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Abstract—Traditional signature-based systems struggle to 

detect novel and variably structures threats such as 

polymorphic and metamorphic malware. These systems rely 

on predefined rules, which limit their ability to identify newly 

developed, obfuscated, or zero-day attacks. Given the 

constantly evolving nature of cyber threats, it is crucial to 

develop detection systems capable of identifying malicious 

behavior without relying solely on static signatures. This 

study investigates the effectiveness of supervised machine 

learning (ML) techniques in detecting malware using the 

CICIDS2017 dataset which includes both attacks and benign 

traffic. Four widely used supervised models, Random Forest, 

Support Vector Machine (SVM), K-Nearest Neighbors 

(KNN) and XGBoost, are evaluated and compared.  

Each model undergoes the same data preparation process, 

including features selection and data balancing, to ensure fair 

performance assessment. Model Performance is evaluated 

using standard metrics such as accuracy, precision, recall 

and F1-score. Among the models, Random Forest achieved 

the highest accuracy of approximately 99.8%, demonstrating 

strong robustness and generalizability. XGBoost followed 

with a commendable accuracy of around 92%, offering a 

balance between computational efficiency and 

interpretability. In contrast, SVM and KNN exhibited 

limitations in detecting minority attack classes. Overall, the 

Random Forest model outperformed other established 

methods. methods. Feature importance analysis revealed that 

attributes such as Avg Bwd Segment Size and Flow IAT Max 

significantly contribute to the detection of malicious traffic.  
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I. INTRODUCTION  

Today’s large network of connected systems puts 

everyone at risk from advanced malware. Traditional 

methods designed to spot malware, depending on 

signatures, are failing to notice new types of malwares 

[10]. Polymorphic and metamorphic malware modify their 

code to trick static detection, so we are seeing an increase 

in false negatives. Since cyber threats keep becoming more 

complicated, we need technology that can swiftly identify 

and stop harmful actions. With machine learning, 

cybersecurity can make use of old data and spot new 

attacks like those found in the past [1]. Unlike signature 

approaches, ML models can spot suspicious patterns in 

large data which makes them highly useful for malware 

detection in changing environments. ML works well 

because it can process a lot of data at once and uncover 

secret patterns seen in network traffic and files. 

The research considers how supervised machine learning 

approaches are applied to identify malware, measuring 

their performance, speed and ability to function in real-

time IDS systems. The work uses the CICIDS2017 dataset 

which has both attacks and benign network traffic clearly 

marked [1]. Four ML algorithms RF, SVM, KNN and 

XGBoost are thoroughly looked at in this evaluation. Our 

goal is to choose the best algorithm and to check that it 

works across many types of attacks, keeping its 

explanations easy to follow and making it efficient. This 

study helps fill a gap seen in other works by comparing 

several supervised models with the same standard dataset 

and these results could be useful for cybersecurity system 

implementations [6]. 

II. LITERATURE REVIEW 

Many recent publications suggest that traditional methods 

for detecting malware, using signatures and basic rules, 

have their limitations [6]. They depend on specific 

signatures or known forms, so they struggle with closing 

the door on threats like polymorphic and metamorphic 

malware. Due to the increased complexity of malware, the 

community of cybersecurity experts has started using 

machine learning and artificial intelligence to create more 

flexible detection methods [10]. Choosing the right small 

set of features greatly improves the detection results of ML 

models in IoT platforms. They found that increasing the 

object’s distance from other objects can improve detection 

algorithms and save time. Discovered that DT and RF can 

be very accurate, reaching up to 99.78%, by combining 

them with feature reduction and voting-based ensembles. 

These findings show that Malware Detection Systems 

need model interpretability and can greatly benefit from 

ensemble learning. 

Deep learning is being used more widely every day [9]. 

They investigated the use of Convolutional Neural 

Networks (CNNs) to classify types of malwares after 

analysis of their byte streams. CNNs are skilled at finding 

features in data with just raw binary values or traffic 

images. Even so, their findings revealed that these methods 

have significant disadvantages such as high computing 

expenses and a high risk of overfitting, mainly when the 

data is small or has many different classes [10]. 

Additionally, a study by Rathore et al. found that both 

Support Vector Machines (SVM) and other methods 
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suffered in certain cases from being sensitive to the way 

features are scaled and less scalable. K-Nearest Neighbors 

(KNN) was considered and showed good scalability, but 

its performance declines with large and complex data sets 

[5]. Though a lot of prior studies look at each ML model 

by itself, there aren’t enough comprehensive studies 

comparing many supervised models working in the same 

conditions. Additionally, most studies pay minimal 

attention to how models detect attacks involving minority 

groups which matter a lot in practical cybersecurity. 

The study is designed to meet these gaps by running a 

direct comparison of four commonly used supervised 

machine learning methods using the CICIDS2017 

benchmark data. Evaluating the models on the same 

criteria and hardware settings allows this study to add to 

the research in ML-powered malware detection and share 

useful advice for using IDS. 

III. METHODOLOGY 

The research methodology of this study consists of four 

key steps: four steps including dataset, data 

preprocessing, model training and evaluation and results 

and analysis.   

A. Dataset 

Many experts rely on the CICIDS2017 dataset, which was 

produced by the Canadian Institute for Cybersecurity, to 

assess intrusion detection systems. The purpose is to 

generate network simulations that include both genuine 

and harmful activities as they happen in real-life enterprise 

networks [11].  

There are over 3 million labeled network flows included, 

covering a period of 7 days and many types of attacks 

including DDoS, Brute Force, Port Scanning, Infiltration 

and Web attacks [5]. The dataset includes more than 80 

features collected with tools like CICFlowMeter which 

measure aspects of each flow such as its duration, how 

many bytes are transferred, how long the header is and the 

space between arriving packets [11]. These features 

facilitate the training of machine learning models, making 

it easier to distinguish threat activity from safe traffic [1-

2]. 

B. Preprocessing 

The raw data for the CICIDS2017 challenge is found in 

CSV files organized by date. All attack types were 

included and made consistent by merging the files into one 

dataset [2]. We processed missing and infinite values by 

omitting rows with either of them to avoid any bias in the 

model training. Time, IP address and protocol information 

were not included in the numerical features. To ensure that 

feature ranges were consistent, Min-Max normalization 

was used to make model convergence better [12].   

Due to the higher attack traffic than normal traffic, the data 

was sampled by class so that both types were present in 

similar respective portions of each subset. Introducing 

oversampling in this way blocks the model from giving too 

much priority to the majority group within the data. 

Moreover, z-score analysis and boxplots were applied to 

maintain the data’s quality and lower the impact of noise 

[6]. 

C. Feature Creation 

Two steps were taken in feature engineering: feature 

selection and transformation. At first, we used the in-built 

feature importance measures provided by Random Forest 

and XGBoost to determine how essential each feature. 

These metrics were used to find the most valuable features 

for classification [4]. A heatmap was also built to find 

features that have a correlation of over 0.85. These features 

were removed to limit multicollinearity. 

 

 
Figure 1: Overview of research methodology for performance 

comparsion of supervised machine learning-based malware detection 

The chosen measurements were Avg Bwd Segment Size, 

Flow IAT Max, Fwd Packet Length Max, Flow Bytes/s 

and Idle Max [9]. For this procedure, first the data features 

were modified by logarithmic scaling and then normalized 

to lower skewness and variance. Interaction model terms 

were added to observe how various features acted together, 

yet only the best ones were left in after preliminary 

experiments [12]. 

D. Model Selection and Training  

Among several supervised learning approaches, Random 

Forest (RF), Support Vector Machine (SVM), k-Nearest 

Neighbors (KNN),  and XGBoost were selected due to 

their of their broad applicability, interpretability, and  cost 

effectiveness. A 70/30 was employed for training and 

testing, ensuring balanced representation of all classes in 

both data sets. The models were developed and evaluated 

using Python, leveraging libraries such as Scikit-learn, 

Pandas, Matplotlib and XGBoost [7]. 

 

Parameter combinations such as n_estimators, max_depth, 

C and kernel were determined for RF and SVM by running 

GridSearchCV [12]. Because we were unable to use much 

time or resources, we manually adjusted the important 

parameters n_neighbors, learning rate and subsample for 

KNN and XGBoost. To check the data was not overfit and 

to assess if the models would perform well on unseen 

cases, each model was tested with k-fold cross-validation 

(k=5). 

E. Evaluation Metrics 

They measured the accuracy of each model using 

accuracy, precision, recall and F1-score. Matrices were 

produced to show the number of true positives, false 

positives, false negatives and true negatives for all attack 



types. They show how accurately a model can separate 

between malicious and benign traffic [4]. 

Reducing the rate of false positives depended mostly on 

avoiding imprecise results and recall was vital for making 

sure the approach identified every attack. Because F1-

score combines both precision and recall, it was used as a 

standard metric for our analysis. Models’ performance was 

shown using ROC-AUC curves across varying thresholds 

for classification tasks [13]. 

IV. RESULTS 

We show the outcomes of using Random Forest, Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN) and 

XGBoost on the CICIDS2017 dataset. Most samples in the 

data were for 'BENIGN' traffic, with few for the minority 

classes 'Bot', 'Heartbleed' or 'Web Attack'. By using 

stratified sampling, every class had the same proportion in 

the training (1,979,513 samples) and test sets (848,363 

samples) which made it easier to generalize [7]. 

A.  Class Distribution Plot 

The bar chart as shown in figure 2, compares the number 

of samples in the CICIDS2017 dataset for each type of 

network activity or attack. It allows you to find where data 

classes are not evenly distributed which is key for building 

machine learning models.  

 

Figure 2: Class Distribution Plot 

This means that, for example, a network of mostly 

harmless activity could keep the model from discovering 

unusual yet significant attacks. Classification 

performances are more reliable and fairly judged on data 

sets that are well-balanced among classes. 

B. Random Forest’s Confusion Matrix  

The Random Forest classifier’s outcome is seen by 

comparing its predictions against the correct labels (See 

figure 3.). Every cell demonstrates the number of 

predictions where an instance of one class was predicted 

to be from another [13]. Correct predictions are marked 

with diagonal cells. The output reveals which sorts of 

attacks work well and which cause confusion, allowing 

you to adjust, choose other algorithms or refine the process 

[9]. 

A. Model Metrics Comparison 

The radar chart in figure 4. highlights how Random Forest 

performs differently than XGBoost with several metrics 

[7]. The further inside the edge a plot is, the less effective 

the model is. The visual helps you quickly see which 

model leads the way in all metrics and therefore select it 

for use or extra optimization. 

 

 
Figure 3: Random Forest’s Confusion Matrix 

 
Figure 4: Model Metrics Comparison 

B.  Model Performance Overview 

TABLE I PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS 

 
Model Accuracy Precision Recall F1-

Score 

Random 

Forest 

99.8% 99.7% 99.8% 99.7% 

XGBoost 92.0% 91.5% 92.2% 91.8% 

KNN 89.0% 88.0% 87.5% 87.7% 

SVM 85.0% 83.0% 84.0% 83.5% 

 

A. Using Random Forest 

We achieved outstanding results using the Random Forest 

model. The values in the diagonal section were higher than 

in the other sections, showing many true positives [4]. 

Although precision and recall slightly decreased for labels 

8, 9, 13 and 14, the overall number of errors stayed low. 

After looking at the feature importance, it was seen that 

'Avg Bwd Segment Size', 'Flow IAT Max' and 'Total 

Length of Fwd Packets' were the leading factors [8]. 

 

Top 10 Feature Importances (Random Forest) 
 

 

The features of the ten main characteristics ranked highest 

by Random Forest are illustrated in figure 5. Feature 

importance shows the role each feature has in getting a 

correct prediction.  

When we learn about the features that influence a model, 

we can better explain the model, reduce the size of its 



inputs and understand the domain better. It also directs 

further activities that help the model achieve better results 

and strengthen reliable and understandable outcomes in a 

cybersecurity detection system [3]. 

 

 

Figure 5:  Top 10 Feature Importances (Random Forest) 

A. SVM 

The accuracy of the SVM was ~85%. The model worked 

more easily with major data groups but had problems with 

small ones. A number of these files were wrongly labeled 

as Benign when they should have been labeled as Bot. The 

diagonal on the confusion matrix was not strongly 

represented and evaluation scores were much lower for 

infrequent data. 

B. KNN 

The KNN classifier was accurate about 89% of the time. 

There was obvious concentration along the diagonal, 

mainly for the label 'BENIGN'. Unfortunately, it was just 

like SVM did not do well on minor attack classes. The 

model could not process big sets of data as quickly as 

expected and reacted sensitively to high dimensions [14]. 

C. XGBoost 

XGBoost predicted correctly in about 92% of the cases. 

There was good agreement between the predictions and the 

actual outcomes, as most of the values in the matrix fell 

along the diagonal. Groups 9, 12, 13 and 14 still scored 

lower than the overall national average. The graph from 

XGBoost revealed that 'PSH Flag Count', 'Bwd Packet 

Length Min' and 'Fwd Packet Distance Min' were 

important features [9]. 

V. FEATURE IMPORTANCE COMPARISON 

It was confirmed by feature analysis that the importance of 

each feature varied according to the model used [3]. 

Random Forest considered segment sizes and flow lengths 

more important than TCP flag counts and packet numbers, 

as XGBoost did. This reflects the fact different algorithms 

interpret the same data about traffic differently for 

classification. 

In all, Random Forest beat out other models in 

performance and across all class types. XGBoost was the 

next best solution, having strong performance and low 

computational needs. SVM and KNN did not work as well 

for imbalanced, high-dimensional data, though they 

helped us compare baseline methods [8]. 

VI. DISCUSSION 

The communication results prove that Random Forest and 

XGBoost are effective tools for finding malware in big 

computer networks. They were able to handle many kinds 

of attacks, had only minor cases of overfitting and 

remained easy to interpret all necessary for an IDS used in 

practice. Random Forest works better than many other 

algorithms because it is an ensemble and is not easily 

affected by noise or overfitting. What’s more, it can gauge 

the relevance of each feature and deal with relationships 

that are not linear. XGBoost’s methods of regularization 

keep the model from overfitting and improving speed, 

which benefits its use when resources are limited. Such 

poor results confirm the difficulties others have reported 

with these algorithms [14]. When the data is large or 

features scale differently, SVM struggles to be used 

efficiently, whereas KNN can become too slow when 

handing high-dimensional or real-time tasks. 

The research finds similar outcomes to what has been 

reported by others and breaks new ground by comparing 

four common ML models with one dataset and 

methodology. That both RF and XGBoost manage to stay 

accurate across attacks, even for uncommon categories, 

demonstrates they could be effective in real life [2]. There 

are, however, some shortcomings in the study. First, using 

a singular dataset doesn’t show the changes in malware 

patterns as they occur. Second, not including deep learning 

models in the analysis was due to lack of computational 

resources, but it meant we could not compare to today’s 

best architecture models. Also, monitoring inference time 

and resource use was not a part of this experiment but is 

important for practical application [8]. There is a need to 

carry out future investigations on mixed detection 

strategies joining static and dynamic tools and to study 

how deep learning models, for example LSTM and CNN, 

can play a role in identifying malware behavior. Testing 

the model in actual live networks at the same time is 

necessary to confirm it functions well and is scalable [9]. 
 

VII. CONCLUSION 

This research reveals that using supervised machine 

learning such as Random Forest and XGBoost, is very 

effective in finding malware on complex networks. These 

models did a better job of being accurate, durable and easy 

to understand than both SVM and KNN. Thanks to their 

few false alarms and ability to protect from multiple 

attacks, Random Forest and XGBoost are handy for 

building real-time IDS. What we found agrees with and, in 

cases, exceeds the results from other studies [3]. Their 

success was greatly influenced by well-handled data 

preprocessing and chosen features. Because SVM and 

KNN struggle in handling large amounts of data and class 

imbalance, ensemble methods can offer a good and 

dependable way forward. Future studies should examine 

approaches that mix traditional machine learning with 

deep learning to achieve better real-time protection against 

malware in changing situations. 
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