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Stereoscopic video deblurring 
transformer
Hassan Imani 1, Md Baharul Islam 1,2*, Masum Shah Junayed 1,3 & Md Atiqur Rahman Ahad 4*

Stereoscopic cameras, such as those in mobile phones and various recent intelligent systems, are 
becoming increasingly common. Multiple variables can impact the stereo video quality, e.g., blur 
distortion due to camera/object movement. Monocular image/video deblurring is a mature research 
field, while there is limited research on stereoscopic content deblurring. This paper introduces a new 
Transformer-based stereo video deblurring framework with two crucial new parts: a self-attention 
layer and a feed-forward layer that realizes and aligns the correlation among various video frames. 
The traditional fully connected (FC) self-attention layer fails to utilize data locality effectively, as it 
depends on linear layers for calculating attention maps The Vision Transformer, on the other hand, 
also has this limitation, as it takes image patches as inputs to model global spatial information. 3D 
convolutional neural networks (3D CNNs) process successive frames to correct motion blur in the 
stereo video. Besides, our method uses other stereo-viewpoint information to assist deblurring. 
The parallax attention module (PAM) is significantly improved to combine the stereo and cross-view 
information for more deblurring. An extensive ablation study validates that our method efficiently 
deblurs the stereo videos based on the experiments on two publicly available stereo video datasets. 
Experimental results of our approach demonstrate state-of-the-art performance compared to the 
image and video deblurring techniques by a large margin.

Video deblurring is the process of restoring acute frames out of a blurry video. Deblurring is a crucial founda-
tion for many computer vision tasks, and has therefore attracted significant research interest. Camera shake and 
object movement are common blur artifacts in dynamic video  scenes1,2. In video processing, movement is criti-
cal, which causes most of the blur in a video, known as motion blur. Most approaches in this field first compute 
the motion between successive frames before applying frame  transformations3,4. Consequently, the efficiency of 
the motion estimation profoundly influences the whole method’s functionality. Precise motion prediction, on 
the other hand, is complex and time-consuming5. Furthermore, most motion estimation algorithms address an 
optimization issue, slowing motion estimation. Some approaches use generative networks for video deblurring. 
For instance, Fanous et al.6 employed a generative adversarial network (GAN) for frame deblurring.

Limited research is reported in the literature for stereo video deblurring. In a recursive architecture, Pan 
et al.7 used stereo view information that a coarser depth or scene flow is used to calculate blur kernels. Some 
other studies employed stereo disparity and video motion. They estimated the disparity using data from the 
stereoviews and suggested a region tree technique for calculating the point spread functions (PSFs). Sellent 
et al.8 mention scene flow and stereo video deblurring as typical issues. Local homographs were employed to 
produce blur kernels using scene flow calculations, and scene flow and deblurring were addressed separately 
using pre-estimated scene flow.

Stereo video deblurring requires to preserve both disparity and temporal coherence. This makes it different 
from applying regular deblurring methods used for single images or standard videos. As a result, the motion 
information within successive frames potentially plays a considerable part in deblurring the frames next to 
them. Therefore, stereo video deblurring work can be divided into two significant components: (a) modeling 
symmetry cues across two viewpoints and (b) simulating sequences among subsequent frames. The intrinsic 
relation across pairs of stereo frames is exploited for modeling symmetry. Two considerations lead to our desire 
to propose a novel methodology for stereo video deblurring. Firstly, utilizing the motion information across 
succeeding frames and combining the information from adjacent frames of one perspective can aid in detecting 
distortions in pixels of the center frame. In fact, due to the slight movement between the few subsequent frames, 
surrounding frames can assist in deblurring the desired frame when deblurring a single video frame. Secondly, 

OPEN

1Faculty of Engineering and Natural Sciences, Bahcesehir University, 34353 Istanbul, Turkey. 2Department of 
Computing and Software Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, USA. 3Department of 
Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA. 4Department of Computer 
Science and Digital Technologies, University of East London, London, UK. *email: mislam@fgcu.edu; mahad@
uel.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-63860-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14342  | https://doi.org/10.1038/s41598-024-63860-9

www.nature.com/scientificreports/

stereo vision provides two views simultaneously. Using the depth map, the equivalent pixels in one viewpoint 
can aid in the removal of blur in the comparable stereo view.

The  transformer1 is well-known because of its capabilities in parallelization and outstanding modeling ability 
of the interconnections between the input sequences. It can potentially handle stereo video enhancement as a 
sequence modeling  task9. Transformer-based approaches, such as Vision Transformers (ViT)10, break a video 
sequence into tiny areas and derive global connections among the token embeddings that reflect the areas. At 
the same time, spatial information is not granted considerable  weight2. Such frameworks can only be used in a 
way that allows for stereo video deblurring, relying on local and texture information. Moreover, the ViT is not 
designed to resolve temporal dependencies and consistency, which are critical in the stereo-deblurring challenge.

To deal with motion blur, this study provides a novel Transformer-based stereo video deblurring approach 
that leverages nearby frames and information from the other corresponding stereo frame. Our Transformer-
based stereo video deblurring approach leverages nearby frames and information from corresponding stereo 
frames to handle temporal information. We design an optical flow-based feed-forward layer to discover correla-
tions across different video frames and align the features. Our approach employs a combination of spatial and 
temporal attention mechanisms to capture both local and global dependencies across frames. Specifically, we 
utilize a self-attention mechanism within each frame to model relationships between pixels, addressing spatial 
attention. Additionally, we introduce an optical flow-based feed-forward layer as a temporal attention mecha-
nism to model relationships between consecutive frames, aiding the model in understanding the dynamics of 
the video sequence. By combining these two attention mechanisms, our architecture effectively captures both 
spatial and temporal dependencies in videos. We first estimate the motion information between consecutive 
frames using PWC-Net11 model. Then, after applying a 3D convolution, we perform a Transformer network to 
both stereo views. Then, the extracted features are fed to a CNN-based unit, and the features from the stereo 
frames are fused using a modified Parallax Attention Mechanism (mPAM) module. Lastly, a reconstruction layer 
creates the deblurred targeted frames. Due to the usage of both inter-view and intra-view frames, the temporal 
information of the video are handled in our method. The primary contributions to this paper are given below:

• We propose a new transformer model for deblurring stereoscopic videos. To deblur a target frame, the pre-
sented model incorporates the cross-view information and the information from nearby frames.

• In the model, we present a new feed-forward layer that spatially aligns features by calculating the relation-
ships among all neighboring frames.

• We significantly improved the PAM module, namely mPAM, for combining features from stereo views to 
merge the stereo video features.

• Several image- and video-based deblurring methods are reimplemented to have a fair comparison with the 
proposed method based on two benchmark datasets. Experimental results and ablation studies show the 
superiority of our method compared to the previous art.

In Section “Related works”, we briefly illustrate essential methods related to 2D and 3D images and video deblur-
ring. We describe the proposed model and its different parts in Section “Proposed method”. Section “Datasets and 
experiments” discusses the experimental setup, implementation, and datasets. The efficiency of our method is 
evaluated in Section “Results and discussions”. Finally, we conclude the paper with some future work guidelines.

Related works
This section briefly discusses the relevant single, stereo image, and video deblurring methods.

2D image deblurring
Certain classic methods for removing the blur from a single image are proposed and available in the literature. 
Some examples include the L0 regularized  prior12, the dark channel  prior13, and the discriminative  prior14. 
These methods have several limitations in representing spatial blur in dynamic settings. These methods often 
struggle to represent complex, spatially-varying blur in dynamic scenes with motion. However, several methods, 
 including15–17, used the depth map to simulate the blur distortion that is not homogeneous. Because of the time-
consuming optimization process, such methods are expensive.

Traditional deblurring methods are computationally  expensive18. For dealing with commonly occurring blur 
resulting from the relative movement of the object-camera, Nah et al.19 developed a no-reference solution. This 
method is a CNN-based multi-scale system that attempts to recover frames with more details. The approach 
suggested  in20 involves gradually recovering the image at various qualities from providing a strategy that is less 
complicated than earlier techniques and performs better. A multi-scale structure has been included in the sug-
gested paradigm. Zhang et al.21 presented a strategy for dealing with the spatially variable blur, which occurs as 
the camera moves. Three CNNs and one RNN were employed. Liang et al.22 approached the deblurring problem 
from another perspective. They proposed a new model for deblurring raw images. They also used a new raw 
image deblurring dataset and trained their model on that dataset. In another study, Honorvar et al.23 proposed a 
new model of PSF of motion blur to analyse the motion invariant in frequency and moment domains.

If the blur is not uniformly distributed, for  example24,25, employed CNNs to predict the blurry regions.  In26, 
the authors developed a new approach for detecting motion blur caused by camera and object movements. They 
designed a new multi-scale CNN-based framework with certain skip connections to manage data generation. 
Recently, an Edge-Aware Scale-Recurrent Network (EASRN) was presented by Chang et al.27 to deal with the 
motion blur in the presence of the outliers that deblurred the frames at different scales. This method also trained 
a deep model to restore the high-quality edges. Li et al.28 developed a CNN-based model for image deblurring 
based on depth information estimation. Then, they use a feature transform model to extract depth features and 
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combine them with spatial features. It demonstrated that depth information could be effectively utilized for image 
deblurring. Very recently,  Restformer29 is proposed which is a Transformer-based model. They design multi-head 
attention and feed-forward blocks to capture long-range pixel interactions. In another recent study, Kong et al.30 
introduced a frequency domain-based Transformer for deblurring images. Instead of matrix multiplication, they 
calculate the scaled dot-product attention using their proposed product method.

2D video deblurring
Several recent works have addressed 2D video  deblurring31–36. Delbracio et al.31 used the Fourier transform to 
fuse the data from neighboring frames in a video to remove motion blur. The neighboring frames are registered 
for each frame, and then the registered frames are combined using the Fourier transform. CNN’s are one of the 
most successful methods developed for video deblurring. For example, an encoder-decoder-based model is 
applied to the batch of neighboring frames for deblurring  in32. The method  in33 proposed a Spatio-temporal 3D 
CNN model to deblur videos. Zhang et al.36 modeled the temporal dependencies using a non-local layer that 
calculated the similarities and differences between frames with a recursive block.

Pan et al.34 proposed an optical flow-based model in another study. This method learns CNN to calculate the 
optical flow and reconstructs the deblurred frames afterward. Son et al.35 are also based on using neighboring 
frames. They proposed a novel motion estimation method that is invariant to blur. Instead of warping frames 
for compensating motion, they used a pixel volume to to use the most sensitive pixels of the blurred video. 
Recently, Wang et al.37 presented a CNN-based model, providing spatial-temporal and frame channel attention 
modules and a reconstruction block to re-create the high-resolution frames. Video deblurring and optical flow 
(VDFlow)38 estimated optical flow and deblurring at the same time. This model has two parts: encoder-decoder 
for deblurring and optical flow network (FlowNet)39 for optical flow estimation. In another study, Chen et al.40 
formulated deblurring as a residual learning problem. They trained a U-net model to deblur the frames and then 
iteratively generated frames to create a high frame-rate video.

Stereo image and video deblurring
Some studies have employed disparity and motion (for video) to deblur stereo content. The depth information 
and point spread functions were calculated  in41. They estimated the depth of information and then suggested a 
region tree approach for computing the point spread  functions8 used scene flow estimates to generate blur kernels 
and a grading approach to the borders of moving objects. In contrast, Pan et al.7 combined scene flow estimation 
with deblurring and discovered that motion and blur distortions could interact. Network with depth awareness 
and view aggregation (DAVANet)42 was proposed for stereo image deblurring. It includes three major sections: 
an encoder-decoder backbone, a disparity prediction model, and an integration framework that combines the 
two networks to generate deblurred frames. They also presented the Stereo Blur dataset. Recently, UNet-Deblur43 
introduced a CNN-based stereo video deblurring approach that considered the stereo frames in succession. They 
fed the target and successive neighboring frames to the 3D CNN model to adjust for motion in stereoscopic video, 
which can aid with more deblurring. After compensating for motion across subsequent frames, the left and right 
frames are subjected to a 3D CNN to extract their features. They redesigned 3D U-Nets to use them as feature 
extractors. The  PAM44 module is adjusted to fuse cross-view information and construct the output deblurred 
frames to combine the left and right information. Besides, despite having deeper architecture compared to the 
other stereo image-based methods such as  DAVANet42, their method has poor efficiency. Motivated by this, we 
develop a new architecture to better utilize the neighboring and stereo information to deblur the stereo video 
frames efficiently.

Proposed method
Figure 1 shows the design architecture of our stereo video deblurring approach. We estimate the motion between 
succeeding center frames using the pyramid, warping, and cost volume network (PWC-Net)11. After warping 
the neighboring frames to the center frames, we apply them into a 3D convolutional block, which extracts even 
more localized characteristics. A Transformer network then learns the features from the middle and motion-
compensated frames. We use four convolutional residual blocks (CRB) to extract more deep features. The CRB 
provides features with broad receptive fields and intense sampling rates, which help to estimate stereoscopic 
matching. Then, we combine the cross-view features with modifying the  PAM44. Finally, a batch of 2D convo-
lutional blocks reconstructs the target frames and further adds the middle frames. We first discuss PWC-Net 
Architecture, and then we discuss the proposed Transformer Architecture.

PWC-Net and transformer architecture
PWC‑Net Architecture
We utilize PWC-Net, which is built upon fundamental principles: pyramidal processing, warping, and leveraging 
a cost volume. Implemented within a trainable feature pyramid, PWC-Net utilizes the existing optical flow esti-
mation to deform the CNN features of the subsequent image. It then combines these deformed features with those 
from the initial image to create a cost volume. This volume is then analyzed by a CNN to estimate the optical flow. 
Optical flow approximation is fundamental in vision tasks with several use  cases45. The energy reduction strategy 
proposed by Horn and  Schunck46 is used by state-of-the-art approaches. Nevertheless, optimizing a complicated 
energy function is typically costly for real-world use cases. Figure 2 summarizes the major parts of PWC-Net. 
First, we calculate the feature pyramids to extract features at different scales. Let ( Ilt and Irt  ) and ( Ilt−1 and Irt−1 ) 
represent the two stereo consecutive frames. Pyramid extraction includes six levels, with 16, 32, 64, 96, 128,  and 
196 number of  features11. The calculated pyramids are as follows: Plt , l=0,...,5. Then, another layer performs the 
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warping process. For stereo frames, the features of Ilt and Irt  are warped using the features of Ilt−1 and Irt−1 , and 
the up-sampled flow of the upper pyramid level from the l+1th level for each view:

In this equation, i and up are the pixel index and the upsample operators, respectively. Here, the bilinear inter-
polation calculates the warps.

Figure 3 depicts the Transformer’s high-level architecture. Firstly, we apply a 3D CNN to the stereo batches 
to transfer the input frames ( Ilcomp

3  and Ircomp

3  ) from 3 to 64 output channel ( Ilcomp

64  and Ircomp

64  ). Next, we calculate the 
initial features using residual modules ( IlRes64  and IrRes64  ). The added and normalized blocks connect attention and 
flow with residual layers. As seen in Fig. 3, we repeat these layers L times and apply another residual block. We 
discuss the transformer’s sub-blocks in the following sub-sections.

Self‑attention layer
Figure 4 depicts the architecture of this layer. We start with creating the Query (Q), Key (K), and Value (V) ten-
sors. With applying a 3D CNNs to ( IlRes64  and IrRes64  ), we generate Q ( Ql

64 and Qr
64 ) and K tensors ( Kl

64 and Kr
64 ) to 

extract their feature maps. 64 filters with size of 3 ×3× 3 and padding of 1 perform to 3 CNNs. Therefore, Q, K, 
and V for the left channel are as follows:

(1)Plt(i) = Plt−1(i + up(tl+1)(i))

Figure 1.  The proposed stereo video deblurring model. Firstly, PWC-Net estimates the motion between the 
neighboring frames. Then, we apply a 3D CNN layer to the motion-compensated frames, and the proposed 
Transformer model accepts the resulting features as input. Next, another CNN layer (CRB) extracts deep 
features. The mPAM then fuses the stereo input features. A convolutional decoder constructs the deblurred 
frames from the left and right features. Finally, we form the output by adding the blurry middle target frames 
with the reconstructed left and right frames.

Figure 2.  Feature pyramid in PWC-Net11. The arrows represent the flow estimation direction, while the 
pyramids are built in reverse directions. PWC-Net uses the upsampled flow to warp features in the neighboring 
frame, calculates a cost volume, and processes it with neural networks.
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where K1,2,3 are CNN kernels. Next, we calculate the similarity tensor using the tensor product (TP) for the left 
video:

 where SM is the softmax operation. We apply the output features into a 3D CNN including 64 filters and 3 ×3× 3 
kernel size. Next, we multiply the results by V and combine them with the input features to obtain the attention 
layer’s output features for the left video:

The calculations for the right features are identical to the left one.

Position encoding
The permutation is unchanging in the original Transformer  architecture47, but in deblurring task, the position 
is crucial. In this paper, we use the positional encoding  in48. For left and right Transformers, we utilize d/3 sine 
and cosine with distinct frequencies for each spatial coordinate:

where posl is the position in the dimension for the left Transformer, and wk = 1/100002k/(d/3)48.

Feed‑Forward (FF) Layer
The fully connected FF does not utilize the interdependence across tokens of neighboring frames. We propose 
an optical flow-based approach to align the input features in the spatial dimension, considering the relations 
between successive frames. Figure 5 describes the proposed architecture. We apply the feature maps from Attnl 

(2)
Q = 3DCNN(K1, I

lRes
64 )

K = 3DCNN(K2, I
lRes
64 )

V = 3DCNN(K3, I
lRes
64 )

(3)QKl = SM(TP(QT ,K))

(4)Attnl = I
lRes
64 + TP(QKl ,Vl)

(5)PEl(posl , i) =

{

sin(posl .wk) for i = 2k,
cos(posl .wk) for i = 2k + 1;

Figure 3.  The Transformer’s high-level design structure. To extract information from the frames, we use 
convolutional layers. The self-attention and feed-forward optical flows are applied after position encoding, 
utilizing the add and normalization blocks. Finally, residual modules create the desired outputs.

Figure 4.  The self-attention module’s architecture. The input features from a 3D CNN module build the tensors 
Q, K, and V, and after tensor multiplications, we create the output.
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and Attnr to this block. We use spatial pyramid network (SpyNet)49 to estimate the motions across frames n and 
m as flowl and flowr:

where spy is the  SpyNet49, and LR Next, we warp the features in the forward direction:

 Next, we combine the FFl and FFr with Attnl and Attnr . To build the connection between succeeding frames, 
we suggest using a CNN-based forward layer. To construct the resulting features of this module, we particularly 
employ residual blocks with a 3D CNN at the end. The following is how we define a fully connected feed-forward 
layer:

Modified PAM (mPAM)
Stereo video frame pairs offer an opportunity to enhance the effectiveness of image and video deblurring by 
providing supplementary information from a second perspective. Nonetheless, integrating this data presents 
challenges due to the considerable variations in disparities between stereo images. To address this, we propose 
a parallax-attention mechanism (PAM) featuring a global receptive field along the epipolar line. This mecha-
nism aims to manage diverse stereo video frames with substantial differences in disparity effectively. Parallax 
Attention Mechanism (PAM)44 merges the features of stereo images. We improve the PAM design to account 
for the input 3D features representing video sequences over time. The input features to the mPAM module are 
3 dimensional (from left or right videos). Therefore, 3d residual features at first, then apply 2D convolutions. As 
shown in Fig. 6, the left and right features are fed to the 3D residual blocks (Res). 2D convolutions (2D conv) 

(6)
flowl(m, n) =

{

[0]W×H for m = n,

spy(Iln, I
l
m) for m �= n;

flowr(m, n) =

{

[0]W×H for m=n,
spy(Irn, I

r
m) for m �= n;

(7)
FFl = warp(Attnl , flowl)

FFr = warp(Attnr , flowr)

(8)
FFol (Attnl) = conv(LN(Attnl + Res([Attnl , FFl])))
FFor (Attnr) = conv(LN(Attnr + Res([Attnr , FFr])))

Figure 5.  Architecture of the optical flow-based feed-forward layer: Firstly, the features coming from the self-
attention layer estimate the forward optical flows. Then, after the warping operation, residual and convolutional 
layers create the output features.

Figure 6.  The mPAM flow diagram: Firstly, the stereo input features are input to the residual layer (Res). After 
applying a 2D CNN, we fuse the cross-view information and create the output.
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are applied next to make the input suitable for 3D features. Tensor multiplication is then performed to the left 
and right features. SoftMax block then creates the attention maps:  MR to L (from right to left) and  ML to R (from 
left to right). Next, for all disparities, we combine the summation of features with the former right features. We 
removed valid mask generation from PAM structure  in44, because the authors use an occlusion detection method 
to generate valid masks. Since this operation adds to the computations, we removed it from the main algorithm. 
To generate deeper features suitable for deblurring, we utilize 3 CNN layers. There are 128 filters in the initial 
2D convolution conv1. For this convolution, we employed a 5 × 5 kernel size. Just by changing the kernel size to 
3 × 3, the conv2 is similar to the conv1. Then, at a rate of 0.5, we apply a dropout layer drop. The third layer conv3 
is with 64 filters and a 3 × 3 kernel.

Loss functions
Five loss functions are defined in this section which we use for model training. The mean absolute error (MAE) 
is the first loss, which determines the differences among the original and deblurred frames. The average MAE 
of the stereo viewpoints is as follows:

In addition, we exploit photometric ( ploss ) and cycle ( closs )  losses44. To consider the smoothness in correspond-
ence space, we use smoothness loss as follows:

where, A is the cross-view attention maps. Finally, stereo consistency loss sConsistloss considers the stereo con-
sistency between deblurred stereo frames. For stereo consistency, we calculate the end-point error (EPE) using 
Euclidean distance among the two disparities of the original and deblurred video frames. The resulting loss is 
as the union of defined five losses:

where, γ is a constant which is set as 0.05.

Datasets and experiments
To train the proposed deblurring model, we utilize the only publicly available dataset of the Stereo Blur  dataset42. 
For model evaluation, we use the test set of Stereo Blur and  LFOVIAS3DPh250 datasets that are discussed in the 
following subsections.

Datasets and evaluation criteria
Stereo blur 42 dataset
This dataset contains videos of objects and people with minor disparities. The outdoor videos include humans, 
cars, boats, and outdoor scenarios. Furthermore, the dataset contains videos captured in various situations, such 
as lighting and weather variations. The authors expanded the dataset to include a variety of motion settings uti-
lizing three distinct imaging styles: handheld, stationary, and onboard shots. The ZED stereo  camera51 is being 
used to create this dataset, with an FPS of 60. The stereoscopic video has identical arrangements on both stereo 
sides. It includes masks for eliminating faulty samples in the disparity and distorted frame segments, generated 
using the bidirectional consistency  check52. In this dataset, there are 135 stereo videos.

LFOVIAS3DPh2 50 Dataset
It is used for stereoscopic video quality  assessment53–55 and contains 12 pure and 288 distorted videos. These 
videos were recorded with a Panasonic camera, and their resolution is 1920× 1080 . High-quality videos are 
labeled with a high value and vice versa (ranging from 5 for the highest quality and 0 for the lowest grade). All 
the videos have an exact duration of 10 seconds. Since the LFOVIAS3DPh2 dataset contains blurry and original 
videos, we use this dataset’s blurry videos to evaluate our stereo video deblurring method. To make blurry videos, 
the authors  in50 employed ffmpeg’s box blur function. They created 72 blurry stereo videos by applying 3 blur 
levels to the 12 reference stereo videos.

Evaluation metrics
We compare our model’s performance to deep learning-based and classical approaches in the two popular 
Structural SIMilarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) metrics.

Experimental setup
To train the proposed model, we firstly center crop the left and right frames with 256 pixels and construct a 
dataset with a size of 256× 256 . Our computing system’s configurations are NVIDIA RTX 3090 GPU, 24GB of 
GPU RAM, and i9-10850K CPU 3.60 GHz. We utilize the Adam  optimizer56 with β1=0.9 and β2=0.99. We employ 
a batch size of 10 with the learning rate of 0.001, and we trained the model for 528k iterations.

(9)maeloss = (mael +maer)/2

(10)
sloss =

∑

A

∑

i,j,k

(||A(i, j, k)− A(i + 1, j, k)||1

+ ||A(i, j, k)− A(i, j + 1, k + 1)||1)

(11)
loss = maeloss + γ (ploss + closs + sloss

+ sConsistloss)
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Results and discussions
To our best knowledge, only UNet-Deblur43 as a video-based stereo deblurring method reported results on the 
Stereo Blur dataset. As a result, we do comparisons with this method, stereo image-based approaches, and some 
video and image deblurring methods. In Zhou et al.42, the models  of19–21,57 are trained on the Stereo Blur dataset. 
Tables 1 and 2 demonstrate the outcomes of the analysis of image- and video-based deblurring approaches for 
Stereo Blur and  LFOVIAS3DPh250 datasets, respectively.

Quantitative results
We compare the proposed method’s effectiveness with the available 2D and 3D image and video-based methods 
in Table 1, notably the only available stereo video deblurring  method43. The results demonstrate that our model 
improved by 3.50 dB in PSNR and 0.0521 dB in SSIM, which significantly improved. Furthermore, stereo video 
deblurring approaches of Sellent et al.8 and Pan et al.7 are not open-source, and their results on the Stereo Blur 
dataset have not been published. They conducted their research using videos that they created for their experi-
ments. Sellent et al.8 created stereo images for their experiments, which is not possible to use in our experiments 
since our method requires some successive frames. Our algorithm requires at least 5 successive frames. In addi-
tion, it contains a few images, which means it cannot train our deep learning-based model. Since the training 
code  for7 is not available, we could not compare our results with it. To facilitate comparison, we re-implemented 
two 2D video deblurring approaches of Son et al.35 and Pan et al.34. Pan et al.34 efficiently use domain knowledge 
of video deblurring. Still, our method outperforms this method thanks to using the mPAM module. Compared 
to Son et al.35 model, we improve 0.83 and 0.27 dB in PSNR on Stereo Blur and LFOVIAS3DPh2 datasets, 
respectively.  DAVANet42 is a stereo image deblurring method that performs better than the other image-based 
methods by a large margin. We also compare  PAM44 with the proposed mPAM inside our whole model. Table 5 

Table 1.  Comparison of our proposed method with image- and video-based deblurring methods in terms of 
PSNR, SSIM, and time-complexity on the Stereo  Blur42 dataset. The best results are in bold. The “–” is used for 
unavailable information.

Methods PSNR SSIM Time (s) Params (M)

Image-based Methods

  Whyte58 24.48 0.8410 700 –

  Sun24 26.13 0.8830 1200 7.26

  Gong25 26.51 0.8902 1500 10.29

  Nah19 30.35 0.9294 4.78 11.71

  Kupyn57 27.81 0.8895 0.22 11.38

  Zhang21 30.46 0.9367 1.40 9.22

  Tao20 31.65 0.9479 2.52 8.06

DAVANet42 33.19 0.9586 0.31/pair 8.68

2D Video-based Methods

 Pan et al.34 33.78 0.9572 0.42/pair 32.4

 Son et al.35 33.22 0.9328 0.25/pair 21.02

Stereo Video-based Methods

 UNet-Deblur43 30.56 0.9221 0.57/pair 19.9

Ours 34.06 0.9742 0.81/pair 38.4

Table 2.  Comparison of our proposed method with image- and video-based deblurring methods in terms of 
PSNR and SSIM on the  LFOVIAS3DPh250 dataset. The best results are in bold.

Methods PSNR SSIM

Image-based methods

  Kupyn57 27.12 0.8770

DAVANet42 32.1073 0.9394

2D video-based methods

 Pan et al.34 32.0331 0.9387

 Son et al.35 31.9880 0.9355

Stereo video-based methods

 UNet-Deblur43 28.7216 0.9018

Ours 32.2601 0.9410
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compares the effects of these two modules on the effectiveness of the proposed stereo video deblurring method. 
The mPAM improves the PSNR by 0.59 dB.

Stereo consistency
To calculate the consistency between deblurred and original stereo video frames, we further investigate the 
end-point error (EPE) using the Euclidean distance among the two disparities (in original and deblurred vid-
eos), we estimate the disparity between the stereo frames of the reference videos with the approach proposed in 
Hirschmuller et al.59 before calculating the disparity of the deblurred video frames. We calculate the EPE between 
two disparity values as the Euclidean distance between them. The results are shown in Table 3. The average EPE of 
our method is 0.7196 on the Stereo Blur dataset. In comparison,  DAVANet42 receives the average EPE of 0.7380 
on the same dataset. Our method maintains better stereo consistency in the deblurring results.

Qualitative results
Figure 8 demonstrates the qualitative performance of our method on some stereo video frames from the Stereo 
Blur dataset. We compare our results with two 2D video deblurring methods (Son et al.35, Pan et al.34), and one 
stereo image deblurring method, namely  DAVANet42). We selected six video frames for this comparison, and 
in most of them, our method qualitatively outperforms the other methods. This figure shows that our approach 
efficiently uses the data from the neighboring frames. When the frame is blurry, the nearby frames help to deblur 
the middle frame. Additionally, Figure 7 illustrates the performance of the proposed method in stereo settings 
on the Stereo Blur dataset. The first row depicts the left frame, while the second row shows the right frame of a 
sample test video.

Ablation studies
We perform an extensive ablation study on the Stereo  Blur42 dataset to analyze the impact of various components 
within our model. This involves systematically removing specific modules (i.e., Transformer, mPAM module, 
Decoder, and a consecutive number of frames) and evaluating the resulting effect on the model’s performance 
(PSNR and SSIM) as shown in Table 4 and Fig. 9. We refer to the architecture in Fig. 1 for this analysis.

Effect of the transformer
We remove the Transformer from both the left and right channels to see the effectiveness of our model perfor-
mance. Since the left (PWC-Net) and right (CRB) sides of the Transformer in Fig. 1 contain 3D and 2D CNNs, 
respectively, we cannot directly remove the Transformer. Let’s say the output of the PWC-Net is a 5 dimensional 
tensor with size ( Batch− size,N − frames,N − channel,W ,H ). We reshape the tensor to make the input ten-
sor with 4 dimensions ( Batch− size, N − frames × N − channel,W, H), then apply it to the CNN network. The 
results are shown in the first row of Table 4. The Transformer has a notable influence on the model efficiency, 
and the model PSNR decreases from 34.06 to 30.13 after removing the Transformer from the left and right chan-
nels. As shown in Fig. 9, when we disable the Transformer module, the model performance drops essentially.

Effect of the mPAM
We further investigate the effect of the cross-view information and deblur the left and right frames indepen-
dently without considering the mPAM module. The model performs similarly to two models trained separately 

Figure 7.  Qualitative performance of the proposed method on the Stereo  Blur42 dataset. The first row displays 
the left frame, and the second row displays the right frame of a sample test video. The BP and GT refer to the 
selected Blurry Part (BP) and Ground Truth (GT) of the video frame. .
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Figure 8.  Qualitative performance comparison with state-of-the-art methods on different indoor and outdoor 
video frames in the Stereo  Blur42 dataset. The BP and GT refer to the selected Blurry Part (BP) and Ground 
Truth (GT) of the video frames.

Figure 9.  Qualitative performance comparison of our method, with and without different contributing 
modules, on two video frames on Stereo  Blur42 dataset. BP and GT refer to the selected Blurry Part of the frame 
and Ground Truth frame, respectively.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14342  | https://doi.org/10.1038/s41598-024-63860-9

www.nature.com/scientificreports/

without using the cross-view information. The result of this change is illustrated in the second row of Table 4. 
Even without using the cross-view information, the proposed method outperforms image-based methods of 
 Whyte58,  Sun24,  Gong25,  Nah19, and  Kupyn57. However,  DAVANet42, which uses the cross-view information 
efficiently, performs better than the proposed method without the mPAM module. Our model effectively uses 
the cross-view information, and the features from the other view help with further deblurring. The quantitative 
and qualitative influence of the mPAM module is shown in Table 5 and Fig. 10, respectively.

Effect of decoder
Since the output of the mPAM module has 32 filters, we use a 2D convolution after the mPAM to create a 3 
channel output to add to the blurry input frames. We remove the convolutional decoder and add the output 
of the mPAM module to the blurry middle frame to create the deblurred output frames. The result is shown in 
the third row of Table 4, which shows the importance of the decoder module. This table shows that the decoder 

Table 3.  Stereo consistency. The average EPE of the proposed method against the stereo-based methods.

Stereo-based methods Params (M) EPE

DAVANet42 33.19 0.7380

UNet-Deblur43 30.56 0.7584

Ours 34.06 0.7196

Figure 10.  Effect of different PAM configurations in the overall performance of the proposed method on a 
video frame from Stereo  Blur42 dataset: w/o PAM: without PAM in our model,  PAM44, mPAM: modified PAM. 
The BP and GT refer to the selected Blurry Part (BP) and Ground Truth (GT) of the video frame.

Table 4.  Performance comparison with (w) and without (w/o) contributing modules on Stereo  Blur42 dataset. 
Significant values are in bold.

Model settings Params (M) PSNR SSIM

w/o Trans. 21.4M 30.13 0.9359

w/o mPAM 36.4M 30.39 0.9378

w/o Decoder 16.7M 31.44 0.9461

With all modules 38.4M 34.06 0.9742

Table 5.  Comparison the performance between the  PAM44 and the mPAM on Stereo  Blur42 dataset.

Model settings Params (M) PSNR SSIM

PAM44 38.1M 33.47 0.9568

mPAM 38.4M 34.06 0.9742

Table 6.  Impact of the number of input frames ( N_frames ) on the performance of the proposed model on the 
Stereo  Blur42 dataset. N_frames = 5 demonstrates a favorable trade-off between performance and complexity.

N_frames PSNR SSIM

3 32.29 0.9507

5 34.06 0.9742

7 34.22 0.9777
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module includes 21.7 million of parameters, a high number compared to other parts of our model. In the future, 
we will work on reducing the complexity of the decoder module.

Effect of consecutive frames numbers
In Sect. Quantitative results , we highlighted the use of a sequence consisting of 5 consecutive frames in our 
experiments. Here, we investigate how altering the number of input frames affects the performance of our 
model. Table 6 presents a comparative analysis across different frame counts, specifically N_frames = 3 , 5, and 
7. The results demonstrate that selecting N_frames = 5 yields optimal performance for stereo video deblurring. 
Notably, our proposed method exhibits sub-optimal performance with N_frames = 3 , while only marginal 
improvements are observed with N_frames = 7 . Therefore, choosing N_frames = 5 strikes a favorable balance 
between performance and complexity.

Limitations
The increased number of model parameters in the proposed technique compared to image and 2D video deblur-
ring methods is one of its drawbacks. As shown in Table 1, our model includes 38.4 million parameters, compared 
to 19.9 million for UNet-Deblur43, 32.4 million for Pan et al.34, 21.02 million for Son et al.35, and 8.68 million 
for  DAVANet42. This increase in parameter count is logical given that our proposed method addresses video 
deblurring with additional stereo-related information compared to 2D image-based and video-based methods. 
The inclusion of the temporal dimension inherently results in a model with higher complexity, such as using 3D 
convolutions instead of 2D. However, in the future, we aim to refine the modules of the overall architecture to 
make it more lightweight.

Conclusions
This paper proposed a new model for deblurring stereoscopic videos, marking the first Transformer-based stereo 
video deblurring method. We design its self-attention and feed-forward layers specifically for stereoscopic video 
deblurring. Additionally, we develop a method for fusing stereo information to enhance deblurring further. Our 
approach utilizes neighboring frames of a monocular view and corresponding stereo view to deblur the target 
frame. Extensive experiments demonstrate that our proposed approach outperforms both image and video-
based deblurring methods on two benchmark datasets. In future work, we plan to optimize different parts of 
the proposed model to reduce complexity. Specifically, we aim to redesign the decoder to achieve comparable 
performance with fewer parameters. Additionally, we intend to refine the motion compensation module to focus 
more on the motion or salient parts of stereo videos.

Data availability
The source code for this work is available upon request to corresponding author(s).
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