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Abstract: 

The inflammatory cytokine, Macrophage Migration Inhibitory Factor, was initially 

isolated in the 1970s as a chemokine involved with inhibition of random movement in 

Macrophages but has also been linked with many other components of the immune system and 

even foetal development. It is released almost-ubiquitously, during inflammation, with both pro-

inflammatory and anti-inflammatory activities. One key regulator of inflammation is the 

Unfolded Protein Response. during which the Endoplasmic Reticulum within cells regulates 

protein flux within the ER lumen, especially when that load is beyond the capacity of the ER to 

successfully process. As part of the UPR response there is a stop in global translation, enhanced 

transcription and translation of chaperone proteins, increased ER size and capacity and 

eventually activation of the apoptosis pathways if the protein load does not reduce to a level 

within the ER’s capacity. The UPR is controlled via the transduction proteins, IRE1, PERK and 

ATF6. Because of the UPR’s effect on cellular health and known links to inflammation it was 

decided to investigate the effects of MIF on UPR activation within cells. Using two different 

reporter constructs (ATF4.EYFP-N1 or XBP-1.EeYFP-N1) which monitor activation IRE1 and PERK 

the effects of MIF on UPR activation in HeLa and SH-SY5Y cells was assessed. The observed 

results show that MIF exerts a  marginal suppressive effect on both the IRE1 and PERK between 

with some variation in the effects of MIF on epithelial (HeLa) or neuronal (SH-SY5Y) origins. This 

data suggests that MIF may reduce the activation of apoptotic responses within these cells via 

activation UPR and the PERK pathway through suppression of JNK activity via the noncanonical 

MIF receptor JAB1. Modulation of UPR responses by MIF would have important downstream 

effects on the development of auto-inflammatory conditions and neuropathies include 

Alzheimer’s disease due to the suppressed UPRs inability to resolve the pathological protein 

load.   
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1 Introduction:  
1.1 Inflammation: 

Complex multicellular organisms, by their nature, have a series of mechanisms to 

protect against exogenous and endogenous threats to the organism and without these 

protective measures they would have a brief existence. One of these defences is immune 

mediated inflammation.  

Inflammation is the reaction of a cell, tissue, or organism to a potential source of 

damage by the release of cytokines (a diverse series of poly-peptide based signallers) that cause 

a wide variety of different effects. These include: capillary ‘leakiness’ and the laying down of 

new blood vessels; the recruitment of tissue resident macrophages, dendritic cells and the 

adaptive immune system; the repair or renewal of tissue and finally the resolution of the 

inflammation; that all work through a common set of mediators e.g., nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB). However, there are at least two ‘depths’ of 

inflammation; Acute and Chronic. These ‘depths’ are not simply phases that inflammation 

passes through on its way to resolution. (Sugimoto et al., 2016) chronic inflammation will 

typically follow an acute stage but are discrete events that can occur in any order. Indeed, acute 

inflammatory responses are more frequently the consequence of infection and wounds that 

resolve without a chronic phase. In contrast, conditions such as a tumour or autoimmune 

disease, are more likely present chronic inflammation when the disease is diagnosed.   

 For the case of infections, dendritic cells, tissue resident macrophages and neutrophils 

drive inflammation, reacting to the presence of a Pathogen Associated Molecular Patterns 

(PAMP(s)) via Pathogen Recognition Receptors (PRR). Several PRR families exist, including Toll-

Like Receptors (TLR(s)), C-type Lectin Receptors and NOD-Like Receptors. Looking at one family, 

the TLRs (1-13 in mammals), shows how a constellation of different receptors can lead to the 

same outcome. The TLR family (except 3 and 10) activate NF-κB signalling via the classical 

MyD88/IRAK route leading to IκB phosphorylation by IKK/NEMO and therefore Inflammation 

(Alexopoulou et al., 2001; Jiang et al., 2016) 

 This activation causes the upregulation of many pro-inflammatory cytokines and 

chemokines, leading to the onset of inflammation. This picture is complicated somewhat by the 

fact that NF-κB signalling has been shown to have an anti-inflammatory effect as well as a pro-

inflammatory effect, in certain lineages but also at certain times during an inflammatory event 

(Sugimoto et al., 2016), so that inflammation is, in theory, self-limiting. (Table 1.1). 
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Inflammation is, of course, not just controlled by PRRs. Nor is NF-κB the only 

inflammatory transcription factor involved; Activator Protein 1 (AP-1) and Interferon Regulatory 

Factors (IFN family) are also important players in these processes; but all of these can be 

activated far from the source of the infection due to another important part of the inflammation 

response: cytokines. These are mostly well categorised but a specific, non-classical cytokine, 

Macrophage Migration Inhibitory Factor is a known, modulator of many inflammation signals 

including NF-κ However despite being one of the first cytokines discovered MIF remains an 

enigmatic signalling player and many of its observed biological effects have not been fully 

characterised. 

  

Table 1.1: A list of prominent immune factors involved in NF-κB regulated inflammation.  

Protein Pro/Anti-

Inflammatory 

Cell lineages  References 

Interferon γ  Pro T and NK-cells (Sica et al., 1997) 

TNFα Pro Ubiquitous  (Collart, Baeuerle and Vassalli, 

1990) 

IL-1a and b Pro Ec, Ma (Hiscott et al., 1993) 

IL-2 Pro T-cells (Hoyos et al., 1989) 

IL-6 Pro Ec, Ma and T-cells (Son et al., 2008) 

IL-8 Pro  Ec, Ma  (Sanacora et al., 2013) 

IL-9 Pro T-cells (Zhu et al., 1996) 

IL-10 Anti Ma, T-cells (Cao et al., 2006; Hou et al., 2012) 

IL-11 Pro Bone Marrow Stroma (Bitko et al., 1997) 

IL-17 Pro Bone Marrow Stroma (Shen et al., 2006) 

CD74/Invariant 

Chain II 

Pro/Anti Ma, Dendritic (Pessara and Koch, 1990) 

MHC 1 Pro Ubiquitous (Johnson and Pober, 1994) 

MIF Pro Ubiquitous (Bloom and Bennett, 1966) 
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1.2 Macrophage Migration Inhibitory Factor: 

1.2.1 History and Structure: 

Macrophage Migration Inhibitory Factor (MIF) was discovered in the 1960s when it was 

identified as proteinaceous factor which inhibited the random migration of macrophages and 

was associated with delayed hyper-sensitivity (Bloom and Bennett, 1966; David, 1966). 

However, the protein itself was not characterised until 20 years later when it was finally cloned 

(Weiser et al., 1989; Bendrat et al., 1997) 

Subsequent research has shown that MIF is a pleiotropic cytokine, with much of its 

effects pro-inflammatory, counteracting the anti-inflammatory action of corticosteroids 

(Bernhagen et al., 1993; Roger et al., 2005; Fan et al., 2013)and leading to the upregulation of 

NF-κB, ETS and AP-1. MIF, at first glance, seems to perform some more esoteric functions within 

organisms, for example the vascularisation of lung tissue in foetus and neonates (Roger et al., 

2017). The most obvious effect of MIF on cells is the halting of the random movement of 

leukocytes through tissues and then acting as a chemoattractant, through CXCR2/CXCR4/CD74 

(Klasen et al., 2014), bringing the immune system to the site of the infection/damage. MIF has 

also been shown to potentiate signals controlling transcriptional regulation of TLR-4 expression. 

(Roger et al., 2005; Kudrin et al., 2006). This occurs through ETS signalling and takes the form of 

a positive feedback loop in which more TLR4 production feeds more MIF production.  

The crystal structure of MIF which was elucidated in 1996 showed that it can form a 

homotrimer (Figure 1.1 ). However, it is unclear whether MIF exists in vivo as a homotrimer or 

as a dimer or monomer as all forms have been identified during in vitro biochemical studies. 

(Sun et al., 1996; Fan et al., 2013; Gordon-Weeks et al., 2015). MIF is encoded by a gene on 

chromosome 22 and does not share homology with any of the other families of cytokines. 

However, it does share homology with a second MIF-like protein called D-dopachrome 

tautomerase (D-DT, sometimes called MIF2) whose gene is also found closely linked to the MIF 

gene on chromosome 22 (Merk et al., 2012). The MIF promoter contains DNA binding domains 

for other transcription factors; including AP-1, GATA Family, NF-κB and CREB allowing for its 

upregulation from a variety of external signals. (Calandra et al., 2003) and unusually has, two 

different enzymatic activities: oxidoreductase and dopachrome tautomerase (Bendrat et al., 

1997; Rosengren et al., 1997). These activities have been shown to have physiological relevance 

as the knockout of the oxidoreductase has been shown to modulate the damping down of 

neuronal signalling (Matsuura et al., 2007) and the tautomerase activity has been shown to 

interact with CD74-CD44 for canonical MIF signalling (Leng et al., 2003).  
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Figure 1.1: The 3d ribbon structure of human Macrophage Migration 
Inhibitory Factor (MIF). This image is adapted from Gordon-Weeks et al., 
2015 is two ribbon diagrams for MIF. Ribbon 1 is MIF’s monomer. In blue is 
the oxidoreductase component and the red is the CXCR2 motif. The yellow 
in the monomer is the tautomerase catalytic site conferred by a proline. 
Ribbon 2 is the trimer, the back bones of which are coloured cyan, purple, 
and green. Components shown in the monomer retain their colour. 
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Another unusual feature of MIF is even though it functions as an extracellular signalling 

molecule it lacks an N- terminal leader sequence, such as the ER signal peptide. It is not, 

therefore, completely understood how MIF is secreted out of a cell. However, MIF is produced 

constitutively and almost ubiquitously in humans (Merk et al., 2009); with MIF being 

‘rediscovered’ in the 90s as a hormone released from the anterior pituitary gland upon sensing 

LPS, which can lead to toxaemia; as well as epithelial cells, T-cells, granulocytes and 

macrophages (Bernhagen et al., 1993; Calandra et al., 1994). MIF transcription is not 

upregulated upon treatment with a PAMP/Cytokine as it is constitutively expressed and stored 

in vesicles which are released by the cell after receipt of these inflammation signals (Bernhagen 

et al., 1994). 

MIF appears to be well conserved in eukaryotes, with unicellular eukaryotes such as 

Plasmodium falciparum or more ‘simple’ multicellular animals, such as T. spiralis having their 

own MIF homologue. These other MIF homologues are evolutionarily very distant from the 

mammalian MIFs (25-46% protein homology, who share a ~95% homology with each other). 

Interestingly, MIFs from these other eukaryotes have some unique peculiarities and while many 

share the tautomerase activity (Tan et al., 2001), a large number lack of the oxidoreductase 

activity, a feature they share with mammalian D-DT/MIF2s (Merk et al., 2012).  

1.2.2 Mechanism of MIF’s Action: 

An open question about MIF is exactly how it performs its functions. Studies have shown 

that MIF does not always behave like a classical cytokine, able to cause effects by itself, but acts 

in a secondary capacity modulating other signals (Kudrin et al., 2006). One of the key challenges 

in characterising the molecular mechanisms of MIF’s activities is that it has been postulated that 

it operates through multiple receptors. These include the extracellular CD74 -CD44 receptor 

complexes and the CXCR family, (Leng et al., 2003; Leng and Bucala, 2006; Shi et al., 2006; 

Schwartz et al., 2009) as well as intracellular receptors like JAB-1 (Kleemann et al., 2000) and 

thioredoxin-interacting protein (TXNIP), (Kim et al., 2017). For its intracellular receptors, cell 

entry is believed to be mediated through non-receptor mediated endocytosis, but it could also 

be due to the interaction with Thioredoxin-1 (TRX) (Son et al., 2009). Despite these receptors 

being identified it has not been elucidated how the MIF-receptor complex imparts effects onto 

downstream pathways (Kleemann et al., 2000). 
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What is known though is that MIF signal transduction processes impinges on the 

Mitogen Activated Protein Kinase (MAPK) pathway (Amin et al., 2003; Lue et al., 2006, 2011). 

The MAPK signalling pathways are a series of nearly identical chains of receptors, transductors 

and effectors (Figure 1.2) involved in a wide variety of processes including reception of PAMP 

and cytokine derived signals. Through the MAPK pathway, MIF is believed to cause many 

different effects that generally centre on modulating the immune response to a more aggressive 

clearance of the cause of the MIF release.   

 One final place the MAPK pathways converge is the Molecular Target of Rapamycin 

Complexes. These, mTORC1 and mTORC2, are relatively recent discoveries (Gonzalez and Rallis, 

2017) but have been shown to have major control on cell survival, reaction to starvation and 

oxidative stress. It has been shown that active MAPK impingement on the mTORC1, via the 

phosphorylation of TSC1/2, has the effect of potentiating any other signal entering the mTORC1 

path (Carracedo et al., 2008). Indeed, some of those more esoteric functions of MIF such as the 

lung vascularisation in neonates could be driven by the interaction of MIF and mTORC1 because 

of mTORC1s downstream effect of causing VEGF up-regulation (Roger et al., 2017).  

 Another extremely important physiological process within the cell is the control of 

protein production and folding, especially important for extracellular proteins, and this is 

controlled by the Endoplasmic Reticulum.  

Figure 1.2: A diagram of the ERK1/2 pathway. ERK1/2 is a well-defined MAPK signalling pathway that can be 

briefly stated as: Receptor activation which leads Ras phosphorylation and activation. Ras recruites Raf (Raf-

1, B-Raf and A-Raf) that then phosphorylates MEK. Finally the phosphorylation of ERK (1/2) leads to the 

activation of factors involved in cell cycle progression including cyclin D and transcription factors such as ETS 

and myc.  
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1.3 Endoplasmic Reticulum:  

1.3.1 Homeostasis: 

The Endoplasmic reticulum (ER) is a series of double membrane sacks called cisternae 

within eukaryotic cells that bud off the nuclear membrane and remains in proximity to that 

membrane. The ER has several functions including Calcium (Ca2+) storage and the folding of 

newly translated nascent soluble or membrane bound proteins destined for secretion or 

translocation to other organelles within the cell. The ER lumen is a more oxidising environment 

than the cytosol which allows for more efficient folding and maturation of proteins containing 

disulphide bonds (Helenius, Marquardt and Braakman, 1992). A third of all nacsent peptides are 

co- or post-translationally processed in the ER and golgi. Indeed between this and lipid 

membrane production ER homeostasis is vital for the health of the cell. Recently a number of 

key studies have established that disruption of ER homeostasis, can have deleterious effects on 

the organism as a whole giving rise to a variety of pathological conditions many of which are 

linked to dysregulated inflammatory (Mear et al., 1999; Peeters et al., 2004; Romero-Ramírez et 

al., 2004; Casas-Tinto et al., 2011; Sha et al., 2011; Gorasia et al., 2015) 

To undergo folding in the ER proteins, make their way into the ER in a process called 

translocation which can occur during the point of translation (Figure 1.3.A). For a peptide to 

translocate into and translation completed within the ER it requires a N-terminal targeting 

sequence, or ER signal peptide, which is usually about 15-30 amino acids long, that is recognised 

by a signal recognition particle (SRP) as soon as the nascent peptide starts to leave the ribosome. 

This SRP-polypeptide unit, whose translation is temporarily halted due to the docking of the SRP, 

joins with the cytosolic face of the ER at the translocon sec61 complex (Zimmermann, Müller 

and Wullich, 2006). At this point the nascent peptide continues being translated whilst being fed 

into the ER lumen. To complete translation, EDj1 is recruited to sec61, nascent peptides are 

bound to Binding Immunoglobulin Protein (BiP) a polygamous Heat Shock Protein 70 (HSP70) 

chaperone, by an ATP-ADP exchange. At this time up to half of all ER processed peptides can be 

glycosylated by oligosaccharylstransferase, with an oligosaccharide containing mannose units to 

which a glucose molecule is added by UDP-Glucose Glycoprotein Glycosyl Transferase (UGGT). 

Once glycosylation occurs the protein enters into the Calnexin/Calreticulin cycle; the removal of 

mannose from this chain acts as a type of molecular clock the ticking of which causes proteins 

which failed-to-fold correctly to, eventually, enter the ER Associated Degradation (ERAD) 

pathway (Tannous, Pisoni and Hebert, 2015; Qi, Tsai and Arvan, 2017)(Figure 1.3.C/Figure 1.3.E). 

Proteins which have correctly folded are sorted and translocated to their final destinations 

either within the cell or secreted from the cell via secretory vesicles (Figure 1.3.D). 
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 1.3.2 The Unfolded Protein Response: 

On Occasion the ER becomes extremely crowded when there is an accumulation of 

nascent unfolded or misfolded proteins in the ER lumen (Walter et al., 2015). To ease the 

concentration of these proteins the Unfolded Protein Response (UPR) is activated. The UPR is a 

term used to encompass a conserved eukaryote cellular signalling and response system which 

monitors ER homeostasis. The UPR attempts to recover/promote effective protein folding and 

recently, it has been shown that components of the UPR are also activated when other types of 

more generalized cellular stress are encountered such as hypoxic conditions or oxidative stress 

(Rzymski et al., 2010; Jung-Kang et al., 2017) 

When the ER attempts to restore normal conditions via the UPR does so by a). reducing 

ER protein load, inhibiting general protein translation (Protein Kinase R (PKR)-like endoplasmic 

reticulum kinase (PERK)), b). increasing the ER’s capacity to folding or degrade newly synthesized 

or misfolding proteins by increasing ER size and chaperone expression (Inositol Requiring 

Enzyme 1α (IRE1α) and Activating Transcription Factor (ATF6)), and c). removing misfolded 

protein intermediates by induction of Endoplasmic-reticulum-associated protein degradation 

(ERAD) components (IRE1α and ATF6). If ER homeostasis is not successfully returned, the cell 

Figure 1.3: Overview of a Healthy ER. Image adapted from Araki and Nagata, 2011:  The pathways involved 

with the Translocation (A and B), Folding (C), retrotranslocation (D) and finally, potentially the ER associated 

degradation of unfolded or misfolded proteins (E). 
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will undergo apoptosis via ER stress pathway induced mechanisms activated by C/EBP 

homologous protein (CHOP) which is controlled by ATF4 translation, long-term activation of 

XBP-1 and IRE1-JNK signalling pathways which are independent to CHOP (Kato et al., 2012). 

It has been shown recently that the fate of the cell during ER stress is determined by the 

order and timing of UPR component activation events rather than distinct swap of pathways 

(Walter et al., 2015) with early activiation and inhibition of IRE1α/XBP-1 promoting cell survivial 

while early activiation of PERK/eIF2a promotes apoptosis.  

The UPR is thought to be activated by the dissociation of BiP from the luminal surface 

of three major effector proteins, the transcription factor ATF6 and two protein kinases: IRE1α 

(Calfon et al., 2002) and PERK (Figure 1.4). It has been shown that the dissociation of BiP from 

the UPR effectors occurs when the levels of free BiP drop because of an overload of unfolded 

protein although it is thought this might not be the whole story as X-Ray crystallography shows 

dimerised IRE1α contains an MHC fold as the luminal face. This MHC fold seems to allow for a 

finer control over the dimerization of the IRE1α but also seems to lead to (Bertolotti et al., 2000; 

Marciniak and Ron, 2006; Gardner and Walter, 2011) oligomerisation. The dimerised IRE1α self-

activates and acquires a sequence specific RNAse enzymatic activity after autophosphorylation 

of the C-terminal kinase domain at S724 (Hetz et al., 2011)The IRE1 RNAse domain then splices 

an intronic sequence from the mRNA that encodes for a potent bZIP transcription factor known 

as X-box binding protein 1 (XBP-1). This action removes a 26bp unit that contains a stop codon 

that prevents the true bZIP protein being produced in normal conditions (Figure 1.4). The 

spliced(s) XBP-1 (XBP-1s) then upregulates the transcription of genes containing the Unfolded 

Protein Response Element (UPRE (CAGCGTG)) within their promoters (Mori et al., 1992). Finally, 

the oligomers of IRE1α can perform Regulated IRE-1 Dependent Decay of mRNA (RIDD) that has 

been shown to lead to a pro-apoptotic signal via RIG-1 (Maurel et al., 2014; Lencer et al., 2015).  

Like IRE1, PERK also dimerises and activates the kinase by autophosphorylation at the 

kinase domain at T981. The activated PERK kinase phosphorylates eIF2α preventing the 

separation of eIF2β from eIF2α sequestering it away preventing the entire eIF2 subunit from 

being recycled reducing its ability to translate the majority polypeptides produced by the cell 

and subsequently lowering ER protein load (Clemens, 2001). However, this sequestration leads 

to the increased translation a subset of stress response transcripts such as the active ATF4 

transcription factor because ATF4 contains two upstream open reading frames (uORF) that are 

bypassed when eIF2 initiated translation is blocked (Figure 1.4) (Vattem and Wek, 2004; Jackson, 

Hellen and Pestova, 2010). The active ATF4 in turn upregulates the transcription of ATF6, CHOP 

and HERP. As part of this regulatory loop ATF4 also upregulates the production of GADD34 which 
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acts to dephosphorylate eIF2α leading to the reactivation of general translation. This occurs both 

in resolution and apoptosis (Han et al., 2013). Finally, PERK activates Nrf2 (Oxidative response 

bZIP transcription factor) by phosphorylating Nrf2 allowing it to dissociate from its repressor 

Keap  (Figure 1.4). 

The UPRE motif is found within promoters and that is recognised by XBP1. This allows 

those genes containing it to bypass the dampening of translation caused by the phosphorylation 

of the α subunit of the Eukaryotic Translation Initiation Factor (eIF2), a major component of 

ribosomes, by PERK. Such genes include BiP, EDEM, ErDj3-5, GP94, PDI-5 and XBP1 itself (Lee, 

Iwakoshi and Glimcher, 2003).  

ATF6 is a transcription factor that targets the ER Stress Response Element (ERSE) motif 

(CCAAT(N9)CCACG) in the promotor sequences of chaperone genes (Roy and Lee, 1999). When 

BiP dissociates from ATF6, the intact ATF6 translocates to the Golgi where it is cleaved by two 

Golgi resident proteases and the active form travels to the nucleus allowing specific genes, such 

as extra Calnexin and Calreticulin as well as XBP-1 and the lipid synthesis transcription factor 

SREBP2, to be transcribed (Okada et al., 2002).  

 

Figure 1.4: Overview of the Unfolded Stress Response. Adapted from Brown & Naidoo, 2012: The 

dissociation of BiP from the luminal surfaces of the three transduction proteins, PERK, IRE1 and ATF6, leads to 

the Unfolded Protein Response. IRE1 autophosphorylation leads to the translation of XBP-1s and the 

transcription of chaperone and ERAD proteins. PERK autophosphorylation causes the phosphorylation of 

EIF2α which inhibits global translation in favour of UPRE and ERSE containing genes. ATF4 is translated due to 

this inhibition which leads to the translation of CHOP and GADD34. CHOP leads to the activation of apoptosis 

and GADD34 dephosphorylates EIF2α causing re-initiation of global translation in both resolution and 

apoptosis. ATF6, after processing in the golgi body, transcribes a similar cluster of genes as XBP1 included BiP 

ErDj3,4 and 5 and Calnexin/Calreticulin. 
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As with MIF the UPR does, eventually, talk to mTORC1 and mTORC2 via the suppression 

of TSC1/TSC2 due to the suppression of ATF6, which leads to the modulation of UPR downstream 

effects as it has been recently shown that mTOR does in fact affect UPR output; most notably 

apoptosis and autophagy but also it has been implicated in B-Cell maturation (Appenzeller-

Herzog and Hall, 2012). mTOR performs a similar function to the UPR, that of keeping the cell 

alive. However, mTORC1 works in opposition to the UPR, by causing more protein production 

due to phosphorylating 4E-BP1, by activating antioxidant pathways and turning on 

gluconeogenesis. This being said, mTORC1 also reinforces the lipogenesis signal given by the 

UPR as well as IRE1-JNK pathway and the apoptotic signal that is provided in chronic ER stress 

as well as the UPR providing more activation potential by ATF6 and CHOP induced AKT activation 

(although this is cancelled out by IRS1 and mTORC2 in chronic cases) (Appenzeller-Herzog and 

Hall, 2012).  

1.4 Cross talk between MIF and the UPR: 

Despite sharing downstream targets including NF-κB and mTOR, it is not known whether 

MIF can directly affect the UPR signal transducers PERK/ATF4 and IRE1α/XBP1. There are a few 

crossover points between the MIF signalling pathways and the UPR, including JNK. However, 

because of these shared downstream targets it is possible that MIF may cause modifications to 

the standard UPR such as causing the cells to be held in autophagy rather than advancing onto 

apoptosis.  

2.0 Aims: 

 The aim of this project is to, using chimeric fluorescent proteins transfected into two 

different cell lines HeLa and SH-SY5s, detect whether the application of MIF causes changes to 

the initial signal transduction components of the UPR, PERK (ATF4) and IRE1 (XBP1), by co-

administering MIF and the UPR inducer Thapsigargin. To perform these experiments chimeric 

UPR reporter constructs ATF4(1-28).EYFP and XBP-1.EYFP and SH-SY5Y reporter cell lines 

produced by Prehn lab (Walter et al., 2015) were obtained and characterised. In addition, 

isogenic HeLa cell clones transfected with the ATF4 reporter construct were also produced and 

characterized. The results of the UPR reporter cell line experiments were followed by 

transcriptional analysis of several downstream targets of the UPR using RT-qPCR.  
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3.0 Methods and Materials: 
3.1 Bacterial Culture: 

Escherichia coli strains were maintained LB broth (24% tryptone, 12% yeast extract, 

24% NaCl) or LB agar (LB broth with 4% w/v agar) with the appropriate antibiotic selection 

(kanamycin 100 g/mL). For long term storage the bacterial cultures were stored at -80° in a 

20% glycerol stock.  

3.1.1 Transformation of E. coli:  

The UPR reporter plasmids Human p.ATF4/XBP1.YFP-N1, were transformed into 

chemically competent Top10 using a modified rubidium chloride -based protocol (Inoue et 

al.,1990). 

Top10 were inoculated either directly from frozen stocks or from an overnight LB agar 

plate 5mls of LB broth is inoculated overnight at 37°C. The following day re-suspend 1.5ml of the 

overnight in 125ml 2xYT (52% tryptone, 32% yeast extract, 16% NaCl). This is incubated in a 

shake incubator at 37°C until culture reaches an OD600 0.5-0.7. The culture is pelleted by 

centrifuging 5000 rpm for 10 minutes at 4°C. Keeping the cells on ice, the pellet is resuspended 

in 70ml RF1 solution (RF1 100mM RbCl, 50mM MnCl2, 30mM KOAc, and 10mM CaCl2, 15% w/v 

glycerol, pH5.8). Gently resuspend the cells and incubate on ice for 1 hour. Recentrifuged in 

previous conditions. Still keeping the cells on ice, resuspend the pellet, removing all the clumps, 

in 20ml RF2 solution (10mM MOPS, 10mMRbCl, 75mM CaCl2, and 15% w/v glycerol)). Take pre-

cooled (-80°C best) cryo-vial tubes aliquot Bacteria and freeze in liquid nitrogen. These are then 

stored at -80.  

3.1.2 Transformation: 

   These chemically competent bacteria were transformed with the plasmid of choice via 

heat-shock. To perform heat-shock transformation this the procedure used was this: The frozen 

aliquot was removed from the -80C and the competent cells thawed and kept on ice. A plasmid 

DNA that is a maximum of 10% of bacterial volume (10µl in 100µl) is added (dependent on 

plasmid concentration) and is kept on ice for a minimum of 10 minutes. The aliquot is then 

placed in a 42° water bath for exactly 45 seconds and immediately placed back on ice for 5 

minutes. At the end of five minutes 350µl of LB or 2 x YT broth is added to the aliquot and then 

incubated at 37 degrees for an hour to help the recovery of the now transformed bacteria. The 

transformed bacteria were spread on LB agar plates containing the appropriate selection 

antibiotic and are left overnight in a 37oC Incubator. 
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3.1.3 Mini/Midi plasmid prep:  

Plasmids were purified from transformed bacteria grown overnight in a minimum of 5mls or 

a maximum of 100mls of LB broth with the appropriate antibiotic. The plasmid extraction was 

then performed using Qiagen’s mini or midiprep system according to manufacturer’s protocols 

with the modifications below. Minipreps are used for small extractions, approximately hundred 

nanograms of plasmid, compared to midiprep from which a yield of one microgram or more of 

plasmid can be expected. The minipreps were performed according to manufacturer’s protocol 

(Qiagen). The midipreps were also performed according to the manufacturer’s protocol, but 

with a change to the post P3 wash centrifugation step, spinning once at 25000 rpm for 30 

minutes (Qiagen).  

3.2: The UPR reporters:   

 The two UPR reporter constructs, pATF4.EYFP-N1 and pXBP1.EYFP-N1, are derivatives 

of the pEYFP-N1 Plasmid (Clonetech). These were made and donated for this study by F. Walter 

and JHM Prehn’s (Walter et al., 2015). pEYFP-N1 contains the Enhanced Yellow Fluorescent 

Protein driven by a CMV promoter. Also contained within the pEYFP-N1 is a 

neomycin/kanamycin cassette for resistance in both Bacteria and mammalian cells (Figure 

3.1)The ATF4.eYFP was created using 280bp of the 5’ UTR immediately upstream of the 

coding region and 84 bp coding for the first 28 amino acids of Human ATF4. It was cloned 

and the restriction sites XhoI and HindIII was added to allow for cutting into the MCS of 

the pEYFP. (Figure 3.1.A). The pXBP-1.EYFP-N1 is the full Human pre-splicing transcript of 

XBP-1 including the splice site and the DNA Binding Domain. The cloned XBP1 was 

inserted into the pEYFP-N1 plasmid between the XHOL and HindIII cutsites within the 

Multiple Cloning Site (Figure 3.1.B)  
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Figure 3.1: Schematic of the Reporter Plasmid pEYFP-N1 (A) This is the complete ATF4.EYFP-N1, 

the 360bp insert is between XhoI and HindIII allowing the mRNA to be produced that over runs into 

the eYFP cassette. (B) This is the complete XBP-1.EYFP-N1. To make this it has the full human which 

is inserted between XhoI and HindIII allowing the mRNA to be produced that includes the eYFP 

cassette plus a small linker.  

 

A 

B 
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The ATF4.eYFP reporter 5’ UTR contains two ORFs that in eIF2α-rich environment are 

translated in succession because of the quick reacquisition of the ribosome after the end of the 

uORF1. This does not occur in ER stress conditions, the reacquisition of the 60s component and 

eIF2 only occurs once it has reached the ORF3 and the protein is translated (Figure 3.2.A).  

The XBP1.YFP construct works by IRE1α’s RNAse removing a 26nt segment from the 

mRNA that removes the stop codon from the intron that prevents full translation of XBP1 from 

occurring (figure 3.2.B).

uORF2 Stop Codon 

EYFP 
 

UPR conditions 

1-28aa 

ATF4

  

5’UTR ORF 1/2 

Figure 3.2: Activating Transcription Factor 4 and X-Box Binding Protein 1 ER Stress reporters constructs: 

(A) ATF4.EYFP reporter: This has two upstream Open Reading Frames (uORFs) that control translation that exist within the 5’ 

untranslated region. uORF2 contains a stop codon that is read when Eukaryotic Initiation Factor 2 (eIF2α) binds to the mRNA 

within ORF2 after completing the uORF1. Due to the phosphorylation that ElF2α undergoes in ER stress conditions this stop is 

not read because of the delay in creating the Holoenzyme, because of the sequestering of ElF and, in vivo, ATF4 is translated. 

This has been taken advantage of and so in the reporter the 5’UTR is attached to YFP via a 28-amino acid linker. 
(B) XBP-1.EYFP reporter: This reporter works by utilising the alternative splicing of XBP-1. When classical splicing of the XBP-1 

mRNA occurs the stop codon present within the splice site prevents translation of the XBP-1.EYFP. Upon alternative splicing by 

IRE1 this stop codon is removed so XBP-1 and Yellow is expressed. This XBP-1 is the full transcript so unlike the ATF4 it does have 

cause downstream effects. 
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3.3 Mammalian Cell Culture and Chemicals:  

 The mammalian cells used in this study are HeLas, Human Embryonic Kidneys 293s and 

SH-SY5s were maintained in complete media (Dulbecco’s Modified Eagles Medium (DMEM) 

supplemented with extra glucose, L-glutamine (Sigma Aldrich) 10% (Hela) or 15% (SH-SY5s) FCS 

(Gibco), 1% Penicillin/ Streptomycin (Sigma Aldrich)) and grown at 37°C and 5% CO2.  Stocks for 

both cell lines were made using 90% FCS/ 10% DMSO (Sigma Aldrich) freeing media and stored 

at -80°C or -170°C.  ER stress was induced by Thapsigargin (Sigma Aldrich).   

3.3.1 Mammalian Transient Transfection: 

To transiently transfect the cells of choice with an experiment specific plasmid, such as 

the p.ATF4/XBP1.EYFP-N1, the JetPrime DNA and siRNA Transfection Reagent was used 

according to manufacturer’s instructions (Polyplus). Cells were counted and seeded at the 

density suggested by the manufacturer instructions. For 24 well plates this is ~ 80,000 cells/well 

but varies depending on well size with a total volume of 0.5 mL of media (Table 3.1). 

 

If the plasmid of choice is wanted to be used at a lower concentration than 

recommended, then a carrier DNA plasmid pUC18 was used to aid the transfection. This plasmid 

is added in an amount per well that makes the difference between optimum and required. An 

example of this is the titration of with the highest level, 0.5µg of with no pUC18 but the lowest 

0.125µg containing 0.375µg of the puc18. After the mixing of the JetPrime buffer and the 

plasmid of choice then it is vortexed and centrifuged in a single speed bench top centrifuge. The 

JetPrime is then added to the plasmid/buffer mix at a set ratio per well (Table 3.2).  

 

 

 

 

 

 Table 3.1: Absolute quantity of DNA and Jetprime used to transfect cells 

Multi-well plate Cells per Well Volume of jetPRIME® 

Buffer  

(μl)  

Total amount of DNA  

(μg)  

24-well  1*105 50  0.5  

6-well 1*106 200  2  
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After the addition of the Jetprime the sample was vortexed, spun once more and then 

incubated for ten minutes on the bench. After incubation, 50µl of the mixture is added dropwise 

to each well and incubated for a minimum 4 hours before the media is changed and a minimum 

of 16 hours before the cells are either treated with drug or processed for analysis by flow 

cytometry.  

3.3.2: Isolation of Mammalian Cell lines stably transfected with UPR reporters: 

 Transient transfection efficiencies can vary between experiments and can create 

heterogeneous populations of transfected cells which express different levels of the reporter 

constructs. To try and overcome some of these experimental limitations we attempted to 

isolate stable cell lines harbouring XBP-1 and ATF4 ER stress reporter constructs. 1x106 cells 

were seeded per well in a 6 well plate and transfected with X amount of reporter construct 

made up to a total of 2 g with the carrier DNA. Transfected cells were grown in selection free 

media overnight and then transferred into containing media, G418 (50µg/ml), and grown 

under selection. Untransfected control cells were used to monitor the activity of the G418 and 

ensure transfected cells growing through the selection were genuine transfectants. 

Transfected polyclonal cell lines were expanded under selection, assessed in the ER stress 

response assays and frozen stocks made in freezing media (90% FCS, 10% DMSO).3.3.3 

Isolation of Single Cell Clones:  

To isolate isogenic stably transfected clones for each construct the polyclonal cell lines were 

diluted to a concentration of 0.5 cells/mL and 200 L added to each well of a 96 well plate. Cells 

were grown in selection for a minimum of two weeks until islands of growth could be observed. 

Clones were then expanded, assessed in the ER stress response assays and frozen stocks made 

in freezing media.  

  

Table 3.2: The Concentration of JetPrime Reagent 

Multi-Well Plate Volume of jetPRIME® Reagent (μl)  

96-well*  0.2 - 0.3  

24-well  1 - 1.5  

12-well  1.6 - 2.4  

6-well / 35 mm  4 - 6  
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3.4 Flow Cytometry:  

To assess the activity of the ER stress reporter constructs of cells were trypsinized, 

washed and resuspended in ~350µl of FACS sheath. Levels of cell fluorescence were measured 

using a FACScelesta (BD Bioscience) with a set gating strategy for each fluorescent marker. For 

time point experiments the cells were fixed in 3.8% Paraformaldehyde (PFA) 10 minutes then 

washing 3x in 1xPBS and refrigerated before analysis. FACS data was acquired on Diva (BD 

Bioscience) and analyzed on FlowJo (BD Bioscience).  

3.4.1 Specific Experiment Set Ups: 

For most experiments, cells were seeded into a 24 well plate at a concentration of 

1x105 cells /well in G418 containing media between 16 and 24 hours before being treated with 

150 nM of TPG and/or 250ng/ml of human MIF1 (kindly donated by M.Neville, Guiliano Lab). 

To test the assess of MIF alone on the reporter constructs cells were treated with a range 

31ng/ml - 1500ng/ml of MIF. 150nm TPG as a standard ER stress activation control. Within 

most experiments all conditions used had three experimental replicates. Most experiments 

were repeated a minimum of two times. The fluorescence of cells was assessed by FACS at 8 

hour and 16 hrs post treatment.  

For the time course experiments the standard times analyzed for both constructs were 

4, 6, 8, 12, 16 and 24 hours post treatment with the additional timepoints of 36 and 48hrs 

post-treatment were used for the ATF4 reporter.  
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3.5 RNA Extraction, Reverse Transcription and Quantitative PCR: 
3.5.1 RNA Extraction:  

For total RNA extraction 2.5x105 isolated cells were stored in 200-300µl of RNAlater 

(ThermoFisher) at -20 until ready to extract using the Isolate II kit (Bioline). Extractions were 

performed using manufacturer’s protocol. Briefly after diluting the RNAlater and cells with 100ul 

of PBS the cells were lysed by the addition of 350µl RLY buffer, 3.5µl β-Mercaptoethanol. The 

lysate was then applied into the isolate II filter and centrifuged for 1 minute at 11000 RCF to 

remove cellular debris. The 350µl of 70% ethanol is added to the supernatant to allow binding 

to the column and is mixed by pipetting or vortexing. The lysate solution was then added to the 

binding column, total volume is 750µl, and centrifuged for 30s at 11000 RCF. 350µl membrane 

desalting buffer was added to the column and after a 30s centrifugation the DNAse I solution 

was applied and incubated at room temperature for 15 minutes. To stop the activity of the 

DNAse I, RW1 wash buffer was added to the membrane and then centrifuged for 30s at 11000 

RCF. The column was then washed with 600µl RW2 and 250µl RW2 buffer. Finally, 60µl of RNAse 

free water is added to the column, whilst on ice, and allowed to permeate the membrane for 5 

minutes before centrifugation at 11000 RCF for 1 minute to elute the RNA.  

3.5.2 Reverse Transcription:  

First strand cDNA was synthesized using the SensiFAST cDNA kit (Bioline) and the 

manufacturer’s protocol: X-X ug of total RNA was used.  

 

Table 3.3: The concentration of RT-PCR reagents 

Total RNA or mRNA (up 

to 1 μg)  

n μl (15μl total) 

5x TransAmp Buffer  4μl  

Reverse Transcriptase  1μl  

DNase/RNase free-

water*  

Up to 20 μl  

 

After gently vortexing and centrifugation the samples were placed in the thermocycler 

(Bio-Rad) and the 1st strand cDNA was synthesized using the following cycling conditions: 25 °C 

for 10 min, 42 °C for 15 min, 85 °C for 5 min and finally 4 °C indefinite hold. cDNA can be stored 

at -20°C for long term storage.  
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3.5.3 Quantitative PCR: 

qPCR was performed using the the Bioline SensiFast SYBR High-ROX kit and an AriaMx 

cycler and analysed on the Mx 1.6 Software (Agilent). Primers for CHOP (5′-

GGTCCTGTCTTCAGATGAAAATG-3′; 5′-CTTGGTGCAGATTCACCATTC-3’) and ErDj4 (5′-TGGCCATG 

AAGTACCACCCTGACAA-3’; 5′-TCCACTACCTCTTTGTCCTTTACCACT-3’) were taken from Walter et 

al., 2015. The house keeping gene  GAPDH was used as the control for normalization of the 

results. The GAPDH primers set were designed using the NCBI Primer-Blast tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

To perform the qPCR the cDNA from the previous RT step must be normalised to the 

lowest concentration of RT products, but recommended no lower than 100ng (as determined 

by concentration added to the RT reaction). Ten μl of the Sensifast kit 2x premade mix (Mg2+, 

polymerase, SYBR green and ROX) was added to 1μl of each primer and up to 4μl of cDNA per 

reaction for a total volume of 20μl.  

The reaction plate was loaded with the master mixes for each gene, to which the 

template or control RNA was added no Template and no RT Controls were performed for each 

set of reactions, After the plate is loaded with template and RNA, it was sealed with a plastic 

film to prevent evaporation, centrifuged for a 1 minute at 1500rpm to remove air bubbles and 

placed into the cycler to run through the program. The following cycling conditions were used: 

95°C for 2 min, 95°C for 5 sec 60°C for 10 second. After 40 cycles of this 2-step program a melt 

curve was performed by reading the fluorescence every 0.5°C between 95°C and 60°C and 

back to 95°C. to check the uniformity of products produced during the PCR. 

  

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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4.0 Results: 

Three commonly used laboratory human cell lines HeLa, Human Embryonic Kidney 293 

(HEK 293), and SH-SY5Y (neuroblastoma) were selected for the assessment of MIF treatment on 

ER stress responses. After initial attempts to optimize transfection of reporter constructs were 

completed further it was decided to abandon further work with HEK293 cells as there were 

inconsistencies in responses observed with both the XBP-1.pEYFP-N1 and ATF4.pEYFP-

N1reporter constructs and it was not possible to isolate either polyclonal or isogenic clones 

during the timeframe of the project (see appendix supplementary data and figures S1 and S2). 

4.1 Optimization of transfection of the ER stress constructs into HeLa cells:  

ER stress reporter plasmid constructs XBP-1.pEYFP-N1 and ATF4.pEYFP-N1 received 

from J.M Prehn lab (Walter et al., 2015) were transiently transfected into the HeLa cells after 

they were seeded into 24 well plates (Figures 4.1 and 4.2). To identify optimal transfection 

conditions each construct was titrated into the cells with DNA concentrations ranging from 

0.125 - 1µg of DNA per 1x105 cell were left for 24 hours to allow reporter expression and their 

mean florescent intensities measured at 16 hrs after treatment with 150nM Thapsigargin 

(TPG).  

  HeLa cells were successfully transfected with the XBP-1 reporter construct and at 16 

hours the HeLas (Figure 4.1) showed a consistent titration dependant response to a fixed dose 

of TPG. After TPG treatment there is an increase in the number of the eYFP positive cells 

relative to the vehicle transfected cells. The MFI of the positive cells (Figure 4.1.D) for both 

untreated and treated increases between 0.125µg and 0.25µg then plateaus after 0.25µg. It is 

of note that the maximum MFI never reaches beyond 250 AU in any conditions tested. We 

speculate this may be a result of toxic or auto-regulatory effects of the XBP-1.eYFP fusion 

protein.  

Analysis of the kinetics of the ER stress reporter constructs was performed by 

monitoring eYFP levels in 150nM TPG treated HeLa cells over a 24 hr (XBP1) or 36 hr (ATF4) time 

course. For the XBP-1.pEYFP-N1 reporter there was a steady increase in the number of eYFP 

positive cells (5 to 25%) peaking at 16 hrs post treatment (Figure 4.2.B). However, while there 

was a clear and sustained increase in the number of eYFP positive cells there was only a transient 

increase in the MFI of eYFP positive cells (~2x untreated cells) that peaked 8 hr post treatment 

with TPG (Figure 4.2.D).   
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Figure 4.1: Optimisation of HeLa Cells Transiently Transfected with Different Doses of 
XBP1.eYFP Transcriptional Reporter. HeLa cells were seeded 24 hrs before transfection with the  
XBP-1.pEYFP-N1 reporter construct and treatment with 150 nM TPG. Sixteen hours after 
treatment cells were collected fixed and analysed by FACS. (A) Intact cells gate was set on the 
dot plot.  Intact cells were then assessed for levels of eYFP. (B) The eYFP positive gate was set so 
that less than 0.1% of the untransfected cells fell within the gate. The histogram shows 
representative results using 0.25 ug reporter DNA/105 cells. (C) The graph shows the percent of 
eYFP positive cells 16hrs after treatment with TPG in Hela cells transfected with a range of  
reporter plasmid DNA concentrations (ranging 0.125- 1µg DNA/5x104 cells, UT: Untransfected 
cells). (D) The changes in the MFI of the eYFP positive cells is also shown (N=1).     
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Figure 4.2: The Activation of the XBP-1.eYFP Transcriptional Reporter over Time in HeLa cells 

after  Treatment with TPG. Hela cells were seeded 24 hrs before transfection with 0.5 µg/1x105 

cells the  XBP-1.pEYFP-N1 reporter construct and treatment with 150 nM TPG. Cells were 

analysed by FACS 2, 4, 6, 8, 12, 16 and 24 hours post-treatment. Intact cells were assessed for 

levels of eYFP expression. (A) The eYFP positive gate was set so that less than 0.1% of the 

untransfected cells fell within the gate. (B) The change in percent eYFP positive cell. (C) These 

cell’s MFI was assessed in TPG treated cells over a 24 hour time course (N=1). 
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HeLa cells were also transfected with ATF4.pEYFP-N1 (Figure 4.3). However, while there 

was correlation between the amount of DNA transfected into the cells and the number of eYFP 

positive cells this was not consistent with changes in the MFIs of the cells after treatment with 

TPG (Figure 4.3.C and D). The only exception to these observations were the cells transfected 

with 0.125 µg DNA per 1x105 cells. These cells showed both an increase in the number of eYFP 

positive cells and MFI of eYFP positive cells after TPG treatment (Figure 4.3C and D). 

The ATF4.pEYFP-N1 reporter construct showed a bimodal peak in the percent of eYFP 

positive cells over the 36 hour time course at 4 and 18 hrs post-treatment increasing from 15% 

(0) to 55% at (18 hrs) post-treatment (Figure 4.4.B). The MFI of the eYFP positive cells also 

peaked 18hrs post-treatment (Figure 4.4.D).  
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Figure 4.3: Optimisation of HeLa Cells Transiently Transfected with the ATF4.YFP 

Transcriptional Reporter. HeLa cells were seeded 24 hrs before transfection with the  

ATF4.pEYFP-N1 reporter construct and treatment with 150 nM TPG.  Sixteen hours after 

treatment cells were collected fixed and analysed by FACS. (A) Intact cells gate was set on the 

dot plot.  Intact cells were then assessed for levels of eYFP. (B) Intact cells were assessed for 

levels of eYFP. The eYFP positive gate was set so that less than 0.1% of the untransfected cells 

fell within the gate. The histogram shows representative results using 0.25 ug reporter DNA/105 

cells. (C) The graph shows the percent of eYFP positive cells 16hrs after treatment with TPG in 

HeLa cells transfected with a range of  reporter plasmid DNA concentrations (ranging 0.125- 1µg 

DNA/5x104 cells, UT: Untransfected cells).  (D) The changes in the MFI of the eYFP positive cells 

is also shown  (N=1). 
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Figure 4.4: The Activation of the ATF4.eYFP Transcriptional Reporter over Time in HeLa cells 
after Treatment with TPG. HeLa cells were seeded 24 hrs before transfection with 0.5 µg/5x104 
cells the  XBP-1.pEYFP-N1 reporter construct and treatment with 150 nM TPG. Cells were 
analysed by FACS 2, 4, 6, 8, 12, 16, 24 and 36 hours post-treatment. Intact cells were assessed 
for levels of eYFP expression. (A) The eYFP positive gate was set so that less than 0.1% of the 
untransfected cells fell within the gate. (B) The change in percent eYFP positive cells and (C) their 
MFI was assessed in TPG treated cells over a 24 hour time course (N=1). 
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4.2: Assessment and Characterisation of Stably Transfected SH-SY5Ys:  

Upon receipt of the monoclonal SH-SY5Y ER stress reporter cells from the Prehn lab 

(Walter et.al 2015) they were tested to determine their sensitivity and specificity to ER stress 

inducers after storage and transport. This was performed by seeding the cells into a 24 well 

plate, at 5x104 cells/well, then 24 hours later treating them with 375nM, 750nM, 1500nM or 

3000nM TPG. The rational for testing doses of TPG within this range for the SH-SY5Y was based 

on the previously published working concentration used by Walter et al. (2015) and it was not 

known if the cells would respond to lower concentrations of this drug. 

The cells were harvested and fixed with 3.8% PFA  8 hours after TPG treatment. Wildtype 

SH-SY5Ys were used as controls to set the gates for intact and eYFP positive cells. The SH-SY5Ys 

did not fix particularly well, leading to lower numbers of intact cells when compared to HeLa 

cells (data not shown).  

While the ATF4.eYFP-N1 transfected SH-SY5Y monoclonal cell line (subsequently 

referred to as WATF4-SH-SY5Y)  responded all the doses of TPG with an increase both the 

percent of eYFP expressing cells and the MFI after treatment (Figure 4.5.B and C) there was no 

clear dose responsiveness in the conditions tested (Figure 4.5.B). Based on this initial data it was 

decided that in future experiments 150nM of TPG would be used for the next series of 

experiments to minimize toxicity and provide  similar experimental conditions used with the 

HeLa cells and in subsequent RT-qPCR assays. However, examination of FACS results of the cells 

treated with 3mM TPG indicates that this concentration was potentially used  in  Walter et. al.  

because it activates apoptotic pathways in these cells (Figure 4.5.C).  

Unfortunately, the  XBP-1.eYFP-N1 transfected SH-SY5Y cells provided by the Prehn lab 

(subsequently referred to as WXBP1-SH-SY5Y), did not respond well to any concentration of TPG 

tested (Figure 4.6.B and C) the cells showing a 0.5% increase in eYFP positive cells (Figure 4.6.B). 

In light of these difficulties wild-type SH-SY5Y were transfected with the XBP-1.eYFP-N1 plasmid 

and a new polyclonal line containing this reporter construct isolated in parallel with the isolation 

of  a HeLa polyclonal cell line transfected with the same construct.   
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Figure 4.5: Assessment of Sensitivity and Specificity of the WATF4-SH-SY5Y Reporter Cell Line. 

Cells were seeded and allowed to recover for 24 hrs before treatment with a range of 

concentrations of TPG. Cells were collected fixed and analyzed by FACS 16 hours after treatment. 

Intact cells were assessed for levels of eYFP. (A) The eYFP positive gate was set so that less than 

0.1% of the untransfected cells fell within the gate. (B) The changes in percent eYFP positive cells  

and (C) their MFI was assessed over drug titration series.  While the cells responded well to TPG 

there was no correlation between drug concentration and the number of eYFP positive cells or 

their MFI (N=1). 

 

  

A 

B C 

TPG Treated 

Untransfected 



29 
 

 

Figure 4.6: Assessment of Sensitivity and Specificity of the WXBP1-SH-SY5Y Reporter Cell Line. 
Cells were seeded and allowed to recover for 24 hrs before treatment with a range of 
concentrations of TPG. Cells were collected fixed and analyzed by FACS 16 hours after treatment. 
Intact cells were assessed for levels of eYFP. (A) The eYFP positive gate was set so that less than 
0.1% of the untransfected cells fell within the gate. (B) The changes in percent eYFP positive cells 
and (C) their MFI was assessed over drug titration series. The WXBP-1-SH-SY5Y reporter cell line 
did not show significant responses to TPG and there was no correlation between drug 
concentration and the number of eYFP positive cells or their MFI  (N=1).  
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4.3: Isolation of Polyclonal and Isogenic ER Stress Reporter HeLa and SH-SY5Y Cell 

Lines: 

After performing our initial studies in both the HeLas and the SH-SY5Y cells it was 

decided that new stably transfected cell lines were required to improve the consistency of the 

data so both cell lines were transfected with the XBP-1.pEYFP-N1 and ATF4.pEYFP-N1 reporters 

and polyclonal lines selected using G418. Once stable polyclonal lines were isolated, we 

attempted to further isolate isogenic clones for each cell line and construct.  

4.3.1: Isolation of Polyclonal HeLa and SH-SY5Y ER Stress Reporter Cell Lines:  

A polyclonal HeLa cell line transfected with the ATF4.eYFP-N1 reporter was successfully 

isolated and subsequently used to produce an isogenic monoclonal cell line harbouring this 

construct (Figure 4.7). 

 However, it was not possible to isolate an equivalent stable polyclonal cell line 

transfected with the XBP-1.eYFP-N1 reporter construct. HeLa cells transfected with this reporter 

either did not survive G418 selection, did not show consistent or high levels of EYFP expression 

or lost expression of EYFP during long term culturing. Fortunately, the SH-SY5Y cells transfected 

with the XBP-1.eYFP-N1 reporter were able to survive G418 selection and responded to TPG 

treatment.  

Producing a stable polyclonal HeLa cell line stably expressing the XBP-1.eYFP-N1 proved 

extremely problematic initial attempts (Figure 4.8) resulted in a polyclonal cell line (ASXBP1-

HeLa-PC1) which showed no activity to the drug. A second cell was made (ASXBP1-HeLa-PC2) 

which showed some activity in response to the TPG treatment (Figure 4.8.A). However, it is not 

dose dependant (Figure 4.8.B) and only a small number of cells showed any expression of eYFP 

with the TPG concentrations tested (~8% of intact cells). However, these cells gained expression 

subsequent rounds of passaging where a larger percentage (30-40%) of the cells responded to 

TPG by expressing eYFP (Figure 4.8.D and E). This cell line was used in the subsequent 

experiments testing the effects of MIF on XBP-1 activation but required higher concentrations 

of TPG for clear responses (700nM) when compared to the HeLa ATF4.eYFP-N1 reporter. 

The SH-SY5Y XBP-1.eYFP-N1 polyclonal line (ASXBP1- SH-SY5Y-PC1) responded to TPG 

treatment showing a dose dependant response rising from 17% to 23% eYFP positive cells 

within the intact cell gate (Figure 4.9). Unfortunately, despite several attempts it was not 

possible to isolate isogenic TPG responsive monoclonal lines derived from either the ASXBP1-

HeLa-PC2 or ASXBP1- SH-SY5Y-PC1 polyclonal cell lines.   
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Figure 4.7: Isolation of a ASATF4-HeLa Polyclonal Cell Line. HeLa cells transfected with 

ATF4.eYFP-N1 were selected with G418 for at least three passages The outgrowing resistant cells 

were seeded and allowed to recover for 24 hrs before treatment with a range of concentrations 

of TPG. Cells were collected fixed and analyzed by FACS 8 hours after treatment. Intact cells were 

assessed for levels of eYFP. (A) The eYFP positive gate was set so that less than 0.1% of the 

untransfected cells fell within the gate. (B) The responses to TPG observed in the ATF4-HeLa-

PC1 lines are shown in changes in eYFP positive cells and (C) the changes in the MFI of eYFP 

positive cells (N=1).
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Figure 4.8 Isolation of a ASXBP1-HeLa Polyclonal Cell Line. HeLa cells transfected with XBP-

1.eYFP-N1 were selected with G418 for at least three passages The outgrowing resistant cells 

were seeded and allowed to recover for 24 hrs before treatment with a range of concentrations 

of TPG. Cells were collected fixed and analyzed by FACS 8 hours after treatment. Intact cells were 

assessed for levels of eYFP. (A) The eYFP positive gate was set so that less than 0.1% of the 

untransfected cells fell within the gate. The responses to TPG observed in the ASXBP1-HeLa-PC2 

lines are shown in (B) changes in eYFP positive cells and (C) the changes in the MFI of eYFP 

positive cells. (D and E) ASXBP-1-HeLa-PC2 expressed with more intensity as more passages. 

occurred, the difference between the cells at initial testing and usage (N=1). 
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Figure 4.9 Isolation of a ASXBP1-SH-SY5Y Polyclonal Cell Line.  SH-SY5Ys cells transfected with 

XBP-1.eYFP-N1 were selected with G418 for at least three passages The outgrowing resistant 

cells were seeded and allowed to recover for 24 hrs before treatment with a range of 

concentrations of TPG. Cells were collected fixed and analyzed by FACS 8 hours after 

treatment. Intact cells were assessed for levels of eYFP. (A) The eYFP positive gate was set so 

that less than 0.1% of the untransfected cells fell within the gate. (B) The responses to TPG 

observed in the ASXBP1-SH-SY5Y-PC1 (C) and the changes in the MFI of eYFP positive cells 

(N=1). 
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4.3.2: Isolation and Characterisation of Monoclonal Isogenic HeLa Cells Expressing 

ATF4.pEYFP-N1:  

Isogenic monoclonal Hela cells containing an active ATF4.pEYFP-N1 reporter were 

isolated by taking HeLa cells transfected with ATF4.eYFP-N1 construct, passaging them three 

times under G418 selection and then seeding them into a 96 well plate at ½ a cell per well plate. 

After about two weeks wells with obvious cell growth (colonies) were seeded into indivdual T-

25 flasks and expanded. Ten clones were successfully isolated and tested for the presence of the 

of an active ATF4.pEYFP-N1reporter construct. Most of the clones showed no background eYFP 

expression and no response to TPG (Figure 4.10B and C). However, one clone (D5) showed some 

background eYFP expression and responded to a range of TPG concentrations (150-3000nM) 8 

hrs post treatment (Figure 4.10A). A time-course analysis was performed on this cell line, 

subsequently called ASATF4-HeLa-Isogenic Clone 1 (ASATF4-HeLa-ASATF4-HELA-IC1), using 

150nM TPG which showed that in comparison to the transiently transfected cells (Figure 4.11) 

it had a delay in the peak in eYFP expression (24 hrs vs 16 hrs) and a steady increase in the MFI 

of the cells over the entire timecourse (Figure 4.11). Unlike the transiently transfected HeLa cells 

which have a fluorescence maxima of 104au (Figure 4.3) the ASATF4-HELA-IC1 ATF4 isogenic 

clone (ASATF4-HELA-IC1) shows a narrower range of activation intensities with no fluorescence 

detected above 103au.  
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Figure 4.10: Isolation and Characterization of Single Cell Isogenic HeLa Cells Transfected with 
the ATF4.pEYFP-N1 Reporter Construct. The clones B4, D5 and D9 seeded into a 24 well plate 
and allowed to recover for 24 hrs before treatment with a range of concentrations of TPG. Cells 
were collected fixed and analyzed by FACS 8 hours after treatment. Intact cells were assessed 
for levels of eYFP. (A) The eYFP positive gate was set so that less than 0.1% of the untransfected 
cells fell within the gate. The responses to TPG observed in the three clones are shown in (B) 
changes in eYFP positive cells and (C) the changes in the MFI of the eYFP positive cells (N=1). 
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Figure 4.11: The Activation of the ATF-4.eYFP Transcriptional Reporter over Time in the 
ASATF4-HeLa-IC1 Cell Line after Treatment with TPG. ASATF4-HeLa-IC1 cells were seeded 24 
hrs before treatment with 150 nM TPG. Cells were analysed by FACS 4, 6, 8, 12, 16, and 24  hours 
post-treatment. Intact cells were assessed for levels of eYFP expression. (A) The eYFP positive 
gate was set so that less than 0.1% of the untransfected cells fell within the gate. (B)  The change 
in percent eYFP positive cells and (C) their MFI was assessed in vehicle and TPG treated cell over 
a 24 hour time course (N=3).  
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4.4: Assessment of the Effect on MIF on ER stress responses: 

4.4.1: Assessment of the Effects of MIF on Activation of the ATF.ePYFP-N1 Reporter Cell 

Lines: 

An initial set of experiments was performed to assess the effects of human MIF alone 

on the activity of the ATF4.ePYFP-N1 reporter. To confirm that MIF alone was not able to activate 

the reporter ASATF4-HeLa-IC1 and WATF4-SH-SY5Y cells were treated with a range of MIF 

concentrations and activation of the ATF4.eYFP-N1 reporter measured.  

ASATF4-HeLa-IC1 was seeded in a 96 well plate at a density of 2.5x104 cells per well. 24 hours 

after seeding these cells were treated with a range of MIF concentrations (75ng-1000ng). Cells 

were collected 8 hours post treatment fixed and the levels of eYFP assessed by FACS (Figure 

4.12). A positive control was also performed where cells were treated with 150nM TPG. MIF did 

not cause any consistent effect in levels of background YFP expression in these cells. This 

experiment was repeated were cells were collected at a later timepoint 24 hours post treatment 

to see if these results differed from the 8hr post-treatment timepoint (Figure 4.13). Like the 8 

hr post-treatment cells MIF did not cause any consistent effect in levels of background eYFP 

expression in these cells.  

An equivalent set of experiments was also performed using the WATF4-SH-SY5Y cell line and the  

results for 8 hr post-treatment (Figure 4.14) showed a similar profile to the ASATF4-HeLa-IC1 

cells. This data indicates that in both cell lines tested MIF alone does not significantly affect the 

activation of the ATF4.ePYFP-N1 reporter.  
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Figure 4.12: Assessment of the Effects of MIF on HeLa ASATF4-HeLa-IC1 Cells 8hrs Post-

Treatment. Cells were seeded and allowed to recover for 24 hrs before treatment with a range 

of concentrations of MIF. Cells were collected fixed and analyzed by FACS 8 hours after 

treatment. Intact cells were assessed for levels of eYFP. (A) The eYFP positive gate was set so 

that less than 0.1% of the wild-type control cells fell within the gate. (B) The changes in percent 

eYFP positive cells (C) and their MFI was assessed over range of MIF concentrations tested.  The 

ASATF4-HeLa-IC1 reporter cell line did not show significant responses to MIF No significant 

difference was found between the untreated control and the MIF only titration. Statistical 

analysis for both 4.12.B and 4.12.C determined with One Way ANOVA and Bonferroni Post Hoc 

test for multiple comparisons. (N=3). 
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Figure 4.13: Assessment of the Effects of MIF on HeLa ASATF4-HeLa-IC1 Cells 24 hrs Post-

Treatment. Cells were seeded and allowed to recover for 24 hrs before treatment with a range 

of concentrations of MIF. Cells were collected fixed and analyzed by FACS 24 hours after 

treatment. Intact cells were assessed for levels of eYFP. (A) The eYFP positive gate was set so 

that less than 0.1% of the wild-type cells fell within the gate. (B) The changes in percent eYFP 

positive cells (C) and their MFI was assessed over range of MIF concentrations tested.  The 

ASATF4-HeLa-IC1 reporter cell line did not show significant responses to MIF. No significant 

difference was found between the untreated control and the MIF only titration. Statistical 

analysis for 4.13.B and C was performed with One Way ANOVA and Bonferroni Post Hoc test for 

multiple comparisons (N=3) 
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Figure 4.14: Assessment of the Effects of MIF on WATF4-SH-SY5Y Cells 8hrs Post-Treatment. 

WATF4-SH-SY5Y cells were seeded and allowed to recover for 24 hrs before treatment with a 

range of concentrations of MIF. Cells were collected fixed and analyzed by FACS 8 hours after 

treatment. Intact cells were assessed for levels of eYFP. (A) The eYFP positive gate was set so 

that less than 0.1% of the wild-type control cells fell within the gate. (B) The changes in percent 

eYFP positive cells (C) and their MFI was assessed over range of MIF concentrations tested.  The 

WATF4-SH-SY5Y reporter cell line did not show significant responses to MIF. No significant 

difference was found between the untreated control and the MIF only titration. Statistical 

analysis for both 4.14.B and C was performed with One Way ANOVA and Bonferroni Post Hoc 

test for multiple comparisons (N=3). 
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In a subsequent set of experiments to determine if MIF could influence the activation of  

ATF4 during ER stress conditions cells were co-treated with MIF and TPG and the affects MIF on 

TPG activation of the reporter assessed 24 hrs post-treatment (Figure 4.15). This initial 

experiment did not suggest that MIF had any effect on activation of the reporter at this time 

point. However, because previous studies have shown that the timing and kinetics of the ER 

stress activation response are key factors influencing how it effects downstream processes in 

cells this experiment was repeated in both ATF4.ePYFP-N1 reporter cell lines looking at a time 

course of activation rather than a single time point. 

Within these experiments 250ng/mL  was selected for the MIF dose as this was a median 

dose for the range that had previously been tested in these assays and is a concentration for this 

cytokine that is biologically feasible in vivo.  

The assays performed with the ASATF4-HeLa-IC1 cells showed that MIF treatment 

caused distinct differences in the activation profile of the ATF.ePYFP-N1 reporter (Figure 4.16). 

This encompassed both the number of eYFP positive cells (early time points, <36hrs post-

treatment) and the MFI of the eYFP positive cells (later timepoints, >36hrs post -treatment) with 

MIF suppressing the effects of TPG in these cells. This difference approaches statistical 

significance at p=0.056 (One way ANOVA, n=3).   

The WATF4-SH-SY5Y cells behaved slightly differently while there is no consistent 

difference in the number of eYFP positive cells at later timepoints the MFI of the eYFP positive 

cells is decreased in those cells that were treated with both MIF and TPG (Figure 4.17, n=2). 

However while this trend is promising it does not approach statistical significance when analyzed 

by One way ANOVA. 
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Figure 4.15: Assessment of the Effects of MIF on ASATF4-HeLa-IC1 Cells Treated with TPG 24 

hrs Post-Treatment. ASATF4-HeLa-IC1 cells were seeded and allowed to recover for 24 hrs 

before treatment with a range of concentrations of MIF and 150nM TPG. Cells were collected 

fixed and analyzed by FACS 24 hours after treatment. Intact cells were assessed for levels of 

eYFP. The eYFP positive gate was set so that less than 0.1% of the wild-type cells fell within the 

gate. (B) The changes in percent eYFP positive cells and (C) their MFI was assessed over range of 

MIF concentrations tested.  The ASATF4-HeLa-IC1 reporter cell line did not show significant 

responses to MIF. No significant difference was found between the TPG treated control and the 

MIF and TPG titration. No significant difference was found between the treated time course and 

the MIF and TPG time courses. Statistical analysis for 4.15.B and C was performed with One Way 

ANOVA and Bonferroni Post Hoc test (N=3). 
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Figure 4.16: The Analysis of the Activation of the ATF4.eYFP Transcriptional Reporter over 

Time in ASATF4-HeLa-IC1 Cells after Treatment with TPG and MIF. ASATF4-HeLa-IC1 cells 

were seeded 24 hrs before treatment with 150 nM TPG and 250 ng/mL MIF.  Cells were 

analysed by FACS 2-48 hours post-treatment. Intact cells were assessed for levels of eYFP 

expression. (A) The eYFP positive gate was set so that less than 0.1% of wild-type control cells 

fell within the gate. (B) The change in percent eYFP positive cells and (C) their MFI was 

assessed comparing cells treated TPG and those treated with TPG and MIF. No significant 

difference was found between the treated time course and the MIF and TPG time courses. 

Statistical analysis for 4.16.B and C was performed with One Way ANOVA and Bonferroni Post 

Hoc test (N=3). 
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Figure 4.17: The Analysis of the Activation of the ATF4.eYFP Transcriptional Reporter over 

Time in WATF4-SH-SY5Y Cells after Treatment with TPG and MIF. WATF4-SH-SY5Y cells were 

seeded 24 hrs before treatment with 150 nM TPG and 250 ng/mL MIF.  Cells were analysed by 

FACS 4-24 hours post-treatment. Intact cells were assessed for levels of eYFP expression. (A) The 

eYFP positive gate was set so that less than 0.1% of wild-type control cells fell within the gate. 

(B) The change in percent eYFP positive cells and (C) their MFI was assessed comparing cells 

treated TPG  and those treated with TPG and MIF. No significant difference was found between 

the treated time course and the MIF and TPG time courses. Statistical analysis for 4.17.B and C 

was performed with One Way ANOVA and Bonferroni Post Hoc test (N=2). 
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4.4.2: Assessment of the Effects of MIF on Activation of the XBP1.ePYFP-N1 Reporter 

Cell Lines: 

A similar set of experiments were performed with the ASXBP1-HeLa-PC2 or ASXBP1-SH-

SY5Y-PC1  polyclonal cell lines to assess the effects of MIF alone or MIF in combination with TPG 

on the XBP1.eYFP-N1 reporter. For initial experiments  8 hour post treatment was chosen as the 

timepoint to analyse the effects of MIF on the reporter construct. Like the ATF4.eYFP-N1 

reporter MIF alone does not appear to influence the activation of reporter in either the ASXBP1-

HeLa-PC2 (data not shown) or ASXBP1-SH-SY5Y-PC1 (Figure 4.18) cell lines. However, like the 

ATF4.eYFP-N1 reporter cells time course experiments were performed where the effects of MIF 

and TPG cotreatment on these cell lines was assessed. 

The results of the ASXBP1-HeLa-PC2 time course reveal that unlike the ATF4 reporter 

MIF treatment did not have any effect on the activation of the XBP1.eYFP-N1 reporter in terms 

of the number of eYFP positive cells or their MFI (Figure 4.19). Unlike the HeLa cells analysis, the 

ASXBP1-SH-SY5Y-PC1  cell line shows that like the ATF4 reporter MIF treatment suppresses the 

response to TPG. However, this effect extends into both a reduction of the number of eYFP 

positive cells and the MFI of those cells (Figure 4.19). 
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Figure 4.18: SH-SY5Y Assessment of the Effects of MIF on WXBP1- SH-SY5Y-PC1 Cells 8hrs Post-

Treatment. ASXBP1-SH-SY5Y-PC1 cells were seeded and allowed to recover for 24 hrs before 

treatment with a range of concentrations of MIF. Cells were collected fixed and analyzed by 

FACS 8 hours after treatment. Intact cells were assessed for levels of eYFP. (A) The eYFP positive 

gate was set so that less than 0.1% of the wild-type control cells fell within the gate. (B) The 

changes in percent eYFP positive cells and (C) their MFI was assessed over range of MIF 

concentrations tested.  The ASXBP1-SH-SY5Y reporter cell line did not show significant responses 

to MIF. Insufficient data collected to perform statistical analysis (N=1). 
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Figure 4.19: The Analysis of the Activation of the XBP1.eYFP Transcriptional Reporter over 
Time in ASXBP1-HeLa-PC2 Cells after Treatment with TPG and MIF. ASXBP1-HeLa-PC2 cells 
were seeded 24 hrs before treatment with 700 nM TPG and 250 ng/mL MIF.  Cells were analysed 
by FACS 4-24 hours post-treatment. Intact cells were assessed for levels of eYFP expression. (A) 
The eYFP positive gate was set so that less than 0.1% of wild-type control cells fell within the 
gate. (B) The change in percent eYFP positive cells and (C) their MFI was assessed comparing 
cells treated TPG and those treated with TPG and MIF. No significant difference was found 
between the treated time course and the MIF and TPG time courses. Statistical analysis for 
4.19.B and C was performed with One Way ANOVA and Bonferroni Post Hoc test (N=3). 
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Figure 4.20: The Analysis of the Activation of the XBP1.eYFP Transcriptional Reporter over 

Time in ASXBP1-SH-SY5Y-PC1 Cells after Treatment with TPG and MIF. ASXBP1-SH-SY5Y-PC1  

cells were seeded 24 hrs before treatment with 700 nM TPG and 250 ng/mL MIF.  Cells were 

analysed by FACS 4-24 hours post-treatment. Intact cells were assessed for levels of eYFP 

expression. (A) The eYFP positive gate was set so that less than 0.1% of wild-type control cells 

fell within the gate. (B) The change in percent eYFP positive cells and (C) their MFI was assessed 

comparing cells treated TPG  and those treated with TPG and MIF. No significant difference was 

found between the treated time course and the MIF and TPG time courses. Statistical analysis 

for 4.20.B and C was performed with One Way ANOVA and Bonferroni Post Hoc test (N=3). 
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4.5: Assessment of the Effects of MIF on the Downstream Targets of the UPR by 

RT-qPCR: 
To support the results of the transcriptional reporter assays RT-qPCR was performed on 

wild-type HeLa and SH-SY5Y cells examining two downstream targets of the UPR response CHOP 

(ATF4) and ErDj4 (XBP-1). These targets were chosen because their upregulation during ER stress 

encompass the two endpoints for the UPR activation, attempt resolution (ErDj4) or apoptosis 

(CHOP). 

  The results of the RT-qPCR studies of the HeLa cells (Figure 4.21)  partially supports the 

transcriptional reporter assays with MIF reducing the levels of CHOP transcript (a downstream 

target of ATF4) in cells experiencing ER stress relative to control cells (Figure 4.21.A).  Unlike the 

transcriptional reporter assays which did not show any change in XBP-1 activation there was a 

suppression in the levels of ErDj4 transcript which mirrored that of CHOP (Figure 4.21.B).  

In the SH-SY5Y cells a steady decline is seen in the levels of CHOP transcript over the 

time course however this decline is more acute in those cells which had been co-treated with 

MIF and TPG supporting the transcriptional reporter findings in the WATF4-SH-SY5Y cells which 

indicate a suppression of ATF4 activity 12 and 24 hours post-treatment (Figure 4.22.A). Similarly, 

ErDj4 transcript levels drop dramatically after TPG treatment however these partially recover in 

cells by 24 hrs post-treatment (Figure 4.22.B). This recover does not occur in MIF treated cells 

indicating a suppression in XBP activity which is consistent with the lower number of eYFP 

positive cells and lower MFI of eYFP positive cells observed in the transcriptional reporter assays 

using ASXBP1-SH-SY5Y-PC1. 
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Figure 4.21: Assessment of Effects of MIF on CHOP and ErDJ4 Transcript Levels in WT HeLa Cells 

During ER Stress Responses. Wild-type Hela cells were treated with TPG (150nM) or TPG and 

MIF (250ng/mL). RNA was isolated from these cells at 0, 4, 8, 12 and 24 hours post-treatment. 

RT-qPCR was performed using these RNA samples (A) assessing the levels of CHOP (B) or ErDJ4. 

The housekeeping gene GAPDH was used as the internal control to normalise transcript levels. 

The delta-delta Ct of the target transcripts were calculated to determine the relative level of 

each transcript at each timepoint. The relative fold change in gene expression was then 

calculated using the untreated control cells as the baseline level of expression for each 

transcript. No significant difference was found between the treated time course and the MIF 

and TPG time courses. Statistical analysis for 4.21.B and C was performed with One Way ANOVA 

and Bonferroni Post Hoc test (N=1). 
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Figure 4.22: Assessment of Effects of MIF on CHOP and ErDJ4 Transcript Levels in SH-SY5Y Cells 
During ER Stress Responses. Wild-type SH-SY5Y cells were treated with TPG (150nM) or TPG 
and MIF (250ng/mL). RNA was isolated from these cells at 0, 4, 8, 12 and 24 hours post-
treatment. RT-qPCR was performed using these RNA samples (A) assessing the levels of CHOP 
or (B) ErDJ4. The housekeeping gene GAPDH was used as the internal control to normalise 
transcript levels. The delta-delta Ct of the target transcripts were calculated to determine the 
relative level of each transcript at each timepoint. The relative fold change in gene expression 
was then calculated using the untreated control cells as the baseline level of expression for each 
transcript. No significant difference was found between the treated time course and the MIF 
and TPG time courses. Statistical analysis for 4.22.B and C was performed with One Way ANOVA 
and Bonferroni Post Hoc test (N=1).   

 

ErDJ4 CHOP  
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5.0 Discussion:  
5.1 MIF Partially Suppresses UPR responses: 

A combination of fluorescent protein transcriptional reporter constructs and RT-qPCR 

were used to assess the effects of MIF on UPR induction after TPG treatment in cells derived 

from an epithelial (HeLa) and neuronal (SH-S5Y) lineages. The results of both studies support 

that MIF partially suppresses the induction of UPR responses in both cell lineages.  In both cell 

lines the activity of the ATF4 transcriptional reporter were suppressed while the activity of the 

XBP reporter was supressed in SH-SY5Y cells but not HeLa cells. The RT-qPCR the results obtained 

for the HeLas show a consistent trend from the transduction pathways to the mRNA for the 

downstream targets with a lower mRNA transcription rate for ErDj4 and CHOP. The SH-SY5Ys 

show the same general trend but reasons that are not clear the post-treatment timepoints show 

lower level of ErDj4 and CHOP than the pre-treatment controls .  

5.2: Potential signal transduction pathways that connect MIF UPR activity:  

While a clear transcription effect on UPR in induction was observed in this study the 

defining the molecular mechanisms underlay this effect lay outside the scope of this study. 

However, there are several possibilities. One key regulator of UPR activity that shares common 

signal transduction partners with CD74 mediated MIF signalling is mTORC1. So, one possibility 

is that MIF signalling may somehow impinges on the mTOR pathway in a manner which 

depresses its activation of the UPR.  

A number of recent studies have examined links between these pathways. There is some 

evidence that they are connected, a recent study looking at mTOR knockdown showed that it 

specifically depressed IRE1/XBP activation but not the PERK/ATF4 pathway (Kato et al., 2012). 

Within this study Kato et al., showed that mTOR’s pro-inflammatory/pro-apoptotic activity was 

meditated via modulation of AKT, in which mTOR suppresses the hyperphosphorylation of AKT 

which in turn results in lowers IRE1 activity and suppression of Bcl-2. Similarly, a subsequent 

study showed that inhibition of JNK, a second potential transduction mediator, could link CD74 

mediated MIF signalling caused upregulation of pro-apoptotic signals potentially via activation 

of mTORC1 through activating RAPTOR (Kwak et al., 2012). So, it is possible that one or more 

transduction pathways are influenced by MIF signalling (via CD74) that would modulate 

downstream UPR pathways via distinct activities on IRE1 and mTORC1. This may explain some 

of the slightly different results that were observed between the two cell lines derived from 

epithelial and neuronal lineages.  
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It is known that MIF also has at least one non-classical, CD74 independent, signalling 

route for affecting cells. The most well-known of these non-classical receptors is the intracellular 

target JAB1 (Kleemann et al., 2000). JAB1 can, under a variety of circumstances, phosphorylate 

JNK. However, when MIF binds to JAB1 it inhibits this activity offering another potential pathway 

via which MIF might indirectly influence mTORC1 and UPR transducers such as IRE1. Therefore, 

it reasonable to speculate that suppression of IRE1 caused by MIF might be linked to its activities 

on JAB1. Differences in MIF signalling  via the JAB1 pathway that might be found in different cell 

lineages or differences in a cell’s ability to respond to MIF via CD74 could lead to differences in 

how it influences UPR activation and downstream apoptotic and inflammatory responses.  

Figure 5.1: Diagram showing the Potential Relationships Between MIF and IRE1. Impingement of MIF on 
CD74 leads to an upregulation of mTORC1, this leads to a suppression of AKT leading to a change of IRE1 
from endoribonuclease activity to phosphorylation of JNK. Suppression of JAB1 activity by MIF prevents 
JNK from being phosphorylated leading to a diminished JNK signal and causes a diminished mTOR 
response.  

 Links between PERK/ATF4 and JNK activity have  been identified (Liang et al., 

2006)However, this paper suggests that it is caused by Ca2+ loss within the ER and not by 

blockage of Glycosylation and so it this effect might be an artefact of the use of TPG rather than 

Tunicamycin. This is, of course, undercut by Kato showing that only IRE1 is affected by mTORC1 

activation status. So, cell lineage may also be playing a role as the Kato paper utilized NRK-52E, 

a Rat kidney Epithelial cell line for their study, rather than a human epithelial or neuronal cell 

lineage.  
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5.2: Downstream Targets, E rDj4 and CHOP:  

Due to constraints in the time and scope of the study there are several aspects of the 

RT-qPCR data that is both unexpected and requires further exploration. The effects of TPG on 

CHOP transcript levels in both cell lines showed that there was very little difference between 

the treated and untreated samples in the HeLa cells (Figure 4.19 and 4.20). In addition, 

unexpectedly in  both cell lines the control samples (0 hours) showed much higher levels of CHOP 

transcript relative to the subsequent time points (4-24hrs post treatment). This is possibly due 

to the use of only 150nm of TPG within the treatment so that there was never enough stress 

induced to cause a clear upregulation of CHOP. For ErDj4 there was a more consistent effect in 

the HeLa cells with a clear induction of the transcript after TPG treatment. The results are 

suggestive that MIF suppression mediates effects on both UPR pathways reducing the 

production of both of these key transcripts after ER stress induction however additional assays 

replicating these results and examining additional downstream targets of both XBP-1 and ATF4 

are required.  

5.3: How might MIF Suppression of UPR Influence Health and Disease?:  

This study has identified a potential new role for MIF in modulating UPR during ER 

stress. What ramifications might this have in understanding the potential role of MIF in 

development and disease? Both MIF and ER stress responses have been found to be key 

components in normal homeostatic process and are linked to a variety diseases or disease 

processes. For instance, both MIF and the UPR are linked to disease aetiology in Alzheimer’s 

and Diabetes type 2 (Casas-Tinto et al., 2011, Gorasia et al., 2015). Potential interventions 

based on MIF or UPR targets are being tested in models for both of these diseases. Previously, 

MIF was thought to exert its activity in these diseases by modulating recruitment or activation 

of pro-inflammatory immune cells. However, if MIF differentially suppresses specific elements 

of UPR responses this could potentially lead to apoptosis or pathological responses linked to a 

cells inability to successfully resolve ER dysfunction.  In a recent study published by Walter et. 

al. (2015) the kinetics of activation of the different UPR pathways (IRE1/XBP-1 or PERK/ATF4) 

determined if a cell survived a potentially lethal ER dysfunction. If early IRE1/XBP-1 activation 

and delayed ATF4 translation were cytoprotective and reduced ER stress induced apoptosis. In 

our studies in HeLa cells MIF reduced/delayed PERK/ATF4 activation but did not affect 

IRE1/XBP-1 activity this should allow cells that respond to MIF to survive conditions which 

cause acute ER stress. MIF is found to be produced in high amounts in epithelial tissues like the 

GI tract. Perhaps it helps reduce apoptosis in these tissues when they experience ER stress. 

Interestingly in the SH-SY5Ys (the neuronal cell line) both pathways were suppressed by MIF  
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which could result in the inhibition of resolution of ER dysfunction and promote terminal 

downstream effects. A study recent study has shown that MIF (which is a biomarker for the 

onset of Alzheimer's pathology) exacerbates the toxicity of protein aggregates of beta amyloid 

or tau (Bacher et al., 2010). These aggregates activate UPR responses leading to apoptosis. If 

MIF specifically increases the sensitivity of this cell type to these aggregates this may explain 

why they are selectively lost as the disease progresses and thus why MIF is a biomarker for 

pathology.     

5.5 Future Work: 

There are a number of logical extensions to this study. This would include further 

assessment of the potential downstream targets of MIF, mTOR and JAB1, to see one or both of 

them is required for mediating the UPR suppression. To complete this, XBP-1.eYFP monoclonal 

lines of both HeLa and SH-SY5Ys would need to be isolated. However, due to the potential 

toxicity problems of the full length XBP protein, making constructs that lack the DNA binding site 

from XBP-1 may help facilitate the isolation of stable lines. To make sure the effects of MIF on 

UPR induction are specific a second UPR inducer such as Tunicamycin should also be tested 

within this assay. Once these cells are available the specific pathway that mediates the 

suppression can be examined by either genetically modifying the cells to create JAB1 knockout 

(CRISPR/CAS), or by transiently reducing JAB1 levels using transfection with specific siRNAs. If 

UPR suppression is reduced in the JAB1 deficient cells, then this would suggest that MIF (via 

JAB1) is potentiating IRE1 phosphorylation of JNK. Lastly to confirm and expand results of the 

RT-qPCR data RNA sequencing (RNAseq) should be performed on cell treated with MIF during 

ER stress which will allow simultaneous assessment of transcript levels for a wide variety of UPR 

targets including BIP, Calnexin/Calreticulin, CHOP, EDEM, ErDJ3-5 and GADD34 along with genes 

involved in other biological process such as apoptosis.  
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6.0 Concluding Remarks: 

To conclude, transgenic poly and monoclonal cell lines were produced that show the 

activation of different UPR pathways during ER stress by upregulation of a fluorescent reporter 

proteins. These were tested to assess whether MIF can affect basal levels or Thapsigargin-

induced ER Stress. The fluorescent reporters indicated a MIF suppressed UPR activation 

although there was variation in which UPR pathways that were affected in different cell types.  

These observations were supported by RT-qPCR of specific UPR target transcripts though 

further work is required. This effect, if more advanced work supports it, may be important for 

understanding the aetiologies of a number of conditions where both MIF and ER stress are 

implicated as factors influencing disease development and/or pathology. It might also offer 

potential targets for the development of novel therapeutics strategies for the treatment of 

these diseases.  
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Appendix:  

Figure S1: Optimisation of HEK 293 Cells Transiently Transfected with Different Doses of XBP-

1.eYFP Transcriptional Reporter.  HEK 293 cells were seeded 24 hrs before transfection with the  

XBP-1.pEYFP-N1 reporter construct and treatment with 150 nM TPG.  Sixteen hours after 

treatment cells were collected fixed and analysed by FACS (A). Intact cells were assessed for 

levels of eYFP. The eYFP positive gate was set so that less than 0.1% of the untransfected cells 

fell within the gate. The histogram (B) shows representative results using 0.25 ug reporter 

DNA/105 cells. The graph (C) shows the percent of eYFP positive cells 16hrs after treatment with 

TPG in Hela cells transfected with a range of  reporter plasmid DNA concentrations (ranging 

0.125- 1µg DNA/1x105 cells, UT: Untransfected cells). The changes in the MFI of the eYFP positive 

cells is also shown (D).   
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Figure S2: Optimisation of HEK 293 Cells Transiently Transfected with Different Doses of 

ATF4.eYFP Transcriptional Reporter. HEK 293 cells were seeded 24 hrs before transfection with 

the  XBP-1.pEYFP-N1 reporter construct and treatment with 150 nM TPG.  Sixteen hours after 

treatment cells were collected fixed and analysed by FACS (A). Intact cells were assessed for 

levels of eYFP. The eYFP positive gate was set so that less than 0.1% of the untransfected cells 

fell within the gate. The histogram (B) shows representative results using 0.25 ug reporter 

DNA/105 cells. The graph (C) shows the percent of eYFP positive cells 16hrs after treatment with 

TPG in Hela cells transfected with a range of  reporter plasmid DNA concentrations (ranging 

0.125- 1µg DNA/1x105 cells, UT: Untransfected cells). The changes in the MFI of the eYFP positive 

cells is also shown (D).   
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Figure S3: The Activation of the XBP-1.eYFP Transcriptional Reporter over Time in HEK 293 

Cells after Treatment with TPG. HEK 293s cells were seeded 24 hrs before transfection with 

the  XBP-1.pEYFP-N1 reporter construct and treatment with 150 nM TPG.  Sixteen hours after 

treatment cells were collected fixed and analysed by FACS (A). Intact cells were assessed for 

levels of eYFP. The eYFP positive gate was set so that less than 0.1% of the untransfected cells 

fell within the gate. The histogram (B) shows representative results using 0.25 ug reporter 

DNA/1x105 cells. The graph (C) shows the percent of eYFP positive cells 16hrs after treatment 

with TPG in Hela cells transfected with a range of  reporter plasmid DNA concentrations 

(ranging 0.125- 1µg DNA/1x105 cells, UT: Untransfected cells). The changes in the MFI of the 

eYFP positive cells is also shown (D).   
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