
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Comparative Study on Malware Detection Using

Supervised Machine Learning Models

Irfan Mohammed

Department of Computer Science and

Digital Technologies

School of Architecture, Computing and

Engineering,University of East London,

London

United Kingdom

Email:u2741628@uel.ac.uk

Shahzad Memon

Department of Computer Science and

Digital Technologies

School of Architecture, Computing and

Engineering,University of East London,

London

United Kingdom

Email:smemon@uel.ac.uk

ORCID: 0000-0003-3354-5798

Umar Mukhtar Ismail

Department of Computer Science and

Digital Technologies

School of Architecture, Computing and

Engineering,University of East London,

London

United Kingdom

Email:U.Ismail@uel.ac.uk

Abstract—Traditional signature-based systems struggle to

detect novel and variably structures threats such as

polymorphic and metamorphic malware. These systems rely

on predefined rules, which limit their ability to identify newly

developed, obfuscated, or zero-day attacks. Given the

constantly evolving nature of cyber threats, it is crucial to

develop detection systems capable of identifying malicious

behavior without relying solely on static signatures. This

study investigates the effectiveness of supervised machine

learning (ML) techniques in detecting malware using the

CICIDS2017 dataset which includes both attacks and benign

traffic. Four widely used supervised models, Random Forest,

Support Vector Machine (SVM), K-Nearest Neighbors

(KNN) and XGBoost, are evaluated and compared.

Each model undergoes the same data preparation process,

including features selection and data balancing, to ensure fair

performance assessment. Model Performance is evaluated

using standard metrics such as accuracy, precision, recall

and F1-score. Among the models, Random Forest achieved

the highest accuracy of approximately 99.8%, demonstrating

strong robustness and generalizability. XGBoost followed

with a commendable accuracy of around 92%, offering a

balance between computational efficiency and

interpretability. In contrast, SVM and KNN exhibited

limitations in detecting minority attack classes. Overall, the

Random Forest model outperformed other established

methods. methods. Feature importance analysis revealed that

attributes such as Avg Bwd Segment Size and Flow IAT Max

significantly contribute to the detection of malicious traffic.

Keywords: Cyber Security, Malware detection, Machine

learning, Supervised algorithms, AvgBwd Segment size, Flow

IAT Max

I. INTRODUCTION

Today’s large network of connected systems puts

everyone at risk from advanced malware. Traditional

methods designed to spot malware, depending on

signatures, are failing to notice new types of malwares

[10]. Polymorphic and metamorphic malware modify their

code to trick static detection, so we are seeing an increase

in false negatives. Since cyber threats keep becoming more

complicated, we need technology that can swiftly identify

and stop harmful actions. With machine learning,

cybersecurity can make use of old data and spot new

attacks like those found in the past [1]. Unlike signature

approaches, ML models can spot suspicious patterns in

large data which makes them highly useful for malware

detection in changing environments. ML works well

because it can process a lot of data at once and uncover

secret patterns seen in network traffic and files.

The research considers how supervised machine learning

approaches are applied to identify malware, measuring

their performance, speed and ability to function in real-

time IDS systems. The work uses the CICIDS2017 dataset

which has both attacks and benign network traffic clearly

marked [1]. Four ML algorithms RF, SVM, KNN and

XGBoost are thoroughly looked at in this evaluation. Our

goal is to choose the best algorithm and to check that it

works across many types of attacks, keeping its

explanations easy to follow and making it efficient. This

study helps fill a gap seen in other works by comparing

several supervised models with the same standard dataset

and these results could be useful for cybersecurity system

implementations [6].

II. LITERATURE REVIEW

Many recent publications suggest that traditional methods

for detecting malware, using signatures and basic rules,

have their limitations [6]. They depend on specific

signatures or known forms, so they struggle with closing

the door on threats like polymorphic and metamorphic

malware. Due to the increased complexity of malware, the

community of cybersecurity experts has started using

machine learning and artificial intelligence to create more

flexible detection methods [10]. Choosing the right small

set of features greatly improves the detection results of ML

models in IoT platforms. They found that increasing the

object’s distance from other objects can improve detection

algorithms and save time. Discovered that DT and RF can

be very accurate, reaching up to 99.78%, by combining

them with feature reduction and voting-based ensembles.

These findings show that Malware Detection Systems

need model interpretability and can greatly benefit from

ensemble learning.

Deep learning is being used more widely every day [9].

They investigated the use of Convolutional Neural

Networks (CNNs) to classify types of malwares after

analysis of their byte streams. CNNs are skilled at finding

features in data with just raw binary values or traffic

images. Even so, their findings revealed that these methods

have significant disadvantages such as high computing

expenses and a high risk of overfitting, mainly when the

data is small or has many different classes [10].

Additionally, a study by Rathore et al. found that both

Support Vector Machines (SVM) and other methods

https://orcid.org/0000-0003-3354-5798

suffered in certain cases from being sensitive to the way

features are scaled and less scalable. K-Nearest Neighbors

(KNN) was considered and showed good scalability, but

its performance declines with large and complex data sets

[5]. Though a lot of prior studies look at each ML model

by itself, there aren’t enough comprehensive studies

comparing many supervised models working in the same

conditions. Additionally, most studies pay minimal

attention to how models detect attacks involving minority

groups which matter a lot in practical cybersecurity.

The study is designed to meet these gaps by running a

direct comparison of four commonly used supervised

machine learning methods using the CICIDS2017

benchmark data. Evaluating the models on the same

criteria and hardware settings allows this study to add to

the research in ML-powered malware detection and share

useful advice for using IDS.

III. METHODOLOGY

The research methodology of this study consists of four

key steps: four steps including dataset, data

preprocessing, model training and evaluation and results

and analysis.

A. Dataset

Many experts rely on the CICIDS2017 dataset, which was

produced by the Canadian Institute for Cybersecurity, to

assess intrusion detection systems. The purpose is to

generate network simulations that include both genuine

and harmful activities as they happen in real-life enterprise

networks [11].

There are over 3 million labeled network flows included,

covering a period of 7 days and many types of attacks

including DDoS, Brute Force, Port Scanning, Infiltration

and Web attacks [5]. The dataset includes more than 80

features collected with tools like CICFlowMeter which

measure aspects of each flow such as its duration, how

many bytes are transferred, how long the header is and the

space between arriving packets [11]. These features

facilitate the training of machine learning models, making

it easier to distinguish threat activity from safe traffic [1-

2].

B. Preprocessing

The raw data for the CICIDS2017 challenge is found in

CSV files organized by date. All attack types were

included and made consistent by merging the files into one

dataset [2]. We processed missing and infinite values by

omitting rows with either of them to avoid any bias in the

model training. Time, IP address and protocol information

were not included in the numerical features. To ensure that

feature ranges were consistent, Min-Max normalization

was used to make model convergence better [12].

Due to the higher attack traffic than normal traffic, the data

was sampled by class so that both types were present in

similar respective portions of each subset. Introducing

oversampling in this way blocks the model from giving too

much priority to the majority group within the data.

Moreover, z-score analysis and boxplots were applied to

maintain the data’s quality and lower the impact of noise

[6].

C. Feature Creation

Two steps were taken in feature engineering: feature

selection and transformation. At first, we used the in-built

feature importance measures provided by Random Forest

and XGBoost to determine how essential each feature.

These metrics were used to find the most valuable features

for classification [4]. A heatmap was also built to find

features that have a correlation of over 0.85. These features

were removed to limit multicollinearity.

Figure 1: Overview of research methodology for performance

comparsion of supervised machine learning-based malware detection

The chosen measurements were Avg Bwd Segment Size,

Flow IAT Max, Fwd Packet Length Max, Flow Bytes/s

and Idle Max [9]. For this procedure, first the data features

were modified by logarithmic scaling and then normalized

to lower skewness and variance. Interaction model terms

were added to observe how various features acted together,

yet only the best ones were left in after preliminary

experiments [12].

D. Model Selection and Training

Among several supervised learning approaches, Random

Forest (RF), Support Vector Machine (SVM), k-Nearest

Neighbors (KNN), and XGBoost were selected due to

their of their broad applicability, interpretability, and cost

effectiveness. A 70/30 was employed for training and

testing, ensuring balanced representation of all classes in

both data sets. The models were developed and evaluated

using Python, leveraging libraries such as Scikit-learn,

Pandas, Matplotlib and XGBoost [7].

Parameter combinations such as n_estimators, max_depth,

C and kernel were determined for RF and SVM by running

GridSearchCV [12]. Because we were unable to use much

time or resources, we manually adjusted the important

parameters n_neighbors, learning rate and subsample for

KNN and XGBoost. To check the data was not overfit and

to assess if the models would perform well on unseen

cases, each model was tested with k-fold cross-validation

(k=5).

E. Evaluation Metrics

They measured the accuracy of each model using

accuracy, precision, recall and F1-score. Matrices were

produced to show the number of true positives, false

positives, false negatives and true negatives for all attack

types. They show how accurately a model can separate

between malicious and benign traffic [4].

Reducing the rate of false positives depended mostly on

avoiding imprecise results and recall was vital for making

sure the approach identified every attack. Because F1-

score combines both precision and recall, it was used as a

standard metric for our analysis. Models’ performance was

shown using ROC-AUC curves across varying thresholds

for classification tasks [13].

IV. RESULTS

We show the outcomes of using Random Forest, Support

Vector Machine (SVM), K-Nearest Neighbors (KNN) and

XGBoost on the CICIDS2017 dataset. Most samples in the

data were for 'BENIGN' traffic, with few for the minority

classes 'Bot', 'Heartbleed' or 'Web Attack'. By using

stratified sampling, every class had the same proportion in

the training (1,979,513 samples) and test sets (848,363

samples) which made it easier to generalize [7].

A. Class Distribution Plot

The bar chart as shown in figure 2, compares the number

of samples in the CICIDS2017 dataset for each type of

network activity or attack. It allows you to find where data

classes are not evenly distributed which is key for building

machine learning models.

Figure 2: Class Distribution Plot

This means that, for example, a network of mostly

harmless activity could keep the model from discovering

unusual yet significant attacks. Classification

performances are more reliable and fairly judged on data

sets that are well-balanced among classes.

B. Random Forest’s Confusion Matrix

The Random Forest classifier’s outcome is seen by

comparing its predictions against the correct labels (See

figure 3.). Every cell demonstrates the number of

predictions where an instance of one class was predicted

to be from another [13]. Correct predictions are marked

with diagonal cells. The output reveals which sorts of

attacks work well and which cause confusion, allowing

you to adjust, choose other algorithms or refine the process

[9].

A. Model Metrics Comparison

The radar chart in figure 4. highlights how Random Forest

performs differently than XGBoost with several metrics

[7]. The further inside the edge a plot is, the less effective

the model is. The visual helps you quickly see which

model leads the way in all metrics and therefore select it

for use or extra optimization.

Figure 3: Random Forest’s Confusion Matrix

Figure 4: Model Metrics Comparison

B. Model Performance Overview

TABLE I PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS

Model Accuracy Precision Recall F1-

Score

Random

Forest

99.8% 99.7% 99.8% 99.7%

XGBoost 92.0% 91.5% 92.2% 91.8%

KNN 89.0% 88.0% 87.5% 87.7%

SVM 85.0% 83.0% 84.0% 83.5%

A. Using Random Forest

We achieved outstanding results using the Random Forest

model. The values in the diagonal section were higher than

in the other sections, showing many true positives [4].

Although precision and recall slightly decreased for labels

8, 9, 13 and 14, the overall number of errors stayed low.

After looking at the feature importance, it was seen that

'Avg Bwd Segment Size', 'Flow IAT Max' and 'Total

Length of Fwd Packets' were the leading factors [8].

Top 10 Feature Importances (Random Forest)

The features of the ten main characteristics ranked highest

by Random Forest are illustrated in figure 5. Feature

importance shows the role each feature has in getting a

correct prediction.

When we learn about the features that influence a model,

we can better explain the model, reduce the size of its

inputs and understand the domain better. It also directs

further activities that help the model achieve better results

and strengthen reliable and understandable outcomes in a

cybersecurity detection system [3].

Figure 5: Top 10 Feature Importances (Random Forest)

A. SVM

The accuracy of the SVM was ~85%. The model worked

more easily with major data groups but had problems with

small ones. A number of these files were wrongly labeled

as Benign when they should have been labeled as Bot. The

diagonal on the confusion matrix was not strongly

represented and evaluation scores were much lower for

infrequent data.

B. KNN

The KNN classifier was accurate about 89% of the time.

There was obvious concentration along the diagonal,

mainly for the label 'BENIGN'. Unfortunately, it was just

like SVM did not do well on minor attack classes. The

model could not process big sets of data as quickly as

expected and reacted sensitively to high dimensions [14].

C. XGBoost

XGBoost predicted correctly in about 92% of the cases.

There was good agreement between the predictions and the

actual outcomes, as most of the values in the matrix fell

along the diagonal. Groups 9, 12, 13 and 14 still scored

lower than the overall national average. The graph from

XGBoost revealed that 'PSH Flag Count', 'Bwd Packet

Length Min' and 'Fwd Packet Distance Min' were

important features [9].

V. FEATURE IMPORTANCE COMPARISON

It was confirmed by feature analysis that the importance of

each feature varied according to the model used [3].

Random Forest considered segment sizes and flow lengths

more important than TCP flag counts and packet numbers,

as XGBoost did. This reflects the fact different algorithms

interpret the same data about traffic differently for

classification.

In all, Random Forest beat out other models in

performance and across all class types. XGBoost was the

next best solution, having strong performance and low

computational needs. SVM and KNN did not work as well

for imbalanced, high-dimensional data, though they

helped us compare baseline methods [8].

VI. DISCUSSION

The communication results prove that Random Forest and

XGBoost are effective tools for finding malware in big

computer networks. They were able to handle many kinds

of attacks, had only minor cases of overfitting and

remained easy to interpret all necessary for an IDS used in

practice. Random Forest works better than many other

algorithms because it is an ensemble and is not easily

affected by noise or overfitting. What’s more, it can gauge

the relevance of each feature and deal with relationships

that are not linear. XGBoost’s methods of regularization

keep the model from overfitting and improving speed,

which benefits its use when resources are limited. Such

poor results confirm the difficulties others have reported

with these algorithms [14]. When the data is large or

features scale differently, SVM struggles to be used

efficiently, whereas KNN can become too slow when

handing high-dimensional or real-time tasks.

The research finds similar outcomes to what has been

reported by others and breaks new ground by comparing

four common ML models with one dataset and

methodology. That both RF and XGBoost manage to stay

accurate across attacks, even for uncommon categories,

demonstrates they could be effective in real life [2]. There

are, however, some shortcomings in the study. First, using

a singular dataset doesn’t show the changes in malware

patterns as they occur. Second, not including deep learning

models in the analysis was due to lack of computational

resources, but it meant we could not compare to today’s

best architecture models. Also, monitoring inference time

and resource use was not a part of this experiment but is

important for practical application [8]. There is a need to

carry out future investigations on mixed detection

strategies joining static and dynamic tools and to study

how deep learning models, for example LSTM and CNN,

can play a role in identifying malware behavior. Testing

the model in actual live networks at the same time is

necessary to confirm it functions well and is scalable [9].

VII. CONCLUSION

This research reveals that using supervised machine

learning such as Random Forest and XGBoost, is very

effective in finding malware on complex networks. These

models did a better job of being accurate, durable and easy

to understand than both SVM and KNN. Thanks to their

few false alarms and ability to protect from multiple

attacks, Random Forest and XGBoost are handy for

building real-time IDS. What we found agrees with and, in

cases, exceeds the results from other studies [3]. Their

success was greatly influenced by well-handled data

preprocessing and chosen features. Because SVM and

KNN struggle in handling large amounts of data and class

imbalance, ensemble methods can offer a good and

dependable way forward. Future studies should examine

approaches that mix traditional machine learning with

deep learning to achieve better real-time protection against

malware in changing situations.

REFERENCES

[1] M. Azeem, D. Khan, S. Iftikhar, Shaikhan Bawazeer, and M.
Alzahrani, “Analyzing and comparing the effectiveness of malware

detection: A study of machine learning approaches,” Heliyon, vol.
10, no. 1, pp. e23574–e23574, Jan. 2024, doi:
https://doi.org/10.1016/j.heliyon.2023.e23574.

[2] Shahzad, “Automated Malware Detection and Classification Using
Supervised Learning,” DIVA, 2024. https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1825596 (accessed May 27,
2025).

[3] D. Singh and S. Khurana, “Malware Detection in IoT Devices
Using Machine Learning: A Review,” pp. 203–209, May 2024, doi:
https://doi.org/10.1109/iccica60014.2024.10585149.

[4] P. Manoharan, J. Yin, H. Wang, Y. Zhang, and W. Ye, “Insider
threat detection using supervised machine learning algorithms,”
Telecommunication Systems, Dec. 2023, doi:
https://doi.org/10.1007/s11235-023-01085-3.

[5] M. M. Inuwa and R. Das, “A comparative analysis of various
machine learning methods for anomaly detection in cyber attacks
on IoT networks,” Internet of Things, vol. 26, p. 101162, Jul. 2024,
doi: https://doi.org/10.1016/j.iot.2024.101162.

[6] R. Hasan et al., “Enhancing malware detection with feature
selection and scaling techniques using machine learning models,”
Scientific Reports, vol. 15, no. 1, Mar. 2025, doi:
https://doi.org/10.1038/s41598-025-93447-x.

[7] Q. O. Ahmed, “Machine Learning for Intrusion Detection in Cloud
Environments: A Comparative Study,” vol. 6, no. 1, pp. 550–563,
Dec. 2024, doi: https://doi.org/10.60087/jaigs.v6i1.287.

[8] S. J. I. Ismail, Hendrawan, B. Rahardjo, T. Juhana, and Y. Musashi,
“MalSSL—Self-Supervised Learning for Accurate and Label-
Efficient Malware Classification,” IEEE Access, vol. 12, pp.
58823–58835, 2024, doi:
https://doi.org/10.1109/access.2024.3392251.

[9] Gowri Priya and K. V. Greeshma, “A Comparative Study of Threat
Detection for IoT Devices Using Machine Learning Techniques,”
Internet of things, pp. 507–527, Jan. 2024, doi:
https://doi.org/10.1007/978-981-97-0052-3_25.

[10] E. Krzysztoń, I. Rojek, and D. Mikołajewski, “A Comparative
Analysis of Anomaly Detection Methods in IoT Networks: An
Experimental Study,” Applied Sciences, vol. 14, no. 24, p. 11545,
Dec. 2024, doi: https://doi.org/10.3390/app142411545.

[11] F. Nabi and X. Zhou, “Enhancing intrusion detection systems
through dimensionality reduction: A comparative study of machine
learning techniques for cyber security,” Cyber Security and
Applications, vol. 2, p. 100033, Jan. 2024, doi:
https://doi.org/10.1016/j.csa.2023.100033.

[12] M. A. Tamal, M. K. Islam, T. Bhuiyan, A. Sattar, and Nayem Uddin
Prince, “Unveiling suspicious phishing attacks: enhancing
detection with an optimal feature vectorization algorithm and
supervised machine learning,” Frontiers in Computer cience, vol. 6,
Jul. 2024, doi: https://doi.org/10.3389/fcomp.2024.1428013.

[13] M. Nkongolo and Mahmut Tokmak, “Ransomware Detection Using
Stacked Autoencoder for Feature Selection,” Indonesian Journal of
Electrical Engineering and Informatics (IJEEI), vol. 12, no. 1, Mar.
2024, doi: https://doi.org/10.52549/ijeei.v12i1.5109.

[14] T. Ige, Christophet Kiekintveld, and Aritran Piplai, “An
Investigation into the Performances of the State-of-the-art Machine
Learning Approaches for Various Cyber-attack Detection: A
Survey,” May 2024, doi:
https://doi.org/10.1109/eit60633.2024.10609847.

https://doi.org/10.1016/j.heliyon.2023.e23574
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1825596
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1825596
https://doi.org/10.1109/iccica60014.2024.10585149
https://doi.org/10.1007/s11235-023-01085-3
https://doi.org/10.1016/j.iot.2024.101162
https://doi.org/10.1038/s41598-025-93447-x
https://doi.org/10.60087/jaigs.v6i1.287
https://doi.org/10.1109/access.2024.3392251
https://doi.org/10.1007/978-981-97-0052-3_25
https://doi.org/10.3390/app142411545
https://doi.org/10.1016/j.csa.2023.100033
https://doi.org/10.3389/fcomp.2024.1428013
https://doi.org/10.52549/ijeei.v12i1.5109
https://doi.org/10.1109/eit60633.2024.10609847

