found by Cramer’s Rule: 

           [
1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

]

−1

= 
1

𝐷
 [

1 + 𝑅𝑋
2 𝑅𝑋𝑅𝑌 + 𝑅𝑍 𝑅𝑋𝑅𝑍 − 𝑅𝑌

𝑅𝑋𝑅𝑌 − 𝑅𝑍 1 + 𝑅𝑌
2 𝑅𝑌𝑅𝑍 + 𝑅𝑋

𝑅𝑋𝑅𝑍 + 𝑅𝑌 𝑅𝑌𝑅𝑍 − 𝑅𝑋 1 + 𝑅𝑍
2

] (3-29) 

where the determinant D is given by 
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           𝐷 = 1 + 𝑅𝑋
2 + 𝑅𝑌

2 + 𝑅𝑍
2. (3-30) 

 

3.9  Molodensky-Badekas 

The exact reversibility of Molodensky-Badekas is not widely acknowledged.  Knippers (2009) 

actually states that it “is not reversible”.  Taking Molodensky-Badekas in its linear form, the 

reverse transformation (𝑋𝑡, 𝑌𝑡 , 𝑍𝑡) → (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) can be obtained exactly by rearranging (2-

44): 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

𝑋𝑚
𝑌𝑚
𝑋𝑚

] + [

1 + 𝛥𝑆 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 + 𝛥𝑆 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1 + 𝛥𝑆

]

−1

[

𝑋𝑡 − 𝑋𝑚 − 𝛥𝑋
𝑌𝑡 − 𝑌𝑚 − 𝛥𝑌
𝑍𝑡 − 𝑋𝑚 − 𝛥𝑍

] (3-31) 

Substituting S for 1+ΔS, the exact inverse matrix is given by (3-26) using the determinant in 

(3-27). 
 

If the coordinate-frame rotation convention of Figure 2-6 is used instead of the position-vector 

convention of Figure 2-5, then each rotation in equation (3-31) needs a change of sign. 
 

For the partially-linear version of Molodensky-Badekas, the reverse transformation 

(𝑋𝑡, 𝑌𝑡, 𝑍𝑡) → (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) can be obtained exactly by rearranging (2-47): 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

𝑋𝑚
𝑌𝑚
𝑋𝑚

] + 
1

1+𝛥𝑆
 [
1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

]

−1

[

𝑋𝑡 − 𝑋𝑚 − 𝛥𝑋
𝑌𝑡 − 𝑌𝑚 − 𝛥𝑌
𝑍𝑠 − 𝑍𝑚 − 𝛥𝑍

]. (3-32) 

The exact inverse matrix is given by (3-29) using the determinant in (3-30). 
 

3.10  8-parameter affine transformation 

As noted in Section 2.10, (X, Y, Z) are ENU coordinates in a local level system.  The reverse 

transformation (𝑋𝑡′, 𝑌𝑡′, 𝑍𝑡′) → (𝑋𝑠′, 𝑌𝑠′, 𝑍𝑠′) can be obtained exactly by rearranging (2-53): 

           [
𝑋𝑠
′

𝑌𝑠
′

𝑍𝑠
′

] = [

1/𝑆ℎ 0 0
0 1/𝑆ℎ 0
0 0 1/𝑆𝑣

] 𝐑−1 [

𝑋𝑡
′ − 𝛥𝑋′

𝑌𝑡
′ − 𝛥𝑌′

𝑍𝑡
′ − 𝛥𝑍′

] (3-33) 

where R is analogous to (2-15) or (2-17).  In this case, the inverse of R is its transpose, as it is 

the product of rotation matrices. 
 

3.11  9-parameter affine transformation 

The reverse transformation (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) → (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) depends on whether the forward 

transformation is of type “SR” or “RS”. 

 

The reverse transformation of the “SR” version can be obtained exactly by rearranging (2-54): 
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           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = 𝐑−1 [

(𝑋𝑡 − 𝛥𝑋)/𝑆𝑋
(𝑌𝑡 − 𝛥𝑌)/𝑆𝑌
(𝑍𝑡 − 𝛥𝑍)/𝑆𝑍

]. (3-34) 

 

The reverse transformation of “RS” version can be obtained by rearranging (2-55): 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

1/𝑆𝑋 0 0
0 1/𝑆𝑌 0
0 0 1/𝑆𝑍

] 𝐑−1 [

𝑋𝑡 − 𝛥𝑋
𝑌𝑡 − 𝛥𝑌
𝑍𝑡 − 𝛥𝑍

]. (3-35) 

 

The inverse of R depends on whether R is a rigorous or linearised rotation matrix.  If it is a 

rigorous rotation matrix, as in Section 2.7, the inverse is the transpose of R.  If R is the 

linearised rotation matrix used in equation (2-47), then its inverse is given by (3-29) and (3-

30). 

 

3.12  12-parameter affine transformation 

The reverse transformation (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) → (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) can be obtained exactly by rearranging 

(2-57): 

           [
𝑋𝑠
𝑌𝑠
𝑍𝑠

] = [

𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 𝑎9

]

−1

[

𝑋𝑡 − 𝛥𝑋
𝑌𝑡 − 𝛥𝑌
𝑍𝑡 − 𝛥𝑍

] (3-36) 

The exact inverse matrix can be found by Cramer’s Rule: 

           [
𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 𝑎9

]

−1

= 1
𝐷

 [
𝑎5𝑎9 − 𝑎6𝑎8 𝑎3𝑎8 − 𝑎2𝑎9 𝑎2𝑎6 − 𝑎3𝑎5
𝑎6𝑎7 − 𝑎4𝑎9 𝑎1𝑎9 − 𝑎3𝑎7 𝑎3𝑎4 − 𝑎1𝑎6
𝑎4𝑎8 − 𝑎5𝑎7 𝑎2𝑎7 − 𝑎1𝑎8 𝑎1𝑎5 − 𝑎2𝑎4

] (3-37) 

where the determinant D is given by 
           𝐷 = 𝑎1(𝑎5𝑎9 − 𝑎6𝑎8) + 𝑎2(𝑎6𝑎7 − 𝑎4𝑎9) + 𝑎3(𝑎4𝑎8 − 𝑎5𝑎7). (3-38) 

 

3.13  Multiple regression equations 

The reverse formulae corresponding to (2-63) and (2-64) are 
           𝜙𝑠 = 𝜙𝑡 − 𝛥𝜙; (3-39) 

            𝜆𝑠 = 𝜆𝑡 − 𝛥𝜆. (3-40) 

However, neither of these formulae is explicit, since  and  are functions of U and V, which 

are linear functions of  and   in the source datum.   Appelbaum (1982) fully realised this when 

he computed U and V from  and   on WGS 72 for the reverse transformation to ED 50.  His 

analysis concluded that none of the differences in the coordinate shifts at his 53 control points 

between the two directions was greater than 0.02 metres. 

 

Ruffhead (2018) examines various alternatives for computing the reverse transformation.  The 

most accurate method is a “predictor-corrector” algorithm. 
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• U and V are computed from the target-datum coordinates (as if they were source-datum 

coordinates). 

• Provisional shifts  and  are computed from (2-59) and (2-60). 

• Approximate values of s and s are computed from (3-39) and (3-40). 

• U and V are re-computed from the approximate values of s and s. 

• The shifts  and  are re-computed from (2-63) and (2-64). 

• (3-39) and (3-40) are applied to give s and s. 

The available evidence indicates that no further iteration is necessary.  This was certainly the 

case for the inter-continental MREs in NIMA (2000), for which the root-mean-square horizontal 

distance error was smaller than 0.01 millimetres.  That needs to be qualified in one respect.  The 

area of application for MREs transforming Cόrrego Alegre to WGS84 is not the “South 

American mainland” stated in NIMA (2000); it should instead be taken as that region for which 

NIMA has contoured the datum shifts.  Ruffhead (2018) illustrates the Brazilian part of that 

region in a diagram, and makes the point that the north-west part of Brazil must be excluded due 

to absence of data. 

 

3.14  SMITSWAM 

SMITSWAM produces the same result as the rigorous 3PC transformation and the latter works 

in reverse.  It follows that the method works in reverse. 

 

3.15  Variations on Standard Molodensky transformation 

For the 7-parameter Standard Molodensky PCV transformation, the process described in Section 

3.4 needs to be adapted.  This is because of the rotation parameter is applied last in the forward 

transformation, so it needs to be applied first in the reverse process.  In other words, an 

intermediate longitude needs to be set to 𝜆𝑡 − 𝑅𝑍 before being fed into the reverse process.  This 

will ensure that the Z-rotation has absolutely no effect on the misclosure that is applied to obtain 

the reverse transformation. 

 

Intermediate longitudes 𝜆𝑡U (where U stands for “unrotated”) are computed using 

𝜆𝑡
U = 𝜆𝑡 − 𝑅𝑍. (3-41) 

 

The “simple inverse” (𝜙𝑠SI, 𝜆𝑠SI, ℎ𝑠SI) is obtained by computing the following shifts and adding 

them to 𝜙𝑡, 𝜆𝑡, ℎ𝑡.  (𝜙𝑠SI= 𝜙𝑡+ 𝛥𝜙SI, etc.) 
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   𝛥𝜙SI = [𝛥𝑋ℎ𝑜𝑟 sin𝜙𝑡 cos 𝜆𝑡U + 𝛥𝑌ℎ𝑜𝑟 sin𝜙𝑡 sin 𝜆𝑡U 

−𝛥𝑍ℎ𝑜𝑟 cos𝜙𝑡 − 𝛥𝑎(𝑁𝑡𝑒𝑡
2 sin𝜙𝑡 cos𝜙𝑡)/𝑎𝑡 

−𝛥𝑓(𝜌𝑡𝑎𝑡/𝑏𝑡 +𝑁𝑡𝑏𝑡/𝑎𝑡) sin𝜙𝑡 cos𝜙𝑡]/(𝜌𝑡 + ℎ𝑡). (3-42) 

           𝛥𝜆SI = (𝛥𝑋ℎ𝑜𝑟 sin 𝜆𝑡U − 𝛥𝑌ℎ𝑜𝑟 cos 𝜆𝑡U)/[(𝑁𝑡 + ℎ𝑡) cos𝜙𝑡]. (3-43) 

𝛥ℎSI = −𝛥𝑋𝑣𝑒𝑟 cos𝜙𝑡 cos 𝜆𝑡
U − 𝛥𝑌𝑣𝑒𝑟 cos𝜙𝑡 sin 𝜆𝑡

U 

             −𝛥𝑍𝑣𝑒𝑟 sin𝜙𝑡 + 𝛥𝑎(𝑎𝑡/𝑁𝑡) − 𝛥𝑓(𝑏𝑡/𝑎𝑡)𝑁𝑡 sin2𝜙𝑡. (3-44) 

 

Standard Molodensky PCV formulae (2-70)-(2-72) are applied to (𝜙𝑠SI, 𝜆𝑠SI, ℎ𝑠SI), with those 

coordinates used to derive 𝜌𝑠 and 𝑁𝑠.  The result, (𝜙𝑡PCV, 𝜆𝑡PCV, ℎ𝑡PCV), will give a small 

misclosure (𝜙𝑡PCV − 𝜙𝑡, 𝜆𝑡PCV − 𝜆𝑡, ℎ𝑡PCV − ℎ𝑡). 

 

Subtraction of the misclosure from the simple inverse will give a corrected inverse which is 

as good as exact, with any subsequent misclosure at sub-millimetre level.  Its provisional name 

is “Inverse Standard Molodensky Variation Via Applied Misclosure” (ISMVVAM).  
 

           𝜙𝑠ISMVVAM = 𝜙𝑠SI − (𝜙𝑡PCV − 𝜙𝑡). (3-45) 

           𝜆𝑠ISMVVAM = 𝜆𝑠
SI − (𝜆𝑡

PCV − 𝜆𝑡). (3-46) 

           ℎ𝑠ISMVVAM = ℎ𝑠
SI − (ℎ𝑡

PCV − ℎ𝑡). (3-47) 

 

3.16  Variations on Abridged Molodensky transformation 

For the 7-parameter Abridged Molodensky PCV transformation, the process described in 

Section 3.5 needs to be adapted.  The process described in Section 3.5 needs to be adapted for 

the same reason that the Standard Molodensky inverse process was adapted in the previous 

section. 

 

Intermediate longitudes 𝜆𝑡U (where U stands for “unrotated”) are computed using 
𝜆𝑡
U = 𝜆𝑡 − 𝑅𝑍. (3-48) 

 

The “simple inverse” (𝜙𝑠SI, 𝜆𝑠SI, ℎ𝑠SI) is obtained by computing the following shifts and adding 

them to 𝜙𝑡, 𝜆𝑡, ℎ𝑡.  (𝜙𝑠SI= 𝜙𝑡+ 𝛥𝜙SI, etc.) 
           𝛥𝜙SI = [𝛥𝑋ℎ𝑜𝑟 sin 𝜙𝑡 cos 𝜆𝑡

U + 𝛥𝑌ℎ𝑜𝑟 sin𝜙𝑡 sin 𝜆𝑡
U 

                        −𝛥𝑍ℎ𝑜𝑟 cos 𝜙𝑡 − (𝑎𝑡𝛥𝑓 + 𝑓𝑡𝛥𝑎) sin 2𝜙𝑡]/𝜌𝑠. (3-49) 

           𝛥𝜆SI = (𝛥𝑋ℎ𝑜𝑟 sin 𝜆𝑡
U − 𝛥𝑌ℎ𝑜𝑟 cos 𝜆𝑡

U)/[(𝑁𝑡 + ℎ𝑡) cos 𝜙𝑡]. (3-50) 

           𝛥ℎSI = −𝛥𝑋𝑣𝑒𝑟 cos 𝜙𝑡 cos 𝜆𝑡
U − 𝛥𝑌𝑣𝑒𝑟 cos 𝜙𝑡 sin 𝜆𝑡

U 

                    −𝛥𝑍𝑣𝑒𝑟 sin𝜙𝑡 − (𝑎𝑡𝛥𝑓 + 𝑓𝑡𝛥𝑎) sin
2 𝜙𝑡 + 𝛥𝑎. (3-51) 
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Abridged Molodensky PCV formulae (2-73)-(2-75) are applied to (𝜙𝑠SI, 𝜆𝑠SI, ℎ𝑠SI), with those 

coordinates used to derive 𝜌𝑠 and 𝑁𝑠.  The result, (𝜙𝑡PCV, 𝜆𝑡PCV, ℎ𝑡PCV), will give a small 

misclosure (𝜙𝑡PCV − 𝜙𝑡, 𝜆𝑡PCV − 𝜆𝑡, ℎ𝑡PCV − ℎ𝑡). 

 

Subtraction of the misclosure from the simple inverse will give a corrected inverse which is 

as good as exact, with any subsequent misclosure at sub-millimetre level.  Its provisional name 

is “Inverse Abridged Molodensky Variation Via Applied Misclosure” (IAMVVAM).  
 

           𝜙𝑠IAMVVAM = 𝜙𝑠SI − (𝜙𝑡PCV − 𝜙𝑡). (3-52) 

           𝜆𝑠IAMVVAM = 𝜆𝑠SI − (𝜆𝑡PCV − 𝜆𝑡). (3-53) 

           ℎ𝑠IAMVVAM = ℎ𝑠
SI − (ℎ𝑡

PCV − ℎ𝑡). (3-54) 

 

3.17  Fully-normalised multiple regression equations (5 types) 

The procedure recommended in 3.13 applies equally here. 
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CHAPTER 4: DERIVATION OF TRANSFORMATIONS 

 

The starting point for deriving a datum transformation is a set of common points, that is, a set 

of points with coordinates known with respect to both datums.  Ideally, three-dimensional 

coordinates for the common points will be known in both systems.  In practice, ellipsoidal 

heights are often unknown in at least one of the datums.  To derive a three-dimensional model 

in such cases, approximate ellipsoidal heights of uncertain quality need to be introduced.  A 

model obtained in this way will – at best – only be trustworthy for transforming horizontal 

coordinates. 

 

The problem of uncertain ellipsoidal heights does not occur in those two-dimensional 

transformations that do not use Cartesian coordinates. 

 

Deriving transformations is primarily about deriving the parameters of a model which ensure 

a close fit to datum shifts at known common points.  An exact fit may be possible in special 

cases, but it is more usual for there to be too many observations for the parameters to enable 

the model to fit them.  In general, therefore, some measure of the residuals needs to be 

minimised.  The most usual method is least-squares optimisation. 

 

If the number of common points is large, there is a strong case for setting aside a subset of 

those points as “test points”.  The “control points” – that is, those points used for the least-

squares optimisation – would be the remaining points.  The test points provide an independent 

check on the accuracy of the mathematical model, although it means that the model is derived 

from less than the full amount of data.  Selection of the test points should aim to ensure that 

on the one hand they are representative, and that on the other the coverage of the area by the 

control points is not significantly inferior to that of the common points as a whole.  If there 

are 4000 common points, perhaps 300-400 could be spared for use as test points. 

 

Least-squares optimisation is the process of obtaining the parameters of a model that minimise 

the sum of the squares of the residuals.  More generally, it is the sum of the weighted squares 

of residuals that is minimised, where the weights take account of any differences in the 

perceived quality of the observations.  Weights are sometimes introduced to harmonise the 

units used in observation equations, although this is not needed if the equations already have 

harmonised units. 
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Least-squares optimisation is easiest when applied to a model which is linear with respect to 

its parameters.  The general form for an over-determined system of linear equations is 
            𝐀𝐱 + 𝐯 = 𝐛 (4-1) 

where x is the vector of parameters, b is the vector of observed quantities the model is designed 

to fit and v is the vector of residuals.  A is the “design matrix” based on the model, and its ith 

column consists of the coefficients of the ith parameter. 

 

The quantity to be minimised can be expressed as 𝐯T𝐖𝐯, where W is a square symmetric 

matrix of weights.  If the observations are uncorrelated and weighted equally, then W is a 

constant multiple of the identity matrix, and for practical purposes can be set to the identity 

matrix.  It is well-known (see, for example, Cross, 1983) that the vector x which minimises 

𝐯T𝐖𝐯 is the solution of the following normal equations. 
            𝐀T𝐖𝐀𝐱 = 𝐀T𝐖𝐛. (4-2) 

 

The algebraic solution of (4-2) is given below, although computing the inverse matrix 

(𝐀T𝐖𝐀)−1 is not necessarily the best way to obtain a numerical solution. 
            𝐱 = (𝐀T𝐖𝐀)−1𝐀T𝐖𝐛. (4-3) 

 

There are various ways of describing the quality of the least-squares solution: 

• a norm of the residual vector v, such as the root-mean-square (RMS) of the control-

point residuals; 

• the standard deviation of the control-point residuals given by (4-4) below where m and 

n are the dimensions of A (the numbers of observations and parameters respectively); 

            𝜎0 = √𝐯𝐓𝐖𝐯/(𝑚 − 𝑛) (4-4) 

• a measure of the test-point residuals, such as the RMS, although this is only possible 

if test points are extracted from the set of common points. 

 

The quantity 𝜎0 in (4-4) is often referred to as the standard error of an observation of unit 

weight and its square as the unit variance.  In one sense it is not unique; a scaling of W would 

affect the value of 𝜎0 even though it is obvious from (4-3) that it would have no effect on the 

estimated parameters.  The value of 𝜎0 is unique if W is set to the identity matrix, which is 

consistently the case in this study. 

 

The variance-covariance matrix of the parameters is as follows (see, for example, Bomford, 

1980, sub-appendix D.15): 
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          𝐂𝐨𝐯(𝐱, 𝐱) = 𝜎02(𝐀T𝐖𝐀)−1 = 
𝐯T𝐖𝐯

𝑚−𝑛
 (𝐀T𝐖𝐀)−1. (4-5) 

This matrix is not affected by any scaling of the matrix W.  This is because there would be the 

same cancellation effect as (4-3).  A prerequisite for (4-4) and (4-5) to be meaningful is that 

m > n, ie the design matrix has more rows than columns so that there is at least one degree of 

freedom. 

 

It follows from (4-5) that 

      Standard error of jth parameter = square root of jth diagonal element of  
𝐯T𝐖𝐯

𝑚−𝑛
 (𝐀T𝐖𝐀)−1. (4-6) 

 

Where a datum transformation is based on a provisional combination of parameters, any 

estimated parameters that are small compared with their standard errors will be candidates for 

exclusion, on the grounds that they are not statistically significant. 

 

If it is decided to compute the standard errors of the parameters, then it would be necessary to 

compute (𝐀T𝐖𝐀)−1.  It has previously been noted that parameters themselves can be obtained 

without that inverse matrix, since there are other ways of solving equation (4-2). 

 

For this study, an Excel VBA subroutine was written to apply least-squares optimisation to 

linear observation equations.  It can be found in sub-appendix G.2.1. 

 

4.1  Conformal transformation in 2 dimensions 

With the parameter-substitution suggested in Section 2.1, this transformation becomes linear, as 

shown by equation (2-3).  Applying it to data point i, with residuals indicating a less-than-exact 

fit, the observation equations are as follows.  

            [
𝑥𝑡,𝑖
𝑦𝑡,𝑖
] = [

1 0 𝑥𝑠,𝑖 −𝑦𝑠,𝑖
0 1 𝑦𝑠,𝑖 𝑥𝑠,𝑖

] [

𝛥𝑥
𝛥𝑦
𝑎1
𝑎2

] + [
𝑣𝑥,𝑖
𝑣𝑦,𝑖

]  (4-7) 

Given a set of at least 3 points common to both datums, the full set of observations takes the 

form below.  

            

[
 
 
 
 
𝑥𝑡,1
𝑦𝑡,1
 ⋮
𝑥𝑡,𝑛
𝑦𝑡,𝑛]

 
 
 
 

=

[
 
 
 
 
1 0 𝑥𝑠,1 −𝑦𝑠,1
0 1 𝑦𝑠,1 𝑥𝑠,1
⋮ ⋮ ⋮ ⋮
1 0 𝑥𝑠,𝑛 −𝑦𝑠,𝑛
0 1 𝑦𝑠,𝑛 𝑥𝑠,𝑛 ]

 
 
 
 

[

𝛥𝑥
𝛥𝑦
𝑎1
𝑎2

] +

[
 
 
 
 
𝑣𝑥,1
𝑣𝑦,1
⋮
𝑣𝑥,𝑛
𝑣𝑦,𝑛]

 
 
 
 

 (4-8) 
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Since this complies with (4-1), the least-squares estimate of the parameters can be obtained by 

solving (4-2) or applying (4-3).  It is valid for arbitrarily large rotation angles and any positive 

scale factor. 

 

4.2  Affine transformation in 2 dimensions 

As equation (2-5) shows, this model is linear.  Applying it to data point i, with residuals 

indicating a less-than-exact fit, the observation equations are as follows.  

            [
𝑥𝑡,𝑖
𝑦𝑡,𝑖
] = [

1 0 𝑥𝑠,𝑖 𝑦𝑠,𝑖 0 0

0 1 0 0 𝑥𝑠,𝑖 𝑦𝑠,𝑖
]

[
 
 
 
 
 
𝛥𝑥
𝛥𝑦
𝑎1
𝑎2
𝑎3
𝑎4 ]
 
 
 
 
 

+ [
𝑣𝑥,𝑖
𝑣𝑦,𝑖

] (4-9) 

Given a set of at least 4 points common to both datums, the full set of observations takes the 

form below.  

            

[
 
 
 
 
𝑥𝑡,1
𝑦𝑡,1
 ⋮
𝑥𝑡,𝑛
𝑦𝑡,𝑛]

 
 
 
 

=

[
 
 
 
 
1 0 𝑥𝑠.1 𝑦𝑠,1 0 0

0 1 0 0 𝑥𝑠,1 𝑦𝑠,1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 𝑥𝑠,𝑛 𝑦𝑠,𝑛 0 0

0 1 0 0 𝑥𝑠,𝑛 𝑦𝑠,𝑛]
 
 
 
 

[
 
 
 
 
 
𝛥𝑥
𝛥𝑦
𝑎1
𝑎2
𝑎3
𝑎4 ]
 
 
 
 
 

+

[
 
 
 
 
𝑣𝑥,1
𝑣𝑦,1
⋮
𝑣𝑥,𝑛
𝑣𝑦,𝑛]

 
 
 
 

 (4-10) 

This is in the form given in (4-1); therefore, solution of (4-2) or application of (4-3) will produce 

the least-squares estimate of the parameters. 

 

A 2-dimensional affine transformation can be derived uniquely from 3 common points provided 

they form a triangle (meaning that they are not collinear).  This is discussed further in Section 

6.1. 

 

4.3  Rigorous 3-parameter conformal transformation 

Applying (2-6) to data point i, with residuals indicating a close rather than exact fit, the 

observation equations for this model are as follows.  

            [
𝑋𝑡,𝑖 − 𝑋𝑠,𝑖
𝑌𝑡,𝑖 − 𝑌𝑠,𝑖
𝑍𝑡,𝑖 − 𝑍𝑠,𝑖

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

𝑣𝑋,𝑖
𝑣𝑌,𝑖
𝑣𝑍,𝑖

] (4-11) 

 

For n points common to both datums, the full set of observation equations take the form below. 

            

[
 
 
 
 
 
 
 
𝑋𝑡,1 − 𝑋𝑠,1
𝑌𝑡,1 − 𝑌𝑠,1
𝑍𝑡,1 − 𝑍𝑠,1
 ⋮
𝑋𝑡,𝑛 − 𝑋𝑠,𝑛
𝑌𝑡,𝑛 − 𝑌𝑠,𝑛
𝑍𝑡,𝑛 − 𝑍𝑠,𝑛 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1 0 0
0 1 0
0 0 1
⋮ ⋮ ⋮
1 0 0
0 1 0
0 0 1]

 
 
 
 
 
 

[
𝛥𝑋
𝛥𝑌
𝛥𝑍
] +

[
 
 
 
 
 
 
 
𝑣𝑋,1
𝑣𝑌,1
𝑣𝑍,1
 ⋮
𝑣𝑋,𝑛
𝑣𝑌,𝑛
𝑣𝑍,𝑛]

 
 
 
 
 
 
 

 (4-12) 
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Since this complies with (4-1), the least-squares estimate of the parameters can be obtained by 

solving (4-2) or applying (4-3). 

 

If the weight matrix is the identity matrix, it can easily be shown that 

            𝛥𝑋 = 1

𝑛
∑ (𝑋𝑡,𝑖 − 𝑋𝑠,𝑖)
𝑛
𝑖=1 ; (4-13) 

            𝛥𝑌 = 1

𝑛
∑ (𝑌𝑡,𝑖 − 𝑌𝑠,𝑖)
𝑛
𝑖=1 ; (4-14) 

            𝛥𝑍 = 1

𝑛
∑ (𝑍𝑡,𝑖 − 𝑍𝑠,𝑖)
𝑛
𝑖=1 . (4-15) 

So with equal weighting, the least-squares estimate of the parameters is the arithmetic mean 

of the datum shifts at the known points.  This result is noted, for example, in Deakin et al 

(1994). 

 

4.4  Standard Molodensky transformation 

The easiest way of deriving X, Y and Z for Standard Molodensky is to use the least-squares 

process applicable to the 3PC model or equivalently apply (4-13), (4-14) and (4-15).  Page 7-

14 of DMA (1987a) says “The X, Y, Z datum shifts used to date in the Molodensky Datum 

Transformation Formulas have normally been mean values”.  Given that the exact conformal 

property is going to be sacrificed in any case, it would be more logical to optimise the 

parameters as used in the Molodensky models, in this case the Standard Molodensky model. 

 

It is possible, however, to rearrange equations (2-7) and (2-10) so that only the multiples of 

X, Y and Z appear on the right-hand side, as is the case for (2-9).  Applying these equations 

to data point i, with residuals indicating a less-than-exact fit, the observation equations are as 

follows.  It should be noted that 𝛥𝜙𝑖 and 𝛥𝜆𝑖 are in radians, which ensures that all terms in 

equations (4-16) to (4-18) are in the same linear units.  The radius of curvature in the prime 

vertical, as defined in equation (1-1), is denoted by N instead of .  This is to avoid confusion 

with the residuals. 

 
            (𝜌𝑠,𝑖 + ℎ𝑠,𝑖)𝛥𝜙𝑖 − (𝛥𝑎/𝑎𝑠)(𝑁𝑖𝑒𝑠2 sin 𝜙𝑠,𝑖 cos 𝜙𝑠,𝑖) 

  −𝛥𝑓(𝜌𝑠,𝑖𝑎𝑠/𝑏𝑠 + 𝑁𝑠,𝑖𝑏𝑠/𝑎𝑠) sin𝜙𝑠,𝑖 cos 𝜙𝑠,𝑖 = −𝛥𝑋 sin𝜙𝑠,𝑖 cos 𝜆𝑠,𝑖  

                  −𝛥𝑌 sin𝜙𝑠,𝑖 sin 𝜆𝑠,𝑖 + 𝛥𝑍 cos𝜙𝑠,𝑖 + 𝑣𝜙,𝑖 (4-16) 

            (𝑁𝑠,𝑖 + ℎ𝑠,𝑖)𝛥𝜆𝑖 cos𝜙𝑠,𝑖 = −𝛥𝑋 sin 𝜆𝑠,𝑖 + 𝛥𝑌 cos 𝜆𝑠,𝑖 + 𝑣𝜆,𝑖 (4-17) 

            𝛥ℎ𝑖 + 𝛥𝑎(𝑎𝑠/𝑁𝑠,𝑖) − 𝛥𝑓(𝑏𝑠/𝑎𝑠)𝑁𝑠,𝑖 sin2 𝜙𝑠,𝑖 = 𝛥𝑋 cos𝜙𝑠,𝑖 cos 𝜆𝑠,𝑖  

              +𝛥𝑌 cos𝜙𝑠,𝑖 sin 𝜆𝑠,𝑖 + 𝛥𝑍 sin 𝜙𝑠,𝑖 + 𝑣ℎ,𝑖 (4-18) 
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For n data points, this gives rise to a full set of 3n observation equations that comply with (4-

1).  The least-squares estimate of the parameters can be obtained by solving (4-2) or applying 

(4-3). 

 

This method of computing the optimum values of X, Y and Z requires more work than 

taking an arithmetic mean of Cartesian shifts, but it is a one-off process.  It also provides scope 

for giving a lower weighting to the height observation equations. 

 

4.5  Abridged Molodensky transformation 

As with Standard Molodensky, the easiest way of deriving X, Y and Z for Abridged 

Molodensky is to use the least-squares process applicable to the 3PC model.  This is equivalent 

to applying the mean-value formulae (4-13), (4-14) and (4-15).  Given that the exact conformal 

property is going to be sacrificed in any case, it would be more logical to optimise the 

parameters as used in the Abridged Molodensky model. 

 

Starting from equations (2-11) to (2-13), observation equations are constructed in the same 

way as in Section 4.4 (with N denoting the radius of curvature in the prime vertical, and 𝛥𝜙𝑖 

& 𝛥𝜆𝑖 in radians).  

 
           𝜌𝑠,𝑖𝛥𝜙𝑖 − (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎)sin2𝜙𝑠,𝑖 = −𝛥𝑋sin𝜙𝑠,𝑖cos𝜆𝑠.𝑖 − 𝛥𝑌sin𝜙𝑠,𝑖sin𝜆𝑠,𝑖 

                                                                                 +𝛥𝑍cos𝜙𝑠,𝑖 + 𝑣𝜙,𝑖 (4-19) 

           𝑁𝑠,𝑖𝛥𝜆𝑖cos𝜙𝑠,𝑖 = −𝛥𝑋sin𝜆𝑠.𝑖 + 𝛥𝑌cos𝜆𝑠,𝑖 + 𝑣𝜆,𝑖 (4-20) 

           𝛥ℎ𝑖 − (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎)sin2𝜙𝑠,𝑖 + 𝛥𝑎 = 𝛥𝑋cos𝜙𝑠,𝑖cos𝜆𝑠.𝑖 + 𝛥𝑌cos𝜙𝑠,𝑖sin𝜆𝑠,𝑖 

                                                                                   +𝛥𝑍sin𝜙𝑠,𝑖 + 𝑣ℎ,𝑖 (4-21) 

 

For n data points, this gives rise to 3n observation equations expressible in the form (4-1).  

Solution of (4-2) or application of (4-3) will produce the least-squares estimate of the parameters 

X, Y and Z.  The whole process requires more work than applying mean-value formulae, 

but it is a one-off.  It also provides scope for giving a lower weighting to the height observation 

equations. 

   

There is a special case where equation (4-21) can be disregarded altogether.  If ellipsoidal 

heights are unavailable in either or both of the datums, X, Y and Z can be obtained purely 

from observation equations (4-19) and (4-20).  It is important to note that parameters obtained 

in this way should not be used in the Δh formula (2-13). 
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Equations (4-19) and (4-20) can be considered a generalisation of Molnár and Timár (2005).  

They disregarded ellipsoidal heights entirely for the purpose of optimising the horizontal 

transformation.  They scaled equation (2-12) by cos, whereas in this study the observations 

were equalised fully by conversion to linear units. Ayer and Fosu (2008) used a similar 

approach to Molnár and Timár to derive X, Y and Z from Abridged Molodensky equations 

for datum transformations in Ghana. 

 

4.6  Rigorous 7-parameter conformal transformation 

Deriving the best-fit parameters of the rigorous 7PC (Helmert) model by least-squares is not 

straightforward because (2-14) is non-linear with respect to the 7 parameters. 

 

The simplest approach is to substitute the optimal Bursa-Wolf parameters in the chosen 

version of the Helmert transformation.  The method of obtaining the optimal Bursa-Wolf 

parameters is described in Section 4.8.  This will fit the control data less well than use of 

Helmert with the optimal Helmert parameters.  However, from the tests undertaken in this 

study, if the optimal Bursa-Wolf rotation parameters are numerically less than 20, then the 

quality of fit is affected by less than 0.1%. 

 

For this study, a method has been devised to address the non-linearity, and hence derive the 

optimal parameters for the chosen version of Helmert.  This is given in Section 5.1 which 

discusses more advanced model-derivations than those covered in this Chapter. 

 

Section 2.6 noted that linearity occurs in one special case of Helmert. The 4-parameter 

conformal transformation based on X, Y, Z and scale change S is linear with respect to 

those parameters.  Given a set of at least 2 points common to both datums, the set of observations 

for point i takes the form below. 

           [
𝑋𝑡,𝑖 − 𝑋𝑠,𝑖
𝑌𝑡,𝑖 − 𝑌𝑠,𝑖
𝑍𝑡,𝑖 − 𝑍𝑠,𝑖

] = [

1

0

0
   

0 0 𝑋𝑠,𝑖
1 0 𝑌𝑠,𝑖
0 1 𝑍𝑠,𝑖

] [

𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛥𝑆

] + [

𝑣𝑋,𝑖
𝑣𝑌,𝑖
𝑣𝑍,𝑖

]. (4-22) 

For n data points, this gives rise to a full set of 3n observation equations that comply with (4-

1).  The least-squares estimate of the parameters can be obtained by solving (4-2) or applying 

(4-3). 
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4.7  Rigorous localised 7-parameter conformal transformation 

Deriving the best-fit parameters of the rigorous localised 7-parameter conformal 

transformation by least-squares is complicated by the fact that (2-39) is non-linear with respect 

to the 7 parameters.  The available options are similar to those for Helmert, except that any 

part of the process that used Bursa-Wolf linearisation would use Molodensky-Badekas 

linearisation instead. 

 

Linearity occurs in one special case noted in Section 2.7. The 4-parameter conformal 

transformation based on X, Y, Z and scale change S is linear with respect to those 

parameters.  Given a set of at least 2 points common to both datums, the set of observations for 

point i takes the form below.  

           [
𝑋𝑡,𝑖 − 𝑋𝑠,𝑖
𝑌𝑡,𝑖 − 𝑌𝑠,𝑖
𝑍𝑡,𝑖 − 𝑍𝑠,𝑖

] = [

1

0

0
   

  0   0  𝑋𝑠,𝑖 − 𝑋𝑚
  1   0  𝑌𝑠,𝑖 − 𝑌𝑚
  0   1  𝑍𝑠,𝑖 − 𝑍𝑚

] [

𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛥𝑆

] + [

𝑣𝑋,𝑖
𝑣𝑌,𝑖
𝑣𝑍,𝑖

] (4-23) 

For n data points, this gives rise to 3n observation equations expressible in the form (4-1).  

Solution of (4-2) or application of (4-3) will produce the least-squares estimate of the 

parameters. 

 

When the transformation involves local level coordinates, the parameters are those of the 

transformation 𝑋𝑠′, 𝑌𝑠′ and 𝑍𝑠′  to 𝑋𝑡′, 𝑌𝑡′ and 𝑍𝑡′.  They are derived in the same way as Helmert 

parameters.  This covers what is described in Rapp (1993) and Leick (1995) as the Veis 

transformation.  (See subsection 1.4.4 and Section 2.7.) 

 

4.8  Simplified 7-parameter conformal transformation (Bursa-Wolf) 

Unlike the rigorous 7PC model, the fully-linear Bursa-Wolf (FLBW) is linear with respect to its 

parameters, as shown in (2-41).  It is therefore far more amenable to least-squares optimisation.  

When the parameters need to be derived from a set of points common to both datums, the method 

of least-squares optimisation can easily be applied to (2-41).  This is one reason why Bursa-

Wolf is often used in preference to the rigorous 7PC transformation.  The validity of this 

approach depends on the rotations being small. 

 

Given a set of at least 3 points common to both datums, the set of observations for point i takes 

the form below.  
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           [
𝑋𝑡,𝑖 − 𝑋𝑠,𝑖
𝑌𝑡,𝑖 − 𝑌𝑠,𝑖
𝑍𝑡,𝑖 − 𝑍𝑠,𝑖

] = [

1

0

0
   

0 0 𝑋𝑠,𝑖
1 0 𝑌𝑠,𝑖
0 1 𝑍𝑠,𝑖

  

0 𝑍𝑠,𝑖 −𝑌𝑠,𝑖
−𝑍𝑠,𝑖 0 𝑋𝑠,𝑖
𝑌𝑠,𝑖 −𝑋𝑠,𝑖 0

]

[
 
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛥𝑆
𝑅𝑋
𝑅𝑌
𝑅𝑍 ]
 
 
 
 
 
 

+ [

𝑣𝑋,𝑖
𝑣𝑌,𝑖
𝑣𝑍,𝑖

] (4-24) 

For n data points, this gives rise to a full set of 3n observation equations that comply with (4-

1).  The least-squares estimate of the parameters can be obtained by solving (4-2) or applying 

(4-3). 

 

The process recommended in Hofmann-Wellenhof and Moritz (2006) is to use Bursa-Wolf to 

derive the datum-shift parameters and the rigorous 7PC to apply them.  This is what Varga et al 

(2017) appear to have done, since they link Bursa-Wolf to the matrix equation of the rigorous 

7PC. 

 

Iliffe and Lott (2008, page 98) advise that the derivation of a Bursa-Wolf transformation is ill-

conditioned for small areas.  There is “a high degree of correlation between the parameters” 

which, they argue, does not occur for Molodensky-Badekas.  They recommend that Bursa-

Wolf should only be used if the area subtends an angle of at least 30.  

 

Okwuashi and Eyoh (2012) present a similar argument about correlation.  According to the 

quoted results, Molodensky-Badekas gives smaller residuals than Bursa-Wolf (ibid, Tables 2 

and 3, notably the “LS” columns). 

 

The claims in the above 2 paragraphs are untenable, for the following reasons.  Equation (2-

46) proves that FLBW and FLMB are mathematically equivalent.  The parameters derived 

from Molodensky-Badekas are easily converted into parameters for Bursa-Wolf.  The 

computed standard errors of the Bursa-Wolf translations might be bigger than those computed 

for the Molodensky-Badekas translations, but they must feed through to the computed 

coordinates in the same way.  Equivalent equations are equally reliable if computed efficiently.  

The smaller residuals claimed in Okwuashi and Eyoh (2012) are at variance with the 

comparisons in European Union (2013) and Syetiawan et al (2019). 

 

In parallel with the research undertaken for this thesis, Abbey and Featherstone (2020) rejected 

claims that Molodensky-Badekas is superior to Bursa-Wolf. 
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Advocates of Partially-Linear Bursa-Wolf have the problem that the transformation (2-42) 

does not appear to lead immediately to observation equations as straightforward as (4-24). 

Attempts to optimise PLBW have been published in Deakin (2006), Gacoki and Aduol (2002, 

Appendix 1) and Iliffe and Lott (2008, sub-appendix E.3.1).  All of them introduce further 

approximations to linearise PLBW for optimisation purposes.  In effect, all three treat the 

products 𝛥𝑆𝑅𝑋, 𝛥𝑆𝑅𝑌 and 𝛥𝑆𝑅𝑍 as negligible, which they usually are.  Strictly speaking, the 

derived parameters optimise a slightly different transformation to the one that is going to be 

applied. 

 

Every published PLBW optimisation method encountered during this study has made use of 

further approximations.  These can be avoided, however, by a simple substitution based on (2-

43).  As noted in Section 2.8, this converts PLBW into FLBW.  Ordinary least-squares can be 

used to optimise the parameters which include the FLBW versions of the rotations.  The 

optimised PLBW rotations can then be computed exactly from 

           [
𝑅𝑋
𝑃𝐿𝐵𝑊

𝑅𝑌
𝑃𝐿𝐵𝑊

𝑅𝑍
𝑃𝐿𝐵𝑊

] = 
1

1+𝛥𝑆
 [
𝑅𝑋
𝐹𝐿𝐵𝑊

𝑅𝑌
𝐹𝐿𝐵𝑊

𝑅𝑍
𝐹𝐿𝐵𝑊

]. (4-25) 

The parameters X, Y, Z and S will be the same as they are not affected by the substitution. 

 

Example: Bursa-Wolf derivation was applied to the dataset of 44 points in Great Britain given 

in sub-appendix C.2.  The FLBW parameters obtained by ordinary least-squares optimisation 

were 445.181m, -161.834m, 542.616m, -0.732432, 0.278998, 1.607732, -20.686319ppm.  

The optimal PLBW parameters are the same except for the rotations which were -0.732447, 

0.279003, 1.607765.  These are 1/(1+S) times the optimal FLBW rotations.  In both cases, 

the 3D RMS residual is 2.5196m. 

 

The choice of solution should depend on the version of Bursa-Wolf which is to be applied. 

 

4.9  Simplified localised 7-parameter conformal transformation (Molodensky-Badekas) 

Unlike the rigorous localised 7PC model, fully-linear Molodensky-Badekas (FLMB) is linear 

with respect to its parameters, as shown in (2-45).  It is therefore far more amenable to least-

squares optimisation.  When the parameters need to be derived from a set of points common to 

both datums, the method of least-squares optimisation can easily be applied to (2-45).  This is 

one reason why Molodensky-Badekas is often used in preference to the rigorous localised 7PC 

method. 
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Given a set of at least 3 points common to both datums, the set of observations for point i takes 

the form below.  

       [
𝑋𝑡,𝑖 − 𝑋𝑠,𝑖
𝑌𝑡,𝑖 − 𝑌𝑠,𝑖
𝑍𝑡,𝑖 − 𝑍𝑠,𝑖

] = [

1

0

0
   

0 0 𝑋𝑠,𝑖 − 𝑋𝑚
1 0 𝑌𝑠,𝑖 − 𝑌𝑚
0 1 𝑍𝑠,𝑖 − 𝑍𝑚

  

0 𝑍𝑠,𝑖 − 𝑍𝑚 −(𝑌𝑠,𝑖 − 𝑌𝑚)

−(𝑍𝑠,𝑖 − 𝑍𝑚) 0 𝑋𝑠,𝑖 − 𝑋𝑚
𝑌𝑠,𝑖 − 𝑌𝑚 −(𝑋𝑠,𝑖 − 𝑋𝑚) 0

]

[
 
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛥𝑆
𝑅𝑋
𝑅𝑌
𝑅𝑍 ]
 
 
 
 
 
 

+ [

𝑣𝑋,𝑖
𝑣𝑌,𝑖
𝑣𝑍,𝑖

] (4-26) 

 

For n data points, this gives rise to a full set of 3n observation equations that comply with (4-

1).  The least-squares estimate of the parameters can be obtained by solving (4-2) or applying 

(4-3). 

 

One option is to use Molodensky-Badekas to derive the datum-shift parameters and the rigorous 

7PC transformation to apply them.  This is what Varga et al (2017) appear to have done, since 

they link Molodensky-Badekas to the matrix equation of the rigorous localised 7PC method.  

The validity of this approach depends on the rotations being small. 

 

In Section 2.9 it was noted that Deakin (2006), Iliffe and Lott (2008) and Kutoglu (2009a) are 

among the sources that prefer the PLMB given in (2-47).  None of these mentions the simplest 

method of linearising the transformation for optimisation purposes. 

 

That method is a simple substitution based on (2-48).  As noted in Section 2.9, this converts 

PLMB into FLMB.  Ordinary least-squares can be used to optimise the parameters which include 

the FLMB versions of the rotations.  The optimised PLBW rotations can then be computed 

exactly from 

           [
𝑅𝑋
PLMB

𝑅𝑌
PLMB

𝑅𝑍
PLMB

] = 
1

1+𝛥𝑆
 [
𝑅𝑋
FLMB

𝑅𝑌
FLMB

𝑅𝑍
FLMB

]. (4-27) 

The parameters X, Y, Z and S will be the same as they are not affected by the substitution. 

 

Example: Molodensky-Badekas derivation was applied to the dataset of 44 points in Great 

Britain given in sub-appendix C.2.  The chosen local centroid was (370212.608, -157444.673, 

5147839.809), calculated from the average of the OSGB36 Cartesian coordinates. The FLMB 

parameters obtained by ordinary least-squares optimisation were 376.414m, -111.300m, 

431.635m, -0.732432, 0.278998, 1.607732, -20.686319ppm.  The optimal PLBW 
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parameters are the same except for the rotations which were -0.732447, 0.279003, 

1.607765.  These are 1/(1+S) times the optimal FLMB rotations.  In both cases, the 3D RMS 

residual is 2.5196m. 

 

The choice of solution should depend on the version of Molodensky-Badekas which is to be 

applied. 

 

4.10  8-parameter affine transformation 

Derivation of the parameters in this instance is hampered by the observation equations not 

being linear.  For this study, a method has been devised to address the non-linearity, and hence 

derive the optimal parameters for this model.  Because the method is more advanced than 

those covered in this Chapter, it is described in Section 5.3.  The same section summarises the 

method in Andrei (2006). 

 

4.11  9-parameter affine transformation 

Deriving the best-fit parameters of this model is complicated by the non-linearity of the 

observation equations.  For this study, a method has been devised to overcome the problem, 

and hence derive the optimal parameters for the chosen version (RS or SR) of this model.  

Since the method is more advanced than those covered in this Chapter, it is described in 

Section 5.4.  The same section summarises the methods of other researchers. 

 

4.12  12-parameter affine transformation 

This method is linear with respect to its parameters, as shown by equation (2-58).  Given a set 

of at least 5 points common to both datums, that form enables the parameters to be computed by 

least-squares optimisation. 

 

4.13  Multiple regression equations and similar polynomial formulae 

If datum shifts are modelled by polynomials of a pre-decided form (ie based on a particular 

set of monomials) then the parameters (ie the coefficients of the monomials) can be derived 

from linear observation equations using least-squares optimisation. 

 

What distinguishes MREs from polynomial formulae in general is that they are only meant to 

include terms that are statistically significant.  These are determined by a regression procedure.  

The most usual method is the “stepwise” multiple regression procedure described in 

Appelbaum (1982) and Section 7.2.4.3.3 of DMA (1987a).  Least-squares optimisation is used 
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each time a variable is added (the choice being the variable that provides the greatest 

improvement in fitting the reference coordinate differences) and a statistical-significance test 

determines whether one or more variables should be removed. 

 

This is a very high-level description of the process of determining which terms are included.  

In particular, it doesn’t answer the question of how it decided which variables are added.  

Testing each possibility in turn makes for a very laborious process.  In addition, the phrase 

“statistically significant” is a relative term. 

 

The derivation of MREs is supposed to incorporate whatever distortions in the datum 

transformation are evident in the common points.  The danger is that the polynomial 

components can introduce distortions of their own. The outermost control points therefore 

need to go as far as, or even slightly beyond, the area boundary. It is also important that the 

control points from which the polynomials are derived provide an even coverage of the area 

for which the MREs are to be applied. 

 

Artificial control points are sometimes introduced to densify the data from which MREs are 

derived.  Appelbaum (1982) used 53 points to derive a transformation from European Datum 

1950 to WGS72.  Only 33 points were Doppler stations. The other 20 points were located to 

provide more complete area coverage and the reference coordinate differences were obtained 

by interpolation (with some use made of Doppler stations external to the area). 

 

Soycan (2005) used a different approach for deciding statistical significance in datum-shift 

models.  In this adaptation, the models are nth-degree polynomials in the sense that they are 

linear combinations of monomials 𝑢𝑖𝑣𝑗 for which 𝑖 + 𝑗 ≤ 𝑛.  “To determine the optimal 

polynomial degree, all possible alternatives (from degree one to five) have been considered 

for each solution, RMS values have been computed, polynomial coefficients have been tested, 

and only significant polynomial coefficients have been used.”  The resulting degree of 

polynomial turned out to be 2, both in the case of grid-coordinate shifts and in the case of 

Cartesian-coordinate shifts.  5th-degree monomials were therefore discarded en bloc, as were 

4th-degree monomials and 3rd-degree monomials.  Each shift, therefore, had precisely 6 terms 

(1, u, v, 𝑢2, uv and 𝑣2).  One aspect of this approach is the likelihood that some of those 6 

terms were less significant than some of the terms discarded. 
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The MRE-derivation method developed for this study is described in Section 5.5.  It is intended 

for fully-normalised MREs, but could be adapted for MREs that use intermediate coordinates 

which are not fully normalised. 

 

4.14  SMITSWAM 

For Standard Molodensky in two stages with applied misclosure, the easiest way to compute 

the parameters is to use the process recommended in Section 4.3.  SMITSWAM is, after all, 

equivalent to 3PC.  It does require the geodetic coordinates of the control points to be 

converted to Cartesian coordinates, but that is a one-off exercise that needs no repetition once 

the optimal parameters are known. 

 

4.15  Variations on Standard Molodensky transformation 

The 7-parameter partially-conformal variation is considered below.  The 6-parameter partially-

conformal variation which omits 𝑅𝑍 is a straightforward modification (achieved by assuming 

𝑅𝑍 is zero). 

 

Given a set of at least 3 points common to both datums, the set of observations for point i takes 

the form below.  As in Section 4.4, the radius of curvature in the prime vertical, as defined in 

equation (1-1), is denoted by N instead of . 

            (𝜌𝑠,𝑖 + ℎ𝑠,𝑖)𝛥𝜙𝑖 − (𝛥𝑎/𝑎𝑠)(𝑁𝑠,𝑖𝑒𝑠2 sin𝜙𝑠,𝑖 cos 𝜙𝑠,𝑖) 

−𝛥𝑓(𝜌𝑠,𝑖𝑎𝑠/𝑏𝑠 + 𝑁𝑠,𝑖𝑏𝑠/𝑎𝑠) sin 𝜙𝑠,𝑖 cos𝜙𝑠,𝑖 = −𝛥𝑋ℎ𝑜𝑟 sin𝜙𝑠,𝑖 cos 𝜆𝑠,𝑖  

              −𝛥𝑌ℎ𝑜𝑟 sin𝜙𝑠,𝑖 sin 𝜆𝑠,𝑖 + 𝛥𝑍ℎ𝑜𝑟 cos 𝜙𝑠,𝑖  +  𝑣𝜙,𝑖. (4-28) 

      (𝑁𝑠,𝑖 + ℎ𝑠,𝑖)𝛥𝜆𝑖 cos𝜙𝑠,𝑖 = −𝛥𝑋ℎ𝑜𝑟 sin 𝜆𝑠,𝑖 + 𝛥𝑌ℎ𝑜𝑟 cos 𝜆𝑠,𝑖 + (𝑁𝑠,𝑖 + ℎ𝑠,𝑖)𝑅𝑍 cos𝜙𝑠,𝑖 + 𝑣𝜆,𝑖. (4-29) 

        𝛥ℎ𝑖 + 𝛥𝑎(𝑎𝑠/𝑁𝑠,𝑖) − 𝛥𝑓(𝑏𝑠/𝑎𝑠)𝑁𝑠,𝑖 sin2 𝜙𝑠,𝑖 = 𝛥𝑋𝑣𝑒𝑟 cos 𝜙𝑠,𝑖 cos 𝜆𝑠,𝑖  

                      +𝛥𝑌𝑣𝑒𝑟 cos 𝜙𝑠,𝑖 𝑠𝑖𝑛 𝜆𝑠,𝑖  + 𝛥𝑍𝑣𝑒𝑟 sin𝜙𝑠,𝑖 + 𝑣ℎ,𝑖. (4-30) 

 

Obtaining the 7 parameters 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝑅𝑍, 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 could be done by 

applying least-squares optimisation to 3n observations in 7 unknowns.  Alternatively, two 

separate optimisations can be performed, so that 

•  𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝑅𝑍,  are obtained from the 2n observation equations (4-28) and 

(4-29); 

• 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 are obtained from the n observation equations (4-30). 

 

In either case, the set of observations complies with (4-1).  The least-squares estimate of the 

parameters can be obtained by solving (4-2) or applying (4-3). 
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Similarly, the 6-parameter variation can be obtained by either solving 3n equations in 6 

unknowns or by obtaining 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟 from the 2n “horizontal” observation equations 

and 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 from the n “vertical” observation equations.  The values of 𝛥𝑋ℎ𝑜𝑟, 

𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟 obtained from the “horizontal” equations can be cited as the values of X, Y 

and Z “that give Standard Molodensky the best horizontal fit”.  If this is done, there needs to 

be a caveat: “Do not use these values in the equation for h”. 

 

4.16  Variations on Abridged Molodensky transformation 

It is sufficient to consider the 7-parameter partially-conformal variation; the 6-parameter case 

which assumes 𝑅𝑍 = 0 is a straightforward modification. 

 

Given a set of at least 3 control points, the set of observations for point i takes the form below.  

As in Section 4.5, N rather than  denotes the radius of curvature in the prime vertical.  
           𝜌𝑠,𝑖𝛥𝜙𝑖 − (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎) sin 2𝜙𝑠,𝑖 = −𝛥𝑋ℎ𝑜𝑟 sin𝜙𝑠,𝑖 cos 𝜆𝑠,𝑖 − 𝛥𝑌ℎ𝑜𝑟 sin𝜙𝑠,𝑖 sin 𝜆𝑠,𝑖  

              +𝛥𝑍ℎ𝑜𝑟 cos 𝜙𝑠,𝑖  +  𝑣𝜙,𝑖. (4-31) 

            𝑁𝑠,𝑖𝛥𝜆𝑡cos𝜙𝑠,𝑖 = −𝛥𝑋ℎ𝑜𝑟sin𝜆𝑠,𝑖 + 𝛥𝑌ℎ𝑜𝑟cos𝜆𝑠,𝑖 + 𝑅𝑍𝑁𝑠,𝑖cos𝜙𝑠,𝑖 + 𝑣𝜆,𝑖. (4-32) 

           𝛥ℎ𝑖 − (𝑎𝑠𝛥𝑓 + 𝑓𝑠𝛥𝑎) sin2 𝜙𝑠,𝑖 + 𝛥𝑎 = 𝛥𝑋𝑣𝑒𝑟 cos𝜙𝑠,𝑖 𝑐𝑜𝑠 𝜆𝑠,𝑖 + 𝛥𝑌𝑣𝑒𝑟 cos 𝜙𝑠,𝑖 sin 𝜆𝑠,𝑖 

              +𝛥𝑍𝑣𝑒𝑟 sin 𝜙𝑠,𝑖  +  𝑣ℎ,𝑖. (4-33) 

 

The 7 parameters 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝑅𝑍, 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 could be obtained by applying 

least-squares optimisation to 3n observations in 7 unknowns.  The alternative is two separate 

optimisations: 

•  𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟, 𝑅𝑍  are obtained from the 2n observation equations (4-31) and 

(4-32); 

• 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 are obtained from the n observation equations (4-33). 

 

In either case, the observations take the form given in (4-1); therefore, solution of (4-2) or 

application of (4-3) will produce the least-squares estimate of the parameters. 

 

One thing to note about equations (4-31) to (4-33) is that – if the  and N terms are evaluated 

at the ellipsoid – equation (4-33) is the only one to make use of heights.  It is therefore possible 

to derive 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟 and 𝑅𝑍 purely from observation equations of the form (4-31) 

and (4-32), even if heights are unavailable.  Obviously, the resulting transformation should 

only be used to compute horizontal datum shifts Δϕ and Δλ. 
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Similarly, in the 6-parameter variation, it is possible to derive 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟 and 𝛥𝑍ℎ𝑜𝑟 purely 

from observation equations of the form (4-31) and (4-32), even if heights are unavailable.  The 

resulting values of 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟 can be cited as the values of X, Y and Z “that give 

Abridged Molodensky the best horizontal fit”.  If this is done, there needs to be a caveat: “Do 

not use these values in the equation for h”. 

 

4.17  Fully-normalised multiple regression equations (5 types) 

Fully-normalised MREs are linear with respect to the parameters.  For a pre-decided set of 

basis functions, the parameters are easily determined by least-squares optimisation.  As with 

the MREs discussed in Sections 2.13 and 4.13, an analysis of statistical significance is required 

to decide which basis functions to include. 

 

The statistical-significance analysis adopted for this study is described in Section 5.5. 
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CHAPTER 5: MORE ADVANCED TRANSFORMATION-DERIVATIONS 

 

This chapter considers derivations of transformations that are non-linear with respect to the 

parameters.  Most of the methods mentioned in Chapter 2 do not fall into this category, so 

there is no attempt to align Section numbers.  Hence, for example, Section 5.1 is unrelated to 

Section 2.1. 

 

This chapter also considers the derivation of transformations that take the form of multiple 

regression equations.  These are linear with respect to the parameters and the models are easy 

to optimise for a given set of basis functions.  However, deciding which possible combination 

of basis functions to use is an advanced topic in its own right. 

 

5.1 Optimal Helmert transformation 

As shown in Section 2.6, the 7PC (Helmert) model uses a rotation matrix that is non-linear 

with respect to the rotation parameters.  This complicates the task of optimising Helmert 

parameters, because the least-squares methodology described in Chapter 4 requires a linear 

relationship. 

 

The methods encountered during this study are as follows. 

• An iterative least-squares optimisation process.  Fang (2014) classifies one method as 

“quasi indirect errors adjustment (QIEA)” using a quasi-Newton (Broyden-Fletcher-

Goldfarb-Shanno) solution.  In that paper, the rotation matrix takes the form (2-15) or 

equivalently (2-16). 

• The more direct method given by Awange and Grafarend (2002).  An algebraic 

technique called “Groebner basis” is used to solve the problem when the rotation 

matrix takes the form (2-17) or equivalently (2-18).  Hashemi et al (2013) also 

describes a method “using Gröbner bases techniques and solving polynomial systems”, 

but it is unclear which form their rotation matrix takes. 

• A “Procrustean solution” for N points given by Paláncz et al (2010) using a 

complicated algorithm from Gower and Dijksterhuis (2004). 

• A novel RANSAC robust estimation technique described in Paláncz et al (2017), 

which allows for possible outliers among the data points.  (RANSAC stands for 

random sample consensus.) 

• Computation of approximate parameters from a small subset of the common points 

followed by linearisation of the observations equations based on those approximate 
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values.  Least-squares optimisation is then applied to the linearised Helmert 

transformation model.  The method is described and demonstrated in Fan (2005).  The 

iterative phase is also described in Wolf and Ghilani (1997) which omits the issue of 

initial approximation. 

 

All the sources quoted consider only one or other of the two commonly-used versions of 

Helmert (which were defined in subsections 2.6.1 and 2.6.2).  This falls short of a general 

approach to derive either version. 

 

It is also unclear whether these methods derive the optimal Helmert parameters.  Awange and 

Grafarend (2002) includes a worked example based on the dataset in sub-appendix C.7.1.  

However, the derived transformation gives a worse fit to the control data than the method 

discussed in Section 4.6 (using Helmert with optimal Bursa-Wolf parameters). 

 

The method devised for this study is believed to be original, although the third stage can be 

considered a variation on the iteration stage used by Fan (2005).  It consists of the following 

processes, each involving linear least-squares optimisation.  “HO” denotes Helmert 

optimisation. 

• HO1: Distance analysis to obtain the original estimate of the scale change (𝛥𝑆DA).  In 

this case, only the possible impact of measurement errors might stop 𝛥𝑆DA being 

optimal because the 7PC transformation applies rotations exactly. 

• HO2: Derivation of initial approximate translation and rotation parameters.  This is 

done from what would be the partially-linear version of Bursa-Wolf except that the 

scale change has been already determined.   

• HO3: Iteration using a re-linearisation of Helmert (with scale change 𝛥S fixed) based 

on corrections to the approximate rotation parameters; the minimised root-mean-

square distance residual corresponding to the estimated scale change is denoted 

MinRMS(S,7PC). 

• HO4: Verification of optimality by repeating HO2 and HO3 for small deviations from 

𝛥𝑆DA. 

 

Stage HO1 is based on distances of the control points to the central point in both datums.  The 

process is given by (5-1) to (5-5) below. 

           
𝑋𝑠,𝑚 =

1

𝑛
∑ 𝑋𝑠,𝑖
𝑛
𝑖=1 ,  𝑌𝑠,𝑚 =

1

𝑛
∑ 𝑌𝑠,𝑖
𝑛
𝑖=1 ,  𝑍𝑠,𝑚 =

1

𝑛
∑ 𝑍𝑠,𝑖
𝑛
𝑖=1 , 

𝑋𝑡,𝑚 =
1

𝑛
∑ 𝑋𝑡,𝑖
𝑛
𝑖=1 ,  𝑌𝑡,𝑚 =

1

𝑛
∑ 𝑌𝑡,𝑖
𝑛
𝑖=1 ,  𝑍𝑡,𝑚 =

1

𝑛
∑ 𝑍𝑡,𝑖
𝑛
𝑖=1 .

} (5-1) 
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𝑑𝑠,𝑖 = √(𝑋𝑠,𝑖 − 𝑋𝑠,𝑚)

2 + (𝑌𝑠,𝑖 − 𝑌𝑠,𝑚)
2 + (𝑍𝑠,𝑖 − 𝑍𝑠,𝑚)

2 

𝑑𝑡,𝑖 = √(𝑋𝑡,𝑖 − 𝑋𝑡,𝑚)
2 + (𝑌𝑡,𝑖 − 𝑌𝑡,𝑚)

2 + (𝑍𝑡,𝑖 − 𝑍𝑡,𝑚)
2

} (5-2) 

 

Treating S=1+S as the parameter to be determined, the n observation equations take the form 
             𝑑𝑡,𝑖 = 𝑆𝑑𝑠,𝑖 + 𝑣𝑖  or  𝑑𝑠,𝑖𝑆 + 𝑣𝑖 = 𝑑𝑡,𝑖. (5-3) 

These equations can be expressed in the form 𝐀𝐱 + 𝐯 = 𝐛; since there is only one parameter in 

this stage, the design matrix A is simply the column vector containing the distances 𝑑𝑠,1 to 𝑑𝑠,𝑛. 

 

The normal equation for these observation equations takes the form 
           (∑ 𝑑𝑠,𝑖

2𝑛
𝑖=1 )𝑆 = ∑ 𝑑𝑠,𝑖𝑑𝑡,𝑖𝑛

𝑖=1 . (5-4) 

The least-squares solution, which determines S as well as S, is therefore 

           𝑆DA = ∑ 𝑑𝑠,𝑖𝑑𝑡,𝑖
𝑛
𝑖=1  / ∑ 𝑑𝑠,𝑖

2𝑛
𝑖=1    (5-5) 

 

This completes stage HO1, but, two points are worth noting before proceeding further. 

 

Firstly, the idea of using distance analysis to approximate S has been considered in the 

following papers. 

• Schut (1973) which gives no formula for the initial approximation. 

• Paláncz et al (2010) which uses the ratio (∑𝑑𝑡,𝑖)/(∑𝑑𝑠,𝑖). 

• Han (2010) which uses the mean of the quotients of distances between data points in 

the target datum over corresponding distances in the source datum.  Han’s approach to 

parameter computation is, however, not based on least-squares. 

• Závoti and Kalmár (2016) which suggests three possible expressions for S.  Using the 

notation of this Section, they are (∑𝑑𝑡,𝑖)/(∑𝑑𝑠,𝑖), √(∑𝑑𝑡,𝑖2 )/(∑𝑑𝑠,𝑖2 ) and (∑𝑑𝑠,𝑖𝑑𝑡,𝑖)/

(∑𝑑𝑠,𝑖
2 ).  The paper discusses when those expressions are equivalent rather than 

advocating the third one. 

 

Secondly, application of (4-6) to (5-3) gives the following result: 

           Standard error of 𝑆DA = √
∑
𝑖=1

𝑛
𝑣𝑖
2

(𝑛−1) ∑
𝑖=1

𝑛
𝑑𝑖
2
 (5-6) 

If this quantity is larger than the difference between 𝑆DA and 1, then the scale change is 

statistically insignificant and there is a strong case for setting S to 1. 
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Stage HO2 uses the value of S obtained by least-squares. 

Regarding S as already optimised, the Helmert equation can be written in the form 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + 𝐑 [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]   (5-7) 

or 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

𝑟1,1 𝑟1,2 𝑟1,3
𝑟2,1 𝑟2,2 𝑟2,3
𝑟3,1 𝑟3,2 𝑟3,3

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

] (5-8) 

where the matrix elements 𝑟𝑖,𝑗 are non-linear functions of the rotations RX, RY and RZ.  This is 

true whether the rotation matrix takes the form (2-16) or (2-18). 

 

In the context of geodetic datum transformations, rotations are generally smaller than 1 

(considerably smaller, in fact).  That makes their sines approximately their value in radians, 

their cosines approximately 1, and the products of their sines negligible.  Whether the rotation 

matrix is given by (2-16) or (2-18), it can be approximated as follows. 

           [
𝑟1,1 𝑟1,2 𝑟1,3
𝑟2,1 𝑟2,2 𝑟2,3
𝑟3,1 𝑟3,2 𝑟3,3

] ≅ [

1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

]. (5-9) 

 

Substituting (5-9) into (5-8), 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] ≅ [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

1 −𝑅𝑍 𝑅𝑌
𝑅𝑍 1 −𝑅𝑋
−𝑅𝑌 𝑅𝑋 1

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

] (5-10) 

and hence 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] ≅ [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

] + [

1 0 0 0 𝑆𝑍𝑠 −𝑆𝑌𝑠
0 1 0 −𝑆𝑍𝑠 0 𝑆𝑋𝑠
0 0 1 𝑆𝑌𝑠 −𝑆𝑋𝑠 0

]

[
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝑅𝑋
𝑅𝑌
𝑅𝑍 ]
 
 
 
 
 

. (5-11) 

 

The observation equations take the form 

           [
𝑋𝑡,𝑖 − 𝑆𝑋𝑠,𝑖
𝑌𝑡,𝑖 − 𝑆𝑌𝑠,𝑖
𝑍𝑡,𝑖 − 𝑆𝑍𝑠,𝑖

] = [

1 0 0 0 𝑆𝑍𝑠,𝑖 −𝑆𝑌𝑠,𝑖
0 1 0 −𝑆𝑍𝑠,𝑖 0 𝑆𝑋𝑠,𝑖
0 0 1 𝑆𝑌𝑠,𝑖 −𝑆𝑋𝑠,𝑖 0

]

[
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝑅𝑋
𝑅𝑌
𝑅𝑍 ]
 
 
 
 
 

+ [

𝑣𝑋,𝑖
𝑣𝑌,𝑖
𝑣𝑍,𝑖

]. (5-12) 

Since this complies with (4-1), the least-squares estimate of the 6 unknowns can be obtained by 

solving (4-2) or applying (4-3).  This will provide starting approximations �̄�𝑋, �̄�𝑌, �̄�𝑍 to the 

rotation parameters. 
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Stage HO3 begins with the substitution 

           [
𝑅𝑋
𝑅𝑌
𝑅𝑍

] = [

�̄�𝑋
�̄�𝑌
�̄�𝑍

] + [

𝛿𝑅𝑋
𝛿𝑅𝑌
𝛿𝑅𝑍

]. (5-13) 

 

Then each term in the rotation matrix R can be expressed in the form 
           𝑟𝑖,𝑗 = �̄�𝑖,𝑗 + 𝛿𝑅𝑋(𝜕𝑟𝑖,𝑗/𝜕𝑅𝑋) + 𝛿𝑅𝑌(𝜕𝑟𝑖,𝑗/𝜕𝑅𝑌) + 𝛿𝑅𝑍(𝜕𝑟𝑖,𝑗/𝜕𝑅𝑍) (5-14) 

where the partial derivatives are evaluated at �̄�𝑋, �̄�𝑌, �̄�𝑍.  The overbar in �̄�𝑖,𝑗 denotes 𝑟𝑖,𝑗 

evaluated at �̄�𝑋, �̄�𝑌, �̄�𝑍. 

 

This enables equation (5-8) to be rewritten in the form 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] = [
𝛥𝑋
𝛥𝑌
𝛥𝑍
] + [

�̄�1,1 �̄�1,2 �̄�1,3
�̄�2,1 �̄�2,2 �̄�2,3
�̄�3,1 �̄�3,2 �̄�3,3

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

] + [

𝑚1,1 𝑚1,2 𝑚1,3

𝑚2,1 𝑚2,2 𝑚2,3

𝑚3,1 𝑚3,2 𝑚3,3

] [

𝛿𝑅𝑋
𝛿𝑅𝑌
𝛿𝑅𝑍

] (5-15) 

where the terms 𝑚𝑖,𝑗 can be evaluated from the following equations. 

           𝑚𝑖,1 = (𝜕𝑟𝑖,1/𝜕𝑅𝑋)𝑆𝑋𝑠 + (𝜕𝑟𝑖,2/𝜕𝑅𝑋)𝑆𝑌𝑠 + (𝜕𝑟𝑖,3/𝜕𝑅𝑋)𝑆𝑍𝑠; (5-16) 

           𝑚𝑖,2 = (𝜕𝑟𝑖,1/𝜕𝑅𝑌)𝑆𝑋𝑠 + (𝜕𝑟𝑖,2/𝜕𝑅𝑌)𝑆𝑌𝑠 + (𝜕𝑟𝑖,3/𝜕𝑅𝑌)𝑆𝑍𝑠; (5-17) 

           𝑚𝑖,3 = (𝜕𝑟𝑖,1/𝜕𝑅𝑍)𝑆𝑋𝑠 + (𝜕𝑟𝑖,2/𝜕𝑅𝑍)𝑆𝑌𝑠 + (𝜕𝑟𝑖,3/𝜕𝑅𝑍)𝑆𝑍𝑠. (5-18) 

 

Equations (5-16) to (5-18) can be expressed in vector form: 

           [
𝑚1,1

𝑚2,1

𝑚3,1

] = [

𝜕𝑟1,1/𝜕𝑅𝑋 𝜕𝑟1,2/𝜕𝑅𝑋 𝜕𝑟1,3/𝜕𝑅𝑋
𝜕𝑟2,1/𝜕𝑅𝑋 𝜕𝑟2,2/𝜕𝑅𝑋 𝜕𝑟2,3/𝜕𝑅𝑥
𝜕𝑟3,1/𝜕𝑅𝑋 𝜕𝑟3,2/𝜕𝑅𝑋 𝜕𝑟3,3/𝜕𝑅𝑋

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-19) 

           [
𝑚1,2

𝑚2,2

𝑚3,2

] = [

𝜕𝑟1,1/𝜕𝑅𝑌 𝜕𝑟1,2/𝜕𝑅𝑌 𝜕𝑟1,3/𝜕𝑅𝑌
𝜕𝑟2,1/𝜕𝑅𝑌 𝜕𝑟2,2/𝜕𝑅𝑌 𝜕𝑟2,3/𝜕𝑅𝑌
𝜕𝑟3,1/𝜕𝑅𝑌 𝜕𝑟3,2/𝜕𝑅𝑌 𝜕𝑟3,3/𝜕𝑅𝑌

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-20) 

           [
𝑚1,3

𝑚2,3

𝑚3,3

] = [

𝜕𝑟1,1/𝜕𝑅𝑍 𝜕𝑟1,2/𝜕𝑅𝑍 𝜕𝑟1,3/𝜕𝑅𝑍
𝜕𝑟2,1/𝜕𝑅𝑍 𝜕𝑟2,2/𝜕𝑅𝑍 𝜕𝑟2,3/𝜕𝑅𝑍
𝜕𝑟3,1/𝜕𝑅𝑍 𝜕𝑟3,2/𝜕𝑅𝑍 𝜕𝑟3,3/𝜕𝑅𝑍

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-21) 

 

Equation (5-15) can be expressed in terms of linear combinations of X, Y, Z, 𝛿𝑅𝑋, 𝛿𝑅𝑌 and 

𝛿𝑅𝑍. 

           [
𝑋𝑡
𝑌𝑡
𝑍𝑡

] − [

�̄�1,1 �̄�1,2 �̄�1,3
�̄�2,1 �̄�2,2 �̄�2,3
�̄�3,1 �̄�3,2 �̄�3,3

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

] = [

1 0 0 𝑚1,1 𝑚1,2 𝑚1,3

0 1 0 𝑚2,1 𝑚2,2 𝑚2,3

0 0 1 𝑚3,1 𝑚3,2 𝑚3,3

]

[
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛿𝑅𝑋
𝛿𝑅𝑌
𝛿𝑅𝑍]

 
 
 
 
 

 (5-22) 

For the ith point, the observation equations take the form shown below. 
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           [
𝑋𝑡,𝑖
𝑌𝑡,𝑖
𝑍𝑡,𝑖

] − [

�̄�1,1 �̄�1,2 �̄�1,3
�̄�2,1 �̄�2,2 �̄�2,3
�̄�3,1 �̄�3,2 �̄�3,3

] [

𝑆𝑋𝑠,𝑖
𝑆𝑌𝑠,𝑖
𝑆𝑍𝑠,𝑖

] = [

1 0 0 𝑚1,1,𝑖 𝑚1,2,𝑖 𝑚1,3,𝑖

0 1 0 𝑚2,1,𝑖 𝑚2,2,𝑖 𝑚2,3,𝑖

0 0 1 𝑚3,1,𝑖 𝑚3,2,𝑖 𝑚3,3,𝑖

]

[
 
 
 
 
 
𝛥𝑋
𝛥𝑌
𝛥𝑍
𝛿𝑅𝑋
𝛿𝑅𝑌
𝛿𝑅𝑍]

 
 
 
 
 

+ [

𝑣𝑋,𝑖
𝑣𝑌,𝑖
𝑣𝑍,𝑖

]. (5-23) 

Since this complies with (4-1), the least-squares estimate of the 6 unknowns can be obtained by 

solving (4-2) or applying (4-3).  The values of 𝛿𝑅𝑋, 𝛿𝑅𝑌 and 𝛿𝑅𝑍  are added to �̄�𝑋, �̄�𝑌, �̄�𝑍 to 

obtain new approximations to the rotation parameters.  The iteration step is repeated until 

convergence. 

 

All that remains is to provide explicit formulae for the matrix elements in equation (5-22). 

 

Consider the case of Version-1 Helmert, where the rotation matrix satisfies equation (2-16).  

Using �̄�𝑋 to denote cos�̄�𝑋, �̄�𝑋 to denote sin�̄�𝑋, etc, the definition of �̄�𝑖,𝑗 ensures that 

           [
�̄�1,1 �̄�1,2 �̄�1,3
�̄�2,1 �̄�2,2 �̄�2,3
�̄�3,1 �̄�3,2 �̄�3,3

] = [
�̄�𝑌�̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍 − �̄�𝑋�̄�𝑍 �̄�𝑋�̄�𝑍 + �̄�𝑋�̄�𝑌�̄�𝑍
�̄�𝑌�̄�𝑍 �̄�𝑋�̄�𝑍 + �̄�𝑋�̄�𝑌�̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍 − �̄�𝑋�̄�𝑍
−�̄�𝑌 �̄�𝑋�̄�𝑌 �̄�𝑋�̄�𝑌

]. (5-24) 

From (5-19), 

           [
𝑚1,1

𝑚2,1

𝑚3,1

] = [

0 �̄�𝑋�̄�𝑌 �̄�𝑍 + �̄�𝑋�̄�𝑍 �̄�𝑋�̄�𝑍 − �̄�𝑋�̄�𝑌�̄�𝑍
0 �̄�𝑋�̄�𝑌�̄�𝑍 − �̄�𝑋�̄�𝑍 −(�̄�𝑋�̄�𝑌�̄�𝑍 + �̄�𝑋�̄�𝑍)
0 �̄�𝑋�̄�𝑌 −�̄�𝑋�̄�𝑌

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-25) 

From (5-20), 

           [
𝑚1,2

𝑚2,2

𝑚3,2

] = [
−�̄�𝑌 �̄�𝑍 �̄�𝑋�̄�𝑌 �̄�𝑍 �̄�𝑋�̄�𝑌 �̄�𝑍
−�̄�𝑌 �̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍
−𝑐�̄� −�̄�𝑋�̄�𝑌 −�̄�𝑋�̄�𝑌

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-26) 

From (5-21), 

           [
𝑚1,3

𝑚2,3

𝑚3,3

] = [
−�̄�𝑌 �̄�𝑍 −(�̄�𝑋�̄�𝑌�̄�𝑍 + �̄�𝑋�̄�𝑍) �̄�𝑋�̄�𝑍 − �̄�𝑋�̄�𝑌�̄�𝑍
�̄�𝑌𝑐�̄� �̄�𝑋�̄�𝑌�̄�𝑍 − �̄�𝑋�̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍 + �̄�𝑋�̄�𝑍
0 0 0

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-27) 

 

Consider the case of Version-2 Helmert, where the rotation matrix satisfies equation (2-18).  

Using �̄�𝑋 to denote cos�̄�𝑋, �̄�𝑋 to denote sin�̄�𝑋, etc, the definition of �̄�𝑖,𝑗 ensures that 

           [
�̄�1,1 �̄�1,2 �̄�1,3
�̄�2,1 �̄�2,2 �̄�2,3
�̄�3,1 �̄�3,2 �̄�3,3

] = [
�̄�𝑌 �̄�𝑍 −�̄�𝑌�̄�𝑍 �̄�𝑌

�̄�𝑋�̄�𝑌�̄�𝑍 + �̄�𝑋�̄�𝑍 �̄�𝑋�̄�𝑍 − �̄�𝑋�̄�𝑌�̄�𝑍 −�̄�𝑋�̄�𝑌
�̄�𝑋�̄�𝑍 − �̄�𝑋�̄�𝑌 �̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍 + �̄�𝑋�̄�𝑍 �̄�𝑋�̄�𝑌

] (5-28) 

From (5-19), 

           [
𝑚1,1

𝑚2,1

𝑚3,1

] = [
0 0 0

�̄�𝑋�̄�𝑌�̄�𝑍 − �̄�𝑋�̄�𝑍 −(�̄�𝑋�̄�𝑍 + �̄�𝑋�̄�𝑌�̄�𝑍) −�̄�𝑋�̄�𝑌
�̄�𝑋�̄�𝑍 + �̄�𝑋�̄�𝑌 �̄�𝑍 �̄�𝑋�̄�𝑍 − �̄�𝑋�̄�𝑌�̄�𝑍 −�̄�𝑋�̄�𝑌

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-29) 

From (5-20), 
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           [
𝑚1,2

𝑚2,2

𝑚3,2

] = [
−�̄�𝑌�̄�𝑍 �̄�𝑌�̄�𝑍 �̄�𝑌
�̄�𝑋�̄�𝑌�̄�𝑍 −�̄�𝑋�̄�𝑌�̄�𝑍 �̄�𝑋�̄�𝑌
−�̄�𝑋�̄�𝑌�̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍 −�̄�𝑋�̄�𝑌

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-30) 

From (5-21), 

           [
𝑚1,3

𝑚2,3

𝑚3,3

] = [

−�̄�𝑌�̄�𝑍 −�̄�𝑌 �̄�𝑍 0
�̄�𝑋𝑐�̄� − �̄�𝑋�̄�𝑌�̄�𝑍 −(�̄�𝑋�̄�𝑍 + �̄�𝑋�̄�𝑌 �̄�𝑍) 0
�̄�𝑋𝑐�̄� + �̄�𝑋�̄�𝑌�̄�𝑍 �̄�𝑋�̄�𝑌�̄�𝑍 − �̄�𝑋�̄�𝑍 0

] [

𝑆𝑋𝑠
𝑆𝑌𝑠
𝑆𝑍𝑠

]. (5-31) 

 

Collectively, stages HO2 and HO3 derive a rigid transformation.  For this study, an Excel 

VBA subroutine was written to perform this derivation.  It can be found in sub-appendix G.2.4. 

 

Stage HO4 involves repetition of the stages HO2 and HO3 for two slightly different scale 

changes, 𝛥𝑆DA − 𝛿𝑆 and  𝛥𝑆DA + 𝛿𝑆.  The residuals enable the computation of three values of 

MinRMS(S, 7PC).  If the latter is evaluated to 8 or 9 decimal places, 0.01ppm would be a 

suitable value for S. 

 

If MinRMS is less for the distance-analysis estimate of S than for the two neighbouring 

estimates, and the outer values of MinRMS are closer to each other than to the central value, 

then the distance-analysis estimate of S can be regarded as optimal along with the 

corresponding translation and rotation parameters obtained by stages HO2 and HO3.  The 

condition is illustrated in Figure 5-1, in which MinRMS is near-symmetric about its central 

value. 

 

 
Figure 5-1: The pattern of minimum RMS 
distance residuals from the 7PC transformation 
that indicates that the S obtained from distance 
analysis is the optimum value. 

 

If the near-symmetry condition is not satisfied, then a quadratic curve can be fitted to the three 

values of (S, MinRMS), as in Figure 5-2. 
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Figure 5-2: The quadratically-derived optimal S based on three 
minimum RMS distance residuals from the 7PC transformation. 

 
The value of S that matches the minimum point on the curve is a quadratically-derived 

optimal value and can be denoted 𝛥𝑆QDO.  The values of MinRMS are denoted by 𝑀−1, 𝑀0 

and 𝑀1.  The curve does not need to be plotted, since 𝛥𝑆QDO can be computed from 

           𝛥𝑆QDO = 𝛥𝑆DA + 
(𝑀−1−𝑀1)𝛿𝑆

2(𝑀−1+𝑀1−2𝑀0)
. (5-32) 

 

Stages HO2 and HO3 are performed a 4th time to obtain the remaining parameters. 

 

The use of formula (5-32) assumes that MinRMS behaves like a quadratic function around the 

optimal value of S.  All the tests carried out in this study confirm that assumption.  To give 

one example, for the dataset in sub-appendix C.2, MinRMS had a minimum value 

(2.519810834m) when S was -20.6863ppm.  For i in the range -8 to 8, MinRMS(S, 7PC) 

was almost indistinguishable from (2.519642890 + 0.0000026244𝑖2)m when 𝛥𝑆 =

(−20.6863 ± 𝑖/100)ppm. 

 

The four-stage method was applied to find the optimal Helmert Version 1 parameters for the 

transformations listed below (cross-referenced to Appendices C and D). 

• AGD84 to GDA94 in Western Australia using 82 data points (C.1). 

• OSGB36 to WGS84 in Great Britain using 44 data points (C.2). 

• Accra to WGS84 in Ghana’s Golden Triangle using 19 data points (C.3). 

• SWEREF93 to RT90/RH70 in Sweden using 20 data points (C.4). 

• Krassovsky to WGS84 (3 simulations) in “Helmatan” using 12 data points (D.1). 

• SAD69 to WGS84 (3 simulations) in “Helmatia” using 16 data points (D.2). 

• Arc 1950 to WGS84 (3 simulations) in “Helmatto” using 14 data points (D.3). 

• Réunion to WGS84 (3 simulations) in “Helmatrun” using 13 data points (D.4). 
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• International Ellipsoid to WGS84 (3 simulations) in “St Fuitioci” using 12 data points 

(D.5). 

• Bessel 1841 to WGS84 (3 simulations) in “Main Gyria” using 20 data points (D6). 

 

The transformation parameters obtained are given in Table 5-1. 

 

Table 5-1: Optimal Version-1 parameters derived from actual and simulated datasets 
Dataset X (m) Y (m) Z (m) S (ppm) RX () RY () RZ () 
C.1 -115.83771 -48.37321 144.75955 3.68981458 0.11971214 0.38398838 0.37039627 

C.2 445.18103 -161.83410 542.61595 -20.68629118 -0.73244160 0.27900550 1.60776264 

C.3 -151.19021 31.59316 327.17659 -7.16772580 -0.44517945 0.00581813 -0.02199526 

C.4 -419.56843 -99.24597 -591.45587 1.02365275 -0.85018849 -1.81414510 7.85347921 

D.1 (Sim 1) -25.97175 66.96656 -215.58018 7.88825821 6.88237925 -6.80419106 -11.56950830 

D.1 (Sim 2) -25.97165 66.96753 -215.58083 17.89830362 16.12371323 -16.16292380 -21.56056403 

D.1 (Sim 3) -25.97112 66.96956 -215.58215 22.44843559 22.72662595 -21.91994919 -42.65174832 

D.2 (Sim 1) -50.63311 -130.97910 90.47817 -15.18944085 9.56675112 -8.37521909 14.56740251 

D.2 (Sim 2) -50.63323 -130.97865 90.47870 -16.68945726 21.08555751 -15.75695369 23.50618429 

D.2 (Sim 3) -50.63320 -130.97800 90.47900 -18.18951039 25.88288600 -22.31974602 41.38499204 

D.3 (Sim 1) -77.21314 -103.53758 79.53254 -12.97571104 10.39471472 -8.12729717 -14.08503079 

D.3 (Sim 2) -77.21314 -103.53790 79.52175 -14.57541748 21.67586939 -15.23604061 -22.24613350 

D.3 (Sim 3) -77.21234 -103.53908 79.51169 -16.17514328 26.37833112 -21.55381994 -38.56716019 

D.4 (Sim 1) 775.31588 -608.85589 -62.29840 -32.33400211 -0.36612789 77.00092571 -11.20496525 

D.4 (Sim 2) 775.31090 -608.85392 -62.29993 -28.81949018 -0.60357050 47.03090681 -6.95515844 

D.4 (Sim 3) 775.31588 -608.85589 -62.29840 -32.33400211 -0.36612789 77.00092571 -11.20496525 

D.5 (Sim 1) 1159.21272 -2047.20929 917.63820 200.75920949 42.57768970 -93.33285762 38.16074892 

D.5 (Sim 2) 959.21544 -1097.20146 317.45958 80.74850000 25.58961200 -50.33217866 30.17607838 

D.5 (Sim 3) 959.21529 -879.19931 317.40055 47.74470000 20.59296124 -37.33210865 26.17918694 

D.6 (Sim 1) 214.41329 -155.60150 -221.77581 154.33300000 16.83221351 -63.96604668 32.89380878 

D.6 (Sim 2) 214.39760 178.39256 -221.79482 94.33300000 15.83754804 -41.96554491 25.89564848 

D.6 (Sim 3) 214.38912 407.39446 -221.80495 64.33200000 14.83990228 -30.96517251 20.89659788 

 

The first significant finding from these tests was that stage HO3 only needed a single iteration; 

the second iteration merely confirmed convergence.  On this evidence, the re-linearisation only 

needs to be applied once. 

 

The second significant finding was that the “distance-analysis” scale-change proved to be 

optimal, except in the case of three simulated datasets for which the area of coverage was 

significantly smaller than a degree square. 

 

The exceptional cases were the three simulations for St Fuitioci.  They involved very different 

rotations and scale changes (see last 3 rows of above table) but they had the same 

“measurement errors” (perturbations to coordinates).  Stage HO4 showed that the optimal S 

differed from 𝛥𝑆DA by 0.04ppm.  Halving the simulated measurement errors reduced the 

difference to 0.01ppm.  This suggested that small areas increase the size of measurement errors 

relative to the inter-point distances, undermining the validity of 𝛥𝑆DA  as a scale-change 

estimate (albeit slightly).  This explanation was confirmed when doubling of the measurement 
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errors and doubling of all inter-point distances had a totally neutral effect on the difference 

between 𝛥𝑆DA and the optimal S. 

 

In the St Fuitioci simulations, the original S was near-optimal in the sense that 

                       MinRMS(𝛥𝑆opt, 7𝑃𝐶) = MinRMS(𝛥𝑆DA, 7𝑃𝐶) − 0.0003mm. (5-33) 

The differences in transformed coordinates were at the sub-millimetre level (just).  Even so, 

the use of a quadratically-derived optimal S proved effective in optimising S. 

 

In practice, therefore, the Helmert optimisation process consists of: 

• HO1: Distance analysis to obtain the original estimate of the scale change (𝛥𝑆DA).  

• HO2: Derivation of initial approximate translation and rotation parameters.  This is 

done from what would be the partially-linear version of Bursa-Wolf except that the 

scale change has been already determined.  This stage applies least-squares to the 

observation equations (5-12). 

• HO3: Deriving improved translation and rotation parameters using a re-linearisation 

of Helmert (with scale change S fixed) based on corrections to the approximate 

rotation parameters; further iteration will be unnecessary (except possibly when testing 

the software).  Least-squares optimisation is applied to the observation equations (5-

23). 

• HO4: Verification of optimality by repeating HO2 and HO3 for small deviations 

from 𝛥𝑆DA.  This is only necessary when testing the software for stages HO1 to HO3, 

or in cases where all control points are within 150 kilometres of each other. 

 

This method is also described in Ruffhead (2021a), which is based on the first two sections of 

this chapter. 

 

5.2 Pseudo-optimal Helmert transformation 

Derivation of either version of Helmert requires control points.  In most cases they are not 

publicly available.  Proof of their existence can be found in tables of parameters of Bursa-

Wolf transformations, notably Table 5 of ESRI (2012). 

 

It is not possible to derive the optimal Version 1 of Helmert purely from the optimised Bursa-

Wolf.  However, it is possible to derive a close-fitting “pseudo-optimal” Helmert 

transformation by 
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• applying the totally-linear Bursa-Wolf model to 25-50 points that give good coverage 

of the geographical region in question, and 

• deriving the Helmert transformation which gives the best fit at these virtual data points.  

This can be done by the stages HO1, HO2 and HO3 (without further iteration) 

described in Section 5.1. 

 

If the RMS fit of Helmert to the virtual points is small compared with the RMS fit of Bursa-

Wolf to the original control points, then the pseudo-optimal Helmert transformation should 

give almost as good a fit as the optimal Bursa-Wolf.  It can be regarded as the conformal model 

that comes closest to the optimal Bursa-Wolf.  It will also provide an indication of how far the 

optimal Bursa-Wolf is to being conformal. 

 

The smaller the rotation and scaling parameters, the closer Helmert is to Bursa-Wolf.  

Conversely the divergence between Helmert and Bursa-Wolf is likely to be greatest when the 

scale change and at least one rotation are large.  Two notable examples are the following 

Bursa-Wolf transformations from Table 5 of ESRI (2012): 

• Reunion 1947 To RGR 1992 for which the Bursa Wolf parameters are 

789.524m, -626.486m, -89.904m, -32.3241ppm, 0.6006, 76.7946, -10.5788. 

• Fatu Iva 1972 To WGS84 for which the Bursa-Wolf parameters 347.103m, 

1078.125m, 2623.922m, 186.074ppm, -33.8875, 70.6773, -9.3943.  The rotations 

have been converted to position-vector rotations. 

 

Datasets of virtual points have been created for this study.  They are shown in Appendix E, 

with diagrams of Réunion Island and Fatu Iva (sometimes spelt Fatu Hiva although the “H” is 

silent). 

 

In each case, the method of deriving Helmert Version 1 was that described in Section 5.1.  The 

convergence was rapid as in the tests in Section 5.1.  The verification stage produced 

agreement with Figure 5-1 (unsurprisingly as there weren’t any simulated or actual 

measurement errors).  The transformation parameters obtained are tabulated below: 
Dataset X (m) Y (m) Z (m) S (ppm) RX () RY () RZ () 
E.1 (s→t) 789.70880 -626.93585 -89.93390 -32.26312476 0.60126857 76.79736169 -10.57263204 

E.2 (s→t) 346.90967 1078.23235 2623.87087 186.1299981 -33.88457022 70.66260075 -9.395414631 

 

The method of Section 3.6.1 was used to derive the Helmert Version 1 parameters the other 

way (target to source).  The transformation parameters obtained are tabulated below: 
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Dataset X (m) Y (m) Z (m) S (ppm) RX () RY () RZ () 
E.1 (t→s) -789.79985 626.91586 89.64092 32.26416570 -0.60520506 -76.79733077 10.57285664 

E.2 (t→s) -345.89726 -1077.61650 -2623.67829 -186.0953602 33.88135347 -70.66414317 9.38380681 

 

These results could be put into a table of parameters for the following Helmert Version 1 

transformations: 

Reunion 1947 To RGR 1992 

Fatu Iva 1972 To WGS84 

RGR 1992 To Reunion 1947 

WGS84 To Fatu Iva 1972 

 

5.3 Derivation of 8-parameter affine transformation 

The 8-parameter affine model in Section 2.10 uses a multiplicative matrix RS that is non-

linear with respect to the rotation and scaling parameters.  The task of optimising parameters 

therefore requires something more elaborate than the methodology described in Chapter 4 

(which is for linear models). 

 

Section 2.10 emphasised that the transformation should only be applied to local level 

coordinates in the two datums.  It follows that the model is derived from local level coordinates 

in the source and target datums.  The local level coordinates are derived from equations (2-49) 

and (2-50). 

 

Andrei (2006) describes a method of obtaining the transformation (RS version) from a dataset 

of at least 3 control points.  It requires initial approximations of the scale and rotations, but 

Andrei says nothing about how they are obtained.  Corrections are obtained by least-squares 

from a linearisation of the observation equations.  It is an iterative process and the algorithm 

(ibid, Appendix B) uses MATLAB software. 

 

Andrei’s algorithm in its most general form optimises 9 parameters, including 3 different scale 

factors.  However, it uses a parameter “no_param” which is 8 in the case where two scale 

factors are equal.  This case is treated as a linear constraint 𝑆1 − 𝑆2 = 0 and it is fed into the 

least-squares optimisation process known variously as “combined least-squares” (Cross, 1983) 

and “inclusion of infallible observations” (Bomford, 1980).  Although this is statistically valid, 

it would have been far simpler to introduce the single horizontal scale factor by substitution 

in the 9-parameter algorithm. 
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One advantage of using ENU coordinates is that a third of the observation equations have 

residuals which are roughly vertical. This provides a means whereby height observations can 

be given lower weights than horizontal observations in the derivation of parameters.  Details 

of this approach are given in Reit (1998). 

 

The new method of deriving the optimal 8-parameter transformation introduced for this study 

is based on comparisons with the optimal 7PC model.  The method for obtaining the latter is 

described in Section 5.1 and can easily be applied to the ENU coordinate system.  Crucially, 

the scale factor is derived from distance analysis, giving 𝛥𝑆DA. 

 

For this analysis, 𝑑𝑣 and 𝑑ℎ will denote “vertical” and “horizontal” components of distance 

from a data point to the central point in the source datum.  This is consistent with the use of 

𝑆𝑣 and 𝑆ℎ to denote the scale factors, as introduced in Section 2.10.  

 

The key to the new method is the equivalent-enlargement hypothesis (EEH).  This is based on 

the assumption that the 8-parameter affine transformation that best fits the coordinate data will 

have the same element of enlargement (or shrinking) as the best-fitting 7PC model. 

                       ∑(𝑆𝑣𝑑𝑣)2 +∑(𝑆ℎ𝑑ℎ)2 = ∑(𝑆DA√𝑑𝑣
2 + 𝑑ℎ

2)
2

. (5-34) 

This may be written as 
                       𝑆𝑣2∑𝑑𝑣2 + 𝑆ℎ2∑𝑑ℎ2 = 𝑆DA2 ∑(𝑑𝑣2 + 𝑑ℎ2). (5-35) 

 

Condition (5-35) enables 𝛥𝑆ℎ to be expressed in terms of 𝛥𝑆𝑣. 

                       𝑆ℎ = √
𝑆DA
2 ∑(𝑑𝑣

2+𝑑ℎ
2)−𝑆𝑣

2∑𝑑𝑣
2

∑𝑑ℎ
2 . (5-36) 

 

In this approach, MinRMS(𝛥𝑆𝑣) is defined as the minimised RMS of the distance residual of 

the 8-parameter affine transformation resulting from a given choice of 𝛥𝑆𝑣.  This 𝛥𝑆𝑣 and the 

𝛥𝑆ℎ resulting from (5-36) are fed into equation (5-37) to obtain scaled coordinates. 

 

                  [
𝑋𝑠,𝑖,𝑠𝑐
′

𝑌𝑠,𝑖,𝑠𝑐
′

𝑍𝑠,𝑖,𝑠𝑐
′

] = [

𝑆ℎ 0 0
0 𝑆ℎ 0
0 0 𝑆𝑣

] [

𝑋𝑠,𝑖
′

𝑌𝑠,𝑖
′

𝑍𝑠,𝑖
′

]. (5-37) 

 

The other 6 parameters (translations and rotations) are derived by applying stages HO2 & HO3 

(described in Section 5.1) to the scaled source coordinates and target coordinates.  For this 
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study, an Excel VBA subroutine was written to perform those stages; it is given in sub-

appendix G.2.4. 

 

The obvious starting value of 𝛥𝑆𝑣 is 𝛥𝑆DA, and MinRMS(𝛥𝑆DA) is known from the Helmert 

optimisation.  If MinRMS(𝛥𝑆DA+0.1ppm) < MinRMS(𝛥𝑆DA) then the appropriate search 

direction will be values of 𝛥𝑆𝑣 increasing from 𝛥𝑆DA.  If not, then the appropriate search 

direction will be values of 𝛥𝑆𝑣 decreasing from 𝛥𝑆DA.  The search process is concluded when 

the value of 𝛥𝑆𝑣 that minimises MinRMS is computed. 

 

The new method was applied to find the optimal 8-parameter affine transformation for each 

of the following datasets (cross-referenced to Appendix C).  In each case the parameters 

obtained were successfully tested by computing the RMS residual distance for scale factors 

around those obtained by the algorithm.  The local level coordinates were obtained using 

Andrei’s process as described in Section 2.10.  (Six decimal places are shown merely to 

quantify the agreement between the “RS” and “SR” versions.) 

• AGD84 to GDA94 in Western Australia using 82 data points (C.1).  The RMS residual 

distance was 0.758246m for both the “RS” and “SR” versions. 

• OSGB36 to WGS84 in Great Britain using 44 data points (C.2).  The RMS residual 

distance was 2.504814m for the “RS” version and 2.504813m for the “SR” version. 

• Accra to WGS84 in Ghana’s Golden Triangle using 19 data points (C.3).  The RMS 

residual distance was 0.961925m for both the “RS” and “SR” versions. 

• SWEREF93 to RT90/RH70 in Sweden using 20 data points (C.4).  The RMS residual 

distance was 0.169407m for both the “RS” and “SR” versions.  This compares with 

0.173822m obtained by Andrei. (The latter figure was computed from the rounded 

RMS components in Table 4.5 of Andrei [2006].) 

 

These results provide strong empirical evidence that the equivalent-enlargement hypothesis is 

a property of the optimal 8-parameter affine transformation and is therefore a valid constraint 

in their derivation. 

 

5.4 Derivation of 9-parameter affine transformation 

The 9-parameter affine model in Section 2.11 uses a multiplicative matrix of the form RS or 

SR.  Either way, it is non-linear with respect to the rotation and scaling parameters.  This 

means the least-squares methodology described in Chapter 4 is too simplistic to optimise the 

parameters. 
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The methods encountered during this study are listed below.  Where N is given as the number 

of control points, it should be read as an arbitrary number not less than 3. 

• Späth (2004) describes a method of obtaining the SR version from a dataset of N control 

points.  It requires initial approximations of the rotations, but nothing is said about how 

they are obtained.  The process is iterative and – on the evidence of Späth’s numerical 

examples – requires anything from 42 to 137 iterations. 

• Andrei (2006) describes a method of obtaining the RS version from a dataset of N 

control points.  It requires initial approximations of the scale and rotations, but Andrei 

says nothing about how they are obtained.  Corrections are obtained by least-squares 

from a linearisation of the observation equations.  It is an iterative process and the 

algorithm (ibid, Appendix B) uses MATLAB software. 

• Fan (2009) describes a method of obtaining the RS version from 3 control points.  It 

does not require linearisation or approximate values for the unknown parameters. 

• Paláncz et al (2008) describes a method of obtaining the SR version from 3 control 

points.  It employs explicit analytical expressions developed by the computer algebra 

technique “Dixon resultant” as well as by “reduced Groebner basis” for solving the 3-

points problem. 

• Awange et al (2008) gives a “Procrustean solution” for N control points.  It is 

sometimes referred to as the ABC-Procrustes algorithm after the names of the authors 

(Awange, Bae, Claessens).  Han (2010) comments that the ABC algorithm “requires 

iterative computations and only works well in the cases of mild anisotropy”.  The 

notation is unusual, but the rotation matrix is applied to coordinates first, making the 

model equivalent to the SR version. 

• Paláncz et al (2010) extends the ABC-Procrustes algorithm by the PZ method named 

after Paláncz and Zaletnyik.  It derives the parameters of the SR version from N control 

points.  Its improvement on a result in Awange et al (2008) indicates that the ABC 

method does not produce the least-squares solution. 

 

The new method of deriving the optimal 9-parameter transformation has four stages: 

• Helmert optimisation: the method of Section 5.1 is applied to obtain the best-fitting 

7PC (Helmert) model.  Of particular importance are the minimum residual distance 

and the scale change 𝛥𝑆DA obtained from distance analysis. 

• 8-From-7: an 8-parameter affine transformation is obtained by variations from the 

best-fitting Helmert model, treating two of the scale factors as equal. 
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• 9-From-8: a 9-parameter affine transformation is obtained by variations from the 8-

parameter affine model (with the individual scale factor derived from the previous 

stage held fixed). 

• 9a-From-9: a further 9-parameter affine transformation is obtained by fixing the ratio 

of the two scale factors just separated and varying all three scale factors. 

 

For this analysis, the following temporary notation is introduced.  𝑑𝑋, 𝑑𝑌 and 𝑑𝑍 are X, Y and 

Z components of distance from a data point to the central point in the source datum.  𝑑𝑋𝑌, 𝑑𝑌𝑍 

and 𝑑𝑋𝑍 are distance components in the coordinate planes. 

 

The key to the new method is the equivalent-enlargement hypothesis (EEH).  This is based on 

the assumption that the 9-parameter affine transformation that best fits the coordinate data will 

have the same element of enlargement (or shrinking) as the best-fitting 7PC model. 

                       ∑(𝑆𝑋𝑑𝑋)2 +∑(𝑆𝑌𝑑𝑌)2 +∑(𝑆𝑍𝑑𝑍)2 = ∑(𝑆DA√𝑑𝑋
2 + 𝑑𝑌

2 + 𝑑𝑍
2)
2

. (5-38) 

 

An equivalent expression of the equivalent-enlargement hypothesis is 

                       𝑆𝑋
2∑𝑑𝑋

2 + 𝑆𝑌
2∑𝑑𝑌

2 + 𝑆𝑍
2∑𝑑𝑍

2 = 𝑆DA
2 ∑(𝑑𝑋

2 + 𝑑𝑌
2 + 𝑑𝑍

2), (5-39) 

and it should be noted that the right-hand side of this equation is constant. 

 

The 8-From-7 stage seeks to optimise (at least provisionally) one of the scale factors 𝑆𝑋, 𝑆𝑌 

and 𝑆𝑍 of the 9-parameter transformation.  The best choice is probably the one corresponding 

to the smallest spread of values, likely to be the axis-direction which comes closest to being 

vertical.  In the case of the dataset in sub-appendix C.1, the one used in Paláncz et al (2010), 

that is the Y-direction.  Without loss of generality, the following description of the 8-From-7 

stage treats 𝑆𝑌 as the first scale factor to be optimised.  The other scale factor will apply to 

distances in the XZ plane and will be denoted by 𝑆𝑋𝑍. 

 

Condition (5-39) can be written as 

                       𝑆𝑌
2∑𝑑𝑌

2 + 𝑆𝑋𝑍
2 ∑𝑑𝑋𝑍

2 = 𝑆DA
2 ∑(𝑑𝑌

2 + 𝑑𝑋𝑍
2 ), (5-40) 

where 

                       ∑𝑑𝑋𝑍
2 = ∑(𝑑𝑋

2 + 𝑑𝑍
2) = ∑𝑑𝑋

2 + ∑𝑑𝑍
2. (5-41) 

Condition (5-41) enables 𝑆𝑋𝑍 to be expressed in terms of 𝑆𝑌: 

                       𝑆𝑋𝑍 = √
𝑆DA
2 ∑(𝑑𝑌

2+𝑑𝑋𝑍
2 )−𝑆𝑌

2∑𝑑𝑌
2

∑𝑑𝑋𝑍
2 , (5-42) 

and hence 𝛥𝑆𝑋𝑍 can be expressed in terms of 𝛥𝑆𝑌. 
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For the moment, MinRMS(𝛥𝑆𝑌) is defined as the minimised RMS of the distance residual of 

the 8-parameter affine transformation resulting from a given choice of  𝛥𝑆𝑌.  How trial values 

of  𝛥𝑆𝑌 and the resulting 𝛥𝑆𝑋𝑍 are applied depends on whether the affine model is of type RS 

(scaling applied first) or SR (rotation applied first). 

 

If the affine model is of type RS, the 6-parameter rigid transformation is treated as that which 

transforms scaled source coordinates to the target coordinates, where the scaled source 

coordinates are given by 

                  [
𝑋𝑠,𝑖,𝑠𝑐
𝑌𝑠,𝑖,𝑠𝑐
𝑍𝑠,𝑖,𝑠𝑐

] = [
𝑆𝑋𝑍 0 0
0 𝑆𝑌 0
0 0 𝑆𝑋𝑍

] [

𝑋𝑠,𝑖
𝑌𝑠,𝑖
𝑍𝑠,𝑖

]. (5-43) 

 

If the affine model is of type SR, the 6-parameter rigid transformation is treated as that which 

transforms the source coordinates to the “unscaled” target coordinates, where the unscaled 

target coordinates are given by 

                  [
𝑋𝑡,𝑖,𝑢𝑛𝑠𝑐
𝑌𝑡,𝑖,𝑢𝑛𝑠𝑐
𝑍𝑡,𝑖,𝑢𝑛𝑠𝑐

] = [

1/𝑆𝑋𝑍 0 0
0 1/𝑆𝑌 0
0 0 1/𝑆𝑋𝑍

] [

𝑋𝑡,𝑖
𝑌𝑡,𝑖
𝑍𝑡,𝑖

]. (5-44) 

 

Either way, the rigid transformation is optimised by applying stages HO2 & HO3 (described 

in Section 5.1).  For this study, an Excel VBA subroutine was written to perform those stages; 

it is given in sub-appendix G.2.4. 

 

Note that in the SR case, the translation parameters ΔX, ΔY and ΔZ from the rigid 

transformation need to be scaled by 𝑆𝑋𝑍,  𝑆𝑌 and 𝑆𝑋𝑍 respectively to become part of the 8-

parameter set for the affine model. 

 

The obvious starting value of 𝛥𝑆𝑌 is 𝛥𝑆DA, and MinRMS(𝛥𝑆DA) is known from the Helmert 

optimisation.  If MinRMS(𝛥𝑆DA+0.1ppm) < MinRMS(𝛥𝑆DA) then the appropriate search 

direction will be values of 𝛥𝑆𝑌 increasing from 𝛥𝑆DA.  If not, then the appropriate search 

direction will be values of 𝛥𝑆𝑌 decreasing from 𝛥𝑆DA. 

 

This stage is concluded when the value of 𝛥𝑆𝑌 that minimises MinRMS is computed.  For the 

next stage, 𝑆𝑌 is regarded as fixed.  The corresponding value of 𝑆𝑋𝑍 is assigned to the 

intermediate quantity 𝑆𝑖𝑛𝑡. 
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The 9-From-8 stage can be regarded as the optimisation of 𝛥𝑆𝑋 and 𝛥𝑆𝑍 subject to condition 

(5-39) and 𝑆𝑌 remaining fixed. 

 

Condition (5-39) implies that 
                       𝑆𝑋2∑𝑑𝑋2 + 𝑆𝑌2∑𝑑𝑌2 + 𝑆𝑍2∑𝑑𝑍2 = 𝑆𝑌

2∑𝑑𝑌
2 + 𝑆𝑖𝑛𝑡

2 ∑(𝑑𝑋
2 + 𝑑𝑍

2). (5-45) 

and hence 
                       𝑆𝑋2∑𝑑𝑋2 + 𝑆𝑍2∑𝑑𝑍2 = 𝑆𝑖𝑛𝑡2 ∑(𝑑𝑋2 + 𝑑𝑍2). (5-46) 

 

Condition (5-46) enables 𝑆𝑍 to be expressed in terms of 𝑆𝑋: 

                       𝑆𝑍 = √
𝑆𝑖𝑛𝑡
2 ∑(𝑑𝑋

2+𝑑𝑍
2)−𝑆𝑋

2∑𝑑𝑋
2

∑𝑑𝑍
2 , (5-47) 

and hence 𝛥𝑆𝑍 can be expressed in terms of 𝛥𝑆𝑋. 

 

For this stage, MinRMS(𝛥𝑆𝑋) is now re-defined as the minimised RMS of the distance residual 

of the 9-parameter affine transformation resulting from a given choice of  𝛥𝑆𝑋.  How trial 

values of  𝛥𝑆𝑋 and the resulting 𝛥𝑆𝑍 are applied depends on whether the affine model is of 

type RS (scaling applied first) or SR (rotation applied first). 

 

If the affine model is of type RS, the 6-parameter rigid transformation is treated as that which 

transforms scaled source coordinates to the target coordinates, where the scaled source 

coordinates are given by 

                  [
𝑋𝑠,𝑖,𝑠𝑐
𝑌𝑠,𝑖,𝑠𝑐
𝑍𝑠,𝑖,𝑠𝑐

] = [

𝑆𝑋 0 0
0 𝑆𝑌 0
0 0 𝑆𝑍

] [

𝑋𝑠,𝑖
𝑌𝑠,𝑖
𝑍𝑠,𝑖

]. (5-48) 

 

If the affine model is of type SR, the 6-parameter rigid transformation is treated as that which 

transforms the source coordinates to the “unscaled” target coordinates, where the unscaled 

target coordinates are given by 

                  [
𝑋𝑡,𝑖,𝑢𝑛𝑠𝑐
𝑌𝑡,𝑖,𝑢𝑛𝑠𝑐
𝑍𝑡,𝑖,𝑢𝑛𝑠𝑐

] = [

1/𝑆𝑋 0 0
0 1/𝑆𝑌 0
0 0 1/𝑆𝑍

] [

𝑋𝑡,𝑖
𝑌𝑡,𝑖
𝑍𝑡,𝑖

]. (5-49) 

 

Either way, the rigid transformation is optimised by applying stages HO2 & HO3 (described 

in Section 5.1). 
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Note that in the SR case, the translation parameters ΔX, ΔY and ΔZ from the rigid 

transformation need to be scaled by 𝑆𝑋,  𝑆𝑌 and 𝑆𝑍 respectively to become part of the 9-

parameter set for the affine model. 

 

The obvious starting value of 𝛥𝑆𝑋 is 𝛥𝑆𝑖𝑛𝑡, and MinRMS(𝛥𝑆𝑖𝑛𝑡) is the RMS distance residual 

already computed for the optimised 8-parameter model.  If MinRMS(𝛥𝑆𝑖𝑛𝑡+0.1ppm) < 

MinRMS(𝛥𝑆𝑖𝑛𝑡) then the appropriate search direction will be values of 𝛥𝑆𝑋 increasing from 

𝛥𝑆𝑖𝑛𝑡.  If not, then the appropriate search direction will be values of 𝛥𝑆𝑋 decreasing from 

𝛥𝑆𝑖𝑛𝑡. 

 

This stage is concluded when the value of 𝛥𝑆𝑋 that minimises MinRMS is computed.  The 

value of 𝑆𝑋, the corresponding value of 𝑆𝑍 and the already-determined value of 𝑆𝑌 will 

complete the set of scale factors. 

 

The 9a-From-9 stage can be regarded as the optimisation of 𝛥𝑆𝑋, 𝛥𝑆𝑌 and 𝛥𝑆𝑍 subject to 

condition (5-39) and the ratio 𝑆𝑋: 𝑆𝑍 remaining fixed. 

 
                       𝑐 = 𝑆𝑍/𝑆𝑋  from the conclusion of the 9-From-8 stage. (5-50) 

Keeping the ratio 𝑆𝑋: 𝑆𝑍 fixed becomes the condition 

                       𝑆𝑍 = 𝑐𝑆𝑋. (5-51) 

Varying 𝑆𝑋 requires 𝑆𝑍 to be reset by (5-51) and 𝑆𝑌 to be reset by 

                       𝑆𝑌 = √
𝑆DA
2 ∑(𝑑𝑋

2+𝑑𝑌
2+𝑑𝑍

2)−𝑆𝑋
2∑𝑑𝑋

2−𝑆𝑍
2∑𝑑𝑍

2

∑𝑑𝑌
2 . (5-52) 

 

The obvious starting value of 𝛥𝑆𝑋 is the value obtained from the 9-From-8 stage.  As before, 

the value is varied until the new MinRMS(𝛥𝑆𝑋) is minimised. 

 

The four-stage method was applied to find the optimal “SR” 9-parameter affine transformation 

for each of the following datasets (cross-referenced to Appendix C).  In each case the 

parameters obtained were successfully tested by computing the RMS residual distance for 

scale factors around those obtained by the algorithm.  (Six decimal places are shown as in 

Section 5.3, this time t to be consistent with the sources cited.) 

• AGD84 to GDA94 in Western Australia using 82 data points (C.1).  The RMS residual 

distance was 0.733450m.  This is less than the RMS residual distances from the 
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parameters published in Paláncz et al (2010) for the same data: 0.733464m (PZ 

method), 0.733466m (GM method) and 0.749824m (ABC method). 

• OSGB36 to WGS84 in Great Britain using 44 data points (C.2).  The RMS residual 

distance was 2.396004m. 

• Accra to WGS84 in Ghana’s Golden Triangle using 19 data points (C.3).  The RMS 

residual distance was 0.959799m. 

• SWEREF93 to RT90/RH70 in Sweden using 20 data points (C.4).  The RMS residual 

distance was 0.178611m.  This is identical to the RMS residual distance corresponding 

to the parameters in Andrei (2006).  The values of the parameters differ slightly from 

those of this study, possibly because Andrei used the “RS” version of the 9-parameter 

affine transformation. 

 

These results provide strong empirical evidence that the equivalent-enlargement hypothesis is 

a property of the optimal 9-parameter affine transformation and is therefore a valid constraint 

in their derivation. 

 

5.5 Derivation of fully-normalised multiple regression equations. 

MREs are linear with respect to the parameters and the models are easy to optimise for a given 

set of basis functions.  However, if there are N possible basis functions (and N is potentially 

infinite), the number of possible combinations is 2N-1.  Accuracy needs to be balanced against 

other considerations, particularly the desirability of finding a combination with as few terms 

as possible. 

 

The standard method adopted for this study has been to start with a particular type of model 

with a specified value of the top power.  The parameters are determined by least-squares 

optimisation based on the control-point data. After each optimisation the most statistically 

insignificant term is discarded except when 

• several terms fail the significance test to such an extent that they can all be discarded 

(which is most likely to occur after the first optimisation); 

• the most statistically-insignificant is sufficiently significant to be retained (meaning no 

further least-squares optimisation). 

 

The statistical-significance test applied in this study is ratio-less-than-one. The ratio in 

question is the absolute value of the parameter (which is the coefficient of one of the basis 

functions) divided by its standard error.  For convenience, this can be called the AP/SE ratio 
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or simply AP/SE.  The method as a whole is best described as Eliminating Ratios Less Than 

One (ERLTO). 

 

If a term has AP/SE less than 1, then its removal should not affect the quality of the model.  

This is supported by empirical results showing that the next least-squares optimisation will 

produce a smaller standard error of an observation of unit weight.  They also show that 

discarding a term with AP/SE greater than 1 will increase the standard error of an observation 

of unit weight. 

 

Discarding all terms with AP/SE less than 1 is best done in stages, because a term whose 

AP/SE is slightly less than 1 might have a higher AP/SE after less significant terms are 

discarded.  Conversely, a term with AP/SE previously more than 1 might see that ratio drop 

below 1 after other terms are discarded. 

 

During this study, the criteria adopted for several terms failing the significance test “to such 

an extent that they can all be discarded” was that AP/SE < 0.2.  With the benefit of hindsight, 

it is acknowledged that a higher threshold (eg 0.3) could have been used. 

 

The ERLTO method differs from the process described in Section 4.13 in that no terms are 

added to the initial set of basis functions.  This avoids the problem of deciding which terms 

are worth adding which is inevitably a trial-and-error process.  However, the initial set of basis 

functions must be smaller than the number of control points, to enable least-squares 

optimisation.  The MREs derived by NIMA/DMA were often based on small quantities of 

data, so they had to start with relatively few basis functions and keep open the possibility of 

trying new ones after existing terms were discarded. 

 

The ERLTO method breaks down if the standard error of an observation of unit weight is 

larger than the required accuracy.  In that instance a model with more basis functions needs to 

be introduced.  The obvious way of doing this is to raise the top power by 1, assuming that the 

new set of basis functions will be smaller than the number of control points.  If not, a subset 

of the extra terms could be added, perhaps with priority given to 𝑈𝑖𝑉𝑗 terms for which i+j is 

smallest. 

 

The end-result of an MRE obtained by ERLTO may be a more accurate model than is actually 

required.  This can be ascertained by one of the quality criteria recommended in Chapter 4, 
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ideally by the RMS of the residual shifts of the test points (if there are test points extracted 

from the original dataset).  The process of discarding the term with the lowest AP/SE can be 

resumed to make the model more concise.  A suitable title for this exercise is Additional 

Trimming.  Sometimes several terms for which AP/SE>1 can be removed before the measure 

of accuracy is significantly affected. 

 

Additional Trimming can assist comparisons between models of different type (eg Ordinary 

and North/South).  If model A gives a lower RMS than model B without a greater number of 

terms, then model A is superior in terms of accuracy and conciseness.  If model A has fewer 

terms than model B without a higher RMS, then again model A is superior in terms of accuracy 

and conciseness.  However, if model A has a lower RMS and more terms than model B, then 

comparison requires Additional Trimming of model A until either 

• model A has an RMS matching that of model B (leaving the latter as the more concise 

model) or 

• model A has the same number of terms as model B (leaving the former as the more 

accurate model). 

 

If there are two or more models with more than acceptable accuracy (ie RMS lower than 

required), then Additional Trimming could be applied to each until the RMS reaches the 

highest acceptable level.  The trimmed model with the fewest terms would be the obvious one 

to select. 

 

Closeness-of-fit and conciseness are not the only considerations when deriving an MRE for 

modelling a datum shift.  Other desirable features are plausible contours and a limited 

extrapolation effect. 

 

Characteristics of plausible contours are: 

• similar shapes, allowing for gradual change across a region; 

• directions that change by a relatively small number of degrees (20 degrees or less); 

• relatively similar spacing between neighbouring contours. 

 

A limited extrapolation effect means that the highest and lowest coordinate shifts obtained 

from the model over the intended area of application should not be too far outside the range 

of shifts for the data points in that area.  The largest deviations from that range can be 

computed from the model at extremity points; the contour pattern and the shape of the area 
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will inform the selection of “extremity points”.  The extremity points can be identified by 

comparing the outermost contours with the coastal points furthest from them.  Allowance 

should be made for the possibility of more than one extremity point since distance from a 

contour can be a misleading indication of value. 
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CHAPTER 6: PIECEWISE INTERPOLATION-BASED METHODS 

 

Sometimes a transformation is known or has been approximated at a set of data points which 

is sufficiently dense to enable interpolation elsewhere in the area of interest.  It is possible that 

the datum shifts at some or all of the data points have been computed by a method more 

advanced than those considered in Chapter 2.  This chapter considers possible methods of 

interpolating the datum shifts. 

 

In Chapter 7, some of these methods will be revisited as a means of interpolating residual 

datum shifts at data points, meaning the datum shifts that remain after the application of a 

transformation model. 

 

6.1 Piecewise 2D affine transformations 

As was noted in 2.2, the 2-dimensional affine model given in (2-4) can be used to obtain the 

transformation exactly from 3 common points, provided they form a triangle (meaning that they 

are not collinear).  From (2-5), it is easily shown that the parameters Δx, Δy, a1, a2, a3 and a4 are 

the solution of the following pair of matrix equations: 

           

[

𝑥𝑡,1
𝑥𝑡,2
𝑥𝑡,3

] = [

1 𝑥𝑠,1 𝑦𝑠,1
1 𝑥𝑠,2 𝑦𝑠,2
1 𝑥𝑠,3 𝑦𝑠,3

] [
𝛥𝑥
𝑎1
𝑎2

] 

[

𝑦𝑡,1
𝑦𝑡,2
𝑦𝑡,3

] = [

1 𝑥𝑠,1 𝑦𝑠,1
1 𝑥𝑠,2 𝑦𝑠,2
1 𝑥𝑠,3 𝑦𝑠,3

] [
𝛥𝑦
𝑎3
𝑎4

] 

}
  
 

  
 

 (6-1) 

The model can then be applied to points on or within the triangle and is, in effect, an 

interpolation tool. 

 

An important property of the transformation in (2-4) can be deduced by applying it to a point 

on the side joining vertices 1 and 2 of the triangle in the source datum. 

           [𝛥𝑋
𝛥𝑌
] + [

𝑎1 𝑎2
𝑎3 𝑎4

] [
𝑝𝑥𝑠,1 + (1 − 𝑝)𝑥𝑠,2
𝑝𝑦𝑠,1 + (1 − 𝑝)𝑦𝑠,2

] 

                    = [𝛥𝑋
𝛥𝑌
] + [

𝑎1 𝑎2
𝑎3 𝑎4

] [
𝑝𝑥𝑠,1
𝑝𝑦𝑠,1

] + [
𝑎1 𝑎2
𝑎3 𝑎4

] [
(1 − 𝑝)𝑥𝑠,2
(1 − 𝑝)𝑦𝑠,2

]  

                    = 𝑝 ([𝛥𝑋
𝛥𝑌
] + [

𝑎1 𝑎2
𝑎3 𝑎4

] [
𝑥𝑠,1
𝑦𝑠,1

]) + (1 − 𝑝) ([
𝛥𝑋
𝛥𝑌
] + [

𝑎1 𝑎2
𝑎3 𝑎4

] [
𝑥𝑠,2
𝑦𝑠,2

])  

                    = 𝑝 [
𝑥𝑡,1
𝑦𝑡,1

] + (1 − 𝑝) [
𝑥𝑡,2
𝑦𝑡,2

]. (6-2) 

This means the side joining two vertices in the source datum is transformed linearly to the side 

joining the transformed vertices in the target datum.  So if there are adjoining triangles, as in 

Figure 6-1, each with its own affine transformation derived from known datum shifts at the 

vertices, the datum shifts are uniquely defined by linear interpolation along each common side. 
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It follows that if a set of common points is triangulated and a 2-dimensional affine model is 

assigned to each triangle, the overall transformation is well-defined and continuous. 

 

 
Figure 6-1: Triangles on a plane or surface, 
each with its own affine transformation 
derived from known shifts at the vertices. 

 

The problems with this approach include the following: 

• The transformation is not smooth because the partial derivatives of the datum shifts are 

not continuous across the sides of adjoining triangles.  Edges (or gradient 

discontinuities) occur only along lines connecting control points and for no other 

reason than their connection of control points.  This makes the interpolating surface 

less than the most probable fit. 

• Identifying the triangle that contains a particular point is not as straightforward as 

identifying the rectangle containing the point in a rectangular mesh. 

 

In addition, it should be noted that the transformation is dependent on how the common points 

are triangulated.  In Figure 6-2, the point P could be treated as belonging to triangle ABD or 

as belonging to triangle ACD.  The interpolated datum shifts at point P will differ accordingly. 

 

 
Figure 6-2:  Example of a point affected by 
two different triangulations. 

 
Section 2.2 gave the affine model in terms of grid coordinates.  That is precisely what is 

required if the transformation is grid-to-grid.  However, if it is intended for geodetic 

coordinates (, ), there is no need to use a projected grid defined on a literal plane.  In (2-4), 

x can be replaced by  and y by  (or the other way round, according to personal preference). 
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6.2  Piecewise bilinear interpolation 

Sometimes a transformation has been obtained (or approximated) at the nodes of a regularly-

spaced mesh.  An example of such a mesh is shown in Figure 6-3. 

 
Figure 6-3:  Example of a regularly-spaced mesh imposed 

over an area. 
 

When a function f is known at the vertices of a rectangle ABCD, as shown in Figure 6-4, the 

bilinear interpolation formula for any point on or within the rectangle is given by 
           𝑓P = (1 − 𝑝)(1 − 𝑞)𝑓A + 𝑝(1 − 𝑞)𝑓B + 𝑝𝑞𝑓C + (1 − 𝑝)𝑞𝑓D. (6-3) 

This is equivalent to linear interpolation along AD and BC followed by linear interpolation 

along the line through P parallel to AB.  It is also equivalent to linear interpolation along AB 

and DC followed by linear interpolation along the line through P parallel to BC. 

 
Figure 6-4: Rectangle ABCD with 
point P between opposite sides with 
distance ratios p:1-p and q:1-q. 

 

It is easily shown that the interpolation is linear along the sides of the rectangle.  If P lies on 

AB then q=0 and (6-3) simplifies to 
           𝑓P = (1 − 𝑝)𝑓A + 𝑝𝑓B. (6-4) 

Similarly, if P lies on BC then p=1 and (6-3) simplifies to 
           𝑓P = (1 − 𝑞)𝑓B + 𝑞𝑓C. (6-5) 

Similarly, if P lies on CD then q=1 and (6-3) simplifies to 
           𝑓P = 𝑝𝑓C + (1 − 𝑝)𝑓D. (6-6) 
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Similarly, if P lies on AD then p=0 and (6-3) simplifies to 
           𝑓P = (1 − 𝑞)𝑓A + 𝑞𝑓D. (6-7) 

 

It follows that if a set of common points forms a rectangular mesh with bilinear interpolation 

of the datum shifts Δx and Δy in each rectangle, the overall transformation is well-defined and 

continuous. 

 

As with piecewise 2D affine transformations, the interpolation is not smooth across a side 

common to adjoining patches.  Unlike the case of partition-by-triangles, however, the 

rectangle containing any given point is easily identified from the values of the coordinates. 

 

Bilinear interpolation on regularly-spaced control points was used to compute datum shifts in 

Croatia (Grgić et al, 2016).  The data had been created from irregularly-spaced data by various 

composite methods which will be described in Chapter 7. 

 

As acknowledged by Iliffe and Lott (2008, page106), piecewise bilinear interpolation can be 

applied to geodetic coordinates.  The algebraic nature of (6-4) and (6-5) means that  and  

can be interpolated as if the constant-latitude lines were straight and the constant-longitude 

lines were parallel.  (That is how they are sometimes represented on maps.) 

 

6.3  Piecewise bicubic interpolation 

This is a more advanced interpolation method when a transformation has been obtained (or 

approximated) at the nodes of a rectangular mesh. 

 

Piecewise cubic functions are cubic polynomials defined on a series of intervals which join 

each other at the end-points.  They fall into 3 categories: 

• Piecewise cubic functions with C0 continuity; they do no more than join each other and 

their derivatives are not, in general, continuous. 

• Smooth or C1 piecewise cubic functions; they join each other and have continuous first 

derivatives. 

• Cubic spline functions, also known as cubic splines; these have C2 continuity which 

means continuous first and second derivatives. 

 

Piecewise bicubic functions are 2-dimensional cubic polynomials defined on a series of 

rectangles which join each other along adjacent sides.  They fall into 3 categories: 
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• Piecewise bicubic functions with C0 continuity; they do no more than join each other 

and their partial derivatives are not, in general, continuous. 

• Smooth or C1 piecewise bicubic functions; they join each other and have continuous 

first-order partial derivatives. 

• Bicubic spline functions, also known as bicubic splines; these have C2 continuity which 

means continuous first-order and second-order partial derivatives. 

 

Piecewise bicubic functions without continuous partial derivatives across the joins have little 

value in interpolation of datum shifts.  At the other extreme, bicubic splines have greater 

continuity properties than are actually needed; obtaining them involves the solution of large 

systems of equations. 

 

Consequently, smooth or C1 piecewise bicubic functions appear to be the most suitable for 

interpolating datum shifts over a rectangular mesh.  There are a number of ways of 

constructing them.  The approach devised for this study is described below.  It uses up to 12 

surrounding points rather than the 16 envisaged by Iliffe and Lott (2008, page 106). 

 

At the heart of cubic interpolation is the fact that if a function and its derivative are known at 

both ends of an interval there is one and only one cubic polynomial with the same values and 

derivatives at those points.  Taking the interval as [𝑥𝑖, 𝑥𝑖+1] and writing the polynomial as 

𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3, the coefficients can be calculated as follows. 

           𝛼3 = 
2{𝑓(𝑥𝑖)−𝑓(𝑥𝑖+1)}

(𝑥𝑖+1−𝑥𝑖)
3

 + 
𝑓′(𝑥𝑖)+𝑓′(𝑥𝑖+1)

(𝑥𝑖+1−𝑥𝑖)
2

 (6-8) 

           𝛼2 = 
𝑓′(𝑥𝑖+1)−𝑓′(𝑥𝑖)

2(𝑥𝑖+1−𝑥𝑖)
 − 

3𝛼3

2
 (𝑥𝑖 + 𝑥𝑖+1) (6-9) 

           𝛼1 = 𝑓′(𝑥𝑖+1) − 2𝛼2𝑥𝑖+1 − 3𝛼3𝑥𝑖+12  (6-10) 

           𝛼0 = 𝑓(𝑥𝑖+1) − 𝛼1𝑥𝑖+1 − 𝛼2𝑥𝑖+1
2 − 𝛼3𝑥𝑖+1

3  (6-11) 

One thing worth noting is the circumstance that makes the interpolating function a quadratic 

polynomial.  From (6-8), 

           𝛼3 = 0 if and only if 𝑓′(𝑥𝑖) + 𝑓′(𝑥𝑖+1) =  
2{𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖)}

(𝑥𝑖+1−𝑥𝑖)
. (6-12) 

A simple way of assigning derivatives at equally-spaced points is shown in Figure 6-5.  A 

symmetric formula based on 2 points equidistant from 𝑥𝑖 is used at all points except the first 

and last.  The formulae used at the end points will ensure that the cubic polynomials in the end 

intervals are quadratic. 
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Figure 6-5: Simple derivative approximations over a set of equally-spaced points with an 

interval h. 
 

Whether the derivatives are assigned as in Figure 6-5 or by some other process, the cubic 

polynomials fitted to the respective intervals will be smooth at the points where f is defined. 

 

This method of cubic interpolation can be extended to bicubic interpolation covering a 

rectangle. 

 

 
Figure 6-6: Point P in the sub-
rectangle of a mesh with bottom-
left vertex (𝑥𝑖 , 𝑦𝑗). 

 
Consider a point P that falls within a rectangle for which f, f/x and f/y are known at the 

four vertices, as illustrated in Figure 6-6.  The interpolated value of f at P is obtained as follows. 

• Using the values of f and f/y at the left-hand vertices, an interpolating cubic 

polynomial for f is computed and evaluated at (𝑥𝑖, 𝑦P). 

• Using the values of f and f/y at the right-hand vertices, an interpolating cubic 

polynomial for f is computed and evaluated at (𝑥𝑖+1, 𝑦P). 

• Using the values of f/x at the left-hand vertices, a linearly interpolated value of f/x 

is evaluated at (𝑥𝑖 , 𝑦P). 

• Using the values of f/x at the right-hand vertices, a linearly interpolated value of 

f/x is evaluated at (𝑥𝑖+1, 𝑦P). 

• Using the interpolated values of f/x and f/y, an interpolating cubic polynomial for 

f is computed and evaluated at P. 
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The simplest method of assigning partial derivatives is to use symmetric two-point 

approximations where possible and one-sided approximations where not possible.  It is 

suitable for meshes like the one shown in Figure 6-3 as well as those with a rectangular 

boundary. 

 

The result is that for any rectangle, a maximum of 12 values of f contribute to an interpolated 

value in that rectangle, as illustrated by the 12 vertices in Figure 6-7.  The 12 values come from 

those 12 vertices. 

 

 
Figure 6-7: A rectangle with its fully-adjacent 

neighbours. 

 
Figure 6-8: A rectangle with its fully- and 

diagonally-adjacent neighbours. 
 
Some mathematicians prefer bicubic interpolation that makes use of up to 16 values of f, as 

illustrated by the 16 vertices in Figure 6-8.  The disadvantage is that a more detailed algorithm 

is needed to cover the cases where less than 16 values are available, because they will be more 

numerous than the cases involving less than 12.  This is particularly true when the mesh does 

not have a rectangle as its boundary, as is the case in Figure 6-3. 

 

Piecewise bicubic interpolation can be applied to geodetic coordinates.   and  can be 

interpolated as if the constant-latitude lines were straight and the constant-longitude lines were 

parallel.  Those lines only have those properties in a graphical representation, but that is good 

enough for cubic interpolation. 

 

6.3.1  Mesh-of-partial-derivatives implementation 

One implementation is to start with a one-off computation of the partial derivatives at every 

mesh point, so that every rectangle is ready for interpolation.  f/x and f/y are computed 

numerically by formulae (6-13) to (6-22) at each point (𝑥𝑖 , 𝑦𝑗) where f is known.  (The reason 

for not using h in the formulae is that the interval between mesh points is not necessarily the 

same in the x and y directions.) 

 

If f is known at (𝑥𝑖−1, 𝑦𝑗) and (𝑥𝑖+1, 𝑦𝑗), 
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           (
𝜕𝑓

𝜕𝑥
)
𝑖,𝑗
=

𝑓(𝑥𝑖+1,𝑦𝑗)−𝑓(𝑥𝑖−1,𝑦𝑗)

𝑥𝑖+1−𝑥𝑖−1
; (6-13) 

otherwise if f is known at (𝑥𝑖+1, 𝑦𝑗) and (𝑥𝑖+2, 𝑦𝑗), 

           (
𝜕𝑓

𝜕𝑥
)
𝑖,𝑗
=

4𝑓(𝑥𝑖+1,𝑦𝑗)−3𝑓(𝑥𝑖,𝑦𝑗)−𝑓(𝑥𝑖+2,𝑦𝑗)

𝑥𝑖+2−𝑥𝑖
; (6-14) 

otherwise if f is known at (𝑥𝑖−2, 𝑦𝑗) and (𝑥𝑖−1, 𝑦𝑗), 

            (
𝜕𝑓

𝜕𝑥
)
𝑖,𝑗
=

3𝑓(𝑥𝑖,𝑦𝑗)−4𝑓(𝑥𝑖−1,𝑦𝑗)+𝑓(𝑥𝑖−2,𝑦𝑗)

𝑥𝑖−𝑥𝑖−2
; (6-15) 

otherwise if f is known at (𝑥𝑖+1, 𝑦𝑗), 

            (
𝜕𝑓

𝜕𝑥
)
𝑖,𝑗
=

𝑓(𝑥𝑖+1,𝑦𝑗)−𝑓(𝑥𝑖,𝑦𝑗)

𝑥𝑖+1−𝑥𝑖
; (6-16) 

otherwise if f is known at (𝑥𝑖−1, 𝑦𝑗). 

           (
𝜕𝑓

𝜕𝑥
)
𝑖,𝑗
=

𝑓(𝑥𝑖,𝑦𝑗)−𝑓(𝑥𝑖−1,𝑦𝑗)

𝑥𝑖−𝑥𝑖−1
. (6-17) 

If f is known at (𝑥𝑖 , 𝑦𝑗−1) and (𝑥𝑖 , 𝑦𝑗+1), 

           (
𝜕𝑓

𝜕𝑦
)
𝑖,𝑗
=

𝑓(𝑥𝑖,𝑦𝑗+1)−𝑓(𝑥𝑖,𝑦𝑗−1)

𝑦𝑗+1−𝑦𝑗−1
; (6-18) 

otherwise if f is known at (𝑥𝑖, 𝑦𝑗+1) and (𝑥𝑖 , 𝑦𝑗+2), 

           (
𝜕𝑓

𝜕𝑦
)
𝑖,𝑗
=

4𝑓(𝑥𝑖,𝑦𝑗+1)−3𝑓(𝑥𝑖,𝑦𝑗)−𝑓(𝑥𝑖,𝑦𝑗+2)

𝑦𝑗+2−𝑦𝑗
; (6-19) 

otherwise if f is known at (𝑥𝑖, 𝑦𝑗−2) and (𝑥𝑖 , 𝑦𝑗−1), 

           (
𝜕𝑓

𝜕𝑦
)
𝑖,𝑗
=

3𝑓(𝑥𝑖,𝑦𝑗)−4𝑓(𝑥𝑖,𝑦𝑗−1)+𝑓(𝑥𝑖,𝑦𝑗−2)

𝑦𝑗−𝑦𝑗−2
; (6-20) 

otherwise if f is known at (𝑥𝑖, 𝑦𝑗+1), 

           (
𝜕𝑓

𝜕𝑦
)
𝑖,𝑗
=

𝑓(𝑥𝑖,𝑦𝑗+1)−𝑓(𝑥𝑖,𝑦𝑗)

𝑦𝑗+1−𝑦𝑗
; (6-21) 

otherwise if f is known at (𝑥𝑖, 𝑦𝑗−1), 

           (𝜕𝑓
𝜕𝑦
)
𝑖,𝑗
=

𝑓(𝑥𝑖,𝑦𝑗)−𝑓(𝑥𝑖,𝑦𝑗−1)

𝑦𝑗−𝑦𝑗−1
. (6-22) 

 

The result of compiling a complete mesh of both f/x and f/y values is that for any point of 

interest, the enclosing rectangle will have values of f, f/x and f/y at its vertices.  The bicubic 

interpolation method can be employed at the point of interest. 
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6.3.2  Partial-derivatives-as-required implementation 

The alternative implementation is to restrict computation of the partial derivatives to the vertices 

of the rectangle containing the latest point of interest.  This involves more coding than the mesh-

of-partial-derivatives implementation, but less actual computation if the number of points of 

interest is less than a quarter of the number of mesh points. 

 

The following procedure is applied for each point P(x, y) where an interpolated estimate of f 

is required: 

 

• Values of 𝑖P and 𝑗P are computed such that 𝑥𝑖P ≤ 𝑥 ≤ 𝑥𝑖P+1 and 𝑦𝑗P ≤ 𝑦 ≤ 𝑦𝑗P+1.  This 

identifies the mesh-point rectangle to which point P belongs, by making 𝑖P and 𝑗P the 

subscripts of the bottom-left point. 

• The partial derivatives at the bottom-left point are obtained by applying the process in 

formulae (6-13) to (6-22) with 𝑖 = 𝑖P and 𝑗 = 𝑗P. 

• The partial derivatives at the bottom-right point are obtained by applying the process in 

formulae (6-13) to (6-22) with 𝑖 = 𝑖P + 1 and 𝑗 = 𝑗P. 

• The partial derivatives at the top-left point are obtained by applying the process in 

formulae (6-13) to (6-22) with 𝑖 = 𝑖P and 𝑗 = 𝑗P + 1. 

• The partial derivatives at the top-right point are obtained by applying the process in 

formulae (6-13) to (6-22) with 𝑖 = 𝑖P + 1 and 𝑗 = 𝑗P + 1. 

 

The bicubic interpolation method can then be employed at the latest point of interest, but the 

partial derivatives are not stored for future use. 

 

6.3.3 Implementation with a surrounding rectangle of grid points 

For this option, a prerequisite is that the function values at grid points are derived from a model.  

That being the case, it is usually possible to generate values over an enlarged grid.  The 

enlargement considered here is a wholly rectangular mesh with a surrounding corridor which is 

outside all the rectangles where interpolation is intended.  This is illustrated in Figure 6-9: the 

shaded rectangles are the rectangles shown in Figure 6-3. 
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Figure 6-9:  Example of a regularly-spaced mesh enlarged to 
ensure a surrounding rectangular corridor. 

 

The procedure in subsection 6.3.1 simplifies to deriving partial derivatives from (6-13) and 

(6-18) at all non-perimeter grid points, storing them in arrays, then using them during the 

interpolation. 

 

The alternative procedure in subsection 6.3.2 simplifies to deriving partial derivatives from 

(6-13) and (6-18) at the enclosing four grid points for each point where interpolation is 

required. 

 

It is imperative that any software package based on this approach ensures that interpolation is 

only performed in the rectangles for which the model was intended.  In the case of Figure 6-

9, that means the shaded rectangles. 

 

One point that needs to be carefully considered is the quality of the function values at the extra 

grid points neighbouring the original grid points.  In Figure 6-9, this means the function values 

at the outer vertices of unshaded rectangles just outside the shaded rectangles.  If the model is 

stable, the partial derivatives should compare favourably with those computed from equations 

(6-14) to (6-17) and (6-19) to (6-22).  If not, it might be safer to use either of the more intricate 

procedures in subsections 6.3.1 and 6.3.2. 
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 CHAPTER 7: COMPOSITE TRANSFORMATION METHODS 

 

With the possible exception of multiple regression equations, the methods discussed in 

Chapter 2 are not well-suited to modelling transformations with distortions.  Even MREs are 

limited in the extent they can represent distortion, and there is a danger that high-degree 

polynomials will introduce distortions of their own.  To represent datum shifts with distortions 

accurately, computations need to be based on more advanced methods or a combination of 

techniques. 

 

The starting point for deriving models is a set of data points where the coordinates have been 

obtained in both datums.  Where all of them are used to predict transformations, the terms 

“data points” and “control points” are synonymous; this is the case for Western Australia 

(Chapter 8) where there are only 82 data points.  Only for the largest datasets (Chapters 12 

and 13) have the data points been split into control points and test points; the latter do not 

contribute to the surface-fitting and provide an independent check on the accuracy of the 

methods. 

 

Much of this chapter is devoted to transformation-enhancement methods that fit the residuals 

from an initial model either exactly by interpolation or approximately by smoothing.  Some of 

the methods could theoretically be used as transformation methods in their own right (ie as 

enhancements of the identity function), but are not considered as such here.  Enhancement 

methods in this chapter are derived from the residuals of a “trend” model. 

 

Grgić et al (2016) is notable for a list of distortion-modelling techniques which are applied to 

the HDKS→HTRS96 datum transformation.  They chose a 7PC model, as described in 2.6 

above, for a least-squares fit to the datum shifts at common points (although it is possible that 

the least-squares fit was obtained from the Bursa-Wolf form).  The distortions they modelled 

were residuals from that model after the coordinates had been converted to projected grid 

coordinates. 

 

The software used by Grgić et al was Surfer in all cases except least-squares collocation.  

Surfer is a contouring and 3D surface mapping program developed by the US Golden 

Company. 
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Advanced methods often require distance computations between points where datum shifts are 

known and points where datum shifts are required.  The options for distance computations 

include the following: 

• Distances computed on a projected grid; the actual computation is simple (Pythagoras’ 

formula) but the method does require the choice of a projection, making it less general. 

• Distances computed from Cartesian coordinates; again, the computation is simple, but 

they are lengths of chords rather than lines on a curved surface and the difference is 

significant over large areas. 

• Ellipsoidal distances computed by a geodesic formula, which involves more 

complicated mathematical expressions that the required accuracy needs. 

• Approximate ellipsoidal distances; this is examined in Appendix B.  Applying (B-11), 

(B-10) and (B-14), the best formula for the distance between points i and j appears to 

be 

                        𝑑𝑖,𝑗 = 𝑐𝑖,𝑗 + 
𝑐𝑖,𝑗
3

24𝑅2
 + 

3𝑐𝑖,𝑗
5

640𝑅4
 , (7-1) 

 

      where 

                   𝑐𝑖,𝑗 = √(𝑋𝑗 − 𝑋𝑖)2 + (𝑌𝑗 − 𝑌𝑖)2 + (𝑍𝑗 − 𝑍𝑖)2 (7-2) 

      and 

                   𝑅2 = 
𝑎2(1−𝑒2)

(1−𝑒2 sin2𝜙𝑖)(1−𝑒
2 sin2𝜙𝑗)

. (7-3) 

 

Distance between points is generally assumed to be a factor in the correlation of datum shifts.  

That is to say that a datum shift is more likely to be close to the shift at a nearby point than to 

the shift at a faraway point.  Unless there is reason to suppose otherwise, the distance-

dependence of correlation is assumed to be independent of direction. In other words, the spatial 

correlation structure is isotropic. 

 

Some methods in Surfer allow users to specify either isotropic correlation (which is 

independent of direction) or anisotropic correlation (which is dependent on direction).  Surfer 

(2002, page 109) defines anisotropy ratio as “the maximum range divided by the minimum 

range” and anisotropy angle as “the preferred orientation (direction) of the major axis in 

degrees”.  Users can opt for isotropy by assigning the default values 1 to anisotropy ratio and 

0 to anisotropy angle. This was done by Grgić et al (2016).  One of the likely reasons for 

isotropy is that units in the x and y directions were the same. 

 



127 

Correlation is often measured by covariance, of which variance is a limiting value. Central to 

both concepts is the mathematical expectation operator value denoted by E[…] in Blais (1982) 

and Cross (1983).  Its properties – including linearity – are outlined in Cross (1983, Section 

4.1).  The expected value of a position-dependent variable is its mean, meaning its average 

value over its domain. 

• Covariance is the mean value of the product of the deviations of two variates from their 

respective means: 

                   𝐶𝑜𝑣(𝛼, 𝛽) = 𝐸[(𝛼 − 𝐸[𝛼])(𝛽 − 𝐸[𝛽])]. (7-4) 

• Variance is the expectation of the squared deviation of a variate from its mean: 

                   𝑉𝑎𝑟(𝛼) ≡ 𝐶𝑜𝑣(𝛼, 𝛼) = 𝐸[(𝛼 − 𝐸[𝛼])2]. (7-5) 

 

Correlation between elements of separate vectors can be represented by a covariance matrix.  

The covariance matrix Cov(v,w) of two vectors v and w is defined to be the matrix of 

covariances of the pairs that make up the products in 𝐯𝐰𝑇.  If the vectors have m and n 

elements respectively, then 

           𝐂𝐨𝐯(𝐯,𝐰) =

[
 
 
 
𝐶𝑜𝑣(𝑣1, 𝑤1) 𝐶𝑜𝑣(𝑣1, 𝑤2) ⋯ 𝐶𝑜𝑣(𝑣1, 𝑤𝑛)

𝐶𝑜𝑣(𝑣2, 𝑤1) 𝐶𝑜𝑣(𝑣2, 𝑤2) ⋯ 𝐶𝑜𝑣(𝑣2, 𝑤𝑛)

⋮ ⋮ ⋮
𝐶𝑜𝑣(𝑣𝑚, 𝑤1) 𝐶𝑜𝑣(𝑣𝑚, 𝑤2) ⋯ 𝐶𝑜𝑣(𝑣𝑚 , 𝑤𝑛)]

 
 
 
. (7-6) 

 

The special case Cov(v,v) is sometimes referred to as a variance-covariance matrix (VCV 

matrix), because the diagonal elements are variances. 

           𝐂𝐨𝐯(𝐯, 𝐯) =

[
 
 
 
𝐶𝑜𝑣(𝑣1, 𝑣1) 𝐶𝑜𝑣(𝑣1, 𝑣2) ⋯ 𝐶𝑜𝑣(𝑣1, 𝑣𝑛)

𝐶𝑜𝑣(𝑣2, 𝑣1) 𝐶𝑜𝑣(𝑣2, 𝑣2) ⋯ 𝐶𝑜𝑣(𝑣2, 𝑣𝑛)

⋮ ⋮ ⋮
𝐶𝑜𝑣(𝑣𝑛 , 𝑣1) 𝐶𝑜𝑣(𝑣𝑛 , 𝑣2) ⋯ 𝐶𝑜𝑣(𝑣𝑛 , 𝑣𝑛)]

 
 
 
. (7-7) 

 

For the most part, the advanced methods are used to generate gridded data, in the sense of data 

based on a regular mesh of points that is suitable for piecewise interpolation.  The process of 

generating such data is called gridding, although it is not to be confused with the term 

projection that converts geodetic coordinates to grid coordinates. 

 

The strategy adopted in this study was to perform gridding through interpolation rather than 

approximation at the control points.  In general, the gridded data will not include control 

points, so piecewise interpolation will generate approximate values at control points.  This, 

however, is approximation derived from a model that can claim to be an exact fit (at least at 

the control points).  If the gridding had been done by an approximate method based on 



128 

smoothing, then the subsequent piecewise interpolation of the gridded data would be 

approximation derived from what is already an approximation. 

 

The use of interpolation rather than smoothing on control points does have its dangers.  Some 

methods are “not strictly bounded”, in the sense that they introduce peaks and troughs outside 

the range of values at control points.  If the range is widened only slightly, this may be 

acceptable; perhaps even desirable; see the extremities between P & Q and between S & T in 

Figure 7-1.  In this case, there is unlikely to be an adverse effect on gridding.  If the range is 

widened more than slightly, then the interpolation method is liable to introduce distortions 

beyond what is reasonable to deduce from the data.  An example of this is shown in Figure 7-

2, with extremities between Q & R and between S & T.  A volatility analysis may be necessary 

to test for unacceptable peaks and troughs where the data patterns indicate that they are most 

likely to occur. 

 

 
Figure 7-1: Acceptable extremities introduced by 

interpolation along a row of collinear control points. 
 

 
Figure 7-2: Possibly unacceptable extremities introduced 
by interpolation along a row of collinear control points. 

 

Some methods of interpolation, such as inverse distance to a power and nearest neighbour, are 

“strictly bounded” and cannot introduce values outside the range of values at control points.  

In general, they are based on a linear combination of data-point values where the coefficients 

are non-negative and add up to 1.  These methods avoid the kind of oscillations that occur in 

Figure 7-2.  On the other hand, they would not interpolate the data shown in Figure 7-1 as well 

as the curve shown; the interpolant would either be constant between S and T, or would dip in 

value between them. 
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The list of methods described is not exhaustive; there are others that could be investigated, 

including neural networks.  A neural network is a form of artificial intelligence that relies on 

a group of interconnected mathematical equations that accept input data and calculate an 

output.  Applications where they have a possible use include those where relationships are 

difficult to describe adequately with conventional approaches. 

 

7.1  Transformations by least-squares collocation 

Datum transformations by least-squares collocation are different from most composite 

methods.  There is a similarity with transformations by a “trend” model which are followed 

by a method to improve on the accuracy from that model.  The difference is that least-squares 

collocation performs the two stages in parallel, unless a model has been removed in advance. 

 

Ruffhead (1987) described the general starting point for least-squares collocation as the 

equation 

           measurement = mathematical model + signal + noise. (7-8) 

This assumes that the measurements at the data points are assumed to contain unbiased 

measurement errors (“noise”) as well as an unmodelled component (the “signal”).  Least-

squares collocation estimates the model and the signal at the control points (which – by 

allowing for noise – amounts to a smoothing of the measurements rather than an interpolation) 

and predicts the value of the model + signal at a set of computation points.  González-Matesanz 

et al (2003, 2006) use least-squares collocation for datum shifts (Δ, Δ) between ED50 and 

ETRS89. 

 

The mathematical model is designed to have the same mathematical expectation as the 

measured quantity.  This means that the sum of the signal and noise have zero expectation.  

Given the bias-free nature of noise, it must have zero expectation.  As a result, signal has zero 

expectation.  The effect of this on covariance and variance is as follows: 

• Applying (7-4), the covariance of the signals at points i and j is given by 

                   𝐶𝑜𝑣(𝑠𝑖 , 𝑠𝑗) = 𝐸[𝑠𝑖𝑠𝑗]. (7-9) 

• Applying (7-5), the variance of the signal at points i is given by 
                   𝑉𝑎𝑟(𝑠𝑖) ≡ 𝐶𝑜𝑣(𝑠𝑖 , 𝑠𝑖) = 𝐸[𝑠𝑖2]. (7-10) 

 

A key element of least-squares collocation is modelling of the signal’s covariance by a 

covariance function.  This treats the signal as correlated with distance, so that for each 
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computation point, the closest control points have the strongest effect.  The usefulness of a 

covariance function depends on how well it represents correlation.  The distance for which 

covariance equals half the variance is called the correlation length, and it is important that the 

covariance function reflects this. 

 

Using a covariance function, signal covariance is the expected value of the product of two 

signals separated by a given distance.  If there is sufficient data, an empirical value can be 

obtained from the mean of the products of two signals separated by a range of distances whose 

central value is the given distance. 

 

The variance of the signal is the expected value of the signal squared, the limiting value of the 

covariance as distance approaches zero.  The variance will be denoted 𝐶0 and will generally 

be included in any covariance function. 

 

A covariance function needs at least one other parameter which determines the shape of the 

covariance curve plotted against distance.  It may be “correlation length” which is the distance 

at which covariance is half the variance.  It may be the distance at which covariance becomes 

zero, although that option is not feasible if covariance approaches zero asymptotically (as in 

Figure 7-3).  Either of these types can be regarded as a shape parameter, which controls  how 

rapidly the function changes: increasing the value of the shape parameter has the effect of 

stretching the covariance curve. 

 

Example 7.1:  Gaussian covariance function. 

The simplest covariance functions are infinite in the sense that they approach zero as distance 

approaches infinity.  The most commonly used of these is the Gaussian function 
                  𝐶(𝑟) = 𝐶0 exp(−𝑘

2𝑟2). (7-11) 

 

The inverse of the Gaussian covariance function – which provides the distance corresponding 

to a given covariance - can be obtained by rearrangement of (7-11): 

                   𝑟 = (1 𝑘⁄ ) · √ln(𝐶0 𝐶⁄ ). (7-12) 

The defining constant k is related to the correlation length by the fact that their product is √ln2 

or 0.8325546.  The function is illustrated in Figure 7-3. 
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Figure 7-3: Gaussian covariance function. 

 

The rate of decay of the Gaussian covariance function can be gauged from the following fact.  

If L is the value of r for which 𝐶(𝑟) = 0.5𝐶0, then 𝐶(2𝐿) = 0.0625𝐶0, 𝐶(3𝐿) =

0.001953𝐶0 and 𝐶(4𝐿) = 0.000015𝐶0. 

 

The defining constant k in (7-11) can be determined from an empirically-derived covariance 

𝐶1 corresponding to a particular distance 𝑟1.  Applying (7-12), 

           𝑘 = (1 𝑟1⁄ ) · √ln(𝐶0 𝐶1⁄ ). (7-13) 

 

Example 7.2:  Finite covariance function based on cubic splines (SS20). 

Finite covariance functions are those for which C(r) vanishes beyond a certain distance.  That 

distance is described here as “limit-of-influence” and denoted by 𝑟𝑚𝑎𝑥.  Finite covariance 

functions have been suggested by Sansò and Schuh (1987).  One example is their Equation 

(20) which has a smooth join at 𝑟 = 0.5𝑟𝑚𝑎𝑥.  They proposed it for a variable based on a one-

dimensional domain.  For this study it was investigated over a surface because of its relative 

simplicity.  This covariance function is the right-hand half of a cubic B-spine than can be 

defined as follows. 

           𝐶(𝑟) = {

𝐶0[1 − 6𝑟
2(𝑟𝑚𝑎𝑥 − 𝑟)/𝑟𝑚𝑎𝑥

3 ] for 0 ≤ 𝑟 ≤ 0.5𝑟𝑚𝑎𝑥 ;

2𝐶0(1 − 𝑟/𝑟𝑚𝑎𝑥)
3 for 0.5𝑟𝑚𝑎𝑥 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 ;

0 for 𝑟 ≥ 𝑟𝑚𝑎𝑥

} (7-14) 

 

For this function, the defining constant is 𝑟𝑚𝑎𝑥.  The correlation length is 0.361176𝑟𝑚𝑎𝑥  and 

𝑟𝑚𝑎𝑥  is 2.768733 times the correlation length.  The function is illustrated in Figure 7-4. 
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Figure 7-4: Cubic-spline (SS20) covariance function. 

 

The inverse of the SS20 covariance function – which provides the distance corresponding to 

a given covariance – is as follows: 

       𝑟 =  { 
𝑟𝑚𝑎𝑥{1 − √0.5𝐶/𝐶0

3 } for 0 ≤ 𝐶 ≤ 0.25𝐶0;

𝑟𝑚𝑎𝑥{0.6954 − 0.9563𝐶/𝐶0 + 0.8213(𝐶 𝐶0⁄ )2 − 0.4917(𝐶 𝐶0⁄ )3} for 0.25𝐶0 ≤ 𝐶 ≤ 0.85𝐶0;

𝑟𝑚𝑎𝑥{0.4493√1 − 𝐶/𝐶0 − 0.148(𝐶/𝐶0 − 0.85)[1 − 𝐶/𝐶0]
0.4} for 0.85𝐶0 ≤ 𝐶 ≤ 𝐶0.

}.   (7-15) 

 

Only the first expression is exact.  The other two expressions are close numerical 

approximations.  They were derived for this study by the following procedure: 

• In each of the ranges, inverses were calculated and tabulated by means of Newton-

Raphson iteration (using approximate rather than exact derivatives). 

• The interpolating function in the central section was constructed from a linear function 

joining the end-points and a cubic polynomial to approximate the residuals.  The 

polynomial was divisible by 𝐶/𝐶0 − 0.25  and 0.85 − 𝐶/𝐶0, so there were two 

parameters which could be chosen to give the closest possible fit to the tabulated 

inverses. 

• The interpolating function in the final section was constructed from the √1 − 𝐶/𝐶0 

term (weighted to ensure it joins the end points) and a weighted correction term to 

approximate the residuals.  The power 0.4 was chosen as a compromise between a cube 

root and a square root (giving a better fit than either). 

 

The defining constant 𝑟𝑚𝑎𝑥 in (7-14) can be determined from an empirically-derived 

covariance 𝐶1 corresponding to a particular distance 𝑟1.  Applying (7-15), 

         𝑟𝑚𝑎𝑥 =

{
 
 

 
 𝑟1 [1 − √𝐶1/(2𝐶0)

3 ]⁄                if 0 ≤ 𝐶1 ≤ 0.25𝐶0;

𝑟1 [0.6954 − 0.9563𝐶1/𝐶0 + 0.8213(𝐶1/𝐶0)
2 − 0.4917(𝐶1/𝐶0)

3]⁄

                    if 0.25𝐶0 ≤ 𝐶1 ≤ 0.85𝐶0;

𝑟1 {0.4493√1 − 𝐶1/𝐶0 − 0.148(𝐶1/𝐶0 − 0.85)[1 − 𝐶1/𝐶0]
0.4}⁄

                      if 0.85𝐶0 ≤ 𝐶1 ≤ 𝐶0. }
 
 

 
 

  (7-16) 
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If a single empirical covariance is being used to determine 𝑟𝑚𝑎𝑥 (and hence the covariance 

model) then it is desirable that it lies in the range 0.3𝐶0 to 0.7𝐶0.  That range covers the steepest 

part of the curve in Figure 7-4, so the effect of any error in the empirical covariance will be 

relatively small. 

 

Example 7.3: Finite covariance function based on Sansò and Schuh’s Equation 30 (SS30). 

This too has a limit-of-influence denoted by 𝑟𝑚𝑎𝑥.  Equation 30 of Sansò and Schuh (1987) 

uses a single analytical expression over the range of distances (which it calls “finite support”). 

Arabelos and Tscherning (1996) use it as a covariance function in the context of gravity 

modelling.  The version considered here is the normalised form given in equation (7-17). 

       𝐶(𝑟) =

{
 
 

 
 𝐶0[1 − 6(r/𝑟𝑚𝑎𝑥)

2][1 − (2 𝜋⁄ )arcsin(𝑟 𝑟𝑚𝑎𝑥⁄ )]                                                  

         +𝐶0[6(𝑟 𝑟𝑚𝑎𝑥⁄ ) + 32(𝑟 𝑟𝑚𝑎𝑥⁄ )3 − 8(𝑟 𝑟𝑚𝑎𝑥⁄ )5]√1 − (𝑟 𝑟𝑚𝑎𝑥⁄ )2/(3𝜋)

                                                                                                      for 0 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥;
0                                                                                                          for 𝑟 ≥ 𝑟𝑚𝑎𝑥 . }

 
 

 
 

 (7-17) 

 

For this function, as given in (7-17), the defining constant is 𝑟𝑚𝑎𝑥.  (The constant preferred by 

Sansò and Schuh is R, where 𝑅 = 0.5𝑟𝑚𝑎𝑥.)  The correlation length is 0.374712𝑟𝑚𝑎𝑥 and is 

𝑟𝑚𝑎𝑥 is 2.668717 times the correlation length.  The function is illustrated in Figure 7-5. 

 
Figure 7-5: SS30 covariance function. 

 

The inverse of the SS30 covariance function – which provides the distance corresponding to 

a given covariance – is as follows: 

           𝑟 =

{
 
 

 
 𝑟𝑚𝑎𝑥[1 − √0.44128𝐶/𝐶0 − 0.31784(𝐶 𝐶0⁄ )23

] for 0 ≤ 𝐶 ≤ 0.1𝐶0;

𝑟𝑚𝑎𝑥(0.71965 − 0.64325𝐶/𝐶0)                                                

−𝑟𝑚𝑎𝑥(𝐶/𝐶0 − 0.1)(0.9 − 𝐶/𝐶0) ×                                             

[0.7943 − 2.5076𝐶/𝐶0 + 3.4212(𝐶 𝐶0⁄ )2 − 2.009(𝐶 𝐶0⁄ )3] for 0.1𝐶0 ≤ 𝐶 ≤ 0.9𝐶0;

𝑟𝑚𝑎𝑥√0.18622(1 − 𝐶/𝐶0) + 0.11795(1 − 𝐶/𝐶0)
2 for 0.9𝐶0 ≤ 𝐶 ≤ 𝐶0. }

 
 

 
 

 (7-18) 

 

All 3 expressions are close numerical approximations which are exact at the joins.  They were 

derived for this study by the following procedure: 
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• In each of the ranges, inverses were calculated and tabulated by means of Newton-

Raphson iteration (using approximate rather than exact derivatives). 

• The interpolating function in the first section was designed to be 1 −

√𝑎𝐶/𝐶0 + 𝑏(𝐶 𝐶0⁄ )23   where the square term was deemed to be a correction.  The 

constants a and b were chosen to ensure that the function was correct for 𝐶 = 0.1𝐶0 

and that the residuals were minimised. 

• The interpolating function in the central section was made the sum of a linear function 

joining the end-points and a 5th-order polynomial divisible by 𝐶/𝐶0 − 0.1 and  0.9 −

𝐶/𝐶0.  The four outstanding parameters were chosen to give the closest possible fit to 

the tabulated inverses. 

• The interpolating function in the final section was designed to be 

√𝑎(1 − 𝐶/𝐶0) + 𝑏(1 − 𝐶 𝐶0⁄ )23     where the square term was deemed to be a 

correction.  The constants a and b were chosen to ensure that the function was correct 

for C=0.9 and that the residuals were minimised. 

 

The defining constant 𝑟𝑚𝑎𝑥 in (7-17) can be determined from an empirically-derived 

covariance 𝐶1 corresponding to a particular distance 𝑟1.  Applying (7-18), 

           𝑟𝑚𝑎𝑥 =

{
 
 

 
 𝑟1/[1 − √0.44128𝐶1/𝐶0 − 0.31784(𝐶1/𝐶0)

23
]               if 0 ≤ 𝐶 ≤ 0.1𝐶0;

𝑟1/{(0.71965 − 0.64325𝐶1/𝐶0) − (𝐶1/𝐶0 − 0.1)(0.9 − 𝐶1/𝐶0) ×            

[0.7943 − 2.5076𝐶1/𝐶0 + 3.4212(𝐶1/𝐶0)
2 − 2.009(𝐶1/𝐶0)

3]}
                                                                                             if 0.1𝐶0 ≤ 𝐶 ≤ 0.9𝐶0;

𝑟1/√0.18622(1 − 𝐶1/𝐶0) + 0.11795(1 − 𝐶1/𝐶0)
2    if 0.9𝐶0 ≤ 𝐶 ≤ 0.1𝐶0.}

 
 

 
 

 (7-19) 

 

If a single empirical covariance is being used to determine 𝑟𝑚𝑎𝑥 (and hence the covariance 

model) then it is desirable that it lies in the range 0.3𝐶0 to 0.7𝐶0.  That range covers the steepest 

part of the curve in Figure 7-5, so the effect of any error in the empirical covariance will be 

relatively small. 

 

(End of examples) 

 

The correlation length can be estimated by sampling, but in practice it is often guessed from 

the spread of data points.  One method devised for this study is to calculate each data point’s 

distance to the nearest neighbouring data point, then set the correlation length to the median 

value of those distances.  The median distance to nearest neighbour (MDNN) reflects only the 

spread of data points and not the behaviour of the signal.  Nevertheless, it provides a useful 

initial estimate. 
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If the measurements at the control points are treated as error-free, equation (7-8) simplifies to 
            (errorless) measurement = mathematical model + signal. (7-20) 

Least-squares collocation estimates the model and the signal at the control points (which in 

this case are the components of an interpolation) and predicts the value of the model + signal 

at a set of computation points.  Applied to transformations, the entire distortion is treated as a 

signal, and the signal interpolates residuals from the trend model. 

 

A special case is when the measurements have been “centred”.  That could have occurred by 

the prior removal of a trend model obtained by least-squares estimation.  In this case, the 

starting point is 
           (centred, errorless) measurement = signal. (7-21) 

 

This special case has been used by a number of authors to derive transformations after the 

removal of a model. They include: 

• You and Hwang (2006) for grid coordinate transformation between two geodetic 

datums of Taiwan; the trend model is 2D conformal as in Section 2.1.  This paper 

considers both the case of signal only and signal + noise. 

• Yun et al (2006) for distortion modelling in Korea; the trend model is Molodensky-

Badekas, described in Section 2.9 and the collocation is applied to latitude and 

longitude rather than projected grid coordinates. 

• Grgić et al (2016) for distortion modelling in Croatia, although the trend model was in 

terms of 3D coordinates while the collocation was applied to grid coordinates.  The 

software used was GRAVSOFT, documented by Forsberg and Tscherning (2008), and 

in particular the routine GEOGRID.  This uses a quadrant-search method to speed up 

computations: at each computation point, only the “nqmax” nearest points are used in 

each of the quadrants around the point. 

 

The special case of (7-21) offers a straightforward method of improving an estimate of the 

correlation length and thereby improving the covariance function.  Suppose the covariance 

function depends on a defining constant with a known relationship to the correlation length.  

This is the case in all three examples given: the defining constant in Example 7.1 is the value 

of k used in (7-11); in Examples 7.2 and 7.3 (where the covariance functions are finite), the 

defining constant is 𝑟𝑚𝑎𝑥.   
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Let 𝑟1 be the initial estimate of the correlation length (possibly the MDNN) of a position-

dependent variable f.  Let 𝑆𝑟1  be the set of all pairs of data points between 𝑟1 − 𝛿𝑟 and 𝑟1 + 𝛿𝑟 

apart.  The tolerance r should be large enough to ensure that 𝑆𝑟1 is a meaningful sample.   The 

next step is to calculate 

           𝐶1 = Avge{𝑓𝑖𝑓𝑗 such that (𝑃𝑖 , 𝑃𝑗) ∈ 𝑆𝑟𝑖}. (7-22) 

The defining constant in the covariance function can be obtained by solving the equation 
           𝐶1 = 𝐶(𝑟1). (7-23) 

The covariance length can then be re-calculated from its relationship with the defining 

constant. 

 

A more sophisticated method is to calculate the covariances for several distances by sampling, 

and to use least-squares optimisation to determine the defining constant of the chosen 

covariance function.  This is an adaptation of the method described in Section 9.1 of Cross 

(1983).  The implementation considered here uses the MDNN as the central distance and uses 

a quarter of its value as a sample-range for each distance.  This is illustrated in Figure 7-6. 

 

 
Figure 7-6: Partition of distance-range using MDNN as 𝑟3 and MDNN/4 as each 

sample-range. 
 

Let 𝑆𝑟𝛼 be the set of all pairs of data points between 𝑟𝛼 − 𝛿𝑟 and 𝑟𝛼 + 𝛿𝑟 apart, where 𝛿𝑟 =

𝑟3/8.  The next step is to calculate 

           𝐶𝛼 = Avge{𝑓𝑖𝑓𝑗  such that (𝑃𝑖 , 𝑃𝑗) ∈ 𝑆𝑟𝛼} for  = 1, 2, 3, 4, 5, 6, 7. (7-24) 

 

Cross (1983, page 104) suggests fitting a mathematical function to this kind of data, but does 

not specify how. 

 

The iterative optimisation approach would be to vary the defining constant of the covariance 

function until that function gives a least-squares fit to the points (𝑟1, 𝐶1) to (𝑟7, 𝐶7).  This study 

produced a more direct method, which is as follows. 

 

Let   be the value of α for which |𝐶𝛼 − 0.5𝐶0| is minimised, meaning that 𝑟𝛽 ought to be 

closer to the correlation length than other values of 𝑟𝛼. 
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The quantities obtained from (7-24) will give rise to seven equations of the form 

           𝐶(𝑟𝛼) = 𝐶𝛼. (7-25) 

Solving (7-25) for each α other than  involves using an inverse covariance formula, such as 

(7-12) or (7-15) or (7-18), to estimate the defining constant of the transformation model.  There 

will be 6 estimates of that defining constant.  Substituting those values in turn into the 

transformation model, 6 estimates of 𝐶(𝑟𝛽) will be obtained in addition to the one already 

computed.  A weighted average of all 7 estimates – with weights based on the size of the sets 

– should give a much-improved value of 𝐶𝛽 since it is based on 7 sets of sample distances 

rather than one.  The appropriate inverse covariance formula is used once more to find the 

defining constant which ensures that 𝐶(𝑟𝛽) = 𝐶𝛽. 

 

Some caution needs to be exercised in this approach for the following reasons. 

• The number of data points may not always be enough for there to be a sufficient 

number of between-point distances in all of the 7 samples.  The method may need to 

be restricted to a subset of the ranges. 

• The quantities computed from (7-24) may vary wildly from the kind of function 

illustrated in Figures 7-3 to 7-5.  If this happens, the assumption that the residual shifts 

are an errorless signal free of noise should be re-examined. 

 

Another method devised for this study to estimate the extent of correlation is based on both 

the spread of data points and the behaviour of the signal.  This one is only applicable to finite 

covariance functions because it estimates 𝑟𝑚𝑎𝑥 rather than correlation length.  For each data 

point, the nearest data point whose signal is of opposite sign is traced and the furthest data 

point within that range whose signal has the same sign is noted.  The “distance to zero” is 

estimated by interpolating the two distances.  The median “distance to zero” (MDZ) over the 

full set of data points is computed from the complete set of data points. 

 

Even if statistical methods cannot produce the defining parameter of a covariance model, an 

intuitive choice – either of the parameter or correlation length – will still allow least-squares 

collocation to be used as an interpolation tool. 

 

The procedure for estimating the signal at computation points in the special case of (7-21) is 

described under “Errorless Collocation” in Ruffhead (1987), although it is based on formulae 

given in Section 7-8 of Heiskanen and Moritz (1967) for a geophysical application.  It involves 

the inverse of a covariance matrix.  One advantage of a finite covariance function is that it 
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leads to a sparse covariance matrix.  Using 𝐬 to denote the predicted signal at computation 

points, 
           𝐬 = 𝐂𝐨𝐯(𝐬, 𝐬)𝐂𝐨𝐯(𝐬, 𝐬)−1𝐬. (7-26) 

 

To provide an element of choice in the way formula (7-26) is applied, it was deemed 

convenient to convert it into two equations for this study: 
           𝐬 = 𝐂𝐨𝐯(𝐬, 𝐬)𝐬RV, (7-27) 

where 
          𝐬RV = 𝐂𝐨𝐯(𝐬, 𝐬)−1𝐬. (7-28) 

 

The latter term 𝐬RV is an intermediate vector, and for this study it is labelled “revamped signal 

vector”.  Its units are actually the inverse of the units used in the datum shift and the signal (eg 

inverse metres or inverse arc-seconds).  Computation of 𝐬RV does not necessarily require the 

explicit inversion of a matrix, since it can be treated as the solution of the square system of 

equations 
          𝐂𝐨𝐯(𝐬, 𝐬)𝐬𝐑𝐕 = 𝐬. (7-29) 

 

An important property of the revamped signal vector is that, for a given set of control points 

and a given covariance function, it only needs to be computed once.  It is not affected by the 

choice of computation points. 

 

If least-squares collocation is used purely as a gridding method, providing regularly-spaced 

datum shifts that are relatively easy to interpolation, then 𝐬RV only needs to be used once.  

However, if it used as a model for application at any point or set of points in the area of interest, 

then 𝐬RV is worth storing as a part of the model.  Equation (7-27) is a far more convenient 

formula than (7-26). 

 

The case studies in Chapters 8, 12 and 13 have shown that where two or more control points 

are close together in a cluster, the corresponding elements of sRV may be very large compared 

to the other elements.  This doesn’t necessarily lead to large signals in 𝐬, but it is advisable to 

predict additional signals in the vicinity of the clusters as a precautionary check. 

 

There will be a different signal for the different components of the datum shift.  Any trend 

model that has been removed to isolate the signal will need to be restored and added to the 

predicted signal to obtain the predicted datum shift at the computation points. 
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Noise cannot always be ignored.  Although this study has preferred to use (7-20) rather than 

(7-8) as the basis for least-squares collocation, there may be circumstances where the presence 

of noise has to be acknowledged.  After the removal of the trend model from the measurement, 

the residual vector at the control points is given by 
           (centred) measurement = signal + noise = s + n. (7-30) 

 

How much allowance is made for noise depends on how the variance of the residual is split 

between signal and noise.  To minimise the loss of exact interpolation, each 𝑉𝑎𝑟(𝑛𝑖) needs to 

be small compared with each 𝑉𝑎𝑟(𝑠𝑖).  The covariance matrix of the residuals at the control 

points, namely 𝐂𝐨𝐯(𝐬 + 𝐧, 𝐬 + 𝐧), depends on two identities: 
           𝑉𝑎𝑟(𝑠𝑖 + 𝑛𝑖) = 𝑉𝑎𝑟(𝑠𝑖) + 𝑉𝑎𝑟(𝑛𝑖) (7-31) 

and, since noise is uncorrelated, 

           𝐶𝑜𝑣(𝑠𝑖 + 𝑛𝑖 , 𝑠𝑗 + 𝑛𝑗) = 𝐶𝑜𝑣(𝑠𝑖 , 𝑠𝑗) if 𝑖 ≠ 𝑗 (7-32) 

In short, the diagonal elements of 𝐂𝐨𝐯(𝐬 + 𝐧, 𝐬 + 𝐧) use the variance of signal + noise, 

whereas the off-diagonal elements use the signal variance as 𝐶0 in the chosen covariance 

formula. 

 

With noise, the matrix equation for the revamped signal becomes  

           𝐂𝐨𝐯(𝐬 + 𝐧, 𝐬 + 𝐧)𝐬𝐑𝐕 = 𝐬 + 𝐧,  (7-33) 

while the predicted signal at computation points is (as before) given by 
           𝐬 = 𝐂𝐨𝐯(𝐬, 𝐬)𝐬RV. (7-34) 

 

When least-squares collocation is used to obtain datum transformations, the output consists of 

datum shifts at a set of computation points.  To obtain the datum shifts at other points means 

either repeating the collocation process or interpolating the shifts at the computation points.  

Some authors deliberately choose regularly-spaced computation points for a one-off 

application of least-squares collocation.  Piecewise bilinear or piecewise bicubic interpolation 

is then applied to points within the rectangles.  Kinneen and Featherstone (2004) use this 

approach between Australian datums, applying bilinear interpolation for points within the 

rectangles.  This study has not found any examples of smooth bicubic interpolation of residual 

datum shifts.  However, because it makes use of partial derivatives, it has the potential to 

produce better results and allow wider spacing between grid points. 
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7.2 Kriging 

Kriging is an interpolation technique named after Danie G. Krige.  Grgić et al (2016) describe 

it as “a method that constructs a minimum error variance estimation” which “attempts to 

express trends suggested in the data that can be fitted to any data set by specifying the 

appropriate variogram model and anisotropy”.  Bohling (2005b) defines Kriging as “optimal 

interpolation based on regression against observed z values of surrounding data points, 

weighted according to spatial covariance values”. 

 

Bohling (2005b) introduces three types: 

• “Simple kriging”, which assumes a constant mean over the entire domain. 

• “Ordinary kriging”, which assumes the mean is constant in the local neighbourhood 

of each estimation point. 

•  “Kriging with a trend”, where a linear or higher-order trend is fitted in the 

neighbourhood of the estimation point.  It notes that this used to be known as 

“universal kriging”, but the latter’s appearance in other sources indicate that it is still 

in use. 

 

Grgić et al (2016) use Kriging to model distortions in datum shifts for grid coordinates in 

Croatia after removal of a trend model.  They rate it as one of the best methods for that area, 

along with minimum curvature and inverse distance to a power. 

 

Merry and Whittal (1998) used Kriging to approximate  and  at grid points 6 apart, using 

the Surfer package.  The transformation was from Cape Datum to WGS84 for a test area in 

South Africa.  The version chosen was “universal” Kriging with allowance for a linear trend 

in  and .  They found that Kriging was faster than least-squares collocation but gave very 

similar results.  Interpolation from the grid was done by cubic splines. 

 

Kriging has similarities to least-squares collocation, including the use of inverse covariance 

matrices.  Dermanis (1984) compared the two methods in general terms, without specifically 

considering datum shifts, and specified criteria under which the methods coincide.  Claims of 

equivalence to LSC can also be found in Blais (1982), Menz et al (2015), and Merry and 

Whittal (1998).   Forsberg and Tscherning (2008) gives “Kriging” as an alternative name for 

Least Squares Collocation. 
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One difference from least-squares collocation is the use of semivariance.  If 𝑆𝑟1 is the set of 

all pairs of data points between rr −1
 and rr +1

 apart, then the semivariance )(r  is (at least 

empirically) given by 

                𝛾(𝑟) = 0.5Avge {(𝑓𝑖 − 𝑓𝑗)
2
 such that (𝑃𝑖 , 𝑃𝑗) ∈ 𝑆𝑟1}. (7-35) 

 

When plotted against lag distance (r), the result is called a semivariogram (or sometimes just 

a variogram).  Examples are shown in Figures 7-7 and 7-8.  Both have a “sill”, which is the 

semivariance value at which the semivariogram levels off.  The sill may be a maximum or an 

asymptotic limit.  The range of semivariogram models available in Surfer is given in Surfer 

(2002, pages 181-183). 

 
Figure 7-7: Exponential semivariance 

model. 

 
Figure 7-8: Quadratic semivariance model. 

 

Covariance for a given lag distance can be estimated from semivariance using the assumption 

that the two add up to the variance.  They certainly obey that relationship under the condition 

of second-order stationarity (spatially constant mean and variance).  In practice, as noted by 

Bohling (2005a), the estimated versions of C(r) and (r) will violate that relationship to a 

greater or lesser extent due to sampling limitations and deviations from second-order 

stationarity. 

 

7.3  Rubber sheeting 

Rubber sheeting is the representation of a surface by conjoining plane triangles; the surface is 

stretched in a piecewise fashion.  A Delaunay triangulation is applied to the control points, 

which means that the circumcircle of each triangle contains no other control point.  In Figure 

6-2, the triangles ABD and BCD could be part of a Delaunay triangulation because the angles 

facing the shared side add up to less than 180.  The triangles ABC and ACD could not, 

because the angles facing the shared side add up to more than 180.  Interpolation of the data 

in each triangle is done by the plane triangle that fits the values (considered loosely as 

“heights”) at the vertices. 
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The question of whether rubber sheeting can be applied to non-triangular polygons, such as 

quadrilaterals, has not been considered in this study. 

 

Rubber sheeting is a method applicable to datum transformations.  It is applied by González-

Matesanz et al (2003, 2006) to the residual datum shifts after the removal of a 7-parameter 

conformal model.  In so doing, they are conforming to what they describe as “the general 

strategy followed by Australia, Canada and other countries”. 

 

Algorithms for doing a Delaunay triangulation can be found in Lee and Schachter (1980) and 

Su and Drysdale (1997).  Some virtual points are added on the outside (based on local 7PC 

models) “to avoid excessively sharp triangles near the coast”. Working from grid coordinates, 

an affine transformation of the type described in Section 4.2 is applied to points on the basis 

of the triangles they belong to. 

 

Rubber sheeting is known by other names.  Doytsher (2000) identifies it as an alternative name 

for “applying a Piecewise Linear Homeomorphic (PLH) transformation”.  The latter term is 

also used by Gillman (1985).  When applied to transformations by Grgić et al (2016), it is 

referred to as “triangulation with linear interpolation”, in keeping with Surfer (2002, pages 

135-136). 

 

If the area of interest has a dense coverage of control points (so that the triangles are small) 

and the residual datum shifts being interpolated are small, the quality of the interpolation will 

be quite good despite the discontinuities in partial derivatives. 

 

Greaves (2004) describes OSTN02 which takes rubber sheeting one stage further in 

transforming projected grid coordinates from European Terrestrial Reference System 1989 to 

Ordnance Survey of Great Britain 1936 (the National Grid).  A regular grid of datum shifts is 

computed by the affine transformations, in this case with a resolution of 1km.  This enables 

straightforward bilinear interpolation which - to some extent - smooths out the gradient 

discontinuities along the edges of the triangles.  Ordnance Survey (2018, 2020) give a similar 

description of OSTN15, the current national datum transformation between ETRS89 and 

OSGB89.  OSTN15 has been coded into a software application “Grid InQuest II” which is 

publicly available. 
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Berk and Komadina (2013) use rubber sheeting to transform local (D48) grid coordinates for 

Slovenia to ETRS89.  A Delauney triangulation was used, based on “virtual tie points” 

connecting both systems.  In this case, virtual tie points were not only created outside the 

national borders (to enable extrapolation) but replaced directly-observed control points within 

the country area.  “Coordinate shifts on each virtual tie point were determined via best-fit 

transformation in its immediate neighbourhood.” 

 

It would appear that rubber sheeting can be used without converting latitude and longitude to 

grid coordinates.  This is because the triangles can be treated as if they are on a graphical 

representation of (, ) and, as noted in Section 6.1, the affine transformation equations can 

be expressed in terms of (, ). 

 

7.4 Minimum curvature surfaces 

Briggs (1974) developed the method of “minimum curvature surfaces” for geophysical data 

that can be represented by contour maps.  The minimum curvature condition leads to 

differential equations than can be represented approximately by finite difference equations at 

grid points.  For each observation point that does not coincide with a grid point, another 

difference equation is required for grid points that are vertices of the grid square in which the 

observation falls.  Grid points that coincide with observation points give rise to what are – in 

effect – boundary conditions.  The set of linear algebraic equations is solved iteratively.  The 

approximations computed at the grid points can be interpolated bilinearly. 

 

Dewhurst (1990) applied this approach to a transformation between North American Datums 

to develop gridded datasets for the shifts  and , starting from known shifts at irregularly-

spaced points.  Thus, two mathematical surfaces are prepared for each major region of the 

country.  Computing  and  for an individual point is achieved with bilinear interpolation 

based on the 4 surrounding grid points, although Dewhurst does acknowledge other possible 

interpolation methods. Dewhurst’s computer program NADCON – an acronym for North 

American Datum Conversion - is now available online for a number of datum transformations; 

see NGS (2013). 

 

NTv2 (National Transformation Version 2) is another computer program using minimum 

curvature for datum transformations.  It is similar to NADCON although originally designed 

for Canada.  A key difference is that NTv2 allows for sub-grids with a higher density than the 

main grid.  See Junkins and Farley (1995). 
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NADCON’s use of minimum curvature surfaces appears to be a composite method only in the 

sense that gridded datasets are created and then interpolated.  The application of minimum 

curvature as described in Grgić et al (2016), however, is to residual datum shifts after the 

removal of a trend model.  It is noted (Ibid, Table 1) that the process “produces a smooth 

surface and, consequently, source data is not always treated exactly”, confirming that 

interpolation of the gridded datasets will not necessarily produce the original datum shifts at 

the observed points exactly. 

 

There is no obvious reason why minimum curvature surfaces cannot be applied to geodetic 

coordinates rather than projected grid coordinates. 

 

7.5  Inverse distance to a power 

Inverse distance weighting is a scattered-data interpolation algorithm proposed by Shepard 

(1968).  It is very easy to implement.  The weights are non-negative quantities whose sum is 

1, and this ensures the interpolating function never strays outside the range of the interpolated 

values. 

A continuous and smooth function f is interpolated at scattered control points {𝑃𝑖} by the 

formula 

                𝑓𝑃 =
∑𝑓𝑖/‖𝑃−𝑃𝑖‖

𝑛

∑1/‖𝑃−𝑃𝑖‖
𝑛  (7-36) 

 

where ‖𝑃 − 𝑃𝑖‖ is the distance from P to 𝑃𝑖.  The formula takes the limiting value 𝑓𝑗 when P 

coincides with a control point  𝑃𝑗. 

 

An alternative form of (7-36), which avoids zero divisors and processing of large numbers, is 

                𝑓𝑃 = 
𝑓𝑗 + ∑ 𝑓𝑖·(‖𝑃−𝑃𝑗‖ ‖𝑃−𝑃𝑖‖⁄ )

𝑛

𝑖≠𝑗

1 + ∑ (‖𝑃−𝑃𝑗‖ ‖𝑃−𝑃𝑖‖⁄ )
𝑛

𝑖≠𝑗

 (7-37) 

where 
                j = value of i that minimises ‖𝑃 − 𝑃𝑖‖. (7-38) 

 

The value of n in formula (7-36), and hence in (7-37), must be at least 2 to ensure smooth 

interpolation.  If n is exactly 2, the control points are said to be weighted by inverse square 

distances.  One argument for having n greater than 2 is that it limits the influence of distant 

points. 
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Figure 7-9: Characteristics of inverse distance interpolation using powers 1, 2, 3 and 4. 

 

Figure 7-9 illustrates the effect of inverse distance interpolation on data which depends on a 

single variable.  None of the data fits is totally satisfactory.  Increasing the power n reduces 

the dip between the 3rd and 4th points, but accentuates the changes in curvature between other 

control points. 

 

Setting aside the case where the power n is 1, the main drawback of inverse distance weighting 

is that it imposes zero gradients at the control points (unless the power is 1).  When it is used 

to fit a surface, it has the tendency to generate concentric contours around the control points.  

This is described by several authors, among them Attaouia et al (2017) and Musashi et al 

(2018), as a bullseye effect.  

 

A variation of (7-36) can be applied to control points which have weights based on their 

perceived reliability: 

            𝑓𝑃 = 
∑𝑤𝑖𝑓𝑖 ‖𝑃−𝑃𝑖‖

𝑛⁄

∑𝑤𝑖 ‖𝑃−𝑃𝑖‖
𝑛⁄

 (7-39) 

 

Control points with the highest weights will influence the interpolated f within a larger local 

radius than control points with the lowest weights.   

 

Grgić et al (2016) apply inverse-distance-to-a-power to interpolate residual transformations.  

Given that the residual datum shifts are smaller than the original datum shifts, the drawback 

of zero gradients at control points is less of a problem than in it would be if the method had 

been applied to the original datum shifts.  When inverse square distances were used (n = 2), 
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the accuracy over Croatia was comparable to that achieved by Kriging and minimum 

curvature. 

 

Grgić et al (2016) also mentions that one possible use of “inverse distance to a power” is as a 

smoothing interpolator rather than exact interpolator.  However, they chose to use the method 

as an exact interpolator, setting the smoothing parameter to zero. 

 

One possible smoothing interpolator is the formula 

        �̄�𝑃 = 
∑𝑓𝑖 (√𝛿

2+‖𝑃−𝑃𝑖‖
2)
𝑛

⁄

∑1 (√𝛿2+‖𝑃−𝑃𝑖‖
2)
𝑛

⁄
 (7-40) 

where  is a positive constant and ‖𝑃 − 𝑃𝑖‖ is the distance from P to 𝑃𝑖.  The control points 

closest to point P will have the greatest influence on the value of 𝑓
𝑃

 but 𝑓 will not interpolate 

the control points exactly.  One characteristic of (7-40) is that the numerator and denominator 

will always be finite.   is a “smoothing parameter” and setting it to zero is equivalent to turning 

(7-40) into (7-36), which is an exact interpolator.  Formula (7-40) matches that on page 115 

of Surfer (2002), so it must be the means by which Surfer applies the smoothing parameter . 

 

An alternative smoothing interpolator is the formula 

           �̄�𝑃 = 
∑𝑓𝑖 [𝛿+‖𝑃−𝑃𝑖‖]

𝑛⁄

∑1 [𝛿+‖𝑃−𝑃𝑖‖]
𝑛⁄

, (7-41) 

where  is a positive constant which acts as a smoothing parameter.  The properties of formula 

(7-41) are much the same as those of (7-40).  Formula (7-41) matches that given by Tomczak 

(1998) which claims Keckler (1995) as its source.  The latter is a user guide to Surfer Version 

6 (1995), so it may have been superseded by Surfer (2002). 

 

It is worth mentioning that in the case of inverse square distance (n=2), formula (7-40) 

simplifies to 

            �̄�𝑃 = 
∑𝑓𝑖 [𝛿

2+‖𝑃−𝑃𝑖‖
2]⁄

∑1 [𝛿2+‖𝑃−𝑃𝑖‖
2]⁄

. (7-42) 

 

According to Surfer (2002, page 115), the smoothing factor parameter used in (7-40) allows 

the user to incorporate an “uncertainty” factor associated with the input data: “the larger the 

smoothing factor parameter, the less overwhelming influence any particular observation has 

in computing a neighbouring grid”. 
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There remains the issue of how the smoothing parameter  used in formula (7-40) is selected.  

Golden Software Support implies that selection is a trial-and-error process to remove the 

bullseye effect without making the surface too smooth: “For example, instead of 0, you could 

try a smoothing value of 10.  If that is too smooth, you can step the smoothing to 5 to see if 

that is better.” (Woodson, 2016). 

 

The method of “inverse distance to a power” can be used to generate a rectangular mesh of 

points which can be interpolated with bilinear or bicubic functions.  This may be unnecessary 

because of the simplicity of the inverse-distance method itself. 

 

As noted earlier, the relative ease of computing distances from geodetic coordinates means 

that it is not essential to apply a map projection to the coordinates of data points. 

 

7.6  Radial basis functions 

A radial basis function is a real-valued function whose value depends only on some measure 

‖. . . ‖  of the distance from the origin.  It can be applied to the same measure of the distance 

between two points P and Q, which will be denoted by ‖𝑃 − 𝑄‖.  Following Baxter (1992) and 

Attaouia et al (2017), the radial basis function is denoted here by the symbol , rather than the 

symbol  used by Powell (2005) and Bullinaria (2015a, 2015b). 

 

Interpolation based on radial basis functions is based on the formula 
           𝑓𝑃 = ∑ 𝑤𝑖𝜑(‖𝑃 − 𝑃𝑖‖)𝑖  (7-43) 

where the points  𝑃𝑖 are control points where the function being interpolated is known. 

 

For many choices of , the parameters  𝑤𝑖  can be obtained by solving the square system of 

equations 

           𝑓𝑖 = ∑ 𝑤𝑗𝜑(‖𝑃𝑖 − 𝑃𝑗‖)𝑗 . (7-44) 

 

Surfer offers five possible radial basis functions for interpolating residual datum shifts.  They 

are as follows. 

• Inverse multiquadric:  

           𝜑(𝑟) = 1/√1 + (𝜀𝑟)2 or 𝜑(𝑟) = 1/√𝑟2 + 𝑅2. (7-45) 

• Multilog:  
           𝜑(𝑟) = ln(𝑟2 + 𝑅2). (7-46) 

• Multiquadric, sometimes called Hardy multiquadric arising from Hardy (1990): 



148 

           𝜑(𝑟) = √1 + (𝜀𝑟)2 or 𝜑(𝑟) = √𝑟2 + 𝑅2. (7-47) 

• Natural cubic spline:  
           𝜑(𝑟) = (1 + (𝜀𝑟)2)3 2⁄  or 𝜑(𝑟) = (𝑟2 + 𝑅2)3 2⁄ . (7-48) 

• Thin plate spline:  
           𝜑(𝑟) = (𝑟2 + 𝑅2)ln(𝑟2 + 𝑅2). (7-49) 

 

Surfer (2002, page 132) comments “In terms of the ability to fit your data and to produce a 

smooth surface, the Multiquadric method is considered by many to be the best.  All of the 

radial basis function methods are exact interpolators, so they attempt to honour your data.  You 

can introduce a smoothing factor to all the methods in an attempt to produce a smoother 

surface.” In all 5 cases listed above,  𝑅2 is described as a shaping or smoothing parameter 

(ibid, page 133). 

 

Confusingly, Surfer (2002) says that the methods which are exact interpolators include “Radial 

Basis Function when you do not specify an 𝑅2 value” (ibid, page 156).  The author of that 

overview is in conflict with the author of the radial basis description (ibid, pages 132-135), 

with Bullinaria (2015a) and with Hardy (1990).  The choice of 𝑅2 influences the shape of the 

interpolating surface, but the surface obtained from (7-43) and (7-44) is still an exact fit at the 

control points.  For this reason, the term “shaping parameter” is preferable to the misleading 

“smoothing parameter”. 

 

Surfer (2002, page 133) comments “There is no universally accepted method for computing 

an optimal value for this factor.  A reasonable trial value for 𝑅2 Parameter is between the 

average sample spacing and one-half the average sample spacing.”  Surfer’s default value for 

𝑅2 (ibid, page 134) is given in (7-50) below; it has been adopted, for example, by Attaouia et 

al (2017). 
𝑅default
2 = (length of diagonal of the data extent)2/(25 × number of data points). (7-50) 

 

From (7-43), it is clear that the basis functions 𝜑(‖𝑃 − 𝑃𝑗‖) and the weights 𝑤𝑗 are as 

numerous as the control points.  If there are a large number of control points then the solution 

of (7-44) becomes computationally costly (although it is a one-off exercise).  Various 

approaches have been suggested to address this problem: 

• Lazzaro and Montefusco (2002) proposed a variation that decomposes the 

interpolation problem into several steps.  This sacrifices the conceptual simplicity of 

the basic method for a more elaborate process. 
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• Bullinaria (2015a) suggests forming the basis functions from a much smaller subset of 

the control points.  Bullinaria (2015b) describes ways in which this can be done. 

• Surfer (2002, pages 104-106) describes ways of limiting the number of control points 

to include in the interpolation at each grid node.  Surfer software provides options for 

specifying a search ellipse (defining the size of the local neighbourhood) and search 

rules (that determine the number of points to actually consider within the 

neighbourhood).  This approach is actually obligatory if there are more than 750 

control points. 

 

For this study, the implementation of radial basis functions involves the expression of a 

variable datum shift as the sum of a trend model and a signal, by analogy with (7-20) which is 

used in least-squares collocation.  The radial basis functions can be applied to interpolate the 

residuals from the trend model. 

 

With this approach, solving (7-44) for 𝑤1, 𝑤2, 𝑤3, … is analogous to solving (7-29) for vector 

𝐬RV.  The vector consisting if the 𝑤𝑖 can even be regarded as a revamped signal vector and 

denoted by 𝐬RV. 

 

An important property of the revamped signal vector is that, for a given set of control points 

and a given radial basis function, it only needs to be computed once.  It is not affected by the 

choice of computation points. 

 

The analogy with least-squares collocation can be extended to an RBF-equivalent of the 

covariance matrix.  The radial basis function arising from points i and j is 𝜑(𝑟𝑖,𝑗) where 𝑟𝑖,𝑗 is 

the distance between points i and j.  A radial basis matrix, denoted in this thesis by 𝐑𝐝𝐥(𝐬A, 𝐬B), 

extends this to two sets of signals (not necessarily distinct but not necessarily equal in size). 

 

The RBF-equivalents of (7-27) and (7-28) are (7-51) and (7-52), given below.  For 

computation points, the predicted signals are given by 
           𝐬 = 𝐑𝐝𝐥(𝐬, 𝐬)𝐬RV, (7-51) 

where 
          𝐬RV = 𝐑𝐝𝐥(𝐬, 𝐬)−1𝐬. (7-52) 

 

Whether the inverse matrix needs to be computed explicitly depends on whether the equation 
          𝐬 = 𝐑𝐝𝐥(𝐬, 𝐬)𝐬RV (7-53) 
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can be solved by some other means.  If 𝐑𝐝𝐥(𝐬, 𝐬) is positive definite, then solution by Cholesky 

decomposition is feasible.  The implementation of Cholesky for this study is described in sub-

appendix G.2.2. 

 

If a radial basis function is used purely as a gridding method, providing regularly-spaced 

datum shifts that are relatively easy to interpolate, then 𝐬RV only needs to be used once.  

However, if it used as a model for application at any point or set of points in the area of interest, 

then 𝐬RV is worth storing as a part of the model.  Putting it another way, storing the quantities 

𝑤𝑖 makes (7-44) easy to use and re-use to predict signal components of datum shifts. 

 

7.7  Nearest neighbour interpolation 

Grgić et al (2016) includes this possible method for interpolating residual shifts at the control 

points to generate a grid.  The interpolated residual shifts at each grid point come from the 

nearest control point.  Arya et al (1998) is quoted as a reference; it is not essential for 

implementing the interpolation method, but it does offer time-saving methods of finding the 

nearest control point when the original data set is large. 

 

The methodology of Arya et al (1998) for computing minimum distances is applicable to ℝ3 

as well as to ℝ2; therefore, even if that is used, it is not essential to apply a map projection to 

the coordinates of control points. 

 

As nearest neighbour selects a data-point function value for each grid point, (with no attempt 

to compute in-between function values), this interpolation method is not very sophisticated, 

especially when compared with methods that generate a smooth surface through the control 

points.  Because of this, bilinear interpolation rather than bicubic interpolation is the obvious 

method to apply within the rectangles of the grid. 

 

Figure 7-10 illustrates the discontinuities of nearest neighbour interpolation.  The left-hand 

diagram shows just two of the patches over which the interpolating function is constant. 
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Figure 7-10: Nearest neighbour interpolation over the areas around 

control points P & Q and along the line PQ. 
 

One characteristic of nearest neighbour interpolation is that all data-point values will recur at 

grid points except where a control point of enclosed by 4 grid points that are each closer to 

another control point.  This means that the peaks and troughs of the function values at the 

control points almost always appear in the computation points.  In this respect it has an 

advantage over inverse distance to a power, for example, where dips occur between peaks (as 

illustrated in Figure 7-9) and ridges occur between troughs. 

 

7.8  Natural-neighbour interpolation 

This interpolation method was proposed by Sibson (1981).  Alternative names for the method 

are Sibson Interpolation and “Area-Stealing” (Musashi et al, 2018).  For each point of interest 

P, it computes a weighted average of function values at a selection of neighbouring control 

points. 

 

The way it does this is by the use of “Voronoi cells”, illustrated in Figure 7-11.  A one-off 

tessellation of the region of interest creates a Voronoi cell  𝑉(𝑃𝑖)  for each control point  𝑃𝑖   

which consists of all points nearer to that control point than to any other control point.  (The 

sides of each cell are perpendicular bisectors of chords joining control points.)   For the point 

P where an interpolated value is sought, the Voronoi cell 𝑉(𝑃) consists of all points nearer to 

P than to any control point.  For each cell 𝑉(𝑃𝑖)  that intersects with 𝑉(𝑃), the overlapping 

area for 𝑉(𝑃) ∩ 𝑉(𝑃𝑖) is computed.  The weights 𝑤𝑖 assigned to the function values 𝑓𝑖   are 

proportional to those areas, and the sum of the weights is 1. 
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Figure 7-11: Example of 
Voronoi cells around the point P; 
the areas of the shaded overlaps 
(clockwise from top) are in the 
ratio 58:4:109:30:16 so the 
weights applied to the 5 nearby 
control points are 0.27, 0.02. 
0.50, 0.14 and 0.07. 

 

 

This provides a smoother approximation to the underlying function than nearest-neighbour 

interpolation.  There is a substantial amount of computation involved, but it does avoid the 

need to solve a large system of equations. 

 

Grgić et al (2016) includes natural-neighbour interpolation among the methods applied for 

interpolating residual shifts at the control points to generate a grid.  It seems entirely possible 

that this method can be applied without a map projection, at least in non-polar regions, using 

approximations of distances and areas.  It is accepted, however, that this should be investigated 

rather than assumed. 

 

7.9  Modified Shepard’s method 

Although Shepard (1968) considered variations on inverse distance to a power, “Modified 

Shepard’s method” usually describes a variation proposed by other authors since then. 

 

The version used in Surfer was proposed by Franke and Nielson (1980).  It is sometimes called 

the modified quadratic Shepard’s method.  It is based on a local quadratic polynomial fit in 

the neighbourhood of each control point.  The procedure continues as an inverse distance 

model using surface values obtained from the fitted quadratic surface rather than the original 

control points.  The method can be exact or approximate, depending on whether a smoothing 

factor is specified. 

 

The Surfer implementation uses a full sector search as described in Renka (1988).  The local 

neighbourhood for the quadratic fit is just large enough to include a user-specified number of 

local neighbours (the “quadratic neighbours” parameter).  The interpolated values are 

generated using a distance-weighted average of the previously-computed quadratic fits 



153 

associated with neighbouring observations.  The user-specified “weighting neighbours” 

parameter defines a circular neighbourhood just large enough to contain that number of 

neighbours. 

 

Grgić et al (2016) applied the modified quadratic Shepard’s method to interpolate residual 

datum shifts at grid points.  Whether it was used as an exact interpolator is not stated, but it 

seems likely that was the case.  There is no mention in the paper of a smoothing parameter 

(although Surfer does provide the facility), and they had opted for a smoothing parameter of 

zero when using inverse distance to a power. 

 

7.10  Moving least squares 

Moving least squares is a method of generating surfaces proposed by Lancaster and Salkauskas 

(1981).  It can be used for smoothing or interpolating scattered data.  For any given grid point, 

the function is approximated using the values of control points within a search ellipse to 

compute a weighted average.  If there are fewer than the specified minimum number of control 

points within the search ellipse, the grid point is blanked. 

 

Grgić et al (2016) examined moving least squares, which Surfer prefers to call “moving 

average”, as a method of interpolating residual shifts at the control points to generate a grid.  

Their results appear to show that this was the least effective method.  That conclusion is 

questionable, however, because the diagram of remaining positional distortions for moving 

average resembles the reverse of the no-distortion-model (suggesting that twice the required 

correction has been applied). 

 

7.11  Polynomial regression 

This method is used to define large-scale trends and patterns in source data and is not an 

interpolator.  Surfer allows powers of x up to 4 and powers of y up to 4 with a maximum total 

order of 4.  Grgić et al (2016) used this for approximating residual shifts to generate a grid, 

specifying 3 as a maximum power for x, 3 as a maximum power for y, and 4 as a maximum 

total order. 

 

This method has similarities to multiple regression equations.  However, Surfer includes all 

the permitted combinations of the x and y components in the polynomial equation, so there is 

no attempt to eliminate statistically-insignificant terms. 
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7.12  Local polynomial 

This method was proposed by Fan and Gijbels (1996).  It assigns values to the grid nodes by 

using the weighted least-squares fit with data within each grid node’s search ellipse. 

 

The results obtained from this method by Grgić et al (2016) were only slightly inferior to those 

obtained by Kriging, minimum curvature and inverse distance to a power. 

 

7.13  Hybrid inverse power function embodying accelerated decline (HIPFEAD) 

This is an original method devised for this study.  It involves a new process for calculating 

weights of function values for distance-related interpolation.  It resembles inverse distance to 

a power (see Section 7.5).  However, it imposes a limit-of-influence, removing the influence 

of control points beyond a given distance from the point of interest.  It does this by a smooth 

join between inverse distance to a power and a low-degree polynomial function of distance.  

The latter accelerates the decline of the weighting function, hence its name. 

 

Two subtypes of HIPFEAD were considered in this project: 

• Hybrid inverse square function embodying accelerated decline (HISFEAD), in which 

inverse square distance is joined smoothly to a low-degree polynomial. 

• Hybrid inverse cubic function embodying accelerated decline (HICFEAD), in which 

inverse cubic distance is joined smoothly to a low-degree polynomial. 

 

7.13.1  Hybrid inverse square function embodying accelerated decline (HISFEAD) 

The general version of the weighting function has two parameters: 

• The distance 𝑟𝐽 which indicates where the inverse square function joins the polynomial. 

• The limit-of-influence 𝑟𝑚𝑎𝑥 which indicates the distance beyond which the function 

weighting is zero. 

The smoothness and continuity requirements at 𝑟 = 𝑟𝐽 and 𝑟 = 𝑟𝑚𝑎𝑥 constitute 4 conditions.  

As a result, the low-order polynomial 𝑔(𝑟) will (in general) be cubic.  The weighting function 

is illustrated in Figure 7-12.  The continuation of 1/𝑟2 is included to show the extent 𝑔(𝑟) 

deviates from it. 
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Figure 7-12: General form of the hybrid inverse square function with parameters 𝑟𝐽 and 𝑟𝑚𝑎𝑥. 
 
For the weighting of function values at control points on a surface around point P, the effect 

can best be illustrated by Figure 7-13.  The circles defined by 𝑟 = 𝑟𝐽 and 𝑟 = 𝑟𝑚𝑎𝑥 can be 

regarded as “radial partitioning” of the area of interest.  The unlabelled dots are illustrative 

control points. 

 
Figure 7-13: Effect of radial partitioning on the weights defined by 

the hybrid inverse square function for interpolation at P. 
 

To achieve the smooth join with the r-axis at 𝑟 = 𝑟𝑚𝑎𝑥, the cubic function must take the form 
            𝑔(𝑟) = (𝑎 − 𝑏𝑟)(𝑟𝑚𝑎𝑥 − 𝑟)

2.   (7-54) 

It follows that 
            𝑔(𝑟)  =  𝑎(𝑟𝑚𝑎𝑥2 − 2𝑟𝑚𝑎𝑥𝑟 + 𝑟

2) − 𝑏(𝑟𝑚𝑎𝑥
2 𝑟 − 2𝑟𝑚𝑎𝑥𝑟

2 + 𝑟3) (7-55) 

and 
            𝑔′(𝑟)  =  𝑎(−2𝑟𝑚𝑎𝑥 + 2𝑟) − 𝑏(𝑟𝑚𝑎𝑥2 − 4𝑟𝑚𝑎𝑥𝑟 + 3𝑟

2). (7-56) 

 

Since 𝑔(𝑟1)  = 1/𝑟𝐽
2 and 𝑔′(𝑟𝐽)  = −2/𝑟𝐽

3, it follows that 

            𝑎(𝑟𝑚𝑎𝑥2 − 2𝑟𝑚𝑎𝑥𝑟𝐽 + 𝑟𝐽
2) − 𝑏(𝑟𝑚𝑎𝑥

2 𝑟𝐽 − 2𝑟𝑚𝑎𝑥𝑟𝐽
2 + 𝑟𝐽

3) = 1/𝑟𝐽
2 (7-57) 

and 
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            𝑎(−2𝑟𝑚𝑎𝑥 + 2𝑟𝐽) − 𝑏(𝑟𝑚𝑎𝑥2 − 4𝑟𝑚𝑎𝑥𝑟𝐽 + 3𝑟𝐽
2) = −2/𝑟𝐽

3. (7-58) 

 

Multiplying (7-57) by 2 and (7-58) by −(𝑟𝑚𝑎𝑥 − 𝑟𝐽) produces the following: 

 

            𝑎(2𝑟𝑚𝑎𝑥2 − 4𝑟𝑚𝑎𝑥𝑟𝐽 + 2𝑟𝐽
2) − 𝑏(2𝑟𝑚𝑎𝑥

2 𝑟𝐽 − 4𝑟𝑚𝑎𝑥𝑟𝐽
2 + 2𝑟𝐽

3) = 2/𝑟𝐽
2 (7-59) 

and 

            𝑎(2𝑟𝑚𝑎𝑥2 − 4𝑟𝑚𝑎𝑥𝑟𝐽 + 2𝑟𝐽
2) + 𝑏(𝑟𝑚𝑎𝑥

3 − 5𝑟𝑚𝑎𝑥
2 𝑟𝐽 + 7𝑟𝑚𝑎𝑥𝑟𝐽

2 − 3𝑟𝐽
3) = (2𝑟𝑚𝑎𝑥 − 2𝑟𝐽) /𝑟𝐽

3. (7-60) 

. 

Subtracting (7-59) from (7-60), 

            𝑏(𝑟𝑚𝑎𝑥3 − 3𝑟𝑚𝑎𝑥
2 𝑟𝐽 + 3𝑟𝑚𝑎𝑥𝑟𝐽

2 − 𝑟𝐽
3) = (2𝑟𝑚𝑎𝑥 − 4𝑟𝐽) /𝑟𝐽

3, (7-61) 

and hence 

            𝑏 = 
2𝑟𝑚𝑎𝑥−4𝑟𝐽

𝑟𝐽
3(𝑟𝑚𝑎𝑥−𝑟𝐽)

3. (7-62) 

 

From (7-57), 
            𝑎(𝑟𝑚𝑎𝑥2 − 2𝑟𝑚𝑎𝑥𝑟𝐽 + 𝑟𝐽

2) = 𝑏(𝑟𝑚𝑎𝑥
2 𝑟𝐽 − 2𝑟𝑚𝑎𝑥𝑟𝐽

2 + 𝑟𝐽
3) + 1/𝑟𝐽

2. (7-63) 

 

Applying (7-62), 

            𝑎(𝑟𝑚𝑎𝑥2 − 2𝑟𝑚𝑎𝑥𝑟𝐽 + 𝑟𝐽
2) = 

2𝑟𝑚𝑎𝑥−4𝑟𝐽

𝑟𝐽
2(𝑟𝑚𝑎𝑥−𝑟𝐽)

 +1/𝑟𝐽2, (7-64) 

which can be rewritten as 

            𝑎(𝑟𝑚𝑎𝑥 − 𝑟𝐽)
2
= 
2𝑟𝑚𝑎𝑥−4𝑟𝐽+𝑟𝑚𝑎𝑥−𝑟𝐽

𝑟𝐽
2(𝑟𝑚𝑎𝑥−𝑟𝐽)

 = 
2𝑟𝑚𝑎𝑥−4𝑟𝐽+𝑟𝑚𝑎𝑥−𝑟𝐽

𝑟𝐽
2(𝑟𝑚𝑎𝑥−𝑟𝐽)

. (7-65) 

Therefore 

            𝑎 = 3𝑟𝑚𝑎𝑥−5𝑟𝐽

𝑟𝐽
2(𝑟𝑚𝑎𝑥−𝑟𝐽)

3. (7-66) 

 

If 𝑟𝑚𝑎𝑥 < 2𝑟𝐽, then the transition from 1/𝑟2 to zero is relatively abrupt.   If 𝑟𝑚𝑎𝑥 > 2𝑟𝐽, then 

the change from 1/𝑟2 to zero is more gradual but the objective of limiting the number of points 

used in the interpolant is compromised.  Setting 𝑟𝑚𝑎𝑥 = 2𝑟𝐽 would seem a good compromise.  

It has the additional attraction that the values of a and b are 1/𝑟𝐽4 and 0 respectively, making 

𝑔(𝑟) a quadratic function:  

            𝑔(𝑟) = (2𝑟𝐽 − 𝑟)
2
/𝑟𝐽

4 = 16(𝑟𝑚𝑎𝑥 − 𝑟)
2/𝑟𝑚𝑎𝑥

4 . (7-67) 

 

This choice of polynomial is adopted as the one which defines hybrid inverse distance function 

embodying accelerated decline (HISFEAD) unless preceded by the word “generalised”.  
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Figures 7-14 and 7-15 show the two ways of illustrating HISFEAD graphically, each based on 

a single defining constant. 

 

 
Figure 7-14: HISFEAD with 𝑟𝐽 as the defining constant. 

 

 
Figure 7-15: HISFEAD with 𝑟𝑚𝑎𝑥 as the defining constant. 

 

The basic HISFEAD interpolation formula is 

            𝑓𝑃 = 
∑𝑤𝑖𝑓𝑖

∑𝑤𝑖
 (7-68) 

where 

           𝑤𝑖 = {
1/𝑑𝑖

2 if 0 ≤ 𝑑𝑖 ≤ 0.5𝑟𝑚𝑎𝑥;

16(𝑟𝑚𝑎𝑥 − 𝑑𝑖)
2/𝑟𝑚𝑎𝑥

4 if 0.5𝑟𝑚𝑎𝑥 ≤ 𝑑𝑖 ≤ 𝑟𝑚𝑎𝑥;
0 if 𝑑𝑖 ≥ 𝑟𝑚𝑎𝑥

} (7-69) 

and 
            𝑑𝑖 = distance from P to control point i. (7-70) 

 

The values of 𝑤𝑖 are all non-negative, as are the values of the normalised weights 𝑤𝑖/(∑𝑤𝑖). 

 

The application of HISFEAD has a similar problem to inverse distance to a power, namely a 

near-zero divisor when the point of interest is close to a control point.  In (7-69), 𝑤𝑖 = ∞ when 

𝑑𝑖 = 0. 
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The solution is similar to that used in (7-37) and (7-38). 
            Let j = value of i that minimises 𝑑𝑖. (7-71) 

If 𝑑𝑗 ≥ 0.5𝑟𝑚𝑎𝑥 the proximity problem does not arise.  If 𝑑𝑗 < 0.5𝑟𝑚𝑎𝑥, which means the 

reciprocal of 𝑤𝑗 is 𝑑𝑗2, then (7-68) can be replaced by 

            𝑓𝑃 = 
𝑓𝑗+∑ 𝑑𝑗

2𝑤𝑖𝑓𝑖
𝑖≠𝑗

1+∑ 𝑑𝑗
2𝑤𝑖

𝑖≠𝑗

. (7-72) 

This avoids the need to compute 𝑤𝑗. 

 

One potential characteristic of HISFEAD is the interpolant taking a constant value over one 

or more sub-areas.  This will happen if there is an area for which for which only one particular 

control point is within distance 𝑟𝑚𝑎𝑥; the interpolant will take the value of f at that control 

point for the whole of that area.  (This is, of course, a characteristic of all sub-areas in the case 

of nearest-neighbour interpolation.) 

 

A problem arises if a point of interest is more than 𝑟𝑚𝑎𝑥 from every control point.  There are 

two would-be solutions, but each of them is problematic: 

• Setting the interpolated f to zero in sub-areas which are at least 𝑟𝑚𝑎𝑥 from all control 

points; but this introduces discontinuities at the boundaries of those sub-areas. 

• Setting the interpolated f to nearest neighbour in sub-areas which are at least 𝑟𝑚𝑎𝑥 from 

all control points; but this introduces discontinuities across lines which are equidistant 

from two control points. 

It is therefore a necessary prerequisite that 𝑟𝑚𝑎𝑥 is sufficiently large to ensure that every 

possible point of interest is within 𝑟𝑚𝑎𝑥  of at least one control point. 

 

HISFEAD can be used locally to avoid one of the problems with surface-fitting methods that 

are not strictly bounded (NSB), such as least-squares collocation and radial basis functions.  

An interpolating fit can be volatile due to two or more control points being too close together, 

as is the case with points R and S in Figure 7-2.  There may be more than one such cluster of 

points in the dataset. 

 

The solution is to create a pseudo control point for each cluster, using the average of the 

coordinates and the average f.  The NSB method as modified by HISFEAD consists of the 

following stages. 
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• The NSB method is applied to an interim dataset consisting of the pseudo control 

points and the control points outside the clusters. 

• The residuals at the cluster points are computed (from the known values of f minus the 

values of the NSB approximation). 

• For each cluster, a local limit-of-influence 𝑟𝑚𝑎𝑥 is set to the minimum distance to other 

control points (or a smaller value) and a HISFEAD function is defined to interpolate 

the residuals at the cluster’s control points. 

• The modified NSB function is the NSB function plus the sum of the HISFEAD 

functions. 

 

The above function interpolates all the control points and has C1 continuity.  However, the 

strictly bounded property of HISFEAD removes the danger of volatility from the clusters. 

 

7.13.2  Hybrid inverse cubic function embodying accelerated decline (HICFEAD) 

HICFEAD is analogous to HISFEAD, but it is a modification of inverse distance weighting to 

the power 3.  The formulae are (7-68) to (7-70) except that (7-69) is replaced by (7-73) below. 

           𝑤𝑖 = {
1/𝑑𝑖

3 if 0 ≤ 𝑑𝑖 ≤ 0.5𝑟𝑚𝑎𝑥;

64(𝑟𝑚𝑎𝑥 − 𝑑𝑖)
3/𝑟𝑚𝑎𝑥

6 if 0.5𝑟𝑚𝑎𝑥 ≤ 𝑑𝑖 ≤ 𝑟𝑚𝑎𝑥;
0 if 𝑑𝑖 ≥ 𝑟𝑚𝑎𝑥

} (7-73) 

 

The function on which the weights are based is illustrated in Figure 7-16.  It is easily shown 

that the joins at 0.5𝑟𝑚𝑎𝑥 and 𝑟𝑚𝑎𝑥 are smooth. The smoothness of the function ensures that 

HICFEAD generates a C1 surface. 

 

 
Figure 7-16: HICFEAD with 𝑟𝑚𝑎𝑥 as the defining constant. 

 

The application of HICFEAD has a similar problem to inverse distance to a power, namely a 

near-zero divisor when the point of interest is close to a control point.  In (7-73), 𝑤𝑖 = ∞ when 

𝑑𝑖 = 0. 
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The solution is similar to that used in (7-37) and (7-38). 
            Let j = value of i that minimises 𝑑𝑖. (7-74) 

If 𝑑𝑗 ≥ 0.5𝑟𝑚𝑎𝑥 the proximity problem does not arise.  If 𝑑𝑗 < 0.5𝑟𝑚𝑎𝑥, which means the 

reciprocal of 𝑤𝑗 is 𝑑𝑗3, then (7-68) can be replaced by 

             𝑓𝑃 = [𝑓𝑗 +∑ 𝑑𝑗
3𝑤𝑖𝑓𝑖

𝑖≠𝑗
] / [ 1 +∑ 𝑑𝑗

3𝑤𝑖
𝑖≠𝑗

]. (7-75) 

This avoids the need to compute 𝑤𝑗. 

 

As with HISFEAD, and for the same reasons, HICFEAD requires that 𝑟𝑚𝑎𝑥 to be sufficiently 

large to ensure that every possible point of interest is within 𝑟𝑚𝑎𝑥  of at least one control point. 

 

7.14  Linear interpolation variant on nearest neighbour (LIVONN) 

It was noted in Section 7.7 that the nearest neighbour method selects a data-point function 

value for each grid point, with no attempt to compute in-between function values. 

 

This thesis introduces the new method “linear interpolation variant on nearest neighbour” 

(LIVONN).  This includes a mechanism for computing intermediate function values when the 

distances to the nearest control point and 2nd-nearest control point are of similar magnitude.  

The effect is illustrated in Figure 7-17.  The flat areas (the patches over which the interpolating 

function is constant) are considerably reduced in size from those in Figure 7-10.  There is still 

a probability that the peaks and troughs at the control points will appear among the 

computation points, but there is far greater continuity than with nearest neighbour. 
 

 
Figure 7-17: The Effect of LIVONN over the areas around control points P 

& Q and along the line PQ. 
 

The discontinuity of nearest-neighbour interpolation is not completely eliminated.  Figure 7-

18 gives an example of a discontinuity between the lines bisecting PMQ and RMS.  It only 
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occurs because in this instance there are no control points inside the circle through P, Q, S and 

R.  (M is the centre of that circle and is not a control point.) 

 

 
Figure 7-18: Example of LIVONN discontinuity at a point M which is equidistant 
from control points P, Q, R & S and is further from all other control points. 

 

The earlier description of LIVONN specified that the distances to the nearest and 2nd-nearest 

control points having “similar magnitude”.  To make this more precise, it is necessary to define 

a “transition interval” of the sort used in Figure 7-17.  A transition interval is the fraction of 

an interval over which the interpolation is linear.  Either side of that interval, nearest neighbour 

applies. 

 

The transition interval is a parameter of LIVONN.  If it is expressed by the identity  
            transition interval = 1 - 2, (7-76) 

then :(1-2):  represents the partitioning of the interpolation interval into constant (nearest 

neighbour), linear transition and constant (nearest neighbour). 

 

If 𝑃1 and 𝑃2 are (respectively) the nearest and 2nd-nearest control points to P, then 

            𝑓𝑃 = {

𝑓𝑃1                     if ‖𝑃 − 𝑃1‖ ≤ 𝛼‖𝑃 − 𝑃2‖;      

𝑓𝑃1 + (𝑓𝑃2 − 𝑓𝑃1)(‖𝑃 − 𝑃1‖ − 𝛼‖𝑃 − 𝑃2‖)/[(2 − 2𝛼)‖𝑃 − 𝑃2‖]

                    if ‖𝑃 − 𝑃1‖ > 𝛼‖𝑃 − 𝑃2‖.

} (7-77) 

It is easily verified that the latter expression satisfies the requirement that 
           𝑓𝑃 = 0.5(𝑓𝑃1 + 𝑓𝑃2) when ‖𝑃 − 𝑃1‖ = ‖𝑃 − 𝑃2‖. (7-78) 

 

The choice of transition interval for LIVONN is up to the user.  It is a matter of compromise 

between two objectives. 

• A high value, say 0.6 or more, reduces the likelihood of peaks and troughs being 

captured among the computation points.  Conversely, that likelihood can be boosted 

by a dense set of computation points (ie a small grid interval). 
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• A low value, say 0.2 or less, limits the number of intermediate values occurring among 

the computation points.  It brings LIVONN closer to the discontinuities of nearest 

neighbour. 

The transition interval illustrated in Figure 7-17 is one-third, which would mean, by (7-76), 

that  is also one-third. 
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Part Three: Case Studies 
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CHAPTER 8: CASE STUDY OF WESTERN AUSTRALIA (3D) 

 

This chapter covers the derivation of datum transformations from Australian Geodetic Datum 

1984 (AGD84) to the Geocentric Datum of Australia 1994 (GDA94).  The area of application 

is Western Australia and there are 82 data points known in both datums.  The coordinates are 

given in sub-appendix C.1. 

 

Figure 8-1: Data points for Western Australia. 
 

The location of the data points is shown in Figure 8-1.  Points 78, 79 and 80 are too close to 

be shown separately.  Points 79 & 80 are horizontally 89 metres apart and are approximately 

9.5km from point 78. 

 

The points are the 82 stations of the STATEFIX GPS network, described in Agustan and 

Featherstone (2004) and more fully in Stewart et al (1998).  The coordinates were computed 

in 1996 by the Geodesy Group at Curtin University of Technology in collaboration with the 

Western Australian Department of Land Administration (later superseded by Landgate). 
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The age of the data means that neither set of ellipsoidal heights could have come directly from 

GNSS.  Enquiries made to Landgate and Curtin University failed to reveal the precise methods 

by which orthogonal heights were converted to ellipsoidal heights.  In the case of AGD84 

heights, it seems likely that the conversion used the 1971 astrogeodetic datum produced by 

the Division of National Mapping in Canberra.  For the GDA94 heights, the geoid model used 

was probably an early NGA Earth Gravitational Model such as EGM96 or one its predecessors 

produced by Ohio State University. 

 

The reason for leading the case studies with Western Australia is that the dataset is large 

enough to test the widest-possible range of methods, and small enough for the solution of 

linear equations to be easily manageable. 

 

Western Australia was treated like the smaller datasets in one respect: all the data points were 

used as control points.  In the case studies based on larger datasets, some of the data points 

were set aside for the purpose of an independent check on accuracy. 

 

8.1  Application of basic methods other than MREs 

Individual transformations were derived by Excel VBA subroutines specifically written for 

this study, each of them based on least-squares optimisation in one form or another, using the 

Western Australia dataset.  Results quoted from published sources are also based on that 

dataset unless stated otherwise. 

 

The 3-parameter conformal transformation obtained using the formulae in Section 4.3 

consisted of the following: ΔX = -140.487m, ΔY = -33.935m and ΔZ=142.251m.  The main 

statistics of the residuals are: 

• Latitude RMS = 2.2920m.  Longitude RMS = 1.7678m.  Height RMS = 1.5223m. 

• Horizontal RMS = 2.8946m.  3D RMS = 3.2705m. 

• Mean Horizontal Distance = 2.6524m.  Mean 3D Distance = 3.0518m. 

 

NIMA (2000, page B.4-1) and NGA (2014, page D.4.1) give the “Australia and 

Tasmania” parameters for AGD84 to WGS84 as (-1342)m, (-482)m and (1492)m.  

The number of satellite stations used was 90.  The difference in parameter values is 

probably due more to the area of coverage being wider than Western Australia than to 

differences between GDA94 and early realisations of WGS84. 
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Iliffe and Lott (2008, page 94) gives the AGD84→GDA94 parameters “for Australia” 

as -128.5m, -53.0m and 153.4m.  The story behind these figures is given in the notes on 

Abridged Molodensky below. 

 

The Standard Molodensky transformation obtained using the formulae in Section 4.4 consisted 

of the following: ΔX = -140.488m, ΔY = -33.932m and ΔZ=142.251m.  The main statistics of 

the residuals are: 

• Latitude RMS = 2.2917m.  Longitude RMS = 1.7678m.  Height RMS = 1.5223m. 

• Horizontal RMS = 2.8943m.  3D RMS = 3.2703m. 

• Mean Horizontal Distance = 2.6522m.  Mean 3D Distance = 3.0517m 

 

If the parameters from optimising the 3PC model are used in Standard Molodensky 

(which is probably common practice), the 3D RMS distance residual is also 3.2703m.  

There are slight differences in the other values; for example, the mean 3D Distance is 

3.0519m. 

 

The Abridged Molodensky transformation obtained using the formulae in Section 4.5 

consisted of the following: ΔX = -140.479m, ΔY = -33.931m and ΔZ=142.243m.  The main 

statistics of the residuals are: 

• Latitude RMS = 2.2911m.  Longitude RMS = 1.7664m.  Height RMS = 1.5213m. 

• Horizontal RMS = 2.8930m.  3D RMS = 3.2686m. 

• Mean Horizontal Distance = 2.6506m.  Mean 3D Distance = 3.0500m 

 

If the parameters from optimising the 3PC model are used in Abridged Molodensky 

(which is probably common practice), the 3D RMS distance residual is also 3.2686m.  

There are slight differences in the other values; for example, the mean 3D Distance is 

3.0516m. 

 

ICSM (2014, Table 7-9) gives the parameters of the Abridged Molodensky 

transformation as ΔX = -128.5m, ΔY = -53.0m and ΔZ=153.4m.  These were derived 

from 327 common points in Western Australia, South Australia and Queensland (the 

States which adopted AGD84).  According to Featherstone et al (1999), the equations 

used were those for Δ and Δ, not Δh.  (See the note on the 6-parameter variation of 

Abridged Molodensky.) 
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The Helmert Version 1 transformation obtained by the new four-stage method (HO1 to HO4 

in Section 5.1) consisted of the following: ΔX=-115.838m, ΔY=-48.373m, ΔZ=144.760m, 

𝑅𝑋=0.119712, 𝑅𝑌=0.383988, 𝑅𝑍=0.370396, ΔS=3.689815ppm.  The main statistics of the 

residuals are: 

• Latitude RMS = 0.4452m.  Longitude RMS = 0.5585m.  Height RMS = 0.2548m. 

• Horizontal RMS = 0.7142m.  3D RMS = 0.7583m. 

• Mean Horizontal Distance = 0.6086m.  Mean 3D Distance = 0.6653m. 

 

The equivalent Helmert Version 2 transformation consisted of the following: ΔX=-115.838m, 

ΔY=-48.373m, ΔZ=144.760m, 𝑅𝑋=0.119711, 𝑅𝑌=0.383988, 𝑅𝑍=0.370396, 

ΔS=3.689815ppm.  The residuals are the same as for Helmert Version 1, so the main statistics 

are the same: 

• Latitude RMS = 0.4452m.  Longitude RMS = 0.5585m.  Height RMS = 0.2548m. 

• Horizontal RMS = 0.7142m.  3D RMS = 0.7583m. 

• Mean Horizontal Distance = 0.6086m.  Mean 3D Distance = 0.6653m. 

 

The parameters for Helmert derived by the Procrustes method in Paláncz et al (2010) 

are -115.838m, -48.373m, 144.760m, -0.120, -0.384, -0.370, 3.68981ppm.  On the 

evidence of Paláncz et al (2008), the transformation was Helmert Version 2 and the 

rotation convention was CF (in contrast to PV which was adopted for this study); 

allowing for that, there is close agreement with the parameters derived in this study. 

 

The Bursa-Wolf transformation (fully-linear version) obtained using the formulae in Section 

4.6 consisted of the following: ΔX=-115.838m, ΔY=-48.373m, ΔZ=144.760m, 𝑅𝑋=0.119712, 

𝑅𝑌=0.383990, 𝑅𝑍=0.370398, ΔS=3.689812ppm.  The main statistics of the residuals are: 

• Latitude RMS = 0.4452m.  Longitude RMS = 0.5585m.  Height RMS = 0.2548m. 

• Horizontal RMS = 0.7142m.  3D RMS = 0.7583m. 

• Mean Horizontal Distance = 0.6086m.  Mean 3D Distance = 0.6653m. 

 

Featherstone (1997) quotes Bursa-Wolf parameters derived for AGD84 to WGS84 for 

Australia as a whole with a conspicuously different scale-change, namely 0.0983ppm.  

The distance analysis for this study confirmed that 3.689812ppm is correct for Western 

Australia. 
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The Molodensky-Badekas transformation (fully-linear version) obtained using the formulae 

in Section 4.9 consisted of the following: ΔX = -140.487m, ΔY = -33.935m, ΔZ = 142.251m, 

𝑅𝑋 = 0.119712, 𝑅𝑌 = 0.383990, 𝑅𝑍 = 0.370398, ΔS = 3.689812ppm; of no less importance 

are the values 𝑋𝑚 = 2862387.194m, 𝑌𝑚 = 4851873.712m, 𝑍𝑚 = -2887170.818m, obtained by 

averaging the AGD84 Cartesian coordinates.  The main statistics of the residuals are: 

• Latitude RMS = 0.4452m.  Longitude RMS = 0.5585m.  Height RMS = 0.2548m. 

• Horizontal RMS = 0.7142m.  3D RMS = 0.7583m. 

• Mean Horizontal Distance = 0.6086m.  Mean 3D Distance = 0.6653m. 

 

These statistics are identical with those for Bursa-Wolf.  This supports the argument in 

Section 2.9 that the Bursa-Wolf and Molodensky-Badekas are equivalent. 

 

The 8-parameter affine transformation obtained by the new EEH-based method (described in 

Section 5.3) was of type “SR” with a Version-1 rotation matrix applied before scaling.  The 

midpoints used to derive the local level coordinates were (-2862387.19362, 

4851873.71222, -2887170.81806) at 27.2936325115S, 120.5386925915E in AGD84, and 

(-2862527.68055, 4851839.77707, -2887028.56696) at 27.2923037131S, 

120.5400986365E in GDA94.  The parameters were as follows: 𝛥𝑋′=0m, 𝛥𝑌′=0m, 𝛥𝑍′=0m, 

RX =4.483580, RY =-4.043449, RZ =2.390971, 𝛥𝑆ℎ=3.690667ppm and 𝛥𝑆𝑣=3.314400ppm.  

The main statistics of the residuals are: 

• Latitude RMS = 0.4449m.  Longitude RMS = 0.5585m.  Height RMS = 0.2550m. 

• Horizontal RMS = 0.7140m.  3D RMS = 0.7582m. 

• Mean Horizontal Distance = 0.6084m.  Mean 3D Distance = 0.6651m. 

 

The 9-parameter affine transformation obtained by the new four-stage method described in 

Section 5.4 was of type “SR” with a Version-1 rotation matrix applied before scaling. The 

parameters were as follows: ΔX=-112.169m, ΔY=-44.045m, ΔZ=144.312m, 𝑅𝑋=0.080927, 

𝑅𝑌=0.436119, 𝑅𝑍=0.437119, 𝛥𝑆𝑋=4.1684ppm, 𝛥𝑆𝑌=3.1005ppm and 𝛥𝑆𝑍=3.4695ppm.  The 

main statistics of the residuals are: 

• Latitude RMS = 0.4209m.  Longitude RMS = 0.5451m.  Height RMS = 0.2523m. 

• Horizontal RMS = 0.6887m.  3D RMS = 0.7334m. 

• Mean Horizontal Distance = 0.5937m.  Mean 3D Distance = 0.6506m. 
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Paláncz et al (2010) has parameters −112.169m, −44.047m, 144.311m −0.081, 

−0.436, −0.437, 0.416838ppm, 0.310067ppm and 0.346938ppm obtained by the 

PZ method named after Paláncz and Zaletnyik (described earlier in Section 5.4).  In that 

source, the parameters were near-identical to those obtained by “global minimisation” 

via a built-in function NMinimise in Mathematica (−112.169m, −44.046m, 

144.312m −0.081, −0.436, −0.437, 0.416842ppm, 0.310066ppm and 

0.346943ppm).  The signs of the rotations reflect the preference by Paláncz et al for 

the CF convention.  The “error” quoted in each case was 6.642m, based on the square 

root of the sum of the squares of the distance residuals.  Dividing by √82 gives a 3D 

RMS of 0.7335m. 

 

The 12-parameter affine transformation obtained using the method described in Section 4.12 

consisted of 3 translation parameters and a multiplying matrix.  The translation parameters 

were ΔX=-110.101m, ΔY=-32.390m and ΔZ=159.563m.  The matrix elements were 
1 + 0.0000043358 -0.0000023499 0.0000022768 

0.0000030106 1 + 0.0000017055 0.0000004165 
-0.0000009402 -0.0000014281 1 + 0.0000045283 

The main statistics of the residuals are: 

• Latitude RMS = 0.4123m.  Longitude RMS = 0.5439m.  Height RMS = 0.2535m. 

• Horizontal RMS = 0.6825m.  3D RMS = 0.7280m. 

• Mean Horizontal Distance = 0.5848m.  Mean 3D Distance = 0.6422m. 

 

The new Standard Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟=-133.451m, 

𝛥𝑌ℎ𝑜𝑟=-54.210m, 𝛥𝑍ℎ𝑜𝑟 = 153.254m, 𝑅𝑍=-0.151112, 𝛥𝑋𝑣𝑒𝑟=-127.212m, 𝛥𝑌𝑣𝑒𝑟=-30.226m 

and 𝛥𝑍𝑣𝑒𝑟=134.653m.  The main statistics of the residuals are: 

• Latitude RMS = 0.5052m.  Longitude RMS = 0.5721m.  Height RMS = 0.2760m. 

• Horizontal RMS = 0.7632m.  3D RMS = 0.8116m. 

• Mean Horizontal Distance = 0.6519m.  Mean 3D Distance = 0.7149m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

75.18% and the horizontal RMS residual is reduced by 73.63%.  This is despite the fact 

that the application of the 7-parameter variation involves no extra computation apart 

from the addition of 𝑅𝑍 to the longitude shift. 

 



170 

The new Standard Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟=-129.902m, 

𝛥𝑌ℎ𝑜𝑟=-52.064m, 𝛥𝑍ℎ𝑜𝑟 = 153.218m, 𝛥𝑋𝑣𝑒𝑟=-127.212m, 𝛥𝑌𝑣𝑒𝑟=-30.226m and 𝛥𝑍𝑣𝑒𝑟 =

134.653m.  The main statistics of the residuals are: 

• Latitude RMS = 0.5388m.  Longitude RMS = 0.5926m.  Height RMS = 0.2760m. 

• Horizontal RMS = 0.8009m.  3D RMS = 0.8472m. 

• Mean Horizontal Distance = 0.6847m.  Mean 3D Distance = 0.7428m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

74.09% and the horizontal RMS residual is reduced by 72.33%.  This is despite the fact 

that the application of the 6-parameter variation involves no extra computation. 

 

The new Abridged Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟=-133.445m, 

𝛥𝑌ℎ𝑜𝑟=-54.198m, 𝛥𝑍ℎ𝑜𝑟 = 153.240m, 𝑅𝑍=-0.150949, 𝛥𝑋𝑣𝑒𝑟=-127.212m, 𝛥𝑌𝑣𝑒𝑟=-30.226m 

and 𝛥𝑍𝑣𝑒𝑟=134.653m.  The main statistics of the residuals are: 

• Latitude RMS = 0.5055m.  Longitude RMS = 0.5713m.  Height RMS = 0.2760m. 

• Horizontal RMS = 0.7628m.  3D RMS = 0.8112m. 

• Mean Horizontal Distance = 0.6519m.  Mean 3D Distance = 0.7148m. 

 

Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

75.18% and the horizontal RMS residual is reduced by 73.63%.  This is despite the fact 

that the application of the 7-parameter partially-conformal variation involves no extra 

computation apart from the addition of 𝑅𝑍 to the longitude shift. 

 

The new Abridged Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟=-129.899m, 

𝛥𝑌ℎ𝑜𝑟=-52.054m, 𝛥𝑍ℎ𝑜𝑟 = 153.204m, 𝛥𝑋𝑣𝑒𝑟=-127.212m, 𝛥𝑌𝑣𝑒𝑟=-30.226m and 𝛥𝑍𝑣𝑒𝑟 =

134.653m.  The main statistics of the residuals are: 

• Latitude RMS = 0.5389m.  Longitude RMS = 0.5919m.  Height RMS = 0.2760m. 

• Horizontal RMS = 0.8005m.  3D RMS = 0.8467m. 

• Mean Horizontal Distance = 0.6844m.  Mean 3D Distance = 0.7426m. 
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Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

74.10% and the horizontal RMS residual is reduced by 72.33%.  This is despite the fact 

that the application of the 6-parameter variation involves no extra computation. 

 

The values of 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟 and 𝛥𝑍ℎ𝑜𝑟 are within a metre or two of the values of ΔX, ΔY 

and ΔZ given earlier for the Abridged Molodensky transformation in ICSM (2014).  This 

bears out the final paragraph of Section 4.16.  The ICSM shifts may be considered the 

values of X, Y and Z that give Abridged Molodensky the best horizontal fit over 3 

States, but are not suitable for transforming h. 

 

From these results, a few conclusions are offered: 

• The 3-parameter transformations derived above have an inferior horizontal accuracy 

to ICSM’s Abridged Molodensky transformation which  “should only be used for low 

accuracy projects (accuracy no better than 5 m)” (ICSM [2014], page 35).  This 

suggests that the RMS values are flattering, reflecting internal consistency. 

• The 6-parameter variations on Standard and Abridged Molodensky reduce the 3D 

RMS residual by 74%, a significant benefit from separating 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟 and 𝛥𝑍𝑣𝑒𝑟 

from  𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟 and  𝛥𝑍ℎ𝑜𝑟.  Including 𝑅𝑍 as a 7th parameter in the Molodensky 

variations boosts that reduction to 75%. 

• 7PC and its near-conformal versions improve on 3PC to the extent of reducing the 3D 

RMS residual by 77%. 

• Of the affine transformations, the 9-parameter and 12-parameter version give modest 

improvements on 7PC.  The 8-parameter affine transformation produces a relatively 

small difference between 𝛥𝑆ℎ and 𝛥𝑆𝑣 and does not improve accuracy. 

 

8.2  Application of multiple regression equations 

The multiple regression equations considered were the fully-normalised MREs described in 

Section 2.17.  That is to say that the intermediate coordinates U and V were defined in such a 

way that they varied between -1 and 1 over Western Australia. 

 

The MREs described in this Section are listed in sub-appendix H.1.  Only selected MREs are 

included in this Section. 

 

The offset coordinates in degrees were -24.350 for latitude and 120.949 for longitude.  The 

relative latitude and relative longitude were scaled as follows: 
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            𝑈 = 0.09298(𝜙in deg + 24.350); (8-1) 

            𝑉 = 0.12425(𝜆in deg − 120.949). (8-2) 

 

The relationship between the geodetic and intermediate coordinates is illustrated in Figure 8-

2. 

 

 
Figure 8-2: The relationship between (ϕ, λ) 
and (U, V). 

 

The Western Australia dataset has 82 points and is small compared with the European datasets 

described in sub-appendices C.5 and C.6.  It was decided to limit the MREs considered to 

those with no more than 40 terms.  Taking account of Tables 2-4 to 2-8, this meant setting 

upper limits on the top power as follows: 

• 5 for Ordinary MREs and Chebyshev MREs; 

• 3 for North/South MREs, East/West MREs and Four-Quadrant MREs. 

 

The recognised approach for deriving MREs is to apply least-squares optimisation on different 

combination of terms and to retain those terms which are statistically significant.  The 

implementation of that approach for this study is the one described in Section 5.5: “eliminating 

ratios less than one” (ERLTO), where the term “ratio” is the absolute value of a parameter 

divided by its standard error (AP/SE).  The full list of actual MREs is given in sub-appendix 

H.1. 
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The Ordinary MREs with top power 3 obtained by ERLTO had 13 terms for the latitude shift 

and (purely by coincidence) 13 for the longitude shift.  The RMSs of the residuals are 0.2780m 

for latitude, 0.3029m for longitude and 0.4111m for horizontal distance. 

 

The Ordinary MREs with top power 4 obtained by ERLTO had 18 terms for the latitude shift 

and (purely by coincidence) 18 for the longitude shift.  The RMSs of the residuals are 0.2531m 

for latitude, 0.2539m for longitude and 0.3585m for horizontal distance. 

 

The Ordinary MREs with top power 5 obtained by ERLTO had 28 terms for the latitude shift 

and (purely by coincidence) 28 for the longitude shift.  The RMSs of the residuals are 0.2002m 

for latitude, 0.1994m for longitude and 0.2826m for horizontal distance. 

 

The North/South MREs with top power 3 obtained by ERLTO had 18 terms for the latitude 

shift and 16 for the longitude shift.  The RMSs of the residuals are 0.2570m for latitude, 

0.2585m for longitude and 0.3645m for horizontal distance. 

 

Compared with Ordinary MREs with top power 4, the accuracy is 2.0% worse but was 

achieved with 2 fewer terms. 

 

The East/West MREs with top power 3 obtained by ERLTO had 19 terms for the latitude shift 

and 15 for the longitude shift.  The RMSs of the residuals are 0.2359m for latitude, 0.2869m 

for longitude and 0.3714m for horizontal distance. 

 

Compared with Ordinary MREs with top power 4, the accuracy is 3.6% worse but was 

achieved with 2 fewer terms.  However, the accuracy of the latitude-shift MRE is 7.2% 

better despite only 1 additional term. 

 

The Four-Quadrant MREs with top power 3 obtained by ERLTO had 19 terms for the latitude 

shift and 22 for the longitude shift.  The RMSs of the residuals are 0.2152m for latitude, 

0.2494m for longitude and 0.3294m for horizontal distance. 

 

Compared with Ordinary MREs with top power 4, the accuracy is 8.8% better but was 

achieved with 5 more terms.  However, the accuracy of the latitude-shift MRE is 17.7% 

better despite only 1 additional term. 
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The Chebyshev MREs with top power 3 obtained by ERLTO had 13 terms for the latitude 

shift and 11 for the longitude shift.  The RMSs of the residuals are 0.2788m for latitude, 

0.3044m for longitude and 0.4128m for horizontal distance. 

 

The Chebyshev MREs with top power 4 obtained by ERLTO had 18 terms for the latitude 

shift and 21 for the longitude shift.  The RMSs of the residuals are 0.2528m for latitude, 

0.2526m for longitude and 0.3574m for horizontal distance. 

 

The Chebyshev MREs with top power 5 obtained by ERLTO had 32 terms for the latitude 

shift and 35 for the longitude shift.  The RMSs of the residuals are 0.1988m for latitude, 

0.1941m for longitude and 0.2779m for horizontal distance. 

 

On the above evidence, a good compromise between accuracy and economy would be the 

Four-Quadrant latitude-shift MRE with top power 3 (19 terms) and the Ordinary longitude-

shift MRE with top power 4 (18 terms).  The RMSs of the residuals are 0.2152m for latitude, 

0.2539m for longitude and 0.3328m for horizontal distance.  The equations in this case are: 
 

𝛥𝜙(′′) = 4.85208 +  0.27734𝑈 +  0.28524𝑉 −
 0.06942𝑈2  −  0.30004𝑈𝑉 −  0.02097𝑉3  +
 0.22313𝑈𝑉2  −  0.07558𝑈2𝑉 +  0.15936𝑈3𝑉  

  

(8-3) − 0.13175𝑈3𝑉2 → if U>0 & V>0 
− 45.19674𝑈2𝑉2  −  36.30299𝑈2𝑉3  +
 109.81505𝑈3𝑉2  +  60.82490𝑈3𝑉3   

if U>0 & V0 

− 0.27203𝑈2𝑉2  +  0.46726𝑈2𝑉3  → if U0 & V>0 
+ 1.32051𝑈2𝑉2 +  0.21603𝑈2𝑉3 +  0.94090𝑈3𝑉2 → if U0 & V0 

 
 𝛥𝜆(′′) = 4.90452 −  0.50396𝑈 −  0.07512𝑉 +  0.14004𝑈2 +

 0.06001𝑈𝑉 −  0.09021𝑉2  +  0.22806𝑈3 +  0.05712𝑈4  −
 0.45726𝑈3𝑉 +  0.06987𝑈𝑉3 −  0.52469𝑈4𝑉 +
 0.42484𝑈3𝑉2  −  0.53170𝑈2𝑉3 +  0.84934𝑈4𝑉2  −
 0.28994𝑈3𝑉3  +  0.47094𝑈2𝑉4 +  0.52270𝑈4𝑉2  −
0.82683𝑈4𝑉4  

(8-4) 

 

The Chebyshev MREs in sub-appendix H.1 show a distinct tendency to have smaller 

coefficients than the MREs based on monomials.  The significance of this can be deduced by 

comparing the initial ordinary MRE with top power 5 with the initial Chebyshev MRE with 

top 5; “initial” means “prior to application of ERLTO” so that they are different 

representations of the same polynomial.  The L1 norms of the coefficients were as follows: 

• for the latitude shift, 40.8943 (Ord) and 18.7098 (Cheb); 

• for the longitude shift, 64.6128 (Ord) and 23.2791 (Cheb). 
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Equivalence of the functions means that the lower Chebyshev L1 norms are limits on the 

magnitudes of the ordinary MREs.  (See subsections 2.17.1 and 2.17.5.)  This implies that 

some of the seemingly-large monomial terms largely cancel each other out.  It is logical to 

assume that this is true of the monomial-based MREs in general, including N/S, E/W and 4Q.  

This revelation is perhaps the most significant contribution of Chebyshev polynomials to the 

study of MREs in Western Australia. 

 

Contour maps of the datum shifts generated by MREs are shown in sub-appendix I.1.1.  

Features of the maps include the following: 

• There are marked changes in curvature, particularly for longitude shifts. 

• Chebyshev MREs give similar contour maps to Ordinary MREs, reflecting the 

likelihood that although the discarded terms were not identical their contribution to the 

starting polynomials was small. 

• Contour maps of Ordinary and Chebyshev MREs with top power 5 have irregularities, 

including Δϕ contours that converge in the north-east. 

• Contours of the Four-Quadrant MREs with top power 3 have irregularities on the 

western side including 90 bends, although that could be a reflection of distortion. 

 

The MREs in this section produce RMSs of the residuals which are lower than all those in 

Section 8.1.  In one sense this is not surprising, since the MRE pairings have at least 24 

coefficients compared to the maximum of 12 parameters among the basic methods.  The MRE 

pairing of (8-3) and (8-4) – which has a combined total of 37 terms – produces an RMS for 

horizontal distance just under half that of the 12-parameter affine transformation. 

 

8.3  Application of composite methods 

The composite methods applied in Western Australia were selected from those described in 

Chapter 7 and they included the use of gridded data (as opposed to just using the trend model 

with the surface-fitting technique).  The methods for interpolating the gridded data were 

selected from those described in Chapter 6.  The generic process used is illustrated in Figure 

8-3. 
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Figure 8-3: Composite methods chosen for AGD84→GDA94 in Western Australia. 

 

The trend model chosen for the latitude shift (in arc-seconds) was   

            𝛥𝜙𝐵𝐿𝑀(′′) = 4.82742 + 0.026276(𝜙in deg + 24.350) + 

                        0.032961(𝜆in deg − 120.949) − 0.0014730(𝜙in deg + 24.350)(𝜆in deg − 120.949). (8-5) 

 

The trend model chosen for the longitude shift (in arc-seconds) was 

            𝛥𝜆𝐵𝐿𝑀(′′) = 4.89840 − 0.044790(𝜙in deg + 24.350) − 

                    0.010518(𝜆in deg − 120.949) + 0.0012290(𝜙in deg + 24.350)(𝜆in deg − 120.949). (8-6) 

 

In each case, the trend model is the bilinear model that gives the least-squares fit to the shifts 

at the data points, hence the subscript BLM.  This model is mathematically equivalent to the 

multiple regression equation with top power 1.  The bilinear form has sufficient terms to ensure 

that 

• the trend model includes the average shift as a constant term, and 

• embodies the tilt which is evident from the contour maps I-1 to I-9 in Appendix I. 

 

For both the latitude shift and the longitude shift, the signal component is that part which is 

unmodelled. 

 

The surface-fitting methods tested for each signal were those shown in Figure 8-3.  They are 

also listed below with the corresponding Sections. 

• Least-squares collocation, with and without modification (7.1); 

• Radial basis functions, with and without modification (7.6); 

• Inverse distance to a power (7.5); 

• Hybrid inverse power function embodying accelerated decline [HIPFEAD] (7.13); 

• Nearest neighbour (7.7); 

• Linear interpolation variation on nearest neighbour [LIVONN] (7.14). 
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Although – to varying degrees – these can be regarded as approximation methods in their own 

right, they are commonly used as methods to generate a regular grid.  They were used for that 

purpose in this case study, although their merits as approximation methods were considered 

as part of their suitability for gridding.  The grid was defined by intervals of 12 (0.2).  There 

were 9095 grid points. 

 

The 9095 grid points are different from the 259 points used to generate contour maps by LSS.  

Figure 8-4 shows the contours generated by LSS for the trend model defined by (8-5) and (8-

6). 

 

   
Figure 8-4: Contour maps of the trend models of AGD84→GDA94 in arc-seconds. 

 

The methods used for interpolation of computed shifts were those shown in Figure 8-3.  They 

are also listed below with the corresponding subsections. 

• Piecewise bilinear interpolation (6.2); 

• Piecewise bicubic interpolation (6.3, as in 6.3.3). 

 

In both cases the interpolated shifts will differ from the original values at the data points.  The 

differences only give a partial measure of accuracy as there are no independent check points. 
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The contour maps of datum arising from the composite methods are given in sub-appendix 

I.1.2.  In the case of least-squares collocation and radial basis functions, only the modified 

versions are included.  Observations about individual maps are made in this section in the 

context of the particular SFTs. 

 

Least-squares collocation was applied with three covariance functions applied to the signals.  

These were Gaussian, SS20 and SS30, described in subsection 7.1.  Variance (in square 

metres) was 0.34338 for the latitude signal and 0.75452 for the longitude signal.  One way of 

setting the shape parameter is to define correlation length as median distance to nearest 

neighbour (MDNN) which is 137028m.  Another way, applicable to SS20 and SS30 (both 

finite) is to define 𝑟𝑚𝑎𝑥 as median distance to zero (MDZ), which is 188385m for latitude 

signal and 191513m for longitude signal.  This led to six implementations: 

• Gaussian with correlation length = 137028m, which is MDNN; 

• Gaussian with correlation length = 68514m, which is half of MDNN; 

• SS20 with 𝑟𝑚𝑎𝑥 = 379395m, equivalent to setting correlation length to 137028m; 

• SS20 with 𝑟𝑚𝑎𝑥 = 188385m for latitude signal and 𝑟𝑚𝑎𝑥 = 191513m for longitude 

signal; 

• SS30 with 𝑟𝑚𝑎𝑥 = 365690m, equivalent to setting correlation length to 137028m; 

• SS30 with 𝑟𝑚𝑎𝑥 = 188385m for latitude signal and 𝑟𝑚𝑎𝑥 = 191513m for longitude 

signal. 

 

All six implementations of LSC produced an unsatisfactory fit to the data-point signals.  The 

problem was the signals’ volatility in the south-west part of Western Australia, particularly 

near the data points 78-80 which are in close proximity.  Both signals were changing by large 

amounts over short distances, with an element of oscillation. 

 

To analyse the volatility, an area was selected with north-west corner 28S, 116E.  It extended 

5.8654 south and 5.0831 east.  There were 2127 nodes, approximately 25km apart.  As the 

area was centred on the small Western Australian town Mukinbudin, it is described here as the 

Mukinbudin rectangle.  There are 24 data points enclosed by the 12.5km boundary around the 

rectangle: the latitude signal (𝑠𝜙) varies from 0.6585m to -0.6706m and the longitude signal 

(𝑠𝜆)  varies from 0.6239m to -0.4440m.   
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Table 8-1 shows that the implementations of least-squares collocation produce values of 

latitude signal and longitude signal which depart from these ranges by an unacceptable 

amount. 

 

Table 8-1: Unmodified LSC: ranges of computed signal values at the 
nodes in the Mukinbudin rectangle 

Covariance model 𝑟𝑚𝑎𝑥 (m) [ϕ] max 𝑠𝜙 (m) min 𝑠𝜙  (m) 𝑟𝑚𝑎𝑥 (m) [λ] max 𝑠𝜆 (m) min 𝑠𝜆 (m) 
Gauss (L=137028m) n/a 28.1315 -33.4922 n/a 20.9000 -17.8382 
Gauss (L=68514m) n/a 3.8514 -10.8116† n/a 6.8155† -2.4963 

SS20 379395 2.2007 -3.9370 379395 2.3492 -1.5803 
SS20 188358 2.3512 -5.7534†† 191513 3.6302†† -1.5325 
SS30 365690 2.2363 -3.4148† 365690 2.1512† -1.4665 
SS30 188385 2.5503 -3.7159† 191513 2.3053† -1.6572 

† at 32.2863S, 116E.  †† at 32.5119S, 116E. 
 

However, least-squares collocation was also applied with a modification devised for this study.  

It is precisely the one suggested in subsection 7.13.1 for overcoming volatility around clusters 

of data points, in this case the single cluster of data points 78, 79 and 80.  Distance 

computations established these points were more than 45000m from the other 79 data points.  

A pseudo data point was created from data points 78, 79 and 80, using average coordinates 

and an average value of each signal.  The modified least-squares collocation process was as 

follows: 

• Least-squares collocation was applied to an interim dataset consisting of the pseudo 

data point and the data points outside the cluster. 

• The residuals at the cluster points 78, 79 and 80 were computed (from the known 

values of the signals minus the values of the LSC approximation). 

• A local limit-of-influence 𝑟𝑚𝑎𝑥 was set to 45000m and a HISFEAD function was 

defined to interpolate the residuals at data points 78, 79 & 80. 

• The modified LSC function was the original LSC function plus the HISFEAD 

function. 

 

The effect of the modification on the surfacing fitting is considerable, as demonstrated in Table 

8-2. 
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Table 8-2: Modified LSC: ranges of computed signal values at the 
nodes in the Mukinbudin rectangle 

Covariance model 𝑟𝑚𝑎𝑥 (m) [ϕ] max 𝑠𝜙 (m) min 𝑠𝜙  (m) 𝑟𝑚𝑎𝑥 (m) [λ] max 𝑠𝜆 (m) min 𝑠𝜆 (m) 
Gauss (L=137028m) n/a 0.7858 -0.7624 n/a 0.8287 -0.4616 
Gauss (L=68514m) n/a 0.6838 -0.7237 n/a 0.6428 -0.4433 

SS20 379395 0.7811 -0.7586 379395 0.8443 -0.4469 
SS20 188358 0.6763 -0.7376 191513 0.6431 -0.4433 
SS30 365690 0.7830 -0.7559 365690 0.8447 -0.4855 
SS30 188385 0.6957 -0.7425 191513 0.6571 -0.4431 

 

On this evidence, the lower values of the shape parameter (L or 𝑟𝑚𝑎𝑥) produce a narrower 

range of signal than the higher values. 

 

For a wider check on the stability of least squares collocation, the datum-shift components 𝛥𝜙 

and 𝛥𝜆 were computed from trend + model at 9095 grid points. 

 

Table 8-3: Comparison of Modified-LSC computed shifts with the known datum shifts 
 Range of 𝛥𝜙 over 9095 pts Range of 𝛥𝜆 over 9095 pts 

Modified LSC (Gauss, 137028m) 4.1261′′ ≤ 𝛥𝜙 ≤ 5.2412′′ 4.4274′′ ≤ 𝛥𝜆 ≤ 5.5971′′ 
Modified LSC (Gauss, 68514m) 4.1260′′ ≤ 𝛥𝜙 ≤ 5.2462′′  4.4274′′ ≤ 𝛥𝜆 ≤ 5.5945′′ 
Modified LSC (SS20, 379395m, 379395m) 4.1254′′ ≤ 𝛥𝜙 ≤ 5.2417′′  4.4274′′ ≤ 𝛥𝜆 ≤ 5.5997′′ 
Modified LSC (SS20, 188358m, 191513m) 4.1260′′ ≤ 𝛥𝜙 ≤ 5.2463′′  4.4274′′ ≤ 𝛥𝜆 ≤ 5.5945′′ 
Modified LSC (SS30, 365690m, 365690m) 4.1258′′ ≤ 𝛥𝜙 ≤ 5.2415′′  4.4274′′ ≤ 𝛥𝜆 ≤ 5.5967′′ 
Modified LSC (SS30, 188358m, 191513m) 4.1260′′ ≤ 𝛥𝜙 ≤ 5.2463′′  4.4274′′ ≤ 𝛥𝜆 ≤ 5.5945′′ 

At the 82 data points, 4.2970′′ ≤ 𝛥𝜙 ≤ 5.1811′′ and 4.4979′′ ≤ 𝛥𝜆 ≤ 5.4980′′. 
 

As Table 8-3 shows, the range of values was much the same for all 6 cases.  Compared with 

the known shifts at the data points, the range of the latitude shifts increased by no more than 

27.2% and the range of the longitude shifts increased by no more than 17.2%. 

 

For the modified LSC shifts, the higher parameters for Gauss, SS20 and SS30 produced more 

regular contours than the lower parameters.  (See Figures I-10 to I-15.)  Interestingly, the 

higher parameters produced higher accuracy from gridding and interpolation as measured in 

Tables 8-10 and 8-11. 

 

Radial basis functions were applied using all the examples described in subsection 7.6: inverse 

multiquadric (IMQ), multilog (ML), multiquadric (MQ), natural cubic spline (NCS) and thin 

plate spline (TPS).  In each case, the shaping parameter R was set to 54347m, the value 

obtained from equation (7-50) which is the default used in Surfer. 
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All five RBFs produced an unsatisfactory fit to the data-point signals.  As with least-squares 

collocation, the problem was volatility in the south-west part of Western Australia, particularly 

near the data points 78-80 which are in close proximity.  The Mukinbudin rectangle used to 

analyse least-squares collocation was used again for the RBFs.  Table 8-4 shows that each of 

them produces values of latitude signal and longitude signal which depart from these ranges 

by an unacceptable amount. 

 

Table 8-4: Unmodified RBF: ranges of computed signal values at the 
nodes in the Mukinbudin rectangle 

Radial Basis Function R (m) max 𝑠𝜙 (m) min 𝑠𝜙  (m) R (m) max 𝑠𝜆 (m) min 𝑠𝜆 (m) 
Inverse multiquadric (IMQ) 54347 3.0972 -3.4831† 54347 2.1903† -2.0082 

Multilog (ML) 54347 3.1655 -4.7289† 54347 2.9770† -2.0515 
Multiquadric (MQ) 54347 3.2017 -6.0751† 54347 3.8283† -2.0748 

Natural cubic spline (NCS) 54347 3.3324 -8.6223† 54347 5.4329† -2.1013 
Thin plate spline (TPS) 54347 3.2253 -7.4081† 54347 4.6690† -2.1016 

† at 32.2863S, 116E 
 

However, the radial basis functions were also applied with the same modification used for 

least-squares collocation.  The data points 78, 79 and 80 form a cluster, each of them more 

than 45000m from the other 79 data points.  A pseudo data point was created from data points 

78, 79 & 80, using average coordinates and an average value of each signal.  The modified 

RBF interpolation process was as follows: 

• The radial basis function was applied to an interim dataset consisting of the pseudo 

data point and the data points outside the cluster. 

• The residuals at the cluster points 78, 79 and 80 were computed (from the known 

values of the signals minus the values of the RBF approximation). 

• A local limit-of-influence 𝑟𝑚𝑎𝑥 was set to 45000m and a HISFEAD function was 

defined to interpolate the residuals at data points 78, 79 & 80. 

• The modified radial basis function was the original RBF function plus the HISFEAD 

function. 

 

The effect of the modification on the surfacing fitting is considerable, as demonstrated in Table 

8-5. 
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Table 8-5: Modified RBF: ranges of computed signal values at the 
nodes in the Mukinbudin rectangle 

Radial Basis Function R (m) max 𝑠𝜙 (m) min 𝑠𝜙  (m) R (m) max 𝑠𝜆 (m) min 𝑠𝜆 (m) 
Inverse multiquadric 

(IMQ) 
54347 0.6920 -0.6716 54347 0.6479 -0.4476 

Multilog (ML) 54347 0.7384 -0.7234 54347 0.7231 -0.4490 
Multiquadric (MQ) 54347 0.7619 -0.7473 54347 0.7605 -0.4569 
Natural cubic spline 

(NCS) 
54347 1.1209 -0.5426 54347 0.7725 -0.4572 

Thin plate spline (TPS) 54347 1.1546 -0.6207 54347 0.7132 -0.4453 
 

In this instance, the inverse multiquadric produces a narrower range of signal than the other 

RBFs. 

 

For a wider check on the stability of radial basis functions, the datum-shift components 𝛥𝜙 

and 𝛥𝜆 were computed from trend + model at 9095 grid points. 
 

Table 8-6 shows significant variations in the range of values for the different types of RBF.  

Compared with the known shifts at the data points, the increase in the range of the latitude 

shifts is 25.4% for IMQ, 24.0% for ML, 22.7% for MQ, 34.8% for NCS and 26.3% for TPS; 

the increase in the range of the longitude shifts is 16.7% for IMQ, 15.8% for ML, 14.3% for 

MQ, 20.6% for NCS and 20.0% for TPS.  On this evidence, ML is the least volatile; NCS is 

the most volatile, followed by TPS. 

 

Table 8-6: Comparison of Modified-RBF computed shifts with the known datum shifts 
 Range of 𝛥𝜙 over 9095 points Range of 𝛥𝜆 over 9095 points 

Inverse multiquadric (R=54347m) 4.1269′′ ≤ 𝛥𝜙 ≤ 5.2360′′ 4.4291′′ ≤ 𝛥𝜆 ≤ 5.5958′′ 
Multilog (R=54347m) 4.1266′′ ≤ 𝛥𝜙 ≤ 5.2231′′  4.4393′′ ≤ 𝛥𝜆 ≤ 5.5974′′ 
Multiquadric (R=54347m) 4.1285′′ ≤ 𝛥𝜙 ≤ 5.2136′′  4.4604′′ ≤ 𝛥𝜆 ≤ 5.6032′′ 
Natural cubic spline (R=54347m) 4.1242′′ ≤ 𝛥𝜙 ≤ 5.3160′′ 4.4411′′ ≤ 𝛥𝜆 ≤ 5.6476′′ 
Thin plate spline (R=54347m) 4.1279′′ ≤ 𝛥𝜙 ≤ 5.2445′′ 4.4178′′ ≤ 𝛥𝜆 ≤ 5.6176′′ 

At the 82 data points, 4.2970′′ ≤ 𝛥𝜙 ≤ 5.1811′′ and 4.4979′′ ≤ 𝛥𝜆 ≤ 5.4980′′. 
 

For the modified RBF latitude shifts, the contour maps are fairly regular in terms of the shape 

and spacing of contours.  For the modified RBF longitude shifts, this can only be said of the 

cases where the RBF was NCS or TPS.  (See Figures I-16 to I-20.) 

 

Inverse distance to a power, described in Section 7.5, was the first of the strictly-bounded 

SFTs to be applied.   It was applied with each of the powers 1, 2, 3 and 4.  As this is a strictly 

bounded form of interpolation, there is no need for the kind of analysis given in Tables 8-1 to 

8-6. 
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Inverse distance to the power 1 produced the most regular contours.  This characteristic is 

deceptive, because this form of interpolation is not smooth.  This is demonstrated in Table 8-

7, which shows the longitude signal at and around data point 53.  Over the first kilometre from 

that point the signal drops 0.14495m on average; over the second kilometre it drops 0.12744. 

 

Table 8-7: Longitude signal in metres around data point 53, as computed from 
inverse distance to the power 1 

 126.11648 126.12576 126.13504 126.14432 126.15360 
-14.55137 1.94995 2.01627 2.04401 2.01618 1.94977 
-14.56041 2.01602 2.11636 2.17097 2.11628 2.01586 
-14.56945 2.04356 2.17087 2.31587 2.17079 2.04340 
-14.57849 2.01546 2.11597 2.17069 2.11589 2.01530 
-14.58753 1.94863 2.01513 2.04296 2.01505 1.94844 

 

This slightly concave variation of a conical peak is illustrated in Figure 8-5. 
 

 

 

Figure 8-5: Longitude 
signal along any profile 
through data point 53, as 
computed from inverse 
distance to the power 1. 

 

Inverse distance to a power produced increasingly irregular contours as the power rose from 

1 to 4.  Although irregular contours are not necessarily an indication of a bad fit, they were (in 

places) disturbingly jagged for the longitude shifts in the case where the power was 4.  (See 

Figures I-21 to I-24.) 

 

The next form of surface fitting to be applied was HIPFEAD as defined in Section 7.13.  As 

this is a strictly bounded form of interpolation, there is no need for the kind of analysis given 

in Tables 8-1 to 8-6.  The two versions of HIPFEAD are HISFEAD and HICFEAD, described 

in subsections 7.13.1 and 7.13.2 respectively. 

 

In Section 7.13, it was noted that both HISFEAD and HICFEAD require 𝑟𝑚𝑎𝑥 to be sufficiently 

large to ensure that every possible point of interest is within 𝑟𝑚𝑎𝑥 of at least one data point.  

The point 23.977332S 121.768162E is just over 223716m from data points 20, 70 and 74.  

Some points in the polygon formed by data points 11, 31, 69, 35 and 70 could be slightly 

further from the nearest data point.  As a result, the smallest of the values of the limit-of-

influence 𝑟𝑚𝑎𝑥 was set at 240000m.  The others were 360000m and 480000m. 
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The limit-of-influence had a big influence on the number of data points within range of the 

computation (grid) points: 

• For 𝑟𝑚𝑎𝑥 = 240000m, 9 grid points had 1 data point within range, 45 had 2, 82 had 3 

and 123 had 4 or more. 

• For 𝑟𝑚𝑎𝑥 = 360000m, 6 grid points had 3 data points within range and 253 had 4 or 

more. 

• For 𝑟𝑚𝑎𝑥 = 480000m, all 259 grid points had 4 or more data points within range,  

 

For the HISFEAD contour maps, the higher the limit-of-influence, the greater the resemblance 

to the contour maps for inverse distance to the power 2.  This is very much to be expected, 

because the inverse-square part of HISFEAD will cover a greater area.  For the longitude 

shifts, the smallest value of 𝑟𝑚𝑎𝑥  gave the least regular contour maps, although that could 

simply mean it is better than the other limits for representing distortion.  (See Figures I-25 to 

I-27.) 

 

For the HICFEAD contour maps, the higher the limit-of-influence, the greater the resemblance 

to the contour maps for inverse distance to the power 3.  This is very much to be expected, 

because the inverse-square part of HISFEAD will cover a greater area.  For the longitude 

shifts, the smallest value of 𝑟𝑚𝑎𝑥  gave the least regular contour maps, although that could 

simply mean it is better than the other limits for representing distortion.  (See Figures I-28 to 

I-30.) 

 

The next form of surface fitting to be applied was nearest neighbour as described in Section 

7.7.  As this is a strictly bounded form of interpolation, there is no need for the kind of analysis 

given in Tables 8-1 to 8-6.  Several of the datum-shift contours are jagged, particularly for the 

longitude.  (See Figure I-31.) 

 

Table 8-8 shows the latitude signal over an area of 1313 nodes, approximately 25km apart.  

The nodes taking the signal value from the same data point are partitioned with bold boundary 

lines.  The constant property within each partitioned area will not be replicated in the datum 

shift because the signal is added to the trend model. 
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Table 8-8: Latitude signal for part of the Mukinbudin rectangle using nearest neighbour 
ϕλ 116.00 116.25 116.51 116.76 117.02 117.27 117.52 117.78 118.03 118.29 118.54 118.80 119.05 

-28.00 -0.289 -0.289 -0.289 -0.289 -0.289 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 0.671 
-28.23 -0.289 -0.289 -0.289 -0.289 -0.289 -0.289 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 0.671 
-28.45 -0.289 -0.289 -0.289 -0.289 -0.289 -0.289 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 0.671 
-28.68 -0.289 -0.289 -0.289 -0.289 -0.289 -0.289 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 0.671 
-28.90 -0.077 -0.077 -0.077 -0.289 -0.289 -0.289 -0.289 -0.053 -0.053 -0.053 -0.053 -0.053 0.671 
-29.13 -0.077 -0.077 -0.077 -0.077 -0.077 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.087 
-29.35 -0.077 -0.077 -0.077 -0.077 -0.077 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.087 
-29.58 -0.077 -0.077 -0.077 -0.077 -0.077 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.087 
-29.80 -0.077 -0.077 -0.077 -0.077 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.087 
-30.03 0.106 0.070 0.070 0.070 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.098 -0.087 
-30.26 0.070 0.070 0.070 0.070 0.070 -0.098 -0.098 -0.098 -0.141 -0.141 -0.141 -0.141 -0.087 
-30.48 0.070 0.070 0.070 0.070 0.070 -0.141 -0.141 -0.141 -0.141 -0.141 -0.141 -0.141 -0.177 
-30.71 0.161 0.070 0.070 0.070 0.070 -0.141 -0.141 -0.141 -0.141 -0.141 -0.141 -0.177 -0.177 

 

The next form of surface fitting to be applied was LIVONN as defined in Section 7.14.  As 

this is a strictly bounded form of interpolation, there is no need for the kind of analysis given 

in Tables 8-1 to 8-6.  The chosen transition intervals were 33.3333% (which matches the one 

illustrated in Figure 7-17) and 50%. 

 

Table 8-9 shows a LIVONN latitude signal at the same nodes as Table 8-8.  The values from 

neighbouring data points are still present (within bold boundaries) but occur in smaller areas.  

The shaded cells contain interpolated values and show plausible transitions between the “flat” 

area.  The possibility of a discontinuity as per Figure 7-18 cannot be ruled out, but there is a 

pattern of continuity which is not present in Table 8-8. 

 

Table 8-9: Latitude signal for part of the Mukinbudin rectangle using 
LIVONN with transition interval 33.333%. 

ϕλ 116.00 116.25 116.51 116.76 117.02 117.27 117.52 117.78 118.03 118.29 118.54 118.80 119.05 

-28.00 -0.209 -0.257 -0.275 -0.265 -0.222 -0.127 -0.053 -0.053 -0.053 -0.062 -0.088 0.203 0.425 
-28.23 -0.203 -0.276 -0.289 -0.289 -0.268 -0.171 -0.072 -0.053 -0.053 -0.056 0.050 0.224 0.448 
-28.45 -0.178 -0.269 -0.289 -0.289 -0.289 -0.215 -0.118 -0.074 -0.064 -0.069 0.087 0.253 0.456 
-28.68 -0.121 -0.232 -0.272 -0.289 -0.279 -0.230 -0.159 -0.113 -0.061 -0.063 -0.064 0.281 0.451 
-28.90 -0.019 -0.145 -0.175 -0.213 -0.226 -0.225 -0.200 -0.075 -0.074 -0.073 -0.073 0.302 0.354 
-29.13 -0.043 -0.077 -0.082 -0.119 -0.155 -0.088 -0.147 -0.089 -0.087 -0.085 -0.083 -0.092 0.203 
-29.35 -0.061 -0.077 -0.077 -0.083 -0.083 -0.091 -0.096 -0.097 -0.096 -0.093 -0.095 -0.092 -0.090 
-29.58 -0.038 -0.077 -0.077 -0.079 -0.086 -0.095 -0.098 -0.098 -0.098 -0.101 -0.095 -0.092 -0.089 
-29.80 0.007 -0.050 -0.047 -0.036 -0.090 -0.096 -0.098 -0.098 -0.098 -0.102 -0.107 -0.092 -0.089 
-30.03 0.091 0.013 0.020 0.022 -0.021 -0.072 -0.099 -0.098 -0.103 -0.108 -0.112 -0.092 -0.089 
-30.26 0.109 0.081 0.069 0.062 0.024 -0.116 -0.116 -0.118 -0.120 -0.121 -0.121 -0.121 -0.118 
-30.48 0.113 0.071 0.070 0.070 0.025 -0.069 -0.136 -0.139 -0.137 -0.133 -0.129 -0.158 -0.141 
-30.71 0.121 0.075 0.070 0.070 0.012 -0.090 -0.141 -0.141 -0.141 -0.138 -0.152 -0.163 -0.170 

 

In terms of shape and spacing, LIVONN with a transition interval of 33.3333% produced more 

regular contours for the latitude and longitude datum shifts than nearest neighbour.  LIVONN 

with a transition interval of 50% had a similar advantage over nearest neighbour, except for 
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the longitude shift near the south coast between 122E and 124E.  (See Figures I-32 and I-

33.) 

 

For surface-fitting techniques as a whole, accuracy comparisons are difficult in the absence of 

validation points. (The view adopted for this study was that the Australian dataset was 

insufficiently large to set some points aside.)  There is, however, a partial basis for accuracy 

comparisons when the “trend + signal” model is used as a gridding method. 

 

When gridding is used, the final computed shifts are computed by bilinear interpolation (BL) 

or bicubic interpolation (BC).  The values of 𝛥𝜙 and 𝛥𝜆 at the data points will not necessarily 

be the same as the original data values.  The horizontal RMS residual for the data points will 

provide an indication of accuracy, albeit one that should be used with caution.   

 

The gridding was applied at 9095 points, spaced 12′ apart (the same points as those referred 

to in Tables 8-3 and 8-6).  Table 8-10 gives the horizontal RMS residual over the 82 data 

points when bilinear interpolation was used.  Table 8-11 does so when bicubic interpolation 

was used.  In both tables, the methods are listed in ascending order of RMS. 

  

Table 8-10: Accuracy comparison for gridding with bilinear (BL) interpolation in 
Western Australia, based on residuals at the data points 

Surface-Fitting Technique (with parameters) Horizontal RMS Residual For Data Points (m) 

Nearest Neighbour (no parameters) 0.00187 (beating 0.00197 for BC) 
LIVONN (33.3333) 0.00202 (beating 0.00243 for BC) 
Inverse Distance to a Power (4) 0.00204 (beating 0.00210 for BC) 
LIVONN (50) 0.00204 (beating 0.00296 for BC) 
HICFEAD (240000, 240000) 0.00225 (beating 0.00229 for BC) 
HICFEAD (360000, 360000) 0.00236 
HICFEAD (480000, 480000) 0.00243 
Inverse Distance to a Power (3) 0.00259 
Least-Squares Collocation (Gauss, 137028, 137028) 0.00565 
Least-Squares Collocation (SS20, 379397, 379395) 0.00637 
Least-Squares Collocation (SS30, 365690, 365690) 0.00654 
HISFEAD (240K, 240K) 0.00728 
Radial Basis Function (MQ, 54347) 0.00739 
Radial Basis Function (ML, 54347) 0.01051 
HISFEAD (360K, 360K) 0.01092 
HISFEAD (480K, 480K) 0.01378 
Radial Basis Function (IMQ, 54347) 0.02388 
Least-Squares Collocation (Gauss, 68514, 68514) 0.02522 
Least-Squares Collocation (SS30, 188385, 191513) 0.02615 
Least-Squares Collocation (SS20, 188385, 191513) 0.02666 
Inverse Distance to a Power (2) 0.02835 
Inverse Distance to a Power (1) 0.53587 
Radial Basis Function (TPS, 54347) 0.78844 (beating 0.78847 for BC) 
Radial Basis Function (NCS, 54347) 1.23413 (beating 1.23424 for BC) 
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Table 8-11: Accuracy comparison for gridding with bicubic (BC) interpolation in 
Western Australia, based on residuals at the data points 

SFT (with parameters) Applied With Bicubic Interpolation Horizontal RMS Residual For Data Points (m) 

Nearest Neighbour (no parameters) 0.00197 
Inverse Distance to a Power (4) 0.00210 
HICFEAD (240000, 240000) 0.00229 
HICFEAD (360000, 360000) 0.00235 (beating 0.00236 for BL) 
HICFEAD (480000, 480000) 0.00237 (beating 0.00243 for BL) 
Inverse Distance to a Power (3) 0.00243 (beating 0.00259 for BL) 
LIVONN (33.3333) 0.00243 
LIVONN (50) 0.00296 
Least-Squares Collocation (Gauss, 137028, 137028) 0.00389 (beating 0.00565 for BL) 
Least-Squares Collocation (SS30, 365690, 365690) 0.00434 (beating 0.00654 for BL) 
HISFEAD (240K, 240K) 0.00438 (beating 0.00728 for BL) 
Least-Squares Collocation (SS20, 379397, 379395) 0.00439 (beating 0.00637 for BL) 
Radial Basis Function (MQ, 54347) 0.00559 (beating 0.00739 for BL) 
Radial Basis Function (ML, 54347) 0.00615 (beating 0.01051 for BL) 
HISFEAD (360K, 360K) 0.00644 (beating 0.01092 for BL) 
HISFEAD (480K, 480K) 0.00809 (beating 0.01378 for BL) 
Least-Squares Collocation (Gauss, 68514, 68514) 0.01420 (beating 0.02522 for BL) 
Radial Basis Function (IMQ, 54347) 0.01423 (beating 0.02388 for BL) 
Least-Squares Collocation (SS30, 188385, 191513) 0.01525 (beating 0.02615 for BL) 
Least-Squares Collocation (SS20, 188385, 191513) 0.01540 (beating 0.02666 for BL) 
Inverse Distance to a Power (2) 0.01618 (beating 0.02835 for BL) 
Inverse Distance to a Power (1) 0.50156 (beating 0.53587 for BL) 
Radial Basis Function (TPS, 54347) 0.78847 
Radial Basis Function (NCS, 54347) 1.23424 

 

Some conclusions can be drawn. 

• All but the last 3 methods in Tables 8-10 and Table 8-11 have much smaller data-point 
residuals that the MREs in equations (8-3) and (8-4). 

• The last 3 methods in the tables can be considered totally unsuitable for transforming 
AGD84 to GDA94, since they have higher data-point residuals than the MREs.  This 

was perhaps unexpected for radial basis functions natural cubic spline (NCS) and thin 
plate spline (TPS).  In both cases the residuals in the latitude shifts are largest on the 
eastern side.  (It was noted earlier that these were the most volatile RBFs on the 
evidence of the range of computed values over the 9095 grid points.) 

• The data-point residuals for nearest neighbour and LIVONN are inevitably affected by 
the preservation of data-point signals via flat areas.  (Recall Figure 7-10 and Figure 7-
17.)    The position of those methods in the above tables is therefore flattering.  The 
results for inverse distance to the power 4 (and possibly 3) may also be flattering 
because of the relative flatness around the data points illustrated in Figure 7-9. 

• For most methods, bicubic interpolation is more accurate than bilinear interpolation. 

• For a more satisfactory accuracy check, there needs to be enough data points for some 
to be set aside for validation.  This would remove the bias in accuracy comparisons 
towards SFTs that have flatness or relative flatness around the control points. 
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CHAPTER 9: CASE STUDY OF GREAT BRITAIN (3D) 

 

This chapter covers the derivation of datum transformations from Ordnance Survey Great 

Britain 1936 (OSGB) to WGS84.    The area of application is Great Britain and there are 44 

data points known in both datums.  Given that the data was provided by E. J. Price who 

received it circa 2001, the “WGS84" designation should be regarded as an early realisation of 

the datum.  The coordinates are given in sub-appendix C.2. 

 
Figure 9-1: Data points for Great Britain (3D). 

 

The location of the data points is shown in Figure 9-1.  They are numbered 1 to 44 here, but 

are cross-referenced to official point identifications in sub-appendix C.2.  The closest data 
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points are 1 and 21 which are horizontally 531m apart.  Other pairs separated by short distances 

are 10 & 11 (1838m), 4 & 28 (5403m) and 15 & 40 (10079m). 

 

Advice from the UK Defence Geographic Centre was that the points are Doppler stations and 

that the WGS coordinates came from Doppler precise positioning, not GPS.  Geoid models 

must have been used to convert orthometric heights to ellipsoidal heights.  (It was not possible 

to establish which of the many possibilities those models were.)  This suggests that the 

ellipsoidal heights were much less accurate than the latitudes and longitudes. 

 

Out of the thousands of points there are in Great Britain, these 44 points were the only ones 

where (ϕ, , h) values in two datums were available for this study.  As the dataset is one of the 

smaller ones acquired for this study, this case study is limited to transformations with a small 

number of parameters, thus ensuring plenty of degrees of freedom.  All the data points were 

used as control points.   

 

Individual transformations were derived by Excel VBA subroutines specifically written for 

this study, each of them based on least-squares optimisation in one form or another. 

 

The 3-parameter conformal transformation obtained using the formulae in Section 4.3 

consisted of the following: ΔX = 376.414m, ΔY = -111.300m and ΔZ = 431.653m.  The main 

statistics of the residuals are: 

• Latitude RMS = 7.5288m.  Longitude RMS = 2.7478m.  Height RMS = 1.5963m. 

• Horizontal RMS = 8.0146m.  3D RMS = 8.1720m. 

• Mean Horizontal Distance = 7.4209m.  Mean 3D Distance = 7.6274m. 

 

NIMA (2000, page B.5-4) and NGA (2014, page D.5-5) give the “Mean Solution” 

parameters for OSGB36 to WGS84 as (37510)m, (-11110)m and (43115)m.  The 

number of satellite stations used was 38. 

 

The Standard Molodensky transformation obtained using the formulae in Section 4.4 consisted 

of the following: ΔX = 376.414m, ΔY = -111.291m and ΔZ = 431.600m.  The main statistics 

of the residuals are: 

• Latitude RMS = 7.5257m.  Longitude RMS = 2.7466m.  Height RMS = 1.5964m. 

• Horizontal RMS = 8.0112m.  3D RMS = 8.1687m. 

• Mean Horizontal Distance = 7.4178m.  Mean 3D Distance = 7.6244m. 
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If the parameters from optimising the 3PC model are used in Standard Molodensky 

(which is probably common practice), the 3D RMS distance residual is also 8.1687m, 

but there are slight differences in the other values. 

 

The Abridged Molodensky transformation obtained using the formulae in Section 4.5 

consisted of the following: ΔX = 376.318m, ΔY = -111.284m and ΔZ = 431.656m.  The main 

statistics of the residuals are: 

• Latitude RMS = 7.5079m.  Longitude RMS = 2.7497m.  Height RMS = 1.5961m. 

• Horizontal RMS = 7.9956m.  3D RMS = 8.1534m. 

• Mean Horizontal Distance = 7.4036m.  Mean 3D Distance = 7.6104m. 

 

If the parameters from optimising the 3PC model are used in Abridged Molodensky 

(which is probably common practice), the 3D RMS distance residual is 8.1539m, which 

is fractionally higher. 

 

The Helmert Version 1 transformation obtained by the new four-stage method (HO1 to HO4 

in Section 5.1) consisted of the following: ΔX = 445.181m, ΔY = -161.834m, ΔZ = 542.616m, 

𝑅𝑋 = -0.732442, 𝑅𝑌 = 0.279006, 𝑅𝑍 = 1.607763, ΔS = -20.686291ppm.  The main statistics 

of the residuals are: 

• Latitude RMS = 1.5988m.  Longitude RMS = 1.5863m.  Height RMS = 1.1298m. 

• Horizontal RMS = 2.2522m.  3D RMS = 2.5196m. 

• Mean Horizontal Distance = 1.9452m.  Mean 3D Distance = 2.2691m. 

 

The equivalent Helmert Version 2 transformation consisted of the following: ΔX = 445.181m, 

ΔY = -161.834m, ΔZ = 542.616m, 𝑅𝑋 = -0.732444, 𝑅𝑌 = 0.279000, 𝑅𝑍 = 1.607764, ΔS 

= -20.686291ppm.  The residuals are the same as for Helmert Version 1, so the main statistics 

are the same: 

• Latitude RMS = 1.5988m.  Longitude RMS = 1.5863m.  Height RMS = 1.1298m. 

• Horizontal RMS = 2.2522m.  3D RMS = 2.5196m. 

• Mean Horizontal Distance = 1.9452m.  Mean 3D Distance = 2.2691m. 

 

The Bursa-Wolf transformation (fully-linear version) obtained using the formulae in Section 

4.6 consisted of the following: ΔX = 445.181m, ΔY = -161.834m, ΔZ = 542.616m, 𝑅𝑋 



191 

= -0.732432, 𝑅𝑌 = 0.278998, 𝑅𝑍 = 1.607732, ΔS = -20.686319ppm.  The main statistics of 

the residuals match those of Helmert Versions 1 and 2: 

• Latitude RMS = 1.5988m.  Longitude RMS = 1.5863m.  Height RMS = 1.1298m. 

• Horizontal RMS = 2.2522m.  3D RMS = 2.5196m. 

• Mean Horizontal Distance = 1.9452m.  Mean 3D Distance = 2.2691m. 

 

The parameters listed in NGA (2008) are listed as 446.448m, -125.157, 542.06, 0.150, 

0.2470, 0.8421, -20.49ppm.  ESRI (2012) has the same figures except for the scale 

change (-20.489ppm). 

 

The Molodensky-Badekas transformation (fully-linear version) obtained using the formulae 

in Section 4.9 consisted of the following: ΔX = 376.414m, ΔY = -111.300m, ΔZ = 431.635m, 

𝑅𝑋 = -0.732432, 𝑅𝑌 = 0.278998, 𝑅𝑍 = 1.607732, ΔS = -20.686319ppm; of no less 

importance are the values 𝑋𝑚 = 370212.608m, 𝑌𝑚 = -157444.673m, 𝑍𝑚 = 5147839.809m, 

obtained by averaging the OSGB36 Cartesian coordinates.  The main statistics of the residuals 

are: 

• Latitude RMS = 1.5988m.  Longitude RMS = 1.5863m.  Height RMS = 1.1298m. 

• Horizontal RMS = 2.2522m.  3D RMS = 2.5196m. 

• Mean Horizontal Distance = 1.9452m.  Mean 3D Distance = 2.2691m. 

 

These statistics are identical with those for Bursa-Wolf.  This supports the argument in 

Section 2.9 that the Bursa-Wolf and Molodensky-Badekas are equivalent. 

 

The 8-parameter affine transformation obtained by the new EEH-based method (described in 

Section 5.3) was of type “SR” with a Version-1 rotation matrix applied before scaling.  The 

midpoints used to derive the local level coordinates were (3720212.60818, -157444.67338, 

5147839.80851) at 54.3031795013N, 2.4233924851W in OSGB36, and 

(3720589.02187, -157555.97383, 5148271.46171) at 54.3033308221N, 2.4248585239W in 

WGS84.  The parameters were as follows: 𝛥𝑋′ = 0m, 𝛥𝑌′ = 0m, 𝛥𝑍′ = 0m, RX = 0.716361, 

RY = 4.613041, RZ = 5.157975, 𝛥𝑆ℎ = -20.664894ppm and 𝛥𝑆𝑣 = -52.475000ppm.  The 

main statistics of the residuals are: 

• Latitude RMS = 1.6065m.  Longitude RMS = 1.5898m.  Height RMS = 1.0795m. 

• Horizontal RMS = 2.2602m.  3D RMS = 2.5048m. 

• Mean Horizontal Distance = 1.9540m.  Mean 3D Distance = 2.2523m. 
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The 9-parameter affine transformation obtained by the new four-stage method described in 

Section 5.4 consisted of the following: ΔX = 574.154m, ΔY = -162.006m, ΔZ = 366.507m, 𝑅𝑋 

= -0.796459, 𝑅𝑌 = -3.072092, 𝑅𝑍 = 1.571086, 𝛥𝑆𝑋 = -32.8663ppm, 𝛥𝑆𝑌 = -15.8335ppm 

and 𝛥𝑆𝑍 = 1.7736ppm.  The main statistics of the residuals are: 

• Latitude RMS = 1.5226m.  Longitude RMS = 1.4361m.  Height RMS = 1.1663m. 

• Horizontal RMS = 2.0930m.  3D RMS = 2.3960m. 

• Mean Horizontal Distance = 1.8353m.  Mean 3D Distance = 2.1880m. 

 

The 12-parameter affine transformation obtained using the method described in Section 4.12 

consisted of 3 translation parameters and a multiplying matrix.  The translation parameters 

were ΔX = 633.815m, ΔY = -425.804m and ΔZ = 645.324m.  The matrix elements were 
1 - 0.0000381588 -0.0000113448 -0.0000227724 

0.0000307620 1 - 0.0000166821 0.0000383531 
-0.0000103528 0.0000002387 1 - 0.0000340179 

The main statistics of the residuals are: 

• Latitude RMS = 1.3827m.  Longitude RMS = 1.3600m.  Height RMS = 1.0801m. 

• Horizontal RMS = 1.9324m.  3D RMS = 2.2199m. 

• Mean Horizontal Distance = 1.7298m.  Mean 3D Distance = 2.0682m. 

 

The new Standard Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = 452.520, 𝛥𝑌ℎ𝑜𝑟 

= -134.223m, 𝛥𝑍ℎ𝑜𝑟 =  538.793m, 𝑅𝑍 = 1.091748, 𝛥𝑋𝑣𝑒𝑟 = 369.571m, 𝛥𝑌𝑣𝑒𝑟 = -156.683m 

and 𝛥𝑍𝑣𝑒𝑟 = 434.664m.  The main statistics of the residuals are: 

• Latitude RMS = 1.6032m.  Longitude RMS = 1.6039m.  Height RMS = 1.0872m. 

• Horizontal RMS = 2.2678m.  3D RMS = 2.5149m. 

• Mean Horizontal Distance = 1.9561m.  Mean 3D Distance = 2.2605m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

69.21% and the horizontal RMS residual is reduced by 71.69%.  This is despite the fact 

that the application of the 7-parameter variation involves no extra computation apart 

from the addition of 𝑅𝑍 to the longitude shift. 

 

The new Standard Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = 453.370m, 𝛥𝑌ℎ𝑜𝑟 
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= -114.524m, 𝛥𝑍ℎ𝑜𝑟 = 538.810m, 𝛥𝑋𝑣𝑒𝑟 = 369.571m, 𝛥𝑌𝑣𝑒𝑟 = -156.683m and 𝛥𝑍𝑣𝑒𝑟 = 

434.664m.  The main statistics of the residuals are: 

• Latitude RMS = 1.9818m.  Longitude RMS = 1.9220m.  Height RMS = 1.0872m. 

• Horizontal RMS = 2.7608m.  3D RMS = 2.9671m. 

• Mean Horizontal Distance = 2.4523m.  Mean 3D Distance = 2.7218m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

63.68% and the horizontal RMS residual is reduced by 65.54%.  This is despite the fact 

that the application of the 6-parameter variation involves no extra computation. 

 

The new Abridged Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = 452.265m, 𝛥𝑌ℎ𝑜𝑟 

= -134.191m, 𝛥𝑍ℎ𝑜𝑟 = 538.566m, 𝑅𝑍 = -1.090686, 𝛥𝑋𝑣𝑒𝑟 = 369.471m, 𝛥𝑌𝑣𝑒𝑟 = -156.678m 

and 𝛥𝑍𝑣𝑒𝑟 = 434.664m.  The main statistics of the residuals are: 

• Latitude RMS = 1.6029m.  Longitude RMS = 1.6006m.  Height RMS = 1.0872m. 

• Horizontal RMS = 2.2652m.  3D RMS = 2.5126m. 

• Mean Horizontal Distance = 1.9543m.  Mean 3D Distance = 2.2589m. 

 

Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

69.18% and the horizontal RMS residual is reduced by 71.67%.  This is despite the fact 

that the application of the 7-parameter variation involves no extra computation apart 

from the addition of 𝑅𝑍 to the longitude shift. 

 

The new Abridged Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = 453.114m, 

𝛥𝑌ℎ𝑜𝑟 = -114.511m, 𝛥𝑍ℎ𝑜𝑟  =  538.582m, 𝛥𝑋𝑣𝑒𝑟 = 369.471m, 𝛥𝑌𝑣𝑒𝑟 = -156.678m and 𝛥𝑍𝑣𝑒𝑟 

= 434.664m.  The main statistics of the residuals are: 

• Latitude RMS = 1.9811m.  Longitude RMS = 1.9185m.  Height RMS = 1.0872m. 

• Horizontal RMS = 2.7578m.  3D RMS = 2.9644m. 

• Mean Horizontal Distance = 2.4501m.  Mean 3D Distance = 2.7197m. 

 

Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

63.64% and the horizontal RMS residual is reduced by 65.51%.  This is despite the fact 

that the application of the 6-parameter variation involves no extra computation. 
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From these results, a few conclusions are offered: 

• All the 3-parameter transformations derived from the 44-point dataset are very similar 

to the one derived from the 38-point dataset by DMA (NIMA, 2000, page B.5-4).  This 

suggests that the former dataset is no worse and might be slightly more up-to-date.   

• The 6-parameter variations on Standard and Abridged Molodensky reduce the 3D 

RMS residual by 64%, a significant benefit from separating 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟 and 𝛥𝑍𝑣𝑒𝑟 

from  𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟 and  𝛥𝑍ℎ𝑜𝑟.  Including 𝑅𝑍 as a 7th parameter in the Molodensky 

variations boosts that reduction to 69%. 

• 7PC and its near-conformal versions improve on 3PC by virtually the same amount as 

the 7-parameter Standard and Abridged Molodensky variations.  In this case, the 69% 

improvement is due to significant values for 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 and ΔS. 

• Of the affine transformations, the 9-parameter and 12-parameter version give a 

significant improvement on 7PC, even taking into account the natural effect of extra 

parameters on RMSs of the residuals.  This is not so of the 8-parameter affine 

transformation, despite the noticeably different values of 𝛥𝑆ℎ and 𝛥𝑆𝑣. 
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CHAPTER 10: CASE STUDY OF GHANA (3D) 

 

This chapter covers the derivation of datum transformations from the Accra datum (based on 

the War Office ellipsoid) to WGS84.  The area of application is Ghana’s Golden Triangle, and 

there are 19 data points known in both datums.  The coordinates are given in sub-appendix 

C.3. 

 

 
Figure 10-1: Data points for Ghana’s Golden Triangle. 

 

The location of the data points is shown in Figure 10-1.  They are numbered 1 to 19 here, but 

are cross-referenced to official point identifications in sub-appendix C.3.  It is clear from 

Figure 10-1 that the data points are too close to the line joining points 9 and 17 to give good 

coverage of the area as a whole. 

 

The WGS84 coordinates are the result of a GPS survey (Dzidifo [2011], pages 43-44).  From 

this, it appears that the WGS84 3D coordinates – and hence the geodetic heights – were 

obtained directly.  The source of the latitudes and longitudes in the local system is “the Ghana 

Survey records, 1936”, which also contain the orthometric heights (ibid, page 43).  The 

estimation of the local ellipsoidal heights requires some explanation. 

 

Ayer and Tiennah (2008) proposed a method for generating Accra ellipsoidal heights at 12 

control points, where (
𝐴𝑐𝑐𝑟𝑎

, 𝐴𝑐𝑐𝑟𝑎) and (
𝑊𝐺𝑆84

, 𝑊𝐺𝑆84, ℎ𝑊𝐺𝑆84) were known. 

• The method of Molnár and Timár (2005), noted above in Section 4.5, was applied to 

derive values of ΔX, ΔY and ΔZ that gave the best least-squares fit to (
𝐴𝑐𝑐𝑟𝑎

, 𝐴𝑐𝑐𝑟𝑎) →

(
𝑊𝐺𝑆84

, 𝑊𝐺𝑆84) at the control points via Abridged Molodensky (ie, just using the 

formulae for Δ and Δ). 
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• Using the latest computed values of ΔX, ΔY and ΔZ, the Abridged Molodensky 

equation for Δh was applied to the Accra geodetic coordinates.  The height shifts were 

applied to provisional values of ℎ𝐴𝑐𝑐𝑟𝑎  The differences between the computed and the 

known values of ℎ𝑊𝐺𝑆84 provided corrections to the provisional values of ℎ𝐴𝑐𝑐𝑟𝑎.  

• ΔX, ΔY and ΔZ were then recomputed using all the Abridged Molodensky equations   

(presumably from normal equations, but this is not made clear).  The iterative approach 

“leads to progressive refinements in the values of Δh and the corresponding ΔX, ΔY 

and ΔZ until convergence is obtained”. 

 

The same approach was applied by Dzidifo (2011) to the 19 control points considered in this 

Chapter.  The provisional values of ℎ𝐴𝑐𝑐𝑟𝑎 were set to zero.  The values of ΔX, ΔY and ΔZ were 

found to be -196.7481, 32.7059 and 322.6385 respectively (ibid, Table 4.1).  The derived 

values of ℎ𝐴𝑐𝑐𝑟𝑎 are given in sub-appendix C.3. 

 

The view taken in this thesis is that the Accra ellipsoidal heights derived in this way are 

artificial and should not be used to deduce Accra geoid heights from the orthometric heights 

in Ghana’s survey records.  Ayer and Fosu (2008) did precisely that with the 12-point dataset, 

in a somewhat roundabout fashion.  However, this study has not encountered any attempt to 

do this for the 19-point dataset. 

 

The best argument for the estimated Accra ellipsoidal heights on the Accra Datum is that they 

facilitate the use of three-dimensional formulae to model horizontal datum shifts.  Both Laari 

et al (2016) and Ziggah et al (2016) discuss accuracy of their derived 3D transformations 

purely in terms of horizontal accuracy.  Nevertheless, a comprehensive range of 3D models 

has been derived for this thesis in pursuit of the following objectives: 

• to see what levels of horizontal accuracy can be obtained from 3D methods on the 

Ghanaian data; 

• to verify that the new methods of optimising non-linear transformations work on the 

Ghanaian dataset; 

• to quantify the advantages of varying the Standard and Abridged Molodensky formulae 

as per 2.15 and 2.16. 

 

As the dataset is one of the smaller ones acquired for this study, this case study is limited to 

transformations with a small number of parameters, thus ensuring plenty of degrees of 

freedom.  All the data points were used as control points.   
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Individual transformations were derived by Excel VBA subroutines specifically written for 

this study, each of them based on least-squares optimisation in one form or another. 

 

The 3-parameter conformal transformation obtained using the formulae in Section 4.3 

consisted of the following: ΔX = -196.622m, ΔY = 33.361m and ΔZ = 322.344m.  The main 

statistics of the residuals are: 

• Latitude RMS = 0.9506m.  Longitude RMS = 0.6600m.  Height RMS = 0.0085m. 

• Horizontal RMS = 1.1573m.  3D RMS = 1.1573m. 

• Mean Horizontal Distance = 1.0578m.  Mean 3D Distance = 1.0578m. 

 

The Standard Molodensky transformation obtained using the formulae in Section 4.4 consisted 

of the following: ΔX = -196.614m, ΔY = 33.362m and ΔZ = 322.337m.  The main statistics of 

the residuals are: 

• Latitude RMS = 0.9506m.  Longitude RMS = 0.6599m.  Height RMS = 0.0082m. 

• Horizontal RMS = 1.1572m.  3D RMS = 1.1572m. 

• Mean Horizontal Distance = 1.0577m.  Mean 3D Distance = 1.0577m. 

 

If the parameters from optimising the 3PC model are used in Standard Molodensky 

(which is probably common practice), the 3D RMS distance residual is 1.1573m.  The 

other values are within 0.0001m of those above, except for the height RMS which is 

0.0011m. 

 

NGA (2014, page D.2-1) gives the “Mean Solution” parameters for Accra to WGS84 as 

(-1703)m, (334)m and (3263)m.  The number of satellite stations used was only 4, 

so the following qualification applies: “the 1 errors for shift constants are non-

computed estimates” (ibid, page D-5). 

 

The Abridged Molodensky transformation obtained using the formulae in Section 4.5 

consisted of the following: ΔX = -196.618m, ΔY = 33.360m and ΔZ = 322.433m.  The main 

statistics of the residuals are: 

• Latitude RMS = 0.9465m.  Longitude RMS = 0.6598m.  Height RMS = 0.0083m. 

• Horizontal RMS = 1.1538m.  3D RMS = 1.1538m. 

• Mean Horizontal Distance = 1.0550m.  Mean 3D Distance = 1.0551m. 
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If the parameters from optimising the 3PC transformation are used in Abridged 

Molodensky (which is probably common practice), the 3D RMS distance residual is 

8.1572m, which is 0.0035m worse.  There are differences of up to 0.0041m in the other 

values. 

 

The parameters differ slightly from those derived by Ziggah et al (2013, Table 

1): -196.63455m, 33.36035m, 322.51867m.  

 

The Helmert Version 1 transformation obtained by the new four-stage method (HO1 to HO4 

in Section 5.1) consisted of the following: ΔX = -151.190m, ΔY = 31.593m, ΔZ = 327.177m, 

𝑅𝑋 = -0.445179, 𝑅𝑌 = 0.005818, 𝑅𝑍 = -0.021995, ΔS = -7.167726ppm.  The main statistics 

of the residuals are: 

• Latitude RMS = 0.8421m.  Longitude RMS = 0.4649m.  Height RMS = 0.0076m. 

• Horizontal RMS = 0.9619m.  3D RMS = 0.9619m. 

• Mean Horizontal Distance = 0.8823m.  Mean 3D Distance = 0.8824m. 

 

The equivalent Helmert Version 2 transformation consisted of the following: ΔX = -151.190m, 

ΔY = 31.593m, ΔZ = 327.177m, 𝑅𝑋 = -0.445179, 𝑅𝑌 = 0.005818, 𝑅𝑍 = -0.021995, ΔS 

= -7.167726ppm.  (In this case, the rotations are the same as for Version 1 when rounded to 6 

decimal places.)  The residuals are the same as for Helmert Version 1, so the main statistics 

are the same as for Version 1: 

• Latitude RMS = 0.8421m.  Longitude RMS = 0.4649m.  Height RMS = 0.0076m. 

• Horizontal RMS = 0.9619m.  3D RMS = 0.9619m. 

• Mean Horizontal Distance = 0.8823m.  Mean 3D Distance = 0.8824m. 

 

The Bursa-Wolf transformation (fully-linear version) obtained using the formulae in Section 

4.6 consisted of the following: ΔX = -151.190m, ΔY = 31.593m, ΔZ = 327.177m, 𝑅𝑋 

= -0.445176, 𝑅𝑌 = 0.005818, 𝑅𝑍 = -0.021995, ΔS = -7.167757ppm.  The main statistics of 

the residuals match those of Helmert Versions 1 and 2: 

• Latitude RMS = 0.8421m.  Longitude RMS = 0.4649m.  Height RMS = 0.0076m. 

• Horizontal RMS = 0.9619m.  3D RMS = 0.9619m. 

• Mean Horizontal Distance = 0.8823m.  Mean 3D Distance = 0.8824m. 
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The parameters agree almost exactly with those derived by Ziggah et al (2013, Table 

1): -151.18907m, 31.59312m, 327.17669m, 0.44514, -0.00582, 0.02199 and 

−7.16775ppm.  The rotations are opposite in sign because that paper adopts the CF 

convention. 

 

The Molodensky-Badekas transformation (fully-linear version) obtained using the formulae 

in Section 4.9 consisted of the following: ΔX = -196.622m, ΔY = 33.361m, ΔZ = 322.344m, 

𝑅𝑋 = -0.445176, 𝑅𝑌 = 0.005818, 𝑅𝑍 = -0.021995,  ΔS = -7.167757ppm; of no less 

importance are the values 𝑋𝑚 = 6339126.3957m, 𝑌𝑚 = -133380.2931m, 𝑍𝑚 = 689482.7338m, 

obtained by averaging the Accra Cartesian coordinates.  The main statistics of the residuals 

are: 

• Latitude RMS = 0.8421m.  Longitude RMS = 0.4649m.  Height RMS = 0.0076m. 

• Horizontal RMS = 0.9619m.  3D RMS = 0.9619m. 

• Mean Horizontal Distance = 0.8823m.  Mean 3D Distance = 0.8824m. 

 

The parameters agree almost exactly with those derived by Ziggah et al (2013, Table 

1): -196.62110m, 33.36129m, 322.34378m, 0.44514, -0.00582, 0.02199 and 

−7.16775ppm.  The rotations are opposite in sign because that paper adopts the CF 

convention. 

 

The statistics of the residuals are identical with those for Bursa-Wolf.  This supports the 

argument in Section 2.9 that the Bursa-Wolf and Molodensky-Badekas are equivalent. 

 

The 8-parameter affine transformation obtained by the new EEH-based method (described in 

Section 5.3) was of type “SR” with a Version-1 rotation matrix applied before scaling.  The 

midpoints used to derive the local level coordinates were (6339126.39671, -133380.29309, 

689482.73388) at 6.2478954213N, 1.2053712015W in OSGB36, and 

(6338929.77460, -133346.93178, 689805.07751) at 6.2506680582N, 1.2051071690W in 

WGS84.  The parameters were as follows: 𝛥𝑋′ = 0m, 𝛥𝑌′ = 0m, 𝛥𝑍′ = 0m, RX = 9.975852, 

RY = -0.918211, RZ = -0.548440, 𝛥𝑆ℎ = -7.167497ppm and 𝛥𝑆𝑣 = -4.440000ppm.  The main 

statistics of the residuals are: 

• Latitude RMS = 0.8420m.  Longitude RMS = 0.4649m.  Height RMS = 0.0080m. 

• Horizontal RMS = 0.9618m.  3D RMS = 0.9619m. 

• Mean Horizontal Distance = 0.8823m.  Mean 3D Distance = 0.8823m. 
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The 9-parameter affine transformation obtained by the new four-stage method described in 

Section 5.4 consisted of the following: ΔX = 524.130m, ΔY = 45.719m, ΔZ = 256.376m, 

𝑅𝑋 = -0.505751, 𝑅𝑌=-2.279819, 𝑅𝑍 = -0.485064, 𝛥𝑆𝑋 = -112.447437ppm, 𝛥𝑆𝑌 =

−6.443500ppm and 𝛥𝑆𝑍 = -6.417050ppm.  The main statistics of the residuals are: 

• Latitude RMS = 0.8350m.  Longitude RMS = 0.4713m.  Height RMS = 0.0437m. 

• Horizontal RMS = 0.9588m.  3D RMS = 0.9598m. 

• Mean Horizontal Distance = 0.8831m.  Mean 3D Distance = 0.8842m. 

 

The 12-parameter affine transformation obtained using the method described in Section 4.12 

consisted of 3 translation parameters and a multiplying matrix.  The translation parameters 

were ΔX = 740.240m, ΔY = 1726.947m and ΔZ = -7387.552m.  The matrix elements were 
1 - 0.0001461491 -0.0000032467 -0.0000144420 

-0.0002641697 1 - 0.0000023744 -0.0000279883 
0.0012027468 -0.0000303308 1 + 0.0001181844 

The main statistics of the residuals are: 

• Latitude RMS = 0.6349m.  Longitude RMS = 0.4352m.  Height RMS = 0.0069m. 

• Horizontal RMS = 0.7698m.  3D RMS = 0.7698m. 

• Mean Horizontal Distance = 0.6599m.  Mean 3D Distance = 0.6599m. 

 

The matrix parameters derived in Ziggah et al (2013, Table 3) are similar but are given 

to a lower precision; the translation parameters are 739.98285m, 1726.7374m and 

1587.1411m. 

 

The new Standard Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -149.288m, 𝛥𝑌ℎ𝑜𝑟 = 

129.355m, 𝛥𝑍ℎ𝑜𝑟 =  327.292m, 𝑅𝑍 = -3.154177, 𝛥𝑋𝑣𝑒𝑟 = -196.629m, 𝛥𝑌𝑣𝑒𝑟 = 33.361m and 

𝛥𝑍𝑣𝑒𝑟 = 322.403m.  The main statistics of the residuals are: 

• Latitude RMS = 0.8524m.  Longitude RMS = 0.4622m.  Height RMS = 0.0004m. 

• Horizontal RMS = 0.9696m.  3D RMS = 0.9696m. 

• Mean Horizontal Distance = 0.8891m.  Mean 3D Distance = 0.8891m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

16.22% and the horizontal RMS residual is reduced by 15.95%.  This is despite the fact 

that the application of the 7-parameter variation involves no extra computation apart 

from the addition of 𝑅𝑍 to the longitude shift. 
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The new Standard Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -151.354m, 𝛥𝑌ℎ𝑜𝑟 = 

32.410m, 𝛥𝑍ℎ𝑜𝑟  =  327.293m, 𝛥𝑋𝑣𝑒𝑟 = -196.629m, 𝛥𝑌𝑣𝑒𝑟 = 33.361m and 𝛥𝑍𝑣𝑒𝑟 = 

322.403m.  The main statistics of the residuals are: 

• Latitude RMS = 0.8687m.  Longitude RMS = 0.4531m.  Height RMS = 0.0004m. 

• Horizontal RMS = 0.9798m.  3D RMS = 0.9798m. 

• Mean Horizontal Distance = 0.8934m.  Mean 3D Distance = 0.8934m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

15.34% and the horizontal RMS residual is reduced by 15.54%.  This is despite the fact 

that the application of the 6-parameter variation involves no extra computation. 

 

The new Abridged Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -149.449m, 𝛥𝑌ℎ𝑜𝑟 = 

129.320m, 𝛥𝑍ℎ𝑜𝑟  =  327.376m, 𝑅𝑍 = -3.185494, 𝛥𝑋𝑣𝑒𝑟 = -196.626m, 𝛥𝑌𝑣𝑒𝑟 = 33.360m and 

𝛥𝑍𝑣𝑒𝑟 = 322.432m.  The main statistics of the residuals are: 

• Latitude RMS = 0.8490m.  Longitude RMS = 0.4628m.  Height RMS = 0.0004m. 

• Horizontal RMS = 0.9670m.  3D RMS = 0.9670m. 

• Mean Horizontal Distance = 0.8867m.  Mean 3D Distance = 0.8867m. 

 

Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

16.19% and the horizontal RMS residual is reduced by 15.96%.  This is despite the fact 

that the application of the 7-parameter variation involves no extra computation apart 

from the addition of 𝑅𝑍 to the longitude shift. 

 

The new Abridged Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -151.536m, 𝛥𝑌ℎ𝑜𝑟 = 

32.412m, 𝛥𝑍ℎ𝑜𝑟  =  327.369m, 𝛥𝑋𝑣𝑒𝑟 = -196.626m, 𝛥𝑌𝑣𝑒𝑟 = 33.360m and 𝛥𝑍𝑣𝑒𝑟 = 

322.432m.  The main statistics of the residuals are: 

• Latitude RMS = 0.8658m.  Longitude RMS = 0.4533m.  Height RMS = 0.0004m. 

• Horizontal RMS = 0.9772m.  3D RMS = 0.9772m. 

• Mean Horizontal Distance = 0.8911m.  Mean 3D Distance = 0.8911m. 
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Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

15.31% and the horizontal RMS residual is reduced by 15.54%.  This is despite the fact 

that the application of the 6-parameter variation involves no extra computation. 

 

One conspicuous feature of all the derived transformations is that the RMS of the height 

residuals is less than 0.009m except for 9-parameter affine, so that the difference between the 

horizontal RMS and the 3D RMS is negligible.  This is perhaps not surprising, given that the 

Accra ellipsoidal heights were created to extent a horizontal near-conformal best fit into a 3D 

near-conformal best fit, and even the affine transformations have “conformal” as a sub-type. 

 

For practical purposes – given the issues over the heights – the transformations should be 

compared for horizontal accuracy.  A few conclusions are offered: 

• The 6-parameter variations on Standard and Abridged Molodensky reduce the 

horizontal RMS residual by 16%, a significant benefit from separating 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟 

and 𝛥𝑍𝑣𝑒𝑟 from  𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟 and  𝛥𝑍ℎ𝑜𝑟. 

• There is no significant benefit from including 𝑅𝑍 as a 7th parameter in the Molodensky 

variations, and it is clearly no coincidence that 𝑅𝑍 is small for Helmert (7PC) and 

Bursa-Wolf. 

• 7PC and its near-conformal versions improve on 3PC by slightly more than the 

Standard and Abridged Molodensky variations.  On the evidence of the derived 

parameters, this is largely due to differences in scale and the direction of the X-axis. 

• Of the affine transformations, only the 12-parameter version gives a significant 

improvement on 7PC.  It has the bonus of being easy to apply. 

  



203 

CHAPTER 11: CASE STUDY OF SWEDEN (3D) 
 

This chapter covers the derivation of datum transformations from SWEREF93 (The Swedish 

realisation of ETRS89) to a local reference coordinate system designated RT90/RH70 by 

Andrei (2006).  The latter is “a mixture of the Swedish triangulation network RT90 and the 

2nd Swedish precise levelling network RH70”.  There are 20 data points known in both 

datums.  The coordinates are given in sub-appendix C.4. 

 

 
Figure 11-1: Data points for Sweden. 

 

The location of the data points is shown in Figure 11-1.  They are numbered 1 to 20 here, as 

in Andrei (2006) where no formal station names are given.  From Jonsson et al (2003, Figure 

1), it is clear that they are the 20 original stations of SWEPOS, the Swedish network of 

permanent reference stations, as at the start of 1994.  The locations used as identifiers are listed 

in Figure C-4. 

 

The age of the data means that neither set of ellipsoidal heights could have come directly from 

GNSS.  As noted in sub-appendix C.4, it cannot be stated with certainty that the RT90/RH70 
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heights are ellipsoidal heights.  When asked in 2019 on ResearchGate, Dr Andrei could not 

recall whether the heights had been converted rigorously to ellipsoidal heights via a local geoid 

model.  Nevertheless, Andrei (2006, Section 1.3) does acknowledge the desirability of “taking 

into account the separation between the geoid and the ellipsoid of the local datum”.  

Furthermore, Engberg and Lilje (2002) identifies RN92 as a geoid model to be used with 

RT90.  The derivation of transformations from the RT90/RH70 Cartesian coordinates in both 

Andrei (2006) and Amiri-Simkooei (2018) is an implicit acceptance that the corresponding 

heights are ellipsoidal and that assumption is followed in this chapter.   

 

As the dataset is one of the smaller ones acquired for this study, this case study is limited to 

transformations with a small number of parameters, thus ensuring plenty of degrees of 

freedom.  All the data points were used as control points.   

 

Individual transformations were derived by Excel VBA subroutines specifically written for 

this study, each of them based on least-squares optimisation in one form or another. 

 

The 3-parameter conformal transformation obtained using the formulae in Section 4.3 

consisted of the following: ΔX = -498.381m, ΔY = 36.616m and ΔZ = -563.444m.  The main 

statistics of the residuals are: 

• Latitude RMS = 5.1639m.  Longitude RMS = 11.5094m.  Height RMS = 5.8695m. 

• Horizontal RMS = 12.6148m.  3D RMS = 13.9134m. 

• Mean Horizontal Distance = 11.2544m.  Mean 3D Distance = 12.3994m. 

 

The Standard Molodensky transformation obtained using the formulae in Section 4.4 consisted 

of the following: ΔX = -498.396m, ΔY = 36.640m and ΔZ = -563.431m.  The main statistics of 

the residuals are: 

• Latitude RMS = 5.1664m.  Longitude RMS = 11.5042m.  Height RMS = 5.8693m. 

• Horizontal RMS = 12.6111m.  3D RMS = 13.9100m. 

• Mean Horizontal Distance = 11.2513m.  Mean 3D Distance = 12.3965m. 

 

If the parameters from optimising the 3PC transformation are used in Standard 

Molodensky (which is probably common practice), the 3D RMS distance residual is 

13.9101m.  The other values are within 0.0012m of those above, except for the means 

which are 11.2534m and 12.3985. 
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The Abridged Molodensky transformation obtained using the formulae in Section 4.5 

consisted of the following: ΔX = -498.292m, ΔY = 36.665m and ΔZ = -563.445m.  The main 

statistics of the residuals are: 

• Latitude RMS = 5.1597m.  Longitude RMS = 11.5038m.  Height RMS = 5.8691m. 

• Horizontal RMS = 12.6079m.  3D RMS = 13.9070m. 

• Mean Horizontal Distance = 11.2495m.  Mean 3D Distance = 12.3953m. 

 

If the parameters from optimising the 3PC model are used in Abridged Molodensky 

(which is probably common practice), the 3D RMS distance residual is 13.9074m, which 

is 0.0004m higher.  There are differences of up to 0.0063m in the other values. 

 

The Helmert Version 1 transformation obtained by the new four-stage method (HO1 to HO4 

in Section 5.1) consisted of the following: ΔX = -419.568m, ΔY = -99.246m, ΔZ = -591.456m, 

𝑅𝑋 = -0.850188, 𝑅𝑌 = -1.814145, 𝑅𝑍 = 7.853479, ΔS = 1.023653ppm.  The main statistics 

of the residuals are: 

• Latitude RMS = 0.0615m.  Longitude RMS = 0.1141m.  Height RMS = 0.1243m. 

• Horizontal RMS = 0.1296m.  3D RMS = 0.1796m. 

• Mean Horizontal Distance = 0.1119m.  Mean 3D Distance = 0.1665m. 

 

The parameters are in strong agreement with Andrei’s optimal Helmert Version 1 

transformation.  His parameters (Andrei, 2006, Table 4.3) are −419.568m,  −99.246m, 

−591.456m,  0.850189, 1.814145, −7.853479  and 1.0237ppm.  The signs of the 

rotations are due to the CF rotation convention (in contrast to PV which was adopted for 

this study). 

 

The optimal Helmert Version 2 transformation was obtained by computing the Version-2 

rotations equivalent to the Version-1 rotations (as described in sub-section 2.6.1).  The 

parameters consisted of the following: ΔX = -419.568m, ΔY = -99.246m, ΔZ = -591.456m, 𝑅𝑋 

= -0.850189, 𝑅𝑌 = -1.814177, 𝑅𝑍 = 7.853472, ΔS = 1.023653ppm.  The residuals are the 

same as for Helmert Version 1, so the main statistics are the same: 

• Latitude RMS = 0.0615m.  Longitude RMS = 0.1141m.  Height RMS = 0.1243m. 

• Horizontal RMS = 0.1296m.  3D RMS = 0.1796m. 

• Mean Horizontal Distance = 0.1119m.  Mean 3D Distance = 0.1665m. 
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The Bursa-Wolf transformation (fully-linear version) obtained using the formulae in Section 

4.6 consisted of the following: ΔX = -419.571m, ΔY = -99.248m, ΔZ = -591.452m, 𝑅𝑋 

= -0.850184, 𝑅𝑌 = -1.814094, 𝑅𝑍 = 7.853516, ΔS = 1.023087ppm.  The main statistics of 

the residuals match those of Helmert Versions 1 and 2: 

• Latitude RMS = 0.0615m.  Longitude RMS = 0.1141m.  Height RMS = 0.1243m. 

• Horizontal RMS = 0.1296m.  3D RMS = 0.1796m. 

• Mean Horizontal Distance = 0.1120m.  Mean 3D Distance = 0.1665m. 

 

The Molodensky-Badekas transformation (fully-linear version) obtained using the formulae 

in Section 4.9 consisted of the following: ΔX = -498.381m, ΔY = 36.616m, ΔZ = -563.444m, 

𝑅𝑋 = -0.850184, 𝑅𝑌 = -1.814094, 𝑅𝑍 = 7.853516,  ΔS = 1.023087ppm; of no less importance 

are the values 𝑋𝑚 = 2943406.8346m, 𝑌𝑚 = 865099.156m, 𝑍𝑚 = 5558066.8176m, obtained by 

averaging the SWEREF93 Cartesian coordinates.  The main statistics of the residuals are: 

• Latitude RMS = 0.0615m.  Longitude RMS = 0.1141m.  Height RMS = 0.1243m. 

• Horizontal RMS = 0.1296m.  3D RMS = 0.1796m. 

• Mean Horizontal Distance = 0.1119m.  Mean 3D Distance = 0.1665m. 

 

The statistics of the residuals are identical with those for Bursa-Wolf (apart from a 

difference of 0.000066m in the mean horizontal distance).  This supports the argument 

in Section 2.9 that the Bursa-Wolf and Molodensky-Badekas are equivalent. 

 

The 8-parameter affine transformation obtained by the new EEH-based method (described in 

Section 5.3) was of type “SR” with a Version-1 rotation matrix applied before scaling.  The 

midpoints used to derive the local level coordinates were (294306.8346, 865099.1656, 

5558066.8176) at 61.26533543N, 16.37863378E in SWEREF93, and (2942908.45315, 

865135.78170, 5557503.37315) at 61.26608350N, 16.38191499E in RT90/RH70.  The 

parameters were as follows: 𝛥𝑋′ = 0m, 𝛥𝑌′ = 0m, 𝛥𝑍′ = 0m, RX = 1.183752, RY = -0.726807, 

RZ = -4.109541, 𝛥𝑆ℎ = 1.028061ppm and 𝛥𝑆𝑣 = -4.388300ppm.  The main statistics of the 

residuals are: 

• Latitude RMS = 0.0617m.  Longitude RMS = 0.1153m.  Height RMS = 0.1078m. 

• Horizontal RMS = 0.1308m.  3D RMS = 0.1695m. 

• Mean Horizontal Distance = 0.1129m.  Mean 3D Distance = 0.1572m. 
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The parameters are in strong agreement with Andrei’s optimal 8-parameter affine 

transformation.  His parameters (Andrei, 2006, Table 4.4) are 0m, 0m, 0m, 

1.813746, -0.726803, -4.109537, 1.0281ppm and -4.3883m.  The signs of the 

rotations are due to the CF rotation convention (in contrast to PV which was adopted for 

this study). 

 

The 9-parameter affine transformation obtained by the new four-stage method described in 

Section 5.4 consisted of the following: ΔX = -422.590m, ΔY = -99.901m, ΔZ = -585.345m, 

𝑅𝑋 = -0.868570, 𝑅𝑌=-1.724599, 𝑅𝑍 = 7.861213, 𝛥𝑆𝑋 = 1.241500ppm, 𝛥𝑆𝑌 = 1.080900ppm 

and 𝛥𝑆𝑍 = 0.168000ppm.  The main statistics of the residuals are: 

• Latitude RMS = 0.0652m.  Longitude RMS = 0.1138m.  Height RMS = 0.1213m. 

• Horizontal RMS = 0.1311m.  3D RMS = 0.1786m. 

• Mean Horizontal Distance = 0.1125m.  Mean 3D Distance = 0.1664m. 

 

The parameters are in close agreement with Andrei’s optimal 9-parameter affine 

transformation.  His parameters (Andrei, 2006, Table 4.3) are −422.604m,  −99.903m, 

−585.318m,  0.868641, 1.724187, −7.861238  and 0.1642ppm.  The signs of the 

rotations are due to the CF rotation convention (in contrast to PV which was adopted for 

this study). 

 

The 12-parameter affine transformation obtained using the method described in Section 4.12 

consisted of 3 translation parameters and a multiplying matrix.  The translation parameters 

were ΔX = -414.166m, ΔY = -33.774m and ΔZ = -564.508m.  The matrix elements were 
1 + 0.0000006396 -0.0000382398 -0.0000095388 

0.0000334154 1 - 0.0000004082 -0.0000049678 
0.0000068835 -0.0000048371 1 - 0.0000027010 

The main statistics of the residuals are: 

• Latitude RMS = 0.0601m.  Longitude RMS = 0.0442m.  Height RMS = 0.1067m. 

• Horizontal RMS = 0.0745m.  3D RMS = 0.1301m. 

• Mean Horizontal Distance = 0.0648m.  Mean 3D Distance = 0.1185m. 

 

The new Standard Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -471.993m, 𝛥𝑌ℎ𝑜𝑟 

= -66.133m, 𝛥𝑍ℎ𝑜𝑟 = -569.643m, 𝑅𝑍 = 7.134725, 𝛥𝑋𝑣𝑒𝑟 = -416.328m, 𝛥𝑌𝑣𝑒𝑟 = -99.283m and 

𝛥𝑍𝑣𝑒𝑟 = -585.556m.  The main statistics of the residuals are: 

• Latitude RMS = 0.1115m.  Longitude RMS = 0.1057m.  Height RMS = 0.1293m. 
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• Horizontal RMS = 0.1536m.  3D RMS = 0.2008m. 

• Mean Horizontal Distance = 0.1394m.  Mean 3D Distance = 0.1852m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

98.56% and the horizontal RMS residual is reduced by 98.78%.  This is despite the fact 

that the application of the 7-parameter variation involves no extra computation apart 

from the addition of 𝑅𝑍 to the longitude shift. 

 

The new Standard Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.15 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -502.211m, 𝛥𝑌ℎ𝑜𝑟 = 

35.655m, 𝛥𝑍ℎ𝑜𝑟 = -569.957m, 𝛥𝑋𝑣𝑒𝑟 = -416.328m, 𝛥𝑌𝑣𝑒𝑟 = -99.283m and 𝛥𝑍𝑣𝑒𝑟 = -585.556m.  

The main statistics of the residuals are: 

• Latitude RMS = 4.8139m.  Longitude RMS = 11.6407m.  Height RMS = 0.1293m. 

• Horizontal RMS = 12.5968m.  3D RMS = 12.5975m. 

• Mean Horizontal Distance = 11.2436m.  Mean 3D Distance = 11.2448m. 

 

Compared with Standard Molodensky, the 3D RMS distance residual is reduced by 

9.44%, despite the fact that the application of the 6-parameter variation involves no extra 

computation.  The improvement is due to better modelling of the height shift, since the 

horizontal RMS residual is reduced by only 0.11%. 

 

The new Abridged Molodensky PCV transformation with 7 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -471.841m, 𝛥𝑌ℎ𝑜𝑟 

= -66.052m, 𝛥𝑍ℎ𝑜𝑟 = -569.542m, 𝑅𝑍 = 7.132244, 𝛥𝑋𝑣𝑒𝑟 = -416.227m, 𝛥𝑌𝑣𝑒𝑟 = -99.255m and 

𝛥𝑍𝑣𝑒𝑟 = -585.569m.  The main statistics of the residuals are: 

• Latitude RMS = 0.1127m.  Longitude RMS = 0.1050m.  Height RMS = 0.1292m. 

• Horizontal RMS = 0.1540m.  3D RMS = 0.2010m. 

• Mean Horizontal Distance = 0.1399m.  Mean 3D Distance = 0.1860m. 

 

Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

98.55% and the horizontal RMS residual is reduced by 98.78%.  This is despite the fact 

that the application of the 7-parameter variation involves no extra computation apart 

from the addition of 𝑅𝑍 to the longitude shift. 
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The new Abridged Molodensky PCV transformation with 6 parameters obtained by the 

procedure described in Section 4.16 consisted of the following: 𝛥𝑋ℎ𝑜𝑟 = -502.047m, 𝛥𝑌ℎ𝑜𝑟 = 

35.698m, 𝛥𝑍ℎ𝑜𝑟 = -569.856, 𝛥𝑋𝑣𝑒𝑟 = -416.227m, 𝛥𝑌𝑣𝑒𝑟 = -99.255m and 𝛥𝑍𝑣𝑒𝑟 = -585.569m.  

The main statistics of the residuals are: 

• Latitude RMS = 4.8131m.  Longitude RMS = 11.6379m.  Height RMS = 0.1292m. 

• Horizontal RMS = 12.5940m.  3D RMS = 12.5946m. 

• Mean Horizontal Distance = 11.2421m.  Mean 3D Distance = 11.2432m. 

 

Compared with Abridged Molodensky, the 3D RMS distance residual is reduced by 

9.44%, despite the fact that the application of the 6-parameter variation involves no extra 

computation.  The improvement is due to better modelling of the height shift, since the 

horizontal RMS residual is reduced by only 0.11%. 

 

From these results, a few conclusions are offered: 

• The 3-parameter transformations are unsuited to this dataset, giving an RMS value of 

13.9m for the residuals.  It is surely significant that all transformations between RT90 

and geocentric datums encountered during this study have at least 6 parameters 

including 3 rotations (Andrei [2006], Amiri-Simkooei [2018] and ESRI [2012]). 

• The 6-parameter variations on Standard and Abridged Molodensky reduce the 3D 

RMS residual by 9.4%, almost entirely due to a better fit to the height data.  Including 

𝑅𝑍 as a 7th parameter in the Molodensky variations improves that reduction to 98.6% 

because there are more than 7 arc-seconds between the zero meridians. 

• 7PC and its near-conformal versions improve on 3PC to the extent of reducing the 3D 

RMS residual by 98.7%.  In this case, the improvement is due to significant values for 

𝑅𝑋, 𝑅𝑌, 𝑅𝑍 (especially) and ΔS. 

• Of the affine transformations, the 9-parameter version gives no real improvement on 

7PC, but the 8-parameter version is better than both.  This vindicates Andrei’s use of 

local level coordinates to separate 𝛥𝑆ℎ and 𝛥𝑆𝑣.  It does so rather more than his own 

paper which claimed no improvements in the residuals. 

• The 12-parameter affine transformation gives the best fit of all (3D RMS 0.13m).  

While extra parameters would be expected to have a downward effect on the residuals, 

in this case the extent of the reduction suggests that actual departures from 

conformality have been modelled.   
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CHAPTER 12: CASE STUDY OF SLOVENIA (2D) 

 

This chapter covers the derivation of datum transformations from local datum D48 to D96, the 

latter being a locally-adopted name for ETRS89 (which is a global datum).  The area of 

application is Slovenia and there are 3331 data points known in both datums.  Their 

distribution was analysed computationally for this study and is illustrated in Figure 12-1; 

numbers indicate the number of points in each 20km square.  More details of the datasets are 

given in sub-appendix C.5. 

 

 
Figure 12-1: Distribution of data points for Slovenia, in 

terms of numbers per 20km-square. 
 

The points are vertices of a triangulation designed for rubber sheeting.  Similarity 

transformations were deemed unsuitable due to “varying scale” in “the old system” (Berk and 

Komadina [2013]).  By contrast, the vast majority of the D96 coordinates were based on GNSS 

surveys (directly), according to Sandi Berk when asked in 2021 on ResearchGate; a few 

eccentric points were measured to achieve better measurement conditions.  It was noted in 

Section 7.3 that there were also virtual tie points whose coordinates are not observations in the 

conventional sense. 

 

As converted for use in this study, the coordinates are (ϕ, ) in the respective datums.  Given 

the two-dimensional nature of the dataset and the known scale distortion, the types of 

transformation considered were multiple regression equations and composite methods. 

 

In both cases the 3331 points in the dataset were split into: 
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• 3123 control points from which the transformations were derived, and 

• 208 test points to be used for an independent check on accuracy. 

 

For this study, the algorithm to select test points from the data points was as follows.  Grid 

points were created, roughly 9km apart (more precisely, 288″ of latitude, 432″ of longitude).  

A 158.4″-by-236.4″ rectangle was put round each grid point, ensuring at least 4km between 

any two rectangles (more precisely, 129.6″ of latitude 194.4″ of longitude).  The first data 

point within each rectangle was selected as a test point.  This is illustrated in Figure 12-2. 

 

The selection process was designed to ensure that the test points are well spread out.  The 

“corridors” ensure that all selected points are at least 4km apart.  This method has the potential 

drawback of removing an isolated data point from the control points.  The distribution of data 

points shown in Figure 12-1 suggests that the risk of that is very small. 

 

 
Figure 12-2: Selection of test points from the data points in the dotted rectangles. 

 

12.1 Application of multiple regression equations 

The multiple regression equations considered were the fully-normalised MREs described in 

Section 2.17.  That is to say that the intermediate coordinates U and V were defined in such a 

way that they varied between -1 and 1 over Slovenia.   
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Only selected MREs are included in this Section.  The full list of MREs can be found in sub-

appendix H.2.   

 

The offset coordinates in degrees were 46.150 for latitude and 14.984 for longitude.  The 

relative latitude and relative longitude were scaled as follows: 

            𝑈 = 1.37174(𝜙in deg − 46.150); (12-1) 
            𝑉 = 0.62035(𝜆in deg − 14.984). (12-2) 
 

The relationship between the geodetic and intermediate coordinates is illustrated in Figure 12-

3. 

 

 
Figure 12-3: The relationship between (ϕ, λ) and (U, V). 

 

The number of points in the dataset meant there was no need for the limit of 40 terms per MRE 

imposed on Western Australia.  However, to keep the size of the expressions manageable, it 

was decided to set a limit of roughly 50 terms.  Taking account of Tables 2-4 to 2-8, this meant 

setting upper limits on the top power as follows: 

• 6 for Ordinary MREs and Chebyshev MREs; 

• 4 for North/South MREs, East/West MREs and Four-Quadrant MREs. 

 

The recognised approach for deriving MREs is to apply least-squares optimisation on different 

combination of terms and to retain those terms which are statistically significant.  The 

implementation of that approach for this study is the one described in Section 5.5: “eliminating 

ratios less than one” (ERLTO), where the term “ratio” is the absolute value of a parameter 

divided by its standard error (AP/SE).  The full list of actual MREs is given in sub-appendix 

H.2. 

 

The Ordinary MREs with top power 3 obtained by ERLTO had 13 terms for the latitude shift 

and 14 for the longitude shift.  The RMSs of the residuals at the test points are 0.1022m for 
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latitude, 0.0981m for longitude and 0.1417m for horizontal distance.  (These are larger than 

the corresponding RMS differences at the control points, which were 0.0887m, 0.0906m and 

0.1268m.) 

 

The Ordinary MREs with top power 4 obtained by ERLTO had 25 terms for the latitude shift 

and 22 for the longitude shift.  The RMSs of the residuals are 0.0968m for latitude, 0.0896m 

for longitude and 0.1320m for horizontal distance.  (These are larger than the corresponding 

RMS differences at the control points, which were 0.0804m, 0.0826m and 0.1153m.) 

 

The Ordinary MREs with top power 5 obtained by ERLTO had 34 terms for the latitude shift 

and (purely by coincidence) 34 for the longitude shift.  The RMSs of the residuals are 0.0893m 

for latitude, 0.0817m for longitude and 0.1210m for horizontal distance.  (These are larger 

than the corresponding RMS differences at the control points, which were 0.0728m, 0.0732m 

and 0.1032m.) 

 

The Ordinary MREs with top power 6 obtained by ERLTO had 46 terms for the latitude shift 

and 45 for the longitude shift.  The RMSs of the residuals are 0.0851m for latitude, 0.0788m 

for longitude and 0.1160m for horizontal distance.  (These are larger than the corresponding 

RMS differences at the control points, which were 0.0688m, 0.0690m and 0.0974m.) 

 

The North/South MREs with top power 3 obtained by ERLTO had 24 terms for the latitude 

shift and (purely by coincidence) 24 for the longitude shift.  The RMSs of the residuals are 

0.0975m for latitude, 0.0931m for longitude and 0.1348m for horizontal distance.  (These are 

larger than the corresponding RMS differences at the control points, which were 0.0807m, 

0.0852m and 0.1174m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is 2.1% worse and 

requires 1 more term. 

 

The North/South MREs with top power 4 obtained by ERLTO had 35 terms for the latitude 

shift and 39 for the longitude shift.  The RMSs of the residuals are 0.0901m for latitude, 

0.0877m for longitude and 0.1257m for horizontal distance.  (These are larger than the 

corresponding RMS differences at the control points, which were 0.0725m, 0.0773m and 

0.1060m.) 
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Compared with Ordinary MREs with top power 5, the accuracy is 3.9% worse and 

requires 6 more terms. 

 

The East/West MREs with top power 3 obtained by ERLTO had 22 terms for the latitude shift 

and (purely by coincidence) 22 for the longitude shift.  The RMSs of the residuals are 0.0954m 

for latitude, 0.0882m for longitude and 0.1299m for horizontal distance.  (These are larger 

than the corresponding RMS differences at the control points, which were 0.0824m, 0.0812m 

and 0.1157m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is 1.6% better and was 

achieved with 3 fewer terms. 

 

The East/West MREs with top power 4 obtained by ERLTO had 34 terms for the latitude shift 

and 36 for the longitude shift.  The RMSs of the residuals are 0.0897m for latitude, 0.0778m 

for longitude and 0.1187m for horizontal distance.  (These are larger than the corresponding 

RMS differences at the control points, which were 0.0718m, 0.0716m and 0.1014m.) 

 

Compared with Ordinary MREs with top power 5, the accuracy is 1.9% better although 

it required 2 more terms.  For the longitude shift, the improvement was 4.8% although 

again it required 2 more terms. 

 

The Four-Quadrant MREs with top power 3 obtained by ERLTO had 27 terms for the latitude 

shift and 28 for the longitude shift.  The RMSs of the residuals are 0.0928m for latitude, 

0.0883m for longitude and 0.1281m for horizontal distance.  (These are larger than the 

corresponding RMS differences at the control points, which were 0.0752m, 0.0801m and 

0.1099m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is 3.0% better but was 

achieved with 8 more terms. 

 

The Four-Quadrant MREs with top power 4 obtained by ERLTO had 48 terms for the latitude 

shift and 50 for the longitude shift.  The RMSs of the residuals are 0.0888m for latitude, 

0.0780m for longitude and 0.1182m for horizontal distance.  (These are larger than the 

corresponding RMS differences at the control points, which were 0.0709m, 0.0699m and 

0.0995m.) 
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Compared with Ordinary MREs with top power 6, the accuracy is 1.9% worse and 

requires 9 more terms. 

 

The Chebyshev MREs with top power 3 obtained by ERLTO had 13 terms for the latitude 

shift and 15 for the longitude shift.  The RMSs of the residuals at the test points are 0.1022m 

for latitude, 0.0979m for longitude and 0.1414m for horizontal distance.  (These are larger 

than the corresponding RMS differences at the control points, which were 0.0887m, 0.0906m 

and 0.1268m.) 

 

Compared with Ordinary MREs with top power 3, the accuracy is much the same (0.2% 

better) but requires 1 more term. 

 

The Chebyshev MREs with top power 4 obtained by ERLTO had 24 terms for the latitude 

shift and (purely by coincidence) 24 for the longitude shift.  The RMSs of the residuals at the 

test points are 0.0968m for latitude, 0.0898m for longitude and 0.1321m for horizontal 

distance.  (These are larger than the corresponding RMS differences at the control points, 

which were 0.0805m, 0.0826m and 0.1153m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is much the same (0.1% 

better) but requires 1 more term. 

 

The Chebyshev MREs with top power 5 obtained by ERLTO had 34 terms for the latitude 

shift and 32 for the longitude shift.  The RMSs of the residuals at the test points are 0.0893m 

for latitude, 0.0814m for longitude and 0.1208m for horizontal distance.  (These are larger 

than the corresponding RMS differences at the control points, which were 0.0728m, 0.0732m 

and 0.1032m.) 

 

Compared with Ordinary MREs with top power 5, the accuracy is much the same (0.3% 

better) but requires 2 fewer terms. 

 

The Chebyshev MREs with top power 6 obtained by ERLTO had 49 terms for the latitude 

shift and 46 for the longitude shift.  The RMSs of the residuals at the test points are 0.0852m 

for latitude, 0.0789m for longitude and 0.1161m for horizontal distance.  (These are larger 
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than the corresponding RMS differences at the control points, which were 0.0688m, 0.0689m 

and 0.0974m.) 

 

Compared with Ordinary MREs with top power 6, the accuracy is much the same (just 

0,1% worse) but requires 4 more terms. 

 

Of the ordinary MREs obtained, the most accurate was the pair with top power 6, denoted 

“Ord6” for convenience.  Of the piecewise MREs obtained (N/S, E/W, 4Q), the most accurate 

was the E/W pair with top power 4, denoted “EW4” for convenience.  For Ord6, the RMS of 

the test-point residuals was 0.0851m for latitude (from 46 terms) and 0.0788m for longitude 

(from 45 terms).  For EW4, the RMS of the test-point residuals was 0.0897m for latitude (from 

34 terms) and 0.0778m for longitude (from 36 terms). 

 

To simplify comparisons between Ord6 and EW4, additional trimming (as described in 

Section 5.5) was applied.  The least significant terms were discarded from Ord6(Lat) until the 

accuracy matched that of EW4(Lat).  The least significant terms were discarded from 

EW4(Lon) until the accuracy matched that of Ord6(Lon).  The trimmed Ord6(Lat), denoted 

“Ord6tr(Lat)”, had 31 terms compared with 34 for EW4(Lat).  The trimmed EW4(Lon), 

denoted “EW4tr(Lon)”, had 27 terms compared with 45 for Ord6(Lon). 

 

The trimmed pairing of Ord6tr(Lat) and EW4tr(Lon) has RMS test-point residuals 0.0895m 

for latitude, 0.0789m for longitude and 0.1193m for horizontal distance.  (These are larger 

than the corresponding RMS differences at the control points, which were 0.0731m, 0.0737m 

and 0.1038m.)  Compared with Ordinary MREs with top power 6, the accuracy is 2.8% worse 

but is achieved with 33 fewer terms; it is therefore a good compromise between accuracy and 

economy.  The equations of the trimmed pairing are: 

 
𝛥𝜙(′′) = −1.09184 − 0.25923𝑈 + 0.13427𝑉 + 0.01258𝑉2 −

0.02234𝑈3 + 0.11929𝑈2𝑉 − 0.13431𝑈𝑉2 +
0.09536𝑉3 + 0.05600𝑈4 − 0.11519𝑈3𝑉 −
0.28478𝑈𝑉3 − 0.25322𝑈4𝑉 + 0.29737𝑈3𝑉2 −
 0.52256𝑈2𝑉3 + 0.44093𝑈𝑉4 − 0.17377𝑉5 −
0.05652𝑈6 +  0.37998𝑈3𝑉3 − 0.39517𝑈2𝑉4 +
 0.58467𝑈𝑉5 − 0.11294𝑉6 + 1.33082𝑈4𝑉3 −
1.35697𝑈3𝑉4 − 0.33803𝑈5𝑉3 + 0.75580𝑈4𝑉4 −
0.50114𝑈6𝑉3 +  1.04331𝑈3𝑉6 + 1.01810𝑈6𝑉4 −
1.65939𝑈5𝑉5 + 1.22406𝑈6𝑉5 − 1.63569𝑈5𝑉6  

(12-3) 
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𝛥𝜆(′′) = −17.24931 −  0.13101𝑈 −  0.01532𝑈2  +
 0.02545𝑈3 +  0.05804𝑈4 −  0.62942𝑉 −
 0.12471𝑈2𝑉 +  0.11838𝑈3𝑉 +  0.32602𝑈4𝑉  

   

− 0.18680𝑉2  +  0.08986𝑈𝑉2 +  1.41112𝑈2𝑉2 −
 0.55717𝑈3𝑉2 − 2.9331𝑈4𝑉2 +  0.07985𝑉3 −
  2.48610𝑈2𝑉3  +  5.56784𝑈4𝑉3 +
 1.23345𝑈2𝑉4 −   2.65893𝑈4𝑉4   

if V>0 

 
 

(12-4) 

 + 0.30075𝑉2 −  0.03472𝑈𝑉2 +  0.40479𝑈4𝑉2 +
 0.64266𝑉3 −  0.68551𝑈3𝑉3 +  0.38714𝑉4 −
  0.34671𝑈2𝑉4 −  0.74364𝑈3𝑉4   

if V0 
 

 

The Chebyshev MREs in sub-appendix H.2 show a distinct tendency to have smaller 

coefficients than the MREs based on monomials.  The significance of this can be deduced by 

comparing the initial ordinary MRE with top power 6 with the initial Chebyshev MRE with 

top 6; “initial” means “prior to application of ERLTO” so that they are different 

representations of the same polynomial.  The L1 norms of the coefficients were as follows: 

• for the latitude shift, 54.8787 (Ord) and 14.7254 (Cheb); 

• for the longitude shift, 111.4905 (Ord) and 37.5481 (Cheb). 

 

Equivalence of the functions means that the lower Chebyshev L1 norms are limits on the 

magnitudes of the ordinary MREs.  (See subsections 2.17.1 and 2.17.5.)  This implies that 

some of the seemingly-large monomial terms largely cancel each other out.  It is logical to 

assume that this is true of the monomial-based MREs in general, including N/S, E/W and 4Q.  

This revelation is perhaps the most significant contribution of Chebyshev polynomials to the 

study of MREs in Slovenia. 

 

Contour maps of most of the MREs are shown in in sub-appendix I.2.  They show strong 

similarities to one another, with no sharp bends or major variations in spacing. 

 

The main finding of this section is that East/West MREs work well for transforming D48 to 

D96.  The ordinary MRE in (12-3) and the East/West MRE in (12-4) offer perhaps the best 

pairing for accuracy and economy. 

 

12.2 Application of composite methods 

The composite methods applied in Slovenia were selected from those described in Chapter 7 

and the methods for interpolation of gridded data were selected from those described in 

Chapter 6.  The generic process used is illustrated in Figure 12-4. 
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Figure 12-4: Composite methods chosen for D48→D96 in Slovenia. 

 
The trend model chosen for the latitude shift (in arc-seconds) was   

            𝛥𝜙BLM(′′) = −1.09103 − 0.37669(𝜙in deg − 46.150) + 
                        0.091185(𝜆in deg − 14.984) − 0.039774(𝜙in deg − 46.150)(𝜆in deg − 14.984). (12-5) 
 

The trend model chosen for the longitude shift (in arc-seconds) was 

            𝛥𝜆BLM(′′) = −17.25104 − 0.18793(𝜙in deg − 46.150) − 
                    0.41814(𝜆in deg − 14.984) − 0.00284(𝜙in deg − 46.150)(𝜆in deg − 14.984). (12-6) 
 

In each case, the trend model is the bilinear model that gives the least-squares fit to the shifts 

at the control points, hence the subscript BLM.  This model is mathematically equivalent to 

the multiple regression equation with top power 1.  The bilinear form has sufficient terms to 

ensure that 

• the trend model includes the average shift as a constant term, and 

• embodies the tilt which is evident from the contour maps I-34 to I-42 in Appendix I. 

 

For both the latitude shift and the longitude shift, the signal component is that part which is 

unmodelled. 

 

The surface-fitting techniques tested for each signal were those shown in Figure 12-4.  They 

are also listed below with the corresponding Sections. 

• Least-squares collocation (7.1); 

• Radial basis functions (7.6); 

• Inverse distance to a power (7.5); 

• Hybrid inverse power function embodying accelerated decline [HIPFEAD] (7.13); 

• Nearest neighbour (7.7); 

• Linear interpolation variation on nearest neighbour [LIVONN] (7.14). 
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Figure 12-4 differs from Figure 8-3 in that the emphasis has shifted from SFTs as a gridding 

method to SFTs as an approximation method to be applied wherever required.  The first four 

techniques generate a C1 surface and do not require a huge amount of computation.  It is true 

that least-squares collocation and radial basis functions require a one-off computation of 

revamped signals from a large matrix equation.  However, this would be the case if the 

methods were employed as a gridding method.  The difference is that direct application 

requires storage of the revamped signals at control points instead of the signal values at grid 

points.  The direct approach has the advantage that it interpolates exact data values rather than 

approximate values at grid points. 

 

The SFTs listed which do not generate a C1 surface are nearest neighbour and LIVONN.  

Nearest neighbour creates discontinuities and LIVONN is liable to do so in places.  These 

were treated as gridding methods to be followed by bilinear interpolation (Section 6.2) or 

bicubic interpolation (6.3, as in 6.3.3).  The grid was defined by intervals of 72″ (0.02). 

 
 

  
Figure 12-5: Contour maps of the trend models of D48→D96 in arc-seconds. 
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Figure 12-5 shows the contours generated by LSS for the trend model defined by (12-5) and 

(12-6).  (The points used in these maps are considerably fewer than the 72″ grid of computation 

points.) 

 

Least-squares collocation was applied with three covariance functions applied to the signals.  

These were Gaussian, SS20 and SS30, described in subsection 7.1.  Variance (in square 

metres) was 0.0176595 for the latitude signal and 0.0406728 for the longitude signal.  In both 

cases this was computed from the control points. 

 

The size of the dataset made it possible to estimate the correlation length (and hence the 2nd 

constant required by each covariance function) by sampling at the control points.  Tables 12-

1 and 12-2 feature the ranges of distance for which the estimated correlation was close to 0.5. 

 

Table 12-1: Sampling of latitude-signal products to estimate covariance and correlation 
Min of 
Range 

Max of 
Range 

Centre of 
Range 

Sample 
Size 

Estimated 
Covariance From 

Mean 

Estimated 
Correlation From 

Mean 

13300 13500 13400 3687 0.0093389 0.528834 

13500 13700 13600 3754 0.0089711 0.508006 

13700 13900 13800 3820 0.0090454 0.512211 

13900 14100 14000 3714 0.0086743 0.491200 

14100 14300 14200 3784 0.0087971 0.498153 

14300 14500 14400 3835 0.0089585 0.507289 

14500 14700 14600 3699 0.0083238 0.471352 

14700 14900 14800 3910 0.0088254 0.499752 

14900 15100 15000 4000 0.0085003 0.481343 

 

The linear function giving the least-squares fit to the data in columns 3 and 6 is Correlation =

0.536551 − 0.00000258537 × Centre.  Substitution of 0.5 for Correlation gives a value of 

14120.06 for Centre, so the estimated correlation length for the latitude signal is 14120m. 

 

Table 12-2: Sampling of longitude-signal products to estimate covariance and correlation 
Min of 
Range 

Max of 
Range 

Centre of 
Range 

Sample 
Size 

Estimated 
Covariance From 

Mean 

Estimated 
Correlation From 

Mean 

11900 12100 12000 3473 0.0215594 0.530069 

12100 12300 12200 3427 0.0198642 0.488391 

12300 12500 12400 3469 0.0208016 0.511438 

12500 12700 12600 3628 0.0203653 0.500711 

12700 12900 12800 3587 0.0205790 0.505965 
12900 13100 13000 3549 0.0214277 0.526832 

13100 13300 13200 3673 0.0195208 0.479948 

13300 13500 13400 3687 0.0196559 0.483270 

13500 13700 13600 3754 0.0190541 0.468473 
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The linear function giving the least-squares fit to the data in columns 3 and 6 is Correlation =

0.817968 − 0.0000248838 × Centre.  Substitution of 0.5 for Correlation gives a value of 

12778.11 for Centre, so the estimated correlation length for the longitude signal is 12778m. 

 

The conversion of correlation length into the covariance function’s 2nd constant (k or 𝑟𝑚𝑎𝑥)  

is described in Examples 7.1 to 7.3 in Chapter 7.  The covariance functions to be adopted were 

therefore as follows: 

• Gaussian, as per formula (7-11): for the latitude signal, 𝐶0 = 0.0176595 and 𝑘 =

1/16970; for the longitude signal, 𝐶0 = 0.0406728 and 𝑘 = 1/15348. 

• SS20 as per formula (7-14): for the latitude signal, 𝐶0 = 0.0176595 and 𝑟𝑚𝑎𝑥 =

39095; for the longitude signal, 𝐶0 = 0.0406728 and 𝑟𝑚𝑎𝑥 = 35379. 

• SS30 as per formula (7-17): for the latitude signal, 𝐶0 = 0.0176595 and 𝑟𝑚𝑎𝑥 =

37682; for the longitude signal, 𝐶0 = 0.0406728 and 𝑟𝑚𝑎𝑥 = 34102. 

 

When the Gaussian covariance function was used, least-squares collocation failed.  Initially, 

Cholesky decomposition as per sub-appendix G.2.2 was used to solve equation (7-29) which 

should have provided the revamped signal vector.  The process broke down (“the term to be 

square-rooted isn’t positive”) in Row 88 for the latitude revamped signal vector and row 99 

for the longitude revamped signal vector.  The matrix-inversion method of sub-appendix G.2.3 

did provide “solutions”, but substitution into (7-29) gave misclosures of up to 582.781m in 

latitude and 57.694m in longitude.  The covariance matrices relating the revamped signals to 

the control-point signals were obviously ill-conditioned. 

 

When the SS20 covariance function was used, least-squares collocation failed, although less 

spectacularly. Initially, Cholesky decomposition as per sub-appendix G.2.2 was used to solve 

equation (7-29) which should have provided the revamped signal vector.  The process broke 

down (“the term to be square-rooted isn’t positive”) in Row 122 for both the latitude revamped 

signal vector and the longitude revamped signal vector.  The matrix-inversion method of sub-

appendix G.2.3 did provide solutions that satisfied the solution-check process, although the 

values of the revamped signals were suspiciously large.  However, application of (7-27) to 

compute signals at the test points produced model signals varied from 52.896m to -61.754m 

for latitude and 39.959m to -32.605m for longitude.  Clearly the surfaces fitted to the control 

points were far too volatile. 
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When the SS30 covariance function was used, least-squares collocation was successful.  

Cholesky decomposition as per sub-appendix G.2.2 was used to solve equation (7-29).  Both 

the latitude revamped signal vector and the longitude revamped signal vector satisfied the 

solution-check process.  Application of (7-27) at the test points produced model signals close 

to the actual signals.  RMS differences were 0.1172m for latitude, 0.0795m for longitude and 

0.1416m for horizontal distance. 

 

Radial basis functions were applied using all the examples described in subsection 7.6: inverse 

multiquadric (IMQ), multilog (ML), multiquadric (MQ), natural cubic spline (NCS) and thin 

plate spline (TPS).  In each case, the shaping parameter R was set to 928m.  This is the value 

obtained from equation (7-50), the default used in Surfer, and it was based on the 3123 control 

points rather than the entire dataset. 

 

The inverse multiquadric (IMQ) radial basis function was successful.  Cholesky 

decomposition as per sub-appendix G.2.2 was used to solve equation (7-53).  Both the latitude 

revamped signal vector and the longitude revamped signal vector satisfied the solution-check 

process.  Application of (7-51) at the test points produced model signals close to the actual 

signals.  RMS differences were 0.0671m for latitude, 0.0602m for longitude and 0.0902m for 

horizontal distance. 

 

The multilog (ML) radial basis function was successful.  Solution of (7-53) by Cholesky 

decomposition was impossible because 𝐑𝐝𝐥(𝐬, 𝐬) was not positive definite.  (Diagonal 

elements were smaller than neighbouring elements.)  However, the matrix-inversion method 

of sub-appendix G.2.3 provided solutions for both the latitude revamped signal vector and the 

longitude revamped signal vector.  Each of them satisfied the solution-check process.  

Application of (7-51) at the test points produced model signals close to the actual signals.  

RMS differences were 0.0711m for latitude, 0.0579m for longitude and 0.0917m for 

horizontal distance. 

 

The multiquadric (MQ) radial basis function was successful.  Solution of (7-53) by Cholesky 

decomposition was impossible because 𝐑𝐝𝐥(𝐬, 𝐬) was not positive definite.  (Diagonal 

elements were smaller than neighbouring elements.)  However, the matrix-inversion method 

of sub-appendix G.2.3 provided solutions for both the latitude revamped signal vector and the 

longitude revamped signal vector.  Each of them satisfied the solution-check process.  

Application of (7-51) at the test points produced model signals close to the actual signals.  
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RMS differences were 0.0882m for latitude, 0.0633m for longitude and 0.1086m for 

horizontal distance. 

 

The natural cubic spline (NCS) radial basis function was successful, albeit with an inferior fit 

to the other RBFs.  Solution of (7-53) by Cholesky decomposition was impossible because 

𝐑𝐝𝐥(𝐬, 𝐬) was not positive definite.  (Diagonal elements were smaller than neighbouring 

elements.)  However, the matrix-inversion method of sub-appendix G.2.3 provided solutions 

for both the latitude revamped signal vector and the longitude revamped signal vector.  Each 

of them satisfied the solution-check process, to the extent that the largest misclosures were 

0.010m for latitude and 0.011m for longitude.  Application of (7-51) at the test points produced 

model signals fairly close to the actual signals.  RMS differences were 0.1872m for latitude, 

0.1102m for longitude and 0.2172m for horizontal distance. 

 

The thin plate spline (TPS) radial basis function was successful.  Solution of (7-53) by 

Cholesky decomposition was impossible because 𝐑𝐝𝐥(𝐬, 𝐬) was not positive definite.  

(Diagonal elements were smaller than neighbouring elements.)  However, the matrix-inversion 

method of sub-appendix G.2.3 provided solutions for both the latitude revamped signal vector 

and the longitude revamped signal vector.  Each of them satisfied the solution-check process.  

Application of (7-51) at the test points produced model signals close to the actual signals.  

RMS differences were 0.1234m for latitude, 0.0766m for longitude and 0.1453m for 

horizontal distance. 

 

Inverse distance to a power, described in Section 7.5, was the first of the strictly-bounded 

SFTs to be applied.   It was applied with each of the powers 1, 2, 3 and 4.  The predicted 

signals at the test points became closer to the actual signals as the power n increased.  The 

RMS differences were as follows: 

• n=1: 0.1111m for latitude, 0.1512m for longitude, 0.1877m for horizontal distance; 

• n=2: 0.0796m for latitude, 0.0851m for longitude, 0.1165m for horizontal distance; 

• n=3: 0.0666m for latitude, 0.0608m for longitude, 0.0902m for horizontal distance; 

• n=4: 0.0642m for latitude, 0.0586m for longitude, 0.0869m for horizontal distance. 

 

The next form of surface fitting to be applied was HIPFEAD as defined in Section 7.13.  Given 

that estimates of correlation length L had been obtained for the signals for least-squares 

collocation, 2L seemed a reasonable choice for the limit-of-influence 𝑟𝑚𝑎𝑥.  This was 28240m 
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for latitude and 25556m for longitude.  The two versions of HIPFEAD are HISFEAD and 

HICFEAD, described in subsections 7.13.1 and 7.13.2 respectively. 

 

For HISFEAD, the predicted signals at the test points were 20% closer than inverse square 

distance to the actual signals.  The RMS differences were 0.0711m for latitude, 0.0613m for 

longitude, 0.0938m for horizontal distance. 

 

For HICFEAD, the predicted signals at the test points were 3% closer than inverse cubic 

distance to the actual signals.  The RMS differences were 0.0655m for latitude, 0.0580m for 

longitude, 0.0874m for horizontal distance. 

 

The next form of surface fitting to be applied was nearest neighbour as described in Section 

7.7.  One factor in its favour is the large number of control points. 

 

Putting aside (for the moment) the possibility of gridding, nearest neighbour was applied 

initially to the test points.  Comparing the interpolated shifts at the test points to the actual 

signals, the RMS differences were 0.0751m for latitude, 0.0689m for longitude, 0.1019m for 

horizontal distance.  The interpolating surface, of course, is neither continuous or smooth. 

 

To apply nearest neighbour as a gridding method, datum shifts were predicted at 12160 points, 

spaced 0.02(or 72″) apart.  These were interpolated at both the test points and the control 

points.  The RMS differences (between actual shifts and interpolated shifts) at the test points 

were as follows. 

• Bilinear interpolation: 0.0711m for latitude, 0.0670m for longitude, 0.0977m for 

horizontal distance. 

• Bicubic interpolation: 0.0743m for latitude, 0.0703m for longitude, 0.1023m for 

horizontal distance. 

The corresponding RMS differences at the control points were roughly 70% smaller (0.0207m, 

0.0215m, 0.0299m; 0.0212m, 0.0217m, 0.0303m). 

 

The next form of surface fitting to be applied was LIVONN as defined in Section 7.14.  The 

chosen transition intervals were 33.3333% and 50%.  The former interval matches the one 

illustrated in Figure 7-17. 
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Putting aside (for the moment) the possibility of gridding, LIVONN was applied initially to 

the test points.  Comparing the predicted signals at the test points to the actual signals, the 

RMS differences were 

• transition interval 33.3333%: 0.0689m for latitude, 0.0649m for longitude, 0.0947m 

for horizontal distance; 

• transition interval 50%: 0.0687m for latitude, 0.0645m for longitude, 0.0942m for 

horizontal distance. 

The interpolating surfaces are not guaranteed to be continuous and are certainly not smooth. 

 

To apply LIVONN with transition interval 33.3333% as a gridding method, datum shifts were 

predicted at 12160 points, spaced 0.02 (or 72″) apart.  These were interpolated at both the test 

points and the control points.  The RMS differences (between actual shifts and interpolated 

shifts) at the test points were as follows. 

• Bilinear interpolation: 0.0664m for latitude, 0.0610m for longitude, 0.0902m for 

horizontal distance. 

• Bicubic interpolation: 0.0680m for latitude, 0.0628m for longitude, 0.0926m for 

horizontal distance. 

The corresponding RMS differences at the control points were roughly 69% smaller (0.0203m, 

0.0208m, 0.0291m; 0.0198m, 0.0201m, 0.0283m). 

 

To apply LIVONN with transition interval 50% as a gridding method, datum shifts were 

predicted at the same 12160 points.  These were interpolated at both the test points and the 

control points.  The RMS differences (between actual shifts and interpolated shifts) at the test 

points were as follows. 

• Bilinear interpolation: 0.0663m for latitude, 0.0607m for longitude, 0.0899m for 

horizontal distance. 

• Bicubic interpolation: 0.0678m for latitude, 0.0624m for longitude, 0.0922m for 

horizontal distance. 

The corresponding RMS differences at the control points were roughly 68% smaller (0.0205m, 

0.0211m, 0.0294m; 0.0199m, 0.0203m, 0.0284m). 

 

Viewing composite methods as a whole, accuracy comparisons based on test points are given 

in Table 12-3. 
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Table 12-3: Accuracy comparison for composite methods in 
Slovenia, based on residuals at the test points 

Surface-Fitting Technique (with parameters) Horizontal RMS Residual for test points 
Inverse Distance to a Power (4) 0.0869 
HICFEAD (28240, 25556) 0.0874 

LIVONN (50) with BL on grid 0.0899† 
Inverse Distance to a Power (3) 0.0902 
LIVONN (33.3333) with BL on grid 0.0902† 
Radial Basis Function (IMQ, 928) 0.0902 

Radial Basis Function (ML, 928) 0.0917 
LIVONN (50) with BC on grid 0.0922† 
LIVONN (33.3333) with BC on grid 0.0926† 
HISFEAD (28240, 25556) 0.0938 
LIVONN (50) 0.0942 
LIVONN (33.3333) 0.0947 
Nearest Neighbour with BL on grid 0.0977† 
Nearest Neighbour 0.1019 
Nearest Neighbour with BC on grid 0.1023† 
Radial Basis Function (MQ, 928) 0.1086 
Inverse Distance to a Power (2) 0.1165 
Least-Squares Collocation (SS30, 37682, 34102) 0.1416 
Radial Basis Function (TPS, 928) 0.1453 
Inverse Distance to a Power (1) 0.1877 
Radial Basis Function (NCS, 928) 0.2172 
Least-Squares Collocation (Gauss, 14120, 12778) (failed) 
Least-Squares Collocation (SS20, 39095, 35379) (failed) 

† Surface not exact at the control points 
 
Some conclusions can be drawn. 

• The comparisons of SFTs should be treated with caution.  The LIVONN applications 

with bilinear interpolation from gridded points rank 3rd and 5th in Table 12-3, but they 

are not smooth.  They are also among the daggered cases where the predicted surface 

is not exact at the control points. 

• The dividing line in Table 12-3 separates those methods with a smaller horizontal RMS 

residual at the test points than the recommended pair of MREs (12-3) and (12-4), which 

is 0.1193m, from the less accurate methods.  By that criteria, even the successful 

implementation of least-squares collocation would be a poor choice, as would the 

radial basis functions based on TPS or NCS. 

• There is a wide variety of surface-fitting techniques that give a lower horizontal RMS 

residual than the recommended MREs, although the biggest reduction is a 

comparatively modest 27%. 
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CHAPTER 13: CASE STUDY OF GREAT BRITAIN (2D) 

 

This chapter covers the derivation of datum transformations from European Terrestrial 

Reference System 1989 (ETRS89) to Ordnance Survey Great Britain 1936 (OSGB36).  The 

area of application is Great Britain and there are 4315 data points known in both datums. 

 

4269 of the data points are based on observations.  Their distribution was analysed 

computationally for this study and is illustrated in Figure 13-1; numbers indicate the number 

of points in each 50km square.  The remaining 46 points, along an enclosing boundary, were 

generated using a 7-parameter transformation.  They are shown in Figure 13-2.  More details 

of the datasets are given in sub-appendix C.6. 

 

 
Figure 13-1: Distribution of non-boundary data 
points for Great Britain, in terms of numbers per 

50km-square. 

 
 
 
 

 
 

Figure 13-2: Boundary points of the 
Great Britain dataset, at 50km-intervals 

on the enclosing rectangle. 
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The points actually comprise the OSTN15 dataset for which rubber sheeting generated a 

regular grid for piecewise bilinear interpolation as described in Section 7.3.  The ETRS89 

coordinates are GNSS-derived.  The distortions in OSGB36, however, are such that “different 

transformations are needed in different parts of the country” (Ordnance Survey [2018], Section 

6.3). 

 

As converted for use in this study, the coordinates are (ϕ, ) in the respective datums.  Given 

the two-dimensional nature of the dataset and the OSGB36 distortions, the types of 

transformation considered were multiple regression equations and composite methods. 

 

In both cases the dataset was split into: 

• 4011 control points from which the transformations were derived, and 

• 304 test points to be used for an independent check on accuracy. 

Of the 4011 control points, 46 are the boundary points shown in Figure 13-2.  Where it seemed 

appropriate, control points were limited to the 3965 non-boundary control points. 

 

For this study, the algorithm to select test points from the data points was as follows.  Grid 

points were created, 36km apart, around the non-boundary data points.  A 26km-by-26km 

square was put round each grid point, with at least 10km between any two squares.  Where 

there was more than one data point within a square, the 4th, 10th and 20th data points were 

selected as test points.  This is illustrated in Figure 13-3. 

 
Figure 13-3: Selection of test points from the data points in the dotted 26km squares. 
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The selection process was designed to ensure that the test points are well spread out and taken 

from areas with data points to spare.  The 10km “corridors” reduces the likelihood of test 

points being close together although there may be the occasional occurrence within a 26km 

square containing 10 or more data points. 

 

The test points come from the squares shown in Figure 13-1, which means that none of them 

is one of the 46 boundary points shown in Figure 13-2 and none of them comes from the sea 

areas around British shores.  The accuracy of a datum transformation model as measured at 

the test points can only be realistically quoted in relation to the land areas of Great Britain. 

 

One characteristic of the control points, which was not noticed immediately, is the large 

number of points which are within 50 metres of at least one other point.  The most extreme 

examples are shown in Table 13-1.  Interestingly, the official identification numbers of the 

points within each cluster are very close to each other. 

 

Table 13-1: Control points that are closest to other control points. 
Small 

clusters 
Latitude in 

ETRS89 (deg) 
Longitude in 

ETRS89 (deg) 
Residual 

part of Δϕ  
Residual 
part of Δλ  

Distance apart on ETRS89 

Point_0400 57.67890207 -4.57926267 1.10004m 0.53122m 0.039m 
Point_0399 57.67890191 -4.57926326 1.11742m 0.56661m (OSGB36 coords are identical) 
Point_0349 50.48613623 -4.69495494 1.44530m 1.57929m 0.051m 
Point_0350 50.48613588 -4.69495447 1.48204m 1.54192m  
Point_0156 57.36968677 -5.56449437 0.65113m -0.03565m 0.085m 
Point_0155 57.36968613 -5.56449513 0.72269m 0.00969m (OSGB36 coords are identical) 
Point_4256 52.25765036 1.62865445 -1.92066m -0.46955m 5.748m 
Point_4255 52.25764992 1.62857027 -1.84037m -0.39127m  
Point_2860 53.26381097 -1.34935750 -1.71029m -0.11359m 7.205m 
Point_2861 53.26374881 -1.34932725 -1.68476m -0.03427m  
Point_3281 51.42009664 -0.77328510 0.70836m 0.16747m Between 13.892m and  
Point_3280 51.41997273 -0.77330986 0.70773m 0.16865m 16.623m 
Point_3279 51.42003083 -0.77349966 0.72744m 0.17417m  
Point_2569 53.75647848 -1.73243349 0.97219m 0.28054m 20.536m 
Point_2568 53.75658799 -1.73268410 0.98395m 0.28379m  

 

13.1 Application of multiple regression equations 

The multiple regression equations considered were the fully-normalised MREs described in 

Section 2.17.  That is to say that the intermediate coordinates U and V were defined in such a 

way that they varied between -1 and 1 over Great Britain.   

 

Only selected MREs are included in this Section.  The full list of MREs can be found in sub-

appendix H.2.   
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The offset coordinates in degrees were 56.104 for latitude and -2.968 for longitude.  The 

relative latitude and relative longitude were scaled as follows: 
            𝑈 = 0.14662(𝜙in deg − 56.104); (13-1) 
            𝑉 = 0.12769(𝜆in deg + 2.968). (13-2) 
 
The relationship between the geodetic and intermediate coordinates is illustrated in Figure 13-

4.  The area for which the intermediate coordinates were in the range 1 to -1 was chosen so as 

to include all the boundary points in Figure 13-2.  The reason for this is that the boundary 

points were included among the control points used for deriving MREs, and were an example 

of what Section 4.13 calls artificial control points.  In retrospect, perhaps the Ordnance Survey 

boundary points in Figure 13-2 should have been replaced by less remote boundary points (at 

which datum shifts would have been computed in a similar way).  This could have enabled the 

V-axis to divide the land areas more equally. 

 
Figure 13-4: The relationship between (ϕ, λ) and (U, V). 

 

The number of points in the dataset meant there was no need for the limit of 40 terms per MRE 

imposed on Western Australia.  However, to keep the size of the expressions manageable, it 

was decided to set a limit of roughly 50 terms.  Taking account of Tables 2-4 to 2-8, this meant 

setting upper limits on the top power as follows: 

• 6 for Ordinary MREs and Chebyshev MREs; 

• 4 for North/South MREs, East/West MREs and Four-Quadrant MREs. 

 

The recognised approach for deriving MREs is to apply least-squares optimisation on different 

combination of terms and to retain those terms which are statistically significant.  The 
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implementation of that approach for this study is the one described in Section 5.5: “eliminating 

ratios less than one” (ERLTO), where the term “ratio” is the absolute value of a parameter 

divided by its standard error (AP/SE).  The full list of actual MREs is given in sub-appendix 

H.3. 

 

One characteristic of the derived MREs was that the RMSs of the residuals were smaller at the 

test points than at the control points.  This was at least in part due to the inclusion of all the 

remote boundary points among the control points. 

 

The Ordinary MREs with top power 3 obtained by ERLTO had 16 terms for the latitude shift 

and (purely by coincidence) 16 for the longitude shift.  The RMSs of the residuals at the test 

points are 0.3331m for latitude, 0.3374m for longitude and 0.4742m for horizontal distance.  

(The corresponding RMS differences at the control points were larger: 0.4260m, 0.3834m and 

0.5732m.) 

 

The Ordinary MREs with top power 4 obtained by ERLTO had 23 terms for the latitude shift 

and 24 for the longitude shift.  The RMSs of the residuals at the test points are 0.3006m for 

latitude, 0.1834m for longitude and 0.3521m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.3753m, 0.2180m and 0.4340m.) 

 

The Ordinary MREs with top power 5 obtained by ERLTO had 35 terms for the latitude shift 

and 36 for the longitude shift.  The RMSs of the residuals at the test points are 0.1503m for 

latitude, 0.1722m for longitude and 0.2286m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.1838m, 0.1913m and 0.2653m.) 

 

The Ordinary MREs with top power 6 obtained by ERLTO had 45 terms for the latitude shift 

and 46 for the longitude shift.  The RMSs of the residuals at the test points are 0.1287m for 

latitude, 0.1364m for longitude and 0.1875m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.1594m, 0.1538m and 0.2215m.) 

 

The North/South MREs with top power 3 obtained by ERLTO had 24 terms for the latitude 

shift and 22 for the longitude shift.  The RMSs of the residuals at the test points are 0.2306m 

for latitude, 0.1630m for longitude and 0.2824m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.2946m, 0.2065m and 0.3598m.) 
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Compared with Ordinary MREs with top power 4, the accuracy is 19.8% better and was 

achieved with 1 fewer term.  As it is the most economical MRE-pairing delivering test-

point accuracy comparable with 0.2824m, the actual equations are shown here: 

 
𝛥𝜙(′′) = 0.28538 − 0.41802𝑉 −  0.11961𝑉2  −  0.10169𝑉3  +

 3.28408𝑈 + 0.27681𝑈𝑉 +  0.57604𝑈𝑉2 −  1.23140𝑈𝑉3  

   

− 0.98424𝑈2 −  1.45485𝑈2𝑉 − 1.52211𝑈2𝑉2 +
3.95979𝑈2𝑉3 +  0.57734𝑈3 +  0.98805𝑈3𝑉 +
 0.95184𝑈3𝑉2 − 2.65510𝑈3𝑉3   

if U>0 
 

(13-3) 

+ 0.37799𝑈2 +  0.87948𝑈2𝑉 + 1.71478𝑈2𝑉2 −
3.07516𝑈2𝑉3 −  0.19022𝑈3 +  0.42040𝑈3𝑉 +
 1.51362𝑈3𝑉2 −  1.80253𝑈3𝑉3    

if U0 
 

 
𝛥𝜆(′′) = 5.26013  +  3.90932𝑉 −  0.18460𝑉2  −  0.07808𝑉3  +

 1.06886𝑈 +  0.61534𝑈𝑉2  

   

+ 0.64301𝑈2 −  0.84033𝑈2𝑉 − 0.94478𝑈2𝑉2 +
1.05226𝑈2𝑉3 −  0.30653𝑈3 +  1.40503𝑈3𝑉 +
 0.33394𝑈3𝑉2 − 0.98447𝑈3𝑉3   

if U>0 
 

(13-4) 

+ 0.09984𝑈2 −  5.12664𝑈2𝑉 + 2.85239𝑈2𝑉2 +
1.76486𝑈2𝑉3 −  0.15003𝑈3 − 4.20115𝑈3𝑉 +
 1.94654𝑈3𝑉2 +  1.97842𝑈3𝑉3    

if U0 
 

 

The North/South MREs with top power 4 obtained by ERLTO had 40 terms for the latitude 

shift and 32 for the longitude shift.  The RMSs of the residuals at the test points are 0.1485m 

for latitude, 0.1427m for longitude and 0.2060m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.1735m, 0.1574m and 0.2342m.) 

 

Compared with Ordinary MREs with top power 5, the accuracy is 9.9% better although 

it required 1 more term. 

 

The East/West MREs with top power 3 obtained by ERLTO had 24 terms for the latitude shift 

and (purely by coincidence) 24 for the longitude shift.  The RMSs of the residuals at the test 

points are 0.2730m for latitude, 0.2970m for longitude and 0.4034m for horizontal distance.  

(The corresponding RMS differences at the control points were larger: 0.3704m, 0.3429m and 

0.5048m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is 14.6% worse and 

required 1 more term. 

 

The East/West MREs with top power 4 obtained by ERLTO had 39 terms for the latitude shift 

and 37 for the longitude shift.  The RMSs of the residuals at the test points are 0.2482m for 
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latitude, 0.1707m for longitude and 0.3012m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.3116m, 0.1997m and 0.3701m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is 31.8% worse and 

required 5 more terms. 

 

The Four-Quadrant MREs with top power 3 obtained by ERLTO had 27 terms for the latitude 

shift and 26 for the longitude shift.  The RMSs of the residuals at the test points are 0.2620m 

for latitude, 0.2029m for longitude and 0.3314m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.3510m, 0.2322m and 0.4209m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is 5.9% better but was 

achieved with 6 more terms. 

 

The Four-Quadrant MREs with top power 4 obtained by ERLTO had 51 terms for the latitude 

shift and 49 for the longitude shift.  The RMSs of the residuals at the test points are 0.1786m 

for latitude, 0.1461m for longitude and 0.2307m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.2242m, 0.1576m and 0.2740m.) 

 

Compared with Ordinary MREs with top power 6, the accuracy is 23.0% worse despite 

9 more terms. 

 

The Chebyshev MREs with top power 3 obtained by ERLTO had 16 terms for the latitude 

shift and (purely by coincidence) 16 for the longitude shift.  The RMSs of the residuals at the 

test points are 0.3331m for latitude, 0.3378m for longitude and 0.4744m for horizontal 

distance.  (The corresponding RMS differences at the control points were larger: 0.4260m, 

0.3834m and 0.5732m.) 

 

Compared with Ordinary MREs with top power 3, the accuracy is much the same (just 

0.05% worse) and involves the same number of terms. 

 

The Chebyshev MREs with top power 4 obtained by ERLTO had 23 terms for the latitude 

shift and (purely by coincidence) 23 for the longitude shift.  The RMSs of the residuals at the 

test points are 0.3002m for latitude, 0.1837m for longitude and 0.3519m for horizontal 
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distance.  (The corresponding RMS differences at the control points were larger: 0.3753m, 

0.2181m and 0.4340m.) 

 

Compared with Ordinary MREs with top power 4, the accuracy is much the same (0.06% 

better) and requires 1 fewer term. 

 

The Chebyshev MREs with top power 5 obtained by ERLTO had 34 terms for the latitude 

shift and 36 for the longitude shift.  The RMSs of the residuals at the test points are 0.1502m 

for latitude, 0.1722m for longitude and 0.2285m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.1838m, 0.1913m and 0.2653m.) 

 

Compared with Ordinary MREs with top power 5, the accuracy is same (0.05% better) 

and requires 1 fewer term. 

 

The Chebyshev MREs with top power 6 obtained by ERLTO had 45 terms for the latitude 

shift and (purely by coincidence) 45 for the longitude shift.  The RMSs of the residuals at the 

test points are 0.1285m for latitude, 0.1361m for longitude and 0.1872m for horizontal 

distance.  (The corresponding RMS differences at the control points were larger: 0.1594m, 

0.1538m and 0.2215m.) 

 

Compared with Ordinary MREs with top power 6, the accuracy is much the same (0.2% 

better) and requires 1 fewer term. 

 

Of the ordinary MREs obtained, the most accurate was the pair with top power 6, denoted 

“Ord6” for convenience.  Of the piecewise MREs obtained (N/S, E/W, 4Q), the most accurate 

was the N/S pair with top power 4, denoted “NS4” for convenience.  For Ord6, the RMS of 

the test-point residuals was 0.1875m for horizontal distance (from 45+46 terms).  For NS4, 

the RMS of the test-point residuals was 0.2060m for horizontal distance (from 40+32 terms).  

The superior accuracy of Ord6 is 9.0%, but is achieved by 17 more terms. 

 

To simplify comparisons between Ord6 and NS4, additional trimming of the models (as 

described in Section 5.5) was applied.  The least significant terms were discarded from 

Ord6(Lat) and Ord6(Lon) until there were 40 and 32 terms respectively.  For the trimmed 

Ord6, denoted “Ord6tr”, the RMSs of the residuals at the test points are 0.1310m for latitude, 

0.1410m for longitude and 0.1925m for horizontal distance.  (The corresponding RMS 
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differences at the control points were larger: 0.1604m, 0.1587m and 0.2256m.)  The accuracy 

of Ord6tr is 6.6% better than that of NS4, and is achieved with the same number of terms 

(40+32). 

 

This, however, is not the end of the comparison between Ordinary and North/South MREs.  

After a North/South MRE with top power 5 was derived by ERLTO, additional trimming of 

the models was applied until there were 40 terms for latitude and 32 terms for longitude.  For 

the trimmed NS5, denoted “NS5tr”, the RMSs of the residuals at the test points are 0.1289m 

for latitude, 0.1379m for longitude and 0.1887m for horizontal distance.  (The corresponding 

RMS differences at the control points were larger: 0.1507m, 0.1590m and 0.2190m.)  The 

accuracy of NS5tr is 2.0% better than that of Ord6tr, and is achieved with the same number of 

terms (40+32). 

 

The actual trimmed North/South MREs with top power 5 are 

 
𝛥𝜙(′′) = 0.28274 −  0.38567𝑉 +  0.13378𝑉2 −  0.36550𝑉4 −

 0.06596𝑉5 +  3.22429𝑈 −  1.44981𝑈𝑉3 +  0.42571𝑈𝑉4  

   

− 0.65998𝑈2 − 2.42930𝑈2𝑉2 + 3.98034𝑈2𝑉3 −
 3.87840𝑈3𝑉 +  9.04418𝑈3𝑉2 − 2.52425𝑈3𝑉3 +
 0.31318𝑈4 +  7.87398𝑈4𝑉 −  13.01017𝑈4𝑉2 −
4.24886𝑈5𝑉 +  6.12799𝑈5𝑉2   

iif U>0 

 
 
 

(13-5) 
+ 0.63970𝑈2 − 24.86874𝑈2𝑉2 − 10.12025𝑈2𝑉3 +
44.34803𝑈2𝑉4 +  2.34166𝑈3 −  88.46987𝑈3𝑉2 −
 32.25022𝑈3𝑉3 +  150.72671𝑈3𝑉4 +  20.59973𝑈3𝑉5 +
 5.00843𝑈4 +  0.73673𝑈4𝑉 − 108.58055𝑈4𝑉2 −
 41.89887𝑈4𝑉3 +  176.54452𝑈4𝑉4 +  44.03018𝑈4𝑉5 +
2.94738𝑈5 +  0.77772𝑈5𝑉 − 44.63144𝑈5𝑉2 −
 18.45018𝑈5𝑉3 +  69.22826𝑈5𝑉4 +  23.39180𝑈5𝑉5   

iif U0 

 

 
𝛥𝜆(′′) = 5.26546  +  3.91765𝑉 −  0.19198𝑉2  +  1.10162𝑈 +

0.32742𝑈𝑉 +  0.84945𝑈𝑉2 −  0.76076𝑈𝑉3 −
 0.8207𝑈𝑉4  

   

− 3.09588𝑈2𝑉 + 2.91768𝑈2𝑉3 + 0.95188𝑈2𝑉4 +
 3.35184𝑈3𝑉 +  3.11526𝑈4 − 5.09247𝑈4𝑉2 −
 2.25876𝑈4𝑉3 − 2.83209𝑈5 + 4.17931𝑈5𝑉2   

if U>0 
 

(13-6) 

+ 9.59989𝑈2𝑉2 − 12.38098𝑈2𝑉3 − 3.79466𝑈2𝑉4 −
0.59667𝑈3 +  15.63958𝑈3𝑉 +  26.3831𝑈3𝑉2 −
 42.87075𝑈3𝑉3 −  3.29270𝑈3𝑉4 − 0.35837𝑈4 +
 28.33820𝑈4𝑉 +  31.84657𝑈4𝑉2 −  51.55637𝑈4𝑉3 +
 13.70320𝑈5𝑉 + 14.12399𝑈5𝑉2 − 20.60202𝑈5𝑉3   

if U0 

 

 

This comparison process could be continued indefinitely with Ordinary and North/South 

MREs leapfrogging each other by including a wider range of monomials to choose from.  The 

justification for stopping it at NS5tr is the desirability of avoiding high-power polynomials. 
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The presence of large coefficients in (13-5) and (13-6) might appear to be a cause for concern, 

although the discussion of Chebyshev MREs below addresses this point.  In addition, there is 

the evidence of the test-point accuracy.  The test points come from the squares shown in Figure 

13-1, and the vast majority of data points from those squares provided control.  As mentioned 

earlier, test-point accuracy is only an indication of accuracy over the land areas. 

 

The Chebyshev MREs in sub-appendix H.3 show a distinct tendency to have smaller 

coefficients than the MREs based on monomials.  The significance of this can be deduced by 

comparing the initial ordinary MRE with top power 6 with the initial Chebyshev MRE with 

top 6; “initial” means “prior to application of ERLTO” so that they are different 

representations of the same polynomial.  The L1 norms of the coefficients were as follows: 

• for the latitude shift, 217.1634 (Ord) and 6.2097 (Cheb); 

• for the longitude shift, 226.0569 (Ord) and 14.3625 (Cheb). 

 

Equivalence of the functions means that the lower Chebyshev L1 norms are limits on the 

magnitudes of the ordinary MREs.  (See subsections 2.17.1 and 2.17.5.)  This implies that 

some of the seemingly-large monomial terms largely cancel each other out.  It is logical to 

assume that this is true of the monomial-based MREs in general, including N/S, E/W and 4Q.  

This revelation is perhaps the most significant contribution of Chebyshev polynomials to the 

study of MREs in Great Britain. 

 

Contour maps of most of the MREs are shown in in sub-appendix I.3.  They show strong 

similarities to one another, with no sharp bends or major variations in spacing. 

 

The main finding of this section is that North/South MREs work well for transforming 

ETRS89 to OSGB36.  The North/South MREs in (13-3) and (13-4) have a greater emphasis 

on economy than the more accurate North/South MREs of !3-5) and (13-6), but in both cases 

they compare favourably with ordinary MREs with the same number of terms. 

 

13.2  Application of composite methods 

The composite methods applied in Great Britain were selected from those described in Chapter 

7 and the methods for interpolation of gridded data were selected from those described in 

Chapter 6.  The generic process used is illustrated in Figure 13-5. 
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Figure 13-5: Composite methods chosen for ETRS89→OSGB36 in Great Britain. 

 

The trend model chosen for the latitude shift (in arc-seconds) was   
            𝛥𝜙BLM(′′) = 0.25288 + 0.425846(𝜙in deg − 56.104) − 
                                    0.069947(𝜆in deg + 2.968) − 0.0030543(𝜙in deg − 56.104)(𝜆in deg + 2.968). (13-7) 
 

The trend model chosen for the longitude shift (in arc-seconds) was 

            𝛥𝜆BLM(′′) = 5.27689 + 0.143205(𝜙in deg − 56.104) + 
                                    0.46703(𝜆in deg + 2.968) + 0.018828(𝜙in deg − 56.104)(𝜆in deg + 2.968). (13-8) 
 
In each case, the trend model is the bilinear model that gives the least-squares fit to the shifts 

at the control points, hence the subscript BLM.  This model is mathematically equivalent to 

the multiple regression equation with top power 1.  The bilinear form has sufficient terms to 

ensure that 

• the trend model includes the average shift as a constant term, and 

• embodies the tilt which is evident from the contour maps I-43 to I-51 in Appendix I. 

 

For both the latitude shift and the longitude shift, the signal component is that part which is 

unmodelled. 

 

The surface-fitting methods tested for each signal were those shown in Figure 13-5.  They are 

also listed below with the corresponding Sections. 

• Least-squares collocation (7.1); 

• Radial basis functions (7.6); 

• Inverse distance to a power (7.5); 

• Hybrid inverse power function embodying accelerated decline [HIPFEAD] (7.13); 

• Nearest neighbour (7.7); 

• Linear interpolation variation on nearest neighbour [LIVONN] (7.14). 
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Figure 13-5 differs from Figure 8-3 in that the emphasis has shifted from SFTs as a gridding 

method to SFTs as an approximation method to be applied wherever required.  The first four 

techniques generate a C1 surface and do not require a huge amount of computation.  It is true 

that least-squares collocation and radial basis functions require a one-off computation of 

revamped signals from a large matrix equation.  However, this would be the case if the 

methods were employed as a gridding method.  The difference is that direct application 

requires storage of the revamped signals at control points instead of the signal values at grid 

points.  The direct approach has the advantage that it interpolates exact data values rather than 

approximate values at grid points. 

 

The SFTs listed which do not generate a C1 surface are nearest neighbour and LIVONN.  

Nearest neighbour creates discontinuities and LIVONN is liable to do so in places.  These 

were treated as gridding methods to be followed by bilinear interpolation (Section 6.2) or 

bicubic interpolation (6.3, as in 6.3.3).  The grid was defined by intervals of 6 (0.1). 

 

   

Figure 13-6: Contour maps of the trend models of ETRS89→OSGB36 in arc-seconds. 
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Figure 13-6 shows the contours generated by LSS for the trend model defined by (13-7) and 

(13-8).  (The points used in these maps are considerably fewer than the 6 grid of computation 

points.) 

 

Least-squares collocation was applied with three covariance functions applied to the signals.  

These were Gaussian, SS20 and SS30, described in subsection 7.1.  Variance (in square 

metres) was 1.421349 for the latitude signal and 0.554053 for the longitude signal.  In both 

cases this was computed from the non-boundary control points. 

 

The size of the dataset made it possible to estimate the correlation length (and hence the 2nd 

constant required by each covariance function) by sampling at the non-boundary control 

points.  Tables 13-2 and 13-3 feature the ranges of distance for which the estimated correlation 

was close to 0.5. 

 

Table 13-2: Sampling of latitude-signal products to estimate covariance and correlation 
Min of 
Range 

Max of 
Range 

Centre of 
Range 

Sample 
Size 

Estimated 
Covariance From 

Mean 

Estimated 
Correlation From 

Mean 

94000 95000 94500 14249 0.728444 0.512502 

95000 96000 95500 14253 0.709402 0.499105 

96000 97000 96500 14040 0.710339 0.499764 

97000 98000 97500 13999 0.710029 0.499546 

98000 99000 98500 14284 0.700164 0.492605 

 

The linear function giving the least-squares fit to the data in columns 3 and 6 is 

Correlation = 1.506795 − 0.0000104258 × Centre.  Substitution of 0.5 for Correlation 

gives a value of 96567.56 for Centre, so the estimated correlation length for the latitude 

signal is 96568m. 

 

Table 13-3: Sampling of longitude-signal products to estimate covariance and correlation 
Min of 
Range 

Max of 
Range 

Centre of 
Range 

Sample 
Size 

Estimated 
Covariance From 

Mean 

Estimated 
Correlation From 

Mean 

13000 14000 13500 3347 0.293953 0.530551 

14000 15000 14500 3599 0.280526 0.506317 

15000 16000 15500 3778 0.267881 0.483494 

16000 17000 16500 4064 0.286327 0.516786 

17000 18000 17500 4093 0.261357 0.471718 

18000 19000 18500 4322 0.277808 0.501411 

19000 20000 19500 4399 0.276172 0.498459 

20000 21000 20500 4587 0.277445 0.500756 

21000 22000 21500 4749 0.263834 0.476189 

22000 23000 22500 5076 0.270683 0.488552 
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The linear function giving the least-squares fit to the data in columns 3 and 6 is Correlation =

0.516275 − 0.0000010473 × Centre.  Substitution of 0.5 for Correlation gives a value of 

15539.68 for Centre, so the estimated correlation length for the longitude signal is 15540m. 

 

The conversion of correlation length into the covariance function’s 2nd constant (k or 𝑟𝑚𝑎𝑥)  

is described in Examples 7.1 to 7.3 in Chapter 7.  The covariance functions to be adopted were 

therefore as follows: 

• Gaussian, as per formula (7-11): for the latitude signal, 𝐶0 = 1.421349 and 𝑘 =

1/115989; for the longitude signal, 𝐶0 = 0.554053 and 𝑘 = 1/18665. 

• SS20 as per formula (7-14): for the latitude signal, 𝐶0 = 1.421349 and 𝑟𝑚𝑎𝑥 =

267370; for the longitude signal, 𝐶0 = 0.554053 and 𝑟𝑚𝑎𝑥 = 43025. 

• SS30 as per formula (7-17): for the latitude signal, 𝐶0 = 1.421349 and 𝑟𝑚𝑎𝑥 =

257711; for the longitude signal, 𝐶0 = 0.554053 and 𝑟𝑚𝑎𝑥 = 41471. 

 

Initially, least-squares collocation was applied with a “no noise” assumption.  For each of the 

covariance functions, the revamped signal was successfully computed.  For the Gaussian 

function, the Cholesky decomposition as per sub-appendix G.2.2 broke down in row 1502 for 

longitude; for SS20, Cholesky broke down in row 52 for latitude and row 684 for longitude).  

The matrix-inversion method of sub-appendix G.2.3 was applied successfully where Cholesky 

failed, although the values of the revamped signals were suspiciously large. 

 

The predicted signals at the test points were another matter.  Comparing the predicted signals 

with the actual signals, the RMS differences were as follows: 

• Gaussian: 0.0655m for the latitude signal, 14228.695m for the longitude signal and 

14228.695m for the horizontal distance. 

• SS20: 1530.2956m for the latitude signal, 12710.6117m for the longitude signal and 

12802.4004m for the horizontal distance. 

• SS30: 53.9235m for the latitude signal, 80.0258m for the longitude signal and 

96.4981m for the horizontal distance. 

 

The reason for these implausible signals lies in the rows of the matrix 𝐂𝐨𝐯(𝐬, 𝐬).  Where data 

points are virtually identical, as per the examples given in Table 13-1, the corresponding rows 

of 𝐂𝐨𝐯(𝐬, 𝐬) are going to be virtually identical, making the matrix equation (7-29) very ill-

conditioned.  The distance between points in these clusters is too small for HISFEAD to be 

used as a modification of least-squares collocation. 
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Another aspect of Table 13-1 is the difference between residuals at near-identical points.  This 

makes the “no noise” assumption totally unrealistic.  In other words, not all of each residual 

(from the actual shift minus the trend model) can realistically be treated as signal.  Some 

allowance has to be made for noise in the actual datum shifts which will translate into noise 

in the residuals. 

 

The process described in equations (7-30) to (7-34) of Section 7.1 was applied.  The variances 

of noise for latitude and longitude were assumed to be the same.  They were set, in turn, to 

0.04m2, 0.0016m2, 0.0004m2 and 0.0001m2.  The signal covariances for latitude and longitude 

were reduced accordingly.  This had the effect of making the diagonal terms slightly more 

dominant in the covariance matrix, making equation (7-33) better conditioned.  It also 

produced predicted signals for cluster points that eliminated the differences. 

 

When the Gaussian covariance function was used, least-squares collocation was successful for 

each of the four signal-noise splits.  When the noise variance was set to 0.0001m2, the RMS 

differences between predicted and actual signals at the test points were 0.0655m for the 

latitude signal, 0.0799m for the longitude signal and 0.1033m for horizontal distance.  This 

was offset by RMS differences of 0.0685m, 0.0293m and 0.0745m at the control points; these 

were higher than expected given the size of the noise variance. 

 

When the SS20 covariance function was used, least-squares collocation was unsuccessful for 

each of the four signal-noise splits.  The RMS differences between predicted and actual signals 

at the test points were between 1 and 7 metres for horizontal distance.  One indication that the 

covariance matrix was ill-conditioned was that Cholesky decomposition was only possible 

when the noise variance was 0.04m2. 

 

When the SS30 covariance function was used, least-squares collocation was successful for 

each of the four signal-noise splits.  When the noise variance was set to 0.0001m2, the RMS 

differences between predicted and actual signals at the test points were 0.0527m for the 

latitude signal, 0.0710m for the longitude signal and 0.0884m for horizontal distance.  This 

was offset by RMS differences of 0.0272m, 0.0085m and 0.0285m at the control points; these 

were less in conflict with the size of the noise variance than was the case with the Gaussian 

covariance function. 
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Radial basis functions were applied using all the examples described in subsection 7.6: inverse 

multiquadric (IMQ), multilog (ML), multiquadric (MQ), natural cubic spline (NCS) and thin 

plate spline (TPS).  In each case, the shaping parameter R was set to 4021m.  This is the value 

obtained from equation (7-50), the default used in Surfer, and it was based on the 3965 non-

boundary control points rather than the entire dataset. 

 

For each of the radial basis functions, the revamped signal vector was successfully computed.  

Equation (7-53) was solved by Cholesky decomposition as per sub-appendix G.2.2 in the case 

of inverse multiquadric (IMQ).  The matrix-inversion method of sub-appendix G.2.3 was used 

for the other RBFs.  The quality of the revamped signal vectors was in doubt for natural cubic 

spline (NCS) and thin plate spline (TPS), because the solution-check process produced large 

misclosures. 

 

The predicted signals at the test points varied from disappointing to unusable, although they 

were not as bad as noise-free least-squares collocation.  Comparing the predicted signals with 

the actual signals, the RMS differences were as follows: 

• Inverse multiquadric (IMQ): 0.2524m for the latitude signal, 0.2559m for the 

longitude signal and 0.3594m for the horizontal distance. 

• Multilog (ML): 0.8053m for the latitude signal, 0.9369m for the longitude signal and 

1.2354m for the horizontal distance. 

• Multiquadric (MQ): 5.2979m for the latitude signal, 5.3997m for the longitude signal 

and 7.5647m for the horizontal distance. 

• Natural cubic spline (NCS): 61.9467m for the latitude signal, 35.9614m for the 

longitude signal and 71.6283m for the horizontal distance. 

• Thin plate spline (TPS): 24.0903m for the latitude signal, 40.0007m for the longitude 

signal and 46.6948m for the horizontal distance. 

 

The reason for these results is much the same as the reason for the results from noise-free 

least-squares collocation.  However, radial basis functions have no comparable method for 

making allowance for noise. 

 

Inverse distance to a power, described in Section 7.5, was the first of the strictly-bounded 

SFTs to be applied.   It was applied with each of the powers 1, 2, 3 and 4.  The predicted 

signals at the test points became closer to the actual signals as the power n increased.  The 

RMS differences were as follows: 
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• n=1: 0.8517m for latitude, 0.5425m for longitude, 1.0098m for horizontal distance; 

• n=2: 0.2471m for latitude, 0.1851m for longitude, 0.3087m for horizontal distance; 

• n=3: 0.0678m for latitude, 0.0651m for longitude, 0.0940m for horizontal distance; 

• n=4: 0.0598m for latitude, 0.0574m for longitude, 0.0829m for horizontal distance. 

 

The next form of surface fitting to be applied was HIPFEAD as defined in Section 7.13.  Given 

that estimates of correlation length L had been obtained for the signals for least-squares 

collocation, 2L seemed a reasonable choice for the limit-of-influence 𝑟𝑚𝑎𝑥.  This was 193136m 

for latitude and 31080m for longitude.  The two versions of HIPFEAD are HISFEAD and 

HICFEAD, described in subsections 7.13.1 and 7.13.2 respectively. 

 

For HISFEAD, the predicted signals at the test points were 52% closer than inverse square 

distance to the actual signals.  The RMS differences were 0.1363m for latitude, 0.0566m for 

longitude, 0.1476m for horizontal distance. 

 

For HICFEAD, the predicted signals at the test points were 11% closer than inverse cubic 

distance to the actual signals.  The RMS differences were 0.0629m for latitude, 0.0557m for 

longitude, 0.0840m for horizontal distance. 

 

The next form of surface fitting to be applied was nearest neighbour as described in Section 

7.7.  One factor in its favour is the large number of control points. 

 

Putting aside (for the moment) the possibility of gridding, nearest neighbour was applied 

initially to the test points.  Comparing the predicted signals at the test points to the actual 

signals, the RMS differences were 0.0800m for latitude, 0.0704m for longitude, 0.1066m for 

horizontal distance.  The interpolating surface, of course, is neither continuous or smooth. 

 

To apply nearest neighbour as a gridding method, datum shifts were predicted at 12090 points, 

spaced 0.1(or 6) apart.  These were interpolated at both the test points and the non-boundary 

control points.  The RMS differences (between actual shifts and interpolated shifts) at the test 

points were as follows. 

• Bilinear interpolation: 0.0681m for latitude, 0.0642m for longitude, 0.0936m for 

horizontal distance. 

• Bicubic interpolation: 0.0735m for latitude, 0.0685m for longitude, 0.1004m for 

horizontal distance. 
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The corresponding RMS differences at the non-boundary control points were roughly 32% 

smaller (0.0471m, 0.0445m, 0.0648m; 0.0495m, 0.0462m, 0.0677m). 

 

The next form of surface fitting to be applied was LIVONN as defined in Section 7.14.  The 

chosen transition intervals were 33.3333% and 50%. The former interval matches the one 

illustrated in Figure 7-17. 

 

Putting aside (for the moment) the possibility of gridding, LIVONN was applied initially to 

the test points.  Comparing the predicted signals at the test points to the actual signals, the 

RMS differences were 

• transition interval 33.3333%: 0.0689m for latitude, 0.0613m for longitude, 0.0922m 

for horizontal distance; 

• transition interval 50%: 0.0686m for latitude, 0.0612m for longitude, 0.0919m for 

horizontal distance. 

The interpolating surfaces are not guaranteed to be continuous and are certainly not smooth. 

 

To apply LIVONN with transition interval 33.3333% as a gridding method, datum shifts were 

predicted at 12090 points, spaced 0.1(or 6) apart.  These were interpolated at both the test 

points and the non-boundary control points.  The RMS differences (between actual shifts and 

interpolated shifts) at the test points were as follows. 

• Bilinear interpolation: 0.0633m for latitude, 0.0593m for longitude, 0.0867m for 

horizontal distance. 

• Bicubic interpolation: 0.0663m for latitude, 0.0612m for longitude, 0.0903m for 

horizontal distance. 

The corresponding RMS differences at the non-boundary control points were roughly 32% 

smaller (0.0432m, 0.0416m, 0.0600m; 0.0443m, 0.0421m, 0.0612m). 

 

To apply LIVONN with transition interval 50% as a gridding method, datum shifts were 

predicted at the same 12090 points.  These were interpolated at both the test points and the 

non-boundary control points.  The RMS differences (between actual shifts and interpolated 

shifts) at the test points were as follows. 

• Bilinear interpolation: 0.0662m for latitude, 0.0592m for longitude, 0.0866m for 

horizontal distance. 

• Bicubic interpolation: 0.0662m for latitude, 0.0610m for longitude, 0.0900m for 

horizontal distance. 
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The corresponding RMS differences at the non-boundary control points were roughly 32% 

smaller (0.0431m, 0.0416m, 0.0599m; 0.0441m, 0.0419m, 0.0609m). 

 

Viewing composite methods as a whole, accuracy comparisons based on test points are given 

in Table 13-4.  

 

Table 13-4: Accuracy comparison for composite methods in 
Great Britain, based on residuals at the test points 

Surface-Fitting Technique (with parameters) Horizontal RMS Residual for test points 
Inverse Distance to a Power (4) 0.0829 
HICFEAD (193136, 31080) 0.0840 

LIVONN (50) with BL on grid 0.0866† 
LIVONN (33.3333) with BL on grid 0.0867† 
Least-Squares Collocation (SS30, 257711, 41471)‡ 0.0884† 

LIVONN (50) with BC on grid 0.0900† 
LIVONN (33.3333) with BC on grid 0.0903† 
LIVONN (50) 0.0919 
LIVONN (33.3333) 0.0922 
Nearest Neighbour with BL on grid 0.0936† 
Inverse Distance to a Power (3) 0.0940 
Nearest Neighbour with BC on grid 0.1004† 
Least-Squares Collocation (Gauss, 96568, 15540)‡ 0.1033† 
Nearest Neighbour 0.1066 
HISFEAD (193136, 31080) 0.1476 
Inverse Distance to a Power (2) 0.3087 
Radial Basis Function (IMQ, 4021) 0.3594 
Inverse Distance to a Power (1) 1.0098 
Least-Squares Collocation (SS20, 267370, 43025)‡ (failed) 
Radial Basis Function (ML, 4021) (failed) 
Radial Basis Function (MQ, 4021) (failed) 
Radial Basis Function (NCS, 4021) (failed) 
Radial Basis Function (TPS, 4021) (failed) 

‡With allowance for noise        † Surface not exact at the control points 
 
Some conclusions can be drawn. 

• The comparisons of SFTs should be treated with caution.  The LIVONN applications 
with bilinear interpolation from gridded points rank 3rd and 4th in Table 13-4, but they 
are not smooth.  As with least-squares collocation using SS30, they are among the 
daggered cases where the predicted surface is not exact at the control points. 

• The dividing line in Table 13-4 separates those methods with a smaller horizontal RMS 
residual at the test points than the recommended pair of MREs (13-5) and (13-6), which 
is 0.1887m, from the less accurate methods.  By that criteria, even the successful radial 
basis function would be a poor choice. 

• There is a wide variety of surface-fitting techniques that give a lower horizontal RMS 
residual than the recommended MREs.  Most compare favourably with OSTN15, for 
which the RMS error is said to be 0.1m (Ordnance Survey [2018, Section 6.3]). 
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CHAPTER 14: CONCLUSIONS 

 

There is a wide variety of methods for transforming coordinates between geodetic datums.  

This is due not only to the large number of functions designed for that purpose, but also the 

existence of a vast range of interpolation methods classified as surface-fitting techniques. 

 

There is no single transformation method which is superior to all others.  The following 

considerations provide some of the reasons for this. 

• The relationship between coordinates in different datums is influenced by differences 

in the methods of measurement used (Sections 1.6 and 1.7).  That varies from case to 

case. 

• In many instances, ellipsoidal heights in either datum are unknown or only known to 

a high degree of uncertainty, undermining comparisons of 3D Cartesian coordinates.  

In such cases, methods that just transform latitude & longitude may be the most 

suitable. 

• The choice between transformations that fit data exactly and those that allow for 

“noise” by smoothing depends on the quality of the coordinates in the given datasets.  

That in turn depends on the nature and accuracy of the measurements used in each 

datum (an issue discussed in Chapter 1).  Distinguishing between noise and actual 

distortion isn’t always easy.  Section 13.2 provided an instance where an assumption 

of zero noise would have made least-squares collocation untenable. 

• Accuracy-of-fit to actual data is sometimes a secondary consideration to ease of 

computation and application.  Sections 2.3 and 2.8 describe how two of the simpler 

methods are well-suited to software packages that cater for a wide range of datums. 

 

This thesis widens the choice by introducing new transformation methods.  The basic ones are 

SMITSWAM (which is conformal), partially-conformal variations on Standard & Abridged 

Molodensky (near-conformal horizontally) and normalised generalisations of multiple 

regression equations (5 types, usually non-conformal).  They are described in Sections 2.13 to 

2.17, and their properties are summarised in Section 14.1 below.  The new methods based on 

surface-fitting techniques are HIPFEAD and LIVONN.  They are described in Sections 7.13 

& 7.14, and their properties are summarised in subsection 14.5.2 below. 

 

This study compares the properties of different methods at a theoretical level.  Practical 

comparisons between methods have also been included, using a varied selection of datasets.  
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At both levels, this thesis provides indications of which methods are best in terms of accuracy, 

computational convenience and numerical stability, taking into account the characteristics of 

the common-point datasets and the areas of coverage. 

 

This study also introduces new methods of deriving transformations, summarised in Sections 

14.3 & 14.4 below, and new methods of reversing transformations, summarised in Section 

14.2. 

 

14.1  Basic transformation methods 

The Helmert transformation varies according to the order in which the rotations are applied.  

Only two of the six possible permutations are used in practice.  This study offers a process to 

convert one version of Helmert to the other (Section 2.6 and Ruffhead [2021b]).  This enables 

published parameters of one version to be used in software designed for the other. 

 

This study appears to be alone in acknowledging that there are two versions of the Bursa-Wolf 

transformation, totally-linear and partially-linear, and that there is a simple & exact 

relationship between the two.  The Molodensky-Badekas method is shown to have the same 

properties.  Because Molodensky-Badekas is computationally equivalent to Bursa-Wolf, this 

thesis firmly supports those researchers who assert that the former has no advantage over 

Bursa-Wolf.  

 

The popularity of Standard Molodensky and Abridged Molodensky owes much to “Cartesian 

bypassers”.  These are scientists & technicians who want to apply near-conformal 

transformations without converting geodetic coordinates to and from Cartesian coordinates.  

Without endorsing that preference (which would rule out Helmert and Bursa-Wolf), this 

researcher has extended what can be achieved within that limitation. 

 

• Standard Molodensky in two stages with applied misclosure (SMITSWAM) makes 

Standard Molodensky truly conformal.  This process (Section 2.14 and Ruffhead 

[2016]) means that Cartesian bypassers need no longer settle for near-conformal 3-

parameter transformations. 

 

• Both Standard and Abridged Molodensky can be varied to partially-conformal models 

with 6 or 7 parameters.  The evidence of Chapters 8 to 11 shows that the fit to data is 

improved, in some cases substantially.  Beyond the derivation of parameters, there is 
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negligible extra computation.  These new variations (Sections 2.15 and 2.16) offer 

Cartesian bypassers more accurate options, particularly when horizontal & vertical 

coordinates have been obtained by different methods and/or there is evidence of a Z-

rotation. 

 

This study examined 5 types of fully-normalised multiple regression equations (Section 2.17), 

all of them with intermediate coordinates in the range -1 to 1.  They are all original methods 

with the arguable exception of “ordinary” MREs.  The latter differ from the type recommended 

by Appelbaum only in the use of 2 scaling multiples for the intermediate coordinates.  The 

advantage of full normalisation is that coefficients can be computed to the same precision as 

that intended for the MRE as a summation. 

 

Three types of MRE are recommended for comparison with ordinary MREs when MREs are 

developed for future datum transformation models.  They reduce the need for high-order 

monomials as basis functions.  For each of them, there are instances where it provides a better 

compromise between accuracy and economy than ordinary MREs.  The types are as follows: 

 

• North/South MREs, which were found to have advantages over traditional MREs for 

transforming ETRS89 to OSGB36 in Great Britain (Section 12.1).  The North/South 

MREs with top power 3 were 20% more accurate than ordinary MREs with a similar 

number of terms.  The advantage, albeit smaller, is retained when higher-power terms 

are involved.  It is significant that the north-south extent greatly exceeds the east-west 

extent. 

 

• East/West MREs, which were found to have advantages over traditional MREs for 

transforming D48 to D96 in Slovenia (Section 13.1).  In contrast to Great Britain, the 

east-west extent of Slovenia exceeds the north-south extent.  Analysis of results 

showed that the best compromise between economy and accuracy was a combination 

of a trimmed Ordinary MRE with top power 6 for the latitude shift and a trimmed 

East/West MRE with top power 4 for the longitude shift. 

 

• Four-Quadrant MREs, which compared favourably with traditional MREs for 

transforming AGD84 to GDA94 in Western Australia (Section 8.2).  Analysis of 

results showed that the best compromise between economy and accuracy was a 



250 

combination of an Ordinary MRE with top power 4 for the latitude shift and a Four-

Quadrant MRE with top power 3 for the longitude shift. 

 

In all three case studies, comparing these types with ordinary MREs resulted in a more 

economical transformation model than would have been achieved by only considering 

ordinary MREs. 

 

Chebyshev MREs (subsection 2.17.5) were found to have no practical advantages over 

ordinary MREs.  In general, they have just as many statistical terms and require more 

processing time.  They have theoretical significance, however, in that they show that 

monomial-based MREs are more stable than might be supposed from the size of the 

coefficients; in other words, seemingly-large monomial terms largely cancel each other out.  

From 6 instances of MREs where the Chebyshev MRE was equivalent to the ordinary MRE, 

the former’s L1 norm of the coefficients was lower by between 54% and 97%. 

 

14.2  Reverse transformations 

Published descriptions of reverse transformations (eg Iliffe and Lott [2008] and Knippers 

[2009]) tend to omit rearrangement-type formulae that provide exact inverses.  Several 

methods are reversible by this approach, including the following: 

• Conformal transformation in 2 dimensions (Section 3.1); 

• Affine transformation in 2 dimensions (Section 3.2); 

• Helmert transformation (Section 3.6); 

• Localised rigorous 7-parameter conformal transformation (Section 3.7); 

• Bursa-Wolf (Section 3.8); 

• Molodensky-Badekas (Section 3.9); 

• 8-parameter affine transformation (Section 3.10); 

• 9-parameter affine transformation (Section 3.11); 

• 12-parameter affine transformation (Section 3.12). 

Most rearrangement-type formulae can be found individually in publications concentrating on 

one or two transformation methods.  Ruffhead and Whiting (2020) provides comprehensive 

coverage of their use. 

 

Although Helmert is among the transformations which can be reversed by a rearrangement-

type formula, it is recognised that some scientists and technicians prefer a same-formula 

inverse with different values for the parameters.  This need not be the simple same-formula 
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inverse in which the parameters of the original formula are applied with opposite signs, giving 

only approximate results.  The correct parameters for the same-formula inverse can be derived 

by applying the procedure for converting one version of Helmert to the other (Section 3.6 and 

Ruffhead [2021b]). 

 

There are some transformation methods where there is no rearrangement-type formula to 

compute the inverse, but there is a simple same-formula inverse (SSFI) that gives an 

approximate result.  By applying the original formula to the result of the SSFI, a misclosure is 

obtained which provides a very effective correction to the SSFI.  The methods covered by this 

approach are 

• Standard Molodensky (Section 3.4 and Ruffhead and Whiting [2020]); 

• Abridged Molodensky (Section 3.5 and Ruffhead and Whiting [2020]); 

• Variations on Standard Molodensky (Section 3.15); 

• Variations on Abridged Molodensky (Section 3.16). 

 

14.3  Derivation of transformations 

This thesis introduces a new method of deriving 7-parameter conformal (Helmert) models 

(Section 5.1 and Ruffhead [2021a]).  Determining scale change by distance analysis is not 

unprecedented, but the way it is combined with a two-stage derivation of a rigid transformation 

is believed to be original.  The process can be applied to both versions of Helmert.  It is easier 

to apply than methods cited in Section 5.1 which require knowledge of such advanced concepts 

as Groebner basis and Procrustean solution. 

 

This thesis also introduces a new method of deriving affine transformations with 8 or 9 

parameters (Sections 5.3 and 5.4).  The starting point is the optimum 7-parameter model 

described in Section 5.1.  An “equivalent-enlargement hypothesis” is applied to enlarge the 

set of optimal parameters from 7 to 8, and (if desired) from 8 to 9. 

 

Optimising multiple regression equations is complicated by the fact that the number of 

parameters is not fixed.  The parameters are coefficients of the basis functions, so that number 

coincides with the number of terms.  For a given set of basis functions, the coefficients are 

obtained by least-squares optimisation.  The criterion for inclusion of terms is statistical 

significance, but there are many ways in which that can be applied.  The approach used by 

NIMA (formerly DMA) involved adding terms to the least-squares process as well as 

removing them, but DMA (1987a, Section 7.2.4.3.3) is sparse on detail. 
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In this study, the starting point was a given type of MRE with a given top power.  Coefficients 

were computed by least-squares and their standard errors were deduced from the inverse 

normal matrix.  Where the value of the absolute parameter divided by its standard error was 

less than 1, ie AP/SE<1, the term was a candidate for removal.  The approach devised for this 

thesis was therefore Eliminating Ratios Less Than One (ERLTO); this is described in detail in 

Section 5.5. 

 

It was discovered that it is usually possible to remove additional terms with a negligible effect 

on accuracy, particularly when AP/SE is between 1 and 3.  That offered scope for what this 

thesis describes as “Additional Trimming”.  It was used to enable the comparisons between 

different types of MRE, which are summarised in Section 14.1. 

 

14.4  Piecewise interpolation-based methods 

Gridding for interpolation purposes doesn’t necessarily require a projected grid.  Regular 

spacing can be done in terms of geodetic coordinates and distances can be lengths of ellipsoidal 

arcs.  The latter can be approximated using the simple equation (7-1) rather than a lengthy 

algorithm for the geodesic. 

 

There are many methods of piecewise interpolation that can be applied to points enclosed by 

a regular grid.  The two considered in this study are bilinear interpolation and bicubic 

interpolation.  Both generate a continuous surface.  The bicubic algorithms in Section 6.3 were 

derived for this thesis and are believed to be original to the extent that they are based on 12 

points rather than 16.  They generate a smooth surface and do not require the solution of matrix 

equations.  A choice of 3 algorithms is provided (subsections 6.3.1 to 6.3.3). 

 

In the interpolation of datum shifts, the C1 property of the piecewise bicubic surface gives it 

an apparent advantage over the piecewise bilinear surface.  However, in the case studies, the 

bilinear method was more accurate than the bicubic method when applied to data interpolated 

by nearest neighbour or LIVONN (see subsection 14.5.2). 

 

14.5  Composite methods 

These were introduced in Chapter 7.  In this thesis a composite method is one that treats a 

datum shift as either 

• the sum of a trend model and signal, or 
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• interpolation of a regular grid of predicted shifts that were obtained from the sum of a 

trend model and signal. 

 

The method of predicting the signal over a surface is a surface-fitting technique (SFT).  The 

ones considered in case studies for this thesis were 

• Least-squares collocation. 

• Radial basis functions. 

• Inverse distance to a power weighting. 

• Hybrid inverse power function embodying accelerated decline (HIPFEAD). 

• Nearest neighbour interpolation. 

• Linear interpolation variant on nearest neighbour (LIVONN). 

 

14.5.1  Not-strictly-bounded SFTs 

Of the SFTs listed above, least-squares collocation and radial basis functions are not-strictly-

bounded (NSB).  This property enables the kind of interpolation illustrated in Figure 7-1 where 

there are acceptable extremities outside the range of the points being interpolated. 

 

In this study, radial basis functions were applied to a signal component of the datum shift, the 

signal being the residual shift after a trend model has been removed.  This revealed a clear 

analogy between radial basis functions and “errorless” least-squares collocation.  This has 

been developed with the concept of “revamped signals” (Sections 7.1 and 7.6).  Once 

computed and stored, no further solution of matrix equations is required.  Either method can 

be applied directly rather than through gridding and interpolation. 

 

The covariance functions applied for least-squares collocation (Section 7.1) included two 

finite functions from Sansò and Schuh (1987) as well the more commonly-used Gaussian 

function.  SS20 has the advantage of simplicity over SS30 but it produces matrices that are 

less well-conditioned.  In fairness to Sansò and Schuh, SS20 was proposed for one-

dimensional use rather than surface-fitting. 

 

The above three types of covariance function all require information about correlation at one 

or more distances.  For Western Australia, 82 data points was insufficient to determine this 

empirically, with the result that experimental methods were used to estimate the second 

parameter (signal variance being the first parameter).  For Slovenia and Great Britain, there 

were over 3000 data points, and covariance length was estimated from products of signals 
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(Sections 12.2 and 13.2).  The precise process used in this study is not the only sampling 

method that has been proposed for second-parameter determination but is recommended for 

its comparative simplicity. 

 

Of the radial basis functions applied, inverse multiquadric gave the best fit at test points for 

the large datasets in Chapters 12 and 13.  The other RBFs, from second-best to worst, were 

multilog, multiquadric, thin plate spline and natural cubic spline. 

 

One problem with NSB SFTs is that clusters of points which are close together can cause 

instability.  This is illustrated in Figure 7-2. 

 

One possible solution is described in Section 7.13.1.  It involves a modified NSB consisting 

of the sum of 

• the NSB obtained after each cluster is temporarily replaced by a pseudo data point, and 

• HISFEADs defined around each cluster.  

The above function has C1 continuity and interpolates all the data points without volatility 

around the clusters.  It was used successfully on the Western Australia dataset, where two data 

points were 89m apart (Section 8.3). Satisfactory datum shifts were obtained for least-squares 

collocation and 3 of the radial basis functions. 

 

For the Great Britain (2D) dataset, there were points too close to permit this approach.  The 

data made the assumption of no noise untenable.  Accordingly, least-squares collocation was 

successfully applied with a small variance assumed for noise.  The finite covariance function 

SS30 proved better than Gauss (Section 13.2). 

 

For the Slovenia (2D) dataset, clusters were not considered.  This was because the shortest 

distance between data points relative to the longest distance was much larger than for Great 

Britain (2D) and Western Australia.  It is possible that allowance for noise would have 

produced a better fit for least-squares collocation at the test points, albeit with the loss of an 

exact fit at the control points.  As it was, LSC was only successful when SS30 was the 

covariance function. 

 

Clusters can be avoided altogether by transferring all but one control point from each cluster 

to the set of test points.  This option is discussed in Section 14.7. 
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14.5.2  Strictly-bounded SFTs 

Strictly-bounded surface-fitting techniques avoid undesirable oscillations because they rely on 

non-negative weights that add up to 1.  That weighted-average property is also a limitation 

because it prevents even the modest amount of extrapolation shown in Figure 7-1, even when 

it is justified by the data. 

 

Inverse distance to a power (Section 7.5) has the characteristics illustrated in Figure 7-9.  It 

was considered on this study for each of the powers 1, 2, 3 and 4.  The power 1 proved to be 

poor for interpolation, and in any case the surface generated was not smooth.  As the power 

was increased to 2, 3 and 4, the case studies showed increasingly close fits to the data.  

However, the improvement was offset by increasingly sharp changes in gradient (evident in 

Figure 7-9 for n=3 and n=4). 

 

Hybrid inverse power function embodying accelerated decline [HIPFEAD] (Section 7.13) is 

an original variation on inverse distance to a power.  Its subtypes are HISFEAD (subsection 

7.13.1) and HICFEAD (subsection 7.13.2).  Like finite covariance functions, HIPFEAD 

removes the influence of control points beyond a certain distance 𝑟𝑚𝑎𝑥.  It also accelerates the 

decline in influence as distance to control points approaches 𝑟𝑚𝑎𝑥.  These properties increase 

the influence of the closest control points. 

 

HISFEAD (subsection 7.13.1) was designed to be an improvement on inverse distance to the 

power 2 (inverse square distance); in the case studies, it provided a closer fit to the data by 

between 20% and 52%.  While not as accurate as inverse distance to the powers 3 and 4, 

HISFEAD avoided the sharp changes in gradient associated with those powers. 

 

HICFEAD (subsection 7.13.2) was designed to be an improvement on inverse distance to the 

power 3 (inverse cubic distance); in the case studies, it provided a closer fit to the data by 

between 3% and 11%.  HICFEAD is also more accurate than HISFEAD, although it does have 

changes of curvature comparable to inverse cubic distance. 

 

Nearest neighbour (Section 7.7) generates discontinuous signals and would represent datum 

shifts as a set of flat areas were it not for the effect of the trend model.  In this study it was 

considered purely as a gridding method to be followed by bilinear or bicubic interpolation.  In 

the case studies, bilinear interpolation gave a 4%-9% better fit than bicubic interpolation, 

despite not being smooth. 
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LIVONN (Section 7.14) is a new variation on nearest neighbour, and it takes account of the 

second-nearest control point.  For both of the large datasets, LIVONN gives better results than 

nearest neighbour, whether or not the predicted datum shifts at the test points are obtained via 

gridding.  In the case studies, bilinear interpolation gave a 2%-4% better fit than bicubic 

interpolation, despite not being smooth. 

 

When gridding methods are used, RMS differences at control points is not a very good 

indication of accuracy.  For the two large datasets, the ratio of RMS differences for test points 

versus control points was substantially different for Slovenia and Great Britain. 

 

14.5.3  Considerations about gridding 

One characteristic of composite methods is that they can be used with or without gridding.  

The arguments for and against gridding can be summarised as follows. 

 

Those composite methods which do not generate a continuous surface, notably nearest 

neighbour and (to a lesser extent) LIVONN, must be combined with gridding if a continuous 

surface is required.  This was done in Sections 8.3, 12.2 and 13.2. 

 

Gridded datum shifts can be stored and re-used in a way that avoids having to re-use an SFT.  

However, in the case of least-squares collocation and radial basis functions, storage of the 

revamped signal vectors is just as effective in minimising future computation if the direct 

“trend + signal” approach is used.  This kind of storage is not needed for inverse square 

distance to a power or HIPFEAD because neither of those methods requires the solution of a 

matrix equation. 

 

Gridding introduces an extra stage of approximation compared to the direct “trend + signal” 

approach.  The “accuracy” of this stage can be quantified by RMS differences between the 

known shifts at the control points and predicted shifts obtained at those points by bilinear or 

bicubic interpolation.  This was done in Chapter 8 for Western Australia where all data points 

were control points.  This measure of accuracy is only relative because it is based solely on 

the points from which the SFT was derived. 

 

The largest datasets contained sufficient data points for a significant number to be set aside as 

test points.  This was the case for Slovenia (Chapter 12) and Great Britain (Chapter 13).  Only 
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nearest neighbour and LIVONN were used as gridding methods.  For Slovenia the RMS 

differences at the control points were 32% smaller than the RMS differences at the test points.  

For Great Britain the RMS differences at the control points were 68%-70% smaller than the 

RMS differences at the test points.  On this evidence, RMS differences at control points from 

gridding not only give a flattering misrepresentation of the true accuracy of the transformation 

but give little indication of that accuracy. 

 

14.6  Test-point selection 

For the two largest datasets, the data points were divided into control points and test points. 

 

In the case of D48→D96 for Slovenia (Chapter 12), the area was divided into rectangles 

separated by corridors, and the first data point within each rectangle was selected as a test 

point (illustrated in Figure 12-2).  This ensured that the test points were well spread out, 

although only 1 in 16 were selected. 

 

In the case of ETRS89→OSGB36 for Great Britain (Chapter 13), the land area was divided 

into squares separated by corridors as illustrated in Figure 13-3.  Up to 3 test points (the 4th, 

10th and 20th data points) were taken from each square.  This also ensured that the test points 

were well spread out.  Out of the 3965 non-boundary points, 1 in 13 were selected as test 

points. 

 

The selection method used for Great Britain was the better one, partly because it generated a 

higher proportion of test points and partly because there was less risk of an isolated data point 

being omitted from the control points.   

 

14.7  Recommendations for further work 

There are a number of ways in which this investigation of datum transformations could be 

extended.  The following are identified in this section: 

• Application of datum transformation methods to other datasets. 

• Adaptation of split-zone multiple regression equations to areas whose furthest extent 

is oblique. 

• Other radial basis functions, particularly those with possible surface-fitting similarities 

to least-squares collocation. 

• Variations on the test-point selection methods used in the case studies. 
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The methods studied in this thesis could be applied to datasets other than those used in 

Chapters 8 to 13.  Some datasets, like those described in sub-appendix C.7, can be found in 

published research papers.  These tend to be relatively small.  To obtain larger datasets it is 

necessary to approach contacts in agencies that are not too protective of their data.  More 

extensive testing of the new methods should reveal more information as to which ones are best 

suited to datasets with particular characteristics. 

 

The methods would also benefit from being tested on simulated datasets.  This was done with 

the data in Appendix D for deriving conformal transformations.  It would have been done for 

the methods of deriving 8-parameter and 9-parameter affine transformations had the evidence 

from a diverse collection of actual datasets not been so overwhelming.  If further study is 

undertaken to detect gross errors that affect derived transformations, it would be advisable to 

try to simulate the kinds of data corruption that occur in practice. 

 

The generalisation of multiple regression equations indicated that there were advantages in a 

zone-split that was a perpendicular bisector of whichever was greater of the N/S extent and 

the E/W extent.  Further research could examine whether this applies to the greatest extent 

when the area of coverage is oblique, as in Figure 14-1. 

 

 
Figure 14-1: Example of an area with a very oblique furthest extent. 

 

The partitioning of such an area would be as shown in Figure 14-2.  The U-axis would be 

parallel to the line AB of greatest extent and the V-axis would be perpendicular to it.  The 

offset coordinates  𝜙off & 𝜆off would be ϕ & λ at that point where U = V =0. 
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Figure 14-2: Example of intermediate coordinates for MREs 

created by oblique partitioning.  

 

The equations of the intermediate coefficients would be 
            𝑈 = 𝐾1[𝜙in deg − 𝜙off + 𝐾3(𝜆in deg − 𝜆off)] (14-1) 

and 

            𝑉 = 𝐾2[𝜆in deg − 𝜆off − 𝐾3(𝜙in deg − 𝜙off)], (14-2) 

where 𝐾3 = (𝜆B − 𝜆𝐴)/(𝜙B − 𝜙A), and K1 & K2 are normalising constants.  The MREs would 

have the same form as the North/South MREs (subsection 2.17.2) although the zones V0 and 

V<0 would no longer be north and south. 

 

Composite methods using radial basis functions should be investigated with RBFs other than 

those listed in Section 7.6.  The Gaussian function 𝜑(𝑟) = exp(−𝑘2𝑟2) is one such RBF; it 

is mentioned, for example, in Bullinaria (2015a) and Ziggah et al (2018).  Like the inverse 

multiquadric function, it tends to zero as r→. 

 

One particular aspect of the Gaussian RBF worth studying is whether its application is 

equivalent to the use of errorless least-squares collocation with a Gaussian covariance 

function.  If it is, it would establish an overlap between LSC and RBFs.  It would open up a 

further avenue of investigation: whether there are other RBFs that give equivalent results to 

LSC when used in covariance functions. 

 

Although the test-point selection method used for Great Britain worked better than the one 

used for Slovenia, two modifications are recommended for further study. 
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• The number of points selected could be increased by, for example, selecting the 4th, 

9th, 15th and 22nd data points from each square rather than the 4th, 10th and 20th. 

• To prevent clusters, ie avoid control points that are unacceptably close, each control 

point could be tested and each unacceptably-near neighbour could be transferred to the 

test points.  Only the first point encountered in each cluster would be retained as a 

control point.  This does, of course, require a decision on what “unacceptably close” 

means.  It is complicated by the fact that moderately close control points only cause a 

problem if the change in datum shift is large over the distance separating the points. 

 

This thesis also makes two general recommendations about future work on transformations.  

One is the precise use of terminology that – for example – distinguishes near-conformal 

models (based on approximations) from conformal models.  The other is the clear declaration 

of adopted conventions coupled with an acknowledgement of the alternatives used elsewhere.  

This applies particularly to type of rotation parameter (position vector vs coordinate frame), 

type of Helmert transformation (Version 1 vs Version 2) and type of Bursa-Wolf (fully-linear 

vs partially-linear).  Greater attention to these points – as advocated by Ruffhead and Whiting 

(2020) – would reduce the confusion caused by much of the existing literature. 
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A-1 

APPENDIX A: VERIFICATION OF HELMERT EQUIVALENCES 
 
In Section 2.6, there are two versions of the process by which the rigorous 3D rotation matrix in 
equation (2-14) is computed.  Version 1 applies 𝑅𝑋 to the source coordinates first and 𝑅𝑍 last, 
as in equations (2-15) and (2-16).  Version 2 applies 𝑅𝑍 to the source coordinates first and 𝑅𝑋 
last, as in equations (2-17) and (2-18). 
 
A.1  Rotation-parameter conversion from Version 1 to Version 2 
Section 2.6.1 describes how to convert Version-1 parameters 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍 into Version-2 
parameters 𝑅𝑋′ , 𝑅𝑌′  and 𝑅𝑍′   which lead to the same rotation matrix.  In so doing, it left the 
following identities unverified. 
           𝑠𝑋′ 𝑠𝑌′ 𝑐𝑍′ + 𝑐𝑋′ 𝑠𝑍′ = 𝑟2,1. (A-1) 
           𝑐𝑋′ 𝑐𝑍′ − 𝑠𝑋′ 𝑠𝑌′ 𝑠𝑍′ = 𝑟2,2. (A-2) 
           𝑠𝑋′ 𝑠𝑍′ − 𝑐𝑋′ 𝑠𝑌′ 𝑐𝑍′ = 𝑟3,1. (A-3) 
           𝑐𝑋′ 𝑠𝑌′ 𝑠𝑍′ + 𝑠𝑋′ 𝑐𝑍′ = 𝑟3,2. (A-4) 
 
The proofs make use of all the equations in subsection 2.6.1 except for (2-20) because the above 
identities have still to be proved.  They also use the trigonometrical identity sin2 𝜃 + cos2 𝜃 =
1 and its variations, notably cos2 𝜃 − sin2 𝜃 = 1 − 2 sin2 𝜃 and sin2 𝜃 − cos2 𝜃 = 1 −
2 cos2 𝜃. 
 
The proofs all involve (𝑐𝑌′ )2 as a common factor in both parts of a quotient.  This means it is 
assumed that 𝑐𝑌′  is non-zero.  The special case where 𝑐𝑌′  is zero is covered separately in 
subsection 2.6.1. 
 
From (2-22), 
           (𝑐𝑌′ )2 = 1 − 𝑠𝑋

2𝑠𝑍
2 − 𝑐𝑋

2𝑠𝑌
2𝑐𝑍
2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍. (A-5) 

 
Since 1 − 𝑠𝑋

2𝑠𝑍
2 = (𝑠𝑍

2 + 𝑐𝑍
2) − (1 − 𝑐𝑋

2)𝑠𝑍
2, equation (A-5) can be rewritten as 

 

           (𝑐𝑌′ )2 = 𝑐𝑍
2 + 𝑐𝑋

2𝑠𝑍
2 − 𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍. (A-6) 
 
Proof of (A-1): 

𝑠𝑋′ 𝑠𝑌′ 𝑐𝑍′ + 𝑐𝑋′ 𝑠𝑍′ = (−𝑟2,3/𝑐𝑌′ )𝑟1,3(𝑟1,1/𝑐𝑌′ ) + (𝑟3,3/𝑐𝑌′ )(−𝑟1,2/𝑐𝑌′ )  
= [(𝑠𝑋𝑐𝑍 − 𝑐𝑋𝑠𝑌𝑠𝑍)(𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍)𝑐𝑌𝑐𝑍 + 𝑐𝑋𝑐𝑌(𝑐𝑋𝑠𝑍 − 𝑠𝑋𝑠𝑌𝑐𝑍)] (𝑐𝑌′ )2⁄  
= [(𝑠𝑋

2𝑠𝑍𝑐𝑍
2 + 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍

3 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍
2𝑐𝑍 − 𝑐𝑋

2𝑠𝑌
2𝑠𝑍𝑐𝑍

2 + 𝑐𝑋
2𝑠𝑍 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )

2⁄   
= [(𝑐𝑋

2𝑠𝑍 + 𝑠𝑋
2𝑠𝑍𝑐𝑍

2 − 𝑐𝑋
2𝑠𝑌

2𝑠𝑍𝑐𝑍
2 + (𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍

3 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍) − 𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍
2𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )

2⁄   
                                                                                                                     by rearrangement of terms 

= [(𝑐𝑋
2𝑠𝑍 + 𝑠𝑋

2𝑠𝑍𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌
2𝑠𝑍𝑐𝑍

2 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍
2𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍

2𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )
2⁄    as 𝑐𝑍

2 − 1 = −𝑠𝑍
2  

= [(𝑐𝑋
2 + 𝑠𝑋

2𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑠𝑍𝑐𝑌] (𝑐𝑌′ )
2⁄   

= 𝑐𝑌𝑠𝑍     by (A1.6)  
= 𝑟2,1.  

 
Proof of (A-2): 

𝑐𝑋′ 𝑐𝑍′ − 𝑠𝑋′ 𝑠𝑌′ 𝑠𝑍′ = (𝑟3,3/𝑐𝑌′ )(𝑟1,1/𝑐𝑌′ ) − (−𝑟2,3/𝑐𝑌′ )𝑟1,3(−𝑟1,2/𝑐𝑌′ )  
= [(𝑐𝑋𝑐𝑌)(𝑐𝑌𝑐𝑍) − (𝑠𝑋𝑐𝑍 − 𝑐𝑋𝑠𝑌𝑠𝑍)(𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍)(𝑐𝑋𝑠𝑍 − 𝑠𝑋𝑠𝑌𝑐𝑍)] (𝑐𝑌′ )

2⁄   
= [𝑐𝑋𝑐𝑌

2𝑐𝑍 + (𝑐𝑋𝑠𝑌𝑠𝑍 − 𝑠𝑋𝑐𝑍)(𝑠𝑋𝑐𝑋𝑠𝑍
2 − 𝑠𝑋

2𝑠𝑌𝑠𝑍𝑐𝑍 + 𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑠𝑌

2𝑐𝑍
2)] (𝑐𝑌′ )

2⁄   
= [𝑐𝑋𝑐𝑌

2𝑐𝑍 + 𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍

3 − 𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑠𝑍
2𝑐𝑍 + 𝑐𝑋

3𝑠𝑌
2𝑠𝑍

2𝑐𝑍 − 𝑠𝑋𝑐𝑋
2𝑠𝑌

3𝑠𝑍𝑐𝑍
2  

−𝑠𝑋
2𝑐𝑋𝑠𝑍

2𝑐𝑍 + 𝑠𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍

2 − 𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍

2 + 𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑐𝑍
3] (𝑐𝑌′ )

2⁄   
= [𝑐𝑋𝑐𝑌

2𝑐𝑍 + 𝑐𝑋
3𝑠𝑌

2𝑠𝑍
2𝑐𝑍 − 𝑠𝑋

2𝑐𝑋𝑠𝑍
2𝑐𝑍 + 𝑠𝑋

2𝑐𝑋𝑠𝑌
2𝑐𝑍
3 − 𝑠𝑋𝑐𝑋

2𝑠𝑌𝑠𝑍𝑐𝑍
2  

+𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍

3 + 𝑠𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍

2 − 𝑠𝑋𝑐𝑋
2𝑠𝑌

3𝑠𝑍𝑐𝑍
2 − 𝑠𝑋

2𝑐𝑋𝑠𝑌
2𝑠𝑍

2𝑐𝑍] (𝑐𝑌′ )
2⁄   

                                                                                                              by rearrangement of terms 
= [𝑐𝑋𝑐𝑌

2𝑐𝑍 + 𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑠𝑍
2𝑐𝑍 + 𝑐𝑋

3𝑠𝑌
2𝑠𝑍

2𝑐𝑍 + 𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑐𝑍
3 − 𝑠𝑋

2𝑐𝑋𝑠𝑍
2𝑐𝑍 − 2𝑠𝑋𝑐𝑋

2𝑠𝑌𝑠𝑍𝑐𝑍
2  

+𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍

3 + 𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍

2 + 𝑠𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍

2 − 𝑠𝑋𝑐𝑋
2𝑠𝑌

3𝑠𝑍𝑐𝑍
2 − 2𝑠𝑋

2𝑐𝑋𝑠𝑌
2𝑠𝑍
2𝑐𝑍] (𝑐𝑌′ )

2⁄   
                                                                                            by introducing terms that cancel 

= (𝑐𝑌
2 + 𝑠𝑋

2𝑠𝑌
2𝑠𝑍

2 + 𝑐𝑋
2𝑠𝑌

2𝑠𝑍
2 − 𝑠𝑋

2𝑠𝑍
2 + 𝑠𝑋

2𝑠𝑌
2𝑐𝑍

2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑐𝑋𝑐𝑍 (𝑐𝑌′ )
2⁄   
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+(𝑐𝑋
2𝑠𝑍

2 + 𝑐𝑋
2𝑐𝑍

2 + 𝑠𝑋
2𝑐𝑍

2 − 𝑐𝑋
2𝑠𝑌
2𝑐𝑍

2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )
2⁄   

= (𝑐𝑌
2 + 𝑠𝑌

2𝑠𝑍
2 − 𝑠𝑋

2𝑠𝑍
2 + 𝑠𝑋

2𝑠𝑌
2𝑐𝑍
2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑐𝑋𝑐𝑍 (𝑐𝑌′ )

2⁄   
+(𝑠𝑋

2𝑐𝑍
2 + 𝑐𝑍

2 − 𝑐𝑋
2𝑠𝑌

2𝑐𝑍
2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )

2⁄    as  𝑐𝑋
2 + 𝑠𝑋

2 = 1  
= (1 − 𝑠𝑌

2 + 𝑠𝑌
2(1 − 𝑐𝑍

2) − 𝑠𝑋
2𝑠𝑍

2 + (1 − 𝑐𝑋
2)𝑠𝑌

2𝑐𝑍
2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑐𝑋𝑐𝑍 (𝑐𝑌′ )

2⁄   
+(𝑠𝑋

2𝑐𝑍
2 + 𝑐𝑍

2 − 𝑐𝑋
2𝑠𝑌

2𝑐𝑍
2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )

2⁄   
= (𝑐𝑌′ )

2𝑐𝑋𝑐𝑍 (𝑐𝑌′ )
2⁄ + (𝑐𝑌′ )

2𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )
2⁄        by (A-5) and (A-6) 

= 𝑐𝑋𝑐𝑍 + 𝑠𝑋𝑠𝑌𝑠𝑍.  
= 𝑟2,2.  

 
Proof of (A-3): 

𝑠𝑋′ 𝑠𝑍′ − 𝑐𝑋′ 𝑠𝑌′ 𝑐𝑍′ = (−𝑟2,3/𝑐𝑌′ )(−𝑟1,2/𝑐𝑌′ ) − (𝑟3,3/𝑐𝑌′ )𝑟1,3(𝑟1,1/𝑐𝑌′ )  
= [(𝑠𝑋𝑐𝑍 − 𝑐𝑋𝑠𝑌𝑠𝑍)(𝑐𝑋𝑠𝑍 − 𝑠𝑋𝑠𝑌𝑐𝑍) − 𝑐𝑋𝑐𝑌(𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍)𝑐𝑌𝑐𝑍] (𝑐𝑌′ )

2⁄   
= [𝑠𝑋𝑐𝑋𝑠𝑍𝑐𝑍 − 𝑠𝑋

2𝑠𝑌𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌𝑠𝑍
2 + 𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑐𝑌
2𝑠𝑍𝑐𝑍 − 𝑐𝑋

2𝑠𝑌𝑐𝑌
2𝑐𝑍
2] (𝑐𝑌′ )

2⁄   
= [𝑠𝑋𝑐𝑋𝑠𝑍𝑐𝑍 − 𝑠𝑋

2𝑠𝑌𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑠𝑍𝑐𝑍 − 𝑐𝑋
2𝑠𝑌𝑐𝑌

2𝑐𝑍
2] (𝑐𝑌′ )

2⁄   
                                                                                                                    as  𝑠𝑌2 − 𝑐𝑌2 = 2𝑠𝑌

2 − 1 
= [−𝑠𝑋

2𝑠𝑌𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 − 𝑐𝑋
2𝑠𝑌(1 − 𝑠𝑌

2)𝑐𝑍
2] (𝑐𝑌′ )

2⁄   
= [−𝑠𝑋

2𝑠𝑌𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 − 𝑐𝑋
2𝑠𝑌𝑐𝑍

2 + 𝑐𝑋
2𝑠𝑌
3𝑐𝑍

2] (𝑐𝑌′ )
2⁄   

= (−𝑠𝑌𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 + 𝑐𝑋
2𝑠𝑌
3𝑐𝑍

2)/(𝑐𝑌′ )
2   as  − 𝑠𝑋

2 − 𝑐𝑋
2 = −1  

= −𝑠𝑌    by (A1.6)  
= 𝑟3,1.  

 
Proof of (A-4): 

𝑐𝑋′ 𝑠𝑌′ 𝑠𝑍′ + 𝑠𝑋′ 𝑐𝑍′ = (𝑟3,3/𝑐𝑌′ )𝑟1,3(−𝑟1,2/𝑐𝑌′ ) + (−𝑟2,3/𝑐𝑌′ )(𝑟1,1/𝑐𝑌′ )  
= [𝑐𝑋𝑐𝑌(𝑠𝑋𝑠𝑍 + 𝑐𝑋𝑠𝑌𝑐𝑍)(𝑐𝑋𝑠𝑍 − 𝑠𝑋𝑠𝑌𝑐𝑍) + (𝑠𝑋𝑐𝑍 − 𝑐𝑋𝑠𝑌𝑠𝑍)𝑐𝑌𝑐𝑍] (𝑐𝑌′ )

2⁄   
= [(𝑠𝑋𝑐𝑋

2𝑠𝑍
2 − 𝑠𝑋

2𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 + 𝑐𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 + 𝑠𝑋𝑐𝑍
2 − 𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )

2⁄   
= [(𝑠𝑋𝑐𝑋

2𝑠𝑍
2 − 𝑠𝑋𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 + 𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 2𝑠𝑋
2𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 + 𝑠𝑋𝑐𝑍

2 − 𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )
2⁄   

                                                                                                          since −𝑠𝑋2 + 𝑐𝑋2 = 1 − 2𝑠𝑋
2 

= [(𝑠𝑋𝑐𝑋
2𝑠𝑍
2 − 𝑠𝑋𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 2𝑠𝑋
2𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 + 𝑠𝑋𝑐𝑍

2)𝑐𝑌] (𝑐𝑌′ )
2⁄   

= 𝑠𝑋𝑐𝑌  by (A1.6)  
= 𝑟3,2.  

 
A.2  Rotation-parameter conversion from Version 2 to Version 1 
Section 2.6.2 describes how to convert Version-2 parameters 𝑅𝑋, 𝑅𝑌 and 𝑅𝑍 into Version-1 
parameters 𝑅𝑋′ , 𝑅𝑌′  and 𝑅𝑍′  which lead to the same rotation matrix.  In so doing, it left the 
following identities unverified. 
           𝑠𝑋′ 𝑠𝑌′ 𝑐𝑍′ − 𝑐𝑋′ 𝑠𝑍′ = 𝑟1,2. (A-7) 
           𝑠𝑋′ 𝑠𝑍′ + 𝑐𝑋′ 𝑠𝑌′ 𝑐𝑍′ = 𝑟1,3. (A-8) 
           𝑐𝑋′ 𝑐𝑍′ + 𝑠𝑋′ 𝑠𝑌′ 𝑠𝑍′ = 𝑟2,2. (A-9) 
           𝑐𝑋′ 𝑠𝑌′ 𝑠𝑍′ − 𝑠𝑋′ 𝑐𝑍′ = 𝑟2,3. (A-10) 
 
The proofs make use of all the equations in subsection 2.6.2 except for (2-30) because the above 
identities have still to be proved.  They also use the trigonometrical identity sin2 𝜃 + cos2 𝜃 =
1 and its variations, notably cos2 𝜃 − sin2 𝜃 = 1 − 2 sin2 𝜃 and sin2 𝜃 − cos2 𝜃 = 1 −
2 cos2 𝜃. 
 
The proofs all involve (𝑐𝑌′ )2 as a common factor in both parts of a quotient.  This means it is 
assumed that 𝑐𝑌′  is non-zero.  The special case where 𝑐𝑌′  is zero is covered separately in 
subsection 2.6.2. 
 
From (2-32), 
           (𝑐𝑌′ )2 = 1 − 𝑠𝑋

2𝑠𝑍
2 − 𝑐𝑋

2𝑠𝑌
2𝑐𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍. (A-11) 

 
Since 1 − 𝑠𝑋2𝑠𝑍2 = (𝑠𝑋2 + 𝑐𝑍2) − 𝑠𝑍2(1 − 𝑐𝑋2), equation (A-11) can be rewritten as 
 

           (𝑐𝑌′ )2 = 𝑐𝑋
2 + 𝑠𝑋

2𝑐𝑍
2 − 𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 . (A-12) 
 
Since 1 − 𝑠𝑋2𝑠𝑍2 = (𝑠𝑍2 + 𝑐𝑍2) − (1 − 𝑐𝑋2)𝑠𝑍2, equation (A-11) can also be rewritten as 
 



A-3 

           (𝑐𝑌′ )2 = 𝑐𝑍
2 + 𝑐𝑋

2𝑠𝑍
2 − 𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍. (A-13) 
 

Proof of (A-7): 
𝑠𝑋′ 𝑠𝑌′ 𝑐𝑍′ − 𝑐𝑋′ 𝑠𝑍′ = (𝑟3,2/𝑐𝑌′ )(−𝑟3,1)(𝑟1,1/𝑐𝑌′ ) − (𝑟3,3/𝑐𝑌′ )(𝑟2,1/𝑐𝑌′ )  

= [(𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍)(𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑠𝑋𝑠𝑍)𝑐𝑌𝑐𝑍 − 𝑐𝑋𝑐𝑌(𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍)] (𝑐𝑌′ )
2⁄   

= [(𝑐𝑋
2𝑠𝑌
2𝑠𝑍𝑐𝑍

2 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍
2𝑐𝑍 + 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍

3 − 𝑠𝑋
2𝑠𝑍𝑐𝑍

2 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑐𝑋
2𝑠𝑍)𝑐𝑌] (𝑐𝑌′ )

2⁄   
= [(𝑐𝑋

2𝑠𝑌
2𝑠𝑍𝑐𝑍

2 − 𝑐𝑋
2𝑠𝑍 − 𝑠𝑋

2𝑠𝑍𝑐𝑍
2 + 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍

3 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍
2𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )

2⁄   
                                                                                                                by rearrangement of terms 

= [(𝑐𝑋
2𝑠𝑌
2𝑠𝑍𝑐𝑍

2 − 𝑐𝑋
2𝑠𝑍 − 𝑠𝑋

2𝑠𝑍𝑐𝑍
2 + 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍

3 − 𝑠𝑋𝑐𝑋𝑠𝑌𝑐𝑍
3 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍

2𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )
2⁄   

                                                                                                                  as −1 − 𝑠𝑍2 = −𝑐𝑍2 − 2𝑠𝑍2 
= [(𝑐𝑋

2𝑠𝑌
2𝑠𝑍𝑐𝑍

2 − 𝑐𝑋
2𝑠𝑍 − 𝑠𝑋

2𝑠𝑍𝑐𝑍
2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍

2𝑐𝑍)𝑐𝑌] (𝑐𝑌′ )
2⁄   

= [−(𝑐𝑌
′ )2𝑐𝑌𝑠𝑍] (𝑐𝑌′ )

2⁄      by (A.1.12) 
= −𝑐𝑌𝑠𝑍  
= 𝑟1,2.  

  
Proof of (A-8): 

𝑠𝑋′ 𝑠𝑍′ + 𝑐𝑋′ 𝑠𝑌′ 𝑐𝑍′ = (𝑟3,2/𝑐𝑌′ )(𝑟2,1/𝑐𝑌′ ) + (𝑟3,3/𝑐𝑌′ )(−𝑟3,1)(𝑟1,1/𝑐𝑌′ )  
= [(𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍)(𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍) + 𝑐𝑋𝑐𝑌(𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑠𝑋𝑠𝑍)𝑐𝑌𝑐𝑍] (𝑐𝑌′ )

2⁄   
= [𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 + 𝑐𝑋
2𝑠𝑌𝑠𝑍

2 + 𝑠𝑋
2𝑠𝑌𝑐𝑍

2 + 𝑠𝑋𝑐𝑋𝑠𝑍𝑐𝑍 + 𝑐𝑋
2𝑠𝑌𝑐𝑌

2𝑐𝑍
2 − 𝑠𝑋𝑐𝑋𝑐𝑌

2𝑠𝑍𝑐𝑍] (𝑐𝑌′ )
2⁄   

= [𝑠𝑋𝑐𝑋𝑠𝑌
2𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑐𝑌

2𝑠𝑍𝑐𝑍 + 𝑠𝑋𝑐𝑋𝑠𝑍𝑐𝑍 + 𝑐𝑋
2𝑠𝑌𝑠𝑍

2 + 𝑠𝑋
2𝑠𝑌𝑐𝑍

2 + 𝑐𝑋
2𝑠𝑌𝑐𝑌

2𝑐𝑍
2] (𝑐𝑌′ )

2⁄   
                                                                                                                 by rearrangement of terms 

= [2𝑠𝑋𝑐𝑋𝑠𝑌
2𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑠𝑍𝑐𝑍 + 𝑠𝑋𝑐𝑋𝑠𝑍𝑐𝑍 + 𝑐𝑋

2𝑠𝑌𝑠𝑍
2 + 𝑠𝑋

2𝑠𝑌𝑐𝑍
2 + 𝑐𝑋

2𝑠𝑌𝑐𝑌
2𝑐𝑍

2] (𝑐𝑌′ )
2⁄   

                                                                                                                   since 𝑠𝑌2 − 𝑐𝑌2 = 2𝑠𝑌2 − 1 
= [2𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 + 𝑐𝑋
2𝑠𝑌𝑠𝑍

2 + (1 − 𝑐𝑋
2)𝑠𝑌𝑐𝑍

2 + 𝑐𝑋
2𝑠𝑌(1 − 𝑠𝑌

2)𝑐𝑍
2] (𝑐𝑌′ )

2⁄   
= [2𝑠𝑋𝑐𝑋𝑠𝑌

2𝑠𝑍𝑐𝑍 − 𝑐𝑋
2𝑠𝑌𝑐𝑍

2 + 𝑠𝑋
2𝑠𝑌𝑐𝑍

2 + 𝑠𝑌𝑐𝑍
2] (𝑐𝑌′ )

2⁄   
= 𝑠𝑌(𝑐𝑌′ )

2 (𝑐𝑌′ )
2⁄     by (A-13) 

= 𝑠𝑌  
= 𝑟1,3.  

 
Proof of (A-9): 

𝑐𝑋′ 𝑐𝑍′ + 𝑠𝑋′ 𝑠𝑌′ 𝑠𝑍′ = (𝑟3,3/𝑐𝑌′ )(𝑟1,1/𝑐𝑌′ ) + (𝑟3,2/𝑐𝑌′ )(−𝑟1,3)(𝑟2,1/𝑐𝑌′ )  
= [(𝑐𝑋𝑐𝑌)(𝑐𝑌𝑐𝑍) + (𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍)(𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑠𝑋𝑠𝑍)(𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍)] (𝑐𝑌′ )

2⁄   
= [𝑐𝑋𝑐𝑌

2𝑐𝑍 + (𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍)(𝑠𝑋𝑐𝑋𝑠𝑌
2𝑐𝑍

2 + 𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋

2𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋𝑠𝑍
2)] (𝑐𝑌′ )

2⁄   
= [𝑐𝑋𝑐𝑌

2𝑐𝑍 + 𝑠𝑋𝑐𝑋
2𝑠𝑌

3𝑠𝑍𝑐𝑍
2 + 𝑐𝑋

3𝑠𝑌
2𝑠𝑍

2𝑐𝑍 − 𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑠𝑍
2𝑐𝑍 − 𝑠𝑋𝑐𝑋

2𝑠𝑌𝑠𝑍
3  

+𝑠𝑋
2𝑐𝑋𝑠𝑦

2𝑐𝑍
3 + 𝑠𝑋𝑐𝑋

2𝑠𝑌𝑠𝑍𝑐𝑍
2 − 𝑠𝑋

3𝑠𝑌𝑠𝑍𝑐𝑍
2 − 𝑠𝑋

2𝑐𝑋𝑠𝑍
2𝑐𝑍] (𝑐𝑌′ )

2⁄   
= [𝑐𝑋

3𝑠𝑌
2𝑠𝑍
2𝑐𝑍 + 𝑐𝑋𝑐𝑌

2𝑐𝑍 + 𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍

2 − 𝑠𝑋
2𝑐𝑋𝑠𝑍

2𝑐𝑍  
+𝑠𝑋𝑐𝑋

2𝑠𝑌
3𝑠𝑍𝑐𝑍

2 − 𝑠𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍

2 + (𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑐𝑍
3 − 𝑠𝑋

2𝑐𝑋𝑠𝑌
2𝑠𝑍
2𝑐𝑍) − 𝑠𝑋𝑐𝑋

2𝑠𝑌𝑠𝑍
3] (𝑐𝑌′ )

2⁄   
                                                                                           by rearrangement of terms 

= [𝑐𝑋
3𝑠𝑌

2𝑠𝑍
2𝑐𝑍 + 𝑐𝑋𝑐𝑌

2𝑐𝑍 + 𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍

2 − 𝑠𝑋
2𝑐𝑋𝑠𝑍

2𝑐𝑍  
+𝑠𝑋𝑐𝑋

2𝑠𝑌
3𝑠𝑍𝑐𝑍

2 − 𝑠𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍

2 + (𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑐𝑍 − 2𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑠𝑍
2𝑐𝑍)  

+(𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍

2 − 𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍)] (𝑐𝑌′ )

2⁄   
                                                                           since 𝑐𝑍2 − 𝑠𝑍2 = 1 − 2𝑠𝑍2 and −𝑠𝑍2 = 𝑐𝑍

2 − 1 
= [𝑐𝑋

3𝑠𝑌
2𝑠𝑍
2𝑐𝑍 + 𝑐𝑋𝑐𝑌

2𝑐𝑍 + 2𝑠𝑋𝑐𝑋
2𝑠𝑌𝑠𝑍𝑐𝑍

2 + 𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑐𝑍 − 𝑠𝑋
2𝑐𝑋𝑠𝑍

2𝑐𝑍  
+𝑠𝑋𝑐𝑋

2𝑠𝑌
3𝑠𝑍𝑐𝑍

2 − 𝑠𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍

2 − 2𝑠𝑋
2𝑐𝑋𝑠𝑌

2𝑠𝑍
2𝑐𝑍 − 𝑠𝑋𝑐𝑋

2𝑠𝑌𝑠𝑍
3] (𝑐𝑌′ )

2⁄   
= 𝑐𝑋𝑐𝑍(𝑐𝑋

2𝑠𝑌
2𝑠𝑍

2 + 𝑐𝑌
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 + 𝑠𝑋

2𝑠𝑌
2 − 𝑠𝑋

2𝑠𝑍
2) (𝑐𝑌′ )

2⁄   
+(𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 𝑠𝑋
2𝑐𝑍

2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑐𝑋
2)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )

2⁄   
= 𝑐𝑋𝑐𝑍(𝑐𝑋

2𝑠𝑌
2(1 − 𝑐𝑍

2) + 𝑐𝑌
2 + 𝑠𝑋

2𝑠𝑌
2 − 𝑠𝑋

2𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍) (𝑐𝑌′ )

2⁄   
+(𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 𝑠𝑋
2𝑐𝑍

2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑐𝑋
2)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )

2⁄   
= 𝑐𝑋𝑐𝑍(𝑐𝑋

2𝑠𝑌
2 − 𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 + 𝑐𝑌
2 + 𝑠𝑋

2𝑠𝑌
2 − 𝑠𝑋

2𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍) (𝑐𝑌′ )

2⁄  
+(𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 𝑠𝑋
2𝑐𝑍

2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑐𝑋
2)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )

2⁄  
= 𝑐𝑋𝑐𝑍(𝑠𝑌

2 − 𝑐𝑋
2𝑠𝑌

2𝑐𝑍
2 + 𝑐𝑌

2 − 𝑠𝑋
2𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍) (𝑐𝑌′ )

2  ⁄

            + (𝑐𝑋
2𝑠𝑌

2𝑐𝑍
2 − 𝑠𝑋

2𝑐𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑐𝑋

2)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )
2  ⁄
}   as 𝑐𝑋2 + 𝑠𝑋2 = 1 

= 𝑐𝑋𝑐𝑍(1 − 𝑐𝑋
2𝑠𝑌

2𝑐𝑍
2 − 𝑠𝑋

2𝑠𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍) (𝑐𝑌′ )

2   ⁄

            + (𝑐𝑋
2𝑠𝑌

2𝑐𝑍
2 − 𝑠𝑋

2𝑐𝑍
2 + 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑐𝑋

2)𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )
2  ⁄
}   as 𝑠𝑌2 + 𝑐𝑌2 = 1 

= 𝑐𝑋𝑐𝑍(𝑐𝑌′ )
2 (𝑐𝑌′ )

2⁄ + (−𝑐𝑌′ )
2𝑠𝑋𝑠𝑌𝑠𝑍 (𝑐𝑌′ )

2⁄     by (A-11) and (A-12) 
= 𝑐𝑋𝑐𝑍 − 𝑠𝑋𝑠𝑌𝑠𝑍  
= 𝑟2,2.  

 
Proof of (A-10): 

𝑐𝑋′ 𝑠𝑌′ 𝑠𝑍′ − 𝑠𝑋′ 𝑐𝑍′ = (𝑟3,3/𝑐𝑌′ )𝑟1,3(𝑟2,1/𝑐𝑌′ ) − (𝑟3,2/𝑐𝑌′ )(𝑟1,1/𝑐𝑌′ )   
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= [𝑐𝑋𝑐𝑌(𝑐𝑋𝑠𝑌𝑐𝑍 − 𝑠𝑋𝑠𝑍)(𝑠𝑋𝑠𝑌𝑐𝑍 + 𝑐𝑋𝑠𝑍) − (𝑐𝑋𝑠𝑌𝑠𝑍 + 𝑠𝑋𝑐𝑍)𝑐𝑌𝑐𝑍] (𝑐𝑌′ )2⁄  
= [(𝑠𝑋𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 + 𝑐𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋

2𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋
2𝑠𝑍

2 − 𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑍
2)𝑐𝑌] (𝑐𝑌′ )

2⁄   
= [(𝑠𝑋𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 + (𝑐𝑋
3𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋

2𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍) − 𝑠𝑋𝑐𝑋
2𝑠𝑍

2 − 𝑠𝑋𝑐𝑍
2)𝑐𝑌] (𝑐𝑌′ )

2⁄   
                                                                                                          by rearrangement of terms 

= [(𝑠𝑋𝑐𝑋
2𝑠𝑌
2𝑐𝑍

2 − 𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 + (𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 2𝑠𝑋
2𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍) − 𝑠𝑋𝑐𝑋

2𝑠𝑍
2 − 𝑠𝑋𝑐𝑍

2)𝑐𝑌] (𝑐𝑌′ )
2⁄   

                                                                                                                as 𝑐𝑋2 − 𝑠𝑋2 = 1 − 2𝑠𝑋2 
= [(𝑠𝑋𝑐𝑋

2𝑠𝑌
2𝑐𝑍

2 − 2𝑠𝑋
2𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑠𝑋𝑐𝑋

2𝑠𝑍
2 − 𝑠𝑋𝑐𝑍

2)𝑐𝑌] (𝑐𝑌′ )
2⁄   

= [(𝑐𝑋
2𝑠𝑌
2𝑐𝑍

2 − 2𝑠𝑋𝑐𝑋𝑠𝑌𝑠𝑍𝑐𝑍 − 𝑐𝑋
2𝑠𝑍

2 − 𝑐𝑍
2)𝑠𝑋𝑐𝑌] (𝑐𝑌′ )

2⁄   
= (𝑐𝑌′ )

2𝑠𝑋𝑐𝑌 (𝑐𝑌′ )
2⁄     by (A-13) 

= −𝑠𝑋𝑐𝑌  
= 𝑟2,3.  
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APPENDIX B: APPROXIMATE ELLIPSOIDAL DISTANCES 
 

The distance between two points on the ellipsoid is generally taken to the length of the 
geodesic between the points.  The geodesic is the shortest ellipsoidal arc.  Sodano’s 4th method 
is a process that evaluates the length of a geodesic with a high degree of accuracy.  However, 
it lacks the simplicity of the Pythagorean formula which calculates distances on a projected 
plane. 

 
One example of a simple method is a spherical-arc estimate which treats the latitudes as if they 
were reduced latitudes.  The first version considered here, “Type 1”, uses the geometric mean 
of the Equatorial radius and the polar radius: 
            𝑑𝑖,𝑗 = √𝑎𝑏 arccos(sin𝜙𝑖 sin𝜙𝑗 + cos𝜙𝑖 cos 𝜙𝑗 cos( 𝜆𝑖 − 𝜆𝑗)). (B-1) 
 
Formula (B-1) can give computational problems if the expression in brackets is very close to 
1.  One way to avoid this is to allow the contingency alternative 

            
𝑑𝑖,𝑗 = √𝑎𝑏 √(𝜙𝑖 − 𝜙𝑗)

2 + (𝜆𝑖 − 𝜆𝑗)
2 cos2 𝜙𝑖

   if max( |𝜙𝑖 − 𝜙𝑗|, |𝜆𝑖 − 𝜆𝑗|) < 0.0000005.
}  (B-2) 

 
The following tables were obtained from the Type-1 method for lines varying in length from 
500m to 100km.  The range of mid-latitudes and the range of azimuths are sufficiently general 
because of the symmetry of the ellipsoid. 
 

Percentage Errors In Type-1 Spherical-Arc Estimates for different azimuths 
 and mid-latitudes on WGS84 

 000 010 020 030 040 050 060 070 080 090 

80N -0.47 -0.47 -0.47 -0.48 -0.48 -0.48 -0.49 -0.49 -0.49 -0.49 

70N -0.38 -0.39 -0.39 -0.40 -0.42 -0.43 -0.44 -0.45 -0.46 -0.46 

60N -0.25 -0.26 -0.27 -0.29 -0.32 -0.35 -0.38 -0.40 -0.41 -0.42 

50N -0.09 -0.10 -0.12 -0.16 -0.20 -0.25 -0.29 -0.33 -0.36 -0.36 

40N 0.09 0.08 0.04 -0.01 -0.08 -0.14 -0.21 -0.26 -0.29 -0.31 

30N 0.25 0.24 0.19 0.13 0.04 -0.04 -0.13 -0.19 -0.24 -0.25 

20N 0.39 0.37 0.32 0.24 0.14 0.04 -0.06 -0.14 -0.19 -0.21 

10N 0.47 0.45 0.40 0.31 0.20 0.09 -0.02 -0.10 -0.16 -0.18 

Equator 0.51 0.48 0.43 0.34 0.23 0.11 0.00 -0.09 -0.15 -0.17 

(This table is the same - with barely perceptible variations - for distances 500m, 1km, 2km, 5 km, 
10km, 20km, 50km, 100km, 200km, 500km and 1000km.) 

 
Percentage Errors In Type-1 Spherical-Arc Estimates for different azimuths 

 and mid-latitudes on Clarke 1880 Modified (where f = 1/293.465) 
 000 010 020 030 040 050 060 070 080 090 

80N -0.48 -0.48 -0.48 -0.48 -0.49 -0.49 -0.50 -0.50 -0.50 -0.50 

70N -0.39 -0.39 -0.40 -0.41 -0.42 -0.44 -0.45 -0.46 -0.47 -0.47 

60N -0.26 -0.26 -0.28 -0.30 -0.33 -0.36 -0.38 -0.41 -0.42 -0.43 

50N -0.09 -0.10 -0.12 -0.16 -0.20 -0.25 -0.30 -0.34 -0.36 -0.37 

40N 0.09 0.08 0.04 -0.01 -0.08 -0.15 -0.21 -0.26 -0.30 -0.31 

30N 0.26 0.24 0.20 0.13 0.04 -0.04 -0.13 -0.20 -0.24 -0.26 

20N 0.39 0.37 0.32 0.24 0.14 0.04 -0.06 -0.14 -0.19 -0.21 

10N 0.48 0.46 0.40 0.32 0.21 0.09 -0.02 -0.10 -0.16 -0.18 

Equator 0.51 0.49 0.43 0.34 0.23 0.11 0.00 -0.09 -0.15 -0.17 

(This table is the same - with barely perceptible variations - for distances 500m, 1km, 2km, 5 km, 
10km, 20km, 50km, 100km, 200km, 500km and 1000km.) 
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Percentage Errors In Type-1 Spherical-Arc Estimates for different azimuths 
 and mid-latitudes on Krayenhoff 1827 (where f = 1/309.65) 

 000 010 020 030 040 050 060 070 080 090 

80N -0.45 -0.46 -0.46 -0.46 -0.46 -0.47 -0.47 -0.47 -0.47 -0.47 

70N -0.37 -0.37 -0.38 -0.39 -0.40 -0.42 -0.43 -0.44 -0.44 -0.45 

60N -0.24 -0.25 -0.26 -0.28 -0.31 -0.34 -0.36 -0.38 -0.40 -0.40 

50N -0.08 -0.09 -0.11 -0.15 -0.19 -0.24 -0.28 -0.32 -0.34 -0.35 

40N 0.09 0.07 0.04 -0.01 -0.07 -0.14 -0.20 -0.25 -0.28 -0.29 

30N 0.24 0.23 0.19 0.12 0.04 -0.04 -0.12 -0.19 -0.23 -0.24 

20N 0.37 0.36 0.31 0.23 0.14 0.04 -0.06 -0.13 -0.18 -0.20 

10N 0.46 0.44 0.38 0.30 0.20 0.09 -0.02 -0.10 -0.15 -0.17 

Equator 0.49 0.47 0.41 0.32 0.22 0.10 0.00 -0.09 -0.14 -0.16 

(This table is the same - with barely perceptible variations - for distances 500m, 1km, 2km, 5 km, 
10km, 20km, 50km, 100km, 200km, 500km and 1000km.) 

 
The second version of spherical-arc estimate, “Type 2”, uses the geometric mean of the radii 
of curvature at the line’s mid-latitude: 

           𝑑𝑖,𝑗 =  
𝑎√1−𝑒2

1−𝑒2 sin2𝜙𝑚
  arccos(sin 𝜙𝑖 sin 𝜙𝑗 + cos𝜙𝑖 cos 𝜙𝑗 cos( 𝜆𝑖 − 𝜆𝑗)), (B-3) 

where 
            𝜙𝑚 = (𝜙𝑖 + 𝜙𝑗)/2. (B-4) 
Formula (B-3) can give computational problems if the expression in brackets is very close to 
1.  One way to avoid this is to allow the contingency alternative 

             𝑑𝑖,𝑗 =  
𝑎√1−𝑒2

1−𝑒2 sin2𝜙𝑚
 √(𝜙𝑖 − 𝜙𝑗)2 + (𝜆𝑖 − 𝜆𝑗)2 cos2𝜙𝑖 

                   if max( |𝜙𝑖 − 𝜙𝑗|, |𝜆𝑖 − 𝜆𝑗|) < 0.0000005.  
(B-5) 

 
Percentage Errors in Type-2 Spherical-Arc Estimates for different 

azimuths and mid-latitudes on WGS84 
 000 010 020 030 040 050 060 070 080 090 

80N 0.01 0.01 0.01 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 

70N 0.04 0.04 0.03 0.02 0.01 -0.01 -0.02 -0.03 -0.04 -0.04 

60N 0.08 0.08 0.06 0.04 0.01 -0.01 -0.04 -0.06 -0.08 -0.08 

50N 0.14 0.13 0.11 0.07 0.02 -0.02 -0.07 -0.11 -0.13 -0.14 

40N 0.20 0.19 0.15 0.10 0.03 -0.03 -0.10 -0.15 -0.19 -0.20 

30N 0.25 0.24 0.19 0.13 0.04 -0.04 -0.13 -0.19 -0.24 -0.25 

20N 0.30 0.28 0.23 0.15 0.05 -0.05 -0.15 -0.23 -0.28 -0.30 

10N 0.33 0.31 0.25 0.16 0.06 -0.06 -0.16 -0.25 -0.31 -0.33 

Equator 0.34 0.32 0.26 0.17 0.06 -0.06 -0.17 -0.26 -0.32 -0.34 

(This table is the same for distances 500m, 1km, 2km, 5 km, 10km, 20km, 50km, 100km, 200km, 
500km and 1000km.) 

 
Percentage Errors In Type-2 Spherical-Arc Estimates for different azimuths 

 and mid-latitudes on Clarke 1880 Modified (where f = 1/293.465) 
 000 010 020 030 040 050 060 070 080 090 

80N 0.01 0.01 0.01 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 

70N 0.04 0.04 0.03 0.02 0.01 -0.01 -0.02 -0.03 -0.04 -0.04 

60N 0.09 0.08 0.07 0.04 0.01 -0.01 -0.04 -0.07 -0.08 -0.09 

50N 0.14 0.13 0.11 0.07 0.02 -0.02 -0.07 -0.11 -0.13 -0.14 

40N 0.20 0.19 0.15 0.10 0.03 -0.04 -0.10 -0.15 -0.19 -0.20 

30N 0.26 0.24 0.20 0.13 0.04 -0.05 -0.13 -0.20 -0.24 -0.26 

20N 0.30 0.28 0.23 0.15 0.05 -0.05 -0.15 -0.23 -0.28 -0.30 

10N 0.33 0.31 0.25 0.16 0.06 -0.06 -0.17 -0.25 -0.31 -0.33 

Equator 0.34 0.32 0.26 0.17 0.06 -0.06 -0.17 -0.26 -0.32 -0.34 
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(This table is the same for distances 500m, 1km, 2km, 5 km, 10km, 20km, 50km, 100km, 200km, 
500km and 1000km.) 

 
Percentage Errors In Type-2 Spherical-Arc Estimates for different azimuths 

 and mid-latitudes on Krayenhoff 1827 (where f = 1/309.65) 
 000 010 020 030 040 050 060 070 080 090 

80N 0.01 0.01 0.01 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 

70N 0.04 0.04 0.03 0.02 0.01 -0.01 -0.02 -0.03 -0.04 -0.04 

60N 0.08 0.08 0.06 0.04 0.01 -0.01 -0.04 -0.06 -0.08 -0.08 

50N 0.13 0.13 0.10 0.07 0.02 -0.02 -0.07 -0.10 -0.13 -0.13 

40N 0.19 0.18 0.15 0.09 0.03 -0.03 -0.10 -0.15 -0.18 -0.19 

30N 0.24 0.23 0.19 0.12 0.04 -0.04 -0.12 -0.19 -0.23 -0.24 

20N 0.29 0.27 0.22 0.14 0.05 -0.05 -0.14 -0.22 -0.27 -0.29 

10N 0.31 0.30 0.24 0.16 0.05 -0.06 -0.16 -0.24 -0.29 -0.31 

Equator 0.32 0.30 0.25 0.16 0.06 -0.06 -0.16 -0.25 -0.30 -0.32 

(This table is the same for distances 500m, 1km, 2km, 5 km, 10km, 20km, 50km, 100km, 200km, 
500km and 1000km.) 

 
Another method is to use an ellipsoidal chord approximation corrected to an arc.  Taking h 
as zero, the Cartesian coordinates corresponding to (𝜙𝑖, 𝜆𝑖) are computed as follows. 

           𝜈𝑖 =  
𝑎

√1−𝑒2 sin2𝜙𝑖
. (B-6) 

           𝑋𝑖 = 𝜈𝑖cos𝜙𝑖cos𝜆𝑖. (B-7) 
            𝑌𝑖 = 𝜈𝑖cos𝜙𝑖sin𝜆𝑖. (B-8) 
            𝑍𝑖 = 𝜈𝑖(1 − 𝑒2) sin𝜙𝑖. (B-9) 
 
The ellipsoidal-chord approximation to the geodesic is: 
            𝑐𝑖,𝑗 = √(𝑋𝑗 − 𝑋𝑖)2 + (𝑌𝑗 − 𝑌𝑖)2 + (𝑍𝑗 − 𝑍𝑖)2. (B-10) 
This is corrected from a chord-approximation to an arc-approximation as follows: 

            𝑑𝑖,𝑗 = 𝑐𝑖,𝑗 + 
𝑐𝑖,𝑗
3

24𝑅2
 + 

3𝑐𝑖,𝑗
5

640𝑅4
  (B-11) 

where R is a suitable estimate of the radius. 
This is based on the fact that a chord c of a circle with radius R which subtends an angle of  
radians satisfies 

            𝛼 = 2sin−1 
𝑐

2𝑅
 ≈ 2 (

𝑐

2𝑅
+

𝑐3

48𝑅3
+

3𝑐5

1280𝑅5
), (B-12) 

which in turn leads to 

            𝑅𝛼 ≈ 𝑐 + 
𝑐3

24𝑅2
 + 

3𝑐5

640𝑅4
 . (B-13) 

The most suitable estimate of R appears to be √𝜌𝑖𝜈𝑖𝜌𝑗𝜈𝑗4 , a geometric mean of 4 radii of 
curvature.  The formula for 𝑑𝑖,𝑗 only requires the evaluation of 

            𝑅2 = 
𝑎2(1−𝑒2)

(1−𝑒2 sin2𝜙𝑖)(1−𝑒
2 sin2𝜙𝑗)

. (B-14) 

 
The error was less than 1 in 141000 for lines up to 1000km long.  The largest errors occurred 
near the Equator when the azimuth was near 000 or 090. 
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Percentage Errors In Chord-To-Arc Estimates for different distances 
Geodesic Length WGS84 Clarke 1880 Modified Krayenhoff 1827 

1000km -0.00070 to 0.00070 -0.00071 to 0.00071 -0.00067 to 0.00067 
500km -0.00017 to 0.00018 -0.00018 to 0.00018 -0.00017 to 0.00017 
200km -0.00003 to 0.00003 -0.00003 to 0.00003 -0.00003 to 0.00003 
100km -0.00001 to 0.00001 -0.00001 to 0.00001 -0.00001 to 0.00001 
50km 0.00000 0.00000 0.00000 
20km 0.00000 0.00000 0.00000 
10km 0.00000 0.00000 0.00000 
5km 0.00000 0.00000 0.00000 
2km 0.00000 0.00000 0.00000 
1km 0.00000 0.00000 0.00000 

500m 0.00000 0.00000 0.00000 
Mid-latitudes covered were Equator, 10N, 20N, ... , 80N.  Azimuths covered were 000, 010, 
020, ... , 090. 

 
Details of the worst case are shown in the following table. 
 

Percentage Errors In Chord-To-Arc Estimates for different azimuths 
 and mid-latitudes on Clarke 1880 Modified over 1000km 

 000 010 020 030 040 050 060 070 080 090 

80N -0.00001 -0.00001 -0.00001 -0.00001 0.00000 0.00001 0.00001 0.00002 0.00002 0.00002 

70N -0.00008 -0.00007 -0.00006 -0.00004 -0.00001 0.00002 0.00004 0.00006 0.00008 0.00008 

60N -0.00017 -0.00016 -0.00013 -0.00009 -0.00003 0.00003 0.00009 0.00014 0.00017 0.00018 

50N -0.00029 -0.00027 -0.00022 -0.00015 -0.00005 0.00005 0.00015 0.00022 0.00027 0.00029 

40N -0.00041 -0.00039 -0.00032 -0.00021 -0.00007 0.00007 0.00021 0.00032 0.00039 0.00041 

30N -0.00053 -0.00050 -0.00041 -0.00027 -0.00009 0.00009 0.00026 0.00041 0.00050 0.00053 

20N -0.00063 -0.00059 -0.00048 -0.00031 -0.00011 0.00011 0.00031 0.00048 0.00059 0.00062 

10N -0.00069 -0.00065 -0.00053 -0.00034 -0.00012 0.00012 0.00034 0.00053 0.00065 0.00069 

Equator -0.00071 -0.00067 -0.00054 -0.00035 -0.00012 0.00012 0.00035 0.00054 0.00067 0.00071 
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APPENDIX C: ACTUAL DATASETS 
 

This appendix describes actual datasets of control points in specific datums in actual parts of 
the world.  In some cases the ellipsoidal heights have been generated artificially and this is 
noted where applicable.  Where the datasets contain less than 100 points, their coordinates in 
the respective datums are given. 
 
C.1  Western Australia (AGD84, GDA94) 
This dataset consists of 82 points from the STATEFIX GPS network.  The coordinates are 
known in Australian Geodetic Datum 1984 (AGD84) and the Geocentric Datum of Australia 
1994 (GDA94).  The former is based on the Australia National (1966) ellipsoid.  The latter is 
a realisation of ITRF92 at Epoch 1994.0, so its ellipsoid is GRS80.  The data was provided by 
Joseph Awange.  The distribution of the data points is shown in Figure C-1. 

 
Figure C-1: Data points for Western Australia, where the numbers are 
extracted from the unofficial point identifications ACP01 to ACP82. 

 
The geodetic coordinates of the common points are as follows. 
 

Unofficial AGD84 Coordinates World Geodetic System 1984 Coordinates 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

ACP01 -23.150590580 114.505187133 116.0108 -23.149301629 114.506533608 109.0597 
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ACP02 -34.375429357 115.135167915 39.4521 -34.374235748 115.136692177 8.4468 
ACP03 -26.990289655 117.931712036 599.5410 -26.989001238 117.933116841 590.1900 
ACP04 -28.437118502 116.726719563 456.0513 -28.435855706 116.728147005 441.0406 
ACP05 -34.766049299 116.085340159 207.8515 -34.764847453 116.086867385 177.6619 
ACP06 -33.923955138 116.117779195 295.2417 -33.922744939 116.119288468 266.8849 
ACP07 -31.579587583 117.844980684 345.9015 -31.578337969 117.846448282 326.0284 
ACP08 -33.063953927 117.257439469 345.8114 -33.062723795 117.258931622 321.5060 
ACP09 -31.395142498 115.930103377 224.9517 -31.393911393 115.931576249 202.0698 
ACP10 -34.195108938 119.316693083 199.0415 -34.193867944 119.318192405 175.9780 
ACP11 -21.764166676 122.316262169 346.2313 -21.762788216 122.317586057 358.3130 
ACP12 -26.906764101 113.778514386 298.2707 -26.905518657 113.779921296 281.1357 
ACP13 -26.113771343 126.665187256 628.2310 -26.112380837 126.666545538 638.0695 
ACP14 -32.633129057 119.611540531 448.3912 -32.631869023 119.613014790 429.3052 
ACP15 -28.820158433 121.299573168 469.0808 -28.818844913 121.300991852 462.6592 
ACP16 -24.964624574 115.468866144 265.7712 -24.963336407 115.470243910 256.6562 
ACP17 -31.526000950 116.893989478 315.1118 -31.524760950 116.895460374 293.8022 
ACP18 -28.032610530 117.823331698 561.3113 -28.031330262 117.824746729 549.6412 
ACP19 -32.202589801 116.918407412 318.4618 -32.201355497 116.919887870 295.5785 
ACP20 -24.818019181 119.762822864 783.1616 -24.816691655 119.764196840 783.2239 
ACP21 -20.521946504 120.416845308 270.8003 -20.520571944 120.418167654 282.2376 
ACP22 -19.316137538 121.713341001 109.5208 -19.314755821 121.714650045 126.4676 
ACP23 -30.765637939 117.781053335 424.3516 -30.764382413 117.782510257 406.2987 
ACP24 -32.449371189 123.805711860 176.2020 -32.448062862 123.807180515 165.6021 
ACP25 -33.343448382 118.342434137 389.4314 -33.342209439 118.343925160 366.4546 
ACP26 -32.351601097 118.471796492 401.6017 -32.350351462 118.473272300 381.1755 
ACP27 -33.575456919 115.023532923 213.4721 -33.574257011 115.025041876 184.0037 
ACP28 -29.777086494 117.702996054 408.8215 -29.775822964 117.704438796 392.8399 
ACP29 -26.992611554 120.465982828 566.0715 -26.991285886 120.467388026 562.0398 
ACP30 -23.153863096 128.899263830 552.3114 -23.152435773 128.900567883 574.1401 
ACP31 -22.313015705 125.115127411 371.0309 -22.311619990 125.116451116 387.6423 
ACP32 -20.985807011 123.182878152 287.5008 -20.984424976 123.184194550 303.7394 
ACP33 -28.519861171 128.735804144 329.8411 -28.518465434 128.737169276 337.1649 
ACP34 -20.261119781 126.540629721 432.2208 -20.259708145 126.541922189 457.1863 
ACP35 -25.050599490 124.982459997 556.5811 -25.049214943 124.983815816 566.1066 
ACP36 -28.236489121 119.977347764 476.8512 -28.235180928 119.978767271 468.8738 
ACP37 -29.810740072 119.916113744 524.0816 -29.809451527 119.917546755 512.3317 
ACP38 -26.052999288 115.669261133 344.7112 -26.051722873 115.670649141 333.2244 
ACP39 -31.019834658 125.247033553 195.0620 -31.018495014 125.248459027 190.0200 
ACP40 -26.128083514 128.929402057 1025.4514 -26.126670829 128.930737375 1039.5300 
ACP41 -29.833135366 115.333069015 306.0416 -29.831897495 115.334521239 285.5629 
ACP42 -32.939014132 116.022679002 501.9017 -32.937796310 116.024174606 475.8754 
ACP43 -29.366272500 116.375170544 370.0515 -29.365020120 116.376612810 352.4156 
ACP44 -23.189343846 116.700031788 243.0006 -23.188040308 116.701377899 240.8377 
ACP45 -16.473879929 124.619095734 489.0804 -16.472466823 124.620371640 519.0436 
ACP46 -20.438913298 118.842826416 108.35089 -20.437558564 118.844152153 116.8184 
ACP47 -18.428735304 127.423894356 467.91039 -18.427308006 127.425161840 499.4107 
ACP48 -28.210244020 123.655614610 518.1215 -28.208895614 123.657019759 517.2738 
ACP49 -28.290009547 126.046473194 387.80186 -28.288636903 126.047859236 390.8686 
ACP50 -18.147970276 124.300625474 107.37107 -18.146564587 124.301915531 133.0391 
ACP51 -33.743257823 117.228693522 401.96161 -33.742034647 117.230195616 376.0809 
ACP52 -21.635809035 115.107218698 33.481098 -21.634496804 115.108554519 31.3304 
ACP53 -14.569450474 126.135038230 335.30006 -14.568025753 126.136300864 373.4775 
ACP54 -18.291633496 125.587334282 168.77096 -18.290219232 125.588618255 196.7109 
ACP55 -33.644122194 120.375253949 241.31168 -33.642862454 120.376739724 221.5023 
ACP56 -16.419966161 126.438335668 527.33999 -16.418544556 126.439606241 561.5712 
ACP57 -30.559107570 116.509589719 344.37097 -30.557863234 116.511048253 324.4127 
ACP58 -32.923763834 121.641857150 320.69106 -32.922479462 121.643326029 304.9110 
ACP59 -22.981808152 118.586608986 1264.4314 -22.980481390 118.587958503 1266.5445 
ACP60 -31.331920275 119.278571392 481.63144 -31.330651944 119.280029075 465.1484 
ACP61 -31.686659477 129.011285739 90.731733 -31.685284813 129.012695854 90.7589 
ACP62 -30.671800918 115.510645422 237.85201 -30.670568518 115.512109204 216.0141 
ACP63 -28.180942809 114.508607883 291.88153 -28.179699786 114.510043193 273.1032 
ACP64 -19.768614366 128.978239361 487.71043 -19.767175183 128.979516008 519.3603 
ACP65 -30.771659519 128.953964921 164.62174 -30.770274788 128.955360266 166.6600 
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ACP66 -24.996162901 128.311317336 832.31056 -24.994749862 128.312644684 848.1381 
ACP67 -15.607117612 128.275121305 68.820302 -15.605679381 128.276370712 109.0092 
ACP68 -32.264919799 125.536248528 124.0612 -32.263590200 125.537695185 116.6583 
ACP69 -23.945679703 125.243597420 424.70084 -23.944288391 125.244937525 436.5400 
ACP70 -25.708455378 122.908253052 499.67111 -25.707092871 122.909625219 503.1036 
ACP71 -17.890768806 122.265926364 29.410184 -17.889379522 122.267226435 50.8267 
ACP72 -33.875478795 121.893116555 69.442127 -33.874202692 121.894588651 51.7895 
ACP73 -31.056626939 121.447645895 480.98162 -31.055328176 121.449095588 469.3139 
ACP74 -22.447935483 120.340290194 548.93119 -22.446574547 120.341628765 555.6634 
ACP75 -25.215554957 118.005606053 496.14137 -25.214247742 118.006985906 491.4397 
ACP76 -35.079549935 117.619893862 288.76181 -35.078334769 117.621417859 260.7850 
ACP77 -20.982769624 117.095852305 128.2405 -20.981432571 117.097186821 132.1709 
ACP78 -31.841415187 115.974061251 40.021347 -31.840187871 115.975540551 16.2867 
ACP79 -31.803193242 115.883766836 59.541223 -31.801966629 115.885246131 35.6873 
ACP80 -31.802392826 115.883697472 59.791836 -31.801166039 115.885176632 35.9319 
ACP81 -29.047800745 115.345530331 283.2913 -29.046555740 115.346972361 264.1519 
ACP82 -25.115263429 113.730181558 28.651094 -25.113995688 113.731558211 15.5439 

 
C.2  Great Britain (OSGB36, WGS84) 
This dataset consists of 44 points known in Ordnance Survey Great Britain 1936 (OSGB36) 
and WGS84.  The former is based on the Airy ellipsoid.  The data was supplied by E. J. Price, 
who obtained it from Military contacts circa 2001, but it is believed to have originated from 
Ordnance Survey.  The distribution of the data points is shown in Figure C-2. 
 

1    20280 
2    30118 
3    30210 
4    30219 
5    30229 
6    30230 
7    30231 
8    30438 
9    30729 
10   30737 
11   30738 
12   30739 
13   30753 
14   30754 
15   30755 
16   30760 
17   30770 
18   30771 
19   30772 
20   30773 
21   30938 
22   31035 

 
 

23   31036 
24   31037 
25   31092 
26   31093 
27   31094 
28   31099 
29   31147 
30   31148 
31   31149 
32   80046 
33   80054 
34   80209 
35   80210 
36   80211 
37   80212 
38   80215 
39   80305 
40   80306 
41   80307 
42   80308 
43   80309 
44   80335 

 
Figure C-2: Data points for Great Britain, cross-referenced to official point identifications. 
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The geodetic coordinates of the common points are as follows. 
 

 OSGB36 Coordinates World Geodetic System 1984 Coordinates 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

20280 56.811210560 -2.607177223 46.4000 56.811063889 -2.608715833 96.8100 

30118 58.186534830 -7.096123303 41.2000 58.186118889 -7.097141944 96.5800 

30210 58.552583080 -3.240778028 53.7700 58.552196667 -3.242323056 103.7000 

30219 60.439030080 -1.299205417 12.6600 60.438475556 -1.301152222 60.5100 

30229 55.733752500 -3.227309472 281.1000 55.733719167 -3.228731389 332.3800 

30230 52.142984780 -1.966633639 113.1700 52.143400556 -1.968059167 160.7000 

30231 50.865353140 0.346078195 33.0500 50.865936389 0.344472778 76.3700 

30438 54.355322220 -0.666935279 256.6200 54.355506111 -0.668646111 303.6100 

30729 51.758584560 -4.558782389 185.9800 51.759019722 -4.559921667 238.7900 

30737 51.273893890 -0.771001389 67.9400 51.274414167 -0.772528333 112.0500 

30738 51.286577220 -0.754109722 75.6600 51.287101389 -0.755629722 120.5700 

30739 49.923830050 -6.280106721 37.6800 49.924440278 -6.281050556 89.1800 

30753 54.149324970 -4.668137777 483.7200 54.149480000 -4.669317778 537.5300 

30754 55.372798530 -5.770368889 446.8000 55.372778889 -5.771415556 500.2500 

30755 52.415485190 1.717449223 46.6100 52.415941111 1.715609444 90.1900 

30760 52.832522610 -4.630083722 304.8500 52.832839444 -4.631225556 358.1800 

30770 50.629786750 -1.988219833 199.6600 50.630360278 -1.989581389 245.9400 

30771 56.058331940 -4.816235278 22.2100 56.058229444 -4.817457778 76.2600 

30772 57.602849440 -2.031349445 230.6800 57.602601944 -2.033006944 278.7400 

30773 51.185069440 -1.025637778 186.4500 51.185597222 -1.027138333 232.0400 

30938 56.812213060 -2.598661945 51.1500 56.812049722 -2.600231944 100.8100 

31035 52.910665690 -0.592800556 129.0800 52.911027500 -0.594424722 176.2900 

31036 54.619261060 -1.683660028 222.5100 54.619388889 -1.685217778 273.6700 

31037 52.104399560 -2.337563111 425.3000 52.104816944 -2.338935278 474.9700 

31092 50.684010890 -3.360757389 176.4400 50.684564167 -3.361994444 226.7100 

31093 50.194443920 -5.532992583 247.7400 50.195022778 -5.534014444 299.7400 

31094 51.978086330 0.665113333 89.1100 51.978564444 0.663409167 132.9700 

31099 60.436073360 -1.201255278 139.4100 60.435522778 -1.203225833 187.6800 

31147 53.629588110 -2.514467083 456.8100 53.629833611 -2.515888056 508.8000 

31148 56.248262250 -2.778813389 182.4000 56.248168611 -2.780323333 233.8500 

31149 57.835966330 -5.765483945 296.6600 57.835625000 -5.766658056 352.6700 

80046 51.184065560 -1.379804444 78.9300 51.184593056 -1.381260278 123.8900 

80054 57.469287860 -2.212462861 177.4500 57.469059167 -2.214110000 226.9100 

80209 51.919424640 -2.004448639 330.3500 51.919874444 -2.005873611 376.7700 

80210 51.351970310 -1.463654778 297.1300 51.352483056 -1.465105000 343.6500 

80211 53.675721330 -0.331394278 34.1000 53.675996389 -0.333100000 79.8200 

80212 54.990480920 -1.531728972 51.7500 54.990572500 -1.533351111 99.3800 

80215 51.109074940 -3.192448639 384.4900 51.109588333 -3.193725556 434.8700 

80305 55.924035420 -3.177756389 94.6800 55.923974722 -3.179190556 147.0700 

80306 52.327806110 1.680256416 41.5900 52.328271944 1.678439444 86.1700 

80307 58.669491140 -3.370399027 127.3300 58.669090000 -3.371929722 178.0600 

80308 60.620814670 -0.862825973 158.7100 60.620252778 -0.864840833 207.4200 

80309 56.455486780 -6.922482971 141.0300 56.455303611 -6.923412500 197.3900 

80335 53.783758530 -0.029333028 25.7600 53.784031389 -0.031075556 70.7800 

 
C.3  Ghana’s Golden Triangle (Accra, WGS84) 
This dataset consists of 19 points known in the Accra datum (based on the War Office 
ellipsoid) and WGS84. Apart from the War Office ellipsoidal heights, the data comes from 
Dzidefo (2011).  The points are located in Ghana’s “Golden Triangle”.  This consists of five 
of the ten regions in Ghana, namely Ashanti, Greater Accra, Western, Central and Eastern 
(Ziggah et al, 2017).  The distribution of the data points is shown in Figure C-3. 
 
The War Office ellipsoidal heights are listed in Laari et al (2016).  This source makes it clear 
that they were generated mathematically.  Computations carried out for this study established 
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that the War Office heights are transformed to WGS84 heights exactly by the Abridged 
Molodensky transformation with parameters -196.63555, 33.360366, 322.518564.  Those 
parameters have not been found in any publication, but the method that was actually used must 
have been equivalent. 
 
The geodetic coordinates are as follows. 
 

  Accra Coordinates World Geodetic System 1984 Coordinates 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

CFP 109 5.457304069 -0.423846053 82.0662 5.460090469 -0.423560461 78.2744 

CFP 200 5.623015028 -0.559597439 307.9119 5.625798375 -0.559316989 304.9379 

CFP 225 5.452274171 -1.501354089 279.5252 5.455086786 -1.501101706 275.1437 

CFP 155 5.936246667 -0.122290556 525.5954 5.939034008 -0.121995097 524.5492 

GCS 179 6.369342009 -1.033574469 491.7309 6.372117933 -1.033307164 492.5083 

GCS 142 6.573034939 -0.765843033 780.2024 6.575796806 -0.765572008 782.2084 

CFP 213 6.125418053 -0.749175303 327.4004 6.128197050 -0.748904353 327.0218 

CFP 178 6.568591978 -1.164931611 613.9824 6.571357297 -1.164662747 615.7568 

CFP 306 7.233128636 -1.630716606 530.9264 7.235861019 -1.630465086 536.0062 

GCS 145R 6.554147306 -1.412160561 502.1391 6.556916419 -1.411897078 503.7124 

CFP 207 5.846824211 -1.966403494 401.8272 5.849618067 -1.966153267 399.3477 

CFP 217 5.940330581 -0.729977811 312.4534 5.943106975 -0.729704947 311.0926 

GCS 302 6.909735047 -2.017006497 557.6481 6.912480178 -2.016757894 560.8285 

CFP 304 6.989461464 -1.445590708 617.0558 6.992208703 -1.445337764 620.9316 

CFP 305 6.843594833 -1.743673061 414.0673 6.846343694 -1.743417842 417.0231 

CFP 184 6.468790536 -1.695085044 471.1630 6.471557664 -1.694831050 472.1430 

GCS 102 5.279958350 -0.734677778 88.3693 5.282744181 -0.734406006 83.4515 

CFP 180R 6.051006676 -1.286464464 438.7549 6.053791594 -1.286211228 437.6990 

CFP 185 6.482004197 -1.925406333 642.6334 6.484775481 -1.925156364 643.5756 

 
 1    CFP 109 
 2    CFP 200 
 3    CFP 225 
 4    CFP 155 
 5    GCS 179 
 6    GCS 142 
 7    CFP 213 
 8    CFP 178 
 9    CFP 306 
10   GCS 145R 
11   CFP 207 
12   CFP 217 
13   GCS 302 
14   CFP 304 
15   CFP 305 
16   CFP 184 
17   GCS 102 
18   CFP 180R 
19   CFP 185  
  

Figure C-3: Data points for Ghana’s Golden Triangle, cross-
referenced to official point identifications. 

 
C.4  Sweden (SWEREF93, RT90/RH70) 
This dataset consists of 20 points known in SWEREF93 (the Swedish realisation of ETRS89) 
and a local reference coordinate system designated RT90/RH70 by Andrei (2006).  The latter 
is “a mixture of the Swedish triangulation network RT90 and the 2nd Swedish precise levelling 
network RH70”.  Andrei (2006) lists and applies the Cartesian coordinates as if they are 
derived from an ellipsoid, but it is unclear whether a geoid model had been used to convert 
orthometric heights to ellipsoidal heights.  The ellipsoids for SWEREF93 and RT90 are 



C-6 

GRS80 and Bessel 1841 respectively.  The distribution of the data points is shown in Figure 
C-4. 
 

 
 
 
 1   Arjeplog 
 2   Hӓssleholm 
 3   Jӧnkӧping 
 4   Karlstad 
 5   Kiruna 
 6   Leksand 
 7   Lovӧ 
 8   Mårtsbo 
 9   Norrkӧping 
10  Onsala 
11  Oskarshamn 
12  Skellefteå  
13  Sundsvall 
14  Sveg 
15  Umeå 
16  Vilhelminå 
17  Visby 
18  Vӓnersborg 
19  Östersund 
20  Överkate 
 

 
Figure C-4: Data points for Sweden, cross-referenced to the places 
used as identifications. 

 
The points are the original 20 stations of the SWEPOS network as it stood at the start of 1994.  
(The 21st, Borås, was added in 1996.) 
 
The geocentric Cartesian coordinates are given first, only because they constitute the original 
dataset given in Table 4.1 of Andrei (2006).  Dr Andrei confirmed in correspondence that the 
columns were in the wrong order and that the following version is correct.  The corrected 
version also appears in Amiri-Simkooei (2018). 
 
  SWEREF93 Coordinates RT90/RH70 Coordinates 
Point Id X Y Z X Y Z 

1 2441775.419 799268.100 5818729.162 2441276.712 799286.666 5818162.025 

2 3464655.838 845749.989 5270271.528 3464161.275 845805.461 5269712.429 

3 3309991.828 828932.118 5370882.280 3309496.800 828981.942 5370322.060 

4 3160763.338 759160.187 5469345.504 3160269.913 759204.574 5468784.081 

5 2248123.493 865686.595 5886425.596 2247621.426 865698.413 5885856.498 

6 3022573.157 802945.690 5540683.951 3022077.340 802985.055 5540121.276 

7 3104219.427 998384.028 5463290.505 3103716.966 998426.412 5462727.814 

8 2998189.685 931451.634 5533398.462 2997689.029 931490.201 5532835.154 

9 3199093.294 932231.327 5420322.483 3198593.776 932277.179 5419760.966 

10 3370658.823 711876.990 5349786.786 3370168.626 711928.884 5349227.574 

11 3341340.173 957912.343 5330003.236 3340840.578 957963.383 5329442.724 
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12 2534031.166 975174.455 5752078.309 2533526.497 975196.347 5751510.935 

13 2838909.903 903822.098 5620660.184 2838409.359 903854.897 5620095.593 

14 2902495.079 761455.843 5609859.672 2902000.172 761490.908 5609296.343 

15 2682407.890 950395.934 5688993.082 2681904.794 950423.098 5688426.909 

16 2620258.868 779138.041 5743799.267 2619761.810 779162.964 5743233.630 

17 3246470.535 1077900.355 5365277.896 3245966.134 1077947.976 5364716.214 

18 3249408.275 692757.965 5426396.948 3248918.041 692805.543 5425836.841 

19 2763885.496 733247.387 5682653.347 2763390.878 733277.458 5682089.111 

20 2368885.005 994492.233 5818478.154 2368378.937 994508.273 5817909.286 

 
The Cartesian coordinates were converted to geodetic coordinates by methodology described 
in subsection 1.4.1 using software specifically written for this study. 
 
 SWEREF93 Coordinates RT90/RH70 Coordinates 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

1 66.31801576 18.12486135 489.138 66.31937829 18.12871529 465.821 

2 56.09221502 13.71807355 114.045 56.09234329 13.72082388 83.435 

3 57.74547126 14.05960603 260.362 57.74580147 14.06243726 229.115 

4 59.44401867 13.50562237 114.268 59.44456176 13.50841462 82.748 

5 67.87757317 21.06023579 497.971 67.87909096 21.06478995 478.739 

6 60.72214275 14.87700459 478.080 60.72283531 14.88003424 447.173 

7 59.33780023 17.82891258 79.597 59.33829308 17.83232517 48.948 

8 60.59514118 17.25852255 75.359 60.59579638 17.26190595 44.918 

9 58.59022908 16.24637924 40.906 58.59064628 16.24953958 9.885 

10 57.39529624 11.92551398 45.570 57.39559458 11.92804345 14.531 

11 57.06563670 15.99680670 149.769 57.06586803 15.99988531 118.935 

12 64.87919478 21.04828604 81.161 64.88033608 21.05254271 56.211 

13 62.23247268 17.65988430 31.753 62.23332755 17.66340611 2.430 

14 62.01741104 14.70000948 491.168 62.01826674 14.70305553 461.292 

15 63.57813650 19.50959334 54.463 63.57913698 19.51349224 27.011 

16 64.69784489 16.55992746 449.925 64.69902057 16.56339810 423.494 

17 57.65386733 18.36731313 79.766 57.65414596 18.37073277 49.580 

18 58.69312489 12.03500023 169.674 58.69358274 12.03756582 138.489 

19 63.44279129 14.85806526 490.011 63.44382465 14.86118951 461.692 

20 66.31785599 22.77336964 222.863 66.31914841 22.77806896 201.086 

 
Andrei (2006) also provides the coordinates in “local topocentric coordinates” in the order N, 
E, U.  Changing the order to E, N, U, the local level coordinates are as follows. 
 
 System 1 System 2 
Point Id E (or X) N (or Y) U (or Z) E (or X) N (or Y) U (or Z) 

1 78292.294 563600.255 -11736.010 78303.693 563599.438 -11732.331 

2 -165547.693 -572086.679 -14554.597 -165559.007 -572083.961 -14558.496 

3 -138070.352 -389444.783 48.624 -138078.183 -389442.388 45.902 

4 -162930.880 -199314.707 8097.170 -162935.054 -199311.750 8095.194 

5 196622.159 742636.961 -32692.936 196637.599 742634.029 -32687.846 

6 -81954.850 -59589.289 12846.961 -81956.282 -59587.808 12846.157 

7 82529.526 -213807.100 9137.567 82525.222 -213808.996 9136.609 

8 48211.961 -74352.930 12632.778 48210.393 -74354.020 12632.469 

9 -7691.529 -297922.030 6252.912 -7697.480 -297922.126 6251.229 

10 -267482.392 -421681.043 -6335.302 -267491.043 -421676.157 -6338.615 

11 -23163.971 -467361.549 -3851.951 -23173.153 -467361.472 -3854.723 

12 221045.611 410450.991 -3779.987 221053.973 410446.981 -3776.884 

13 66617.956 108427.764 11936.146 66620.020 108426.475 11936.876 

14 -87900.945 84944.278 12494.129 -87899.491 84946.045 12494.311 

15 155432.805 261424.043 5982.270 155438.029 261421.151 5984.114 

16 8649.706 382401.617 2156.920 8657.257 382401.878 2159.254 

17 118706.523 -400260.055 -413.138 118698.691 -400262.820 -414.835 

18 -251634.874 -278118.357 2322.696 -251640.685 -278113.712 2320.308 
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19 -75879.036 243523.285 8566.650 -75874.384 243525.055 8567.895 

20 286147.983 576529.330 -19110.901 286159.887 576524.157 -19106.586 

 
C.5  Slovenia (D48, D96) 
This dataset consists of 3331 points known in geodetic datum 1948 (D48) and geodetic datum 
1996 (D96).  They are based on the Bessel 1841 and GRS80 ellipsoids respectively.  D48 is a 
local datum.  D96 is a locally-adopted alternative name for ETRS89 which is a global datum.  
The points have an average density of one per 6 square kilometres, although actual density 
varies.  The points form a triangulated network that is described in Berk and Komadima 
(2013).  Their distribution was analysed computationally for this study and is illustrated in 
Figure C-5; numbers indicate the number of points in each 20km square. 
 
The data was supplied by Sandi Berk of the Surveying and Mapping Authority of the Republic 
of Slovenia.  It came in the form of Transverse Mercator grid coordinates without heights and 
Cartesian coordinates (based on position reduced to the ellipsoid).  These were converted to 
geodetic coordinates by software written specifically for this research, using the algorithm in 
Redfearn (1948). 
 
The set of points with their grid coordinates, Cartesian coordinates and their corresponding 
geodetic coordinates will be placed in the UEL data repository after completion of this thesis. 
 

 
Figure C-5: Distribution of data points for Slovenia, in terms 

of numbers per 20km-square. 
 
C.6  Great Britain (ETRS89, OSGB36) 
This is the OSTN15 dataset, consisting of 4315 points known in European Terrestrial 
Reference System 1989 (ETRS89) and Ordnance Survey Great Britain 1936 (OSGB36).  They 
are based on the GRS80 and Airy ellipsoids respectively.  It was used to generate a regular 
grid of datum shifts at 1-km intervals which could be interpolated (Greaves et al, 2016).  Their 
distribution was analysed computationally for this study and is illustrated in Figure C-6; 
numbers indicate the number of points in each 50km square. 
 
Of the 4315 common points, 4269 are based on observations and form the core of a 
triangulated irregular network.  The other 46 are “boundary points” designed to extend the 
network over the whole transformation grid.  These points, whose coordinate shifts were 
generated using a 7-parameter model, are shown in Figure C-7. 
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The data was supplied by Ordnance Survey.  It came in the form of grid coordinates (Ordnance 
Survey Grid Reference System 1980 and British National Grid).  These were converted to 
geodetic coordinates by software written specifically for this research, using the algorithm in 
Redfearn (1948). 
 
The set of points with both their grid coordinates and their corresponding geodetic coordinates 
will be placed in the UEL data repository after completion of this thesis. 
 

 
Figure C-6: Distribution of non-boundary data 

points for Great Britain, in terms of numbers per 
50km-square. 

 
 
 
 

 
 

Figure C-7: Boundary points of the 
Great Britain dataset, at 50km-intervals 

on the enclosing rectangle. 

 
C.7 Other datasets 
Other datasets were discovered during this research project.  They are included here to 
demonstrate the different types of dataset that are used for deriving datum shifts.  The sources 
describe a limited range of transformations and discuss their accuracy. 
 
The following datasets are listed in ascending order of size. 
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C.7.1  Germany (Unknown local datum, WGS84) 
The source of this 7-point dataset is Awange and Grafarend (2002).  All the points in this 
dataset are in the southernmost quarter of Germany, on the western side.  Personal 
correspondence with Joseph Awange failed to jog Professor Awange’s memory of the local 
datum or the ellipsoid it was based on. 
 

 Local System WGS84 
Point Id X Y Z X Y Z 

Solitude 4157222.543  664789.307  4774952.099 4157870.237  664818.678 4775416.524 

Buoch Zeil 4149043.336 688836.443 4778632.188 4149691.049  688865.785 4779096.588 

Hohenneuffen 4172803.511  690340.078 4758129.701 4173451.354  690369.375 4758594.075 

Kuehlenberg 4177148.376  642997.635 4760764.800 4177796.064  643026.700 4761228.899 

Ex Mergelaec 4137012.190  671808.029 4791128.215 4137659.549  671837.337 4791592.531 

Ex Hof Asperg 4146292.729  666952.887 4783859.856 4146940.228  666982.151 4784324.099 

Ex Kaisersbach 4138759.902  702670.738 4785552.196 4139407.506  702700.227 4786016.645 

 
The following table only gives the geodetic coordinates with respect to WGS84. 

 WGS84 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) 

Solitude 48.78683480 9.08435741 589.286 

Buoch Zeil 48.83708071 9.42538275 589.384 

Hohenneuffen 48.55540861 9.39277056 821.732 

Kuehlenberg 48.59248298 8.75003194 697.282 

Ex Mergelaec 49.01007928 9.22270423 395.418 

Ex Hof Asperg 48.91028756 9.13704010 420.106 

Ex Kaisersbach 48.93117886 9.63460482 640.035 

 
C.7.2  Sudan (Adindan, ITRF96) 
The source of this 8-point dataset is Mohammed and Mohammed (2013).  The Adindan datum 
is based on the ellipsoid Clarke 1880 Modified, also known as Clarke 1880 (RGS).  The 
International Terrestrial Reference Frame 1996 (ITRF96) is based on the Reference Ellipsoid 
1980 (GRS80). 
 

 Adindan ITRF96 
Point Id X Y Z X Y Z 

1  5209207.500  3040808.244 2067652.171 5209051.179  3040794.994 2067858.390 

2  5147519.189  3535228.068 1296985.925 5147351.580  3535213.493 1297189.697 

3 5736045.479  2359030.970 1487557.109 5735898.786  2359026.520 1487764.835 

4 4947291.159  3651035.949 1692331.703 4947124.563  3651017.896 1692537.238 

5 5435162.800  3106763.337 1220913.297 5435006.649  3106749.715 1221120.126 

6 5140106.403  3190427.735 2014760.964 5139946.519  3190413.669 2014966.880 

7 5363495.551  3140312.750 1431563.703 5363337.027  3140299.956 1431770.658 

8 5054181.363  3093217.667 2352682.277 5054033.322  3093199.747 2352881.182 

 
The above coordinates were converted to geodetic coordinates by methodology described in 
subsection 1.4.1 using software specifically written for this study. 
 

 Adindan WGS84 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

1  19.04165997 30.27369946 373.500 19.04189579 30.27433935 381.896 

2  11.81150588 34.48061319 503.550 11.81231737 34.48137359 499.493 

3 13.57622538 22.35561812 1031.900 13.57690414 22.35609555 1040.083 

4 15.48922654 36.42683880 571.810 15.48974444 36.42762528 574.483 

5 11.10906030 29.75247805 921.011 11.10995154 29.75307903 920.412 

6 18.53697532 31.82758228 354.900 18.53725174 31.82826766 361.455 

7 13.05668398 30.34886251 783.701 13.05741213 30.34949912 785.255 

8 21.78938338 31.46711615 290.901 21.78933496 31.46771560 302.916 
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There is nothing in Mohammed and Mohammed (2013) to indicate what kind of heights the 
Adindan Cartesian coordinates are based on.  However, the height computed above for point 
1 is actually the orthometric height given for the corresponding point (G021) in Ahmed (2013).  
It seems probable, therefore, that the Adindan local coordinates are based on orthometric 
heights. 
 
C.7.3  Georgia (Pulkovo 1942, GGD) 
The source of this 9-point dataset is European Union (2013).  Pulkovo 1942 is based on the 
ellipsoid Krassovsky (1940).  Georgia Geodetic Datum (GGD) is based on and aligned with 
the International Terrestrial Reference System, so it uses the Reference Ellipsoid 1980 
(GRS80). 
 
European Union (2013) does contain ellipsoidal heights for GGD but it replaces them by 
zeroes for the purpose to deriving datum transformations.  The Cartesian coordinates were 
derived by methodology described in subsection 1.4.1 using software specifically written for 
this study, but they agree with those in Tables 5 and 3 of European Union (2013).  Confusingly, 
Table 2 of that source has Cartesian coordinates that match the 3D geodetic coordinates in 
Table 3. 
 

 Pulkovo 1942 GGD 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

ARMU 41.30854890 44.10268916 0.000 41.30849277 44.10147212 0.000 

CHAC 41.23215780 45.97230591 0.000 41.23211588 45.97111437 0.000 

FUND 41.82876705 42.85303065 0.000 41.82870615 42.85179192 0.000 

GLDA 41.79006988 44.83830960 0.000 41.79002716 44.83709663 0.000 

ILMA 41.42917693 45.01519911 0.000 41.42913121 45.01399441 0.000 

INGU 42.72070503 42.06371530 0.000 42.72064545 42.06245402 0.000 

KIZI 41.65002393 43.84159031 0.000 41.64997026 43.84036308 0.000 

KODA 41.59342621 44.78251164 0.000 41.59338119 44.78130133 0.000 

NORI 41.80961845 44.91722068 0.000 41.80957797 44.91600604 0.000 

 
 Pulkovo 1942 GGD 

Point Id X Y Z X Y Z 

G002 5056757.910 3082520.434 2361227.297 5056596.5900 3082504.8393 2361429.8197 

G018 5192006.595 3041094.212 2109566.633 5191844.7290 3041078.1182 2109770.8792 

G021 5209212.927 3040811.309 2067654.260 5209051.1856 3040794.9725 2067858.5289 

G036 5188066.299 3158359.100 1941533.117 5187904.4037 3158343.1591 1941737.2272 

G214 5162483.107 3301396.446 1765331.968 5162320.4785 3301380.8894 1765537.4975 

G216 5156112.687 3307302.221 1773075.546 5155950.0611 3307286.6654 1773281.1038 

G217 5155937.897 3307647.757 1772432.219 5155775.2540 3307632.2034 1772637.7713 

G218 5153693.500 3315675.787 1764093.062 5153530.8379 3315660.2623 1764298.6274 

G247 5011106.410 3605394.598 1600331.833 5010942.8006 3605380.1620 1600538.0991 

 
European Union (2013) has an addendum which “contains updated parameters for 
transformation between GGD and Pulkovo 1942 computed from additional identical points 
measured since submission of the original report”.  However, there are no coordinates listed 
for the 7 additional points. 
 
C.7.4  Sudan (Adindan, WGS84) 
The source of this 13-point dataset is Ahmed (2013).  Abdelrahim Elgizouli Mohamed Ahmed 
is also known as AbdElrahim Elgizouli Mohammed, the lead author of Mohammed and 
Mohammed (2013) which was cited in sub-appendix C.7.2.  The Adindan datum is based on 
the ellipsoid Clarke 1880 Modified, also known as Clarke 1880 (RGS). 
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 Adindan WGS84 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

G002 21.87236389 31.36583083 333.552 21.87237429 31.36651439 337.4061 

G018 19.44294194 30.35862306 304.083 19.44314893 30.35926984 306.2209 

G021 19.04165944 30.27369861 380.073 19.04189699 30.27433915 381.9369 

G036 17.84054722 31.33196194 358.491 17.84087116 31.33262765 360.9299 

G214 16.17517361 32.59882444 480.614 16.17563776 32.59952114 483.3360 

G216 16.24786500 32.67746306 549.834 16.24832330 32.67816186 552.7296 

G217 16.24218389 32.68106611 407.737 16.24264263 32.68176510 410.6173 

G218 16.16363806 32.75557306 434.357 16.16410295 32.75627386 437.2637 

G247 14.62833250 35.73428889 517.333 14.62891902 35.73506698 522.6840 

G249 14.38838722 35.94811556 567.736 14.38898611 35.94890406 573.1138 

G652 13.24267222 33.09916667 500.504 13.24336855 33.09988708 500.6076 

G901 12.57951417 34.09889167 447.070 12.58024448 34.09962601 447.5745 

G905 12.81700833 33.98224972 438.107 12.81770863 33.98297823 438.7897 

 
 Adindan WGS84 

Point Id X Y Z X Y Z 

G002 5056757.910 3082520.434 2361227.297 5056596.5900 3082504.8393 2361429.8197 

G018 5192006.595 3041094.212 2109566.633 5191844.7290 3041078.1182 2109770.8792 

G021 5209212.927 3040811.309 2067654.260 5209051.1856 3040794.9725 2067858.5289 

G036 5188066.299 3158359.100 1941533.117 5187904.4037 3158343.1591 1941737.2272 

G214 5162483.107 3301396.446 1765331.968 5162320.4785 3301380.8894 1765537.4975 

G216 5156112.687 3307302.221 1773075.546 5155950.0611 3307286.6654 1773281.1038 

G217 5155937.897 3307647.757 1772432.219 5155775.2540 3307632.2034 1772637.7713 

G218 5153693.500 3315675.787 1764093.062 5153530.8379 3315660.2623 1764298.6274 

G247 5011106.410 3605394.598 1600331.833 5010942.8006 3605380.1620 1600538.0991 

G249 5003040.086 3628003.915 1574642.485 5002876.2239 3627990.1446 1574848.0210 

G652 5202482.046 3391347.557 1451536.300 5202318.3388 3391334.0501 1451741.1175 

G901 5156050.122 3490762.917 1380015.242 5155887.2204 3490749.0003 1380217.9958 

G905 5158349.719 3477026.187 1405643.756 5158187.2645 3477012.0684 1405845.4032 

 
The Adindan coordinates are new ellipsoidal coordinates, resulting from an iterative process 
described in Ahmed (2013) to generate ellipsoidal heights. 
 
From the Cartesian coordinates, it is apparent that G021 is also the first point in the 8-point 
Sudan dataset in sub-appendix C.7.2.  This is the only point common to both datasets, although 
in the smaller dataset the orthometric height is used. 
 
C.7.5  Brunei (BT48, GDBD2009) 
The source of this 18-point dataset is Brunei Darussalam Survey Department (2009).  The datum 
BT48 is based on the Everest (Borneo) ellipsoid, sometimes called Modified Everest (Brunei).  
Geocentric Datum Brunei Darussalam 2009 (GDBD2009) is based on the Reference Ellipsoid 
1980 (GRS80). 
 

 BT48 GDBD2009 
Point Id Latitude (deg) Longitude (deg) Ell ht (m) Latitude (deg) Longitude (deg) Ell ht (m) 

B001 4.90384417 114.79154250 112.314 4.90300447 114.79458016 159.552 

B004 4.13759569 114.33505783 15.687 4.13680964 114.33815845 61.436 

B007 4.01299117 114.49381228 290.169 4.01221614 114.49689118 336.963 

B008 4.49301308 114.81589944 526.943 4.49220444 114.81893377 574.667 

B010 4.78255408 115.34335044 721.473 4.78172082 115.34631303 772.482 

B011 4.90363522 115.51269836 880.298 4.90279052 115.51563754 931.992 

B012 4.01913858 114.28624872 92.647 4.01836164 114.28935546 138.429 

B019 4.19972242 113.99408986 463.241 4.19893132 113.99723613 506.891 

B021 4.39140792 113.99498025 81.748 4.39060496 113.99812713 124.704 

B025 4.85479678 114.93067681 215.082 4.85396071 114.93369545 263.166 

B026 4.80363889 115.23563611 52.870 4.80280355 115.23861399 103.106 
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B027 4.60547361 115.02840806 531.581 4.60465531 115.03141396 580.949 

B032 4.69377417 114.52176389 79.904 4.69295230 114.52483945 125.499 

B033 4.37535389 114.46813972 254.701 4.37455159 114.47121949 300.629 

B034 5.01092578 115.04624436 142.371 5.01007712 115.04924840 190.806 

B036 5.28431897 115.18233578 66.265 5.28344591 115.18532304 114.739 

B038 4.32778208 114.64112392 49.443 4.32698405 114.64418113 96.369 

B039 4.27873936 114.82527186 373.864 4.27792472 114.82833308 422.082 

 
Brunei Darussalam Survey Department (2009) explains that the orthometric heights for the 
local datum were converted to ellipsoidal heights by the use of a DMA-developed geoid height 
model. 
 
C.7.6  Italy (Genova 1902, WGS84) 
The source of this 30-point dataset is Timár et al (2011).  The points are well spread over Italy 
(including Sicily) but contain no points in Sardinia.  The paper actually lists 31 points, but the 
authors deduced an error in the coordinates of point 23 and excluded it from computation of 
transformations.  The Genova 1902 datum is based on the Bessel 1841 ellipsoid. 
 

  Genova 1902 WGS84 
  Latitude (deg) Longitude (deg) Latitude (deg) Longitude (deg) 
1 Vercelli PI  45.450000 8.204363 45.450433 8.205047 

2 Pordenone  45.954150 12.660401 45.954554 12.660503 

3 Monte Bronzone  45.708633 9.990309 45.709048 9.990771 

4 Lodi  45.313672 9.502465 45.314130 9.502994 

5 Alessandria  44.914226 8.610709 44.914720 8.611350 

6 Monte Bignone  43.872907 7.732943 43.873513 7.733709 

7 Forte Diamante  44.460561 8.938858 44.461114 8.939474 

8 Portonovo  44.531880 11.753116 44.532469 11.753367 

9 Siena (T. del Mangia)  43.317535 11.331871 43.318285 11.332211 

10 Urbino  43.724425 12.636111 43.725135 12.636264 

11 Monte Pennino  43.100577 12.888616 43.101383 12.888754 

12 Roma (Monte Mario)  41.923444 12.451900 41.924405 12.452135 

13 Monte Ocre  42.255529 13.443024 42.256464 13.443123 

14 Valle Palombo  41.650375 14.259624 41.651030 14.259638 

15 Monte Terminio  40.840440 14.937349 40.841579 14.937321 

16 Taranto  40.474949 17.228763 40.476222 17.228541 

17 Lecce  40.350682 18.169618 40.352009 18.169302 

18 Monte Brutto  39.139509 16.421972 39.140896 16.421881 

19 Torre Titone  37.847500 12.539363 37.849035 12.539843 

20 Monte Etna (P. Lucia)  37.763122 14.985233 37.764674 14.985380 

21 Monte Castelluccio  37.414518 13.779165 37.416115 13.779475 

22 Mineo  37.265472 14.692406 37.267086 14.692592 

24† Innsbruck  47.270276 11.393789 47.270495 11.394035 

25† Krimberg  45.929041 14.471915 45.929449 14.471782 

26† Monte Cairo  41.540496 13.760462 41.541532 13.760545 

27† Francolise  41.181580 14.063770 41.182662 14.063830 

28† Cancello  40.992680 14.430113 40.993799 14.430148 

29† Miradois, Napoli  40.862511 14.255439 40.863634 14.255497 

30† Monte Petrella  41.321142 13.665475 41.322197 13.665572 

31† Marigliano  40.924113 14.456006 40.925236 14.456036 

† Point number used in Timár et al (2011); point 23 (Sardinia Punte Ideale) was excluded from transformation 
derivation due to an “obvious blunder” in its coordinates (taken from http://www.fiduciali.it). 
 
C.7.7  Ghana (Leigon, Accra) 
The source of this dataset is Kumi-Boateng and Ziggah (2020).  The Leigon datum is based 
on the ellipsoid Clarke 1880 Modified, also known as Clarke 1880 (RGS).  Accra is based on 
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the ellipsoid War Office 1924.  The coordinates of the data points are derived from Transverse 
Mercator projections with the same central meridian (1W). 
 
Kumi-Boateng and Ziggah (2020) lists 46 points and assigns identifications R1-R31 and T1-
T15.  This was done to differentiate the 31 points chosen as “training” points (used as control 
points to derive transformations) from the 15 “testing” points (used to provide an independent 
check on accuracy). 
 

 Leigon TM grid coordinates Accra TM grid coordinates 
Point ID Eastings (m) Northings (m) Eastings (m) Northings (m) 
R1 96308.47472 343341.49567 96315.96670 343342.49846 
R2 102396.73609 348793.77721 102404.08481 348794.59407 
R3 98384.46857 357002.14304 98391.82949 357002.79531 
R4 108527.33719 363356.54637 108534.39940 363357.18949 
R5 179593.84552 181252.23939 179598.74366 181251.11773 
R6 105410.76018 324978.11495 105418.16987 324979.30977 
R7 145906.45533 312862.32965 145913.93512 312863.29282 
R8 217305.38737 141614.96995 217310.64517 141612.59251 
R9 105737.94133 323098.99428 105745.36321 323100.32320 
R10 161720.22307 392995.67524 161727.17860 392996.58355 
R11 161317.32358 385896.81692 161324.16329 385897.71913 
R12 196537.92640 337894.67918 196545.33608 337896.21233 
R13 164804.79001 193489.59406 164809.62414 193488.75586 
R14 153010.64460 405832.84525 153017.16732 405833.79013 
R15 149300.93347 196924.39110 149305.45974 196923.63519 
R16 181138.36622 153293.64504 181143.18815 153291.73394 
R17 211446.81392 172735.17242 211452.26069 172733.26437 
R18 210262.37140 256084.33475 210269.60125 256083.42035 
R19 156103.67278 390525.41992 156110.53992 390526.21240 
R20 140426.63819 371486.73412 140433.33159 371487.39859 
R21 66995.11272 166458.22784 66997.02687 166456.60630 
R22 163685.79714 196883.82530 163690.61907 196883.06635 
R23 186272.81482 226968.02576 186278.87729 226967.29119 
R24 153046.17206 242613.60198 153052.11870 242614.12928 
R25 199279.75217 197449.17694 199285.24161 197447.96689 
R26 137145.43581 391777.91507 137151.97072 391778.46371 
R27 118155.82277 176791.46216 118159.51389 176790.37402 
R28 80820.82438 306190.56582 80828.61201 306191.85512 
R29 210755.75200 300209.21400 210763.86141 300210.03286 
R30 283778.08500 204680.01600 283785.99819 204677.95919 
R31 240727.35400 192138.14000 240734.20698 192136.52110 
T1 82660.60151 329013.92825 82668.25503 329015.13830 
T2 198067.01204 296216.39775 198074.93379 296216.90067 
T3 175114.74373 237505.14060 175120.91287 237505.09488 
T4 188231.00359 270605.93157 188238.04446 270605.90413 
T5 200781.58871 171978.38218 200786.91661 171976.62043 
T6 224664.95918 206357.89630 224671.11003 206356.31439 
T7 111533.39991 187113.71454 111536.93559 187113.00131 
T8 143581.25419 216569.24427 143585.68903 216569.09187 
T9 124931.98050 341128.18040 124939.24083 341129.32340 
T10 130558.08321 167316.40970 130562.14315 167315.11735 
T11 149600.00294 261798.37828 149606.27267 261799.17380 
T12 161269.90589 302076.12944 161276.89800 302076.89754 
T13 179379.85784 347155.69824 179387.14865 347157.03631 
T14 161035.63836 379092.87365 161042.53750 379093.78195 
T15 167630.72830 389866.04367 167637.56801 389866.95502 
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APPENDIX D: SIMULATED DATASETS 
 

This appendix contains simulated datasets of control points in separate datums in arbitrarily-
chosen regions with no relationship to political boundaries.  Each local datum will either be 
identified by datum or by ellipsoid, so that the ellipsoid corresponds to one that is used in that 
part of the world. 
 
The primary purpose of these datasets was to test the new method introduced in Section 5.1 to 
derive Helmert transformations.  For that reason, they were generated with rotations and scale 
changes that were large compared with most actual cases.  Measurement errors were simulated 
by the addition of pseudo-random numbers to the target coordinates. 
 
D.1  Helmatan 
Helmatan is a fictitious province in Western Asia.  The source datum uses the Krassovsky 
ellipsoid.  The target datum is WGS84.  12 points were selected in the area bounded by 
latitudes 50N to 42N and longitudes 71E to 84E.  The distribution of the data points is 
shown in Figure D-1. 
 

 
Figure D-1: Data points for Helmatan. 

 
The geodetic coordinates are as follows. 
 

 Krassovsky geodetic coordinates WGS84 geodetic coordinates for Simulation 1 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR01 49.98530501 72.49755439 107.471 49.986081074 72.496426098 20.758 

AR02 49.75037448 82.52817495 88.803 49.750862312 82.527301759 8.246 

AR03 48.51786466 77.66803433 129.106 48.518470151 77.667033334 50.248 

AR04 48.01245772 81.39976008 150.328 48.012938638 81.398860247 74.520 

AR05 47.19973218 75.48894298 106.973 47.200407136 75.487691328 28.301 

AR06 46.49607722 71.32990421 139.518 46.496788995 71.328471073 61.504 

AR07 46.40268438 76.50234447 102.097 46.403294102 76.501141060 29.867 

AR08 45.89718599 83.98245377 114.006 45.897541697 83.981374805 46.043 

AR09 44.51366007 79.98544078 98.869 44.514150054 79.984143300 30.105 

AR10 44.00741883 71.48894376 143.803 44.008133016 71.487484713 77.405 
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AR11 42.49664008 74.66588039 127.058 42.497203752 74.664379188 67.421 

AR12 42.03583291 82.66854337 133.908 42.036177454 82.667183883 78.120 

 
 WGS84 geodetic coordinates for Simulation 2 WGS84 geodetic coordinates for Simulation 3 

  (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR01 49.9893019952 72.4956714115 204.061 49.9915287256 72.4909653098 233.837 

AR02 49.7537369824 82.5271598842 191.427 49.7557603321 82.5228826395 221.131 

AR03 48.5215252341 77.6664958975 233.516 48.5236559567 77.6619530087 263.265 

AR04 48.0158580373 81.3984988005 257.745 48.0179083337 81.3940832848 287.468 

AR05 47.2035366178 75.4869262659 211.614 47.2057109490 75.4822359667 241.386 

AR06 46.5000465833 71.3274138679 244.874 46.5022944901 71.3225269337 274.674 

AR07 46.4063905389 76.5003783012 213.177 46.4085456839 76.4956958716 242.943 

AR08 45.9003610239 83.9809740274 229.258 45.9023513519 83.9765489886 258.965 

AR09 44.5171249205 79.9834327135 213.391 44.5192085428 79.9788011536 243.135 

AR10 44.0113879334 71.4862932013 260.801 44.0136345701 71.4813313847 290.605 

AR11 42.5003633076 74.6632682784 250.792 42.5025554691 74.6583723603 280.575 

AR12 42.0390517834 82.6664247321 261.389 42.0410754911 82.6617774560 291.111 

 
D.2  Helmatia 
Helmatia is a fictitious region in South America.  The source datum uses the South American 
1969 ellipsoid.  The target datum is WGS84.  16 points were selected in the area bounded by 
latitudes 0N to 10N and longitudes 75W to 65W.  The distribution of the data points is 
shown in Figure D-2. It is deliberately uneven, in contrast to Helmatan.   
 

 
Figure D-2: Data points for Helmatia. 

 
The geodetic coordinates are as follows. 
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 SAD69 geodetic coordinates WGS84 geodetic coordinates for Simulation 1 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR21 9.20452136 -65.40652096 103.211 9.20377415 -65.40393112 138.005 
AR22 8.74991840 -74.29653093 131.008 8.74860146 -74.29368906 180.407 
AR23 8.33167287 -69.19741048 112.341 8.33065962 -69.19464310 157.065 
AR24 7.59750185 -73.20542803 99.327 7.59626607 -73.20254236 151.616 
AR25 6.63168834 -74.59873070 87.963 6.63043382 -74.59579712 132.393 
AR26 6.33885628 -73.54073874 105.881 6.33764767 -73.53779632 153.391 
AR27 4.75168461 -72.74863900 129.230 4.75058689 -72.74563836 170.648 
AR28 4.35994820 -74.27147905 114.947 4.35874703 -74.26839902 163.315 
AR29 3.23175580 -73.72954021 106.018 3.23059424 -73.72643743 145.296 
AR30 2.46005732 -71.70359943 140.896 2.45902420 -71.70051549 180.565 
AR31 2.34168447 -74.22880612 139.275 2.34057373 -74.22562971 180.867 
AR32 1.79635190 -66.80581963 136.060 1.79556884 -66.80274424 162.045 
AR33 1.63246410 -72.61798439 147.903 1.63142578 -72.61483275 185.603 
AR34 1.33895611 -68.59620277 142.075 1.33810125 -68.59309329 176.645 
AR35 0.66930407 -70.45260680 135.869 0.66833790 -70.44940210 168.707 
AR36 0.32085077 -65.71906204 96.153 0.32021073 -65.71591348 123.607 

 
 WGS84 geodetic coordinates for Simulation 2 WGS84 geodetic coordinates for Simulation 3 

  (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR21 9.201705053 -65.401962259 128.189 9.201249213 -65.397351798 118.560 
AR22 8.746060078 -74.291639923 170.551 8.745265639 -74.286996803 160.887 
AR23 8.328382251 -69.192603935 147.250 8.327780174 -69.187954134 137.611 
AR24 7.593779386 -73.200441624 141.801 7.593025571 -73.195757313 132.153 
AR25 6.627877048 -74.593640238 122.602 6.627071270 -74.588917517 112.957 
AR26 6.335143828 -73.535630033 143.614 6.334377415 -73.530898053 133.975 
AR27 4.748123076 -72.743395092 160.923 4.747386254 -72.738604916 151.301 
AR28 4.356206277 -74.266130879 153.598 4.355412556 -74.261324574 143.977 
AR29 3.228080559 -73.724114807 135.616 3.227306985 -73.719267343 126.007 
AR30 2.456613995 -71.698158135 170.913 2.455916452 -71.693283305 161.314 
AR31 2.338034960 -74.223261890 171.215 2.337242767 -74.218381309 161.614 
AR32 1.793421061 -66.800358925 152.420 1.792910775 -66.795460941 142.831 
AR33 1.628968423 -72.612431906 175.976 1.628236425 -72.607525876 166.383 
AR34 1.335855594 -68.590681437 167.031 1.335276341 -68.585765598 157.443 
AR35 0.665993069 -70.446953651 159.111 0.665342900 -70.442012217 149.529 
AR36 0.318123354 -65.713447919 114.023 0.317655160 -65.708493684 104.444 

 
D.3  Helmatto 
Helmatto is a fictitious region in North Africa.  The source datum is Arc 1950 which uses the 
Clarke 1880 (Arc) ellipsoid.  The target datum is WGS84.  14 points were selected in the area 
Helmatto is a fictitious region in North Africa.  The source datum is Arc 1950 which uses the 
bounded by latitudes 0N to 3N and longitudes 15E to 27E.  The distribution of the data 
points is shown in Figure D-3.  

 
Figure D-3: Data points for Helmatto. 

 
The geodetic coordinates are as follows. 
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 Arc 1950 geodetic coordinates WGS84 geodetic coordinates for Simulation 1 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR41 2.79142941 15.20818396 93.211 2.79482055 15.20344720 21.314 
AR42 1.56386680 16.11201291 121.008 1.56746833 16.10734578 49.991 
AR43 1.28797460 19.40449487 103.341 1.29166886 19.39986586 22.762 
AR44 0.56972872 19.79402716 91.327 0.57357401 19.78943872 14.727 
AR45 1.44713719 20.38700712 80.963 1.45081318 20.38243316 2.952 
AR46 1.82219197 20.83703740 97.881 1.82585170 20.83241945 19.551 
AR47 0.62729575 21.47612070 120.230 0.63117386 21.47159347 45.188 
AR48 1.34085656 21.80624898 104.947 1.34465055 21.80170774 32.567 
AR49 0.45926101 22.68583028 197.518 0.46312043 22.68131127 117.518 
AR50 0.20051714 23.40206190 131.596 0.20447992 23.39754354 49.021 
AR51 1.27222226 23.52734654 130.875 1.27608109 23.52282880 55.993 
AR52 0.38637905 24.26407616 128.060 0.39030307 24.25958197 41.937 
AR53 0.71138484 24.85025879 137.503 0.71533576 24.84579248 50.485 
AR54 0.31884231 26.72708640 133.375 0.32287991 26.72265435 44.230 

 
 WGS84 geodetic coordinates for Simulation 2 WGS84 geodetic coordinates for Simulation 3 

  (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR41 2.797566352 15.201058822 11.216 2.799616116 15.196486390 1.096 
AR42 1.570253640 16.105011976 39.851 1.572315890 16.100457474 29.698 
AR43 1.294591967 19.397547487 12.614 1.296695222 19.392999320 2.455 
AR44 0.576512799 19.787149182 4.552 0.578620451 19.782609243 -5.627 
AR45 1.453775552 20.380109697 -7.189 1.455889698 20.375560645 -17.345 
AR46 1.828831752 20.830082087 9.424 1.830950673 20.825529568 -0.721 
AR47 0.634178752 21.469302609 35.016 0.636304254 21.464762715 24.838 
AR48 1.347668099 21.799390144 22.422 1.349796883 21.794843444 12.264 
AR49 0.466171273 22.679027299 107.339 0.468308482 22.674489431 97.157 
AR50 0.207557323 23.395269258 38.832 0.209701015 23.390733854 28.643 
AR51 1.279163082 23.520515801 45.847 1.281307866 23.515971181 35.687 
AR52 0.393411806 24.257301255 31.755 0.395562857 24.252764451 21.571 
AR53 0.718465404 24.843500640 40.317 0.720621180 24.838961460 30.142 
AR54 0.326074274 26.720376787 34.046 0.328243659 26.715841051 23.860 

 
D.4  Helmatrun 
Helmatrun is a region that coincides geographically with Réunion Island, but the 13 “data 
points” are fictitious.  (They were chosen to ensure that the minimum convex polynomial was 
never too far from the coastline).  The source datum is Réunion 1947 which uses the 
International ellipsoid.  The target datum is WGS84.  The distribution of the data points is 
shown in Figure D-4. 
 

 
Figure D-4: Data points for Helmatrun. 
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The geodetic coordinates are as follows. 
 

 Réunion geodetic coordinates WGS84 geodetic coordinates for Simulation 1 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR56 -20.88086508 55.45048687 17.328 -20.893320376 55.444576176 18.284 
AR57 -20.90976380 55.59925408 24.860 -20.922183500 55.593366339 23.802 
AR58 -20.93443729 55.29046271 15.605 -20.946936737 55.284551034 18.867 
AR59 -20.02949407 55.23057307 16.438 -20.042016591 55.224395096 20.517 
AR60 -20.05086849 55.49065088 46.831 -20.063326568 55.484504743 46.442 
AR61 -21.10077436 55.71064009 22.506 -21.113164836 55.704815324 18.984 
AR62 -21.14936055 55.27961168 16.537 -21.161853053 55.273763672 20.196 
AR63 -21.16974035 55.82083780 18.537 -21.182093110 55.815039501 13.455 
AR64 -21.20416749 55.35943802 14.705 -21.216637370 55.353612518 16.995 
AR65 -21.23935082 55.49073218 26.518 -21.251790879 55.484928098 26.787 
AR66 -21.29605386 55.75964082 15.762 -21.308420152 55.753870215 11.866 
AR67 -21.31976036 55.41974093 17.338 -21.332215161 55.413947785 19.043 
AR68 -21.36040794 55.67037679 16.066 -21.372797664 55.664618813 13.555 

 
 WGS84 geodetic coordinates for Simulation 2 WGS84 geodetic coordinates for Simulation 3 

  (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

AR56 -20.888630085 55.443143220 39.548 -20.893320376 55.444576176 18.284 
AR57 -20.917511237 55.591924837 45.070 -20.922183500 55.593366339 23.802 
AR58 -20.942227152 55.283115701 40.124 -20.946936737 55.284551034 18.867 
AR59 -20.037299120 55.223084571 41.813 -20.042016591 55.224395096 20.517 
AR60 -20.058640534 55.483183635 67.744 -20.063326568 55.484504743 46.442 
AR61 -21.108506215 55.703344118 40.246 -21.113164836 55.704815324 18.984 
AR62 -21.157142318 55.272299243 41.443 -21.161853053 55.273763672 20.196 
AR63 -21.177447916 55.813555367 34.718 -21.182093110 55.815039501 13.455 
AR64 -21.211936314 55.352138057 38.242 -21.216637370 55.353612518 16.995 
AR65 -21.247105721 55.483444671 48.037 -21.251790879 55.484928098 26.787 
AR66 -21.303767622 55.752370541 33.122 -21.308420152 55.753870215 11.866 
AR67 -21.327521478 55.412455524 40.287 -21.332215161 55.413947785 19.043 
AR68 -21.368134354 55.663113045 34.805 -21.372797664 55.664618813 13.555 

 
D.5  St Fuitioci 
St Fuitioci is a fictitious island covering a much smaller area than any other region in this 
appendix.  The source datum uses the International ellipsoid.  The target datum is WGS84.  
The distribution of the 12 data points is shown in Figure D-5. 

 
Figure D-5: Data points for St Fuitioci. 
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The geodetic coordinates are as follows. 
 

 International Ellipsoid geodetic coordinates WGS84 geodetic coordinates for Simulation 1 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

SF01 15.02154897 77.53030768 27.328 15.05045987 77.53233657 105.911 
SF02 15.02993272 77.42026583 24.125 15.05888479 77.42224922 104.684 
SF03 15.05984307 77.60037418 13.605 15.08879002 77.60250007 87.584 
SF04 15.08080416 77.51018793 16.438 15.10972668 77.51221864 96.667 
SF05 15.12989437 77.66983764 46.831 15.15879699 77.67193636 123.840 
SF06 15.14035727 77.46020718 25.506 15.16935112 77.46224141 107.840 
SF07 15.16987420 77.42993710 16.537 15.19882171 77.43200025 99.062 
SF08 15.18038739 77.52987428 20.537 15.20934932 77.53195028 106.341 
SF09 15.18983658 77.66026962 14.705 15.21875649 77.66245405 88.806 
SF10 15.20987405 77.68979635 26.518 15.23877683 77.69193244 105.573 
SF11 15.23006493 77.57020782 15.264 15.25902672 77.57235722 98.604 
SF12 15.23985793 77.46990517 18.338 15.26883915 77.47205572 99.474 

 
 WGS84 geodetic coordinates for Simulation 2 WGS84 geodetic coordinates for Simulation 3 

  (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

SF01 15.03593044 77.53099830 37.603 15.03328670 77.52946450 32.317 
SF02 15.04433571 77.42092891 35.508 15.04168568 77.41939952 30.126 
SF03 15.07426838 77.60114248 19.208 15.07162725 77.59960334 13.940 
SF04 15.09518741 77.51087324 27.383 15.09254068 77.50933689 22.024 
SF05 15.14427970 77.67055376 54.936 15.14164014 77.66900746 49.655 
SF06 15.15479694 77.46089411 37.369 15.15214558 77.45935655 31.910 
SF07 15.18425920 77.43065300 27.968 15.18160524 77.42911508 22.455 
SF08 15.19480270 77.53058340 35.775 15.19215387 77.52904041 30.333 
SF09 15.20423107 77.66106231 18.990 15.20158907 77.65951295 13.642 
SF10 15.22425432 77.69053183 35.670 15.22161330 77.68897999 30.326 
SF11 15.24448162 77.57097420 27.606 15.24183341 77.56942653 22.147 
SF12 15.25427592 77.47068875 27.656 15.25162191 77.46914498 22.106 

 
D.6  Main Gyria 
Main Gyria is a fictitious region enclosed by a degree square near the Equator.  The source 
datum uses the Bessel 1841 ellipsoid.  The target datum is WGS84.  The distribution of the 20 
data points is shown in Figure D-6. 
 

 
Figure D-6: Data points for Main Gyria. 
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The geodetic coordinates are as follows. 
 

 Bessel 1941 Ellipsoid geodetic coordinates WGS84 geodetic coordinates for Simulation 1 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

MG01 -1.91840762 102.83554804 43.917 -1.91969280 102.84250036 99.443 
MG02 -1.01049447 102.82486671 45.839 -1.01182429 102.83214335 99.661 
MG03 -1.91436249 102.11326265 53.928 -1.91539782 102.12020191 109.021 
MG04 -1.77550519 102.52983457 23.010 -1.77663523 102.53682504 76.604 
MG05 -1.79023165 102.22007596 34.702 -1.79131375 102.22706994 87.547 
MG06 -1.73682499 102.38029593 49.927 -1.73799047 102.38733165 103.429 
MG07 -1.44438392 102.52319837 8.270 -1.44560237 102.53033719 60.991 
MG08 -1.79282272 102.74346119 44.558 -1.79407508 102.75045360 93.534 
MG09 -1.97845048 102.92099869 28.536 -1.97972676 102.92790709 77.669 
MG10 -1.77955031 102.25211996 28.934 -1.78060768 102.25910448 83.383 
MG11 -1.29080015 102.51510811 41.596 -1.29203873 102.52228056 94.252 
MG12 -1.86095583 102.27348262 25.089 -1.86207501 102.28039909 79.270 
MG13 -1.48306412 102.67273700 41.354 -1.48433754 102.67983059 94.474 
MG14 -1.13867044 102.44033879 55.055 -1.13985918 102.44750972 100.539 
MG15 -1.18803197 102.55783343 33.906 -1.18923928 102.56503320 79.587 
MG16 -1.24548376 102.85431963 8.669 -1.24677050 102.86150141 61.522 
MG17 -1.03849334 102.00644934 13.155 -1.03956143 102.01362287 65.430 
MG18 -1.81418538 102.67937320 56.094 -1.81540073 102.68635364 107.700 
MG19 -1.40165859 102.65137434 45.199 -1.40292548 102.65848867 91.542 
MG20 -1.94640648 102.01713067 11.232 -1.94742951 102.02406770 67.350 

 
 WGS84 geodetic coordinates for Simulation 2 WGS84 geodetic coordinates for Simulation 3 

  (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

MG01 -1.918499729 102.840089330 42.236 -1.918021336 102.838344383 74.055 
MG02 -1.010678593 102.829638312 42.610 -1.010232554 102.827846029 74.533 
MG03 -1.914281179 102.117827833 52.724 -1.913841365 102.116108164 85.168 
MG04 -1.775481689 102.534414922 19.818 -1.775024563 102.532673245 51.925 
MG05 -1.790192159 102.224677378 31.144 -1.789751011 102.222947405 63.514 
MG06 -1.736854681 102.384925232 46.836 -1.736406873 102.383186797 79.076 
MG07 -1.444466406 102.527892901 4.271 -1.444021239 102.526134046 36.421 
MG08 -1.792898113 102.748034251 36.470 -1.792429013 102.746285953 68.387 
MG09 -1.978521635 102.925497887 20.339 -1.978036598 102.923753078 52.074 
MG10 -1.779483251 102.256709139 26.943 -1.779040772 102.254977473 59.288 
MG11 -1.290911456 102.519820674 37.562 -1.290472104 102.518054027 69.734 
MG12 -1.860944171 102.278011136 22.789 -1.860497697 102.276282997 55.105 
MG13 -1.483183819 102.677382622 37.555 -1.482729332 102.675620537 69.571 
MG14 -1.138747570 102.445037819 43.964 -1.138317538 102.443265799 76.213 
MG15 -1.188112735 102.562560401 22.858 -1.187674709 102.560786842 55.002 
MG16 -1.245609725 102.859019342 4.406 -1.245153889 102.857238377 36.285 
MG17 -1.038500832 102.011162856 9.406 -1.038097471 102.009400835 42.032 
MG18 -1.814229442 102.683939828 50.714 -1.813763004 102.682194912 82.684 
MG19 -1.401778162 102.656033321 34.663 -1.401327665 102.654267708 66.705 
MG20 -1.946321386 102.021701939 11.167 -1.945885568 102.019987350 43.688 
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APPENDIX E: BURSA-WOLF-GENERATED DATASETS 
 

This appendix contains datasets of virtual points for specific datums in actual parts of the 
world.  The parameters of the best-fitting Bursa-Wolf transformations are known, and are 
given in ESRI (2012).  However, the actual control points from which they were derived were 
not available for this study. 
 
In each case, the totally-linear Bursa-Wolf transformation has been applied to 25-50 points 
that give good coverage of the geographical region in question.  The purpose was to derive the 
Helmert model which gave the best fit at these virtual data points. 
 
If the RMS fit of Helmert to the virtual points is small compared with the RMS fit of Bursa-
Wolf to the original control points, then the pseudo-optimal Helmert transformation should 
give almost as good a fit as the optimal Bursa-Wolf.  It can be regarded as the conformal 
transformation that comes closest to the optimal Bursa-Wolf.  It will also provide an indication 
of how far the optimal Bursa-Wolf model is to being conformal. 
 
E.1  Réunion Island 
The datums for this dataset are Réunion 1947 and RGR 1992.  From ESRI (2004), Réunion 
1947 uses the International Ellipsoid and RGR 1992 uses GRS80. 
 
28 virtual data points were selected as per Figure E-1.  Apart from 4 points from the west and 
south coast, all are taken from 6 intersections.  Height values between 10m and 20m were 
assigned to the points.   RGR 1992 coordinates (Cartesian, then geodetic) were estimated by 
applying the Bursa-Wolf transformation with the parameters given in ESRI (2012). 
 

 
Figure E-1: Virtual data points in Réunion Island. 

 
The geodetic coordinates are as follows. 
 

 Réunion 1947 geodetic coordinates RGR 1992 geodetic coordinates 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

MeshPt01 -20.90 55.40 15.00 -20.912467449 55.394091260 20.633 
MeshPt02 -20.90 55.50 13.00 -20.912442122 55.494100320 16.985 
MeshPt03 -20.90 55.60 17.00 -20.912416757 55.594109398 19.337 
MeshPt04 -21.00 55.30 14.00 -21.012490878 55.294110831 21.375 
MeshPt05 -21.00 55.40 16.00 -21.012465614 55.394119930 21.728 
MeshPt06 -21.00 55.50 12.00 -21.012440314 55.494129029 16.081 
MeshPt07 -21.00 55.60 18.00 -21.012414975 55.594138152 20.434 
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MeshPt08 -21.00 55.70 15.00 -21.012389599 55.694147271 15.787 
MeshPt09 -21.10 55.30 13.00 -21.112489020 55.294139464 20.468 
MeshPt10 -21.10 55.40 17.00 -21.112463782 55.394148609 22.822 
MeshPt11 -21.10 55.50 14.00 -21.112438508 55.494157752 18.176 
MeshPt12 -21.10 55.60 16.00 -21.112413196 55.594166912 18.530 
MeshPt13 -21.10 55.70 12.00 -21.112387847 55.694176071 12.885 
MeshPt14 -21.20 55.30 18.00 -21.212487165 55.294168117 25.560 
MeshPt15 -21.20 55.40 15.00 -21.212461954 55.394177293 20.915 
MeshPt16 -21.20 55.50 13.00 -21.212436705 55.494186480 17.271 
MeshPt17 -21.20 55.60 17.00 -21.212411419 55.594195685 19.626 
MeshPt18 -21.20 55.70 14.00 -21.212386096 55.694204888 14.982 
MeshPt19 -21.20 55.80 16.00 -21.212360736 55.794214107 15.338 
MeshPt20 -21.30 55.40 12.00 -21.312460128 55.394205986 18.009 
MeshPt21 -21.30 55.50 18.00 -21.312434905 55.494215227 22.365 
MeshPt22 -21.30 55.60 15.00 -21.312409646 55.594224464 17.722 
MeshPt23 -21.30 55.70 13.00 -21.312384349 55.694233710 14.078 
MeshPt24 -21.30 55.80 17.00 -21.312359015 55.794242975 16.435 
ExtraPt25 -21.04 55.22 14.00 -21.052510310 55.214115000 22.729 
ExtraPt26 -21.37 55.55 16.00 -21.382421031 55.544239982 19.610 
ExtraPt27 -21.38 55.65 12.00 -21.392395596 55.644252132 13.977 
ExtraPt28 -21.36 55.75 18.00 -21.372370647 55.744255658 18.315 

 
E.2  Fatu Iva (Fatu Hiva) 
The datums for this dataset are Fatu Iva 1972 and WGS 84.  From ESRI (2004), Fatu Iva 1972 
uses the International Ellipsoid. 
 
25 virtual data points were selected as per Figure E-2.  Apart from 7 points in coastal regions, 
all are taken from 0.02 intersections.  Height values between 20m and 740m were assigned 
to the points.  WGS84 coordinates (Cartesian, then geodetic) were estimated by applying the 
Bursa-Wolf transformation with the parameters given in ESRI (2012). 
 
 

 
Figure E-2: Virtual data points in Fatu Iva. 

 

The geodetic coordinates are as follows. 
 

 Fatu Iva 1972 geodetic coordinates WGS84 geodetic coordinates 

  (source) 
(degrees) 

 (source) 
(degrees) 

h (source) 
(metres) 

 (target) 
(degrees) 

 (target) 
(degrees) 

h (target) 
(metres) 

MeshPt01 -10.440 -138.680 312.00 -10.396865666 -138.688988890 313.962 
MeshPt02 -10.440 -138.660 356.00 -10.396868222 -138.668987092 357.771 
MeshPt03 -10.440 -138.640 24.00 -10.396869464 -138.648985606 25.510 
MeshPt04 -10.460 -138.660 115.00 -10.416871395 -138.668989745 115.870 



E-3 

MeshPt05 -10.460 -138.640 279.00 -10.416874374 -138.648987849 279.702 
MeshPt06 -10.460 -138.620 98.00 -10.416876148 -138.628986239 98.469 
MeshPt07 -10.480 -138.660 514.00 -10.436876810 -138.668991868 514.088 
MeshPt08 -10.480 -138.640 636.00 -10.436879642 -138.648990010 635.912 
MeshPt09 -10.480 -138.620 157.00 -10.436880375 -138.628988649 156.624 
MeshPt10 -10.500 -138.680 55.00 -10.456876823 -138.688996458 54.346 
MeshPt11 -10.500 -138.660 418.00 -10.456880496 -138.668994402 417.214 
MeshPt12 -10.500 -138.640 737.00 -10.456884018 -138.648992383 736.074 
MeshPt13 -10.500 -138.620 153.00 -10.456884384 -138.628991112 151.767 
MeshPt14 -10.520 -138.680 165.00 -10.476881232 -138.688998820 163.510 
MeshPt15 -10.520 -138.660 698.00 -10.476885500 -138.668996626 696.410 
MeshPt16 -10.520 -138.640 683.00 -10.476887855 -138.648994886 681.208 
MeshPt17 -10.540 -138.660 134.00 -10.496887556 -138.668999551 131.450 
MeshPt18 -10.540 -138.640 28.00 -10.496889593 -138.648997889 25.231 
ExtraPt19 -10.420 -138.676 35.00 -10.376861163 -138.684986317 37.728 
ExtraPt20 -10.423 -138.658 28.00 -10.379863902 -138.666985104 30.418 
ExtraPt21 -10.518 -138.622 49.00 -10.474887403 -138.630993588 46.997 
ExtraPt22 -10.550 -138.657 30.00 -10.506889568 -138.666000604 26.973 
ExtraPt23 -10.534 -138.679 33.00 -10.490883709 -138.688000560 30.877 
ExtraPt24 -10.519 -138.692 26.00 -10.475879103 -138.700999863 24.647 
ExtraPt25 -10.472 -138.676 35.00 -10.428871603 -138.684992690 35.501 
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APPENDIX F: CHEBYSHEV POLYNOMIALS 
 
Chebyshev polynomials are a type of polynomial discovered by the Russian mathematician 
Pafnuty Chebyshev (1821-1894).  Strictly speaking, there are two kinds of Chebyshev 
polynomial.  However, all Chebyshev considered here are Chebyshev polynomials of the first 
kind and are denoted 𝑇𝑛(𝑥).  (The “T” arises from several of the alternative transliterations of 
Chebyshev’s name, which include Tchebyshev and Tchebycheff.) 
 
Chebyshev polynomials are bounded by the limits -1 and 1 in the interval [-1, 1].  For n>0, 
𝑇𝑛(𝑥) = ±1 for n+1 values of x.  Chebyshev polynomials are important in approximation 
theory because their roots are used as nodes in polynomial interpolation.  Starting from the 
identities (F-1) and (F-2), they can be generated by the recurrence formula (F-3). 
 
           𝑇0(𝑥) = 1; (F-1) 
           𝑇1(𝑥) = 𝑥; (F-2) 
           𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥) for n>1. (F-3) 
 
Among the low-degree Chebyshev polynomials are the following: 
 
           𝑇2(𝑥) = 2𝑥2 − 1. (F-4) 
           𝑇3(𝑥) = 4𝑥3 − 3𝑥. (F-5) 
           𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1. (F-6) 
           𝑇5(𝑥) = 16𝑥5 − 20𝑥3 + 5𝑥. (F-7) 
  
The graphs of the first 6 Chebyshev polynomials are given in Figures F1-1 to F1-4 below. 
 

 
Figure F-1: Chebyshev polynomials of 

degree 0, 1 and 2. 

 
Figure F-2: Chebyshev polynomial of 

degree 3. 
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Figure F-3: Chebyshev polynomial of 

degree 4. 

 
Figure F-4: Chebyshev polynomial of 

degree 5. 
 
The resemblance of the curves to trigonometric functions is no mere coincidence.  One of the properties of 
Chebyshev polynomials is that 
           𝑇𝑛(𝑥) = cos(𝑛 · arccos𝑥)   if |𝑥| ⩽ 1. (F-8) 
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APPENDIX G: KEY MACROS AND SUBROUTINES 
 
This appendix lists a selection of key macros and subroutines written specifically for this 
research.  The method of programming was predominantly Visual Basic for Applications 
(VBA) in Excel spreadsheets. 
 
G.1  Key macros 
This sub-appendix describes a selection of key macros written specifically for this research.  
These occurred in Excel spreadsheets and the emphasis here is on the interface with the user 
and how the user input is processed. 
 
G.1.1  Application of models to geodetic coordinates 
The scope of this macro consists of Standard Molodensky, Abridged Molodensky and the 
partially-conformal variations.  It was used in the case study for Chapter 11, by which time 
the new variations had been fully developed.  (The case studies for Chapters 8, 9 and 10 were  
conducted earlier with macros written separately as methods were evolving.)  The interface 
with the user is as shown in Figure G-1. 
 

 
Figure G-1: Interface with the “Application of models to geodetic coordinates” macro. 

 
When the transformation is applied to the data points, models 1 to 3 use the same 7-parameter 
formulae (2-70)-(2-72), but with 𝛥𝑋𝑣𝑒𝑟, 𝛥𝑌𝑣𝑒𝑟, 𝛥𝑍𝑣𝑒𝑟 set to 𝛥𝑋ℎ𝑜𝑟, 𝛥𝑌ℎ𝑜𝑟, 𝛥𝑍ℎ𝑜𝑟 if necessary 
and 𝑅𝑍=0 if necessary.  Models 4 to 6 use 7-parameter formulae (2-73)-(2-75) in the same 
way. 
 
The outputs from the macro are: 

• Latitude, longitude and ellipsoidal height computed from the model at all data points. 
• Residuals in latitude, longitude and ellipsoidal height at all data points. 
• RMSs in metres (latitude, longitude, ellipsoidal height, horizontal distance and 3D 

distance) for the set of data points. 
 
G.1.2  Application of models to Cartesian coordinates 
The scope of this macro consists of the transformations described in Sections 2.6, 2.8, 2.9, 
2.11 and 2.12.  It was used in the case study for Chapter 11, in the quest for a more unified 
approach than that used for the case studies for Chapters 8, 9 and 10 (where several macros 
were written over a long period).  The interface with the user is as shown in Figure G-2. 
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Figure G-2: Interface with the “Application of models to Cartesian coordinates” macro. 

 
If, for example, the chosen model is 2 (for Partially-Linear Bursa-Wolf), the macro applies the 
following section of VBA code (via the subroutine ComputeShiftsFromModel) for each data 
point. 
 
        ElseIf iModel = 2 Then 

            xA(i) = dx + s * (xs(i) - RZ * ys(i) + RY * zs(i)) 

            yA(i) = dy + s * (RZ * xs(i) + ys(i) - RX * zs(i)) 

            zA(i) = dz + s * (-RY * xs(i) + RX * ys(i) + zs(i)) 

 
The outputs from the macro are: 

• Latitude, longitude and ellipsoidal height computed from the model at all data points. 
• Residuals in latitude, longitude and ellipsoidal height at all data points. 
• RMSs in metres (latitude, longitude, ellipsoidal height, horizontal distance and 3D 

distance) for the set of data points. 
 
G.1.3  Application of MREs 
This macro was written for the case studies in Chapters 8, 12 and 13.  The interface with the 
user is as shown in Figure G-3. 
 
If, for example, the chosen model is Ord5, the macro applies the following section of VBA 
code (via the subroutine ComputeShiftsFromModel) for each data point. 
 
    ElseIf Model = "Ord5" Then 

        DLat = LatShift_OrdMRE_TP5(U1, V1) 

        DLon = LonShift_OrdMRE_TP5(U1, V1) 

 
The outputs from the macro are: 

• Latitude and longitude computed from the model at all data points. 
• Residuals in latitude and longitude at all data points. 
• RMSs in metres (latitude, longitude, horizontal distance) for the set of control points. 
• RMSs in metres (latitude, longitude, horizontal distance) for the set of test points if 

there is such a set. 
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Figure G-3: Interface with the “Application of MREs” macro. 

 
G.2  Key subroutines 
This sub-appendix describes a selection of key subroutines written specifically for this 
research.  The method of programming was predominantly Visual Basic for Applications 
(VBA) in Excel spreadsheets.  VBA uses colour-coding for comments, but shading is used in 
the listings reproduced here. 
 
The examples chosen are all related to the derivation of transformations.  The first three are 
general and are used by a variety of macros.  The 4th subroutine is a non-linear least-squares 
optimisation used in macros for deriving Helmert and affine transformations. 
 
G.2.1 Forming and solving normal equations 
The subroutine FormAndSolveNormalEqns was written to obtain the least-squares solution to 
a set of linear observation equations.  It uses the well-known Cholesky decomposition to 
compute the inverse of the normal matrix, which is needed if standard errors are to be 
computed. 
 
A positive definite matrix M can be decomposed into the product LLT where L is lower-
triangular.  The method of computing the elements is forward substitution.  The equations for 
𝑚1,1, 𝑚2,1, 𝑚2,2, 𝑚3,1, 𝑚3,2, 𝑚3,3, … (taken in order) will produce solutions for the 
corresponding elements of L.  L-1 is obtained by solving 𝐋 · (𝐜𝐨𝐥 𝐣 𝐨𝐟 𝐋−1) = (𝐜𝐨𝐥 𝐣 𝐨𝐟 𝐈).  M-1 
can then be computed from (𝐋−𝟏)𝐓𝐋−𝟏. 
 
The VBA code of the subroutine is as follows. 
 
Sub FormAndSolveNormalEqns(m As Integer, n As Integer, _ 

                           A, B, W, X, V, SE, SEUW As Double) 

'   VBA subroutine to form and solve normal equations for m linear 
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'   equations (AX = B + V) in n variables.  It is assumed that 

'   m <= 4400 and n <= 100. 

'   A is the design matrix which must have at least m rows and 

'   n columns.  B is a column vector with at least m elements, 

'   as is W (which consists of the weights). 

'   OUTPUTS: X is the solution vector (at least n elements). 

'            SE is the standard errors vector (at least n elements). 

'            V is the residuals vector (at least m elements). 

'            SEUW is the standard error of an observation of unit weight. 

'   Author: Andrew Ruffhead. 

    Dim ATW(1 To 100, 1 To 4400) As Double 

    Dim ATWA(1 To 100, 1 To 100) As Double, ATWB(1 To 100) As Double 

    Dim invATWA(1 To 100, 1 To 100) As Double, RHS(1 To 100) As Double 

    Dim matL(1 To 100, 1 To 100) As Double 

    Dim LatestCol(1 To 100) 

    Dim UpSoln(1 To 100) As Double 

    Dim i As Integer, j As Integer, k As Integer 

    Dim iRow As Integer, jj As Integer, iRV as Integer 

    Dim dummy As Double, Tol As Double 

'   Compute ATW (= A transposed times the square version of W). 

    For i = 1 To n 

        For j = 1 To m 

            ATW(i, j) = A(j, i) * W(j) 

        Next j 

    Next i 

'   Compute the matrix ATWA and vector ATWB of the normal equations 

'   (which take the form ATWA*X = ATWB). 

    For i = 1 To n 

        ATWB(i) = 0# 

        For j = 1 To n 

            ATWA(i, j) = 0# 

            For k = 1 To m 

                ATWA(i, j) = ATWA(i, j) + ATW(i, k) * A(k, j) 

            Next k 

        Next j 

        For k = 1 To m 

            ATWB(i) = ATWB(i) + ATW(i, k) * B(k) 

        Next k 

    Next i 

'   Following the Cholesky method, the normal matrix ATWA is 

'   decomposed into the product of a lower-triangular matrix 

'   (matL) and its upper-triangular transpose. 

'   Firstly, initialise lower-triangular matrix matL. 

    For i = 1 To n 

        For j = 1 To n 

            matL(i, j) = 0# 

        Next j 

    Next i 

'   Secondly, compute 1st row of lower-triangular matrix matL. 

    If ATWA(1, 1) <= 0# Then 

        MsgBox ("Argument of Square Root Not Positive." & vbLf & _ 

                "Subroutine abandoned.") 

        Exit Sub 

    End If 

    matL(1, 1) = Sqr(ATWA(1, 1)) 

'   Thirdly, compute the rest of lower-triangular matrix matL, 

'   one row at a time. 

    For iRow = 2 To n 

        For j = 1 To iRow - 1 

            matL(iRow, j) = ATWA(iRow, j) 

            For k = 1 To j - 1 

                matL(iRow, j) = matL(iRow, j) - matL(iRow, k) * matL(j, k) 

            Next k 

            matL(iRow, j) = matL(iRow, j) / matL(j, j) 
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        Next j 

        dummy = ATWA(iRow, iRow) 

        For k = 1 To iRow - 1 

            dummy = dummy - matL(iRow, k) ^ 2 

        Next k 

        If dummy <= 0# Then 

            MsgBox ("Argument of Square Root Not Positive." & vbLf & _ 

                   "Subroutine abandoned.") 

            Exit Sub 

        End If 

        matL(iRow, iRow) = Sqr(dummy) 

    Next iRow 

'   Solve matL*UpSoln=ATWB by forward-substitution. 

    UpSoln(1) = ATWB(1) / matL(1, 1) 

    For i = 2 To n 

        UpSoln(i) = ATWB(i) 

        For j = 1 To i - 1 

            UpSoln(i) = UpSoln(i) - matL(i, j) * UpSoln(j) 

        Next j 

        UpSoln(i) = UpSoln(i) / matL(i, i) 

    Next i 

'   Solve matL(T)*X=UpSoln by back-substitution. 

    X(n) = UpSoln(n) / matL(n, n) 

    For i = n - 1 To 1 Step -1 

        X(i) = UpSoln(i) 

        For j = i + 1 To n 

            X(i) = X(i) - matL(j, i) * X(j) 

        Next j 

        X(i) = X(i) / matL(i, i) 

    Next i 

'   Compute standard errors of the estimated parameters. 

'   Compute invATWA, one column at a time. 

    For jj = 1 To n 

'       Set RHS to jjth column of identity matrix. 

        For i = 1 To n 

            RHS(i) = 0# 

        Next i 

        RHS(jj) = 1# 

'       Solve matL*UpSoln=RHS by forward-substitution. 

        UpSoln(1) = RHS(1) / matL(1, 1) 

        For i = 2 To n 

            UpSoln(i) = RHS(i) 

            For j = 1 To i - 1 

                UpSoln(i) = UpSoln(i) - matL(i, j) * UpSoln(j) 

            Next j 

            UpSoln(i) = UpSoln(i) / matL(i, i) 

        Next i 

'       Solve matL(T)*LatestCol=UpSoln by back-substitution. 

        LatestCol(n) = UpSoln(n) / matL(n, n) 

        For i = n - 1 To 1 Step -1 

            LatestCol(i) = UpSoln(i) 

            For j = i + 1 To n 

                LatestCol(i) = LatestCol(i) - matL(j, i) * LatestCol(j) 

            Next j 

            LatestCol(i) = LatestCol(i) / matL(i, i) 

        Next i 

'       Copy LatestCol into jjth column of invATWA. 

        For i = 1 To n 

            invATWA(i, jj) = LatestCol(i) 

        Next i 

    Next jj 

'   Compute provisional standard errors. 

    For i = 1 To n 

        SE(i) = Sqr(invATWA(i, i)) 
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    Next i 

'   Check product of ATWA and invATWA. 

    Tol = 0.0001 

    For i = 1 To n 

        For j = 1 To n 

            dummy = 0# 

            For k = 1 To n 

            dummy = dummy + ATWA(i, k) * invATWA(k, j) 

            Next k 

            If i = j Then 

                If Abs(dummy - 1#) > Tol Then 

                    iRV = MsgBox("Product of normal matrix and its " & _ 

                                 "inverse is suspect." & vbLf & _ 

                                 "Diagonal term is " & dummy & "." & _ 

                                 vbLf & "Continue with " & _ 

                                 "increased tolerance?", vbYesNo) 

                    If iRV = vbYes Then 

                        Tol = Abs(dummy – 1#) 

                    Else 

                        Exit Sub 

                    End If 

                End If 

            Else 

                If Abs(dummy) > Tol Then 

                    iRV = MsgBox("Product of normal matrix and its " & _ 

                                 "inverse is suspect." & vbLf & _ 

                                 "Diagonal term is " & dummy & "." & _ 

                                 vbLf & "Continue with " & _ 

                                 "increased tolerance?", vbYesNo) 

                    If iRV = vbYes Then 

                        Tol = Abs(dummy) 

                    Else 

                        Exit Sub 

                    End If 

                End If 

            End If 

        Next j 

    Next i 

'   Compute residuals and standard error of an observation of unit weight.   

'   Use the latter to correct the standard errors of the parameters. 

    If n = m Then 

        MsgBox "Note that there are no degrees of freedom," & vbLf & _ 

               "so there are no standard errors." 

    Else 

        SEUW = 0# 

        For i = 1 To m 

            V(i) = B(i) 

            For j = 1 To n 

                V(i) = V(i) - A(i, j) * X(j) 

            Next j 

            SEUW = SEUW + V(i) * W(i) * V(i) 

        Next i 

        SEUW = Sqr(SEUW / (m - n)) 

        For j = 1 To n 

            SE(j) = SE(j) * SEUW 

        Next j 

    End If 

End Sub 

 
G.2.2  Solving a symmetric matrix equation by Cholesky 
The subroutine SolveByCholesky was written to attempt a solution of symmetric matrix 
equations without computing an inverse matrix.  The matrix is assumed to be positive definite, 
allowing a Cholesky decomposition M=LLT.  A successful solution will result in the Boolean 
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variable Dunnit being set to True, and a solution check indicating how closely the solution fits 
the original equation.  If the decomposition breaks down, the subroutine will 

• display a message indicating where the breakdown occurred; 
• exit the subroutine with the Boolean variable Dunnit set to False. 

 
A positive definite matrix M can be decomposed into the product LLT where L is lower-
triangular.  The method of computing the elements is forward substitution.  The equations for 
𝑚1,1, 𝑚2,1, 𝑚2,2, 𝑚3,1, 𝑚3,2, 𝑚3,3, … (taken in order) will produce solutions for the 
corresponding elements of L.  The equation Mx= LLTx=b. is split up into LTy = b (from 
which y is obtained by back-substitution) and Lx=y, from which x is obtained by forward 
substitution. 
 
The VBA code of the subroutine is as follows. 
 
Sub SolveByCholesky(SM() As Double, RHS() As Double, _ 

           n As Integer, Soln() As Double, Dunnit As Boolean) 

'   Subroutine to solve matrix equation SM*Soln=RHS by Cholesky 

'   decomposition. 

'   SM is an array with a symmetric matrix in SM(1,1) to SM(n,n). 

'   (Any other rows & columns in SM are ignored by this subroutine.) 

'   RHS and Soln are n-vectors (or arrays with sufficiently-large 

'   limits). 

'   SM must be positive definite for Cholesky to work.  If Cholesky 

'   fails, Dunnit will return as False. 

'   **************************************************** 

'   *    Note that matL must be at least n*n in size   * 

'   *    and RHSA must have at least n elements.       * 

'   **************************************************** 

'   Author: Andrew Ruffhead. 

    Dim matL(3123, 3123) As Double, RHSA(3123) As Double 

    Dim i As Integer, j As Integer, k As Integer 

    Dim misclos As Double, maxmisclos As Double 

'   Initialise matL. 

    For i = 1 To n 

        For j = 1 To n 

            matL(i, j) = 0# 

        Next j 

    Next i 

'   Compute 1st row of matL. 

    If SM(1, 1) <= 0# Then 

        MsgBox ("Argument of 1st Square Root Not Positive." & vbLf & _ 

                "Subroutine abandoned.") 

        MsgBox ("For row 1 in matrix L," & vbLf & _ 

                "the term to be square-rooted isn't positive." & _ 

                vbLf & "Subroutine SolveByCholesky abandoned.") 

        Dunnit = False 

        Exit Sub 

    End If 

    matL(1, 1) = Sqr(SM(1, 1)) 

'   Compute 1st row of matL. 

    For i = 2 To n 

'       Compute 1st row of matL. 

        For j = 1 To i - 1 

            matL(i, j) = SM(i, j) 

            For k = 1 To j - 1 

                matL(i, j) = matL(i, j) - matL(i, k) * matL(j, k) 

            Next k 

            matL(i, j) = matL(i, j) / matL(j, j) 

        Next j 

        dummy = SM(i, i) 
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        For k = 1 To i - 1 

            dummy = dummy - matL(i, k) ^ 2 

        Next k 

        If dummy <= 0# Then 

            MsgBox ("For row " & i & " in matrix L," & vbLf & _ 

                    "the term to be square-rooted isn't positive." & _ 

                    vbLf & "Subroutine SolveByCholesky abandoned.") 

            Dunnit = False 

            Exit Sub 

        End If 

        matL(i, i) = Sqr(dummy) 

    Next i 

'   Solve matL*RHSA=RHS by forward-substitution. 

    RHSA(1) = RHS(1) / matL(1, 1) 

    For i = 2 To n 

        RHSA(i) = RHS(i) 

        For j = 1 To i - 1 

            RHSA(i) = RHSA(i) - matL(i, j) * RHSA(j) 

        Next j 

        RHSA(i) = RHSA(i) / matL(i, i) 

    Next i 

'   Solve matL(T)*Soln=RHSA by back-substitution. 

    Soln(n) = RHSA(n) / matL(n, n) 

    For i = n - 1 To 1 Step -1 

        Soln(i) = RHSA(i) 

        For j = i + 1 To n 

            Soln(i) = Soln(i) - matL(j, i) * Soln(j) 

        Next j 

        Soln(i) = Soln(i) / matL(i, i) 

    Next i 

    MsgBox "Solution vector computed." 

'   Check product of SM and Soln. 

    maxmisclos = 0# 

    For i = 1 To n 

        misclos = -RHS(i) 

        For j = 1 To n 

            misclos = misclos + SM(i, j) * Soln(j) 

        Next j 

        misclos = Abs(misclos) 

        If misclos > maxmisclos Then 

            maxmisclos = misclos 

        End If 

    Next i 

    MsgBox "Solution check: maximum misclosure = " _ 

           & maxmisclos & "." 

    Dunnit = True 

End Sub 

 
G.2.3  Solving a matrix equation using MINVERSE 
The subroutine SolveByTempInverse uses the Microsoft Excel MINVERSE function, which 
returns the inverse matrix for a given matrix.  Both the input to and the output from 
MINVERSE are stored in an individual sheet of the Workbook using that function.  If the 
matrix contains thousands of rows and columns, this creates considerable storage that may not 
be needed once the matrix equation is solved. 
 
This subroutine 

• writes the original matrix to a sheet called “TempCalcs”; 
• creates an instruction to apply MINVERSE to the matrix and write the inverse below 

the original; 
• solves the matrix equation by applying the inverse matrix; 
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• performs a solution check; 
• clears the contents of “TempCalcs”. 

 
The VBA code of the subroutine is as follows. 
 
Sub SolveByTempInverse(SM() As Double, RHS() As Double, _ 

    n As Integer, Soln() As Double, Dunnit As Boolean) 

'   Subroutine to solve matrix equation SM*Soln=RHS by use of MINVERSE. 

'   SM is an array with a symmetric matrix in SM(1,1) to SM(n,n). 

'   (Any other rows & columns in SM are ignored by this subroutine.) 

'   RHS and Soln are n-vectors (or arrays with sufficiently-large 

'   limits). 

'   If the subroutine reaches the finish, Dunnit will exit as True. 

'   Author: Andrew Ruffhead. 

    Dim i As Integer, j As Integer, k As Integer 

    Dim misclos As Double, maxmisclos As Double 

'   Write SM to TempCalcs. 

    Worksheets("TempCalcs").Activate 

    For i = 1 To n 

        For j = 1 To n 

            ActiveSheet.Cells(i, j) = SM(i, j) 

        Next j 

    Next i 

'   Compute inverse below the original with 2 blank rows in between. 

'   The formula is written into the block of cells of the destination 

'   matrix (which will contain the inverse).  It is applied, so that the 

'   computed inverse goes into Cells(n+3,1) to (2n+2,n). 

    ActiveSheet.Range(Cells(n + 3, 1), _ 

                      Cells(2 * n + 2, n)).Select 

    Selection.FormulaArray = "=MINVERSE(R[" & -n - 2 & _ 

                             "]C:R[-3]C[" & n - 1 & "])" 

'   Compute the solution of the matrix equation. 

    For i = 1 To n 

        Soln(i) = 0# 

        For j = 1 To n 

            Soln(i) = Soln(i) + ActiveSheet.Cells(i + n + 2, j) * RHS(j) 

        Next j 

    Next i 

    MsgBox "Solution vector computed." 

'   Check product of SM and Soln. 

    maxmisclos = 0# 

    For i = 1 To n 

        misclos = -RHS(i) 

        For j = 1 To n 

            misclos = misclos + SM(i, j) * Soln(j) 

        Next j 

        misclos = Abs(misclos) 

        If misclos > maxmisclos Then 

            maxmisclos = misclos 

        End If 

    Next i 

    MsgBox "Solution check: maximum misclosure = " _ 

           & maxmisclos & "." 

    Worksheets("TempCalcs").Cells.ClearContents 

    Dunnit = True 

End Sub 

 
G.2.4  Least-squares optimisation of 6-parameter rigid transformation 
The subroutine OptimiseRigidTrans was written to find the rigid transformation that gives a 
least-squares fit to Cartesian coordinates in two datums.  Note that it uses the subroutine in 
sub-appendix G.2.1. 
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The VBA code of the subroutine is as follows. 
 
Sub OptimiseRigidTrans(nStns As Integer, xs, ys, zs, xt, yt, zt, _ 

                       Param, Res) 

'   VBA Subroutine to find the rigid transformation that gives a 

'   least-squares fit to Cartesian coordinates in two datums. 

'   It is assumed that the number of stations (nStns) does not 

'   exceed 100, hence the internal rows-limit of 300. 

'   The source arrays (xs, ys & zs) and the target arrays (xt, yt & 

'   zt) must be given at least nStns elements by the calling module. 

'   Note: it is important that any scale change is removed from the 

'   Cartesian coordinates either by the source coordinates being 

'   scaled or the target coordinates being "unscaled". 

'   OUTPUTS: Param is the parameter vector of at least 6 elements 

'                  (the first 3 are shifts in metres; the 

'                   next 3 are position-vector rotations in radians). 

'            Res is the residuals vector (at least 3*nStns 

'                   elements: 3i-2, 3i-1 & 3i apply to stn i). 

'   Author: Andrew Ruffhead. 

    Dim i As Integer 

    Dim j As Integer, nObs As Integer 

    Dim MatA(300, 6) As Double, VecB(300) As Double 

    Dim VecW(300) As Double 

    Dim SE(6) As Double, SEUW As Double 

    Dim sx As Double, sy As Double, sz As Double 

    Dim cx As Double, cy As Double, cz As Double 

    Dim rx1 As Double, ry1 As Double, rz1 As Double 

    Dim LargCor As Double 

'   Set number of observations. 

    nObs = 3 * nStns 

'   Form the matrix (MatA) and vectors (VecB, VecW) which 

'   feature in the observation equations. 

    For i = 1 To nStns 

        MatA(3 * i - 2, 1) = 1# 

        MatA(3 * i - 2, 2) = 0# 

        MatA(3 * i - 2, 3) = 0# 

        MatA(3 * i - 2, 4) = 0# 

        MatA(3 * i - 2, 5) = zs(i) 

        MatA(3 * i - 2, 6) = -ys(i) 

        VecB(3 * i - 2) = xt(i) - xs(i) 

        MatA(3 * i - 1, 1) = 0# 

        MatA(3 * i - 1, 2) = 1# 

        MatA(3 * i - 1, 3) = 0# 

        MatA(3 * i - 1, 4) = -zs(i) 

        MatA(3 * i - 1, 5) = 0# 

        MatA(3 * i - 1, 6) = xs(i) 

        VecB(3 * i - 1) = yt(i) - ys(i) 

        MatA(3 * i, 1) = 0# 

        MatA(3 * i, 2) = 0# 

        MatA(3 * i, 3) = 1# 

        MatA(3 * i, 4) = ys(i) 

        MatA(3 * i, 5) = -xs(i) 

        MatA(3 * i, 6) = 0# 

        VecB(3 * i) = zt(i) - zs(i) 

    Next i 

    For j = 1 To nObs 

        VecW(j) = 1# 

    Next j 

'   Do the first least-squares optimisation. 

    Call FormAndSolveNormalEqns(nObs, 6, MatA, VecB, VecW, _ 

                                Param, Res, SE, SEUW) 

'   Store the rotation parameters in rx1, ry1 & rz1.  The next 
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'   least-squares optimisation will compute corrections to shifts 

'   0, 0, 0 and rotations rx1, ry1 & rz1. 

    rx1 = Param(4) 

    ry1 = Param(5) 

    rz1 = Param(6) 

'   Calculate the trig ratios of the estimated rotations. 

    sx = Sin(rx1) 

    sy = Sin(ry1) 

    sz = Sin(rz1) 

    cx = Cos(rx1) 

    cy = Cos(ry1) 

    cz = Cos(rz1) 

'   Form the matrix (MatA) and vectors (VecB, VecW) which 

'   feature in the observation equations. 

    For i = 1 To nStns 

        MatA(3 * i - 2, 1) = 1# 

        MatA(3 * i - 2, 2) = 0# 

        MatA(3 * i - 2, 3) = 0# 

        MatA(3 * i - 2, 4) = (cx * sy * cz + sx * sz) * ys(i) _ 

                             + (cx * sz - sx * sy * cz) * zs(i) 

        MatA(3 * i - 2, 5) = -sy * cz * xs(i) + sx * cy * cz * ys(i) _ 

                                              + cx * cy * cz * zs(i) 

        MatA(3 * i - 2, 6) = -cy * sz * xs(i) _ 

                             - (sx * sy * sz + cx * cz) * ys(i) _ 

                             + (sx * cz - cx * sy * sz) * zs(i) 

        VecB(3 * i - 2) = xt(i) - (cy * cz * xs(i) _ 

                          + (sx * sy * cz - cx * sz) * ys(i) _ 

                          + (sx * sz + cx * sy * cz) * zs(i)) 

        MatA(3 * i - 1, 1) = 0# 

        MatA(3 * i - 1, 2) = 1# 

        MatA(3 * i - 1, 3) = 0# 

        MatA(3 * i - 1, 4) = (cx * sy * sz - sx * cz) * ys(i) _ 

                             - (cx * cz + sx * sy * sz) * zs(i) 

        MatA(3 * i - 1, 5) = -sy * sz * xs(i) _ 

                             + sx * cy * sz * ys(i) + cx * cy * sz * zs(i) 

        MatA(3 * i - 1, 6) = cy * cz * xs(i) _ 

                             + (sx * sy * cz - cx * sz) * ys(i) _ 

                             + (cx * sy * cz + sx * sz) * zs(i) 

        VecB(3 * i - 1) = yt(i) - (cy * sz * xs(i) _ 

                          + (cx * cz + sx * sy * sz) * ys(i) _ 

                          + (cx * sy * sz - sx * cz) * zs(i)) 

        MatA(3 * i, 1) = 0# 

        MatA(3 * i, 2) = 0# 

        MatA(3 * i, 3) = 1# 

        MatA(3 * i, 4) = cx * cy * ys(i) - sx * cy * zs(i) 

        MatA(3 * i, 5) = -cy * xs(i) - sx * sy * ys(i) - cx * sy * zs(i) 

        MatA(3 * i, 6) = 0# 

        VecB(3 * i) = zt(i) - (-sy * xs(i) + sx * cy * ys(i) _ 

                      + cx * cy * zs(i)) 

    Next i 

'   Do the second least-squares optimisation. 

    Call FormAndSolveNormalEqns(nObs, 6, MatA, VecB, VecW, _ 

                                Param, Res, SE, SEUW) 

'   Compute the largest correction to rotations. 

    LargCor = Param(4) 

    If Abs(Param(5)) > Abs(LargCor) Then 

        LargCor = Param(5) 

    End If 

    If Abs(Param(6)) > Abs(LargCor) Then 

        LargCor = Param(6) 

    End If 

    LargCor = LargCor * 206264.8 

'   Apply corrections to the approximate rotations. 

    Param(4) = rx1 + Param(4) 
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    Param(5) = ry1 + Param(5) 

    Param(6) = rz1 + Param(6) 

'   Display closing message. 

    MsgBox "Rigid transformation computed OK." & vbLf & vbLf & _ 

           "Largest correction to rotations" & vbLf & _ 

           "was " & LargCor & " arc-seconds." 

End Sub 
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APPENDIX H: MULTIPLE REGRESSION EQUATIONS FROM CASE STUDIES 
 
This appendix contains multiple regression equations (MREs) derived during the case 
studies recorded in Chapters 8, 12 and 13.  The MREs were obtained by eliminating ratios 
lower than one (ERLTO) except where the word “trimmed” indicates that further elimination 
of terms occurred. 
 
H.1  Western Australia (AGD84 to GDA94) 
The normalised intermediate coordinates U and V were defined as follows: 
 
            𝑈 = 0.09298(𝜙in deg + 24.350); (H-1) 
            𝑉 = 0.12425(𝜆in deg − 120.949). (H-2) 
 
The Ordinary MREs with top power 3 (AGD84→GDA94) are as follows: 
 

 𝛥𝜙(′′) = 4.84733 + 0.27367𝑈 + 0.30298𝑉 − 0.07386𝑈2 −
 0.17775𝑈𝑉 − 0.01670𝑉2 − 0.13733𝑈2𝑉 −
0.01533𝑉3  + 0.06035𝑈3𝑉 + 0.10983𝑈2𝑉2 +
0.08154𝑈𝑉3 + 0.09873𝑈3𝑉2 +  0.15702𝑈3𝑉3 

(H-3) 

 
 𝛥𝜆(′′) = 4.90745 − 0.47032𝑈 − 0.08276𝑉 + 0.11823𝑈2 −

 0.06109𝑈𝑉 − 0.08940𝑉2 + 0.10322𝑈3 − 0.04413𝑈2𝑉 −
0.07009𝑈𝑉2  + 0.12713𝑈3𝑉 + 0.05920𝑈2𝑉2 +
0.23763𝑈𝑉3 − 0.33383𝑈3𝑉3 

(H-4) 

 
The Ordinary MREs with top power 4 (AGD84→GDA94) are as follows: 
 

 𝛥𝜙(′′) = 4.85578 + 0.27528𝑈 + 0.31758𝑉 − 0.10860𝑈2 −
 0.14970𝑈𝑉 − 0.08923𝑉2 − 0.17683𝑈2𝑉 −  0.07290𝑈𝑉2 −
0.04784𝑉3  + 0.04003𝑈4 +  0.29636𝑈2𝑉2 + 0.08413𝑉4 +
0.26513𝑈3𝑉2 +  0.05003𝑈2𝑉3 + 0.12900𝑈𝑉4 −
0.12619𝑈4𝑉2 −  0.11908𝑈2𝑉4 − 0.26421𝑈3𝑉4 

(H-5) 

 
 𝛥𝜆(′′) = 4.90452 −  0.50396𝑈 −  0.07512𝑉 +  0.14004𝑈2 +

 0.06001𝑈𝑉 −  0.09021𝑉2  +  0.22806𝑈3 +  0.05712𝑈4  −
 0.45726𝑈3𝑉 +  0.06987𝑈𝑉3 −  0.52469𝑈4𝑉 +
 0.42484𝑈3𝑉2  −  0.53170𝑈2𝑉3 +  0.84934𝑈4𝑉2  −
 0.28994𝑈3𝑉3  +  0.47094𝑈2𝑉4 +  0.52270𝑈4𝑉2  −
0.82683𝑈4𝑉4  

(H-6) 

 
The Ordinary MREs with top power 5 (AGD84→GDA94) are as follows: 
 

 𝛥𝜙(′′) = 4.85558 +  0.28867𝑈 +  0.35309𝑉 −  0.09081𝑈2 −
 0.24520𝑈𝑉 −  0.08930𝑉2  −  0.03469𝑈3 −  0.47740𝑈2𝑉 −
 0.49411𝑈𝑉2  −  0.17675𝑉3 +  0.77465𝑈𝑉3  +  0.08823𝑉4  +
 2.70969𝑈3𝑉2 +  1.36942𝑈2𝑉3  +  0.64534𝑈𝑉4  +
 0.09572𝑉5 −  0.32400𝑈5𝑉 +  3.03422𝑈4𝑉2  −
 2.91907𝑈3𝑉3 −  0.77424𝑈𝑉5  +  0.51829𝑈5𝑉2  −
 5.72298𝑈4𝑉3 −  2.22806𝑈3𝑉4  −  0.91912𝑈2𝑉5  −
 1.96556𝑈5𝑉3 +  2.27936𝑈3𝑉5  +  2.20019𝑈5𝑉4  +
 2.75084𝑈4𝑉5 

(H-7) 

 



H-2 

 𝛥𝜆(′′) = 4.90685 −  0.52358𝑈 −  0.08176𝑉 +  0.19708𝑈𝑉 −
 0.08603𝑉2  +  0.21648𝑈3  +  0.51775𝑈2𝑉 +  0.07427𝑉3  +
 0.63193𝑈4  −  1.63369𝑈3𝑉 +  0.59289𝑈2𝑉2  −
 0.40728𝑈𝑉3  +  0.51539𝑈5 −  3.48978𝑈4𝑉 +
 2.74251𝑈3𝑉2  −  3.50038𝑈2𝑉3 −  0.08505𝑉5  −
 1.21612𝑈5𝑉 +  3.05007𝑈4𝑉2 +  2.78273𝑈3𝑉3  −
 0.46298𝑈2𝑉4  +  0.33046𝑈𝑉5 +  8.15979𝑈4𝑉3  −
 4.0655𝑈3𝑉4  +  3.07087𝑈2𝑉5 −  8.46034𝑈4𝑉4  −
 4.5479𝑈5𝑉4  +  5.20562𝑈5𝑉5 

(H-8) 

 
The North/South MREs with top power 3 (AGD84→GDA94) are as follows: 
 

𝛥𝜙(′′) = 4.84275 +  0.21621𝑈 +  0.31687𝑉 −  0.26613𝑈𝑉 −
 0.00933𝑉2  −  0.03400𝑉3  +  0.29052𝑈𝑉3  

   

+ 0.50367𝑈2  −  0.76097𝑈2𝑉 −  0.88740𝑈3 +
 1.94070𝑈3𝑉 −  0.95665𝑈3𝑉2   if U>0  

(H-9) 
− 0.23500𝑈2  −  0.70577𝑈2𝑉 +  1.14841𝑈2𝑉3 −
 0.12447𝑈3  −  0.4854𝑈3𝑉 +  0.92071𝑈3𝑉3     

if U0 
 

 
𝛥𝜆(′′) = 4.90292 −  0.54841𝑈 −  0.07652𝑉  +  0.15695𝑈𝑉 −

 0.08494𝑉2  

   

+ 0.37819𝑈2  −  0.66264𝑈2𝑉 +  0.35811𝑈2𝑉3 +
 0.90385𝑈3𝑉2  −  0.90846𝑈3𝑉3   if U>0  

(H-10) 
− 0.06008𝑈2 + 0.63082𝑈2𝑉 + 0.16441𝑈2𝑉2 −
0.92301𝑈2𝑉3 +  0.63091𝑈3𝑉 − 1.13657𝑈3𝑉3    

if U0 
 

 
The East/West MREs with top power 3 (AGD84→GDA94) are as follows: 
 

𝛥𝜙(′′) = 4.85440 +  0.28108𝑈 −  0.06837𝑈2  +  0.31860𝑉 −
 0.36983𝑈𝑉 −  0.18860𝑈2𝑉 +  0.17401𝑈3𝑉  

   

− 0.12831𝑉2  +  0.43565𝑈𝑉2  +  0.15272𝑈2𝑉2 +
 0.07748𝑉3  −  0.16418𝑈𝑉3  −  0.19082𝑈3𝑉3   if V>0 (H-11) 

− 0.12333𝑉2  −  0.94440𝑈𝑉2  +  0.77207𝑈3𝑉2 −
 0.16903𝑉3  −  0.82611𝑈𝑉3  +  0.59531𝑈3𝑉3   

if V0 
 

 
𝛥𝜆(′′) = 4.90613 −  0.48497𝑈 +  0.12410𝑈2  +  0.13736𝑈3  −

 0.08120𝑉 −  0.09352𝑈𝑉 +  0.30683𝑈3𝑉   

   

 − 0.08896𝑉2  +  0.19489𝑈𝑉2  −  0.94433𝑈3𝑉2  +
 0.45110𝑈3𝑉3   if V>0 (H-12) 

 − 0.08847𝑉2 +  0.33033𝑈𝑉3  +  0.34610𝑈2𝑉3 −
 0.77107𝑈3𝑉3   

if V0 
 

 

The Four-Quadrant MREs with top power 3 (AGD84→GDA94) are as follows: 
 

𝛥𝜙(′′) = 4.85208 +  0.27734𝑈 +  0.28524𝑉 −
 0.06942𝑈2  −  0.30004𝑈𝑉 −  0.02097𝑉3  +
 0.22313𝑈𝑉2  −  0.07558𝑈2𝑉 +  0.15936𝑈3𝑉  

  

(H-13) 

− 0.13175𝑈3𝑉2 → if U>0 & V>0  

− 45.19674𝑈2𝑉2  −  36.30299𝑈2𝑉3  +
 109.81505𝑈3𝑉2  +  60.82490𝑈3𝑉3   

if U>0 & V0 

− 0.27203𝑈2𝑉2  +  0.46726𝑈2𝑉3  → if U0 & V>0 
+ 1.32051𝑈2𝑉2 +  0.21603𝑈2𝑉3 +  0.94090𝑈3𝑉2 → if U0 & V0 

 

 𝛥𝜆(′′) = 4.91183 − 0.49374𝑈 − 0.07471𝑉 +  0.07927𝑈2  −
0.04631𝑈𝑉 − 0.10209𝑉2 + 0.11307𝑈3  +
0.2287𝑈2𝑉 −  0.17939𝑈𝑉2 + 0.28894𝑈𝑉3  +
0.48513𝑈3𝑉3 

  

(H-14) 

− 1.37939𝑈3𝑉2 + 0.6043𝑈3𝑉3 → if U>0 & V>0 



H-3 

− 16.99731𝑈2𝑉2 − 23.68164𝑈2𝑉3 +
58.29948𝑈3𝑉2  +  68.89665𝑈3𝑉3   

if U>0 & V0 

− 3.88194𝑈2𝑉2  + 3.54316𝑈2𝑉3 − 5.54656𝑈3𝑉2 +
 4.7573𝑈3𝑉3   

if U0 & V>0 

− 0.55215𝑈3𝑉3 → if U0 & V0 
 
The Chebyshev MREs with top power 3 (AGD84→GDA94) are as follows: 
 

 𝛥𝜙(′′) = 4.81666 + 0.28945𝑇1(𝑈) + 0.24338𝑇1(𝑉) − 0.02357𝑇2(𝑈) −
0.11737𝑇1(𝑈)𝑇1(𝑉) + 0.00663𝑇2(𝑈)  +  0.00679𝑇3(𝑈) −
0.04619𝑇2(𝑈)𝑇1(𝑉) + 0.01686𝑇1(𝑈)𝑇2(𝑉) +
 0.01413𝑇2(𝑈)𝑇2(𝑉) + 0.00716𝑇3(𝑈)𝑇2(𝑉) +
 0.00427𝑇2(𝑈)𝑇3(𝑉) − 0.00577𝑇3(𝑈)𝑇3(𝑉) 

(H-15) 

 
 𝛥𝜆(′′) = 4.94727 − 0.41158𝑇1(𝑈) − 0.11958𝑇1(𝑉) + 0.08546𝑇2(𝑈) −

0.02455𝑇2(𝑉) + 0.02934𝑇3(𝑈) − 0.03755𝑇2(𝑈)𝑇1(𝑉) −
0.02833𝑇1(𝑈)𝑇2(𝑉) − 0.03631𝑇3(𝑈)𝑇1(𝑉)  +
0.01940𝑇2(𝑈)𝑇2(𝑉) − 0.01921𝑇3(𝑈)𝑇3(𝑉) 

(H-16) 

 
The Chebyshev MREs with top power 4 (AGD84→GDA94) are as follows: 
 

 𝛥𝜙(′′) = 4.83757 + 0.32101𝑇1(𝑈) + 0.21223𝑇1(𝑉) −
0.16269𝑇1(𝑈)𝑇1(𝑉) + 0.01576𝑇2(𝑉) + 0.01570𝑇3(𝑈) −
0.07898𝑇2(𝑈)𝑇1(𝑉) + 0.02747𝑇1(𝑈)𝑇2(𝑉) − 0.00479𝑇3(𝑉)  +
0.00531𝑇4(𝑈) − 0.01419𝑇3(𝑈)𝑇1(𝑉) + 0.01864𝑇2(𝑈)𝑇2(𝑉) +
0.00523𝑇4(𝑉) − 0.00841𝑇4(𝑈)𝑇1(𝑉) + 0.00724𝑇3(𝑈)𝑇2(𝑉) −
0.00599𝑇3(𝑈)𝑇3(𝑉) − 0.00767𝑇4(𝑈)𝑇3(𝑉) + 0.00508𝑇4(𝑈)𝑇4(𝑉) 

(H-17) 

 
 𝛥𝜆(′′) = 5.08523 − 0.16504𝑇1(𝑈) − 0.32962𝑇1(𝑉) + 0.24866𝑇2(𝑈) −

0.39929𝑇1(𝑈)𝑇1(𝑉) + 0.07189𝑇2(𝑉) + 0.11351𝑇3(𝑈) −
0.27427𝑇2(𝑈)𝑇1(𝑉) + 0.15707𝑇1(𝑈)𝑇2(𝑉) − 0.01603𝑇3(𝑉) +
0.02313𝑇4(𝑈) − 0.17005𝑇3(𝑈)𝑇1(𝑉) + 0.11695𝑇2(𝑈)𝑇2(𝑉) −
0.03044𝑇1(𝑈)𝑇3(𝑉) − 0.01053𝑇4(𝑉) − 0.02142𝑇4(𝑈)𝑇1(𝑉) +
0.05239𝑇3(𝑈)𝑇2(𝑉) − 0.01571𝑇3(𝑈)𝑇3(𝑉) −
0.02308𝑇2(𝑈)𝑇4(𝑉) + 0.01323𝑇4(𝑈)𝑇3(𝑉) −
0.01185𝑇4(𝑈)𝑇4(𝑉) 

(H-18) 

 

The Chebyshev MREs with top power 5 (AGD84→GDA94) are as follows: 
 

 𝛥𝜙(′′) = 5.32804 + 1.24825𝑇1(𝑈) − 0.64396𝑇1(𝑉) + 0.65181𝑇2(𝑈) −
1.74046𝑇1(𝑈)𝑇1(𝑉) + 0.56118𝑇2(𝑉) + 0.41132𝑇3(𝑈) −
1.21532𝑇2(𝑈)𝑇1(𝑉) + 1.07474𝑇1(𝑈)𝑇2(𝑉) − 0.20089𝑇3(𝑉) +
0.16740𝑇4(𝑈) − 0.68166𝑇3(𝑈)𝑇1(𝑉) + 0.74079𝑇2(𝑈)𝑇2(𝑉) −
0.37953𝑇1(𝑈)𝑇3(𝑉) + 0.01307𝑇4(𝑉) + 0.05518𝑇5(𝑈) −
0.29188𝑇4(𝑈)𝑇1(𝑉) + 0.45055𝑇3(𝑈)𝑇2(𝑉) − 0.25078𝑇2(𝑈)𝑇3(𝑉) +
0.02988𝑇1(𝑈)𝑇4(𝑉) + 0.04782𝑇5(𝑉) − 0.09314𝑇5(𝑈)𝑇1(𝑉) +
0.18013𝑇4(𝑈)𝑇2(𝑉) − 0.15238𝑇3(𝑈)𝑇3(𝑉) + 0.06356𝑇1(𝑈)𝑇5(𝑉) +
0.07097𝑇5(𝑈)𝑇2(𝑉) − 0.06480𝑇4(𝑈)𝑇3(𝑉) + 0.06653𝑇2(𝑈)𝑇5(𝑉) −
0.0263𝑇5(𝑈)𝑇3(𝑉) + 0.03931𝑇3(𝑈)𝑇5(𝑉) + 0.01037𝑇5(𝑈)𝑇4(𝑉) +
0.02342𝑇4(𝑈)𝑇5(𝑉) 

(H-19) 

 
𝛥𝜆(′′) = 4.55106 − 1.20881𝑇1(𝑈) + 0.80082𝑇1(𝑉) − 0.44992𝑇2(𝑈) +

1.71129𝑇1(𝑈)𝑇1(𝑉) − 1.03511𝑇2(𝑉) − 0.36942𝑇3(𝑈) +
1.22676𝑇2(𝑈)𝑇1(𝑉) − 1.93790𝑇1(𝑈)𝑇2(𝑉) + 0.82344𝑇3(𝑉) −
0.13523𝑇4(𝑈) + 0.78620𝑇3(𝑈)𝑇1(𝑉) − 1.35290𝑇2(𝑈)𝑇2(𝑉) +
1.59425𝑇1(𝑈)𝑇3(𝑉) − 0.44548𝑇4(𝑉) − 0.08177𝑇5(𝑈) +
0.34312𝑇4(𝑈)𝑇1(𝑉) − 0.91217𝑇3(𝑈)𝑇2(𝑉) +
1.11000𝑇2(𝑈)𝑇3(𝑉) − 0.77843𝑇1(𝑈)𝑇4(𝑉) + 0.09346𝑇5(𝑉) +
0.14460𝑇5(𝑈)𝑇1(𝑉) − 0.35611𝑇4(𝑈)𝑇2(𝑉) +
0.72889𝑇3(𝑈)𝑇3(𝑉) − 0.59404𝑇2(𝑈)𝑇4(𝑉) +

(H-20) 



H-4 

0.22950𝑇1(𝑈)𝑇5(𝑉) − 0.15325𝑇5(𝑈)𝑇2(𝑉) +
0.27529𝑇4(𝑈)𝑇3(𝑉) − 0.33570𝑇3(𝑈)𝑇4(𝑉) +
0.10236𝑇2(𝑈)𝑇5(𝑉) + 0.11485𝑇5(𝑈)𝑇3(𝑉) −
0.14424𝑇4(𝑈)𝑇4(𝑉) + 0.10749𝑇3(𝑈)𝑇5(𝑉) −
0.04274𝑇5(𝑈)𝑇4(𝑉) + 0.02077𝑇5(𝑈)𝑇5(𝑉)  

 
H.2  Slovenia (D48 to D48) 
The normalised intermediate coordinates U and V were defined as follows: 
 
            𝑈 = 1.37174(𝜙in deg − 46.150); (H-21) 
            𝑉 = 0.62035(𝜆in deg − 14.984). (H-22) 
 
The Ordinary MREs with top power 3 (D48→D96) as follows: 
 

 𝛥𝜙(′′) = −1.09110 − 0.26191𝑈 + 0.14379𝑉 + 0.01043𝑈2 −
 0.04808𝑈𝑉 − 0.01490𝑈3 − 0.02248𝑈𝑉2 + 0.01086𝑉3 −
0.04603𝑈2𝑉2 − 0.00727𝑈𝑉3 + 0.02513𝑈3𝑉2 −
0.01861𝑈2𝑉3 + 0.06285𝑈3𝑉3 

(H-23) 

 
 𝛥𝜆(′′) = −17.24896 − 0.12073𝑈 − 0.67593𝑉 + 0.02208𝑈2 +

 0.03339𝑈𝑉 − 0.02324𝑉2 + 0.00452𝑈3 − 0.06066𝑈𝑉2 −
0.03205𝑈3𝑉 − 0.01233𝑈2𝑉2 − 0.09246𝑈𝑉3 − 0.05351𝑈3𝑉2 +
0.08356𝑈2𝑉3 + 0.10639𝑈3𝑉3 

(H-24) 

 
The Ordinary MREs with top power 4 (D48→D96) are as follows: 
 

 𝛥𝜙(′′) = −1.09254 − 0.25883𝑈 + 0.13974𝑉 + 0.02893𝑈2 −
 0.02371𝑈𝑉 + 0.01423𝑉2 − 0.02433𝑈3 +
0.04846𝑈2𝑉 −  0.04976𝑈𝑉2 + 0.02588𝑉3 −
0.03018𝑈4 − 0.05885𝑈3𝑉 −  0.24328𝑈2𝑉2 −
0.10192𝑈𝑉3 − 0.01228𝑉4 − 0.10423𝑈4𝑉 +
0.09507𝑈3𝑉2 −  0.05237𝑈2𝑉3 − 0.01024𝑈𝑉4 +
0.34098𝑈4𝑉2 +  0.16784𝑈3𝑉3 + 0.40514𝑈2𝑉4 +
0.21526𝑈4𝑉3 − 0.15746𝑈3𝑉4 − 0.56827𝑈4𝑉4 

(H-25) 

 
 𝛥𝜆(′′) = −17.24763 −  0.12702𝑈 −  0.66899𝑉 −  0.00388𝑈2 −

 0.00886𝑈𝑉 −  0.02962𝑉2  +  0.01851𝑈3 − 0.02959𝑈2𝑉 −
0.05122𝑉3 +  0.04077𝑈4 +  0.11865𝑈3𝑉 +  0.17691𝑈2𝑉2  +
 0.13323𝑈𝑉3 −  0.03941𝑉4 +  0.10803𝑈4𝑉 −
 0.28827𝑈3𝑉2 +  0.13186𝑈2𝑉3 + 0.08709𝑈𝑉4 −
 0.36950𝑈4𝑉2  −  0.53553𝑈3𝑉3 −  0.31043𝑈2𝑉4 +
0.93646𝑈4𝑉4  

(H-26) 

 
The Ordinary MREs with top power 5 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.09239 − 0.25651𝑈 + 0.13722𝑉 +
0.00398𝑈2 −  0.00928𝑈𝑉 + 0.03583𝑉2 −
0.06154𝑈3 + 0.11511𝑈2𝑉 − 0.11715𝑈𝑉2 +
0.06224𝑉3 + 0.03207𝑈4 − 0.09360𝑈3𝑉 −
 0.16669𝑈2𝑉2 − 0.18192𝑈𝑉3 − 0.10907𝑉4 +
0.07648𝑈5 − 0.28498𝑈4𝑉 + 0.48608𝑈3𝑉2 −
 0.50455𝑈2𝑉3 + 0.32613𝑈𝑉4 − 0.12733𝑉5 −
0.05196𝑈5𝑉 + 0.19303𝑈4𝑉2 +  0.27643𝑈3𝑉3 +
0.27463𝑈2𝑉4 +  0.37929𝑈𝑉5 − 0.32722𝑈5𝑉2 +
1.15495𝑈4𝑉3 − 1.39624𝑈3𝑉4 + 0.46972𝑈2𝑉5 −
0.18176𝑈5𝑉3 + 0.37967𝑈4𝑉4 −  0.87756𝑈3𝑉5 +
0.13584𝑈4𝑉5  

(H-27) 

 



H-5 

𝛥𝜆(′′) = −17.24846 − 0.12596𝑈 − 0.67449𝑉 −
 0.04157𝑈𝑉 − 0.01873𝑉2 + 0.03764𝑈3 +
0.06088𝑈2𝑉 −  0.11253𝑈𝑉2 − 0.02280𝑉3 +
0.01962𝑈4 + 0.30531𝑈3𝑉 +  0.48338𝑈2𝑉2 +
0.28615𝑈𝑉3 − 0.10173𝑉4 − 0.04572𝑈5 −
0.03053𝑈4𝑉 − 0.29896𝑈3𝑉2 −  0.14922𝑈2𝑉3 +
0.60439𝑈𝑉4 − 0.08913𝑉5 − 0.27757𝑈5𝑉 −
0. 66745𝑈4𝑉2 −  1.70801𝑈3𝑉3 − 1.66776𝑈2𝑉4 +
 0.26339𝑈𝑉5 + 0.32578𝑈5𝑉2 + 0.46713𝑈3𝑉4 −
0.75765𝑈2𝑉5 + 1.84396𝑈5𝑉3 + 1.88527𝑈4𝑉4 +
 2.23054𝑈3𝑉5 − 0.53145𝑈5𝑉4 + 0.51841𝑈4𝑉5 −
2.91632𝑈5𝑉5  

(H-28) 

 
The Ordinary MREs with top power 6 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.09199 − 0.25671𝑈 + 0.13307𝑉 − 0.01039𝑈2 +
 0.02238𝑈𝑉 + 0.01904𝑉2 − 0.03367𝑈3 +
0.17596𝑈2𝑉 −  0.21032𝑈𝑉2 + 0.10141𝑉3 +
0.11755𝑈4 − 0.42027𝑈3𝑉 +  0.28201𝑈2𝑉2 −
0.45957𝑈𝑉3 − 0.03614𝑉4 − 0.80737𝑈4𝑉 +
0.90478𝑈3𝑉2 −  0.41391𝑈2𝑉3 + 0.63092𝑈𝑉4 −
0.22037𝑉5 − 0.13678𝑈6 + 0.69781𝑈5𝑉 −
1.05556𝑈4𝑉2 +  1.32371𝑈3𝑉3 − 1.27196𝑈2𝑉4 +
 1.18766𝑈𝑉5 − 0.12251𝑉6 + 1.05379𝑈6𝑉 −
1.16127𝑈5𝑉2 + 2.61371𝑈4𝑉3 − 2.67357𝑈3𝑉4 −
1.40762𝑈2𝑉5 +  0.34871𝑈𝑉6 + 0.24145𝑈6𝑉2 −
1.75051𝑈5𝑉3 + 3.73462𝑈4𝑉4 − 0.67849𝑈2𝑉6 −
3.35164𝑈6𝑉3 + 2.09009𝑈5𝑉4 + 1.09491𝑈4𝑉5 +
 2.53857𝑈3𝑉6 + 0.68564𝑈6𝑉4 − 4.37226𝑈5𝑉5 +
4.27159𝑈6𝑉5 − 5.63715𝑈5𝑉6 + 2.00221𝑈6𝑉6  

(H-29) 

 
𝛥𝜆(′′) = −17.24754 − 0.13580𝑈 − 0.66515𝑉 − 0.02801𝑈2 −

 0.06547𝑈𝑉 − 0.03005𝑉2 + 0.11463𝑈3 +
0.04961𝑈2𝑉 +  0.04619𝑈𝑉2 − 0.16246𝑉3 +
0.17221𝑈4 + 0.34837𝑈3𝑉 +  0.82143𝑈2𝑉2 +
0.82887𝑈𝑉3 − 0.16253𝑉4 − 0.19168𝑈5 −
0.23432𝑈4𝑉 − 0.99251𝑈3𝑉2 + 0.36556𝑈𝑉4 +
0.24159𝑉5 − 0.23927𝑈6 − 2.55220𝑈4𝑉2 −
 4.06721𝑈3𝑉3 − 2.08463𝑈2𝑉4 −  1.35955𝑈𝑉5 +
0.28261𝑉6 + 0.69600𝑈6𝑉 + 0.72875𝑈5𝑉2 +
1.72449𝑈4𝑉3 + 0.53254𝑈2𝑉5 −  1.03470𝑈𝑉6 +
2.17999𝑈6𝑉2 + 3.24002𝑈5𝑉3 + 7.82174𝑈4𝑉4 +
 6.43003𝑈3𝑉5 + 1.80974𝑈2𝑉6 − 4.10731𝑈6𝑉3 +
4.26679𝑈5𝑉4 − 6.74247𝑈4𝑉5 +  3.02834𝑈3𝑉6 −
9.71198𝑈6𝑉4 − 11.53780𝑈4𝑉6 + 2.76442𝑈6𝑉5 −
1.04831𝑈5𝑉6 − 8.03332𝑈6𝑉6  

(H-30) 

 
The North/South MREs with top power 3 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.09217  +  0.13970𝑉 +  0.01241𝑉2 +  0.03306𝑉3 −
 0.25042𝑈 + 0.03551𝑈𝑉 −  0.09889𝑈𝑉2 −  0.25622𝑈𝑉3  

   

− 0.02857𝑈2 −  0.21053𝑈2𝑉 + 0.09449𝑈2𝑉2 +
0.57587𝑈2𝑉3 +  0.02626𝑈3 +  0.11426𝑈3𝑉 −
 0.04984𝑈3𝑉2 −  0.31211𝑈3𝑉3   

if U>0 
 

(H-31) 

+ 0.0611𝑈2 +  0.36197𝑈2𝑉 − 0.40614𝑈2𝑉2 −
1.12546𝑈2𝑉3 +  0.02703𝑈3 +  0.30818𝑈3𝑉 −
 0.27361𝑈3𝑉2 −  0.86592𝑈3𝑉3    

if U0 
 

 



H-6 

𝛥𝜆(′′) = −17.24751 − 0.67457𝑉 −  0.04489𝑉2 −  0.02927𝑉3 −
 0.14149𝑈 − 0.05497𝑈𝑉 +  0.08902𝑈𝑉2 +  0.24225𝑈𝑉3  

   

+ 0.08509𝑈2 +  0.29721𝑈2𝑉 − 0.33338𝑈2𝑉2 −
0.76662𝑈2𝑉3 −  0.05142𝑈3 −  0.26469𝑈3𝑉 +
 0.18455𝑈3𝑉2 +  0.66875𝑈3𝑉3   

if U>0 
 

(H-32) 

− 0.07004𝑈2 −  0.32481𝑈2𝑉 + 0.77069𝑈2𝑉2 +
1.60026𝑈2𝑉3 −  0.07456𝑈3 −  0.28755𝑈3𝑉 +
 0.64704𝑈3𝑉2 +  1.39839𝑈3𝑉3    

if U0 
 

 
The North/South MREs with top power 4 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.09120  +  0.13677𝑉 +  0.05685𝑉3 +  0.04060𝑉4 −
 0.27175𝑈 + 0.15792𝑈𝑉 +  0.10197𝑈𝑉2 −
 0.74695𝑈𝑉3 −  0.60725𝑈𝑉4  

   

− 0.94999𝑈2𝑉 + 2.81137𝑈2𝑉3 + 1.39416𝑈2𝑉4 +
 0.14599𝑈3 +  1.67119𝑈3𝑉 −  1.57520𝑈3𝑉2 −
 4.01286𝑈3𝑉3 +  0.18882𝑈4 −  0.99026𝑈4𝑉 +
 1.83261𝑈4𝑉2 +  1.80642𝑈4𝑉3 −  1.01923𝑈4𝑉4   

if U>0 

 
(H-33) 

− 0.14444𝑈2 +  1.15210𝑈2𝑉 + 1.68152𝑈2𝑉2 −
2.92383𝑈2𝑉3 − 3.32993𝑈2𝑉4 −  0.44885𝑈3 +
 1.90224𝑈3𝑉 +  4.91998𝑈3𝑉2 −  2.41191𝑈3𝑉3 −
 5.61039𝑈3𝑉4 −  0.31461𝑈4 +  0.98157𝑈4𝑉 +
 3.62486𝑈4𝑉2 − 2.92708𝑈4𝑉4   

if U0 

 

 
𝛥𝜆(′′) = −17.24685 −  0.67162𝑉 −  0.03552𝑉2 −  0.04874𝑉3 −

 0.03196𝑉4 −  0.11429𝑈 − 0.07916𝑈𝑉 −
 0.31374𝑈𝑉2 +  0.37119𝑈𝑉3 +  0.64261𝑈𝑉4  

   

− 0.25104𝑈2 +  0.68360𝑈2𝑉 + 2.42906𝑈2𝑉2 −
1.55313𝑈2𝑉3 − 3.76435𝑈2𝑉4 +  0.91577𝑈3 −
 2.10517𝑈3𝑉 −  4.80654𝑈3𝑉2 +  3.66179𝑈3𝑉3 +
 5.93253𝑈3𝑉4 −  0.83006𝑈4 +  2.31270𝑈4𝑉 +
 2.13105𝑈4𝑉2 −  3.58973𝑈4𝑉3 −  1.65111𝑈4𝑉4   

if U>0 

 
(H-34) 

+ 0.08076𝑈2 − 2.09753𝑈2𝑉2 − 3.10397𝑈2𝑉3 −
1.42310𝑈2𝑉4 +  0.21341𝑈3 +  0.75690𝑈3𝑉 −
 5.64890𝑈3𝑉2 −  14.36463𝑈3𝑉3 −  9.12429𝑈3𝑉4 +
 0.17314𝑈4 +  0.71614𝑈4𝑉 −  4.05899𝑈4𝑉2 −
 11.51651𝑈4𝑉3 −  7.43560𝑈4𝑉4   

if U0 

 

 
The East/West MREs with top power 3 (D48→D96) are as follows: 

 
𝛥𝜙(′′) = −1.09231 −  0.26115𝑈 +  0.01038𝑈2 −  0.01873𝑈3 +

 0.12695𝑉 +  0.04653𝑈2𝑉    

   

+ 0.14143𝑉2 −  0.39282𝑈𝑉2 −  0.17019𝑈2𝑉2 +
 0.21431𝑈3𝑉2 −  0.18369𝑉3  +  0.55504𝑈𝑉3 −
 0.14056𝑈2𝑉3 −  0.09343𝑈3𝑉3   

if V>0 
 

(H-35) 

− 0.03802𝑉2  +  0.14489𝑈𝑉2 −  0.05914𝑈2𝑉2 −
 0.16570𝑈3𝑉2 −  0.01114𝑉3  +  0.12796𝑈𝑉3 −
 0.13784𝑈2𝑉3 −  0.21518𝑈3𝑉3    

if V0 
 

 
𝛥𝜆(′′) = −17.24897 −  0.12003𝑈 +  0.00656𝑈2 −  0.01179𝑈3 −

 0.67888𝑉 +   0.13498𝑈2𝑉 +  0.24708𝑈3𝑉    

   

+ 0.02408𝑉2 −  0.15778𝑈𝑉2 −  0.89658𝑈3𝑉2 −
 0.11263𝑉3  +  0.39806𝑈𝑉3 −  0.66671𝑈2𝑉3  +
 1.05906𝑈3𝑉3   

if V>0 
 

(H-36) 

− 0.03456𝑉2 −  0.16462𝑈𝑉2 +  0.80556𝑈2𝑉2 +
 1.24882𝑈3𝑉2 −  0.01130𝑉3 −  0.16335𝑈𝑉3 +
 0.91993𝑈2𝑉3  +  1.31849𝑈3𝑉3    

if V0 
 

 
The East/West MREs with top power 4 (D48→D96) are as follows: 
 



H-7 

𝛥𝜙(′′) = −1.09410 −  0.25531𝑈 +  0.03175𝑈2 −  0.03465𝑈3 −
 0.02987𝑈4 +  0.11637𝑉 +  0.15490𝑈2𝑉 −
 0.08103𝑈3𝑉 −  0.29694𝑈4𝑉   

   

+ 0.25220𝑉2 −  0.42150𝑈𝑉2 −  0.90288𝑈2𝑉2 +
 0.90042𝑈3𝑉2 +  1.06799𝑈4𝑉2 −  0.46232𝑉3  +
 0.66789𝑈𝑉3 +  1.48213𝑈2𝑉3 −  2.70880𝑈3𝑉3 +
 0.17423𝑉4 −  1.26175𝑈2𝑉4  +  2.34352𝑈3𝑉4 −
 0.92872𝑈4𝑉4   

if V>0 

 
(H-37) 

− 0.02756𝑉2 −  0.21028𝑈𝑉2 −  0.47347𝑈2𝑉2 +
 0.34970𝑈3𝑉2 +   0.06676𝑉3 −  0.73017𝑈𝑉3 −
 1.73571𝑈2𝑉3 + 0.70345𝑈3𝑉3 +  0.60302𝑈4𝑉3 +
 0.06276𝑉4 −  0.49894𝑈𝑉4 −  1.15535𝑈2𝑉4    

if V0 

 

 
𝛥𝜆(′′) = −17.24738 −  0.12965𝑈 −  0.02540𝑈2  +  0.02304𝑈3 +

 0.06533𝑈4 −  0.61961𝑉 −  0.07180𝑈𝑉 −
 0.24467𝑈2𝑉 +  0.30735𝑈3𝑉 +  0.59776𝑈4𝑉   

   

− 0.43179𝑉2  +  0.48582𝑈𝑉2 +  2.96579𝑈2𝑉2 −
 1.61620𝑈3𝑉2 −  5.25734𝑈4𝑉2 +  0.83985𝑉3 −
 1.01512𝑈𝑉3 −  5.97019𝑈2𝑉3  +  1.87775𝑈3𝑉3 +
 10.48398𝑈4𝑉3 −  0.60947𝑉4  +  0.98484𝑈𝑉4 +
 2.68807𝑈2𝑉4 −  6.23149𝑈4𝑉4   

if V>0 

 
(H-38) 

+ 0.31092𝑉2 −  0.22303𝑈𝑉2 −  0.24652𝑈2𝑉2 +
 0.65249𝑈4𝑉2 +  0.62957𝑉3 −  2.13709𝑈3𝑉3 −
 1.16528𝑈4𝑉3 +  0.36903𝑉4  +  0.14998𝑈𝑉4 −
 0.16957𝑈2𝑉4 −  2.17783𝑈3𝑉4 −  1.32952𝑈4𝑉4   

if V0 

 

 
The Four-Quadrant MREs with top power 3 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.09253 −  0.25830𝑈 +  0.13910𝑉 +  0.01245𝑈2 +
 0.04166𝑈𝑉 +  0.01013𝑉2 − 0.02591𝑈3 −
 0.06201𝑈𝑉2 +  0.03073𝑉3 −  0.12029𝑈3𝑉 −
 0.26082𝑈𝑉3  

  

(H-39) 

− 0.80606𝑈2𝑉2  +  0.99655𝑈3𝑉2 +  1.23023𝑈2𝑉3 −
1.1167𝑈3𝑉3    

if U>0 & V>0 

+ 0.97722𝑈2𝑉2 −  1.31629𝑈3𝑉2 +  1.57382𝑈2𝑉3 −
1.81679𝑈3𝑉3    

if U>0 & V0 

+ 4.71460𝑈2𝑉2  +  6.60863𝑈3𝑉2 −  11.74656𝑈2𝑉3 −
17.37754𝑈3𝑉3   

if U0 & V>0 

− 1.43853𝑈2𝑉2 −  1.47484𝑈3𝑉2 −  2.04927𝑈2𝑉3 −
1.88651𝑈3𝑉3   

if U0 & V0 

 

𝛥𝜆(′′) = −17.24800 −  0.12262𝑈 −  0.67480𝑉 +  0.00281𝑈2 −
 0.02055𝑈𝑉 −  0.03261𝑉2 − 0.00396𝑈3 +
 0.11967𝑈2𝑉 −  0.01573𝑈𝑉2 −  0.01565𝑉3 +
 0.31449𝑈3𝑉 +  0.10103𝑈𝑉3  

  

(H-40) 

+ 0.16846𝑈2𝑉2 −  1.29146𝑈3𝑉2 −  0.61762𝑈2𝑉3  +
1.32457𝑈3𝑉3   

if U>0 & V>0 

− 0.29505𝑈2𝑉2  +  2.79154𝑈3𝑉2 −  0.57246𝑈2𝑉3  +
3.18561𝑈3𝑉3   

if U>0 & V0 

− 1.80338𝑈2𝑉2 −  5.05514𝑈3𝑉2 +  5.48569𝑈2𝑉3  +
15.25399𝑈3𝑉3   

if U0 & V>0 

+ 1.49241𝑈2𝑉2  +  1.95359𝑈3𝑉2 +  1.99797𝑈2𝑉3  +
2.27176𝑈3𝑉3   

if U0 & V0 

 
The Four-Quadrant MREs with top power 4 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.09268 −  0.25768𝑈 +  0.13639𝑉 +  0.01277𝑈2 +
 0.04207𝑈𝑉 +  0.01381𝑉2 − 0.02734𝑈3 −
 0.02898𝑈2𝑉 −  0.07497𝑈𝑉2 +  0.06332𝑉3 +

  

(H-41) 



H-8 

0.00493𝑈4 −  0.16625𝑈3𝑉 −  0.53312𝑈𝑉3 +
 0.02831𝑉4 − 0.34255𝑈𝑉4   
− 0.45449𝑈2𝑉2  +  1.41577𝑈3𝑉2 +  1.62556𝑈2𝑉3 −
 0.66050𝑈4𝑉2 − 3.86133𝑈3𝑉3 +  1.25318𝑈2𝑉4 +
 2.74044𝑈4𝑉3 −  1.12916𝑈4𝑉4   

if U>0 & V>0 
 

+ 3.44245𝑈2𝑉2 −  22.36761𝑈3𝑉2 +  9.51474𝑈2𝑉3 +
 34.39782𝑈4𝑉2 − 60.62440𝑈3𝑉3 +  6.48778𝑈2𝑉4 +
 94.78947𝑈4𝑉3 − 42.48863𝑈3𝑉4 +  66.64619𝑈4𝑉4    

if U>0 & V0 

− 2.65391𝑈2𝑉2 − 22.56437𝑈3𝑉2 +  41.70016𝑈2𝑉3 −
 27.52312𝑈4𝑉2  + 205.65453𝑈3𝑉3 −  99.10100𝑈2𝑉4 +
 220.33167𝑈4𝑉3 − 419.12503𝑈3𝑉4 −  436.84328𝑈4𝑉4   

if U0 & V>0 

− 1.12562𝑈2𝑉2 −  1.58546𝑈2𝑉3 +  1.06190𝑈4𝑉2  +
2.72768𝑈3𝑉3 +   3.69863𝑈4𝑉3  + 3.43845𝑈3𝑉4 +
 3.03975𝑈4𝑉4   

if U0 & V0 

 

𝛥𝜆(′′) = −17.24829 −  0.12822𝑈 −  0.67291𝑉 −  0.01197𝑈2 −
 0.05692𝑈𝑉 −  0.03373𝑉2  + 0.01329𝑈3 +
 0.29698𝑈2𝑉 −  0.14875𝑈𝑉2 −  0.05910𝑉3 +
0.03763𝑈4 +  0.24099𝑈3𝑉 +  0.43139𝑈𝑉3 −
 0.04775𝑉4 −  0.17435𝑈4𝑉 +  0.55425𝑈𝑉4   

  

(H-42) 

+ 3.91356𝑈2𝑉2 −  11.41675𝑈3𝑉2 −  9.07714𝑈2𝑉3 +
 6.82614𝑈4𝑉2  + 23.99470𝑈3𝑉3 +  2.75649𝑈2𝑉4 −
 14.97517𝑈4𝑉3 − 10.64716𝑈3𝑉4 +  7.61079𝑈4𝑉4   

if U>0 & V>0 
 

+ 12.72639𝑈2𝑉2 −  54.82024𝑈3𝑉2 +  36.09085𝑈2𝑉3 +
 73.02009𝑈4𝑉2 − 175.13081𝑈3𝑉3 +  25.32003𝑈2𝑉4 +
 234.06656𝑈4𝑉3 − 131.08910𝑈3𝑉4 +  176.69355𝑈4𝑉4    

if U>0 & V0 

+ 4.59944𝑈2𝑉2  +  29.55962𝑈3𝑉2 −  36.80249𝑈2𝑉3 +
 28.91412𝑈4𝑉2 − 190.16377𝑈3𝑉3 +  55.43907𝑈2𝑉4 −
 177.73922𝑈4𝑉3  + 270.89916𝑈3𝑉4 +  253.48171𝑈4𝑉4   

if U0 & V>0 

+ 2.89976𝑈2𝑉2 −  0.48261𝑈3𝑉2 +  7.75994𝑈2𝑉3 −
 3.84808𝑈4𝑉2 − 5.13270𝑈2𝑉4 −  7.97219𝑈4𝑉3 −
 4.96697𝑈4𝑉4   

if U0 & V0 

 
The Chebyshev MREs with top power 3 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.09787 − 0.27319𝑇1(𝑈) + 0.14339𝑇1(𝑉)
− 0.00705𝑇2(𝑈) − 0.0162𝑇1(𝑈)𝑇1(𝑉)
− 0.01206𝑇2(𝑉) − 0.00914𝑇2(𝑈)𝑇1(𝑉)
+ 0.01253𝑇3(𝑈)𝑇1(𝑉) − 0.01240𝑇2(𝑈)𝑇2(𝑉)
+ 0.01069𝑇1(𝑈)𝑇3(𝑉) + 0.00375𝑇3(𝑈)𝑇2(𝑉)
− 0.00287𝑇2(𝑈)𝑇3(𝑉) + 0.00425𝑇3(𝑈)𝑇3(𝑉) 

(H-43) 

 
𝛥𝜆(′′) = −17.25260 − 0.16766𝑇1(𝑈) − 0.64453𝑇1(𝑉)

+ 0.00760𝑇2(𝑈) − 0.01461𝑇2(𝑉)
− 0.00530𝑇3(𝑈) + 0.03047𝑇2(𝑈)𝑇1(𝑉)
− 0.05018𝑇1(𝑈)𝑇2(𝑉) + 0.01034𝑇3(𝑉)  
+ 0.01240𝑇3(𝑈)𝑇1(𝑉) − 0.00341𝑇2(𝑈)𝑇2(𝑉)
− 0.00335𝑇1(𝑈)𝑇3(𝑉) − 0.00635𝑇3(𝑈)𝑇2(𝑉)
+ 0.00989𝑇2(𝑈)𝑇3(𝑉) + 0.00670𝑇3(𝑈)𝑇3(𝑉) 

(H-44) 

 
The Chebyshev MREs with top power 4 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.08683 − 0.31557𝑇1(𝑈) + 0.18624𝑇1(𝑉) − 0.00559𝑇2(𝑈) −
0.05265𝑇1(𝑈)𝑇1(𝑉) − 0.00939𝑇3(𝑈) + 0.03461𝑇2(𝑈)𝑇1(𝑉) −
0.05469𝑇1(𝑈)𝑇2(𝑉) + 0.02041𝑇3(𝑉) − 0.00889𝑇4(𝑈) +
0.01568𝑇3(𝑈)𝑇1(𝑉) − 0.01477𝑇2(𝑈)𝑇2(𝑉) +
0.00487𝑇1(𝑈)𝑇3(𝑉) − 0.00260𝑇4(𝑉) + 0.00734𝑇4(𝑈)𝑇1(𝑉) −
0.00829𝑇3(𝑈)𝑇2(𝑉) + 0.02078𝑇2(𝑈)𝑇3(𝑉) −
0.01624𝑇1(𝑈)𝑇4(𝑉) − 0.01393𝑇4(𝑈)𝑇2(𝑉) +
0.01005𝑇3(𝑈)𝑇3(𝑉) − 0.00986𝑇2(𝑈)𝑇4(𝑉) +

(H-45) 
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0.00678𝑇4(𝑈)𝑇3(𝑉) − 0.00499𝑇3(𝑈)𝑇4(𝑉) −
0.00882𝑇4(𝑈)𝑇4(𝑉)  

 
𝛥𝜆(′′) = −17.21579 − 0.18537𝑇1(𝑈) − 0.63563𝑇1(𝑉) +

0.08709𝑇2(𝑈) − 0.12017𝑇1(𝑈)𝑇1(𝑉) + 0.03820𝑇2(𝑉) −
0.03006𝑇3(𝑈) + 0.08361𝑇2(𝑈)𝑇1(𝑉) − 0.06034𝑇1(𝑈)𝑇2(𝑉) +
0.00235𝑇3(𝑉)  + 0.02593𝑇4(𝑈) − 0.07021𝑇3(𝑈)𝑇1(𝑉) +
0.10804𝑇2(𝑈)𝑇2 − 0.06692𝑇1(𝑈)𝑇3(𝑉) + 0.01947𝑇4(𝑉) +
0.01212𝑇4(𝑈)𝑇1(𝑉) − 0.03434𝑇3(𝑈)𝑇2(𝑉) +
0.01448𝑇2(𝑈)𝑇3(𝑉) + 0.01137𝑇1(𝑈)𝑇4(𝑉) +
0.03568𝑇4(𝑈)𝑇2(𝑉) − 0.03337𝑇3(𝑈)𝑇3(𝑉) +
0.03900𝑇2(𝑈)𝑇4(𝑉) − 0.00061𝑇4(𝑈)𝑇3(𝑉) +
0.01468𝑇4(𝑈)𝑇4(𝑉)  

(H-46) 

 
The Chebyshev MREs with top power 5 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −1.00196 − 0.50381𝑇1(𝑈) + 0.36925𝑇1(𝑉) + 0.14729𝑇2(𝑈) −
0.35240𝑇1(𝑈)𝑇1(𝑉) + 0.09774𝑇2(𝑉) − 0.11275𝑇3(𝑈) +
0.34820𝑇2(𝑈)𝑇1(𝑉) − 0.33908𝑇1(𝑈)𝑇2(𝑉) + 0.11029𝑇3(𝑉)  +
0.03387𝑇4(𝑈) − 0.16752𝑇3(𝑈)𝑇1(𝑉) + 0.17016𝑇2(𝑈)𝑇2(𝑉) −
0.10920𝑇1(𝑈)𝑇3(𝑉) + 0.02133𝑇4(𝑉) − 0.00545𝑇5(𝑈) +
0.08327𝑇4(𝑈)𝑇1(𝑉) − 0.16490𝑇3(𝑈)𝑇2(𝑉) +
0.17592𝑇2(𝑈)𝑇3(𝑉) − 0.09013𝑇1(𝑈)𝑇4(𝑉) + 0.00990𝑇5(𝑉) −
0.01177𝑇5(𝑈)𝑇1(𝑉) + 0.03579𝑇4(𝑈)𝑇2(𝑉) −
0.06548𝑇3(𝑈)𝑇3(𝑉) + 0.04089𝑇2(𝑈)𝑇4(𝑉) −
0.01743𝑇1(𝑈)𝑇5(𝑉) − 0.01023𝑇5(𝑈)𝑇2(𝑉) +
0.04140𝑇4(𝑈)𝑇3(𝑉) − 0.04363𝑇3(𝑈)𝑇4(𝑉) +
0.01892𝑇2(𝑈)𝑇5(𝑉) − 0.00284𝑇5(𝑈)𝑇3(𝑉) +
0.00593𝑇4(𝑈)𝑇4(𝑉) − 0.01371𝑇3(𝑈)𝑇5(𝑉) + 0.00106𝑇4(𝑈)𝑇5(𝑉)  

(H-47) 

 
𝛥𝜆(′′) = −17.34304 + 0.05813𝑇1(𝑈) − 0.91519𝑇1(𝑉) +

0.21241𝑇1(𝑈)𝑇1(𝑉) − 0.13281𝑇2(𝑉) − 0.14024𝑇2(𝑈)𝑇1(𝑉) +
0.26479𝑇1(𝑈)𝑇2(𝑉) − 0.11572𝑇3(𝑉)  + 0.04805𝑇4(𝑈) −
0.11472𝑇3(𝑈)𝑇1(𝑉) + 0.07994𝑇1(𝑈)𝑇3(𝑉) − 0.02949𝑇4(𝑉) −
0.00362𝑇5(𝑈) + 0.02932𝑇4(𝑈)𝑇1(𝑉) − 0.06554𝑇2(𝑈)𝑇3(𝑉) +
0.08331𝑇1(𝑈)𝑇4(𝑉) − 0.01793𝑇5(𝑉) − 0.04549𝑇5(𝑈)𝑇1(𝑉) +
0.07397𝑇4(𝑈)𝑇2(𝑉) − 0.07085𝑇3(𝑈)𝑇3(𝑉) +
0.01197𝑇2(𝑈)𝑇4(𝑉) + 0.00672𝑇1(𝑈)𝑇5(𝑉) −
0.005032𝑇5(𝑈)𝑇2(𝑉) + 0.01769𝑇4(𝑈)𝑇3(𝑉) −
0.00298𝑇3(𝑈)𝑇4(𝑉) − 0.00889𝑇2(𝑈)𝑇5(𝑉) −
0.02868𝑇5(𝑈)𝑇3(𝑉) + 0.02939𝑇4(𝑈)𝑇4(𝑉) −
0.0226𝑇3(𝑈)𝑇5(𝑉) − 0.00370𝑇5(𝑈)𝑇4(𝑉) +
0.00379𝑇4(𝑈)𝑇5(𝑉) − 0.01187𝑇5(𝑈)𝑇5(𝑉)  

(H-48) 

 
The Chebyshev MREs with top power 6 (D48→D96) are as follows: 
 

𝛥𝜙(′′) = −0.77283 − 0.83279𝑇1(𝑈) + 0.62993𝑇1(𝑉) + 0.62075𝑇2(𝑈) −
1.23980𝑇1(𝑈)𝑇1(𝑉) + 0.46777𝑇2(𝑉) − 0.43660𝑇3(𝑈) +
0.97863𝑇2(𝑈)𝑇1(𝑉) − 0.75495𝑇1(𝑈)𝑇2(𝑉) + 021249𝑇3(𝑉)  +
0.28768𝑇4(𝑈) − 0.90470𝑇3(𝑈)𝑇1(𝑉) + 0.92160𝑇2(𝑈)𝑇2(𝑉) −
0.62293𝑇1(𝑈)𝑇3(𝑉) + 0.014748𝑇4(𝑉) − 0.09915𝑇5(𝑈) +
0.46084𝑇4(𝑈)𝑇1(𝑉) − 0.60560𝑇3(𝑈)𝑇2(𝑉) + 0.45880𝑇2(𝑈)𝑇3(𝑉) −
0.24834𝑇1(𝑈)𝑇4(𝑉) + 0.05257𝑇5(𝑉) + 0.02745𝑇6(𝑈) −
0.21166𝑇5(𝑈)𝑇1(𝑉) + 0.43409𝑇4(𝑈)𝑇2(𝑉) − 0.48294𝑇3(𝑈)𝑇3(𝑉) +
0.30526𝑇2(𝑈)𝑇4(𝑉) − 0.09456𝑇1(𝑈)𝑇5(𝑉) + 0.00469𝑇6(𝑉) +
0.03901𝑇6(𝑈)𝑇1(𝑉) − 0.13832𝑇5(𝑈)𝑇2(𝑉) + 0.22007𝑇4(𝑈)𝑇3(𝑉) −
0.21567𝑇3(𝑈)𝑇4(𝑉) + 0.11765𝑇2(𝑈)𝑇5(𝑉) − 0.04075𝑇1(𝑈)𝑇6(𝑉) +
0.04473𝑇6(𝑈)𝑇2(𝑉) − 0.11443𝑇5(𝑈)𝑇3(𝑉) + 0.14559𝑇4(𝑈)𝑇4(𝑉) −
0.08471𝑇3(𝑈)𝑇5(𝑉) + 0.01813𝑇2(𝑈)𝑇6(𝑉) + 0.01622𝑇6(𝑈)𝑇3(𝑉) −
0.05125𝑇5(𝑈)𝑇4(𝑉) + 0.06038𝑇4(𝑈)𝑇5(𝑉) − 0.03603𝑇3(𝑈)𝑇6(𝑉) +

(H-49) 
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0.01460𝑇6(𝑈)𝑇4(𝑉) − 0.01718𝑇5(𝑈)𝑇5(𝑉) + 0.01173𝑇4(𝑈)𝑇6(𝑉) +
0.00874𝑇6(𝑈)𝑇5(𝑉) − 0.01133𝑇5(𝑈)𝑇6(𝑉) + 0.00198𝑇6(𝑈)𝑇6(𝑉)  

 
𝛥𝜆(′′) = −17.89429 + 1.04086𝑇1(𝑈) − 1.84321𝑇1(𝑉) − 0.92760𝑇2(𝑈) +

2.17642𝑇1(𝑈)𝑇1(𝑉) − 0.87373𝑇2(𝑉) + 0.61024𝑇3(𝑈) −
1.72516𝑇2(𝑈)𝑇1(𝑉) + 1.70050𝑇1(𝑈)𝑇2(𝑉) − 0.57560𝑇3(𝑉) −
0.27627𝑇4(𝑈) + 1.08482𝑇3(𝑈)𝑇1(𝑉) − 1.25867𝑇2(𝑈)𝑇2(𝑉) +
1.00278𝑇1(𝑈)𝑇3(𝑉) − 0.26876𝑇4(𝑉) + 0.09642𝑇5(𝑈) −
0.53905𝑇4(𝑈)𝑇1(𝑉) + 0.89253𝑇3(𝑈)𝑇2(𝑉) − 0.86190𝑇2(𝑈)𝑇3(𝑉) +
0.51418𝑇1(𝑈)𝑇4(𝑉) − 0.07881𝑇5(𝑉) − 0.00876𝑇6(𝑈) +
0.15292𝑇5(𝑈)𝑇1(𝑉) − 0.34776𝑇4(𝑈)𝑇2(𝑉) + 0.49454𝑇3(𝑈)𝑇3(𝑉) −
0.40305𝑇2(𝑈)𝑇4(𝑉) + 0.20625𝑇1(𝑈)𝑇5(𝑉) − 0.01779𝑇6(𝑉) +
0.02287𝑇6(𝑈)𝑇1(𝑉) + 0.13735𝑇5(𝑈)𝑇2(𝑉) − 0.25864𝑇4(𝑈)𝑇3(𝑉) +
0.26964𝑇3(𝑈)𝑇4(𝑉) − 0.12549𝑇2(𝑈)𝑇5(𝑉) + 0.02413𝑇1(𝑈)𝑇6(𝑉) +
0.05079𝑇5(𝑈)𝑇3(𝑉) − 0.09276𝑇4(𝑈)𝑇4(𝑉) + 0.09754𝑇3(𝑈)𝑇5(𝑉) −
0.03229𝑇2(𝑈)𝑇6(𝑉) − 0.00743𝑇6(𝑈)𝑇3(𝑉) + 0.02897𝑇5(𝑈)𝑇4(𝑉) −
0.02752𝑇4(𝑈)𝑇5(𝑉) + 0.01852𝑇3(𝑈)𝑇6(𝑉) + 0.00918𝑇6(𝑈)𝑇4(𝑉) +
0.00182𝑇4(𝑈)𝑇6(𝑉) + 0.00448𝑇6(𝑈)𝑇5(𝑉) + 0.00782𝑇6(𝑈)𝑇6(𝑉)  

(H-50) 

 

 
The MREs of Ord6tr(Lat) and EW4tr(Lon) (D48→D96) is as follows. 
 

𝛥𝜙(′′) = −1.09184 − 0.25923𝑈 + 0.13427𝑉 + 0.01258𝑉2 −
0.02234𝑈3 + 0.11929𝑈2𝑉 − 0.13431𝑈𝑉2 +
0.09536𝑉3 + 0.05600𝑈4 − 0.11519𝑈3𝑉 −
0.28478𝑈𝑉3 − 0.25322𝑈4𝑉 + 0.29737𝑈3𝑉2 −
 0.52256𝑈2𝑉3 + 0.44093𝑈𝑉4 − 0.17377𝑉5 −
0.05652𝑈6 +  0.37998𝑈3𝑉3 − 0.39517𝑈2𝑉4 +
 0.58467𝑈𝑉5 − 0.11294𝑉6 + 1.33082𝑈4𝑉3 −
1.35697𝑈3𝑉4 − 0.33803𝑈5𝑉3 + 0.75580𝑈4𝑉4 −
0.50114𝑈6𝑉3 +  1.04331𝑈3𝑉6 + 1.01810𝑈6𝑉4 −
1.65939𝑈5𝑉5 + 1.22406𝑈6𝑉5 − 1.63569𝑈5𝑉6  

(H-51) 

 
𝛥𝜆(′′) = −17.24931 −  0.13101𝑈 −  0.01532𝑈2  +

 0.02545𝑈3 +  0.05804𝑈4 −  0.62942𝑉 −
 0.12471𝑈2𝑉 +  0.11838𝑈3𝑉 +  0.32602𝑈4𝑉  

   

− 0.18680𝑉2  +  0.08986𝑈𝑉2 +  1.41112𝑈2𝑉2 −
 0.55717𝑈3𝑉2 − 2.9331𝑈4𝑉2 +  0.07985𝑉3 −
  2.48610𝑈2𝑉3  +  5.56784𝑈4𝑉3 +  1.23345𝑈2𝑉4 −
  2.65893𝑈4𝑉4   

if V>0 

 
 

(H-52) 

 + 0.30075𝑉2 −  0.03472𝑈𝑉2 +  0.40479𝑈4𝑉2 +
 0.64266𝑉3 −  0.68551𝑈3𝑉3 +  0.38714𝑉4 −
  0.34671𝑈2𝑉4 −  0.74364𝑈3𝑉4   

if V0 
 

 
H.3  Great Britain (ETRS89 to OSGB36) 
The normalised intermediate coordinates U and V were defined as follows: 
 
            𝑈 = 0.14662(𝜙in deg − 56.104); (H-53) 
            𝑉 = 0.12769(𝜆in deg + 2.968). (H-54) 
 
The Ordinary MREs with top power 3 (ETRS89→OSGB36) are as follows:  
 

𝛥𝜙(′′) = 0.26880 + 3.13019𝑈 − 0.48925𝑉 + 0.03480𝑈2 −
 0.13513𝑈𝑉 − 0.12063𝑉2 − 0.41272𝑈3 + 0.04574𝑈2𝑉 −
0.05737𝑈𝑉2 − 0.01779𝑉3 − 0.13797𝑈3𝑉 −
 0.10340𝑈2𝑉2 − 0.04485𝑈𝑉3 + 0.28145𝑈3𝑉2 −
 0.03390𝑈2𝑉3 +  0.26330𝑈3𝑉3  

(H-55) 
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𝛥𝜆(′′) = 5.26539 + 1.13493𝑈 + 3.84616𝑉 + 0.29140𝑈2 +
 0.96264𝑈𝑉 − 0.13459𝑉2 − 0.67029𝑈2𝑉 +
 0.32858𝑈𝑉2 − 0.18865𝑉3 − 0.14764𝑈3𝑉 +
 0.09906𝑈2𝑉2 − 0.56623𝑈𝑉3 − 0.54143𝑈3𝑉2 +
 0.73524𝑈2𝑉3 +  0.51748𝑈3𝑉3  

(H-56) 

 
The Ordinary MREs with top power 4 (ETRS89→OSGB36) are as follows:  
 

𝛥𝜙(′′) = 0.27694 + 3.10212𝑈 − 0.49083𝑉 − 0.09106𝑈2 −
 0.17353𝑈𝑉 − 0.33563𝑉2 − 0.38997𝑈3 + 0.03572𝑈2𝑉 +
 0.37465𝑈𝑉2 − 0.06037𝑉3 + 0.16810𝑈4 − 0.07980𝑈3𝑉 +
 1.77928𝑈2𝑉2 + 0.35374𝑉4 + 0.03758𝑈4𝑉 + 0.20333𝑈3𝑉2 +
 0.34716𝑈2𝑉3 − 0.52576𝑈𝑉4 − 1.92044𝑈4𝑉2 +
 0.24741𝑈3𝑉3 − 2.50028𝑈2𝑉4 − 0.47975𝑈4𝑉3 +
2.57554𝑈4𝑉4  

(H-57) 

 
𝛥𝜆(′′) = 5.26440 + 1.12771𝑈 + 3.96188𝑉 + 0.28801𝑈2 +

 0.67612𝑈𝑉 − 0.09858𝑉2 + 0.01050𝑈3 − 2.31902𝑈2𝑉 +
 1.15050𝑈𝑉2 − 0.18429𝑉3 + 0.08247𝑈3𝑉 +
 2.03877𝑈2𝑉2 − 0.07408𝑈𝑉3 − 0.09743𝑉4 +
2.10700𝑈4𝑉 − 1.50041𝑈3𝑉2 +  1.65599𝑈2𝑉3 −
1.42274𝑈𝑉4 − 2.00055𝑈4𝑉2 +  0.24651𝑈3𝑉3 −
1.65350𝑈2𝑉4 − 1.67385𝑈4𝑉3 + 1.72665𝑈3𝑉4 +
1.68103𝑈4𝑉4  

(H-58) 

 
The Ordinary MREs with top power 5 (ETRS89→OSGB36) are as follows: 
 

𝛥𝜙(′′) = 0.28523 + 3.18129𝑈 − 0.37706𝑉 − 0.21549𝑈2 +
 0.02293𝑈𝑉 − 0.07328𝑉2 − 0.98747𝑈3 −
0.13604𝑈2𝑉 +  1.00600𝑈𝑉2 − 0.43526𝑉3 +
025407𝑈4 − 0.56438𝑈3𝑉 +  0.86061𝑈2𝑉2 +
0.89751𝑈𝑉3 − 0.04742𝑉4 + 0.65050𝑈5 −
0.94508𝑈3𝑉2 +  3.61119𝑈2𝑉3 − 1.45349𝑈𝑉4 +
0.47929𝑉5 + 0.43736𝑈5𝑉 − 1.17595𝑈4𝑉2 −
1.61289𝑈3𝑉3 − 0.74342𝑈2𝑉4 −  2.12472𝑈𝑉5 +
0.16123𝑈5𝑉2 − 3.39180𝑈4𝑉3 + 2.16065𝑈3𝑉4 −
5.20199𝑈2𝑉5 + 0.88148𝑈5𝑉3 + 1.09940𝑈4𝑉4 +
 6.97010𝑈3𝑉5 − 0.96981𝑈5𝑉4 + 5.20614𝑈4𝑉5 −
5.37890𝑈5𝑉5  

(H-59) 

 
𝛥𝜆(′′) = 5.25889 + 1.10735𝑈 + 3.92559𝑉 + 0.30799𝑈2 +

 0.54573𝑈𝑉 + 0.17112𝑉2 + 0.11572𝑈3 −
2.08435𝑈2𝑉 +  1.84957𝑈𝑉2 + 0.72085𝑉3 −
0.01266𝑈4 + 0.93227𝑈3𝑉 +  1.31930𝑈2𝑉2 +
2.12789𝑈𝑉3 − 0.38721𝑉4 − 0.10981𝑈5 +
1.99680𝑈4𝑉 − 4.37713𝑈3𝑉2 −  3.15828𝑈2𝑉3 −
2.19265𝑈𝑉4 − 1.17070𝑉5 − 0.87501𝑈5𝑉 −
1.70121𝑈4𝑉2 −  11.03630𝑈3𝑉3 − 1.05280𝑈2𝑉4 −
 2.61099𝑈𝑉5 + 2.39468𝑈5𝑉2 + 1.31556𝑈4𝑉3 +
4.97593𝑈3𝑉4 + 5.69917𝑈2𝑉5 + 10.49728𝑈5𝑉3 +
1.55887𝑈4𝑉4 +  12.51239𝑈3𝑉5 − 2.70000𝑈5𝑉4 −
3.02424𝑈4𝑉5 − 12.00659𝑈5𝑉5  

(H-60) 

 
The Ordinary MREs with top power 6 (ETRS89→OSGB36) are as follows: 
 



H-12 

𝛥𝜙(′′) = 0.28527 + 3.15324𝑈 − 0.36119𝑉 − 0.26092𝑈2 −
0.01776𝑉2 − 0.75015𝑈3 − 0.48132𝑈2𝑉 +  1.0487𝑈𝑉2 −
0.97505𝑉3 + 0.67441𝑈4 − 0.67991𝑈3𝑉 −  0.85958𝑈2𝑉2 −
1.34678𝑈𝑉3 − −1.60426𝑉4 + 0.46304𝑈5 + 0.55127𝑈4𝑉 −
4.34242𝑈3𝑉2 +  8.27329𝑈2𝑉3 − 2.07352𝑈𝑉4 +
1.17088𝑉5 − 0.40986𝑈6 + 0.62947𝑈5𝑉 − 0.97542𝑈4𝑉2 +
 8.55764𝑈3𝑉3 + 10.63596𝑈2𝑉4 +  0.98671𝑈𝑉5 +
2.10508𝑉6 − 0.23723𝑈6𝑉 + 3.41112𝑈5𝑉2 −
5.06445𝑈4𝑉3 + 19.40149𝑈3𝑉4 − 12.50879𝑈2𝑉5 +
1.78234𝑈6𝑉2 − 7.45374𝑈5𝑉3 − 9.50118𝑈4𝑉4 −
 4.80034𝑈3𝑉5 − 11.75161𝑈2𝑉6 − 2.46012𝑈6𝑉3 −
17.46097𝑈5𝑉4 + 11.72029𝑈4𝑉5 −  15.69240𝑈3𝑉6 +
3.76650𝑈5𝑉5 + 15.20530𝑈4𝑉6 + 15.58256𝑈5𝑉6 −
4.97200𝑈6𝑉6  

(H-61) 

 
𝛥𝜆(′′) = 5.26318 + 1.10222𝑈 + 3.89569𝑉 + 0.21601𝑈2 +

 0.22377𝑈𝑉 − 0.25139𝑉2 + 0.15728𝑈3 − 3.01752𝑈2𝑉 +
 0.35922𝑉3 + 0.33956𝑈4 + 2.60618𝑈3𝑉 +  2.84976𝑈2𝑉2 −
1.97404𝑈𝑉3 + 0.57646𝑉4 − 0.129840𝑈5 + 6.89722𝑈4𝑉 −
 3.85766𝑈2𝑉3 + 1.05103𝑈𝑉4 − 0.52422𝑉5 − 0.29441𝑈6 −
1.90081𝑈5𝑉 − 6.87715𝑈4𝑉2 +  4.77763𝑈3𝑉3 −
19.18008𝑈2𝑉4 +  3.32443𝑈𝑉5 − 0.56100𝑉6 −
4.22160𝑈6𝑉 − 0.57332𝑈5𝑉2 + 5.81960𝑈4𝑉3 −
21.17460𝑈3𝑉4 + 4.76352𝑈2𝑉5 −  1.72683𝑈𝑉6 +
4.53718𝑈6𝑉2 − 3.30271𝑈5𝑉3 + 38.01589𝑈4𝑉4 −
11.17777𝑈3𝑉5 + 23.07252𝑈2𝑉6 − 2.42298𝑈6𝑉3 +
23.32072𝑈5𝑉4 − 5.97112𝑈4𝑉5 +  27.26517𝑈3𝑉6 −
21.31544𝑈6𝑉4 + 8.40572𝑈5𝑉5 − 50.86119𝑈4𝑉6 +
1.64768𝑈6𝑉5 − 29.62809𝑈5𝑉6 + 31.44880𝑈6𝑉6  

(H-62) 

 
The North/South MREs with top power 3 (ETRS89→OSGB36) are as follows: 
 

𝛥𝜙(′′) = 0.28538 −  0.41802𝑉 −  0.11961𝑉2  −  0.10169𝑉3  +
 3.28408𝑈 + 0.27681𝑈𝑉 +  0.57604𝑈𝑉2 −  1.2314𝑈𝑉3  

    

− 0.098424𝑈2 −  1.45485𝑈2𝑉 − 1.52211𝑈2𝑉2 +
3.95979𝑈2𝑉3 +  0.57734𝑈3 +  0.98805𝑈3𝑉 +
 0.95184𝑈3𝑉2 −  2.65510𝑈3𝑉3   

 
if U>0 

 
(H-63) 

+ 0.37799𝑈2 +  0.87948𝑈2𝑉 + 1.71478𝑈2𝑉2 −
3.07516𝑈2𝑉3 −  0.19022𝑈3 +  0.42040𝑈3𝑉 +
 1.51362𝑈3𝑉2 −  1.80253𝑈3𝑉3    

 
if U0 

 

 
𝛥𝜆(′′) = 5.26013  +  3.90932𝑉 −  0.18460𝑉2  −  0.07808𝑉3  +

 1.06886𝑈 + 0.61534𝑈𝑉2  

   

+ 0.64301𝑈2 −  0.84033𝑈2𝑉 − 0.94478𝑈2𝑉2 +
1.05226𝑈2𝑉3 −  0.30653𝑈3 +  1.40503𝑈3𝑉 +
 0.33394𝑈3𝑉2 −  0.98447𝑈3𝑉3   

if U>0 
 

(H-64) 

+ 0.09984𝑈2 −  5.12664𝑈2𝑉 + 2.85239𝑈2𝑉2 +
1.76486𝑈2𝑉3 −  0.15003𝑈3 −  4.20115𝑈3𝑉 +
 1.94654𝑈3𝑉2 +  1.97842𝑈3𝑉3    

if U0 
 

 
The North/South MREs with top power 4 (ETRS89→OSGB36) are as follows: 
 



H-13 

𝛥𝜙(′′) = 0.28463 −  0.38989𝑉 +  0.03226𝑉2 −  0.05433𝑉3 −
 0.21613𝑉4  +  3.09622𝑈 − 0.14121𝑈𝑉 +
 2.02403𝑈𝑉2 −  0.61875𝑈𝑉3 −  2.37658𝑈𝑉4  

   

+ 0.28590𝑈2 +  0.83498𝑈2𝑉 − 13.56386𝑈2𝑉2 −
1.62511𝑈2𝑉3 + 15.78044𝑈2𝑉4 −  2.02956𝑈3 −
 2.71365𝑈3𝑉 +  28.94118𝑈3𝑉2 +  7.87872𝑈3𝑉3 −
 32.59947𝑈3𝑉4 +  1.52979𝑈4 +  1.82684𝑈4𝑉 −
 17.70553𝑈4𝑉2 −  5.68878𝑈4𝑉3 +  19.60039𝑈4𝑉4   

if U>0 

 
(H-65) 

−0.83308𝑈2 −  1.02488𝑈2𝑉 + 1.66396𝑈2𝑉2 −
3.69544𝑈2𝑉3 + 5.04643𝑈2𝑉4 −  2.55853𝑈3 −
 2.56530𝑈3𝑉 −  4.76703𝑈3𝑉2 −  5.68856𝑈3𝑉3 +
 24.25362𝑈3𝑉4 −  1.43792𝑈4 −  1.73773𝑈4𝑉 −
 5.29643𝑈4𝑉2 −  2.46501𝑈4𝑉3 +  18.26279𝑈4𝑉4   

if U0 

 

 
𝛥𝜆(′′) = 5.26576  +  3.92025𝑉 −  0.22452𝑉2 +  0.01086𝑉3 +

 0.15087𝑉4  +  1.14765𝑈 − 0.60366𝑈𝑉 −  0.75303𝑈𝑉2  

   

− 0.54267𝑈2 +  0.41385𝑈2𝑉 + 4.19007𝑈2𝑉2 +
 2.51835𝑈3 +  2.48937𝑈3𝑉3 −  8.09092𝑈3𝑉4 −
 1.73444𝑈4 +  0.76159𝑈4𝑉 −  3.52937𝑈4𝑉2 −
 2.58940𝑈4𝑉3 +  8.14742𝑈4𝑉4   

if U>0 

 
(H-66) 

+ 0.30674𝑈2 −  9.21483𝑈2𝑉 + 0.61878𝑈2𝑉2 −
2.00977𝑈2𝑉3 − 9.46806𝑈2𝑉4 −  11.97644𝑈3𝑉 +
 2.74386𝑈3𝑉2 −  6.79974𝑈3𝑉3 −  22.79699𝑈3𝑉4 −
 4.57198𝑈4𝑉 +  1.77202𝑈4𝑉2 −  4.72678𝑈4𝑉3 −
 13.82478𝑈4𝑉4  

 

if U0 

 

 
The East/West MREs with top power 3 (ETRS89→OSGB36) are as follows: 

 
𝛥𝜙(′′) = 0.27744 +  3.13599𝑈 +  0.00939𝑈2 −  0.43943𝑈3 −

 0.32189𝑉 +  0.09416𝑈𝑉 −  0.21753𝑈2𝑉 −
 0.34607𝑈3𝑉    

   

−1.63847𝑉2 −  2.14958𝑈𝑉2 +  2.25304𝑈2𝑉2 +
 2.91722𝑈3𝑉2 +  1.54383𝑉3  +  1.83015𝑈𝑉3 −
 2.49052𝑈2𝑉3 −  2.08492𝑈3𝑉3   

if V>0 
 

(H-67) 

+ 0.34700𝑉2  +  1.24338𝑈𝑉2 −  0.68258𝑈2𝑉2 −
 0.50209𝑈3𝑉2 +  0.30559𝑉3  +  1.30297𝑈𝑉3 −
 0.49754𝑈2𝑉3 −  0.51048𝑈3𝑉3    

if V0 
 

 
𝛥𝜆(′′) = 5.25919 +  1.10428𝑈 +  0.28462𝑈2  +  0.02591𝑈3 +

 3.79927𝑉 +  0.63780𝑈𝑉 −  1.47893𝑈2𝑉 −
 0.46291𝑈3𝑉    

   

+ 1.12017𝑉2  +  4.86019𝑈𝑉2 +  2.37158𝑈2𝑉2 −
 3.89781𝑈3𝑉2 −  1.57977𝑉3 −  5.31459𝑈𝑉3 −
 0.89247𝑈2𝑉3  +  5.08622𝑈3𝑉3   

if V>0 
 

(H-68) 

− 0.34600𝑉2  +  0.57439𝑈𝑉2 −  2.45204𝑈2𝑉2 −
 2.59009𝑈3𝑉2 −  0.41719𝑉3  +  0.37867𝑈𝑉3 −
 1.19413𝑈2𝑉3 −  1.47762𝑈3𝑉3    

if V0 
 

 
The East/West MREs with top power 4 (ETRS89→OSGB36) are as follows: 
 



H-14 

𝛥𝜙(′′) = 0.27824 +  3.10630𝑈 −  0.07367𝑈2 −  0.39461𝑈3 +
 0.14801𝑈4 −  0.38988𝑉 +  0.16474𝑈𝑉 −
 1.23256𝑈2𝑉 −  0.94560𝑈3𝑉 +  1.35619𝑈4𝑉   

   

+ 0.64396𝑉2  +  1.16381𝑈𝑉2 +  9.22456𝑈2𝑉2 +
 3.14371𝑈3𝑉2 −  11.56304𝑈4𝑉2 −  8.89897𝑉3 −
 15.98022𝑈𝑉3 −  11.29031𝑈2𝑉3  +  9.96900𝑈3𝑉3 +
 22.61363𝑈4𝑉3 +  9.37244𝑉4  +  15.30214𝑈𝑉4 −
 12.84731𝑈3𝑉4 −  10.47660𝑈4𝑉4   

if V>0 

 
(H-69) 

− 0.25492𝑉2  +  4.23624𝑈𝑉2 −  8.32153𝑈2𝑉2 −
 7.29840𝑈3𝑉2 +  10.98840𝑈4𝑉2 −  1.48419𝑉3  +
 13.19812𝑈𝑉3 −  20.08544𝑈2𝑉3 −  21.66802𝑈3𝑉3 +
 30.32125𝑈4𝑉3 −  1.46828𝑉4  +  11.10127𝑈𝑉4 −
 15.23526𝑈2𝑉4 −  18.30653𝑈3𝑉4 +  24.48623𝑈4𝑉4   

if V0 

 

 
𝛥𝜆(′′) = 5.25967 +  1.11225𝑈 +  0.26827𝑈2  +  0.02009𝑈3 +

 0.02169𝑈4 +  3.82693𝑉 +  0.43770𝑈𝑉 −
 3.13103𝑈2𝑉 +  0.29353𝑈3𝑉 + 3.90899𝑈4𝑉   

   

+ 1.56386𝑉2  +  3.41717𝑈𝑉2 +  7.31814𝑈2𝑉2 −
 3.14290𝑈3𝑉2 −  14.49299𝑈4𝑉2 −  3.87954𝑉3 −
 2.18150𝑈𝑉3 −  6.95256𝑈2𝑉3  +   21.24362𝑈4𝑉3 +
 2.18452𝑉4 −  1.97341𝑈𝑉4 +  3.03729𝑈2𝑉4  +
 4.41537𝑈3𝑉4 −  11.61360𝑈4𝑉4   

if V>0 

 
(H-70) 

− 0.61398𝑉2  +  0.76087𝑈𝑉2 −  3.10913𝑈2𝑉2 −
 2.43862𝑈3𝑉2 +  9.43313𝑈4𝑉2 −  0.56560𝑉3 −
 8.73433𝑈2𝑉3 −  4.75519𝑈3𝑉3 +  21.09019𝑈4𝑉3 −
 1.04396𝑈𝑉4 −  8.08129𝑈2𝑉4 −  3.05040𝑈3𝑉4 +
 15.92383𝑈4𝑉4   

if V0 

 

 
The Four-Quadrant MREs with top power 3 (ETRS89→OSGB36) are as follows: 
 

𝛥𝜙(′′) = 0.27443 +  3.13616𝑈 −  0.45338𝑉 +  0.03590𝑈2 +
 0.14722𝑈𝑉 −  0.10998𝑉2 − 0.41639𝑈3 +
 0.12004𝑈2𝑉 +  1.03617𝑈𝑉2 −  0.02489𝑉3 −
 0.28332𝑈3𝑉 −  1.06231𝑈𝑉3  

  

(H-71) 
− 19.05740𝑈2𝑉2  +  18.53604𝑈3𝑉2 +
 18.54431𝑈2𝑉3 − 18.03391𝑈3𝑉3   

if U>0 & V>0 

− 3.40289𝑈2𝑉2  +  3.61022𝑈3𝑉2 +  2.04219𝑈2𝑉3    → if U>0 & V0 
+ 4.92677𝑈2𝑉2  +  4.41584𝑈3𝑉2 −  4.67105𝑈2𝑉3 −
3.53177𝑈3𝑉3   

if U0 & V>0 

− 4.32264𝑈2𝑉2 −  5.33329𝑈3𝑉2 −  12.71956𝑈2𝑉3 −
12.06456𝑈3𝑉3   

if U0 & V0 
 

𝛥𝜆(′′) = 5.26385 +  1.13346𝑈 +  3.92425𝑉 +  0.27866𝑈2 +
 0.71047𝑈𝑉 −  0.17104𝑉2 − 0.00522𝑈3 −
 0.97911𝑈2𝑉 −  0.07970𝑉3 +  0.13941𝑈3𝑉 −
 0.81494𝑈𝑉3  

  

(H-72) 

+ 1.74099𝑈3𝑉2 +  1.90838𝑈2𝑉3 − 2.10909𝑈3𝑉3  → if U>0 & V>0  

+ 16.99472𝑈2𝑉2 −  19.22883𝑈3𝑉2 +
 18.77129𝑈2𝑉3 − 19.50126𝑈3𝑉3    

if U>0 & V0 

− 7.90308𝑈2𝑉2 −  11.63460𝑈3𝑉2 +  7.79940𝑈2𝑉3  +
11.88253𝑈3𝑉3   

if U0 & V>0 

+ 13.19666𝑈2𝑉2  +  16.33949𝑈3𝑉2 +
 12.71335𝑈2𝑉3  + 16.98853𝑈3𝑉3   

if U0 & V0 

 
The Four-Quadrant MREs with top power 4 (ETRS89→OSGB36) are as follows: 
 

𝛥𝜙(′′) = 0.27873 +  3.10689𝑈 −  0.38940𝑉 −  0.06132𝑈2 +
 0.12203𝑈𝑉 +  0.12227𝑉2 − 0.37704𝑈3 −  0.57289𝑈2𝑉 +
 1.15597𝑈𝑉2 −  0.04584𝑉3 + 0.14300𝑈4 −

  

(H-73) 



H-15 

 0.49873𝑈3𝑉 −  1.53366𝑈𝑉3 −  0.32411𝑉4 +
 0.80683𝑈4𝑉 −  0.90120𝑈𝑉4   
− 46.65952𝑈3𝑉2 +  32.01499𝑈2𝑉3 +  46.67181𝑈4𝑉2  +
84.50908𝑈3𝑉3 −  38.12135𝑈2𝑉4 −  118.77149𝑈4𝑉3 −
20.10539𝑈3𝑉4 +  61.81831𝑈4𝑉4   

if U>0 & V>0 

+ 14.15082𝑈2𝑉2 −  77.54244𝑈3𝑉2 +  69.07137𝑈2𝑉3 +
 64.78916𝑈4𝑉2 − 272.28661𝑈3𝑉3 +  51.91300𝑈2𝑉4 +
 211.70756𝑈4𝑉3 − 198.78373𝑈3𝑉4 +  152.54299𝑈4𝑉4    

if U>0 & V0 

− 24.39470𝑈2𝑉2 −  92.11651𝑈3𝑉2 +  58.03307𝑈2𝑉3 −
 77.85274𝑈4𝑉2  + 217.12899𝑈3𝑉3 −  38.36002𝑈2𝑉4 +
 183.44854𝑈4𝑉3 − 135.36500𝑈3𝑉4 −  114.51258𝑈4𝑉4   

if U0 & V>0 

− 49.32336𝑈2𝑉2 −  126.52005𝑈3𝑉2 −  132.82103𝑈2𝑉3 −
 79.67970𝑈4𝑉2 − 339.29339𝑈3𝑉3 −  76.07143𝑈2𝑉4 −
 220.33799𝑈4𝑉3 − 205.83945𝑈3𝑉4 −  140.37624𝑈4𝑉4   

if U0 & V0 

 

𝛥𝜆(′′) = 5.26229 +  1.12450𝑈 +  3.94383𝑉 +  0.25512𝑈2 +
 0.16806𝑈𝑉 −  0.10643𝑉2 − 0.01377𝑈3 −
 3.57592𝑈2𝑉 +  0.26593𝑈𝑉2 + 0.02330𝑈4 +
 0.60571𝑈3𝑉 −  1.74417𝑈𝑉3 −  0.02509𝑉4 +
 4.04388𝑈4𝑉 −  0.38909𝑈𝑉4   

  

(H-74) 

− 24.24504𝑈2𝑉2  +  200.36408𝑈3𝑉2 −
 114.95099𝑈2𝑉3 −  181.69039𝑈4𝑉2 −
199.85455𝑈3𝑉3 +  179.60440𝑈2𝑉4 +
 327.12271𝑈4𝑉3 − 70.07436𝑈3𝑉4 −  115.16081𝑈4𝑉4   

if U>0 & V>0 

+ 5.82887𝑈2𝑉2 −  65.83607𝑈3𝑉2 +  47.05565𝑈2𝑉3 +
 64.78394𝑈4𝑉2 − 258.50740𝑈3𝑉3 +  32.35122𝑈2𝑉4 +
 223.98160𝑈4𝑉3 − 189.64990𝑈3𝑉4 +  164.33182𝑈4𝑉4    

if U>0 & V0 

− 2.67738𝑈2𝑉2 −  18.05545𝑈3𝑉2 −  12.52773𝑈2𝑉3 −
 18.22512𝑈4𝑉2 − 13.61833𝑈3𝑉3 − 3.51837𝑈3𝑉4 −
 4.03493𝑈4𝑉4   

if U0 & V>0 

+ 36.42382𝑈2𝑉2  +  99.83561𝑈3𝑉2 +
 123.56331𝑈2𝑉3 +  71.23058𝑈4𝑉2  +
335.79256𝑈3𝑉3 +  120.34116𝑈2𝑉4 +
 229.33095𝑈4𝑉3  + 314.97004𝑈3𝑉4 +  208.82990𝑈4𝑉4   

if U0 & V0 

 
The Chebyshev MREs with top power 3 are (ETRS89→OSGB36) as follows: 
 

𝛥𝜙(′′) = 0.20003 + 2.89752𝑇1(𝑈) − 0.49244𝑇1(𝑉) − 0.00845𝑇2(𝑈) −
0.12413𝑇1(𝑈)𝑇1(𝑉) − 0.08617𝑇2(𝑉) − 0.06800𝑇3(𝑈) +
0.01016𝑇2(𝑈)𝑇1(𝑉) + 0.07686𝑇1(𝑈)𝑇2(𝑉) − 0.00868𝑇3(𝑉)  +
0.01488𝑇3(𝑈)𝑇1(𝑉) − 0.02585𝑇2(𝑈)𝑇2(𝑉) +
0.03816𝑇1(𝑈)𝑇3(𝑉) + 0.03518𝑇3(𝑈)𝑇2(𝑉) −
0.00424𝑇2(𝑈)𝑇3(𝑉) + 0.01646𝑇3(𝑈)𝑇3(𝑉)  

(H-75) 

 
𝛥𝜆(′′) = 5.36794 + 1.09597𝑇1(𝑈) + 3.64538𝑇1(𝑉) + 0.16924𝑇2(𝑈) +

0.71819𝑇1(𝑈)𝑇1(𝑉) − 0.04225𝑇2(𝑉) − 0.06755𝑇3(𝑈) −
0.05895𝑇2(𝑈)𝑇1(𝑉) − 0.03608𝑇1(𝑈)𝑇2(𝑉) + 0.04436𝑇3(𝑉)  +
0.05985𝑇3(𝑈)𝑇1(𝑉) + 0.02478𝑇2(𝑈)𝑇2(𝑉) −
0.04487𝑇1(𝑈)𝑇3(𝑉) − 0.06601𝑇3(𝑈)𝑇2(𝑉) +
0.09210𝑇2(𝑈)𝑇3(𝑉) + 0.03238𝑇3(𝑈)𝑇3(𝑉)  

(H-76) 

 
The Chebyshev MREs with top power 4 are (ETRS89→OSGB36) as follows: 
 

𝛥𝜙(′′) = 0.23752 + 2.87553𝑇1(𝑈) − 0.50915𝑇1(𝑉) + 0.01804𝑇2(𝑈) −
0.09336𝑇1(𝑈)𝑇1(𝑉) − 0.04831𝑇2(𝑉) − 0.07282𝑇3(𝑈) −
0.01496𝑇2(𝑈)𝑇1(𝑉) − 0.01704𝑇3(𝑉)  + 0.02191𝑇4(𝑈) +
0.02927𝑇3(𝑈)𝑇1(𝑉) − 0.01512𝑇2(𝑈)𝑇2(𝑉) +
0.04677𝑇1(𝑈)𝑇3(𝑉) + 0.00855𝑇4(𝑉) − 0.04133𝑇4(𝑈)𝑇1(𝑉) +
0.02473𝑇3(𝑈)𝑇2(𝑉) − 0.01711𝑇2(𝑈)𝑇3(𝑉) −
0.06614𝑇1(𝑈)𝑇4(𝑉) + 0.04117𝑇4(𝑈)𝑇2(𝑉) +

(H-77) 



H-16 

0.01719𝑇3(𝑈)𝑇3(𝑉) + 0.00526𝑇2(𝑈)𝑇4(𝑉) −
0.01521𝑇4(𝑈)𝑇3(𝑉) + 0.40280𝑇4(𝑈)𝑇4(𝑉)  

 
𝛥𝜆(′′) = 5.38246 + 1.10220𝑇1(𝑈) + 3.60608𝑇1(𝑉) + 0.15661𝑇2(𝑈) +

0.81763𝑇1(𝑈)𝑇1(𝑉) − 0.06290𝑇2(𝑉) − 0.02165𝑇3(𝑈) −
0.10924𝑇2(𝑈)𝑇1(𝑉) − 0.04797𝑇1(𝑈)𝑇2(𝑉) + 0.00506𝑇3(𝑉) −
0.04692𝑇4(𝑈) + 0.06484𝑇3(𝑈)𝑇1(𝑉) + 0.01361𝑇2(𝑈)𝑇2(𝑉) +
0.02653𝑇1(𝑈)𝑇3(𝑉) − 0.03750𝑇4(𝑉) + 0.10733𝑇4(𝑈)𝑇1(𝑉) +
0.03060𝑇3(𝑈)𝑇2(𝑉) − 0.01483𝑇1(𝑈)𝑇4(𝑉) −
0.02101𝑇4(𝑈)𝑇2(𝑉) + 0.01475𝑇3(𝑈)𝑇3(𝑉) −
0.05152𝑇4(𝑈)𝑇3(𝑉) + 0.05463𝑇3(𝑈)𝑇4(𝑉) +
0.02537𝑇4(𝑈)𝑇4(𝑉)  

(H-78) 

 
The Chebyshev MREs with top power 5 are (ETRS89→OSGB36) as follows: 
 

𝛥𝜙(′′) = 0.22856 + 2.88035𝑇1(𝑈) − 0.47787𝑇1(𝑉) + 0.00780𝑇2(𝑈) −
0.10886𝑇1(𝑈)𝑇1(𝑉) − 0.04441𝑇2(𝑉) − 0.04792𝑇3(𝑈) +
0.01474𝑇2(𝑈)𝑇1(𝑉) − 0.02196𝑇1(𝑈)𝑇2(𝑉) − 0.02841𝑇3(𝑉)  +
0.01026𝑇4(𝑈) − 0.06141𝑇3(𝑈)𝑇1(𝑉) + 0.01103𝑇2(𝑈)𝑇2(𝑉) −
0.02023𝑇1(𝑈)𝑇3(𝑉) + 0.02302𝑇5(𝑈) + 0.08869𝑇4(𝑈)𝑇1(𝑉) +
0.02469𝑇3(𝑈)𝑇2(𝑉) + 0.02748𝑇2(𝑈)𝑇3(𝑉) − 0.05497𝑇1(𝑈)𝑇4(𝑉) −
0.01042𝑇5(𝑉) − 0.14097𝑇5(𝑈)𝑇1(𝑉) − 0.00442𝑇4(𝑈)𝑇2(𝑉) −
0.01298𝑇3(𝑈)𝑇3(𝑉) + 0.02272𝑇2(𝑈)𝑇4(𝑉) − 0.01567𝑇1(𝑈)𝑇5(𝑉) −
0.02544𝑇5(𝑈)𝑇2(𝑉) + 0.09700𝑇4(𝑈)𝑇3(𝑉) + 0.02891𝑇3(𝑈)𝑇4(𝑉) −
0.09101𝑇5(𝑈)𝑇3(𝑉) + 0.01706𝑇4(𝑈)𝑇4(𝑉) + 0.00358𝑇3(𝑈)𝑇5(𝑉) −
0.00791𝑇5(𝑈)𝑇4(𝑉) + 0.04040𝑇4(𝑈)𝑇5(𝑉) − 0.02101𝑇5(𝑈)𝑇5(𝑉)  

(H-79) 

// 
𝛥𝜆(′′) = 5.38116 + 1.10163𝑇1(𝑈) + 3.69900𝑇1(𝑉) + 0.14708𝑇2(𝑈) +

0.54989𝑇1(𝑈)𝑇1(𝑉) − 0.06811𝑇2(𝑉) − 0.02827𝑇3(𝑈) +
0.10112𝑇2(𝑈)𝑇1(𝑉) − 0.04240𝑇1(𝑈)𝑇2(𝑉) + 0.07901𝑇3(𝑉) −
0.03484𝑇4(𝑈) − 0.03935𝑇3(𝑈)𝑇1(𝑉) + 0.03104𝑇2(𝑈)𝑇2(𝑉) −
0.12551𝑇1(𝑈)𝑇3(𝑉) − 0.04113𝑇4(𝑉) + 0.00469𝑇5(𝑈) +
0.13666𝑇4(𝑈)𝑇1(𝑉) + 0.02714𝑇3(𝑈)𝑇2(𝑉) +
0.18762𝑇2(𝑈)𝑇3(𝑉) − 0.01852𝑇1(𝑈)𝑇4(𝑉) + 0.03405𝑇5(𝑉) −
0.03164𝑇5(𝑈)𝑇1(𝑉) − 0.00890𝑇4(𝑈)𝑇2(𝑉) −
0.06466𝑇3(𝑈)𝑇3(𝑉) + 0.03163𝑇2(𝑈)𝑇4(𝑉) −
0.04568𝑇1(𝑈)𝑇5(𝑉) − 0.00954𝑇5(𝑈)𝑇2(𝑉) −
0.07702𝑇4(𝑈)𝑇3(𝑉) + 0.05003𝑇3(𝑈)𝑇4(𝑉) +
0.08359𝑇2(𝑈)𝑇5(𝑉) − 0.07048𝑇5(𝑈)𝑇3(𝑉) +
0.02436𝑇4(𝑈)𝑇4(𝑉) − 0.03900𝑇3(𝑈)𝑇5(𝑉) −
0.02109𝑇5(𝑈)𝑇4(𝑉) − 0.02363𝑇4(𝑈)𝑇5(𝑉) −
0.04690𝑇5(𝑈)𝑇5(𝑉)  

(H-80) 

 
The Chebyshev MREs with top power 6 are (ETRS89→OSGB36) as follows 
 

𝛥𝜙(′′) = 0.32687 + 2.78924𝑇1(𝑈) − 0.52766𝑇1(𝑉) + 0.02614𝑇1(𝑈)𝑇1(𝑉) +
0.12307𝑇2(𝑉) + 0.01565𝑇3(𝑈) + 0.02497𝑇2(𝑈)𝑇1(𝑉) −
0.21571𝑇1(𝑈)𝑇2(𝑉) − 0.09443𝑇3(𝑉) − 0.03025𝑇4(𝑈) −
0.13625𝑇3(𝑈)𝑇1(𝑉) − 0.03306𝑇2(𝑈)𝑇2(𝑉) + 0.01577𝑇1(𝑈)𝑇3(𝑉) +
0.08648𝑇4(𝑉) + 0.02876𝑇5(𝑈) + 0.12002𝑇4(𝑈)𝑇1(𝑉) +
0.13431𝑇3(𝑈)𝑇2(𝑉) − 0.19070𝑇1(𝑈)𝑇4(𝑉) − 0.04540𝑇5(𝑉) −
0.03154𝑇6(𝑈) − 0.16545𝑇5(𝑈)𝑇1(𝑉) − 0.03538𝑇4(𝑈)𝑇2(𝑉) −
0.05412𝑇3(𝑈)𝑇3(𝑉) − 0.03547𝑇2(𝑈)𝑇4(𝑉) − 0.02048𝑇1(𝑈)𝑇5(𝑉) +
0.01045𝑇6(𝑉) − 0.06420𝑇6(𝑈)𝑇1(𝑉) + 0.01238𝑇5(𝑈)𝑇2(𝑉) +
0.18562𝑇4(𝑈)𝑇3(𝑉) + 0.10685𝑇3(𝑈)𝑇4(𝑉) − 0.02016𝑇2(𝑈)𝑇5(𝑉) −
0.06623𝑇1(𝑈)𝑇6(𝑉) − 0.04255𝑇6(𝑈)𝑇2(𝑉) − 0.04603𝑇5(𝑈)𝑇3(𝑉) +
0.03325𝑇4(𝑈)𝑇4(𝑉) − 0.01715𝑇2(𝑈)𝑇6(𝑉) − 0.01975𝑇6(𝑈)𝑇3(𝑉) +
0.04231𝑇5(𝑈)𝑇4(𝑉) + 0.09316𝑇4(𝑈)𝑇5(𝑉) + 0.03104𝑇3(𝑈)𝑇6(𝑉) −
0.02810𝑇6(𝑈)𝑇4(𝑉) + 0.01388𝑇5(𝑈)𝑇5(𝑉) + 0.03130𝑇4(𝑈)𝑇6(𝑉) +
0.03002𝑇5(𝑈)𝑇6(𝑉) − 0.00407𝑇6(𝑈)𝑇6(𝑉)  

  (H-81) 



H-17 

 
𝛥𝜆(′′) = 5.42525 + 0.92021𝑇1(𝑈) + 3.62580𝑇1(𝑉) + 0.25385𝑇2(𝑈) +

0.77923𝑇1(𝑈)𝑇1(𝑉) + 0.11631𝑇2(𝑉) − 011377𝑇3(𝑈) −
0.06468𝑇2(𝑈)𝑇1(𝑉) − 0.22273𝑇1(𝑈)𝑇2(𝑉) + 0.00843𝑇3(𝑉)  +
0.12785𝑇4(𝑈) + 0.08510𝑇3(𝑈)𝑇1(𝑉) + 0.17700𝑇2(𝑈)𝑇2(𝑉) −
0.04312𝑇1(𝑈)𝑇3(𝑉) + 0.15286𝑇4(𝑉) − 0.05913𝑇5(𝑈) −
0.25315𝑇3(𝑈)𝑇2(𝑉) + 0.01147𝑇5(𝑉) + 0.11608𝑇6(𝑈) +
0.05679𝑇5(𝑈)𝑇1(𝑉) + 0.16770𝑇4(𝑈)𝑇2(𝑉) − 0.01048𝑇3(𝑈)𝑇3(𝑉) +
0.09043𝑇2(𝑈)𝑇4(𝑉) + 0.01864𝑇1(𝑈)𝑇5(𝑉) + 0.05553𝑇6(𝑉) −
0.15358𝑇6(𝑈)𝑇1(𝑉) − 0.15620𝑇5(𝑈)𝑇2(𝑉) − 0.07208𝑇4(𝑈)𝑇3(𝑉) −
0.21925𝑇3(𝑈)𝑇4(𝑉) + 0.00496𝑇2(𝑈)𝑇5(𝑉) + 0.00399𝑇1(𝑈)𝑇6(𝑉) +
0.19448𝑇6(𝑈)𝑇2(𝑉) + 0.11382𝑇5(𝑈)𝑇3(𝑉) + 0.01533𝑇4(𝑈)𝑇4(𝑉) −
0.01191𝑇3(𝑈)𝑇5(𝑉) + 0.02787𝑇2(𝑈)𝑇6(𝑉) − 0.16211𝑇5(𝑈)𝑇4(𝑉) −
0.03089𝑇4(𝑈)𝑇5(𝑉) − 0.07863𝑇3(𝑈)𝑇6(𝑉) + 0.09984𝑇6(𝑈)𝑇4(𝑉) +
0.03212𝑇5(𝑈)𝑇5(𝑉) − 0.01181𝑇4(𝑈)𝑇6(𝑉) + 0.00350𝑇6(𝑈)𝑇5(𝑉) −
0.05723𝑇5(𝑈)𝑇6(𝑉) + 0.03056𝑇6(𝑈)𝑇6(𝑉)  

(H-82) 

 
The trimmed Ordinary MREs with top power 6 (ETRS89→OSGB36) are as follows: 
 

𝛥𝜙(′′) = 0.28493 + 3.15216𝑈 − 0.36650𝑉 − 0.26190𝑈2 − 0.74750𝑈3 −
0.37527𝑈2𝑉 +  1.20355𝑈𝑉2 − 0.76685𝑉3 + 0.68510𝑈4 −
0.68979𝑈3𝑉 −  0.67301𝑈2𝑉2 − 0.58619𝑈𝑉3 − 1.26014𝑉4 +
0.46438𝑈5 + 0.21718𝑈4𝑉 − 4.53429𝑈3𝑉2 +  7.12046𝑈2𝑉3 −
2.12697𝑈𝑉4 + 0.89376𝑉5 − 0.42117𝑈6 + 0.63487𝑈5𝑉 −
1.40554𝑈4𝑉2 +  4.70583𝑈3𝑉3 + 8.66415𝑈2𝑉4 +
1.57227𝑉6 + 3.35246𝑈5𝑉2 − 4.81115𝑈4𝑉3 +
17.85816𝑈3𝑉4 − 10.67462𝑈2𝑉5 +  2.06358𝑈6𝑉2 −
4.34005𝑈5𝑉3 − 8.20442𝑈4𝑉4 − 9.16093𝑈2𝑉6 −
1.67983𝑈6𝑉3 − 15.41019𝑈5𝑉4 + 9.99949𝑈4𝑉5 −
 14.21089𝑈3𝑉6 + 13.41034𝑈4𝑉6 + 13.50978𝑈5𝑉6 −
4.73632𝑈6𝑉6  

(H-83) 

 
𝛥𝜆(′′) = 5.26196 + 1.12123𝑈 + 3.89689𝑉 + 0.27388𝑈2 +

 0.14114𝑈𝑉 − 0.23622𝑉2 − 3.03922𝑈2𝑉 +
0.36469𝑉3 + 2.98914𝑈3𝑉 +  1.38780𝑈2𝑉2 −
0.31057𝑈𝑉3 + 0.87690𝑉4 + 7.05238𝑈4𝑉 −
1.80684𝑈2𝑉3 − 0.50145𝑉5 − 2.21122𝑈5𝑉 −
1.06563𝑈4𝑉2 − 9.19902𝑈2𝑉4 +  1.18117𝑈𝑉5 −
1.03582𝑉6 − 4.37667𝑈6𝑉 + 1.51553𝑈4𝑉3 +
2.60320𝑈2𝑉5 + 20.54743𝑈4𝑉4 −  4.58824𝑈3𝑉5 −
10.78951𝑈2𝑉6 − 2.26375𝑈4𝑉5 − 13.15452𝑈6𝑉4 +
3.66625𝑈5𝑉5 − 26.07461𝑈4𝑉6 − 0.36381𝑈5𝑉6 +
17.51258𝑈6𝑉6  

(H-84) 

 
The trimmed North/South MREs with top power 5 (ETRS89→OSGB36) are as 
follows: 
 

𝛥𝜙(′′) = 0.28274 −  0.38567𝑉 +  0.13378𝑉2 −  0.36550𝑉4 −
 0.06596𝑉5 +  3.22429𝑈 −  1.44981𝑈𝑉3 +  0.42571𝑈𝑉4  

   

− 0.65998𝑈2 − 2.42930𝑈2𝑉2 + 3.98034𝑈2𝑉3 −
 3.87840𝑈3𝑉 +  9.04418𝑈3𝑉2 − 2.52425𝑈3𝑉3 +
 0.31318𝑈4 +  7.87398𝑈4𝑉 −  13.01017𝑈4𝑉2 −
4.24886𝑈5𝑉 +  6.12799𝑈5𝑉2   

if U>0 

 
 
 

(H-85) 
+ 0.63970𝑈2 − 24.86874𝑈2𝑉2 − 10.12025𝑈2𝑉3 +
44.34803𝑈2𝑉4 +  2.34166𝑈3 −  88.46987𝑈3𝑉2 −
 32.25022𝑈3𝑉3 +  150.72671𝑈3𝑉4 +  20.59973𝑈3𝑉5 +
 5.00843𝑈4 +  0.73673𝑈4𝑉 − 108.58055𝑈4𝑉2 −
 41.89887𝑈4𝑉3 +  176.54452𝑈4𝑉4 +  44.03018𝑈4𝑉5 +
2.94738𝑈5 +  0.77772𝑈5𝑉 − 44.63144𝑈5𝑉2 −
 18.45018𝑈5𝑉3 +  69.22826𝑈5𝑉4 +  23.39180𝑈5𝑉5   

if U0 

 



H-18 

 
𝛥𝜆(′′) = 5.26546  +  3.91765𝑉 −  0.19198𝑉2  +  1.10162𝑈 +

0.32742𝑈𝑉 +  0.84945𝑈𝑉2 −  0.76076𝑈𝑉3 −
 0.8207𝑈𝑉4  

   

− 3.09588𝑈2𝑉 + 2.91768𝑈2𝑉3 + 0.95188𝑈2𝑉4 +
 3.35184𝑈3𝑉 +  3.11526𝑈4 − 5.09247𝑈4𝑉2 −
 2.25876𝑈4𝑉3 − 2.83209𝑈5 + 4.17931𝑈5𝑉2   

if U>0 
 

(H-86) 

+ 9.59989𝑈2𝑉2 − 12.38098𝑈2𝑉3 − 3.79466𝑈2𝑉4 −
0.59667𝑈3 +  15.63958𝑈3𝑉 +  26.3831𝑈3𝑉2 −
 42.87075𝑈3𝑉3 −  3.29270𝑈3𝑉4 − 0.35837𝑈4 +
 28.33820𝑈4𝑉 +  31.84657𝑈4𝑉2 −  51.55637𝑈4𝑉3 +
 13.70320𝑈5𝑉 + 14.12399𝑈5𝑉2 − 20.60202𝑈5𝑉3   

if U0 
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APPENDIX I: CONTOUR MAPS FROM CASE STUDIES 
 
This appendix contains contour maps of some of the datum shifts derived during the case 
studies recorded in Chapters 8, 12 and 13.  They were generated by LSS.  MREs mentioned 
were all obtained by eliminating ratios lower than one (ERLTO), except where the word 
“trimmed” indicates that further elimination of terms occurred. 
 
I.1  Western Australia (AGD84 to GDA94) 
The contour maps for Western Australia are split between those derived from multiple 
regression equations and those derived from composite methods. 
 
I.1.1  MREs in Western Australia 
The contour maps arising from MREs described in Section 8.2 are listed below. 
 

  

Figure I-1: Horizontal datum shifts for AGD84→GDA94 arising from the Ordinary MREs 
with top power 3. 
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Figure I-2: Horizontal datum shifts for AGD84→GDA94 arising from the Ordinary MREs 

with top power 4. 
 
 

  
Figure I-3: Horizontal datum shifts for AGD84→GDA94 arising from the Ordinary MREs 

with top power 5. 
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Figure I-4: Horizontal datum shifts for AGD84→GDA94 arising from the North/South 
MREs with top power 3. 

 

  
Figure I-5: Horizontal datum shifts for AGD84→GDA94 arising from the East/West MREs 

with top power 3. 
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Figure I-6: Horizontal datum shifts for AGD84→GDA94 arising from the Four-

Quadrant MREs with top power 3. 
 

  
Figure I-7: Horizontal datum shifts for AGD84→GDA94 arising from the Chebyshev MREs 

with top power 3. 
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Figure I-8: Horizontal datum shifts for AGD84→GDA94 arising from the Chebyshev MREs 

with top power 4. 
 

  
Figure I-9: Horizontal datum shifts for AGD84→GDA94 arising from the Chebyshev MREs 

with top power 5. 
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I.1.2 Composite Methods in Western Australia 
The contour maps arising from composite methods described in Section 8.3 are listed below. 
  

  
Figure I-10: Horizontal datum shifts for AGD84→GDA94 arising from Modified Least-

Squares Collocation with the Gaussian covariance function and Correlation 
Length=137028m. 

 

  
Figure I-11: Horizontal datum shifts for AGD84→GDA94 arising from Modified Least-

Squares Collocation with the Gaussian covariance function and Correlation 
Length=68514m. 
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Figure I-12: Horizontal datum shifts for AGD84→GDA94 arising from Modified Least-

Squares Collocation with the SS20 covariance function and 𝑟𝑚𝑎𝑥=379395m. 
 

  
Figure I-13: Horizontal datum shifts for AGD84→GDA94 arising from Modified Least-

Squares Collocation with the SS20 covariance function and 𝑟𝑚𝑎𝑥=188358m for latitude and 
𝑟𝑚𝑎𝑥=191513m for longitude. 
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Figure I-14: Horizontal datum shifts for AGD84→GDA94 arising from Modified Least-

Squares Collocation with the SS30 covariance function and 𝑟𝑚𝑎𝑥=365690m. 
 

  
Figure I-15: Horizontal datum shifts for AGD84→GDA94 arising from Modified Least-

Squares Collocation with the SS20 covariance function and 𝑟𝑚𝑎𝑥=188358m for latitude and 
𝑟𝑚𝑎𝑥=191513m for longitude. 
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Figure I-16: Horizontal datum shifts for AGD84→GDA94 arising from Modified Radial 

Basis Function “Inverse Multiquadric” with shaping parameter 54347m. 
 

  
Figure I-17: Horizontal datum shifts for AGD84→GDA94 arising from Modified Radial 

Basis Function “Multilog” with shaping parameter 54347m. 
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Figure I-18: Horizontal datum shifts for AGD84→GDA94 arising from Modified Radial 

Basis Function “Multiquadric” with shaping parameter 54347m. 
 

  
Figure I-19: Horizontal datum shifts for AGD84→GDA94 arising from Modified Radial 

Basis Function “Natural Cubic Spline” with shaping parameter 54347m. 
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Figure I-20: Horizontal datum shifts for AGD84→GDA94 arising from Modified Radial 

Basis Function “Thin Plate Spline” with shaping parameter 54347m. 
 

  

Figure I-21: Horizontal datum shifts for AGD84→GDA94 arising from Inverse Distance To 
The Power 1. 
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Figure I-22: Horizontal datum shifts for AGD84→GDA94 arising from Inverse Distance To 

The Power 2. 
 

  

Figure I-23: Horizontal datum shifts for AGD84→GDA94 arising from Inverse Distance To 
The Power 3. 
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Figure I-24: Horizontal datum shifts for AGD84→GDA94 arising from Inverse Distance To 

The Power 4. 
 

  

Figure I-25: Horizontal datum shifts for AGD84→GDA94 arising from HISFEAD with 
𝑟𝑚𝑎𝑥=240000m. 
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Figure I-26: Horizontal datum shifts for AGD84→GDA94 arising from HISFEAD with 

𝑟𝑚𝑎𝑥=360000m. 
 

  
Figure I-27: Horizontal datum shifts for AGD84→GDA94 arising from HISFEAD with 

𝑟𝑚𝑎𝑥=480000m. 
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Figure I-28: Horizontal datum shifts for AGD84→GDA94 arising from HICFEAD with 

𝑟𝑚𝑎𝑥=240000m. 
 

  
Figure I-29: Horizontal datum shifts for AGD84→GDA94 arising from HICFEAD with 

𝑟𝑚𝑎𝑥=360000m. 
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Figure I-30: Horizontal datum shifts for AGD84→GDA94 arising from HICFEAD with 

𝑟𝑚𝑎𝑥=480000m. 
 

  

Figure I-31: Horizontal datum shifts for AGD84→GDA94 arising from Nearest Neighbour. 
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Figure I-32: Horizontal datum shifts for AGD84→GDA94 arising from 
LIVONN with transition interval 33.3333%. 

 

  
Figure I-33: Horizontal datum shifts for AGD84→GDA94 arising from 

LIVONN with transition interval 50%. 
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I.2  Slovenia (D48 to D48) 
Selected contour maps arising from MREs described in Chapter 12 are listed below. 
 

  
Figure I-34: Horizontal datum shifts for D48→D96 arising from the 

Ordinary MREs with top power 3. 
 

  
Figure I-35: Horizontal datum shifts for D48→D96 arising from the 

Ordinary MREs with top power 4. 
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Figure I-36: Horizontal datum shifts for D48→D96 arising from the 

Ordinary MREs with top power 5. 
 

  
Figure I-37: Horizontal datum shifts for D48→D96 arising from the 

Ordinary MREs with top power 6. 
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Figure I-38: Horizontal datum shifts for D48→D96 arising from the 

North/South MREs with top power 4. 
 

  
Figure I-39: Horizontal datum shifts for D48→D96 arising from the 

East/West MREs with top power 3. 
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Figure I-40: Horizontal datum shifts for D48→D96 arising from the 

East/West MREs with top power 4. 
 

  
Figure I-41: Horizontal datum shifts for D48→D96 arising from the 

Four-Quadrant MREs with top power 4. 
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Figure I-42: Horizontal datum shifts for D48→D96 arising from the 

trimmed pairing of MREs Ord6tr (for latitude) and EW4tr (for longitude). 
 
I.3  Great Britain (ETRS89 to OSGB36) 
The contour maps arising from MREs described in Chapter 13 are listed below. 
 

  
Figure I-43: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the Ordinary MREs with top power 3. 
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Figure I-44: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the Ordinary MREs with top power 4. 
 

  
Figure I-45: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the Ordinary MREs with top power 5. 
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Figure I-46: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the Ordinary MREs with top power 6. 
 

  
Figure I-47: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the North/South MREs with top power 3. 
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Figure I-48: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the North/South MREs with top power 4. 
 

  
Figure I-49: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the Four-Quadrant MREs with top power 3. 
 



I-26 

  
Figure I-50: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the trimmed Ordinary MREs with top power 6. 
 

  
Figure I-51: Horizontal datum shifts for ETRS89→OSGB36 arising 

from the trimmed North/South MREs with top power 5. 
 


