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Abstract 

 

In Roelofs‟ (2004) form preparation study examining processes involved in both word 

reading and picture naming, he concluded that phonological encoding mechanisms 

might be shared for the two tasks. Importantly, in his earlier form preparation research 

Roelofs (1999) argued that phonemic features are not involved during phonological 

encoding and indeed, most current models of general language production such as 

Word-form Encoding by Activation and VERification (WEAVER, e.g., Roelofs, 1997a) 

account for the role of phonemic features once the phonological encoding process has 

been completed. However, whilst Kinoshita‟s (2000) re-interpretation of the locus of the 

masked onset priming effect (MOPE) implies an encoding process for word reading that 

is similar to that incorporated into WEAVER (e.g., Roelofs, 1997a) and by extension to 

picture naming, Lukatela, Eaton and Turvey‟s (2001) results suggest that features may 

well be involved in the word reading processes. The main purpose of the research 

undertaken within this thesis was to evaluate phonological encoding for both word 

reading and picture naming to assess the validity of Roelofs‟ (2004) claims. This was 

conducted with the employment of the masked priming paradigm as well as the masked 

sandwich priming paradigm and by the manipulation of phonemic feature overlap in 

both the initial and end/coda segment position of primes and monosyllabic targets. 

From the cumulative results of this research, the notion that encoding mechanisms 

might be shared between these two tasks could not be ruled out. Importantly, phonemic 

feature effects were consistently observed across both word reading (with lexical 

primes) and picture naming. Controversially, these particular findings suggest that 

conventional thinking is misguided to ignore the role of phonemic features during the 

phonological encoding process.   
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CHAPTER 1: Introduction, outline and models of general 

language production & word reading 

 

 
 

 

1.1. Introduction 
 

 

This thesis examines phonological encoding processes that are involved in both single 

word reading and the naming of pictures of simple objects. The latter is a popular task 

employed in general language production research which for simplicity hereafter is 

referred to as the picture naming task.  According to some language production theorists 

(e.g., Levelt, Roelofs & Meyer, 1999; Roelofs, 1992, 1996b, 1997a, 1997b), 

phonological encoding is a process during which a to-be-named object‟s word form is 

constructed. It occurs after the appropriate concept for this item has been selected from 

the mental lexicon and prior to the generation of articulation.  

 

Although there exists a considerable body of research that has investigated this 

processing stage in general language production (e.g., Meyer 1990, 1991; Roelofs, 

1999, 2004), researchers (e.g., Kinoshita 2000, Kinoshita & Woollams, 2002; Malouf & 

Kinoshita 2007) are still at the very early stages of examining phonological encoding in 

word reading.  The varying degree of interest in this process between these two domains 

is reflected in the design of theoretical/computational models that have been developed 

to account for the processes involved in language production generally and word 

reading specifically. Consequently and as illustrated in the following sections of this 

chapter (sections 1.3. and 1.4., respectively), language production models provide an 

elaborate account of how phonology is constructed whereas word reading models tend 
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to be primarily focused on mapping orthography onto phonology.  However, the fact 

that research to date has tended to examine word and picture naming separately does not 

exclude the possibility that similarities exist in the processing of each task. Given that a 

degree of lexical access is required to accomplish either discipline, an investigation into 

processes that occur both during and immediately after lexical access whilst 

manipulating word reading and picture naming within the same experiment has the 

potential to yield important new information as to the likelihood of common 

mechanisms. 

 

Importantly, research conducted in Dutch by Roelofs (2004) suggested the possibility of 

shared phonological encoding mechanisms for both speaking and reading words aloud. 

In Experiments 1 and 2 Roelofs (2004) employed a form preparation paradigm in which 

printed words and their corresponding pictures were grouped into four conditions that 

each consisted of three sets of stimuli per set. In these two studies words and pictures 

were not mixed within the same set. However, for every set that contained pictures there 

was a corresponding set that contained the printed names of those pictures. The four 

conditions were: Begin-homogeneous, End-homogeneous, Begin-heterogeneous and 

End-heterogeneous. In Experiment 1, the stimuli in Begin-homogeneous sets all shared 

their initial segment (e.g., bok, boor, bel) whereas in End-homogeneous sets they shared 

their end segments (e.g., rat, krat, vat). The heterogeneous sets were constructed by 

taking one stimulus from each of the three corresponding homogeneous sets (e.g., roos, 

bok, kam – Begin-heterogeneous; peer, rat, clip – End-heterogeneous).  Therefore, in 

Roelofs‟ (2004) research the same words or pictures were used in both homogeneous 

and heterogeneous sets thus allowing for more direct comparisons between the two 

experimental conditions. Participants were required to name words and pictures 
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presented in separate blocks in which the three stimuli comprising a set were presented 

five times in random order, with participants‟ response latencies recorded. The order of 

block presentation was counterbalanced across participants with a short interval prior to 

the display of the next block.  Experiment 2 was similar to Experiment 1 except that in 

this study disyllabic words and their corresponding pictures were employed that in 

Begin-homogeneous sets shared their first syllable (e.g., leraar, lepel, lelie) and in End-

homogeneous sets shared their second syllable (e.g., klaver, bever, vijver). Finally, in 

Experiment 3 the disyllabic words and their corresponding pictures from Experiment 2 

were mixed together within the same sets.  

 

From Experiments 1 and 2, Roelofs (2004) demonstrated that both words and pictures 

in Begin-homogeneous sets were named faster compared to Heterogeneous sets thereby 

showing a preparation benefit. However, there was no benefit for End-homogeneous 

sets. These results were therefore consistent with an incremental, rightward 

phonological encoding process such as that incorporated into the WEAVER general 

language production model. From Experiment 3, Roelofs (2004) found that even when 

words and pictures were mixed together within the same sets, the magnitude of 

observed preparation benefits were similar to those found in the earlier two 

experiments. As such, Roelofs (2004) concluded that although printed words were 

named faster than pictures, it is likely that a single serial encoding mechanism is shared 

for both word reading and picture naming. He thus suggested a possible merging of 

models of general language production such as WEAVER with models of word reading 

such as DRC at the segment-to-frame association stage of the phonological encoding 

process.  
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Further, because phonemes are represented as abstract entities in WEAVER at this 

processing stage and are therefore not specified for their features, Roelofs (2004) 

conclusions were also consistent with the findings from his earlier research (Roelofs, 

1999). In his 1999 work which was again conducted in Dutch, Roelofs set out to 

investigate effects from phonemic feature similarity on spoken word production. To this 

aim in Experiments 1 and 2 Roelofs (1999) employed the implicit-priming paradigm 

first introduced by Meyer (1990). In this paradigm, participants had to learn word pairs 

e.g., kabel-touw (cable-rope). On the presentation of the first word/prompt in a pair they 

then were required to say the second word/response, with naming latency recorded. 

Further, in both studies the response words were grouped into four conditions consisting 

of six sets of three words per set. These conditions were: Segments-homogeneous, 

Features-homogenous, Segments-heterogeneous and Features-heterogeneous. In 

Experiment 1 monosyllabic response words in Segments-homogeneous sets shared their 

initial segment (e.g., touw, teil, thee) whereas in Features-homogeneous sets the initial 

segment of the response words shared all but one of their phonemic features (e.g., thee, 

touw, deur – in this example „t‟ and „d‟ share all of their phonemic features except for 

voicing). Akin to Roelofs‟ (2004) research the heterogeneous sets were constructed by 

taking one response word from each corresponding homogeneous set.  During Roelofs 

(1999) Experiment 1 each of the three prompt-response word pairs comprising a set 

were tested four times in random order within a block.  The order with which these 

blocks were presented was again counterbalanced across participants. The same 

experimental procedure was used in Experiment 2. However, in this study disyllabic 

response words were employed that in Segments-homogenous sets shared their first 

syllable (e.g., degen, demo, deken) whereas in Features-homogeneous sets the shared 
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first syllable differed by one phonemic feature in the initial segment position (demo, 

degen, teken). 

 

The results from Experiments 1 and 2 were consistent across the two studies and 

demonstrated preparation benefits in Segments-homogeneous sets but not in Features-

homogeneous sets. However, Roelofs (1999) argued that because in the implicit-

priming paradigm participants had to memorise the response words his outcomes could 

have been due to effects associated with memory retrieval. Consequently, in 

Experiments 3 and 4 Roelofs (1999) employed the form preparation paradigm described 

above (Roelofs, 2004).  In Experiment 3 therefore, pictures that corresponded to the 

monosyllabic response words from Experiment 1 were used whereas in Experiment 4 

these pictures corresponded to the disyllabic response words from Experiment 2. In both 

studies pictures were displayed for naming in Segments-Homogeneous, Features-

homogeneous and Heterogeneous sets, with response latencies recorded. The findings 

from Experiments 3 and 4 were in line with the results from Experiments 1 and 2. Since 

in all of Roelofs‟ (1999) experiments only benefits from shared segment/s but not from 

shared phonemic features were observed, the author concluded that his data was 

consistent with processing at the segment-to-frame association stage of WEAVER and 

that at this particular stage phonemes are represented as abstract entities and are 

therefore not specified for their features. 

 

However, as discussed later in this chapter (section 1.4.1.3.), research conducted by 

Mulatti et al. (2006) and Ashby et al. (2009) all showed effects from phonemic feature 

similarity in word reading. These findings were thus contrary to both the working 

assumptions of WEAVER as well as Roelofs‟ (2004) notion of shared phonological 
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encoding mechanisms for both word reading and picture naming. Consequently, a 

simultaneous investigation into the role of phonemic features in both domains could 

provide important new information concerning how phonology is constructed for each 

task and thereby either support or invalidate Roelofs‟ (2004) assertion of shared 

mechanisms. The experimental work conducted within this thesis was thus designed to 

address two main research questions namely, what role do phonemic features play in 

both picture naming and word reading and do shared phonological encoding 

mechanisms exist for these two domains (Roelofs, 2004)?   

 

 

 

 

1.2. Outline  
 

 

The current chapter begins by explaining the motivation for conducting research into 

phonological encoding mechanisms for both word reading and picture naming within 

the same set of experiments. This is followed by a detailed description of the most 

influential and relevant models that have been developed to account for the processes 

involved in each domain. Chapter 2 introduces the masked priming paradigm along with 

key research that was conducted using this experimental procedure. It concludes that the 

masked priming paradigm is the most appropriate one to use to assess how phonology is 

constructed in each of these two tasks. Given that the experimental method employed 

was similar across the herein reported experiments, to avoid repetitions it is fully 

described in Chapter 3. The research findings from Experiments 1 to 3 that examined 

effects from phonemic feature manipulations in the onset position (i.e., the initial 

consonant) of primes and their corresponding targets are described and evaluated in 
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Chapter 4 whereas the outcomes from Experiments 4 to 6 in which manipulations 

related to the coda position (i.e., the final consonant) of these two stimuli are considered 

in Chapter 5. Chapter 6 reviews the findings from the final two experiments of this 

thesis (Experiments 7 and 8) that employed the masked sandwich priming paradigm. 

Finally, in Chapter 7 all the data from this experimental work is considered in great 

detail in relation to how encoding mechanisms operate separately for each task and also 

to how some of these processes might be common to both domains. This chapter 

concludes by suggesting possible lines of future enquires that could contribute further to 

the current understanding of phonological encoding mechanisms that operate during 

both word reading and picture naming.  

 

 

1.3. Models of general language production 

 

1.3.1. Segmental models 

1.3.1.1. Dell’s (1986) model 

 

According to Dell‟s (1986) spreading activation model, word production is a product of 

processes which take place at four hierarchically organised main levels, namely 

semantic, syntactic, morphological and phonological levels. At the semantic level which 

is not fully incorporated in the workings of the model, meaning is assigned to what is to 

be said. The syntactic level specifies to which syntactic category the utterance belongs; 

whether it is a noun, verb or an adjective. During the morphological level of processing, 

the utterance is divided into morphemes. A morpheme is the smallest unit of meaning in 

a word. For example, the word „boyish‟ consists of two morphemes; root - „boy‟ and 
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suffix - „ish‟. The phonological level, which „can be defined as the processes by which 

the speech sounds that compose a morpheme or string of morphemes are retrieved, 

ordered, and organized for articulation‟ (Dell, 1986, pg. 293), is further divided into 

syllable, syllabic constituent, phoneme and feature levels. 

 

During phonological encoding of a polysyllabic morpheme for example, activation 

spreads in parallel from the morpheme to its syllables and their constituents. At the 

beginning of the encoding process the first syllable is activated more strongly than any 

remaining syllables and is assigned current node status, with the phonemes of this 

syllable receiving (in parallel) more activation compared to the phonemes constituting 

other syllables. At the same time a syllable frame is created consisting of ordered slots 

corresponding to syllable onset (i.e., the initial consonant or consonant cluster), nucleus 

(i.e., the initial or middle vowel or vowel cluster) and coda (i.e., the final consonant or 

consonant cluster).  

 

The creation of a syllable frame with its slots for syllable onset, nucleus and coda has a 

direct implication on how, in Dell‟s (1986) model, phonemes at the phoneme level are 

represented. To account for their syllable position, phonemes that can occur in either the 

onset or coda position are represented twice. For example, the phoneme „t‟ is 

represented as „ton‟ for the onset and „tco‟ for the coda position. Thus, the former is 

activated when „top‟ is encoded whilst the latter is activated when „bat‟ is encoded. 

Further, the phoneme level also contains two null elements; one for the onset and one 

for the coda position. The onset null element is activated when a syllable has no initial 

consonant as in „an‟ whilst the coda null element is activated when a syllable has no 

final consonant as in „spa‟ (Dell, 1986). As such, in Dell‟s (1986) model „Onset stands 
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for either the initial null element, an initial consonant, or an initial consonant cluster; 

Nucleus stands for a vowel or diphthong; Coda is either the final null element, a final 

consonant, or a final consonant cluster‟ (Dell, 1986, pg. 296).  

 

Once phonemes receive activation from the syllable level they then activate (in parallel) 

their corresponding features (i.e., articulatory gestures such as for example, voiced, 

nasal, lateral, low, tense) at the feature level. After a while the activation levels of all 

phonemes are inspected with the most highly activated units selected to fill the slots 

within the frame of the current syllable. Once selected, the activation levels of these 

phonemes are set back to zero in what Dell (1986) referred to as post-selection negative 

feedback. The activation levels of the phonemes which were activated to a lesser extent 

by the remaining syllables of the polysyllabic morpheme and were therefore not 

selected to fill the current syllable frame decay over time. A new syllable frame is then 

created with the next syllable assigned current node status. The process continues until 

all the syllables have been encoded to form the completed phonological representation. 

As such, according to the model proposed by Dell (1986), each segment comprising a 

syllable is activated and then selected in parallel whilst each syllable comprising a 

morpheme is activated and then selected in a strict rightward serial sequence. 

 

Further, there are two main working assumptions incorporated in Dell‟s (1986) model. 

The first assumption postulates that at each level a frame, representing the node marked 

as current at the higher level, is constructed into which only the most highly activated 

nodes are inserted. The second assumption relates to the issue of activation. As argued 

by Dell (1986), during the word production process activation spreads from the higher 

levels to the lower levels and back up again. This bi-directional spreading activation 
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means that activation at each level is constantly influenced by the activation at both the 

level directly above and the level directly below it.   

 

The architecture of Dell‟s (1986) model and its activation parameters (spreading and 

decay rates) were specifically designed to account for speech error data. A speech error 

occurs when instead of the intended utterance an unintended utterance is produced. For 

example, whilst intending to say „barn door‟ a speaker may say „darn bore‟. Since the 

initial phonemes of the two words switched places, this error can be classified as a 

phoneme exchange error. As argued by Dell (1986), the occurrence of speech errors 

such as a phoneme exchange error that in itself reflects the highly interactive nature of 

the language production process, can successfully be explained with reference to his 

model.  

 

In Dell‟s (1986) model, during the production of a two word sequence (e.g., barn door) 

the morphemes of both words are activated. Due to the model‟s serial, rightward 

manner of between utterance processing, the morpheme of the word „barn‟ is assigned 

current node status whilst the morpheme of the second word (door) receives 

„anticipatory activation‟ (Dell, 1986, pg. 296). Next, activation from both morphemes 

spreads to the syllable level. Since both morphemes are monosyllabic, the syllable 

„barn‟ is assigned current node status and its phonemes receive more activation than the 

phonemes of the syllable „door‟. However, as the phonemes of both syllables are 

activated at the same time (albeit to a lesser extent) and they in turn activate their 

corresponding features which then feedback activation to the phoneme level, there is a 

lot of „noise‟ in the system. Due to this noise, the activation level of some phonemes is 

altered. Consequently, during the assignment of phonemes into their positions within 
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the first syllable, the initial phoneme of the second syllable (d) is selected instead of „b‟ 

and is inserted into the onset position of the first syllable resulting in the production of 

the word „darn‟ instead of „barn‟. Next, the activation levels of the selected phonemes 

are set back to zero. However, as the phoneme „b‟ was not selected it remains active. 

Therefore, it naturally fills the missing onset position of the second syllable.     

 

Further, Dell‟s (1986) spreading activation model can also provide a feasible 

explanation for the occurrence of feature exchange errors such as for example, „glear 

plue‟ for „clear blue‟ (Dell, 1986). In this example, the featural characteristic (voicing) 

of the initial phoneme of the second utterance (b - voiced) affected the featural 

characteristic of the initial phoneme of the first utterance (c - voiceless) and vice versa. 

This resulted in the selection of the voiced phoneme „g‟ instead of the voiceless „c‟ in 

the first word and also the selection of the voiceless „p‟ in place of the voiced „b‟ in the 

second word. As such, feature exchange errors are the product of feedback activation 

from the feature to the phoneme level (Dell, 1986) and can be explained as follows.  

 

During the phoneme selection process (as described in the earlier example) activation 

from both syllables (clear and blue) spreads to the phoneme and then to the feature 

level. The activation from the initial phoneme „c‟ therefore, activates its corresponding 

features. Since „c‟ and „g‟ share all their features but voicing, feedback from the feature 

level not only supports the activation of the initial phoneme „c‟ but also results in the 

activation of the initial phoneme „g‟. At the same time, the initial phoneme „b‟ of the 

second syllable activates its corresponding features one of which is „voiced‟. As „g‟ is 

also voiced, feedback from the voiced feature increases the activation level of this 

phoneme. Consequently, „g‟ is selected instead of „c‟ to fill in the initial position within 
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the first syllable. Further, reverse logic can be employed to explain the selection of the 

voiceless phoneme „p‟ in place of the voiced „b‟ in the initial position of the second 

syllable. In this case, feedback from the features of the phoneme „b‟ activates the 

phoneme „p‟ which also receives activation from the „voiceless‟ feature of the initial 

phoneme „c‟ from the first syllable resulting in the production of the word „plue‟ instead 

of „blue‟. Put together, during phonological encoding of a two word sequence, feedback 

from the feature to the phoneme level can result in the production of „glear plue‟ in 

place of „clear blue‟.  

 

Even though Dell‟s (1986) model was designed to account for speech errors rather than 

reaction time data, the results from one classic study undertaken by Meyer (1990) are 

relevant to the discussion since it was specifically conducted to test whether, as 

suggested by the model, phonological encoding of successive syllables of an utterance 

occurs in a serial, rightward manner. In her research, Meyer (1990) ran six experiments 

in Dutch. In all experiments she employed an implicit-priming paradigm in which 

participants had to learn word pairs such as touw-kabel (rope-cable), woning-kamer 

(house-room) and peddel-kano (paddle-canoe). On presentation of the first word in a 

pair participants were required to say the second word, with naming latency (i.e. the 

elapse of time between prompt onset and speech onset) recorded. In Experiments 1 to 4 

there were five sets of five word pairs in which disyllabic response words were related 

in form (homogeneous sets) and five sets of five word pairs in which disyllabic 

response words were unrelated in form (heterogeneous sets). The heterogeneous sets 

were created by taking one word pair from each of the five homogeneous sets. In 

homogeneous sets in Experiment 1, response words shared the same stressed first 

syllable (e.g., kabel, kamer, kano, kater, kalief) whilst in Experiment 2 the unstressed 
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final syllable was shared (e.g., salto, veto, foto, conto, auto). In Experiment 3 response 

words in homogeneous sets shared their unstressed first syllable and in Experiment 4 

they shared their stressed final syllable. In Experiments 5 two main types of 

homogeneous sets, each with three sub-sets of three word pairs were created.  In the 

first set (Type 1) tri-syllabic response words shared the same first syllable whereas in 

the second set (Type 2) they shared the first and second syllable. In both sets, the stress 

pattern was on the final (third) syllable. Heterogeneous sets for Type 1 and Type 2 sets 

were created in the same way as in the earlier experiments. Experiment 6 was just a 

repetition of Experiment 5 but with new stimulus choices.  

 

Meyer (1990) found that independent of word stress pattern naming latencies for 

homogeneous sets sharing the first syllable were shorter than naming latencies for 

heterogeneous sets (Experiments 1,3,5 and 6).  However, latencies were essentially the 

same for homogeneous and heterogeneous sets in Experiments 2 and 4 suggesting that a 

shared final syllable yields no benefit if the initial syllable is not shared. Further, the 

results from Experiments 5 and 6 showed that compared to Type 1 sets in which 

response words shared the same first syllable latencies were even shorter when both the 

first and second syllables were shared (Type 2 sets). This facilitation effect in begin-

homogeneous sets became known as the preparation benefit. 

 

Based on these findings, Meyer (1990) concluded that as suggested by Dell‟s (1986) 

spreading activation model, phonological encoding must occur along a rightward, serial 

path, encoding one syllable at the time until the word form is complete. However, in 

Dell‟s (1986) model once a syllable frame is filled, the activation levels of the current 

syllable and the selected corresponding phonemes are set back to zero. Also, in this 



 14 

model each syllable of an utterance is encoded at „a constant time span‟ (Meyer, 1990, 

pg. 527). Following these principles therefore, Meyer (1990) argued that no facilitation 

should be observed when words with the same first syllable/syllables are spoken in 

quick succession. Nonetheless, the above results can be accounted for by the WEAVER 

(Word-form Encoding by Activation and VERification) computational model of spoken 

word production (Levelt, Roelofs & Meyer, 1999; Roelofs 1992, 1996b, 1997a, 1997b).   

 

 

1.3.1.2. WEAVER (Levelt et al., 1999; Roelofs 1992, 1996b, 1997a, 1997b) model 

 

 

Akin to Dell‟s (1986) spreading activation model, in WEAVER phonemes are 

represented as abstract entities from which features are activated at a later level/stage. 

According to WEAVER, language production occurs in six stages. These stages are: 

conceptual preparation, lexical selection, morphological encoding, phonological 

encoding, phonetic encoding and articulation. When presented with an object for 

naming a speaker first needs to identify what the object is so that the appropriate lexical 

concept can be activated (conceptual preparation). This lexical concept is then used to 

select the corresponding lemma (lexical selection). „A lemma is a memory 

representation of the syntactic properties of a word‟ (Roelofs, 1997a, pg. 256).  Thus, a 

lemma specifies whether a word is a noun, a verb or an adjective. During morphological 

encoding the selected lemma activates its morpheme/s. At the phonological encoding 

stage that follows, phonemic segments corresponding to a morpheme along with the 

morpheme‟s metrical structure are then activated in parallel. A morpheme‟s metrical 

structure refers to its number of syllables and the stress pattern across the morpheme. It 



 15 

is important to highlight at this point that, contrary to Dell‟s (1986) model in which 

phonemes are specified for their syllable position, in WEAVER the activated phonemic 

segments are assigned their place within an activated metrical structure based on their 

position in the morpheme. For example, the morpheme „pop‟ specifies that the activated 

phonemic segment „p‟ should be assigned to the first and then to the third position of 

the metrical structure. As such, in WEAVER each phonemic segment is not specified 

for its syllable position and thus, is represented only once (Damian & Dumay, 2009). 

 

Further, in WEAVER, rather than being stored in memory (as in Dell‟s, 1986, model) a 

target word‟s syllable structure is computed on-line (during phonological encoding) by 

associating a morpheme‟s segments with the morpheme‟s metrical structure in what is 

referred to as the segment-to-frame association process. During this process, segments 

are assigned their syllable position according to the syllabification rules of the language 

concerned, in a rightward direction starting with the segment whose link is labeled first 

(Roelofs, 1997a). 

 

In WEAVER, as soon as the segment-to-frame association process of the first or only 

syllable of the target word has been completed, phonetic encoding begins. During 

phonetic encoding the outcome of the phonological encoding stage of processing, 

namely the abstract phonological syllable/word, is used to access its corresponding 

articulatory program in the mental syllabary (memory store for learned syllable 

programs). In agreement with other researchers (e.g., Levelt, 1989, 1992; Levelt & 

Wheeldon, 1994), Roelofs (1997a) postulated that the articulatory programs for high 

frequency syllables are stored in the mental syllabary whilst they are computed on-line 

for low frequency syllables. Further, at the same time the features of each and every 
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phoneme of the phonological syllable/word as well as the features corresponding to the 

whole phonological syllable/word are activated, with the former receiving activation in 

parallel across the word form (Roelofs, 1999). Thus, in WEAVER the inclusion of the 

phonetic encoding stage of processing allows for a context dependent realization of 

features. In the final (articulation) stage of spoken word production, the information 

provided by the articulatory programs (e.g. pitch, duration, and loudness) is used to 

drive muscular movement during articulation.  

 

Although WEAVER adopts the spreading activation assumptions of Dell (1986), 

contrary to Dell‟s (1986) model, in WEAVER there is only unidirectional, feed forward 

activation from the highest stages of processing to the lower ones. Also in WEAVER, at 

each stage of the language production process nodes are only selected if they achieve 

the required activation threshold in conjunction with complying with the production 

rules of the target nodes at the stage directly above. Thus, their activation is verified 

prior to selection. Finally, an important feature of WEAVER‟s segment-to-frame 

association process is that it incorporates a suspend-resume mechanism. As such, this 

process can begin even if only the initial segment/s of a morpheme is/are available. In 

this case the assignment of phonemes into their positions within a given metrical 

structure will be computed as far as possible and then suspended. When more 

information becomes available, the segment-to-frame association process can then 

continue from the point at which it was suspended (Roelofs, 1997a).  

 

This suspend-resume mechanism allows WEAVER to explain the preparation benefit 

found by Meyer (1990) in homogeneous sets in which the response words to initial 

prompt words shared their first syllable/ syllables. Consider a homogeneous response 
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set sharing the first syllable (e.g., kabel, kamer, kano, kater, kalief). Following the first 

trial the encoder can construct the first syllable, „ka‟, of the second response word, at 

which point the encoding process is suspended. On presentation of the second prompt 

„woning‟ the lemma for „kamer‟ is retrieved. At this point the encoder can resume 

processing and start work on the second syllable, resulting in faster processing times for 

the second and subsequent response words in the homogeneous set. However, for 

homogeneous sets sharing the last syllable, although the syllable is known the position 

of this syllable is to the right of the suspend point. On retrieval of the relevant lemma 

and then morpheme WEAVER dictates that the encoder has to start work on the initial 

segment of the word, which by definition for homogeneous sets sharing the last syllable 

would be different to a prior initial segment remaining within the system from the 

previous trial. Therefore, the segment-to-frame association process has to start from the 

beginning resulting, as found by Meyer (1990), in no preparation benefit in this 

condition. 

 

In addition, WEAVER‟s suspend-resume mechanism can also account for the results 

from Meyer‟s (1991) research. Using the same paradigm as in her previous work 

(Meyer, 1990), Meyer (1991) set out to establish whether there is a specific order in 

which syllable constituents are encoded. To accomplish this she conducted eight 

experiments. In Experiment 1 monosyllabic response words in homogeneous sets 

shared their onset whereas in Experiment 2 they shared their rhyme (nucleus and coda). 

In Experiments 3 and 4 disyllabic response words were employed in homogeneous sets 

which shared the same onset (Experiment 3) or the same rhyme (Experiment 4) of the 

first syllable. Further, in Experiments 5 and 6 there were two main types of 

homogeneous sets. In Type 1 disyllabic response words shared the same first syllable 
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and in Type 2 they shared the first syllable and also the onset of the second syllable. In 

Experiment 7 on the other hand, stimuli were ordered in three main types of 

homogenous sets, disyllabic response words in Type 1 shared their onset, in Type 2 they 

shared the same onset and nucleus whilst in Type 3 the entire first syllable was shared. 

In Experiment 8 Type 2 and Type 3 sets from Experiment 7 were employed. Finally, in 

all experiments heterogeneous sets for each corresponding homogeneous set were 

constructed in the same way as in Meyer (1990).  

 

The results from Meyer‟s (1991) research can be summarised as follows. Meyer (1991) 

demonstrated facilitation for both mono and disyllabic words in homogeneous sets in 

which response words shared the same word onset (Experiments 1, 3 and 7) with even 

more facilitation observed when disyllabic response words shared the same onset and 

nucleus of the first syllable (Experiment 7 and 8). Further, Experiments 5, 6, 7 and 8 

showed that facilitation increased relative to the amount of initial segments shared. 

Thus, words sharing the entire first syllable were named faster than words sharing just 

onset and nucleus with words sharing the first syllable and the onset of the second 

syllable named fastest of all. However, there was no benefit in both mono (Experiment 

2) and disyllabic (Experiment 4) response words from shared rhyme. Therefore, these 

results indicate that, as incorporated in WEAVER, the segment-to-frame association 

process of a word starts from the beginning of the word and takes place in a rightward, 

serial manner encoding one segment at the time and that this process can be suspended 

and resumed at any time.  
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Finally, even though WEAVER was not designed to account for speech error data, as 

argued by Roelofs (1997a) it can successfully do so.  However, in contrast to Dell‟s 

(1986) model in which speech errors such as the earlier described phoneme and feature 

exchange errors are due to „segment selection failure‟ (Roelofs, 1997a, pg. 270) during 

phonological encoding, in WEAVER these errors are explained with reference to the 

phonetic encoding stage of processing. Roelofs (1997a) suggested that phoneme 

exchange errors (e.g., „darn bore‟ for „barn door‟) are the consequence of an incorrect 

syllable program being accessed in the mental syllabary. According to Roelofs (1997a) 

this can occur because once phonological encoding of the word sequence „barn door‟ 

has been accomplished there is a simultaneous processing of both words at the phonetic 

encoding stage. Therefore, the phonemes of the phonological word <bɑːn> will activate 

the syllables <bɑːn>, <dɑːn> as well as other related syllables whereas, at the same 

time, the phonemes of the phonological word <dᴐː(r)> will activate the syllables 

<dᴐː(r)>, <bᴐː(r)> and also other related syllables. Since the syllables <dɑːn> and 

<dᴐː(r)> share the same onset phoneme this might result in the selection of a syllable 

program for <dɑːn> instead of <bɑːn>. The same logic can be applied to explain why 

the syllable program for <bᴐː(r)> might be selected in place of <dᴐː(r)>. In reference to 

feature exchange errors (e.g., „glear plue‟ for „clear blue‟), Roelofs (1997a) argued that 

these errors are due to shared features between phonemes and syllables as according to 

the modeller, in WEAVER „Both segments node and syllable program nodes point to 

their features (i.e. articulatory gestures)‟ (Roelofs, 1997a, pg. 271).  
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1.3.2. Feature based model 

 

1.3.2.1. Parallel Distributed Processing (PDP; Dell, Juliano & Govindjee, 1993) 

model 

 

 

In contrast to the models described above that advocate the need for abstract phonemes 

from which features are activated at a later level/stage of the encoding process, in Dell 

et al.‟s (1993) Parallel Distributed Processing (PDP) computational model phonemes 

are specified for their features.  According to this model, at the beginning of single word 

production a syntactically specified lexical representation/lemma of the word is 

activated in the input layer. Each segment of this representation/lemma then activates its 

corresponding features in the output layer with this activation occurring via the hidden 

units layer and taking place one segment at the time (starting from the first segment of 

the word). Importantly however, rather than corresponding to specific phonemes, these 

segments amount to a set of symbols that represent each lemma. Also, in the model the 

lexical representation/lemma is not specified for its number of syllables and stress 

pattern.   

 

Although PDP (Dell et al., 1993) is a language production model, in order to conduct its 

computational processing activation in the input layer is based on the word‟s 

orthography. As such, in the model each segment corresponding to a specific lemma is 

represented as one of the letters of the English alphabet. Therefore, hereafter these 

segments are referred to as letters. Further, each of the letters used in the words of 

Dell‟s et al. (1993) training vocabulary is represented by an arbitrary 5-digit binary 
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code. For example, the letter „d‟ might be coded [0,1,0,0,1] whilst the letter „i‟ might be 

coded [0,1,1,1,0]. Since Dell‟s et al. (1993) PDP model was only trained on three letter 

words, there are only fifteen units in the input layer; five for each of the three letters 

comprising a word. Therefore, using the above codes, at the beginning of the production 

of a single word such as „did‟ for example, the code [0,1,0,0,1,0,1,1,1,0,0,1,0,0,1] is 

activated in the input layer. Next, activation from the 5-digit code of the first letter (d) 

spreads to the hidden units layer. In Dell‟s et al. (1993) model the 20 units of that layer 

are computational representations of the brain‟s neurons, which as in humans are 

defined through practice/training. In addition, due to the fact that these units are 

connected to each other the activation level of each unit is affected by and also affects 

the activation levels of its neighbours. Contrary to both Dell‟s (1986) model and 

WEAVER in which information about a segment/phoneme is represented within a 

single unit, in the PDP model (Dell et al., 1993) information about each letter is 

distributed over all 20 units. Thus, on receiving activation from the first letter‟s code in 

the input layer, all hidden units participate in converting its value into the corresponding 

activation value (between 0 and 1) in the hidden units layer. The employment of a 

specific activation value (an activation threshold) instructs the network to pass 

activation to the higher layer only if that value has been generated. This again differs to 

Dell‟s (1986) model in which only the more highly activated units are selected however, 

on this point it is in line with WEAVER.  

 

Once the activation value for the first letter of the input layer has been calculated it is 

then used to activate (in parallel) its corresponding features at the output layer. The 

output layer consists of 18 units; one for each phonemic feature of English. Similar to 

the input layer, at this layer all 18 units are represented as either the number 0 or 1; 
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where 0 indicates that the unit is switched off whilst 1 shows that it is turned on. Thus, 

referring to a feature such as voicing for example, the voiced „d‟ is assigned the digit „1‟ 

whereas the voiceless „t‟ is represented as „0‟. Consequently, in Dell‟s et al. (1993) 

model, every letter of the input is represented by an 18-digit binary code of the output. 

Furthermore, following the activation of the first letter‟s features in the output layer 

encoding of the second letter begins. This process continues until all the letters of the 

input have been encoded. Importantly, the activation level of each unit in Dell‟s et al. 

(1993) PDP model is controlled by weighted connections between them. These 

weighted connections are „the system‟s knowledge about how the different types of 

information are related‟ (Plaut, McClelland, Seidenberg & Patterson, 1996, pg. 59) 

which has been acquired through training and can be modified by further experience.  

 

During the training stage, Dell and colleagues (1993) firstly exposed their model to a set 

of 50 three letter English words. At that point the connections‟ weights between the 

three layers were set to random values between -.1 and .1.  After all the words of the set 

were randomly presented to the system a segment by segment comparison of the input 

with the output for all the words in the training set was conducted. Due to the fact that 

Dell‟s et al. (1993) model is a model comprising three layers it was not possible to 

ascertain the precise proportion of the output error that was caused by the weighted 

connections activated by the input layer. In a two layer model in contrast, the direct link 

between the input and output layer means that discrepancies between these two layers 

can only be the consequence of the weights on their connections. However, in a three 

layer model such as Dell‟s et al. (1993) PDP model a third party namely, the hidden 

units layer, contributes to the discrepancies. As such, a back-propagation (backward 
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propagation of errors) learning algorithm was employed to adjust the weights of all 

connections between each layer.  

 

Back-propagation is basically the repeated adjustment of weights on the connections 

until a desired outcome is achieved (Rumelhart, Hinton & Williams, 1986). During this 

process the contribution to the output‟s error from the hidden units layer first needed to 

be calculated. This was done to establish what the correct output from the hidden units 

layer should have been and was achieved by calculating the sum of difference between 

the required and achieved output. Next, the resulting figure was squared and then 

divided in half. This calculation provided the estimate of the error rate at the hidden 

units layer which, when multiplied by both the sum of activation of all the hidden units 

and the required leaning rate, provided the value by which the weights on the 

connections between the hidden units and the output layers needed to be adjusted. Also, 

based on the hidden units layer‟s error estimate, adjustments to the weights on the 

connections between the hidden units and the input layers were made in the same way 

as above. Since in Dell‟s et al. (1993) model these two layers have an additional, 

permanently turned on connection which represented a bias/threshold, its weight was 

also adjusted according to the other weights. Next, the training session was repeated and 

again any errors at the output layer were back-propagated to the system as described 

above. This training-reset (learning by practice) process continued until the required 

output for each input was achieved. When the modelers were satisfied with the system‟s 

performance the weighted connections were sealed and the model was ready to be 

evaluated using the same as well as different inputs.  
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Finally, in Dell‟s et al. (1993) model there are two additional working units; internal 

and external feedback units. The reason for including these units can best be explained 

with reference to the repeated segments example of the word „did‟ provided by Dell et 

al. (1993). As argued by Dell and colleagues (1993), once the features of the first 

segment „d‟ of the word „did‟ are activated at the output layer its activation value is then 

copied to the external feedback unit whilst at the same time the activation value of the 

hidden units layer is copied to the internal feedback unit. Thus, these two feedback units 

serve as buffers for their corresponding layers. As soon as the copying process is 

completed feedback occurs from both the external and the internal unit to the hidden 

units layer.  The feedback from the external unit informs the hidden units layer that the 

features for the segment „d‟ are selected. However, it does not indicate for which 

segment „d‟ (the initial or the final). Consequently, the hidden units layer does not know 

whether to continue with the encoding process or stop. The role of the feedback from 

the internal unit therefore, is to verify the position of the just encoded segment. In this 

example, feedback from the internal unit verifies that the just encoded segment „d‟ is the 

initial „d‟ and by so doing  instructs the hidden units layer to begin the encoding process 

of the second segment (i).  Importantly, in Dell‟s et al. (1993) model once the encoding 

process of an input has been completed, the activation levels of hidden units are set 

back to zero whilst the output level is set to the null segment. This information is then 

copied to the corresponding feedback units. As such, when a new input is presented to 

the model its processing is unaffected by the remaining activations of the just encoded 

input.  
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Akin to Dell‟s (1986) model, the primary purpose of Dell‟s et al. (1993) PDP model 

was to explain the occurrence of speech errors. However, since PDP (Dell et al., 1993) 

was only trained to produced single words it cannot be employed to generate simple 

phrases such as for example, „clear blue‟. Consequently, the model‟s (Dell et al., 1993) 

ability to generate the earlier mentioned phoneme and feature exchange errors cannot be 

assessed. Nonetheless, even if PDP (Dell et al., 1993) was modified to produce simple 

phrases its architecture and working assumptions could not account for those errors. The 

reason for this is as follows.  In Dell‟s et al. (1993) model an input is processed in a 

serial rightward manner starting from its first letter.  Also, the processing of a 

subsequent letter of the input can only begin when the processing of the prior letter has 

been fully completed. Therefore, any effect from a letter other than the one currently 

being processed is not possible and this is true for all the letters within a single input as 

well as the letters between two inputs comprising a simple phrase.  As such, due to its 

design the PDP (Dell et al., 1993) computational model cannot physically simulate 

either phoneme (e.g., „darn bore‟ for „barn door‟) or feature (e.g., „glear plue‟ for „clear 

blue‟) exchange errors.  

 

However, Dell‟s et al. (1993) model can successfully account for the activation of 

phonemic features corresponding to a letter that is different to the input‟s letter. In the 

model the occurrence of such errors can be explained in two ways. Firstly, the 

activation of the correct phonemic features might be affected by the model‟s recent 

activation/activations that may cause changes on the weights of its connections resulting 

in a consequential selection error. Secondly, if the letters share some of their phonemic 

features, their activation parameters are quite similar which makes it possible for the 

model to activate the incorrect phonemic features for the input's letter. For example, it is  
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possible for the PDP (Dell et al., 1993) model to activate the phonemic features 

corresponding to the letter „p‟ instead of „b‟ as these two letters share all but one of their 

phonemic features namely, voicing, In fact, based on the PDP (Dell et al., 1993) 

model‟s core design, these kinds of errors would be more likely to occur than errors in 

which the input‟s letters differed by more than one phonemic feature.   

 

Finally and as argued by the authors, by processing an input in a rightward serial 

manner and due to its ability to learn from recent experience the PDP (Dell et al., 1993) 

computational model can successfully simulate the preparation benefit found by Meyer 

(1990, 1991). According to Dell et al. (1993), the repeated activation of letter/s in 

homogeneous sets in which response words shared their initial letter/s would have 

caused changes on the weights of their connections. Thus, after naming the first 

response word of a homogeneous set the activation of the shared letters would have 

been faster during the naming of subsequent words.  However, since the model 

processes a given input starting from its first letter and then moves to its second letter 

and so on, any benefits from shared end letter/s of the response words as shown by 

Meyer‟s (1990, 1991) results would have been lost.  
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1.4. Word reading models 

 

1.4.1. Segmental models 

 

1.4.1.1. Dual Route Cascaded (DRC; Coltheart, Rastle, Perry, Longdon & Ziegler, 

2001) model 

 

One of the most frequently cited models in the word reading literature is the Dual Route 

Cascaded (DRC) computational model of visual word recognition and reading aloud 

proposed by Coltheart et al. (2001). This model is based on Coltheart‟s (1978) dual-

route framework of reading words aloud. Within the DRC‟s architecture there are three 

distinctive processing routes, namely the lexical semantic route, the lexical non-

semantic route and the non-lexical, Grapheme-To-Phoneme Convergence (GPC) route. 

However, since the lexical semantic route is not fully incorporated in the workings of 

the model, the following description is centred on the two remaining routes.  Also, 

hereafter, the lexical non-semantic route is simply referred to as the lexical route.  

 

When presented with a written word the DRC computational model firstly assesses the 

written input for visual features (e.g., if a letter has a vertical line and two semicircles to 

its right; as in the letter B). At this stage of processing there are 14 feature-present and 

14 corresponding feature-absent units for each of the eight input positions.  For a 

written word such as BELT for example, the DRC activates the feature-present units in 

each of the four input positions if the input physically resembles the specific feature-

present units. However, if the input is a physical mismatch with the feature-present 

units, the corresponding feature-absent units are activated. The remaining (empty) four 
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input positions activate all 14 feature-absent units in each position. As soon as 

activation at the visual feature level begins information cascades to the letter level and 

excites all the letters that resemble the activated feature units whilst inhibiting all the 

letters that do not. This excitatory/inhibitory effect of the visual feature level on the 

letter level continues until all the letter units of the input are activated. There are 27 

letter detectors at the letter level; one for each of the 26 letters of the English alphabet 

and a blank-letter detector which is activated if all 14 feature-absent units for a specific 

position are switched on. Within the DRC model, the feature-to-letter activation takes 

place in parallel across all letter positions and is shared for both the lexical and the non-

lexical routes. However, the output of the letter units level is processed separately yet 

simultaneously by both routes.  

 

During processing through the lexical route there is a bidirectional, excitatory and 

inhibitory activation between the letter level and the orthographic input lexicon. Each 

activated letter at the letter level excites all the words in the orthographic lexicon which 

contain that specific letter in that position and inhibit all the words that do not. As such, 

using the earlier example BELT, the letter B in the first position excites all the words 

which contain the letter B in the first position (e.g., BAG, BELT, BALL) and inhibits 

all the words that do not (e.g., GIRL, DAD, FAN). Importantly, in the DRC model there 

are 7,981 monosyllabic words (referred to as units) in the orthographic input lexicon.  

 

Further, once a word/unit is activated in the orthographic input lexicon this activation 

spreads (possibly also via the semantic system) to its corresponding word/unit in the 

phonological output lexicon. The nature of this activation is also bidirectional but only 

excitatory in fashion. Since many homophones (words which despite different spelling 
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and meaning are pronounced the same e.g., pear and pair) exist in the English language 

there are only 7,131 units in the phonological output lexicon. Next, the activated 

phonological unit activates the unit‟s phonemes in the phoneme system. The phoneme 

system consists of 44 units in each of the eight phoneme positions; one for each of the 

43 English phonemes and a blank phoneme. Similar to the blank letter unit, the blank 

phoneme unit is activated to fill in the empty spaces when an input is shorter than eight 

characters in length. Importantly, in the DRC model there is only a single phoneme 

system which is shared by both processing routes. Further, there is bidirectional, 

excitatory and inhibitory activation between the phonological output lexicon and the 

phoneme system. Finally, activation within each level of the lexical route occurs in 

parallel.  

 

Contrary to the lexical route, processing within the non-lexical route takes place in a 

serial rightward manner. Therefore, on receiving activation from the first letter of the 

letter level the grapheme-to-phoneme rule system compares the input to all its pre-

programmed set of rules (e.g., that the letter „y‟ at the beginning of a word corresponds 

to the phoneme /j/ whilst in the middle of a word it corresponds to the phoneme /ı/). 

When the appropriate rule has been found it is then employed in the activation of the 

relevant phoneme in the phoneme system. Once the first phoneme has been activated 

processing of the second letter of the input begins. This process continues until all the 

letters of the input are converted into their corresponding phonemes. Also, each letter of 

the letter level becomes available for encoding only after its activation level achieves 

the specified (17 cycles) threshold. Finally, in contrast to the lexical route there is only 

excitatory feed-forward activation between each level of the non-lexical route.  
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To summarise, in Coltheart et al.‟s (2001) DRC model the processing of an input by 

both the lexical as well as the non-lexical routes involves the direct mapping of the 

input‟s orthography/letters onto their corresponding phonemes. However, these 

phonemes are not specified for their phonemic features. Therefore, akin to Dell‟s (1986) 

and WEAVER models, DRC can be categorised as a segmental model.  Further, in 

Coltheart et al.‟s (2001) model the workings of the phoneme system are not fully 

defined. Although the authors suggested that this system might operate in a similar 

manner to the phonological encoding level/stage of Dell‟s (1986) and WEAVER 

models, they do not fully commit themselves to either of these models „... the 

phonological output of our model, which can be seen as a (highly simplified) version of 

certain speech-production models such as that of Dell (1986) and Levelt, Roelofs, and 

Meyer (1999)‟ (Coltheart et al., 2001, pg. 206).  As highlighted in this chapter there are 

major differences between both models in regards to the phonological encoding 

level/stage of processing. Firstly, in Dell‟s (1986) model phonemes are specified for 

their syllable position and thus, phonemes which can occupy both the onset and coda 

positions within a syllable are represented as two distinct items. In contrast, each 

phoneme in WEAVER is represented only once and its syllable position is defined 

during the segment-to-frame association process. Secondly, in the former model, due to 

the bidirectional activation between the phoneme and the feature levels during 

phonological encoding, activated phonemic features directly affect the activation levels 

of their corresponding phonemes. However, in the latter model which is a feed-forward 

model, phonemic features are activated only after the phonological encoding process 

has been completed. Consequently, in WEAVER phonemic features do not affect this 

stage of processing.  As such, these differences in how the phonological encoding 
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process is accomplished by each model cannot coexist within the same system and thus 

Coltheart et al. (2001) will have to choose between one or the other. 

 

Furthermore, due to the simultaneous processing of an input from the letter units level 

by both the lexical and non-lexical routes which as discussed share the same phoneme 

system, any activation of phonemes at the phoneme system by one of the two routes can 

be affected by activation from the other route, thereby affecting the resulting speed of 

processing. Additionally, due to the parallel activation within each level of the lexical 

route, processing through that route is much faster than through the non-lexical route. 

This notion of faster processing through the lexical route is supported by the model‟s 

ability to generate the correct pronunciation of exception words (words whose 

pronunciation do not adhere to the general rules of the English language) such as „pint‟; 

pronounced as /paɪnt/ instead of /pɪnt/.  If however, the non-lexical route were faster, 

during the generation of the pronunciation of the word „pint‟ the most common 

grapheme-to-phoneme correspondence rule for the letter „i‟ in the second position 

would be activated. Therefore, the latter pronunciation would be generated to rhyme 

with the regular word „mint‟. This so called regularization error was actually found by 

Coltheart and colleagues (2001) when they switched off the lexical route and thus 

allowed the slower non-lexical route to exert its effect (Perry, Ziegler & Zorzi, 2007). 

Based on this, the authors concluded that the longer it takes to read a word the more its 

pronunciation is influenced by the non-lexical route. Consequently, they argued that in 

the DRC model high frequency words, which by their very nature are well known and 

therefore easily recognisable, along with irregular words are encoded in parallel by the 

lexical route whilst low frequency words are generated letter by letter via the grapheme-

to-phoneme rule system of the non-lexical route.  Also, according to Coltheart et al. 
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(2001), the employment of the grapheme-to-phoneme rule system in the non-lexical 

route allows the DRC model to produce the correct pronunciation of non-words 

(sequences of letters that may look like real words but have no meaning).    

 

Further support for the architecture and the working assumptions of Coltheart‟s et al. 

(2001) model was provided by Rastle and Coltheart‟s (1999b; Experiment 1) research in 

which the authors set out to establish whether the position of irregularity within a word 

would have an effect on the speed of its reading. The position of irregularity simply 

means that the spelling to sound discrepancy is either in the first (e.g., chief), the second 

(e.g., pint) or the third (e.g., glow) position of a word. There is an on-going debate in 

the word reading literature in regards to irregular words. Some researches (e.g., Plaut et 

al., 1996) argue that words can be irregular but consistent as well as irregular and 

inconsistent (also referred to as exceptional). This consistency/inconsistency dimension 

means that as long as the pronunciation of an irregular word is consistent (it rhymes) 

with the pronunciation of the majority of its orthographic neighbours (e.g., the irregular 

word „glow‟ and its orthographic neighbours  „blow‟, „grow‟, „flow‟, „know‟, „low‟, 

„mow‟, „row‟, „slow‟, „stow‟, „throw‟) it can be successfully generated via the 

grapheme-to-phoneme correspondence rules. However, if a word is irregular and 

inconsistent/exceptional, the majority or all of the word‟s orthographic neighbours have 

pronunciations different to that word (e.g., the irregular word „pint‟ and its orthographic 

neighbours „dint‟, „hint‟, „lint‟, „mint‟, „tint‟). Therefore, its correct pronunciation can 

only be memorised and then called upon during reading.  Consequently, the 

pronunciation of irregular but consistent words is accomplished differently to the 

pronunciation of irregular and inconsistent/exception words.   

 



 33 

Based on this debate, in their research Rastle and Coltheart (1999b; Experiment 1) set 

out to evaluate the position of the irregularity effect whilst controlling for consistency 

across the position of irregularity. Therefore, the authors composed three lists of 

monosyllabic words matched on consistency. All stimuli in list one comprised words in 

which the spelling to sound irregularity was in the first position of the words. In list 

two, the irregularity was in the second position and in list three it was in the third 

position. For their control conditions Rastle and Coltheart (1999b; Experiment 1) 

matched each irregular word in each list with a regular word of the same letter length, 

initial phoneme and frequency. Thus, for every target list there was a corresponding 

control list. Also, in the experiment one hundred and eighty-eight monosyllabic 

orthographically legal and pronounceable non-words were employed as fillers. During 

the actual experiment participants had to read all words and non-words displayed to 

them on a computer screen. The stimuli were presented one by one in a random order. 

Before the presentation of each stimulus, a fixation bracket was shown for 900ms. The 

analysis of participants‟ reaction times for the word stimuli revealed that compared to 

the corresponding control conditions the first (52ms) and second (9ms) position 

irregular words took longer to read than the third position irregular words (1ms). These 

results are consistent with DRC‟s working assumptions which postulate that at the 

phoneme level, phonemes activated by the lexical route compete with the phonemes 

activated by the non-lexical route. Since the former route operates in parallel whereas 

the latter activates phonemes serially starting from the first letter of the input, the effects 

of this competition are more apparent if the irregularity is in the first or second position 

of a word. As suggested by Rastle and Coltheart (1999b; Experiment 1), because of the 

bidirectional excitatory and inhibitory connections between the phonological output 

lexicon and the phoneme system, the activation of phonemes by the lexical route needs 
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time to develop. In the meantime, the first phoneme of the first position irregular word 

has been activated by the non-lexical route. However, since the non-lexical route 

activates phonemes via grapheme-to-phoneme correspondence rules, the activated 

phoneme for the first position irregular word, although consistent with its rules, is 

incorrect for the input. As such, the activated incorrect phoneme interferes with the 

activation of the correct phoneme produced by the lexical route resulting in delayed 

naming of the first position irregular words. Furthermore, when the irregularity is in the 

second position of a word, the activation of the corresponding phonemes by the lexical 

route has more time to develop and therefore, the incorrect phoneme activated by the 

non-lexical route has less effect on the activation of phonemes by the former route. By 

extension, by the time the non-lexical route has the chance to process the third phoneme 

of an input there is already an established activation of phonemes by the lexical route. 

Consequently, the third position irregularity in a word has no effect on the speed of its 

reading; as found by Rastle and Coltheart (1999b; Experiment 1). As such, the results 

from Rastle and Coltheart‟s (1999b; Experiment 1) research provide strong support for 

the DRC model‟s serial rightward manner of processing an input by the non-lexical 

route. 

 

Although the DRC model (Coltheart et al., 2001) can account for most of the data from 

normal and impaired reading it cannot explain the consistency effect found by Jared 

(2002; Experiment 1). In her research Jared (2002; Experiment 1) set out to evaluate 

whether the effects of regularity were dependent on words‟ consistency. In so doing 

Jared (2002; Experiment 1) employed low-frequency exception (irregular and 

inconsistent) words and low-frequency regular-inconsistent words as targets. She 

divided each target type into two sets. Set one consisted of exception words with a low 
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summed frequency of friends (words which have similar spelling and their 

pronunciation rhyme with the exception word) and a high summed frequency of 

enemies (words which despite similar spelling are pronounced differently to the 

exception word). In set two on the other hand, exception words had a high summed 

frequency of friends and a low summed frequency of enemies. The regular-inconsistent 

words were divided in the same way as the exception words. Next, Jared (2002; 

Experiment 1) composed four corresponding control sets by matching (on number of 

variables; e.g., word length, word frequency, number of friends, number of enemies) 

each word from each of the four target sets with a regular-consistent word. All stimuli 

were then displayed one by one in a random order on a computer screen. Participants 

were required to read each word as quickly and as accurately as possible with response 

time recorded.  

 

The results showed that compared to the corresponding control sets of regular-

consistent words, words were read slower in all four target sets.  Further, this effect for 

both target types was largest of all when the targets had a low summed frequency of 

friends and a high summed frequency of enemies. Since all targets were inconsistent 

words which varied on their regularity (exception words/irregular and inconsistent 

verses regular-inconsistent words), Jared (2002; Experiment 1) concluded that rather 

than being driven by word regularity, this effect was due to body-friends consistency. 

This effect thus became known as the consistency effect. Consequently, Jared (2002; 

Experiment 1) argued that because words in the DRC (Coltheart et al., 2001) model are 

read in the same manner independent of their friends-to-enemies ratio, this model would 

have difficulty accounting for these findings. In fact, a DRC computer simulation of this 

data conducted by Jared (2002) confirmed this argument as the DRC (Coltheart et al., 
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2001) model failed to replicate Jared‟s (2002; Experiment 1) findings. However, a 

model whose architecture and working assumptions can fully account for these results is 

the Connectionist Dual Processing (CDP+; Perry, Ziegler & Zorzi, 2007) computational 

model. 

 

 

 

1.4.1.2. Connectionist Dual Processing (CDP+; Perry, Ziegler & Zorzi, 2007) model 

 

 

Akin to the DRC (Coltheart et al., 2001) model, in the CDP+ computational model 

(Perry et al., 2007) word reading occurs via both lexical and non-lexical routes. Further, 

in CDP+ (Perry et al., 2007) the feature and letter levels are organised in exactly the 

same way as in the DRC model (Coltheart et al., 20001) and are again shared by both 

routes. Therefore, on the presentation of a written input the corresponding feature 

present or feature absent units are activated in parallel for each letter of the input at the 

feature detectors level. As in DRC (Coltheart et al., 2001), all 14 feature absent units are 

switched on in every empty position of an input shorter than eight characters in length. 

Then, activation spreads to the letter nodes level where the appropriate letters of the 

input are activated along with null letter units which again fill the empty spaces of a less 

than eight letter input. Next and consistent with the DRC model (Coltheart et al., 2001), 

during processing via the lexical route activated letters at the letter units level activate in 

turn all the words at the orthographic lexicon that share the activated letters in these 

specific positions and inhibit all the words that do not.  Once a word in the orthographic 

lexicon has been activated it is then used to activate its corresponding entry in the 
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phonological lexicon. However, in contrast to DRC (Coltheart et al., 2001) there are 

only excitatory connections between the orthographic and phonological lexicons. Also, 

unlike in the former model, in CDP+ (Perry et al., 2007) the phonological lexicon does 

not include null characters that in DRC (Coltheart et al., 2001) are activated when 

words of less than eight characters are encoded. After the activation of the correct 

phonological word in the phonological lexicon, this word is then employed to activate 

its corresponding phonemes at the phoneme nodes level; also referred to by the authors 

as the phonological output buffer. In line with the DRC model (Coltheart et al., 2001), 

during processing via the lexical route in CDP+ (Perry et al., 2007) there is a parallel 

activation of units within each level and there are bidirectional connections between 

each level. Finally, to account for the contribution of semantics, in Perry‟s et al. (2007) 

model the activation of a phonological word at the phonological lexicon level of the 

lexical route is weighted by the word‟s phonological frequency. As such, within the 

lexical route of CDP+ (Perry et al., 2007) higher frequency phonological words are 

activated faster than lower frequency phonological words. 

 

Furthermore, major differences exist between the DRC (Coltheart et al., 2001) and the 

CDP+ (Perry et al., 2007) models in regards to the processing of an input by the non-

lexical route. Following the activation of an input‟s letters at the letter nodes level, 

rather than a letter by letter conversion of the input into its corresponding graphemes 

processing at the grapheme nodes level (also referred to as the graphemic buffer) of the 

non-lexical route in the CDP+ (Perry et al., 2007) model involves the mapping of letters 

directly onto their corresponding complex graphemes. These graphemes can be one to 

four letters long (e.g., p, ph, str, ough). As argued by the authors, such mapping allows 

for a context specific activation of each letter of the input. In addition, at the grapheme 
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nodes level/graphemic buffer each grapheme is specified for its syllable constituents. 

Consequently, in the graphemic buffer the first three positions are assigned to the 

input‟s onset, the fourth position relates to its vowel whereas the remaining four 

positions correspond to the input‟s coda. If a given input consists of a single letter 

grapheme in the onset and/or coda positions, any unfilled spaces are left empty. 

Therefore, at the graphemic buffer a word such as „belt‟ would be coded as „b-*-*-e-l-t-

*-*‟; where asterisks represent empty spaces. In addition, in each of the eight graphemic 

buffer positions there are 96 grapheme nodes. These consist of 26 nodes corresponding 

to each letter of the English alphabet and 70 complex grapheme nodes which are further 

divided into 10 onset, 41 vowel and 19 coda grapheme nodes. Therefore, in total there 

are 768 nodes in the graphemic buffer (i.e., 96 x 8). Although in theory all nodes in the 

graphemic buffer can become activated at every position (e.g., coda node in the onset 

position), in practice and due to the nature of the English language only the nodes 

corresponding to the specific syllable constituent are activated (e.g., coda node in the 

coda position, onset node in the onset position). As suggested by Perry and colleagues 

(2007), using all 96 grapheme nodes in every position was only done for simplicity and 

has no implications for the workings of the model.  

 

Further, contrary to DRC (Coltheart et al., 2001) in which grapheme to phoneme 

matching is achieved by selecting the appropriate conversion rule, in the CDP+ (Perry 

et al., 2007) model such matching is accomplished via a two-layer assembly (TLA) 

network. Except for the absence of the hidden units layer this network operates in a 

similar manner to Dell et al.‟s (1993) three layer model.  Therefore, in the TLA network 

there are direct connections between input and output nodes and each input node is 

connected to all of the output nodes. In line with Dell et al.‟s (1993) model the 
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relationships between input and output nodes are learned through training and are 

expressed by changes in the weights/strengths of their connections.   

 

Furthermore, in CDP+ (Perry et al., 2007) the TLA network‟s input nodes are the fully 

activated graphemic representations at the graphemic buffer level. Therefore, prior to 

the processing of an input by the TLA network all the letters activated by the letter 

nodes level have to be parsed (organised into their syllable constituents) and converted 

into their corresponding graphemes at the graphemic buffer level. This graphemic 

parsing starts as soon as the letter in the first position has reached its activation 

threshold and occurs letter by letter in a left to right manner over a three letter 

attentional window span. As such, using the example of the word „match‟ provided by 

Perry et al. (2007), at the beginning of the graphemic parsing process the first three 

letters activate the graphemes „mat‟. Then, the window span moves to the letters „atc‟ 

resulting in the incorrect activation of the grapheme „c‟ in the second position of the 

coda. However, once the window span moves to the letters „tch‟ the incorrect activation 

of the grapheme „c‟ would be revised and the correct complex graphemes „ch‟ becomes 

activated. Thus, at the end of the graphemic parsing of the word „match‟, the 

„m**atch*‟ representation would be fully activated at the graphemic buffer level. As 

suggested by Perry and colleagues (2007), this revision process is possible because the 

incorrect grapheme „c‟ is still in the window span when the grapheme „h‟ becomes 

available (tch).  

 

Following the full activation of the relevant graphemes at the graphemic buffer level, 

activation from each grapheme spreads in parallel via the weighted connections of the 

TLA network to the phonological output buffer level. The phonological output buffer is 



 40 

represented by 43 phoneme nodes corresponding to the 96 grapheme nodes in each of 

the eight positions. Therefore, in total the phonological output buffer consists of 344 

phoneme nodes (i.e., 43 x 8). Also, the phonological output buffer is organised in the 

same way as the graphemic buffer and thus the first three positions are assigned to the 

input‟s onset, the fourth to the vowel and the last four positions relate to the input‟s 

coda. As such, in CDP+ (Perry et al., 2007) grapheme to phoneme conversion of an 

input through the non-lexical route adheres to specific syllable constituents. Thus, any 

knowledge acquired by the TLA network is syllable position specific and cannot be 

generalised across syllable constituents. In addition, the phonological output buffer in 

this model is shared by both the lexical and non-lexical routes which means that the 

output from the lexical route is also specified for its syllable constituents. 

 

Furthermore, akin to Dell et al.‟s (1993) model the CDP+‟s (Perry et al., 2007) TLA 

network had to be pre-trained prior to being tested on any data. Since in TLA there are 

direct connections between inputs and outputs and thus any differences between these 

two could only be due to the weights on their connections, no back-propagation was 

required to make the necessary adjustments. Therefore, during the TLA‟s training a 

simple gradient descent technique known as the delta rule (Widrow & Hoff, 1960) was 

applied to calculate the network‟s error rate which was then employed to modify the 

weights on its connections. As such, following delta rule (Widrow & Hoff, 1960) 

principles, Perry and colleagues (2007) first established the error rate for each output by 

calculating the sum of difference between the required and achieved output. Then they 

multiplied this sum/error rate by the activation level of the input corresponding to that 

output. Finally, they used the total from the latter calculation and multiplied it by a 

learning rate. Importantly, as it was essential for the TLA network to learn the 
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relationships between inputs and outputs rather than have them imposed by the 

modeller, the learning rate was set at a very low level (i.e., 0.05).  This final total was 

used to change the weight on that connection. The error calculation and weight 

adjustment process was then repeated until the TLA network learned to generate the 

correct output for each input. 

 

To summarise, akin to DRC (Coltheart et al., 2001) therefore, CDP+ (Perry et al., 2007) 

is a dual processing model of reading in which there is a cascaded activation of each 

level of the lexical route and a threshold activation of each level of the non-lexical 

route. In addition, as with the former model CDP+ (Perry et al., 2007) is primarily 

concerned with the direct mapping of orthography onto abstract phonemes and thus in 

this model phonemes are also not specified for their phonemic features. However, in 

contrast to Coltheart et al.‟s (2001) model, the phonemic output in Perry et al.‟s (2007) 

model is defined for its syllable constituents.  Finally, in line with the DRC (Coltheart et 

al., 2001) model, in CDP+ (Perry et. al., 2007) the processing of a given input by the 

lexical route occurs in parallel across its word form whereas the processing of an input 

by the non-lexical route is conducted in a serial rightward manner.  

 

As mentioned earlier the architecture and working assumptions of the CDP+ (Perry et 

al., 2007) model can fully account for the outcomes of Jared‟s (2002; Experiment 1) 

research in which the author found that inconsistent regular and irregular words were 

named faster when they had a higher friends-to-enemies ratio (body-friends) compared 

to a higher enemies-to-friends ratio (body-enemies). In fact, a CDP+ computer 

simulation in which the same stimuli as those employed in Jared‟s (2002; Experiment 1) 

study were used showed an almost identical pattern of results. In contrast to DRC 
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(Coltheart et al., 2001), CDP+ (Perry et al., 2007) was able to successfully replicate 

Jared‟s (2002; Experiment 1) findings for the following reasons.  Unlike in the former 

model, in CDP+ (Perry et al., 2007) the mapping of graphemes onto their corresponding 

phonemes by the non-lexical route is achieved via the TLA network. This network‟s 

knowledge is acquired by learning to recognise similar patterns through exposure to 

inputs. Therefore, the more the TLA network encounters a specific pattern the stronger 

its weighted connection to the corresponding output and thus the sooner it can make the 

correct match. Further, since in CDP+ (Perry et al., 2007) low frequency regular and 

irregular words are processed via the non-lexical route they are both subjected to the 

same treatment by the TLA network.  Consequently, in the CDP+ (Perry et al., 2007) 

model the consistency of the body-friends effect is primary driven by a similar pattern 

being repeated and is independent of whether the word is regular or irregular.  

 

Furthermore, akin to DRC (Coltheart et al., 2001), the CDP+ (Perry et al., 2007) model 

can successfully simulate the position of irregularity effect found by Rastle and 

Coltheart (1999b). However, contrary to Rastle and Coltheart (1999b), Perry and 

colleagues (2007) argued that instead of being due to the serial rightward processing 

manner of DRC‟s (Coltheart et al., 2001) non-lexical route, this effect is likely caused 

by „a grapheme consistency confound‟ (Perry et al., 2007, pg. 291). Put simply, in Perry 

et al.‟s (2007) view the first position irregular words employed by Rastle and Coltheart 

(1999b) might have had on average several more body-enemies (words which in spite of 

similar spelling are pronounced differently) than friends (words which rhyme) 

compared to the second position irregular words. Further, the ratio of body friends-to-

enemies in the third position irregular words might have been essentially equal hence, 

there was no position of irregularity effect found in Rastle and Coltheart‟s (1999b) 
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research for these stimuli. Finally, as with DRC (Coltheart et al., 2001), the CDP+ 

(Perry et al., 2007) model is able to successfully simulate most of the data on normal 

and impaired reading. Importantly, it can read pronounceable non-words almost as well 

as human participants. 

 

 

1.4.1.3. Parallel Distributed Processing (PDP; Plaut, McClelland, Seidenberg & 

Patterson, 1996) model 

 

Another model that can successfully account for all the above described data is the 

Parallel Distributed Processing (PDP) model of word reading designed by Plaut et al. 

(1996). Akin to Dell et al.‟s (1993) general language production PDP model, this model 

consists of three main processing levels, namely the orthographic units level, the hidden 

units level and the phonological units level.  However, in contrast to Dell et al.‟s (1993) 

model and in line with Perry et al.‟s (2007) TLA network, in Plaut et al.‟s (1996) PDP 

an input‟s letters/graphemes at the orthographic units level are specified for their 

syllable constituents (onset, vowel and coda). Also, contrary to both of these models, at 

the orthographic units level an input‟s letters/phonemes are processed in parallel. 

Further, instead of just a single letter/grapheme based representation of an input at the 

orthographic units level (as in Dell et al.‟s, 1993), in Plaut et al.‟s (1996) model 

orthographic units are typified as both single (e.g., p, h, t, c, h) and complex graphemes 

(e.g., ph, tch). However, contrary to the TLA network (Perry et al., 2007), each syllable 

position at the input level in this model is only represented by either a single or complex 

graphemes which correspond to that specific syllable constituent. Therefore, there are 

only single consonants and consonant clusters corresponding to onsets in the onset 
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position, vowels and vowel clusters corresponding to vowels in the vowel position and 

finally consonants and consonant clusters corresponding to codas in the coda position.  

As a result, there are 105 grapheme units (30 onsets, 27 vowels and 48 codas) at the 

input layer in Plaut et al.‟s (1996) model. 

 

Further, at the beginning of the encoding process the input‟s letters/graphemes first need 

to be parsed in to their syllable constituents. This is achieved by identifying the input‟s 

vowel or vowel cluster and then assigning the letters/graphemes to its left the onset 

position and the letters/graphemes to its right coda position. Consequently, this vowel 

driven graphemic parsing process eliminates the need for assigning a specific number of 

positions to each syllable constituent and thus there are no empty spaces when shorter 

words are encoded. Therefore, in contrast to the TLA network (Perry et al., 2007) in 

which each input is processed as an eight letter/grapheme string regardless of its length, 

yet in keeping with Dell et al.‟s (1993) PDP model, the encoding of each input in Plaut 

et al.‟s (1996) PDP model is based on the input‟s actual length. Once parsed, each 

input‟s grapheme/grapheme cluster activates its corresponding grapheme/grapheme 

cluster unit within the units related to its syllable position by changing its current 

activation value from zero to one. Next, activation from each activated grapheme unit 

spreads to all 100 hidden units at the hidden units level.  In the step that follows, 

activation spreads from all the hidden units to all 61 phonemes units which themselves 

are not specified for their phonemic features. Akin to the grapheme units, these units are 

also defined for their syllable position and are represented according to their syllable 

constituents. As a result, in Plaut et al.‟s (1996) model at the phoneme level there are 23 

onset phonemes corresponding to the onset position, 14 vowel phonemes corresponding 

to the vowel position and 24 coda phonemes corresponding to the coda position. Also 
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and in common with Dell et al.‟s (1993) model, there is an additional connection 

between the hidden and phoneme units that is always in the switched on position and 

thus serves as bias. Finally, similar to the PDP (Dell et al., 1993) general language 

production model, the PDP (Plaut et al., 1996) word reading model was pre-trained on 

monosyllabic words using a back-propagation learning algorithm prior to actual testing. 

However, the model‟s training vocabulary was much larger to that of Dell et al.‟s 

(1993) model; 2,897 verses 50 words.   

 

To summarise, the PDP (Plaut et al., 1996) reading model is a single route feed-forward 

processing model in which a given letter string is encoded in parallel. Since in the 

model the encoding of an input‟s letters/graphemes is conducted in a syllable position 

specific manner, as in CDP+ (Perry et al., 2007) knowledge acquired by the network in 

relation to a specific syllable position can only be applied to that particular syllable 

position. Further, akin to both the DRC (Coltheart et al., 2001) and the CDP+ (Perry et 

al., 2007) models, Plaut and colleagues‟ (1996) model is primarily concerned with the 

direct mapping of letters/graphemes onto their corresponding abstract phonemes. 

Therefore, this model can also be categorised as a segmental model.  However, contrary 

to the general language production PDP (Dell et al., 19993) model the input‟s 

letters/graphemes in Plaut et al.‟s (1996) PDP model are specified for their syllable 

constituents and are therefore encoded according to their syllable position.  

 

As previously mentioned, Plaut and colleagues‟ (1996) PDP model can successfully 

simulate the results from much of the reading data including both the position of 

irregularity (Rastle & Coltheart, 1999b) and consistency effects (Jared, 2002). As 

argued by Plaut et al. (1996) and Perry et al. (2007), rather than being caused by the 
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position within which the irregularity occurs, the former effect is due to the fact that the 

first position irregular words have more body-enemies then body-friends whereas there 

is a smaller difference between these two in the second position irregular words. 

Finally, there is no difference in the body friends-to-enemies ratio in the third position 

irregular words. Consequently, this effect is purely due to the word‟s body consistency 

which is why it can be successfully replicated by a parallel processing model sensitive 

to a word‟s body consistency such as PDP (Plaut et al., 1996).   Regarding the 

consistency effect found in Jared‟s (2002) research, as with the TLA network (Perry et 

al., 2007) the PDP (Plaut et al., 1996) model can account for these results with reference 

to its ability to learn the relationships between specific inputs‟ patterns thus, 

strengthening the weighted connections corresponding to the patterns that are repeated 

more often than others.   

 

However, neither the PDP model (Plaut et al., 1996) nor the other two (Coltheart et al., 

2001 and Perry et al., 2007) word reading models can explain the results from Mulatti, 

Reynolds and Besner‟s (2006) research. In Experiment 1, Mulatti and colleagues (2006) 

compared participants‟ reading response times in both immediate and delayed reading 

(when participants were required to read the targets names again after the presentation 

of a set of brackets) for words from both dense phonological neighbourhoods and sparse 

phonological neighbourhoods. An analysis of the immediate reading response times 

showed that words from dense phonological neighbourhoods were read significantly 

faster than words from sparse phonological neighbourhoods. However, this effect was 

not found during delayed reading indicating that the locus of this effect is pre-

articulatory.  In Experiment 2, Mulatti et al. (2006) again collected participants‟ 

response times from both immediate and delayed reading. This time however, they 
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evaluated density effects from words‟ orthographic neighbours whilst strictly 

controlling for phonological neighbourhood density. The authors found that neither 

immediate nor delayed reading was affected by words‟ orthographic neighbourhood 

density when the number of phonological neighbours remained constant. To explain this 

discrepancy Mulatti et al. (2006) suggested that in the English language words‟ 

orthographic and phonological densities are highly correlated. Thus, rather than 

demonstrating orthographic neighbourhood effects, the earlier data actually reflected 

effects on word reading caused by phonological neighbourhood density.  

 

Furthermore, the actual DRC and PDP computer simulations conducted by Mulatti and 

colleagues (2006) showed that both models were unable to replicate the results from 

Experiment 1 although the DRC model did simulate the null effect of Experiment 2. 

Contrary to the human data however, the PDP model showed facilitation for words from 

dense orthographic neighbourhoods from Experiment 2. Additionally, in keeping with 

the TLA network of the PDP (Plaut et al., 1996) model the learned relationships 

between inputs and outputs in CDP+ (Perry et al., 2007) are acquired based on the 

inputs‟ orthography and thus this model is also unable to account for Mulatti et al.‟s 

(2006) results. As such, if a test of their data were conducted on CDP+ (Perry et al., 

2007), it would most likely exhibit similar results to those of PDP‟s. Consequently, the 

outcomes from Mulatti et al.‟s (2006) research suggest that instead of the mapping of 

letters/graphemes onto their corresponding phonemes, during reading words are directly 

processed based on their phonology. Further, to be able to benefit from a word‟s 

phonological neighbours a reader must have access to the word‟s phonemes sounds – 

phonemic features. Therefore, it is plausible that in reading, phonemes are specified for 

their phonemic features.  
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This conclusion is supported by the findings from Ashby, Sanders and Kingston‟s 

(2009) Event Related Potentials (ERPs) research in which the authors demonstrated that 

word reading „involves the activation of sub-phonemic feature information‟ (Ashby et 

al., 2009, pg. 90). In their study, Ashby et al. (2009) asked participants to read single 

words presented to them on a computer screen whilst their brain activity was recorded. 

One half of the target words in their research had a voiced final consonant (e.g., fad) 

and the other half had a voiceless final consonant (e.g., fat). Also, the presentation of 

each target was preceded by the brief presentation of a masked non-word prime which 

was either congruent (the final consonants of both target and prime were either voiced 

or voiceless) or incongruent (if for example the final consonant of the target was voiced, 

the final consonant of the prime was voiceless) with the target. Ashby et al. (2009) 

found significant feature-congruency effects which started as early as 80 ms after target 

onset.  Based on these results, Ashby and colleagues (2009) concluded that during word 

reading there is an automatic activation of phonemic features corresponding to the 

word‟s phonemes.  As such, to be able to account for Ashby et al.‟s (2009) and Mulatti 

et al.‟s (2006) findings, word reading modellers would have to seriously consider the 

role of phonemic features during this task. 
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1.5. Conclusions 

 

 

As illustrated in this chapter, models of general language production have tended to be 

developed separately from models of word reading. As highlighted, one of the most 

contentious issues raised by language production modellers involves phoneme 

representation during the phonological encoding process. Dell (1986) and Roelofs 

(1997b) postulated that phonemes are not specified for their phonemic features whereas 

Dell et al., (1993) considered phonemes to be fully defined for their phonemic features 

during this process. In contrast to language production modellers, word reading 

researchers mostly agree that during reading phonemes are represented as abstract 

entities with featural information activated during articulation. Nonetheless, as 

suggested by the findings of Mulatti et al. (2006) and Ashby et al. (2009), word reading 

modellers might need to reconsider the role of phonemic features during this task. As 

such, an investigation into the role of phonemic features in both general language 

production and word reading has the potential to render important new information 

concerning the role of features in each task that could make a significant contribution to 

the current understanding of these two domains. Additionally, this information might 

also provide fresh evidence that is necessary to either substantiate or refute Roelofs‟ 

(2004) assertions of shared phonological encoding mechanisms for both general 

language production and word reading.  
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CHAPTER 2: A critical review of masked priming research 

 

 

2.1. Chapter overview 

 

 

This chapter begins by introducing the masked priming paradigm which has been 

frequently employed by researchers wanting to improve their understanding of the 

cognitive processes involved in word reading. Much of the initial work using this 

paradigm focused on determining whether masked priming effects are caused by the 

involvement of episodic memory or whether they reflect automatic and subconsciously 

driven temporary changes in the cognitive system. Also, researchers wanted to ascertain 

whether these effects are due to a lexical or sub-lexical level of processing.  As argued 

in this chapter, the empirical evidence suggests that masked priming effects are 

automatic and subconsciously driven and that they result from a sub-lexical level of 

processing. That is why they can also be found in word reading studies even when 

primes and targets share only their onsets.  

 

The masked onset priming effect (MOPE) is then discussed at length. Firstly, it is 

shown how this onset effect for word reading was first observed by Forster and Davis 

(1991) who referred to Coltheart‟s (1978) dual-route framework of word reading when 

they suggested that this effect lay within the GPC process of the non-lexical route. It is 

then explained how contrary to Forster and Davis (1991), Kinoshita (2000) re-

interpreted this effect as reflecting rightward processing during the segment-to-frame 
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association stage of phonological encoding, a processing stage that is currently under-

specified in word reading models such as DRC. It highlights that since segment-to-

frame association is also integral to the WEAVER language production model, 

Kinoshita‟s (2000) re-interpretation of the masked onset effect thus implies that 

similarities might exist between word reading models such as DRC and language 

production models such as WEAVER at the phonological encoding stage of processing. 

Importantly and as discussed in Chapter 1, when Roelofs (2004) simultaneously 

examined both word reading and picture naming using an alternative form-preparation 

naming task, his observations in fact led him to propose a possible merging of such 

models at the segment-to-frame association stage of the phonological encoding process.  

 

The final section of this chapter examines the role of phonemic features during word-

form encoding. In particular, it discusses the outcomes from a masked priming study 

conducted by Lukatela et al. (2001) that found effects from featural similarity in the 

lexical decision task. Such findings however, are incompatible with models of general 

language production such as WEAVER. In this model phonological encoding involves 

the insertion of abstract phonemes into a word frame only after which there follows a 

parallel activation of phonemic features. This parallelism thus implies that as found by 

Roelofs (1999) there should be no effect from phonemic feature similarity. It is noted 

however, that whilst Lukatela et al.‟s (2001) study examined words using the lexical 

decision task, Roelofs‟ (1999) research examined language production using an entirely 

different paradigm. As such, it highlights the necessity to examine both word reading 

and picture naming within the same experimental paradigm before firm conclusions as 

to the notion of shared phonological encoding mechanisms for the two tasks can be 

drawn.  
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2.2. Masked priming paradigm 

 

 

2.2.1. General procedure 

 

 

A masked priming paradigm is an experimental procedure in which the presentation of a 

target (the critical response item) is preceded by the very brief presentation of another 

stimulus (referred to as the prime). The duration of the prime depends on the research 

question being addressed and generally varies from 20 to 67 ms. Additionally, the prime 

is usually presented in lower case letters with the target displayed in upper case letters. 

This is done to reduce visual similarity between the two stimuli. Further, to obscure 

(mask) the visibility of a prime the experimental procedure usually incorporates the 

presentation of a forward mask (e.g., a row of hashes - #####) typically shown for a 

period of time (e.g., 500 ms) prior to the presentation of the prime.  

 

The employment of the masked priming paradigm enables researchers to control for any 

target related confounds by using the same targets whilst experimentally manipulating 

the primes which are often presented in at least two conditions namely, a related 

condition (where the prime is related in some form to the target e.g., semantically - 

„dog-CAT‟ or orthographically – „can-CAT‟) and an unrelated/control condition (where 

prime and target are completely different e.g., „pin-CAT‟).  During masked priming 

studies the presence of the prime is not mentioned to participants. Further, participants 

are required to respond to targets in a specific way (e.g., to decide whether a letter string 

is in fact a real word or not – the lexical decision task, or to read aloud a word target – 
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the reading task) with their reaction times (the time interval between target onset and 

response onset) recorded across all conditions. Any response time benefit in the related 

condition relative to the unrelated condition is referred to as a priming effect and is 

thought to be the result of faster target processing caused by prime-target relatedness. 

(Forster, Mohan & Hector, 2003). However, although masked priming effects are 

generally considered to be reliable, the accounts proposed by researchers as to the locus 

of these effects are often quite different.  

 

 

2.2.2. The lexical entry opening account of masked priming 

 

 

Over the past forty years the masked priming paradigm has been frequently employed 

by researchers interested in developing a better understanding of the cognitive 

mechanisms involved in written word processing. In contrast to long-term priming in 

which a prime is displayed for a considerable period of time (e.g., 500 ms) and is then 

followed by the presentation of intervening items with observed effects thought to be 

driven by episodic memory trace, masked priming effects are believed to be automatic 

and subconsciously induced (Bodner & Stalinski, 2008; Forster & Davis, 1984; Forster, 

Mohan & Hector, 2003; Frost, 1998). As such, they are considered to be due to a 

temporary change in the cognitive system that is induced by the very brief presentation 

of the prime.  

 

In support of this subconsciously actuated, short-lived cognitive change view of masked 

priming, some researchers referred to experimental findings which illustrate that these 
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effects are insensitive to target words‟ frequencies and that they tend to disappear if 

there is a long interval between the presentation of a prime and target.  For example, in 

their masked repetition/identity priming research (where prime and target are the same 

word e.g., „cat-CAT‟), Forster and Davis (1984; Experiments 1, 5 and 6) found that 

compared to the corresponding unrelated conditions, lexical decisions were much faster 

for both high and low frequency word targets in the related conditions with the observed 

repetition/identity priming effects of a similar magnitude for both target types. Also, in 

Experiment 6 Forster and Davis (1984) found that displaying another word between the 

presentation of a prime and target significantly reduces the repetition priming effect 

(from 35 ms in Experiment 1 to 17 ms in Experiment 6) whereas the presentation of 

several intervening items eliminates it all together. Consequently, the authors concluded 

that the repetition/identity priming effects found in their research are short-lived and 

caused by the time saving property of the prime during lexical entry.  

 

According to Forster and Davis (1984), the brief presentation of an identical prime prior 

to the presentation of a target in the related condition results in the opening of an entry 

in the mental lexicon which is specific to that target. Therefore, when the actual target is 

presented, its entry has already been opened thus its selection takes less time compared 

to the selection of a target in the unrelated condition where the presentation of a prime 

has not opened the lexical entry of its corresponding target. Since frequency only affects 

the speed with which a word‟s lexical entry can be found but not the time it takes to 

access the word‟s specific information (Forster, Mohan & Hector, 2003), Forster and 

Davis (1984) argued that (as found by them and other researchers e.g., Bodner & 

Masson, 1997; Ferrand, Grainger & Segui, 1994; Sereno, 1991) both high and low 

frequency word targets should therefore exhibit similar masked priming effects. The 
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authors also suggested that if masked priming effects were due to the influence of 

episodic memory, these effects should have been larger for low frequency word targets 

than for high frequency word targets. This is because the presentation of a prime in the 

related condition would have increased the familiarity of the low frequency target to 

participants thereby accelerating its lexical selection. However, since by definition high 

frequency words are already familiar, the display of a prime in the related condition 

should have less effect on the lexical selection process of a high frequency word target.   

 

 

This word frequency effect was in fact observed by Forster and Davis (1984; 

Experiment 3). In Experiment 3, Forster and Davis (1984) employed the same stimuli as 

in Experiment 1. This time however, instead of masked priming they used a long-term 

priming paradigm which as mentioned earlier is considered to be subject to episodic 

memory trace.  As predicted and in contrast to the results from Experiment 1, they 

found that compared to the corresponding unrelated conditions lexical decisions were 

63 ms faster for low frequency word targets and only 30 ms  faster for high frequency 

word targets. Similar word frequency effects when employing long-term priming were 

reported by other researchers such as for example, Duchek and Neely (1989). Further, 

in their research Forster and Davis (1984; Experiment1) also failed to observe masked 

repetition/identity priming effect for non-word targets. Since only words are represented 

in the mental lexicon, Forster and Davis (1984; Experiment 1) argued that this null 

effect for non-word targets is consistent with the lexical account of masked priming and 

therefore, combined with other findings from their research, provide strong support for 

the notion that masked repetition/identity priming effects are caused by the prime 

opening the lexical entry for the related target.  
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2.2.3. Evidence against the lexical entry opening account of masked 

priming 

 

 

However, although Bodner and Masson (1997; Experiment 1) were able to replicate 

Forster and Davis‟ (1984; Experiment1) results with both word and non-word targets 

displayed in upper case letters (e.g., „WORD‟, „PERD‟), the outcomes from their follow 

up studies (Bodner & Masson, 1997; Experiments 2a and 2b) in which high and low 

frequency word targets and non-word targets were presented in mixed case letters (e.g., 

„wOrD‟, „pErD) were very different. In Experiment 2a Bodner and Masson (1997) 

found that consistent with the results from previous research (Forster & Davis, 1984; 

Experiment 1 and Bodner & Masson, 1997; Experiment1) lexical decisions for both 

high and low frequency word targets were faster in the related conditions relative to the 

unrelated conditions. However, although the observed masked repetition/identity 

priming effects were again of similar magnitude for these two targets types, this time 

they were considerably larger than in the earlier studies (e.g., 71 ms compared to 45 

ms).  

 

Further, contrary to the results from Forster and Davis‟ (1984; Experiment 1) as well as 

the outcomes from their own experiment, Bodner and Masson (1997; Experiment 2a) 

found a 93 ms masked repetition/identity priming effect for non-word targets that were 

presented in the related condition. Since Bodner and Masson (1997; Experiments 1 and 

2a) employed the same stimuli in both experiments with the only difference between the 

two studies being the format in which the targets were displayed, the authors suggested 

that the observed discrepancies could only be attributed to differences in which 
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information provided by the prime was exploited during target processing. 

Consequently, they postulated that the presentation of targets in mixed case letters in 

Experiment 2a increased target processing difficulty which thus caused a greater 

reliance on the prime. However, displaying targets in this way also meant that some of 

the letters of both primes and targets in the related conditions were always presented in 

the same case. As there was no masking between these two stimuli, it was therefore 

possible that instead of a greater reliance on the prime, the outcomes from Experiment 

2a might have been caused by an increase in physical similarity between prime and 

target.  

 

To evaluate this possibility, in Experiment 2b Bodner and Masson (1997) exposed the 

mixed case letters word and non-word targets from Experiment 2a to non-word primes 

which in the related conditions shared only their lower case letters with targets (e.g., the 

prime-target „phone-pHoNe‟ from Experiment 2a became „ptobe-pHoNe‟ in 

Experiment 2b). According to the authors, if an increase in physical similarity between 

primes and targets in the related conditions in Experiment 2a contributed to the 

observed priming effects for non-word targets as well as increased masked priming 

effects for word targets, similar effects in these conditions should also be found in 

Experiment 2b. However, the results from Experiment 2b for both targets types failed to 

show any significant priming effects. As such, Bodner and Masson (1997; Experiment 

2b) argued that these findings clearly illustrate that the shared lower case letters 

between primes and targets in the related conditions had no effect on the lexical 

decision task in Experiment 2a thus providing strong support for their hypothesis that 

these results were due to participants placing a greater reliance on the prime.   
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As mentioned earlier, this hypothesis is based on the assumption that the extent to 

which information provided by the prime is exploited is dependent on target processing 

difficulty. In their final two experiments therefore, Bodner and Masson (1997; 

Experiments 3 and 4) set out to further evaluate this theory. In Experiment 3 the authors 

found that lexical decisions to pseudohomophones targets (non-words which sound like 

real words) were made 38 ms faster in the related relative to the unrelated conditions.  

This was predicted because as shown by other researchers (e.g., Stone & Van Orden, 

1993) pseudohomophones are much more difficult to respond to than other non-words 

due to their familiarity to actual words. Therefore, the increased difficulty of the non-

word targets in Experiment 3 thus appeared to increased participants‟ reliance on the 

primes. 

 

In Experiment 4 (Bodner & Masson, 1997) the processing of targets was made easier by 

employing very high frequency word targets which by definition are much more 

familiar to participants than other words and thus should reduce the need to adhere to 

information provided by primes. For non-word targets, Bodner and Masson (1997; 

Experiment 4) used non-words which consisted only of consonants (e.g., „RGPRT‟). 

Since these types of targets are very dissimilar to actual words they are therefore much 

easier to reject during the lexical decision task and consequently should show no 

priming effects. In line with their predictions, Bodner and Masson (1997; Experiment 4) 

found only a small (22 ms compared to 71 ms in Experiment 2a) priming effect for 

word targets and no priming effect whatsoever for non-word targets.   
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Taken together, the results from Bodner and Masson‟s (1997) research showed masked 

priming effects for the more difficult non-word targets (Experiments 2a and 3) and 

priming effects for word targets which varied according to target processing difficulty 

(Experiments 1, 2a, 3 and 4). Both of these findings are therefore inconsistent with 

Forster and Davis‟ (1984) lexical entry opening account of masked priming effects. 

Firstly, since non-words are not represented in the mental lexicon, they should not have 

benefited from the presentation of related primes regardless of their processing 

difficulty. Secondly, according to Forster and Davis‟ (1984) account, during masked 

repetition priming the display of the prime in the related condition opens the word 

target‟s specific entry in the mental lexicon. As in this condition the word target‟s 

lexical entry is already opened, its processing should have been unaffected by Bodner 

and Masson‟s (1997) experimental manipulation. Finally, contrary to Forster and Davis‟ 

(1984) argument that masked priming effects are automatic and subconsciously driven, 

the above results suggest that during masked priming episodic memory trace for the 

prime is established and can be recruited dependent on target processing difficulty.     

 

However, as discussed Bodner and Masson (1997) also found similar priming effects 

for both high and low frequency word targets (Experiments 1, 2a and 3). This 

congruency in the magnitude of priming effects for these two targets types was 

independent of target processing difficulty (Experiments 2a and 3). Therefore, the word 

targets‟ frequency results were consistent with the findings reported by Forster and 

Davis (1984; Experiment1) and cannot be explained by Bodner and Masson‟s (1997) 

account of masked priming effects. According to Bodner and Masson‟s (1997) 

explanation, the processing of difficult targets should have caused a greater reliance on 

the information provided by primes which in turn should have resulted in larger priming 



 60 

effects for those targets relative to the easier targets. Since by definition low frequency 

words are more difficult to recognise than high frequency words, following Bodner and 

Masson‟s (1997) logic they should therefore have shown larger priming effects 

compared to the high frequency words. In fact, if as argued by Bodner and Masson 

(1997) these effects are reflective of the involvement of episodic memory during 

masked priming experiments, the results for both the high and low frequency words 

should have been consistent with the findings from Forster and Davis‟ (1984; 

Experiment 3) research in which a long-term priming paradigm was employed. As such, 

the interpretation of mask priming effects provided by Bodner and Masson (1997) can 

only explain some but not all of their data. Further, their episodic memory account of 

these effects is not only inconsistent with their results for low frequency word targets 

but is also contrary to the findings reported by Bodner and Stalinski (2008) whose 

research is described in the following section. 

 

 

2.2.4. Episodic memory versus an automatic and subconsciously driven 

account of masked priming effects  

 

In their research Bodner and Stalinski (2008) set out to establish whether masked 

repetition priming effects in the lexical decision task would be affected by an additional 

cognitive load. During their study therefore, they collected participants‟ response times 

to word and non-word targets under two cognitive load conditions namely, no load and 

load conditions.  In the no load condition which was consistent with other masked 

priming research (e.g., Forster & Davis, 1984; Bodner & Masson, 1997; Experiment 1) 

participants were required to respond to word and non-word targets preceded by the 
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brief (45 ms) presentation of a prime in either related (where prime and target were the 

same word or non-word) or unrelated (where prime and target were completely 

different) sub-conditions. In the load condition by contrast, each trial began with the 

presentation of an eight-digit number string for 2000 ms. This was followed by a blank 

screen for 1000 ms, and in line with the no load condition a prime was then shown for 

45ms which was immediately followed by the display of a target. The word or non-

word target remained on the computer screen until a response was given. Once 

responded to, the target was replaced by another eight-digit number string with 

participants required to decide whether this number string was identical or not to the 

one presented at the beginning of the trial. As such, in the load condition participants 

performed two tasks which they were instructed to treat with equal importance.  

 

According to Bodner and Stalinski (2008), the purpose of the two tasks in the cognitive 

load condition was to increase the task demand and by so doing to interfere with any 

strategic processing of the prime. The authors argued that if masked repetition priming 

effects are caused by episodic memory trace then they should be reduced or even 

eliminated in the cognitive load condition. If however, they reflect an automatic and 

subconscious processing of the prime during masked priming then these effects should 

be unaffected by their cognitive load experimental manipulation. Nonetheless, Bodner 

and Stalinski (2008) failed to make separate predictions for the two targets types 

employed in their study. Yet, given that they used pronounceable non-words displayed 

in upper case letters, to be consistent with the earlier reported findings (Forster & Davis, 

1984, Experiment 1; Bodner & Masson, 1997, Experiment 1) it would be expected that 

these non-words should exhibit no priming effects in both the no load and load 

conditions.  
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In line with the argument just presented, Bodner and Stalinski‟s (2008) results for the 

non-word targets failed to show priming effects and were therefore consistent with the 

findings reported by both Forster and Davis‟ (1984) as well as Bodner and Masson‟s 

(1997). Consequently, they could be explained equally well by either the lexical entry 

opening account of masked repetition priming (Forster & Davis, 1984) or the 

perspective that participants place a greater reliance on the prime when target 

processing difficulty is increased (Bodner & Masson, 1997). As such, they neither 

support nor dispute the episodic memory based account of masked repetition priming 

(Bodner & Masson, 1997).  Bodner and Stalinski‟s (2008) word targets‟ data on the 

other hand, showed that in both the no load and load conditions word targets were 

responded to faster in related conditions relative to unrelated conditions. These 

repetition priming effects were of similar magnitude and thus proved to be unaffected 

by their cognitive load experimental manipulation. Based on their word targets‟ results, 

Bodner and Stalinski (2008) therefore concluded that masked priming effects are in fact 

automatic and sub-consciously driven.  

 

Further, this automatic and subconsciously driven account of masked priming effects 

can explain why in post-experimental interviews the majority of participants reported 

being unaware of the presence of a prime and those who thought they had noticed 

something prior to the display of targets were unable to explicitly name what they saw 

(e.g., Bodner & Stalinski, 2008; Forster & Davis, 1984; Grainger & Ferrand, 1996). 

This account is also consistent with the findings from prime visibility tests in which 

participants were asked to focus exclusively on identifying the primes and which 
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explicitly showed that during these tests participants‟ levels of performance was close to 

chance (e.g., Forster & Davis, 1984; Grainger & Ferrand, 1996; Schiller, 1998).  

However, it is important to note at this point that although Bodner and Stalinski‟s 

(2008) word targets‟ findings as well as the outcomes from both post-experimental 

interviews and prime visibility tests were all in line with Forster and Davis‟ (1984) 

notion that masked priming effects reflect subconsciously induced temporary changes in 

the cognitive system, as discussed earlier Forster and Davis‟ (1984) lexical entry 

opening account of these effects cannot explain the difficult non-word targets‟ priming 

reported by Bodner and Masson (1997).  Since non-words are not represented in the 

mental lexicon any priming of such targets can only be due to a sub-lexical level of 

processing. Therefore, the interpretation of masked priming effects provided by 

Grainger and Ferrand (1996) seems more appropriate to account for these data. 

 

 

2.2.5. Grainger and Ferrand’s (1996) account of masked priming 

effects 

 

In line with Forster and Davis‟ (1984) argument, Grainger and Ferrand (1996) also 

postulated that the effects obtained during masked priming are automatic and 

subconsciously induced.  Contrary to the former authors however, Grainger and Ferrand 

(1996) suggested that these effects are mediated by both the orthographic and 

phonological relatedness between a prime and target. Therefore, rather than directly 

opening a target‟s specific entry in the mental lexicon, a prime‟s orthographic and 

phonological codes in the related condition pre-activate a target‟s orthographic and 

phonological codes resulting in faster access to the target‟s lexical representation in that 
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condition relative to the unrelated condition. As such, these codes are the proxies for 

accessing a target‟s lexical representation. However, prior to their study there was a 

general lack of masked priming research in the available literature that had attempted to 

differentiate between effects caused by prime-target relatedness that was either purely 

orthographic or purely phonological. To test their hypothesis therefore, Grainger and 

Ferrand (1996) conducted a series of experiments in French that employed a masked 

form priming paradigm (i.e., when a word or non-word prime differs from the target 

only by a single letter and /or a single phoneme), the primary aim of which was to 

establish the exact contribution to masked priming effects separately from both pure 

orthographic and pure phonological overlap between prime and target.  Also, the 

authors wanted to assess whether any contribution from either or both of these two 

types of sub-lexical units would be congruent across three different experimental tasks 

namely, a lexical decision task, a perceptual identification task (in which participants 

were required to type on a computer keyboard the target word once it had been 

recognised) and a word reading task.  

 

In Experiment 1 Grainger and Ferrand (1996) used high frequency monosyllabic word 

targets of four letters in length which were preceded by the brief (43ms) presentation of 

non-word primes. The primes were also of four letters in length and were organised into 

three experimental conditions.  In the first condition the primes were orthographically 

unrelated pseudohomophones (they shared their phonology) of the targets (e.g., nair-

NERF), in the second condition they were orthographically related pseudohomophones 

(e.g., nert-NERF) and finally in the third condition they were orthographically related 

non-homophonic (phonologically unrelated) primes (e.g., nerc-NERF). In all three 

priming conditions primes and targets shared their initial letter/onset. Finally, the same 
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stimuli were employed in each experimental task. The results from Experiment 1 

(Grainger & Ferrand, 1996) showed masked orthographic and phonological priming 

effects that were separate and independent of each other in both the lexical decision and 

perceptual identification tasks. However, no effects were observed from these two sub-

lexical units in the word reading task. Consequently, in Experiment 2 the researchers 

(Grainger & Ferrand, 1996) decided to repeat the word reading task with longer (53 ms) 

and shorter (29 ms) prime durations. The data from Experiment 2 failed to show any 

phonological priming effects with both prime durations whilst orthographic priming 

effects were only observed when the shorter (29 ms) prime duration was employed.  

 

Based on their results so far Grainger and Ferrand (1996) concluded that at least in word 

recognition tasks such as lexical decision and perceptual identification both shared 

orthography and shared phonology between prime and target provide separate yet 

important sources of information necessary to activate a target‟s lexical representation. 

They were however, unsure why in the naming task with all three prime durations, they 

were unable to find any phonological priming effects whereas shared orthography 

between prime and target yielded facilitation only with the shortest prime exposure. 

Since the results from the naming task were contrary to the outcomes from the two word 

recognition tasks, Grainger and Ferrand (1996) decided to investigate these 

discrepancies further. 

 

In Experiment 3 therefore, the authors set out to establish if the lack of phonological 

priming effects in the naming task might be attributed to the presence of a shared onset 

between each of the primes and their target. Consequently, they modified the prime 

stimuli from Experiment 1 by replacing the onset of each prime in each condition with a 
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percentage sign (e.g., the prime „nair‟ became „%air‟) whilst keeping target words 

unchanged. Following this modification, the pseudohomophone primes from 

Experiment 1 became the word targets‟ rhymes in Experiment 3.  As such, in the first 

condition in Experiment 3 target words were primed by orthographically unrelated 

rhymes (e.g., %air-NERF), in the second condition they were primed by 

orthographically related rhymes (e.g., %ert-NERF) whereas in the third condition 

targets were primed by orthographically related non-rhymes (e.g., %erc-NERF). 

Finally, as in Experiment 1, the primes in Experiment 3 for each condition were 

displayed for 43 ms.  

 

The results from Grainger and Ferrand‟s (1996) Experiment 3 can be summarised as 

follows. In the lexical decision task the researchers found both separate and distinct 

phonological and orthographic priming effects. Further, the magnitude of the 

phonological priming effect was identical to that obtained in Experiment 1 (45 ms in 

both experiments). However, the orthographic priming effect in Experiment 3 was much 

smaller than in Experiment 1 (13 ms compared to 50 ms). According to Grainger and 

Ferrand (1996) the differences in orthographic priming across these experiments could 

be attributed to the fact that, following their primes‟ modifications, in Experiment 3 the 

primes and targets shared only two out of four letters (e.g., %erc-NERF) whilst in 

Experiment 1 they shared three out of four letters (e.g., nerc-NERF). Consequently, the 

authors concluded that in the lexical decision task both phonological and orthographic 

overlap between prime and target facilitates participants‟ responses and that these 

effects are independent of whether or not the two stimuli share their onsets.   
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In the word reading task on the other hand, the results from Experiment 3 were in 

striking contrast to those from Experiments 1 and 2. In this task Grainger and Ferrand 

(1996, Experiment 3) found 28 ms phonological and 7 ms orthographic priming effects. 

However, only the phonological priming effect was statistically significant. As in the 

lexical decision task, the authors attributed the lack of a significant priming effect for 

orthographic overlap to the fact that in this experiment primes and targets shared only 

two out of four letters. Based on the word reading data collected so far, Grainger and 

Ferrand (1996) inferred that in this task the shared onset between prime and target 

„produces a maximum facilitation effect that prevents more stable form priming effects 

from emerging‟ (Grainger & Ferrand, 1996, pg. 637). This is why in Experiments 1 and 

2 in which primes and targets in all three conditions shared their onsets, the common 

shared onset caused a facilitating effect that overshadowed any form priming. However, 

in Experiment 3 where there was no onset overlap between primes and targets a 

phonological form priming effect was indeed observed. Grainger and Ferrand‟s (1996; 

Experiments 4 and 5) final two experiments therefore, were designed to evaluate this 

conclusion.  

 

In Experiment 4 Grainger and Ferrand (1996) collected participants‟ response times to 

the same word targets used in the earlier experiments. These word targets were again 

preceded by the brief (43 ms) presentation of non-word primes in three priming 

conditions. In the first condition primes and targets were both orthographically and 

phonologically related (e.g., nert-NERF), in the second condition they shared their 

onsets (e.g., nise-NERF) and finally in the third condition primes were unrelated to 

targets (e.g., fise-NERF). The results from Experiment 4 showed that relative to the 

unrelated condition, participants‟ lexical decisions were faster (49 ms) only in the form 
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related (shared orthography and phonology) condition.  The word reading data showed 

almost identical form and onset priming effects (30 ms and 29 ms respectively) thus 

confirming Grainger and Ferrand‟s (1996) argument that in this task the magnitude of 

onset priming overshadows any form related priming effects. This is why no such 

priming was observed in Experiments 1 and 2 where the onset of both prime and target 

was shared in all conditions. Further, in Experiment 5 in which participants were 

required to perform only the word reading task, Grainger and Ferrand (1996) found no 

significant difference between the unrelated (e.g., fise-NERF) and no-letter onset (e.g., 

%ise-NERF) priming conditions.  They also found that relative to these two conditions 

participants‟ response times were significantly faster in the shared onset condition (e.g., 

nise-NERF). Since response times in the unrelated and no-letter onset conditions were 

very similar, these results indicate that there was no cost to participants‟ reading aloud 

word targets in the unrelated condition. As such, the results from Experiment 5 

confirmed that the effects obtained from all experiments conducted by Grainer and 

Ferrand (1996) were in fact facilitory in nature.  

 

All in all, Grainger and Ferrand‟s (1996) research findings confirmed that in the lexical 

decision, perceptual identification and naming tasks both orthographic and phonological 

overlap between primes and targets are important yet separate contributors to masked 

priming effects.  Similar results were also obtained in English (see Rastle & Brysbaert, 

2006, for a review) meaning that these outcomes are not only consistent across tasks but 

also across languages and thus provide strong support for Grainger and Ferrand‟s 

(1996) argument that rather then directly opening a target‟s specific entry in the mental 

lexicon (Foster & Davis, 1984) masked priming effects are due to a sub-lexical level of 

processing. Further, in line with the generally accepted view that masked priming 
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facilitates the naming of targets in the related condition (Forster et al., 2003), Grainger 

and Ferrand‟s (1996) data confirmed that the effects found when employing this 

experimental procedure are in fact facilitatory in nature. Finally, Grainger and Ferrand 

(1996) also found that in the word reading task a shared onset between prime and target 

significantly facilitated participants‟ responses. In fact, the onset effect observed by 

these authors was so strong (Experiment 4) that it precluded the detection of any effects 

due to orthographic and/or phonological overlap between primes and targets in all but 

the onset positions (Experiments 1 and 2). Given that this outcome was not echoed in 

the lexical decision and perceptual identification tasks, Grainger and Ferrand (1996) 

concluded that as argued by Forster and Davis (1991), the masked onset priming effect 

(MOPE) is specific to word reading only and highlights that in this task a word onset 

plays an important and distinctive role. The masked onset priming effect along with the 

findings from Forster and Davis‟ (1991) research are considered in more detail in the 

following section.  

 

 

 

2.2.6. The masked onset priming effect (MOPE) 

 

 

Forster and Davis (1991) were the first researchers who set out to assess the role of the 

onset in word reading. In their investigation which was conducted in English, Forster 

and Davis (1991) used a three-fold masked priming paradigm in which, at the beginning 

of each trial, a forward mask (a row of six #s) was displayed in the middle of a 

computer screen for 500ms. This was followed by the presentation of a prime (in 
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lowercase letters) for 60 ms before the word target was shown (in uppercase letters) for 

500ms. During each of Forster and Davis‟ (1991) experiments, participants were 

required to read aloud words presented in uppercase letters as quickly and as accurately 

as possible. Importantly, in addition to the reading/naming task, in Experiment 5 a 

lexical decision task was also employed. The reason for so doing is explained below. 

Finally, in all of Foster and Davis‟ (1991) experiments the participants‟ response 

latencies and error scores were the dependent variables. 

 

In Experiment 1 all target words were primed by three types of primes namely, an 

unrelated (e.g., merry-BREAK), the same onset (e.g., belly-BREAK) and rhyming (e.g., 

take-BREAK) primes. The authors found that compared to the unrelated condition 

target words were named 24 ms faster when the same onset was shared between prime 

and target. However, there was no observed difference between the rhyming and 

unrelated conditions. Based on these results, Forster and Davis (1991) thus concluded 

that in masked priming a shared onset between prime and target facilitates word 

reading. They referred to this facilitation as the masked onset priming effect (MOPE).  

 

To account for the MOPE, Foster and Davis (1991) referred to Coltheart‟s (1978) dual-

route framework of reading words aloud. However, because the architecture and 

working assumptions of Coltheart et al.‟s. (2001) DRC computational model are based 

on this theoretical framework (as discussed in Chapter 1, section 1.4.1.1.), Forster and 

Davis‟ (1991) conclusions can therefore be extended to this model.  Forster and Davis 

(1991) suggested that the locus of the MOPE lies within the sequential rightward GPC 

processing manner of a given input by the non-lexical route, with the shared initial 

segment(s) between prime and target (e.g., belly-BREAK in Experiment 1) acting to 
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facilitate the naming of a word target. In contrast, when the shared segment(s) is 

positioned later in the word form, the mismatching initial segment between a prime and 

target induces competition between these segments, the resolution of which holds up the 

process resulting in no observed facilitation.  However, because Forster and Davis 

(1991) used primes in Experiment 1 that also rhymed with targets (e.g., take-BREAK), 

the latter part of this explanation could neither be confirmed nor disputed by their 

findings at that stage.   

 

Forster and Davis‟ (1991) Experiments 4 to 6 were designed to provide more direct 

evidence for the argument that the MOPE is caused by serial rightward processing 

through the non-lexical route. In Experiment 4 the authors used exception word (e.g., 

PINT) and non-word targets. According to the dual-route theoretical framework 

(Coltheart, 1978; Coltheart et al., 2001) the correct pronunciation for exception words 

has to be accessed from memory and thus can only by generated in parallel via the 

lexical route rather than by letter-to-letter computation via the non-lexical route. As 

such, Forster and Davis (1991; Experiment 4) postulated that to be consistent with their 

account for the locus of the MOPE, then relative to controls (e.g., spot-FETE) the 

naming of exception word targets should not be facilitated by a shared onset between 

primes and targets (e.g., fish-FETE).  By extension, as non-words can only be read 

letter-by-letter via the non-lexical route, the naming of non-word targets should be 

faster in the onset condition (e.g., fosk-FENT) compared to the control condition (e.g., 

jisk- FENT).  The results from Experiment 4 were consistent with Forster and Davis‟ 

(1991; Experiment 4) predictions and thus showed a MOPE for non-word but not for 

exception word targets.   
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Experiment 5 was conducted to assess masked onset priming effects whilst 

manipulating the strength with which the lexical and non-lexical routes were engaged. 

This manipulation was achieved by employing both high and low frequency word 

targets. As argued by the proponents of the dual-route theoretical framework (e.g. 

Coltheart, 1978; Coltheart et al., 2001), due to their familiarity high frequency words 

are processed in parallel via the lexical route whereas the unfamiliarity of low frequency 

words requires letter-by-letter processing via the non-lexical route.  Further, in 

Experiment 5 both high and low frequency word targets were primed by four types of 

primes namely, identical (e.g., before-BEFORE), different initial letter (e.g., defore-

BEFORE), different final letter (e.g., befora-BEFORE) and control (e.g., dranch-

BEFORE). The results from this study showed that compared to the corresponding 

control condition both target types were read significantly faster in the identical 

condition. They were also read significantly faster in both the initial and final letter 

different conditions relative to their corresponding control condition. However, for high 

frequency word targets the difference between the initial and final letter different 

conditions was not significant (4 ms) whereas for low frequency word targets this 

difference was highly significant (17 ms). Based on these data Forster and Davis (1991; 

Experiment 5) thus concluded that when reading aloud word targets in the masked 

priming paradigm both identity and form priming effects are independent of word 

frequency.  However, consistent with their argument for the locus of the MOPE, a 

MOPE can only be observed for low frequency words that are processed sequentially 

via the non-lexical route and not for high frequency words which are processed in 

parallel by the lexical route.   
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In Experiment 5 the stimuli for the reading task were then used in a lexical decision task 

with a different set of participants to those employed in the former task. These 

participants were required to decide whether a given target was a real word or not by 

pressing one key for yes and another for no. The data from this part of Experiment 5 

showed that both high and low frequency targets were identified as words significantly 

faster in the identical condition relative to the control condition. They were also labelled 

as words significantly faster in both the initial and final letter different conditions. 

These findings were thus consistent with the results from the reading task and therefore 

demonstrated that in masked priming both identity and form priming effects can be 

observed regardless of the task employed. However, the lexical decision results showed 

no facilitation from a shared onset between primes and both high and low frequency 

word targets. Since deciding whether a given target is a real word or not requires the 

engagement of the lexical route and also that in the reading task low frequency word 

targets showed a MOPE whereas in the lexical decision task they did not, Forster and 

Davis (1991; Experiment 5) postulated that these outcomes provided further 

confirmation for their argument that the MOPE is due to serial rightward processing in 

the non-lexical route.  

 

In Experiment 6 that concluded Forster and Davis‟ (1991) research, the authors 

employed a go-no-go conditional naming task in which participants were instructed to 

read aloud a given target only if that target was a real word. In keeping with the lexical 

decision task of Experiment 5, both word and non-word targets were mixed within the 

same sets in Experiment 6. By again reasoning that lexical decision task forces the 

engagement of the lexical route, Forster and Davis (1991; Experiment 6) therefore 

hypothesised that to be consistent with their argument for the locus of the MOPE, in this 
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study there should be no observable facilitation from a shared onset between primes and 

targets. The results from Experiment 6 were in line with Forster and Davis‟ (1991) 

predictions and showed no difference in the response latencies between the onset (e.g., 

belly-BREAK) and control (e.g., merry-BREAK) conditions. Further, the data also 

showed that targets were read significantly faster in the identical condition (e.g., break-

BREAK) compared to controls. The latter findings were thus consistent with the 

outcomes from Experiment 5 and provided further evidence that identity priming effects 

can be found regardless of which route is engaged.  

 

Considered together, the results from Forster and Davis‟ (1991) Experiments 1, 4,5 and 

6 provided convincing support for their perspective that the MOPE is caused during 

serial rightward processing of a word form via the non-lexical route. Further, since this 

effect was found with some (e.g., low frequency and non-word) but not all (e.g., high 

frequency and exception) word targets, these outcomes were in line with the dual-route 

theoretical framework (Coltheart, 1978; Coltheart et al., 2001). Further, as CDP+ (Perry 

et al., 2007) is also a dual-route model in which akin to the DRC model, the processing 

of a given input via the lexical route occurs in parallel across its word form whilst that 

via the non-lexical route takes place in a serial rightward manner, the data from Forster 

and Davis‟ (1991) research can also be explained with reference to this model. 

However, since processing through the PDP (Plaut et al., 1996) word reading model 

occurs via a single route, this particular model cannot account for the findings reported 

by Forster and Davis (1991). Furthermore, Forster and Davis‟ (1991) interpretation of 

the MOPE as facilitory in nature is consistent with the findings from Grainger and 

Ferrand‟s (1996) research in which (as described earlier - section 2.2.5) the authors 

observed similar response times for word targets named in both the unrelated (e.g., fise-
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NERF) and no-letter onset (e.g., %ise-NERF) conditions. In line with Forster and 

Davis‟ (1991) results Grainger and Ferrand (1996) also observed that the MOPE is 

independent of form priming effects and is only found in the word reading task. 

However, contrary to the former researchers, Grainger and Ferrand (1996) reported a 

MOPE for high frequency word targets. This latter result was therefore inconsistent 

with Forster and Davis‟s (1991) interpretation of the MOPE. As such, Kinoshita‟s 

(2000) alternative speech planning/phonological encoding account as to the locus of the 

MOPE might be more appropriate to explain the above data. 

 

 

 

2.2.7. Kinoshita’s (2000) re-interpretation of the locus of the MOPE 

 

 

Kinoshita‟s (2000) masked priming research was designed to further investigate the 

locus of the MOPE. She wanted to ascertain whether as argued by Forster and Davis 

(1991), this effect is in fact caused by serial rightward processing via the non-lexical 

route (Coltheart, 1978; Coltheart et al., 2001) or whether it occurs after the orthography-

to-phonology computation of the non-lexical route or the parallel computation of 

phonology via the lexical route and takes place at the speech planning/phonological 

encoding stage that in the dual-route theoretical framework (e.g., DRC; Coltheart et al., 

2001) is shared by both routes. She thus theorised that processing at this stage might 

also operate in a sequential manner. To address this research question, Kinoshita (2000) 

conducted two experiments. In Experiment 1 the author tested non-word targets of three 

letters in length in both left-to-right and right-to-left overlap sets. In the left-to-right 
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overlap set non-word targets such as for example SIB, were primed by three types of 

primes namely, single letter overlap (e.g., suf-SIB), two letters overlap (e.g., sif-SIB) 

and unrelated (e.g., mof-SIB). There were also three priming conditions employed for 

the right-to-left overlap set (e.g., mub-SIB in single letter overlap, mib-SIB in two 

letters overlap and mof-SIB in unrelated).  Experiment 1 was therefore designed to 

assess whether facilitation from a shared letter/s could be obtained independently of the 

position of overlap between prime and target. If so, this would argue against the 

sequential nature of the MOPE.  

 

The results from Experiment 1 (Kinoshita, 2000) showed that compared to the unrelated 

condition, non-word targets were named significantly faster when both prime and target 

shared their initial letter and also their first two letters. However, the difference between 

the single letter and two letters overlap conditions was only 3 ms which suggested that 

this effect was mainly due to the shared initial letter. In the right-to-left overlap set 

however, there was no benefit to target naming from the shared end letter/s. These 

outcomes therefore provided support for Forster and Davis‟ (1991) assertion that the 

MOPE is caused by serial rightward processing of the word form. However, contrary to 

the above authors, Kinoshita (2000) argued that the sequential nature of this effect does 

not automatically mean that the MOPE reflects the working assumptions of the non-

lexical route (e.g., DRC, Coltheart et al., 2001). Instead, she suggested that this effect 

could occur at the speech planning/phonological encoding stage of processing which 

akin to the non-lexical route might also operate in a serial rightward manner. 

Kinoshita‟s (2000) Experiment 2 was conducted to test this hypothesis.  
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In Experiment 2 Kinoshita (2000) used both simple (e.g., PASTE) and complex (e.g., 

BLISS) onset targets to evaluate whether the MOPE occurs due to a shared onset or 

shared initial letter between prime and target. She argued that if this effect is caused by 

a shared onset then facilitation from a matching initial letter between these two stimuli 

should only be observed in the simple (e.g., penny-PASTE) but not complex (e.g., 

bingo-BLISS) onset condition. This is due to the onset in the complex onset condition 

consisting of a consonant cluster which is thus different to the single consonant onset of 

the prime. If however, the MOPE is due to a shared initial letter then both conditions 

should show similar facilitatory effects. Further, according to Kinoshita (2000, 

Experiment 2), by addressing the question of whether the MOPE is due to a shared 

onset or just the shared initial letter between a prime and target, she would obtain more 

direct evidence as to the locus of this effect.  This is because in the dual-route 

theoretical framework (e.g., DRC; Coltheart et al., 2001), at the non-lexical level the 

computation of phonology from orthography takes place letter by letter and thus each 

letter is represented as a separate unit regardless of whether it belongs to a consonant 

cluster or not. To be consistent with this working assumption of the non-lexical route 

therefore, facilitory effects from a shared initial letter between primes and targets should 

be found in both simple and complex onsets conditions. However, at the speech 

planning/phonological encoding stage each unit corresponds to the phonological sound 

such as for example, the onset or coda of a word.  Consequently, at this stage only 

facilitation from a shared onset between primes and targets (simple onset condition) 

should be observed.  

 

The data from Experiment 2 (Kinoshita, 2000) showed that compared to the control 

condition (e.g., mummy-PASTE) simple onset targets were named 14 ms faster when 
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preceded by matching initial letter primes (e.g., penny-PASTE) however, this effect was 

not found for complex onset targets (e.g., bingo-BLISS).  Kinoshita (2000; Experiment 

2) thus concluded that the MOPE is actually caused by a shared onset between primes 

and targets. Since as postulated by the author, in the dual-route framework (e.g., DRC; 

Coltheart et al., 2001) the onset of a word is represented as a single unit only at the 

speech planning/phonological encoding stage, the data from Experiment 2 therefore 

provide strong support for her perspective that the MOPE occurs at this processing 

stage, which akin to the non-lexical route also operates in a sequential manner.  

However, as mentioned above, in this theoretical framework the speech 

planning/phonological encoding stage is shared by both the lexical and non-lexical 

routes. Consequently and contrary to the data reported by Forster and Davis (1991), a 

MOPE should also be found for both exception (e.g., „PINT‟ – Experiment 4) and high 

frequency (Experiment 5) word targets. Further, it should also be observed in the go-no-

go conditional naming task (Experiment 6).  

 

Kinoshita‟s follow up masked priming research (Kinoshita & Woollams, 2002; Malouf 

& Kinoshita, 2007) was thus designed to assess the validity of Foster and Davis‟ (1991) 

results for these two target types as well as for the go-no-go conditional naming task. As 

such, in Experiment 1 Kinoshita and Woollams (2002) compared participants‟ response 

latencies to both regular and exception word targets that were primed by two types of 

primes namely, onset related (e.g., fish-FETE) and control (spot-FETE). The results 

from this study were consistent with Forster and Davis‟ (1991, Experiment 4) data and 

showed that relative to corresponding controls, regular word targets were read 

significantly faster in the onset related condition whereas for exception word targets 

there was no significant difference between the control and onset related conditions. In 
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Experiment 2 Kinoshita and Woollams (2002) used the go-no-go conditional naming 

task employed by Forster and Davis (1991; Experiment 5). In this study the regular and 

exception word targets from Experiment 1 were mixed randomly with non-words within 

the same experimental block. Experiment 3 on the other hand, was a repetition of 

Experiment 1. This time however, rather than being presented for naming in pure blocks 

the regular and exception word targets from Experiment 1 were mixed randomly within 

the same experimental block. The data from Experiments 2 and 3 showed that for both 

regular and exception word targets there was no difference between the onset related 

and control conditions. The outcomes from Experiment 2 were thus consistent with the 

go-no-go conditional naming results reported by Forster and Davis (1991; Experiment 

6). However, the findings from Experiment 3 were contrary to both the data from 

Experiment 1 as well as Forster and Davis‟ (1991, Experiment 4) results.  

 

To explain why in Experiment 3 a MOPE for regular word targets was eliminated, 

Kinoshita and Woollams (2002) referred to a time criterion phenomenon introduced by 

Lupker, Brown and Colombo (1997). According to these authors, in the experimental 

setting participants‟ verbal responses to given stimuli are affected by the way in which 

these stimuli are presented. For example, if asked to read easy and difficult words 

displayed in separate blocks, participants adjust their responses based on the complexity 

of the items presented within a given block; thereby reading easy words faster than 

difficult words.  However, when easy and difficult words are mixed together within the 

same experimental block, participants delay their responses to easy words whilst 

speeding their responses to difficult words. As such, they adopt a new time criterion 

(deadline) for their verbal responses to these stimuli.  
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Applying this argument to the data from their research, Kinoshita and Woollams (2002) 

postulated that the lack of an observed MOPE for regular word targets in Experiment 3 

was due to the fact that in this study regular and exception words were mixed together 

within the same experimental block. Since by definition regular words are easier to read 

than exception words, in the mixed block in Experiment 3 participants‟ verbal responses 

to regular words were thus delayed which in turn meant that any facilitation from the 

shared onset between primes and regular word targets was simply lost.  By extension, 

Kinoshita and Woollams (2002) also suggested that the time criterion argument could 

equally well explain the lack of a MOPE in the go-no-go conditional naming task 

(Experiment 2; Forster and Davis, 1991, Experiment 6). This is because in the 

conditional naming task both words and non-words were mixed together within the 

same experimental block making it possible that in this task participants‟ verbal 

responses to word targets were delayed due to the presence of the more difficult to read 

non-word, with the result that a MOPE was not observed.       

 

Although Kinoshita and Woollams‟ (2002) account for the lack of a MOPE in the go-

no-go conditional naming task seams highly plausible, these researchers failed to 

explain the absence of this effect for exception word targets (Experiment 1; Forster and 

Davis, 1991, Experiment 4). However, the author of this thesis argues that the latter 

results could also be explained with reference to the time criterion phenomenon (Lupker 

et al., 1997). As discussed in Chapter 1 exception words can vary in their degree of 

difficulty. This is because some of them have more friends (words which have similar 

spelling and their pronunciation rhymes with the exception word) than enemies (words 

which despite similar spelling are pronounced differently to the exception word) whilst 

others have more enemies than friends. It is therefore possible that the former exception 
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words were easier to read than the latter. Consequently, if mixed together within the 

same experimental block participants‟ verbal responses to exception words with higher 

friends-to-enemies ratio might be delayed whereas their responses to exception words 

with higher enemies-to-friends ratio might be faster. This again could mean that any 

benefits from a shared onset between primes and target would be lost. Importantly, 

although the time criterion argument might well account for the absence of the MOPE 

for exception words and in the go-no-go conditional naming task (Forster & Davis, 

1991, Experiments 4 & 6; Kinoshita & Woollams, 2002, Experiments 1 & 2), it cannot 

be employed to explain the lack of this effect for high frequency word targets reported 

by Forster and Davis (1991, Experiment 5). Malouf and Kinoshita‟s (2007) research 

was designed to address this issue.   

 

Malouf and Kinoshitas‟ (2007) research was set up to evaluate whether a MOPE could 

be found for both high and low frequency word targets. They argued that the absence of 

this effect for high frequency words reported by Forster and Davis (1991; Experiment 5) 

might have been caused by the nature of the primes they employed. Specifically, they 

postulated that because in both the initial (e.g., defore-BEFORE) and final (e.g., befora-

BEFORE) letter different conditions there was a significant overlap between the 

segments of a prime and target (Forster and Davis, 1991; Experiment 5), this form 

relatedness might have interacted with word frequency with the result that there were no 

observable effects from a shared onset between these two stimuli for high frequency 

word targets.  To control for any possible interaction therefore, in Experiment 1 Malouf 

and Kinoshita (2007) used primes that with the exception of the onset position in the 

onset condition were unrelated in form to both high (e.g., hark-HEAT vs. pork-HEAT) 

and low frequency (e.g., hark-HEEL vs. pork-HEEL) word targets.  
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The results from Experiment 1 (Malouf & Kinoshita, 2007) showed a MOPE for both 

high and low frequency word targets. As such, they were contrary to the data reported 

by Forster and Davis (1991; Experiment 5) and thus provided strong support for the 

argument discussed above that the absence of a MOPE for high frequency words in 

Forster and Davis‟ (1991) research might have resulted from an interaction between 

form relatedness and word frequency. However, when in Experiment 2 Malouf and 

Kinoshita (2007) used primes that were similar to those employed by Forster and Davis 

(e.g., defore-BEFORE vs befora-BEFORE, 1991; Experiment 5), contrary to the latter 

authors they once again found a MOPE for both target types. Further, as the magnitude 

of the observed MOPE was similar for both high and low frequency word targets in 

Malouf and Kinoshita‟s studies (2007; Experiments 1 & 2), these authors concluded 

that word frequency had little to no effect on the processing of these targets. The data 

from Experiments 1 and 2 therefore, was consistent with Malouf and Kinoshita‟s (2007) 

assumption that this effect takes place at the speech planning/phonological encoding 

stage.  

 

Taken together, Kinoshita‟s (2000; Kinoshita & Woollams, 2002; Malouf and 

Kinoshita, 2007) data and interpretation presented above make a convincing case for her 

explanation for the locus of the MOPE. Importantly, by arguing that this effect occurs at 

the speech planning/phonological encoding stage of processing which akin to the 

segment-to-frame association process of the WEAVER (Roelofs, 1997a, 1997b) general 

language production model operates in a serial rightward manner, she was the first 

researcher hinting at the possibility of shared phonological encoding mechanisms for 

these two domains. This argument was thus consistent with that presented by Roelofs 
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(2004) who as described in Chapter 1 (section 1.1.), observed in his form-preparation 

research that relative to corresponding heterogeneous sets (e.g., baby, wapen, leraar – 

Begin-heterogeneous; klaver, varken, bijbel – End-heterogeneous) the naming of both 

words and pictures was significantly faster in Begin-homogeneous sets (e.g., baby, 

bezem, beker) but not in End-homogeneous sets (e.g., klaver, bever, vijver). Based on 

his data, Roelofs (2004) concluded that the results for both target types were consistent 

with processing akin to that occurring at the segment-to-frame association process of 

the WEAVER model. Further, as at this processing stage phonemes are not specified for 

their features, this argument was also in line with the data reported by Roelofs (1999). 

However, the findings from three masked priming studies discussed below are to a large 

extent incompatible with the notion of shared phonological encoding mechanisms for 

both word reading and picture naming for two reasons. Firstly, Schiller (2004, 2008) 

found some differing results for these two target types. Secondly, Lukatela, Eaton and 

Turvey (2001) observed that participants‟ lexical decisions were facilitated when the 

onset of primes and word targets shared all but one of their phonemic features. Both of 

these findings are described and evaluated in more detail in the following sections.  

 

 

 

2.2.8. Schiller’s (2004, 2008) masked priming research 

 

The purpose of Schiller‟s (2004) research was to examine masked priming effects 

whilst manipulating both the degree and position of segmental overlap between primes 

and word targets. In Experiment 1 disyllabic Dutch nouns were primed by five types of 

primes. These were Begin-related (e.g., %%balans%%-BANAAN), First-syllable (e.g., 
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%%ba%%%%%%-BANAAN), End-related (e.g., %propaan%%-BANAAN), Second-

syllable (%%%%naan%%-BANAAN) and finally Control (e.g., %%%%%%%%%%-

BANAAN). The results from this study showed that relative to the Control condition 

the reading of word targets was significantly faster in the Begin-related, First-syllable 

and Second-syllable conditions but not in the End-related condition.  As such, in 

Experiment 1 a shared first syllable between primes and word targets facilitated word 

reading and this effect was independent of the type of prime employed (first syllable vs. 

word prime). However, the same was not true for the end overlap priming conditions 

which showed that facilitation from a shared end segments/syllable between primes and 

targets could only be observed in the absence of mismatching initial segments between 

these two stimuli (Second-syllable condition). 

 

Schiller‟s (2004) Experiment 2 was designed to ascertain whether the facilitation 

observed in masked priming from a shared segment/s between primes and word targets 

is position dependent. In this study the word targets were the same as those employed in 

Experiment 1. This time however, they were primed by the following priming 

conditions: Begin-related (e.g., %%balans%%-BANAAN), Reversed begin-related 

(e.g., %%lansba%%-BANAAN), Reversed first-syllable %%%%%%ba%%-

BANAAN) and Control (e.g., %%%%%%%%%%-BANAAN).  Schiller (2004, 

Experiment 2) hypothesised that if the facilitation from a shared segment/s between 

primes and word targets is position dependent, this effect should only be observed in the 

Begin-related condition. This is because that particular condition represents the only 

one in which the matching segments of these two stimuli correspond to the same 

positions within a word form. If however, this effect can be found regardless of whether 

or not the matching segment/s correspond to the same position/s of these two stimuli, 
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similar facilitory effects should be observed in the Begin-related, Reversed begin-

related and Reversed first-syllable conditions. This is because in all these conditions 

both primes and targets share an equal amount of segments. The data from Experiment 

2 showed that relative to the Control condition word reading was significantly faster in 

the Begin-related condition whereas there was no difference in response latencies 

between the Control condition and both the Reversed begin-related and Reversed first-

syllable conditions. As such, these results confirmed that in masked priming any 

facilitation from matching segment/s between primes and targets is position dependent. 

 

In the final experiment of this series Schiller (2004; Experiment 3) used two types of 

word targets. The first type consisted of words with single consonant onsets (C - onset 

words) whilst the second consisted of two consonants onsets (CC - onset words).  

Further, both types of word targets were primed by three types of primes which were 

First segment (e.g., b%%%%%%%-BALLET, b%%%%%%%-BROEDER), First two 

segments (e.g., ba%%%%%%-BALLET, br%%%%%%-BROEDER) and Control (e.g., 

%%%%%%%%-BALLET, %%%%%%%-BROEDER). Schiller (2004; Experiment 3) 

found that compared to the Control condition the two target types were read 5 ms faster 

in the First segment condition and 14 ms faster in the First two segments condition. 

Importantly though, since in Experiment 3 both target types showed the same facilitory 

effects and these effects increased with the number of shared segments between primes 

and targets, Schiller (2004) concluded that in reading in masked priming the facilitation 

from a matching segment/s between these two stimuli is due to the shared initial 

segment/s and not the shared onset. Consequently, Schiller‟s (2004; Experiment 3) 

findings and conclusions were contrary to those of Kinoshita‟s (2000; Experiments 1 & 

2) for the following reasons. As discussed in the previous section (section 2.2.7.), in her 
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Experiment 1 Kinoshita (2000) found virtually no difference between the One letter 

(e.g., suf-SIB) and Two letters (e.g., sif-SIB) priming conditions whereas in Experiment 

2 she observed facilitation from a shared initial letter between primes and targets only 

for single letter onset (e.g., penny-PASTE) but not for complex (e.g., bingo-BLISS) 

onset word targets. However, there were some major differences between the studies 

conducted by each of these authors. For example, Kinoshita‟s (2000) research was 

conducted in English and further, in the Control conditions she employed unrelated 

non-word primes (Experiment 1) and word primes (Experiment 2) whereas Schiller‟s 

study was conducted in Dutch with his Control conditions consisting of percentage 

signs. Therefore, the discrepancies between Kinoshita‟s (2000; Experiments 1 & 2) and 

Schiller‟s (2004; Experiment 4) research could be due to any of these factors.  

 

In his 2008 follow up research that was also conducted in Dutch, Schiller (2008) set out 

to assess whether as postulated by Forster and Davis (1991), the MOPE occurs during 

processing via the non-lexical route (Coltheart, 1978; Coltheart et al., 2001; Plaut et al., 

1996) or whether it takes place at the speech planning/phonological encoding stage of 

processing (Kinoshita 2000; Kinoshita and Woollams, 2002; Malouf and Kinoshita, 

2007). To this aim the author employed picture targets.  Schiller (2008) suggested that 

since pictures cannot be processed via the non-lexical route, any facilitation from a 

shared onset between primes and picture targets would therefore have to be due to 

processing at the speech planning/phonological encoding stage. In this study Schiller 

(2008) used pictures of simple objects that corresponded to the disyllabic word targets 

he employed in his earlier research (Schiller, 2004; Experiments 1 & 2). Further, each 

picture was primed by two main sets of primes namely, Begin-related (e.g., First-

segment – %b%%%%%%-BANAAN, First-syllable – %ba%%%%%-BANAAN, 
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Whole-word - %beroep%-BANAAN and Control - %%%%%%%%-BANNAN) and 

End related (e.g., Last-segment – %%%%%%n%-BANAAN, Last-syllable - 

%%%naan%-BANAAN, Whole-word - %robijn%-BANAAN and Control - 

%%%%%%%%-BANAAN.  Schiller (2008) found that relative to the Control 

condition picture naming was facilitated in the First-segment, First-syllable and Last-

syllable conditions. However, picture targets were named significantly slower when 

preceded by Whole-word primes and this interference was observed with both Begin 

and End related primes. They were also named significantly slower in the Last-segment 

priming condition but this interfering effect was much smaller than in the other two 

conditions.   

 

As postulated by Schiller (2008), since in his study First-segment primes facilitated 

picture naming whereas Last-segment primes did not, these outcomes confirmed that in 

the former condition a MOPE was observed. Following the argument presented earlier 

that pictures cannot be named via the non-lexical route, Schiller (2008) suggested that 

these results thus argued against Forster and Davis‟ (1991) account for the locus of the 

MOPE. As such, this part of Schiller‟s (2008) data seemed to be in line with Kinoshita‟s 

(2000; Kinoshita & Woollams, 2002; Malouf & Kinoshita, 2007) explanation that this 

effect takes place at the speech planning/phonological encoding stage and occurs in a 

serial rightward manner akin to the segment-to-frame association process of the 

WEAVER language production model. This explanation was thus consistent with the 

results from Roelofs‟ (2004) research and supported Roelofs‟ (2004) notion of shared 

phonological encoding mechanisms for both word reading and picture naming. 
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However some of Schiller‟s (2008) picture naming results differed greatly from those 

obtained in his word reading research (Schiller, 2004). For example, in the Begin-

related Whole-word priming condition (e.g., %beroep%-BANAAN) picture naming was 

inhibited by the brief presentation of the prime whereas in the corresponding priming 

condition in the word reading task the reading of word targets was facilitated. These 

discrepancies were therefore contrary to the notion of shared phonology for these two 

target types. They were also contrary to the data reported by Roelofs (2004) and as such 

required further investigation. The same was true for the outcomes from Lukatela et 

al.‟s (2001) masked priming research described and evaluated below.  

 

 

2.2.9. The role of phonemic feature similarity 

 

In their research that employed the lexical decision task Lukatela, Eaton, Lee & Turvey 

(2001) tested whether the feature description of individual phonemes was important to 

the word recognition processes. They therefore used a mask-prime-target-mask 

sequence to investigate if the priming of a word by a rhyming non-word would depend 

on phonemic feature similarity between the onset of non-word primes and word targets. 

As an example, the authors considered the onset of the prime ZEA to be one phonemic 

feature (just a change in voicing) away from the onset of the target SEA whereas the 

onset of VEA is two features (change in voicing and change in place of articulation) 

away.  

 

They found that lexical decisions were faster when a word target was primed by a 

rhyming non-word whose onset differed from the target‟s onset by just a single 
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phonemic feature compared to primes whose onset differed by more than one phonemic 

feature (i.e., lexical decisions were faster for SEA when primed by ZEA compared to 

VEA). The authors interpreted these results as being consistent with the perspective that 

in reading phonemes are specified for their features. Therefore, the activation of 

phonemes for a specific letter string is governed by matching phonemic feature 

information onto a phoneme (Lukatela et al., 2001). Lukatela et al.‟s (2001) findings 

and conclusions were thus consistent with those of Mulatti et al.‟s (2006) and Ashby et 

al.‟s (2009). As discussed in Chapter 1 (section 1.4.1.3.), these researchers also found 

effects from phonemic feature similarity for word reading. However, effects from 

phonemic feature similarity are contrary and incompatible with the word reading 

models evaluated in Chapter 1 (section 1.4.1) according to which during reading the 

information provided by each letter/grapheme is mapped directly onto its corresponding 

abstract phoneme and this abstract phoneme is then used to access its corresponding 

features.  

 

Further, the results from Lukatela et al.‟s (2001) research were contrary to the findings 

of Grainger and Ferrand (1996) as well as Forster and Davis (1991) that showed an 

absence of a MOPE in the lexical decision task. Since in their related conditions both 

primes and targets shared their onsets and therefore shared all their phonemic features, 

to be consistent with Lukatela et al.‟s (2001) data masked onset priming effects should 

have been found in both studies which as discussed was not the case. However, it might 

be possible that in masked priming, effects from phonemic feature similarity on 

participants‟ lexical decisions are only observable under specific priming conditions. In 

Lukatela et al.‟s (2001) work targets were primed by rhyming non-words in which the 

primes only varied from their corresponding targets by the amount of featural overlap in 



 90 

the onset position. As such, except for the onset position all stimuli employed by 

Lukatela et al. (2001) shared their remaining segments. In the latter two studies 

segmental similarity was limited to the onset position of related primes and targets. 

Consequently, because in the lexical decision task participants are exposed to both word 

and non-word targets, it could be argued that the combination of these two target types 

along with the additional mismatching segments induced noise into the process, the 

resolution of which meant that no onset priming effects were detected in the studies 

conducted by Grainger and Ferrand (1996) and Forster and Davis (1991). By extension, 

it is also conceivable that since in the reading task all targets are words, any 

mismatching segments may well have less of an effect on participants‟ responses thus 

allowing masked onset priming effects to be observed (Forster and Davis, 1991; 

Grainger and Ferrand, 1996). 

 

Importantly, because effects from phonemic feature similarity were found in word 

reading (Ashby et al., 2009; Mulatti et al., 2006) and the lexical decision task (Lukatela 

et al., 2001) whereas these effects were not observed in spoken word production 

(Roelofs, 1999), it is still possible that there are differences in how phonology is 

constructed during both word reading and picture naming.  One of these differences 

might relate to the way in which phonemes are represented in each task; i.e., in word 

reading phonemes may be specified for their phonemic features (Ashby et al., 2009; 

Lukatela et al., 2001; Mulatti et al., 2006) whereas in picture naming they may be 

represented as abstract entities (Roelofs 1999). If so, this would thus argue against the 

notion of shared phonological encoding mechanisms for these two target types. 

However, since the research into effects from phonemic feature similarity in both tasks 

has been conducted using different paradigms it was important to assess the validity of 
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these findings by employing the same experimental procedure for both word reading 

and picture naming. Further, because masked priming effects are thought to be 

automatic, sub-consciously induced and due to processing at the post-lexical level 

(Grainger & Ferrand, 1996) and also because in masked priming studies no verbal 

response to a prime is required, the masked priming experimental procedure was 

deemed the most appropriate to employ when evaluating pre-articulatory effects of 

phonemic features.  

 

The research undertaken in this thesis therefore employed the masked priming paradigm 

to assess the role of phonemic features in both word reading and picture naming. By so 

doing it attempted to establish whether similarities or differences in how phonemes are 

represented in each task might support or invalidate the notion of shared phonological 

encoding mechanisms for both target types (Kinoshita, 2000; Kinoshita & Woollams, 

2002; Malouf & Kinoshita, 2007; Roelofs, 2004). It was anticipated that the data from 

the series of experiments reported herein and the conclusions drawn would then go 

some way towards addressing the two research questions raised in the introduction to 

this thesis namely, what role do phonemic features play in both word reading and 

picture naming and are phonological encoding mechanisms shared for these two 

domains (Roelofs, 2004)?  
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2.3. Conclusions 

 

 

Kinoshita‟s (2000; Kinoshita and Woollams, 2002; Malouf and Kinoshita, 2007) 

investigations into the MOPE led her to conclude that the locus of this effect lies at the 

speech planning/phonological encoding stage of processing, which akin to the segment-

to-frame association process of the WEAVER language production model occurs in a 

serial rightward manner. This conclusion was thus consistent with that of Roelofs‟ 

(2004) who also argued that phonological encoding mechanisms for both word reading 

and picture naming might well be shared from that stage. Further, because phonemes at 

the segment-to-frame association stage of WEAVER are represented as abstract entities 

and are therefore not specified for their features, Roelofs‟ (1999) observation of 

preparation benefits for spoken word production in homogeneous sets that fully shared 

their onsets but not in homogeneous sets in which these onsets shared all but one of 

their phonemic features was also in line with his 2004 conclusion. In contrast to 

Roelofs‟ (2004) findings however, masked priming research conducted by Schiller 

(2004, 2008) showed conflicting results for word reading and picture naming that 

depended on the type of prime employed. Importantly, he demonstrated that whilst 

word reading was facilitated by the brief presentation of word primes in which primes 

and targets shared their onset, the corresponding priming condition for pictures 

interfered with target naming. This discrepancy required further investigation. 

Concerning the role of phonemic features and again in contrast to Roelofs‟ (1999) data 

in his language production study, Lukatela et al.(2001) found masked priming effects 

from featural similarity between the onsets of non-word primes and word targets in the 

lexical decision task. Lukatela et al.‟s (2001) observations suggest that in word reading 
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phonemic features might play a more distinct role than is currently considered in the 

word reading models described and evaluated in Chapter 1 (section 1.4.). As discussed 

throughout this chapter the masked priming paradigm reflects automatic and 

subconsciously driven temporary changes in the cognitive system (e.g., Grainger and 

Ferrand, 1996). Importantly, the findings of Lukatela et al. (2001) also suggest that this 

paradigm is sensitive to manipulations of phonemic feature similarity between primes 

and targets. Given the discrepancy in results from phonemic feature studies for word 

reading and language production that were conducted using different paradigms, it was 

important to assess the validity of these findings using a single experimental paradigm 

for both tasks. Consequently, the masked priming paradigm was considered to be the 

most appropriate one to employ to further assess the role of phonemic features in both 

word reading and picture naming. By so doing, it was anticipated that important new 

empirical evidence would become available to determine whether features are involved 

in either task during phonological encoding that could then support or invalidate the 

notion of shared phonological encoding mechanisms for these two domains (Kinoshita, 

2000; Kinoshita & Woollams, 2002; Malouf & Kinoshita, 2007, Roelofs, 2004).  
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CHAPTER 3: General method 

 

3.1. Overview 

 

The purpose of this programme of research was to evaluate phonological encoding 

processes in English for both word reading and picture naming. This was done by 

manipulating phonemic feature similarity between primes and targets using the masked 

priming paradigm. A total of eight experiments were conducted. Apart from a few 

exceptions which are discussed throughout this chapter, the experimental method 

employed was very similar across these experiments. Therefore, to avoid repetitions this 

method is described below. To allow for more direct comparisons to Schiller‟s (2004, 

2008) word reading and picture naming results that were described in Chapter 2, the 

procedure used was in large part consistent with the one he employed. However, where 

differences occurred these differences and the motivations for them are highlighted and 

explained in the appropriate sections that follow.  

 

 

3.2. Participants 

 

 

Based on Schiller‟s (2004) observation of a masked priming effect size in word reading 

from matching single segments between primes and targets that varied between 5 and 

10 ms, it was decided to use the lower boundary (5 ms) of this effect size to calculate 

power. This was done prior to the commencement of the experiment work reported 
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herein. As discussed in the following section of this chapter, in both the word reading 

and picture naming tasks of this series of experiments and akin to Schiller‟s (2004, 

2008) research, participants were required to name stimuli that were presented in four 

separate blocks. However, in Experiment 1 participants were asked to name stimuli 

from just one of the four blocks. This meant that there were fewer observations per 

participants in Experiment 1 compared to the other experiments which therefore 

reduced power in that experiment. Consequently, to increase power the number of 

participants originally employed in Experiment 1 was doubled.   All participants who 

took part in this research were student volunteers from the University of East London, 

some of whom participated in exchange for course credit. They were all monolingual 

native English speakers who had normal or corrected-to-normal vision. None of the 

participants took part in more than one experiment.  

 

 

3.3. Design 

 

Even though Schiller (2004, 2008) examined both word reading and picture naming 

using the same stimuli, he in fact assessed each task in separate studies, with his picture 

naming research (Schiller, 2008) being a follow-up to his earlier word reading 

investigation (Schiller, 2004). Given that the purpose of the research undertaken in this 

thesis was to examine both of these tasks together, it was therefore important to test 

participants‟ naming responses to each target type within the same experiment. By so 

doing, a more accurate assessment as to the interactions between these two tasks and the 

priming conditions employed could be made.  However, to be consistent with Schiller 

(2004, 2008), in each experiment participants were required to either read aloud words 
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or name pictures but not to do both. The main aim of this experimental work was to 

examine naming performance by manipulating phonemic feature similarity between 

primes and targets. Consequently, the principles used to construct both the Feature 

priming condition (e.g., zea-SEA – in which the onsets of both primes and targets 

shared all but one of their phonemic features) as well as the Unrelated priming 

condition  (e.g., vea-SEA – in which these onsets differed by at least two phonemic 

features) from Lukatela et al.‟s (2001) research were used to construct the equivalent 

conditions in this series of experiments. Further and as discussed in Chapter 2 the two 

critical priming conditions from Schiller‟s (2004, 2008) studies (i.e., Identical – e.g.,  

%beroep%-BANAAN - in which the onsets of primes and targets were identical and 

thus shared all their phonemic features, and Control – e.g., %%%%%%%%-BANAAN 

– that consisted of percentage signs) formed the basis for constructing primes in both 

the equivalent Identical and Control conditions in these experiments. To that extent 

therefore, the priming conditions employed in this series of experiments were derived 

by combining those used in both Lukatela et al.‟s (2001) and Schiller‟s (2004, 2008) 

research. As such, in this research a 2 (Task: word reading vs. picture naming) x 4 

(Priming Condition: Identical, Feature, Unrelated or Control) mixed factorial design 

was used with the Task as a between-participants factor and Priming Condition as a 

within-participants factor. In all experiments, each target picture or target word was 

preceded by one of four primes. In Experiments 1, 2, 3 and 7 in which featural 

similarity in the initial segment position was manipulated, a target word or picture such 

as BELT in Experiment 2 (in which word primes were used) for example, was preceded 

by „bunk‟ in the Identical, „punk‟ in the Feature, „junk‟ in the Unrelated and „%%%%‟ 

in the Control conditions.  Experiments 4, 5, 6, and 8 were designed to evaluate the 

effects of phonemic feature similarity in the end segment position. Therefore, for a 
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target word or picture such as BAT in Experiment 5 (that again employed word primes) 

for example, the primes were „cot‟ in the Identical, „cod‟ in the Feature, „con‟ in the 

Unrelated and „%%%‟ in the Control conditions. More information that details exactly 

how these four priming conditions were constructed for each experiment is provided in 

the following section (section 3.3.). 

 

Except for Experiment 1 in which due to an oversight participants were shown only one 

out of four blocks, in the remaining experiments pictures or printed words were 

presented for naming in 4 separate blocks consisting of six practise stimuli and the 

targets. Although practise stimuli were not included in Schiller‟s (2004, 2008) research, 

it was anticipated that when presented with an experimental block participants might 

sometimes fail to respond adequately to the first two or three targets, which was in fact 

observed during the data collection process. Therefore, the inclusion of such stimuli at 

the beginning of each block insured that valuable data was not lost. Also, to allow for 

more direct comparisons between the results obtained with each prime type (i.e., single 

segment, word and non-word – more information on prime types is provided in section 

3.3.), it was important to attempt to ensure that the same word and picture targets were 

used across the initial overlap experiments (Experiments 1 -3) as well as the end overlap 

experiments (Experiments 4 – 6). However, due to a limitation in prime choices this 

was not always possible to achieve although best efforts were made. Therefore, the 36 

word and picture targets used in Experiment 1 were reduced to 32 in both Experiments 

2 and 3. The same was true for the end overlap experiments in which the 28 targets 

employed in Experiment 4 were reduced to 15 in Experiments 5 and 6. It should be 

noted that in Experiment 7 the stimuli from Experiment 3 were used whereas 

Experiment 8 employed the stimuli from Experiment 6. The reason for doing so is 
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explained in Chapter 6. As such, the number of targets varied across some of these 

experiments. Further, in all of the experiments participants named either only pictures 

or only printed words. In every block there was an equal number of targets per priming 

condition (e.g., for the 36 targets employed in Experiment 1 there were 9 targets per 

condition). Each target appeared once within a single block and the priming condition 

for that target was different in each block. If for example, in the first block a target word 

or picture such as „BELT‟ was primed by the Unrelated prime (e.g., junk), in the next 

block it was primed by the Feature prime (e.g., punk) whereas in the third block the 

prime was the Identical prime (e.g., bunk) and in the final block it was the Control (e.g., 

%%%%). Therefore, all targets appeared once in each condition across the experiment. 

The dependent variables were naming latency and error scores.  

 

 

3.4. Stimuli 

 

In all eight experiments two target types were used namely, pictures and printed words. 

Picture stimuli consisted of line drawings of simple objects obtained from the Centre for 

Research in Language. Word stimuli were the printed names of these objects. During 

the segment-to-frame association process of WEAVER as soon as the first syllable of a 

disyllabic input or the single syllable of a monosyllabic input has been encoded, this 

information then spreads to the phonetic encoding stage at which point the articulatory 

gestures corresponding to that input are activated. Following this working assumption 

of WEAVER it could therefore be suggested that the results observed by Schiller (2004, 

2008) for his disyllabic word targets and their corresponding pictures might have 

reflected an interaction between the phonological and phonetic encoding stages of 
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processing. This is because the second syllable of the word form might still be 

undergoing processing at the phonological encoding stage whilst the first syllable is 

being phonetically encoded. Consequently, to control for such a possibility this research 

employed only monosyllabic word targets.  They were all concrete nouns of 3 or 4 

characters in length and had regular spelling-to-sound correspondence. The decision to 

employ regular rather than irregular/exception word targets was based on the outcomes 

from Forster and Davis‟ (1991; Experiment 4) as well as Kinoshita and Woollams‟ 

(2002; Experiments 1) research who both (as discussed in Chapter 2, sections 2.2.6. and 

2.2.7., respectively) found a MOPE only for regular but not exception word targets. 

Further, since in her study (that was also reviewed in the preceding chapter) Kinoshita 

(2000; Experiment 2) found facilitation from a shared initial segment between prime 

and target only for single (e.g., penny-PASTE) but not for complex (e.g., bingo-BLISS) 

onset word targets whereas in Schiller‟s (2004; Experiment 3) research this effect was 

observed with both target types, it was difficult to predict how complex onset word 

targets would affect the outcomes from this experimental work. As such, the research 

reported herein employed only single onset word targets. Thus in Experiments 1, 2, 3 

and 7 word targets contained only a single-letter consonant onset.  To be consistent with 

the initial overlap experiments, in Experiments 4, 5, 6 and 8 they consisted of a single-

letter consonant coda. Both target types were presented in digitized form in the middle 

of a computer screen, in black on white background. The average target picture size was 

2.42 cm wide x 2.25 cm high (area of vision: 2.31° x 2.15° with participants seated 60 

cms from the screen). Printed words were presented in size 14 Courier font (visual angle 

‹2°).   
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Schiller (2004, 2008) found a MOPE for both word reading and picture naming with 

matching single segment onset primes (e.g., %b%%%%%%-BANAAN) whereas with 

word primes that shared their onsets with targets (e.g., %beroep%-BANAAN) he found 

contrasting effects with the observation of a MOPE for word reading and interference 

for picture naming. As such, it was important to firstly validate these findings and also 

to examine more directly how different types of primes might affect naming in these 

two tasks. Therefore, in this programme of research three main prime types were 

employed. These were: single segment, word and non-word primes. Further, consistent 

with the targets, the word and non-word primes had regular spelling-to-sound 

correspondence. Additionally, akin to the targets in Experiments 1, 2, 3 and 7 they 

contained only a single-letter consonant onset whereas in Experiments 4, 5, 6 and 8 they 

consisted of a single-letter consonant coda. They were presented in black on white 

background in size 14 Courier font (visual angle ‹2°). The primes were generated in the 

following manner. For the Identical condition and akin to Schiller (2004, 2008), the 

initial or end segment was identical for both prime and target. For the Feature condition 

the initial or end segment was matched with the initial or end segment of the target so 

that they shared all their phonemic features except for voicing. In the Unrelated 

condition the initial or end segment was mismatched by at least two phonemic features. 

The choice of segments in both the Feature and Unrelated conditions was closely 

modelled on those employed by Lukatela et al. (2001) who contrary to Roelofs (1999) 

used a broader range of voiced-voiceless phoneme pairs (b-p, c-z, d-t, f-v, g-k, s-z 

versus b-p, d-t, v-f, respectively). The word primes and their targets were semantically 

unrelated. Again, consistent with Lukatela et al. (2001) the remaining segments of both 

word and non-word primes in the Identical, Feature and Unrelated conditions were the 

same across these priming conditions thereby controlling for any confounding variables. 
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This would thus allow for any effects due to phonemic feature similarity between the 

corresponding segments of primes and targets to be fully expressed. However, in 

contrast to Lukatela et al. (2001) these remaining segments were different to the 

corresponding segments of their targets. This aspect of stimuli choice was adopted from 

Schiller‟s (2004, 2008) research to control for any additional effects due to form and/or 

rhyme priming. Also, each word and non-word prime was constructed to be either 3 or 4 

characters in length to match the number of characters of the target.  The same was true 

for the single segment onset and coda primes in which akin to Schiller (2004, 2008), 

percentage signs were used in the end or initial positions of these primes (i.e., b%%% or 

%%%b) to ensure that their total number of characters equalled that of their 

corresponding targets. The Control primes consisted of either 3 or 4 percentage signs. 

This priming condition was used because it was the same as the main control condition 

employed by Schiller (2004, 2008). Therefore, its inclusion would allow for direct 

comparisons between Schiller‟s (2004, 2008) results and those observed in this 

experimental work. The complete lists of targets and priming conditions (Identical, 

Feature and Unrelated) employed in each experiment are included in Appendix. These 

three priming conditions were controlled across a number of variables that are listed in 

the Stimuli section of each corresponding experiment. One-Way Independent ANOVAs 

comparing single segment, word and non-word primes in the Identical, Feature and 

Unrelated priming conditions on each of the control variables indicated that there were 

no significant differences, all ps >.05.  
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3.5. Procedure 

 

 

To comply with the requirements of the British Psychology Society Code of Ethics and 

Conduct (2009), this research program was approved by the Research Ethics Committee 

of the University of East London. Also in line with this code, each participant was 

debriefed about the nature of the experiment. They were informed that they were taking 

part in an experiment designed to measure their speed when naming well known objects 

and reading simple words. They were then asked to read the written instructions 

provided that included details on the issue of consent and their right to withdraw from 

the experiment at any time. A copy of these written instructions is included in Appendix 

A. Next, they were asked if they had any questions. If necessary, the examiner verbally 

clarified any uncertainties. Additionally, participants were reassured that their names 

would remain confidential and would be stored separately from their data. Finally, they 

were asked to state their age and were provided with a number under which their data 

was recorded to aid the withdrawal process if they decided to withdraw from the 

experiment at a later data.  

 

During each of the experiments participants were randomly assigned to either the word 

reading or picture naming task. Participants were assessed individually by a single 

investigator. They were seated approximately 60 cm away from a 17-inch computer 

monitor. The refresh rate of the computer monitor was 75Hz therefore; one refresh 

cycle (one tick) was 13.3 ms. In keeping with Schiller (2004, 2008), at the beginning of 

each trial in Experiments 1 to 6 a fixation cross (+) was displayed in the middle of the 

screen for 37 ticks (492 ms). Next a forward mask (a row of #‟s) was shown for 37 ticks 
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(492 ms) after which the prime (in lowercase) was displayed for 4 ticks (53 ms). This 

was followed by a backward mask (a row of #‟s) for 1 tick (13 ms). Finally, the target 

word (in uppercase) or picture was displayed until a naming response was given or 150 

ticks (1995 ms) elapsed.  When a response was given there was an interval of 75 ticks 

(998 ms) before the beginning of the next trial.  

 

However, in Experiments 7 and 8 in which the masked sandwich priming paradigm 

(e.g., Lupker & Davis, 2009) was employed (the reason for using this paradigm is 

provided in the Introduction to Chapter 6), the experimental procedure was as follows. 

Each trial began with the display, in the middle of the screen, of a fixation point (+) for 

37 ticks (492 ms). Next a forward mask (a row of #‟s) was shown for 37 ticks (492 ms) 

after which the target word (in lowercase) was displayed for 3 ticks (40 ms). Then a 

backward mask (a row of #‟s) was shown for 1 tick (13 ms). After the backward mask 

the prime (in lowercase) was displayed for 4 ticks (53 ms). This was followed by 

another backward mask (a row of #‟s) for 1 tick (13 ms). Finally, the target word (in 

uppercase) or picture was displayed until a naming response was given or 150 ticks 

(1995 ms) elapsed.  As in the other experiments, when a response was given there was 

an interval of 75 ticks (998 ms) before the beginning of the next trial. To reduce 

flickering on the screen, in all of the experiments reported herein, the forward masks, 

primes, backward masks and the target words were matched on the number of 

characters (e.g., ### - bin - ### - BAT). The sequence of experimental trials was 

controlled by E-Prime software (Schneider, Eschman & Zuccolotto, 2002) with naming 

latencies recorded via participants speaking into a hand-held microphone connected to a 

voice key and the software. Prior to collecting data each experiment was pilot tested. 

Further, in consideration of the suggestion made by Forster and Forster (2003) that E-
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Prime might not be reliable because the display of an item using E-Prime can 

sometimes be delayed by 1 tick (13 ms), in each experiment the software set-up was 

designed to allow for an assessment of the duration of all the above described items in 

every trial. This assessment was performed both after a pilot test and following the 

experiment proper. An evaluation of display timings and durations showed that in all of 

the experiments the E-Prime software preformed with 100% accuracy in every trial.  

 

As with Schiller (2008), the picture naming task was divided into three stages. In stage 

one all of the picture targets were displayed individually to participants in the middle of 

the computer screen with the picture name printed underneath. Participants were 

instructed to look at the pictures and their printed names. Stage two was a practice trial 

during which each picture was presented once in a random order with participants asked 

to name each picture. Any incorrect response was corrected by the experimenter. In the 

actual experiment (stage 3), in Experiments 2 to 8 participants were required to name 

stimuli presented in 4 blocks. However, in Experiment 1 each participant was asked to 

name stimuli presented in just a single block. For Experiments 2 to 8 the order in which 

the blocks were presented was counterbalanced between-participants. They were then 

required to name all the pictures in a block as quickly and as accurately as possible. All 

participants‟ responses were tape-recorded.  Any errors or hesitations were noted by the 

experimenter. In each block, the six practice stimuli were shown first in random order. 

They were then followed by the targets which were also presented in random order. 

Akin to Schiller (2004), the word reading task consisted only of stage 3. In both the 

picture naming and word reading tasks participants were instructed to focus their 

attention on the fixation point at all times. The presence of the prime was not 

mentioned. After the conclusion of each experiment participants were asked if they had 
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noticed anything unusual during the experiment. This was done to assess the visibility 

of the primes. 

 

\ 

3.6. Analysis 

 

The naming latencies in milliseconds (ms) and error scores for naming pictures and 

reading their names in each priming condition were collected from all the participants. 

The error data was divided in to two categories namely; technical errors and errors. The 

technical errors included failure of the microphone to pick up a response and triggering 

the voice key by making unnecessary sounds. The errors included incorrect response, 

disfluencies and mis-pronunciation of a word. Both the technical errors and errors were 

eliminated from the latency analyses. Also, only the errors were included in the error 

analyses, thereby allowing for a more direct assessment of effects that the employed 

experimental manipulation had on participants‟ error scores. To reduce the effects of 

outliers the cut-off procedure adopted by Kinoshita (2000) was used herein to trim the 

data. The mean reaction time for each participant in each priming condition was 

calculated and observations more than two standard deviations above and below each 

mean were trimmed. Because in Schiller‟s (2004, 2008) research different trimming 

criteria were used for word reading to those employed in trimming the picture naming 

data (cut-off point below 300 ms and above 1000 ms, cut-off point below 200 ms and 

above 900 ms, respectively), it could be suggested that his data treatment might have 

contributed to the variation of results for these two tasks. Also, considering that picture 

naming generally takes longer than word reading to accomplish, it was unclear why 

these cut-off points were so low for pictures and yet so high for words.  Consequently, a 



 106 

decision was made to use Kinoshita‟s (2000) data trimming method that allowed for the 

same treatment of both data sets.  Finally, if exploratory data analysis revealed the 

presence of outliers, the results with and without outliers were compared and if similar, 

the former were reported. The remaining data was analysed by participants (F1) using a 

2 x 4 between-participants ANOVA and by items (F2) using a 2 x 4 within-items 

ANOVA. The alpha level was set at .05. Following the ANOVA analyses and based on 

the findings from Lukatela et al.‟s (2001) and Schiller‟s (2004, 2008) research, two 

planned comparisons were conducted. These were between the Identical and Control 

conditions and also between the Feature and Unrelated conditions. The remaining 

comparisons were accomplished using pair-wise comparison tests (Bonferroni 

adjusted).  
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CHAPTER 4: Masked priming effects when manipulating 

phonemic features in the initial segment position of 

monosyllabic words and pictures 

 

 

4.1. Introduction 

 

 

The aim of the three experiments (Experiments 1 – 3) reported in this chapter was to 

evaluate the role of phonemic features in both word reading and picture naming. This 

was done by employing the masked priming paradigm whilst manipulating featural 

similarity in the initial/onset position of primes with both word and picture targets. The 

reasons for doing so were as follows. Kinoshita‟s (2000; Kinoshita & Woollams, 2002; 

Malouf & Kinoshita, 2007) investigation of the MOPE led her to conclude that the 

locus of this effect lies at the speech planning/phonological encoding stage of 

processing which akin to the segment-to-frame association process of the WEAVER 

general language production model operates in a serial rightward manner. Her 

conclusion thus implied that this processing stage might be shared for both word 

reading and picture naming. This conclusion was also consistent with that of Roelofs‟ 

(2004). Following his observation of preparation benefits for both target types in begin-

homogeneous sets (e.g., leraar, lepel, lelie) but not in end-homogeneous sets (e.g., 

bijbel, label, sabel), Roelofs (2004) postulated that his results were in line with the 

working assumptions of WEAVER‟s segment-to-frame association process and were 

due to sequential rightward processing at that stage. Since in his research the same 
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effects were observed for both tasks, Roelofs (2004) suggested that phonological 

encoding mechanisms might therefore be shared between general language production 

models such as WEAVER and word reading models such as DRC (Coltheart et.al., 

2001).    

 

At the segment-to-frame association stage of WEAVER phonemes are represented as 

abstract entities. As such, they are not specified for their features. Consequently, to be 

consistent with this model the experimental manipulation of phonemic features during 

language production tasks would not expect to yield effects. The results of Roelofs 

(1999) supported this working assumption of WEAVER when he observed in both 

implicit-priming and form-preparation studies that pictures were named significantly 

faster in Segments-homogenous sets  (e.g., boek, bijl, beer) but not in Features-

homogenous sets (e.g., pauw, bijl, boek). Given that this author found preparation 

benefits when pictures within a given set shared their phonemes in the onset position 

whereas there was no effect from shared phonemic features, his observations were thus 

in line with WEAVER. However, masked priming research conducted by Lukatela et al. 

(2001) showed that in the lexical decision task, participants‟ lexical decisions were 

faster when the onsets of primes and word targets shared all but one of their phonemic 

features (e.g., zea-SEA) relative to when these onsets differed by at least two phonemic 

features (e.g., vea-SEA). As such, Lukatela et. al.‟s (2001) results were consistent with 

those reported by Ashby et al. (2009) and Mulatti et al. (2006). These researchers thus 

suggested that phonemes might be defined for their features during word reading.  

However, a featural account of word reading would not only be contrary to WEAVER, 

it would also be incompatible with the notion of shared phonological encoding 
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mechanisms for both word reading and picture naming (Kinoshita, 2000; Kinoshita & 

Woollams, 2002; Malouf & Kinoshita, 2007; Roelofs, 2004). 

 

An additional problem for the likelihood of shared phonology for these two domains 

arose from the outcomes of Schiller‟s (2004, 2008) masked priming studies. In his 

research, Schiller (2004, 2008) found that relative to controls (e.g., %%%%%%%%-

BANAAN) both word and picture targets were named significantly faster when they 

were primed by related single segment onset primes (e.g., %b%%%%%%-BANAAN). 

However, when word primes (e.g., %beroep%-BANAAN) were employed the pattern 

of observed effects differed across the two tasks, with facilitation found in word reading 

whereas picture naming was inhibited. The latter finding thus implied that there might 

be differences in how phonological encoding occurs in each domain.  

 

Finally, because Schiller (2004) found a MOPE in word reading with both single 

segment and word primes that shared their onsets with targets whereas in picture 

naming (Schiller, 2008) this effect was only present with single segment primes and not 

with word primes that in fact caused interference, it was important to assess whether 

any observed effects would be congruent not only across the two tasks but also with 

different types of primes. Consequently, in the experiments reported in this chapter 

three main types of primes were employed. These were: single segment, word and non-

word primes (Experiments 1 - 3, respectively).  
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4.2. Experiment 1 - Single segment onset primes 

 

 

4.2.1. Introduction 

 

Based on Schiller‟s (2004, 2008) observation of a MOPE for both word reading and 

picture naming with single segment onset primes in the Identical condition compared to 

the Control condition (e.g., %b%%%%%%-BANAAN versus %%%%%%%%-

BANAAN), this research series began by employing similar type primes in Experiment 

1. There were two reasons for doing so. Firstly, it was important to ensure that the E-

Prime software to be used throughout this research did not have unforeseen errors in its 

set-up and/or programming and/or functioning that were capable of polluting any 

collected data. Whilst software malfunctions were thought to be unlikely because as 

discussed in Chapter 3, each experiment was pilot tested to assess software accuracy 

prior to running actual trials and also because the timing and duration of the display of 

all items within an actual trial were to be assessed on post-hoc basis, it was still 

important to ensure that the data collection process was reliable and able to demonstrate 

observations consistent with established published research. Given that Schiller‟s (2004, 

2008) findings of a MOPE in the Identical condition above were robust for both word 

reading and picture naming, a replication of his results would not only serve to validate 

those particular results but would also provide an assessment as to reliability of the 

experimental set-up for this research series. Secondly, a replication of Schiller‟s (2004, 

2008) results between the Identical and Control conditions would then provide a 

baseline from which the presence or absence of effects from phonemic feature similarity 
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could be compared. In Experiment 1 therefore, both word and picture targets were 

primed by single segment onset primes.  

 

Consistent with Schiller‟s (2004, 2008) data when he used single segment onset primes, 

it was predicted that in Experiment 1 both word and picture targets would be named 

significantly faster in the Identical condition (e.g., b%%%-BELT) relative to the 

Control condition (e.g., %%%%-BELT) thereby showing a MOPE. If however, 

Lukatela et al.‟s (2001) argument that word reading is driven by phonemic features is 

correct, word targets would also be read significantly faster in the Feature condition 

(e.g., p%%%-BELT) in which the onsets of primes and targets shared all but one of 

their phonemic features compared to the Unrelated condition (e.g., j%%%-BELT) in 

which these onsets differed by at least two phonemic features. Finally, since the 

inclusion of both the Identical and Feature as well as the Unrelated and Control 

conditions within the same experiment was novel and as Schiller (2004, 2008) was the 

first researcher to employ single segment primes in the investigation of the MOPE, it 

remained to be seen whether the other comparisons (i.e., Identical vs. Feature, Identical 

vs. Unrelated, Feature vs. Control and Unrelated vs. Control) would reveal effects.    

 

 

4.2.2. Method 

 

 

The experimental method employed in this experiment adhered largely to that discussed 

in Chapter 3. In this section therefore only the aspects of the method that were specific 

to Experiment 1 are described.  
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4.2.2.1. Participants 

 

 

One hundred and four participants took part in this experiment. Their mean age was 

26.92 and ranged from 18 to 45 years. 

 

 

4.2.2.2. Design and Stimuli 

 

 

Each word or picture target (e.g., BELT) was preceded by one of four primes: an 

Identical (e.g., b%%%), a Feature (e.g., p%%%), an Unrelated (e.g., j%%%) and a 

Control prime (e.g., %%%%). The experiment consisted of four blocks per target type 

(word or picture) within which each of the 38 (6 practice + 32 target) stimuli employed 

was presented only once. Also, within a block there were 8 targets per priming 

condition (8 x 4 = 32). The priming conditions for each target were varied across blocks 

so that all targets were eventually exposed to each of the four priming conditions. In all 

there was a total of 304 trials (38 words x 4 blocks and 38 pictures x 4 blocks) in this 

experiment with each participants required to name either words or pictures presented in 

a single block (38 trials). The average written frequency of the word targets was 36.40 

per million whereas the average spoken frequency of the picture targets was 15.10 per 

million. Both of these means were based on the English version of the CELEX database 

(Baayen, Piepenbrock & Gulikers, 1995). Table 1 displays the means for each control 

variable of the single segment onset primes (i.e. Identical, Feature and Unrelated). A 
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complete list of targets and single segment onset primes in the Identical, Feature and 

Unrelated priming conditions is included in Appendix B.  

 

 

Table 1 

Means for the control variables of the single segment onset primes in the Identical, 

Feature and Unrelated conditions of Experiment 1. 

 

                                                                                           

                                                                                           Priming Conditions 
 

Control variables 
 

Identical 
 

Feature 
 

Unrelated 

 

Number of constrained unigrams 

Constrained unigrams frequency 

     

    44.09 

  105.25 

   

  29.49   

       71.89 

   

   32.97   

       72.32 
 

Note. The above means are based on the English version of the CELEX (1995) database (Medler & 

Binder, 2005) and refer to how often a word form is encountered in 1,000,000 presentations of text. 

Constrained unigram = first letter. 

 

 

 

4.2.2.3. Procedure 

 

 

Post experimental interviews revealed that four participants noticed seeing something 

before the presentation of the targets but were unable to identify what they had seen.  
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4.2.3. Results  

 

 

A total of 4.06% error (0.75% technical errors + 3.31% errors) and 4.84 % trimmed data 

were removed from the latency analyses. Further, the data from four participants (two in 

word reading and two in picture naming) consisted of outliers. However, since the 

pattern of observed results remained the same in the analyses both with and without 

outliers, the former were reported herein. Mean naming latencies, standard deviations, 

percentage errors and mean priming effects for both word reading and picture naming in 

all four priming conditions are displayed in Table 2.  

 

 

 

Table 2 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 1.    

                                  

                                                                                                Task 

   Word reading Picture naming 

Priming condition (example)   RT SD %E   PE RT SD %E   PE     

Identical (b%%% - BELT)  490.08 58.11 1.0     8 625.11 72.69 3.6    10 

Feature (p%%% - BELT)  499.90 61.14 2.2    -2 643.48 88.04 7.2     -8 

Unrelated (j%%% - BELT)  498.78 68.72 0.7    -1 636.40 92.68 4.8     -1 

Control (%%%% - BELT)  497.80 54.62 0.7 635.11 89.78 6.3 
 

Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 
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For naming latency, the main effect of Task was significant, F1(1,102) = 101.03, MSE 

= 19711.80, p < .001, η² = .50; F2(1,31) = 617.54, MSE = 1977.62, p < .001, η² = .95, 

as was the main effect of Priming Condition, F1(3,306) = 4.32, MSE = 847.19, p = 

.005, η² = .04; F2(3,93) = 4.37, MSE = 536.36, p = .006, η² = .12. The interaction 

between Task and Priming Condition was not significant, F1(3,306) = .41, p > .05; 

F2(3,93) = .20, MSE = 928.34, p > .05. Planned comparisons showed that the response 

latencies were significantly shorter in the Identical condition compared to the Control 

condition [t1(103) = 2.15, p = .034; t2(31) = 2.24, p = .033] whereas there was no 

significant difference between the Feature and Unrelated conditions; both ps > .05.  

Pairwise comparisons (Bonferroni adjusted) revealed that response latencies were 

significantly shorter in the Identical condition relative to the Feature condition [t1(103) 

= 14.09, p = .004; t2(31) = 14.34, p = .012]. They were also shorter in the Identical 

condition compared to the Unrelated condition. However, this difference was not 

statistically significant; both ps > .05. Finally, there was no significant difference 

between the Feature and Control as well as the Unrelated and Control conditions; all ps 

> .05. 

 

The overall error rate in the word reading task was 1.1%. Therefore, only the errors in 

the picture naming task were analyzed. However, they yielded no significant effects; all 

ps > .05. 
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4.2.4. Discussion 

 

 

The results from Experiment 1 showed a significant main effect of Task and Priming 

Condition. However, the interaction between them was not significant. The response 

latencies in the Identical condition were shorter than in all the other (i.e., Feature, 

Unrelated and Control) conditions. However, only the differences between the Identical 

and Control as well as the Identical and Feature conditions were statistically significant 

but not between the Identical and Unrelated conditions. Further, there was no significant 

difference in the response latencies between the Feature and Unrelated, Feature and 

Control as well as Unrelated and Control conditions. Finally, the error data revealed that 

even though more errors were made in the picture naming task, these error scores were 

unaffected by the priming conditions employed. 

  

The response latency outcomes from Experiment 1 were thus consistent with the 

predictions based on Schiller‟s (2004, 2008) results when both word and picture targets 

were primed by related single segment onset primes (e.g., b%%%-BELT). However, 

since in word reading no significant difference was found between the Feature and 

Unrelated conditions (e.g., p%%%-BELT vs. j%%%-BELT), these results were 

contrary to those obtained in the lexical decision task by Lukatela et al. (2001). Whilst 

at first glance the data from Experiment 1 seemed to be in line with the notion of shared 

phonological encoding mechanisms for both word reading and picture naming 

(Kinoshita, 2000; Kinoshita & Woollams, 2002; Malouf & Kinoshita, 2007; Roelofs, 

2004), an alternative explanation that could equally well account for the data is as 

follows. Because this experiment employed single segment onsets primes which 
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consistent with the dual-route theoretical framework (e.g., DRC, Coltheart et al., 2001) 

can only be processed via the non-lexical route, it is possible that in the word reading 

task the facilitation observed in the Identical condition compared to the Control 

condition (e.g., b%%%-BELT vs. %%%%-BELT) was due to serial rightward 

processing of both prime and target via this route. However, since pictures cannot be 

processed by the non-lexical route (Schiller, 2008), the picture naming data could be 

accounted for with reference to serial rightward processing at the segment-to-frame 

association stage of WEAVER.  The similarity that exists in processing via the non-

lexical route and also during processing at the segment-to-frame association stage (i.e., 

both processes occur in a sequential manner) could then explain the observed 

congruency of results for both word reading and picture naming.  As such, based on the 

data from Experiment 1 no firm conclusions regarding the notion of shared phonology 

for these two domains could be reached.  

 

Further, it was unclear why word and picture targets were named significantly faster in 

the Identical condition relative to both the Feature and Control conditions but not 

compared to the Unrelated condition. Numerically, in word reading the differences 

between the Identical and other conditions were very similar (i.e., 10 ms –Feature, 9 ms 

– Unrelated, 8 ms – Control conditions). The same was true for the differences between 

the Identical and both the Unrelated and Control conditions in the picture naming task 

(i.e, 11 ms and 10 ms, respectively). However, in the latter task picture targets were 

named 18 ms faster in the Identical condition relative to the Feature condition. It is 

therefore possible that the observed effect between these two conditions for both target 

types was primarily driven by the picture naming task. However, because in Experiment 

1 there was no significant interaction between target type and priming condition this 
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possibility could not be confirmed. Importantly and as just mentioned, the largest 

difference in naming performance across conditions occurred between the Identical and 

Feature conditions in the picture naming task. This suggests that phonemic feature 

similarity might in fact interfere with the picture naming process. If so, this would be 

incompatible with the perspective that these observed effects are caused during 

processing at the segment-to-frame association stage of WEAVER because in 

WEAVER at that stage phonemes are not specified for their features. Consequently, it 

was interesting to examine whether this inhibitory effect would also be observed with 

word primes that were employed in the following experiment. 

 

 

 

4.3. Experiment 2 – Word primes 

 

4.3.1. Introduction 

 

Experiment 2 was conducted as a follow-up to Experiment 1 and was motivated by 

Schiller‟s (2004, 2008) contrasting results for word reading and picture naming when he 

employed word primes that shared their onsets with targets (e.g., %beroep%-

BANAAN). In this priming condition Schiller (2004, 2008) found facilitation only in 

the word reading task whereas the naming of picture targets was in fact inhibited. 

Consequently, it was important to firstly establish the validity of these findings and 

secondly, to examine in more detail how word primes affect naming in the masked 

priming paradigm. Further, even though in Experiment 1 there was no observed effect 
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for word reading from phonemic feature similarly (i.e., Feature condition versus 

Unrelated condition e.g., p%%%-BELT vs. j%%%-BELT), it was still plausible that 

this effect would be found with word primes. This is because in Lukatela et al.‟s (2001) 

research effects from phonemic feature similarity were reported in the lexical decision 

task, which as argued by Forster and Davis (1991) is a task that engages the lexical 

route (e.g., DRC, Coltheart et al., 2001). It is therefore logical to assume that the 

employment of word (i.e., lexical) primes in the reading task would have the same 

effect. Consequently, in Experiment 2 both word and picture targets were primed by 

word primes in which the magnitude of phonemic feature overlap between the onsets of 

primes and targets was manipulated in a similar manner to that in Experiment 1.  

 

To be consistent with the findings from Experiment 1 as well as with Schiller‟s (2004) 

word reading results when he employed onset related single segment and word primes, 

it was predicted that word targets would be named significantly faster in the Identical 

condition relative to the Control condition (e.g., bunk-BELT vs. %%%%-BELT) thus 

showing a MOPE. In line with the dual-route theoretical framework (e.g., DRC; 

Coltheart et al., 2001) that the MOPE is due to shared phonemes rather than shared 

features and has previously been observed both with word primes and relative to the 

unrelated condition (e.g., belly-BREAK vs. merry-BREAK – Forster & Davis, 1991, 

Experiment 1), it was anticipated that word targets would also be named significantly 

faster in the Identical condition (e.g., bunk-BELT) compared to both the Feature and 

Unrelated conditions (e.g., punk-BELT, junk-BELT, respectively) whereas there would 

be no difference in response latencies between the Feature and Unrelated conditions. 

Finally, it remained to be seen whether there would be any observed effects between the 

Unrelated and Control conditions. The absence of such an effect with single segment 
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onset primes in Experiment 1 in itself did not rule out the possibility that one might be 

observed with word primes. However, if in reading effects from phonemic feature 

similarity can be found with word primes that as argued above engage the lexical route, 

participants‟ response latencies to word targets should be shorter in both the Identical 

(in which the onsets of primes and targets shared all their phonemic features) and 

Feature conditions compared to the Unrelated condition. Also, because the inclusion of 

the Identical condition distinguished this experiment from Lukatela et al.‟s (2001) 

research, based on his results it was difficult to make a prediction as to whether a 

difference in response latencies between the Identical and Feature conditions would be 

found. Akin to Schiller‟s (2008) results, it was anticipated that relative to the Control 

condition the naming of picture targets would be inhibited by the brief presentation of 

word primes in the Identical, Feature and Unrelated conditions. Nonetheless, it 

remained to be seen whether additional effects between the Identical and Feature, 

Identical and Unrelated and Feature and Unrelated conditions would be observed.  

 

 

4.3.2. Method 

 

 

4.3.2.1. Participants 

 

 

Forty participants took part in this experiment. Their mean age was 28.58 and ranged 

from 19 to 55 years.  
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4.3.2.2. Design and Stimuli 

 

 

Each target picture or target word (e.g., BELT) was preceded by one of four primes: an 

Identical (e.g., bunk - BELT), a Feature (e.g., punk - BELT), an Unrelated (e.g., junk – 

BELT) and a Control prime (e.g., %%%% - BELT). Pictures or printed words were 

presented for naming in 4 separate blocks consisting of 42 (6 practice + 36 target) 

stimuli per block that were created for each target type. In every block there were 9 

targets per priming condition (9 x 4 = 36) within which each target was shown only 

once. Also, the priming conditions for each target varied across blocks so that by the 

conclusion of the experiment each target was exposed to all four priming conditions. As 

such, in this experiment there was a total of 336 trials (42 words x 4 blocks and 42 

pictures x 4 blocks) with each participant required to name either words or pictures 

presented in four separate blocks (168 trials). The average written frequency of the 

word targets was 122.37 per million whereas the average spoken frequency of the 

picture targets was 128.87 per million. Both of these means were based on the English 

version of the CELEX database (Baayen et al., 1995). Table 3 displays the means for 

each control variable of the word primes (i.e. Identical, Feature and Unrelated). All of 

the targets and primes were selected based on the criteria described in Chapter 3 (3.4.).  

A complete list of targets and word primes in the Identical, Feature and Unrelated 

priming conditions is included in Appendix C.  
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Table 3 

Means for the control variables of the word primes in the Identical, Feature and 

Unrelated conditions of Experiment 2. 

 

                                                                                              

                                                                                          Priming Conditions 
 

Control variables 
 

Identical 
 

Feature 
 

Unrelated 
 

Orthographic frequency  

Number of orthographic neighbours 

Neighbourhood frequency 

Number of constrained unigrams 

Constrained unigrams frequency 

Number of constrained bigrams 

Constrained bigrams frequency 

      

     26.88 

      16.50 

      83.12 

    159.64 

16516.31 

     21.96 

     1519.54 

       

     24.76 

      15.39 

      90.56 

    155.72 

15715.87 

      21.13 

  1541.90 

       

      25.65 

      15.86 

    113.49 

    158.54 

15936.51 

      21.00 

  1854.69 
 

Note. The above means are based on the CELEX (1995) database (Medler & Binder, 2005). Frequency = 

how often a word form is encountered in 1,000,000 presentations of text; orthographic neighbours = 

words that differ from each other by only one letter; constrained unigram = first letter; constrained bigram 

= first two letters. 

 

 

 

4.3.2.3. Procedure 

 

 

Post experimental interviews revealed that two participants noticed seeing something 

before the presentation of the targets but were unsure about what they had seen.  
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4.3.3. Results   

 

 

A total of 1.6% error (0.2% technical errors + 1.4% errors) and 5.0% trimmed data were 

removed from the latency analysis. Also, the data from two participants (one in word 

reading and one in picture naming) consisted of outliers. However, since the pattern of 

observed results remained the same when the data was analyzed both with and without 

outliers, the former were reported herein. Mean naming latencies, standard deviations, 

percentage errors and mean priming effects for both word reading and picture naming in 

all four priming conditions are displayed in Table 4.  

 

 

Table 4 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 2.      

                          

                                                                                   

                                                                                               Task 

  
 

Word reading 
 

Picture naming 

 

Priming condition (example)  
 

RT 
 

SD 
 

%E   PE 
 

RT 
 

SD 
 

%E   PE    
 

Identical (bunk - BELT)  
 

451.47 
 

37.31 
 

1.1   19 
 

599.37 
 

66.01 
 

2.8   -11 

Feature (punk - BELT)  465.47 30.21 1.3     5 608.35 66.04 1.5   -20 

Unrelated (junk - BELT)  471.76 34.50 0.6    -1 603.74 64.69 1.4   -16 

Control (%%%% - BELT)  470.28 37.10 0.1 588.08 63.56 2.4 
 

Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 
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For naming latency, the main effect of Task was significant, F1(1,38) = 69.52, MSE = 

10507.86, p < .001, η² = .65; F2(1,35) = 1454.97, MSE = 907.49, p < .001, η² = .98, as 

was the main effect of Priming Condition, F1(3,114) = 10.83, MSE = 133.61, p < .001, 

η² = .22; F2(3,105) = 8.35, MSE = 313.10, p < .001, η² = . 19. The interaction between 

the two was also significant, F1(3,114) = 13.35, p < .001, η² = .26; F2(3,105) = 15.28, 

MSE = 223.61, p < .001, η² = .30.  

 

Separate analysis of Task showed that in the word reading task there was a significant 

main effect of Priming Condition, F1(3,57) = 31.66, MSE = 54.04, p < .001, η² = .63; 

F2(3,105) = 21.33, MSE = 143.39, p < .001, η² = .38. Planned comparisons showed that 

the response latencies were significantly shorter in the Identical condition compared to 

the Control condition [t1(18) = 7.62, p < .001; t2(35) = 6.70, p < .001]. They were also 

shorter in the Feature condition relative to the Unrelated condition [t1(18) = 3.24, p = 

.005; t2(35) = 2.13, p = .040]. Pairwise comparisons (Bonferroni adjusted) showed that 

the response latencies were significantly shorter in the Identical condition compared to 

both the Feature [t1(19) = 14.01, p < .001; t2(35) = 13.66, p < .001] and Unrelated 

[t1(19) = 20.29, p < .001; t2(35) = 20.38, p < .001] conditions. However, there was no 

difference in the response latencies between the Feature and Control as well as the 

Unrelated and Control conditions; all ps > .05. 

  

There was also a significant main effect of Priming Condition in the picture naming 

task, F1(3,57) = 7.11, MSE = 212.28, p < .001, η² = .27; F2(3,105) = 7.56, MSE = 

393.32, p < .001, η² = .18. Planned comparisons revealed that relative to the Control 

condition the response latencies were significantly longer in the Identical condition 
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[t1(19) = 2.46, p = .024; t2(35) = 2.68, p = .011]. However, there was no significant 

difference between the Feature and Unrelated conditions; both p > .05. Pairwise 

comparisons (Bonferroni adjusted) revealed that relative to the Control condition the 

response latencies were significantly longer in both the Feature [t1(19) = 20.28, p = 

.002; t2(35) = 21.65, p < .001] and Unrelated [t1(19) = 15.67, p = .041; t2(35) = 15.25, 

p = .008] conditions. They were also longer in the Feature condition compared to the 

Identical condition. However, this difference was not statistically significant; both ps > 

.05. Finally, there was no difference in the response latencies between the Identical and 

Unrelated conditions; both ps > .05. 

 

The overall error rate in the word reading task was 0.8%. Therefore, only the errors in 

the picture naming task were analyzed. However, they yielded no significant effects; 

both ps > .05. 

 

 

 

 

4.3.4. Discussion 

 

 

The results from Experiment 2 demonstrated an interaction between Task and Priming 

Condition. Due to this interaction the results for word reading and picture naming were 

analyzed separately. The analysis for word reading revealed that word targets were read 

significantly faster in the Identical condition compared to the Feature, Unrelated and 

Control conditions. They were also read faster in the Feature condition relative to both 
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the Unrelated and Control conditions however, this effect was significant only between 

the Feature and Unrelated conditions. Finally, there was no difference in the response 

latencies between the Unrelated and Control conditions.  

 

In contrast to the word reading results, the picture naming analysis showed that 

compared to the Control condition targets were named significantly slower in all 

priming conditions (i.e., Identical, Feature and Unrelated). They were also named 

slower in the Feature condition compared to the Identical condition although this effect 

was not statistically significant. Additionally, there was no significant difference in the 

response latencies between both the Identical and Unrelated and the Feature and 

Unrelated conditions. Finally, the error data was consistent with the data from 

Experiment 1 in that relative to the word reading task more errors were made in picture 

naming. Further, these error scores were unaffected by the priming conditions 

employed.  

 

Contrary to Experiment 1, facilitating effects from phonemic feature similarity were in 

fact observed in the word reading task of Experiment 2 (i.e., Feature condition versus 

the Unrelated condition). This particular finding was in line with Lukatela et al.‟s 

(2001) data and was therefore consistent with the earlier presented argument that 

masked priming effects from phonemic feature similarity in word reading can only be 

found when the lexical route is fully engaged (i.e., with the employment of word primes 

in reading and also in the lexical decision task). Given the finding of an effect from 

featural similarity, it is important to consider the Identical condition as one in which the 

onsets of both primes and targets share their entire set of features. By so doing, the word 

reading results from Experiment 2 that employed word (lexical) primes can be 
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explained with reference to phonemic features rather than with reference to phoneme 

overlap. As such, participants‟ faster response latencies in the Identical condition 

compared to the Feature condition in which onsets of both primes and targets shared all 

but one of their phonemic features can be explained by the varying degree of phonemic 

feature overlap between these two conditions, with reading performance fastest of all in 

the fully shared featural environment. By extension, it could be argued that the same 

was true for the significant differences in response latencies between the Identical and 

Unrelated conditions as well as the Identical and Control conditions. However, it was 

unclear at this point why there was no significant difference between the Feature and 

Control conditions even though numerically this difference was very similar to that 

found between the Feature and Unrelated conditions (i.e., 5 ms and 6 ms, respectively). 

Finally and in line with Experiment 1, the word reading data from Experiment 2 showed 

that participants‟ response latencies in the Unrelated condition were almost identical to 

those in the Control condition. Given that the former condition employed unrelated 

word primes (e.g., junk) whereas in the latter condition percentage signs that are not 

thought to induce inhibitory effects were used (e.g., %%%%), it was thus probable that 

the presentation of word primes in the Unrelated condition did not cause interfering 

effects of any sort. Consequently, it can be concluded that above reported word reading 

results were in fact due to effects that were facilitating in nature rather than interfering.  

 

Regarding the picture naming data from Experiment 2, it was found that in contrast to 

the outcomes from Experiment 1 picture targets were named significantly slower in all 

conditions (i.e., Identical, Feature and Unrelated) compared to the Control condition. 

Since word primes in this experiment interfered with the picture naming process, the 

results were thus consistent with the predictions that were based on Schiller‟s (2008) 
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data. Further, the magnitude of the observed interference from word primes in picture 

naming was smallest in the Identical condition and largest in the Feature condition. 

Although this particular effect was not statistically significant, it was suggestive of the 

possibility that featural similarity in the onset position of both primes and picture targets 

causes an additional effect that slows down participants‟ responses even more (Feature 

condition). If confirmed, this would imply that features are in fact involved during the 

phonological encoding stage in picture naming. Further, this would be inconsistent with 

the architecture incorporated into the WEAVER general language production model 

according to which phonemes are not specified for their features during phonological 

encoding. Finally, the picture naming data from Experiments 1 and 2 showed that as 

with the word reading task, it seemed to matter whether a prime was a single segment 

onset prime or a word prime. In fact, the results in the picture naming task revealed that 

akin to Schiller‟s (2008) findings, related single segment onset primes facilitated target 

naming whereas word primes (whether related or not) actually inhibited this process.   

 

Schiller (2008) made two proposals to account for the interference he observed from 

word primes in the naming of disyllabic pictures in Dutch. Firstly, he suggested that 

mismatching segments from the word prime might “inhibit the naming process due to 

the activation of non-target segments in the phonological output lexicon” (Schiller 

2008, pg. 958). The observed slower naming latencies might thus result from 

competition for selection between these non-target and target segments. Schiller‟s 

(2008) second explanation was derived from the Picture-Word Interference (PWI) 

literature. In the PWI paradigm a distracter word is superimposed onto a picture with 

participants required to name the picture whilst ignoring the word. According to Schiller 

(2008) therefore, in masked priming the visually masked word prime presented at a 
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slightly negative stimulus onset asynchrony of -67ms might act in a similar manner to 

that of the distracter word in PWI, hence resulting in the observed interference. This is 

because, during masked priming research the briefly presented word prime might 

activate its corresponding lemma which could then compete for selection with the 

picture target‟s lemma.  

 

However, as highlighted by Damian and Bowers (2009), in PWI research interference 

tends to be observed only when a distractor word and picture target are semantically 

related (e.g., dog – CAT) whereas form relatedness between a distractor word and 

picture target (e.g., can - CAT) tends to result in faster target naming. Since in Schiller‟s 

(2008) study and also in the Identical condition in Experiment 2 of this thesis both word 

primes and picture targets shared their onsets but were semantically unrelated (e.g., 

bunk-BELT), based on the usual PWI outcomes described above therefore, interference 

from word primes in the Identical condition should not have been expected. In fact, to 

be consistent with PWI findings the form relatedness in the onset position would more 

likely result in facilitation of target naming. Importantly though, in PWI studies to date 

participants‟ response latencies to picture targets in the form related condition (e.g., can-

CAT) have generally been compared to response latencies in the unrelated condition 

(e.g., pen-CAT). As such, given that in both conditions distractors are words it is 

conceivable that in PWI the usual pattern of results may well be representative of less 

interference in the form related condition compared to the unrelated condition, rather 

than representing actual facilitation. If so, this would account for why in Experiment 2 

there was less interference in the Identical condition (e.g., bunk-BELT) compared to the 

Unrelated condition (e.g., junk-BELT) and also why word primes interfered with the 

picture naming process in all conditions relative to the Control condition which itself 
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consisted of just percentage signs (e.g., %%%%-BELT).  Consequently, this possibility 

required further investigation before firm conclusions as to the cause of this interference 

could be reached. 

 

 

 

4.4. Experiment 3 – Non-word primes 

 

 

4.4.1. Introduction 

 

 

The purpose of Experiment 3 was to assess whether the interference from word primes 

on picture target naming that was observed in both Experiment 2 and Schiller‟s (2008) 

research was in fact due to competition for selection between lemmas activated by both 

a word prime and picture target. To this aim, this experiment employed non-word 

primes. Given that a non-word by definition does not have a specific lemma, the brief 

presentation of such a prime should not therefore cause interference in picture naming if 

the lexical level account provided above is relevant. As such, by employing non-word 

primes with picture targets it was anticipated that only effects occurring at the post-

lexical (phoneme selection) level would be expressed. Additionally, the employment of 

non-word primes in word reading should assist in validating the conclusions of 

Experiment 2 that masked priming effects from phonemic feature similarity in the word 

reading task can only be observed when the lexical route is fully engaged (i.e., with 

word primes).  
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In Experiment 3 therefore, both word and picture targets were named following the 

masked presentation of non-word primes in which the magnitude of phonemic feature 

overlap between the onsets of primes and targets was manipulated in a similar way to 

that in Experiments 1 and 2. It was predicted that in this experiment word targets would 

be named significantly faster in the Identical condition relative to the Control condition, 

thereby showing a MOPE. Further, since non-word primes can only be processed via 

the non-lexical route and given that there are a number of studies that demonstrate 

masked onset priming effects by employing non-word primes with word targets (e.g., 

Forster and Davis, 1991), it was hypothesized that these targets would also be named 

significantly faster in the Identical condition compared to both the Feature and 

Unrelated conditions.    Regarding the picture naming data and in line with the 

perspective that the employment of non-word primes would eliminate any interfering 

effects that might occur at the lexical level, it was anticipated that picture targets in 

Experiment 3 would be named significantly faster in the Identical condition relative to 

both the Unrelated and Control conditions thereby showing a MOPE. However, given 

the absence of prior research that has examined the masked priming of picture targets 

with non-word primes, it remained to be seen whether any other effects would be found. 
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4.4.2. Method 

 

 

4.4.2.1. Participants 

 

 

Forty-eight participants took part in this experiment. Their mean age was 25.35 and 

ranged from 18 to 43.  

 

 

4.4.2.2. Design and Stimuli 

 

The design was the same as that of Experiment 2. The target words and pictures were 

also identical to those employed in Experiment 2 and further, the non-word primes were 

generated and displayed in the same manner as the word primes in Experiment 2. In 

addition, all the primes were pronounceable non-words that were not homophones or 

pseudo homophones of existing words.  In consideration of Van Heuven, Dijkstra, 

Grainger and Schriefers‟ (2001) perspective that in masked priming the shared 

orthographic neighbours between non-word primes and their corresponding targets 

interfere with the word reading process, care was taken to ensure that primes and targets 

did not share orthographic neighbours. However, due to the limitation of choice, 10 of 

the 36 primes employed in the Identical condition did in fact share one neighbour each 

with their corresponding targets. Nonetheless, contrary to Van Heuven et al.‟s (2001) 

perspective the analyses both with and without these 10 primes and their corresponding 

targets showed the same pattern of results. Consequently, the former are reported 
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herein. A complete list of targets and non-word primes in the Identical, Feature and 

Unrelated priming conditions is included in Appendix D. Table 5 displays the means for 

each control variable of the non-word primes. 

 

 

 

Table 5 

Means for the Control Variables of the non-word primes in the Identical, Feature and  

Unrelated conditions of Experiment 3. 

 

                                                                                               

                                                                                           Priming Conditions 
 

Control variables 
 

Identical 
 

Feature 
 

Unrelated 
 

Number of orthographic neighbours 

Neighbourhood frequency 

Number of constrained unigrams 

Constrained unigrams frequency 

Number of constrained bigrams 

Constrained bigrams frequency 

         

        8.31 

      73.66 

    140.23 

    12389.09 

      12.65 

        881.16 

         

        7.61 

      71.68 

    136.31 

11588.65 

      12.34 

    752.86 

        

        7.33 

      75.84 

    139.13 

 11809.29 

      12.07 

  1008.30 
 

Note. The above means are based on CELEX, 1995 database (Medler & Binder, 2005). Frequency = how 

often a word form is encountered in 1,000,000 presentations of text. Constrained unigram = first letter; 

constrained bigram = first two letters. 
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4.4.2.3. Procedure 

 

 

Post experimental interviews revealed that four participants noticed seeing something 

before the presentation of the targets but were unable to identify what they had seen.  

 

 

 

4.4.3. Results  

 

 

A total of 1.8 % (0.2 % TE + 1.6 % E) of the data was eliminated due to the removal of 

errors. Also, 5.3% of the data was excluded from the final analyses as it fell outside the 

2SDs cut-off value from the mean for each participant. Finally, data from two 

participants (one in word reading and one in picture naming) consisted of outliers. 

However, since the analyses both with and without outliers showed the same pattern of 

results, the former are reported herein. Mean naming latencies, standard deviations, 

percentage errors and mean priming effects for both word reading and picture naming in 

all four priming conditions are displayed in Table 6. 
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Table 6 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 3. 

 

                                                                                                 

                                                                                               Task 

  
 

Word reading 
 

Picture naming 
 

Priming Condition (example)  
 

RT 
 

SD 
 

%E   PE 
 

RT 
 

SD 
 

%E  PE 
 

Identical (bude - BELT)  
 

470.66 
 

59.23 
 

0.1   13 
 

602.33 
 

64.68 
 

2.2  -10 

Feature (pude - BELT)  485.22 59.10 1.3   -2 609.05 57.77 2.9  -16 

Unrelated (jude - BELT)  489.41 58.02 0.2   -6 606.64 64.03 2.3  -14 

Control (%%%% - BELT)  483.25 54.99 0.2 592.69 60.21 3.1 
 

Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 

 

 

For naming latency, the main effect of Task was significant, F1(1,46) = 50.05, MSE = 

13936.77, p < .001, η² = .52; F2(1,35) = 1172.37, MSE = 892.94, p < .001, η² = .97, as 

was the main effect of Priming Condition, F1(3,119) = 13.60, MSE = 148.47, p < .001, 

η² = .23 (Greenhouse-Geisser); F2(3,105) = 12.46, MSE = 172.62, p < .001, η² = .26. 

The interaction between Task and Priming Condition was also significant, F1(3,119) = 

8.43, p < .001, η² = .16 (Greenhouse-Geisser); F2(3,105) = 8.46, MSE = 207.11, p < 

.001, η² = .20.  

 

Separate analysis of Task showed that in the word reading task there was a significant 

main effect of Priming Condition, F1(3,69) = 13.87, MSE = 112.66, p < .001, η² = .38; 

F2(3,105) = 18.40, MSE = 113.98, p < .001, η² = .35. Planned comparisons showed that 

the response latencies were significantly shorter in the Identical condition compared to 
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the Control [t1(23) = 3.97, p = .001; t2(35) = 5.08, p < .001] condition. However, there 

was no significant difference between the Feature and Unrelated conditions; both ps > 

.05. Pairwise comparisons (Bonferroni adjusted) showed that the response latencies 

were significantly shorter in the Identical condition compared to the Feature [t1(23) = 

14.57, p < .001; t2(35) = 14.35, p < .001] and Unrelated [t1(23) = 18.75, p < .001; 

t2(35) = 17.28, p < .001] conditions. There was however, no significant difference in 

the response latencies between the Feature and Control as well as the Unrelated and 

Control conditions; all ps > .05.  

 

There was also a significant main effect of Priming Condition in the picture naming 

task, F1(3,69) = 8.76, MSE = 142.65, p < .001, η² = .28; F2(3,105) = 6.79, MSE = 

265.75, p < .001, η² = .16. Planned comparisons revealed that compared to the Control 

condition the response latencies were significantly longer in the Identical [t1(23) = 2.29, 

p = .031; t2(35) = 2.61,  p = .013] condition. However, there was no difference in the 

response latencies between the Feature and Unrelated conditions; both ps > .05. 

Pairwise comparisons (Bonferroni adjusted) revealed that relative to the Control 

condition the response latencies were significantly longer in the Feature [t1(23) = 16.36, 

p = .002; t2(35) = 16.20,  p < .001] and Unrelated [t1(23) = 13.95, p = .003; t2(35) = 

13.40, p = .007] conditions. They were also longer in the Feature condition compared to 

the Identical condition. However, this difference was not statistically significant; both 

ps > .05. Finally, there was no difference in the response latencies between the Identical 

and Unrelated conditions; both ps > .05. 
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The overall error rate in the word reading task was 0.5% therefore, akin to Experiments 

1 and 2 only the errors in the picture naming task were analysed. They yielded no 

significant effects; both ps > .05. 

 

 

 

4.4.4. Discussion 

 

 

Akin to Experiment 2, the results from Experiment 3 demonstrated an interaction 

between Task and Priming Condition. As such, the word reading and picture naming 

data were analysed separately. As predicted, word reading was significantly faster in the 

Identical condition compared to all the other conditions (i.e. Feature, Unrelated and 

Control). Also, there was no significant difference in the response latencies between the 

Feature and Unrelated, Feature and Control as well as the Unrelated and Control 

conditions. Therefore, in line with the outcomes from Experiment 1 these results 

showed facilitation only from full phonemic feature overlap in the initial position 

(Identical condition) but not when the onsets of non-word primes and word targets 

shared all their phonemic features except for voicing (Feature condition).  

 

Analyses of the picture naming data from Experiment 3 showed that relative to the 

Control condition participants took significantly longer to name picture targets in the 

Identical, Feature and Unrelated conditions. As such, these results echoed those from 

Experiment 2 and were therefore contrary to the lexical level account for the observed 

interference from word primes on picture target naming on which the predictions for 
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this task were based. Since a non-word prime by definition does not have a lemma that 

could interfere with the selection of a picture target‟s lemma, the most reasonable 

explanation for the observed interference from both word and non-word primes on 

picture naming was that this effect occurred during the phonological encoding stage of 

processing which as argued by Schiller (2008), was likely caused by competition for 

selection between the mismatching segments activated by a prime and those activated 

by a target. Further, akin to Experiment 2, picture targets were also named slower in the 

Feature condition compared to the Identical condition but this difference was not 

significant. Finally, the results from the error analysis were consistent with those from 

Experiments 1 and 2 showing no effects of priming conditions. A more detailed 

discussion of the data from Experiment 3 and the earlier two experiments is included in 

the general discussion that follows.  

 

 

 

4.5. General Discussion 

 

 

The word reading results from Experiments 1, 2 and 3 showed that these targets were 

named significantly faster in the Identical condition relative to both the Feature and 

Control conditions. They were also named faster in the Identical condition compared to 

the Unrelated condition. However, this difference was only significant in Experiments 2 

and 3 but not in Experiment 1. Given that a MOPE was found in the word reading task, 

these results were thus consistent with both the predictions of this set of experiments as 

well as with Schiller‟s (2004) data on which these predictions were based. Importantly, 
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the outcomes from Experiment 2 that employed word primes also revealed that 

participants‟ response latencies to word targets were significantly faster in the Feature 

condition relative to the Unrelated condition. This effect was not observed in 

Experiments 1 and 3 in which single segment onset and non-word primes were used. 

The finding of a phonemic feature effect in Experiment 2 allows for the faster naming 

of word targets in the Identical condition to be explained with reference to phonemic 

features. An alternative way to consider the Identical condition is that it is one in which 

the onsets of word primes and word targets fully share their phonemic features, rather 

than one in which these onsets share abstract phonemes. The results reported in 

Experiment 2 suggest therefore, that when word (i.e., lexical) primes were employed the 

degree of observed facilitation in word reading was dependent on the varying degree of 

featural overlap between primes and targets. This would explain why in this experiment 

participants read word targets significantly faster in the Identical condition compared to 

the Feature condition in which the onsets of primes and targets shared all but one of 

their phonemic feature. By extension, this would also account for the facilitation found 

in the Identical condition relative to both the Unrelated and Control conditions.  

 

Further, the observation that in the word reading task effects from phonemic feature 

similarity were only observed with word primes but not with both single segment onset 

and non-word primes that consistent with the dual-route theoretical framework (DRC, 

Coltheart et. al., 2001; CDP+, Perry et. al., 2007) can only be processed via the non-

lexical route, indicates that phonemic feature effects can only be found when the lexical 

route is fully engaged (i.e., with word primes in reading). According to Forster and 

Davis (1991), making lexical decisions is also a task that can only be accomplished 

when the lexical route is fully engaged. As such, the word reading results from 
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Experiment 2 are fully consistent with Lukatela et al.‟s (2001) findings that participants‟ 

lexical decisions were faster when the onsets of non-word primes and word targets 

shared all but one of their phonemic features (e.g., zea-SEA) compared to when these 

onsets differed by at least two phonemic features (e.g., vea-SEA).  

 

Moreover, the word reading data from Experiments 1 to 3 provide an important 

contribution to the current understanding of how this process is accomplished. The 

finding of effects with word primes (Experiment 2) that differed to those observed with 

both single segment onset and non-word primes (Experiments 1 and 3, respectively) 

strongly supports the perspective that word reading occurs via two distinct routes (i.e., 

lexical and non-lexical). These observations are thus consistent with the dual-route 

theoretical framework (DRC, Coltheart et. al., 2001; CDP+, Perry et. al., 2007). 

However, they are contrary to the working assumptions of the PDP model (Plaut et al., 

1996) according to which the processes underlying word reading operate via a single 

route. In relation to the dual-route account, the results from Experiment 2 also indicate 

that the processing of a given input via the lexical route is driven by phonemic features 

rather than abstract phonemes. Consequently, they suggest that in this route phonemic 

features might play more important role that is currently considered in both the DRC 

(Coltheart et al, 2001) and CDP+ (Perry et al., 2007) models. Finally, in all of the word 

reading experiments reported in this chapter there was no difference in the response 

latencies between the Unrelated and Control conditions. This confers with Grainger and 

Ferrand‟s (1996) conclusions that masked priming effects are facilitating in nature.  

 

The picture naming data revealed a different set of results. In Experiment 1 the naming 

of picture targets was facilitated by the brief presentation of related single segment 
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onset primes (i.e., Identical condition) relative to the Feature and Control conditions 

thus showing a MOPE. These findings were consistent with the word reading results 

from Experiment 1. In contrast however, the data from Experiments 2 and 3 that used 

word and non-word primes respectively showed that the masked presentation of these 

primes inhibited the picture naming process in all conditions (i.e., Identical, Feature and 

Unrelated) relative to the Control condition. Importantly, across these conditions 

response latencies were fastest in the Identical condition in which the onsets of primes 

and targets were identical and slowest of all in the Feature condition in which these 

onsets shared all but one of their features. As such, these outcomes were not only 

inconsistent with the picture naming results from Experiment 1 but were also contrary 

to the word reading data.  

  

Since the results from Experiments 2 and 3 demonstrated that masked priming with 

both word and non-word primes slows down picture naming, they thus confirmed the 

similar findings of Schiller (2008) in the naming of disyllabic Dutch picture targets. 

Further, the finding of interference using non-word primes in Experiment 3 was 

incompatible with Schiller‟s  (2008) lexical level account that referred to the possibility 

of interference from competing lemmas akin to that occurring during PWI studies.  As 

discussed in the previous section, this phenomenon might have provided a feasible 

explanation for the interference from word primes on picture target naming that was 

observed in Experiment 2 if indeed this interference was a result of factors affecting 

processing at the lexical level. However, given that by definition a non-word cannot 

have a lemma, the employment of non-word primes should have eliminated the 

possibility of a lemma activated by the prime competing for selection with the picture 

target‟s lemma. As such, to be consistent with Schiller‟s (2008) lexical level account, 
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interference should not have been observed as a consequence of such primes. The 

finding of interference in Experiment 3 therefore, suggests that Schiller‟s (2008) sub-

lexical level explanation, specifically that picture naming might be inhibited as a result 

of competition for selection between target and non-target segments at the phonological 

output lexicon, in fact appears to be in line with the picture naming results reported 

here. 

 

According to this account (Schiller, 2008), the presentation of the prime in picture 

naming in Experiments 2 and 3 would have induced noise into the target phoneme 

selection process that slowed down overall naming latencies. Also, the trend towards 

the largest interference of all being consistently observed in the Feature condition across 

these three experiments (Experiments 1 to 3) cannot be ignored and suggests that this 

noise is increased further when the onset of both a prime and target share all but one of 

their features. This latter observation thus implies that in picture naming phonemic 

features may be relevant to the phonological encoding process in a way that is not 

currently considered in the WEAVER general language production model. As discussed 

in Chapter 1, in this model phonemic features are activated after the phonological 

encoding process of a monosyllabic word or the first syllable of a multisyllabic word 

has been fully completed and takes place at the later, phonetic encoding stage of 

processing.  Also, at this stage the activation of phonemic features occurs in parallel. 

Consequently, this working assumption of WEAVER cannot explain the presence of an 

inhibiting effect on target naming performance that is caused by the featural make-up of 

a phonemic segment that is shared between a prime and its target. Hence, the findings in 

both Experiments 2 and 3 of additional interference in the Feature condition where 

picture naming was slowest of all when the onsets of primes and targets shared all but 
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one of their features suggests that contrary to WEAVER, during phonological encoding 

phonemes are in fact specified for their features.  

 

WEAVER is classified as a segmental model. However, an alternative segmental model 

that considers the role of phonemic features that might well be able to account for this 

observed interference in picture naming is the spreading activation model proposed by 

Dell (1986 – see Chapter 1 for more details). This model assumes that during the 

phonological encoding of a monosyllabic morpheme (the smallest unit of meaning in a 

word e.g., BELT), the syllable corresponding to the morpheme is activated and assigned 

current node status.  Next the syllable‟s phonemes are activated in parallel whilst at the 

same time a syllable frame is created. This is then followed by the activation of the 

features corresponding to these phonemes. Further, according to Dell‟s (1986) model 

there are bi-directional connections between each of these processing levels which 

means that the activation at one level directly influences and is influenced by the 

activations at both the level directly above and below it. Consequently, it is plausible 

that as argued by Roelofs (1999), due to the backward spreading of activation from 

features to segments in Dell (1986), a segment such as /p/ will receive feedback from all 

but one of the features of the target segment /b/ and thus /p/ will compete for selection 

along with the target segment /b/.  However, a segment such as /j/ shares fewer features 

with the target segment /b/ compared to /p/ and hence will receive less feedback from 

that segment resulting in a reduced level of competition between /j/ and /b/. Applying 

these working assumptions of Dell‟s (1986) model therefore, it could be suggested that 

in Experiments 2 and 3 the mismatching phonemes activated by the primes competed 

for selection with the corresponding phonemes of the picture targets and this 

competition was supported by the feedback from the feature level that was even 
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stronger when the onsets of primes and targets shared all but one of their phonemic 

features. 

 

The final general language production model considered in Chapter 1 that might be 

relevant to this discussion was Dell et al.‟s (1993) PDP model. As previously 

mentioned, during single word production in PDP (Dell et al., 1993) the word‟s lemma 

is first activated in the input layer. Each segment of the lemma then activates its 

corresponding phonemic features in the output layer. This activation occurs via the 

hidden units layer and takes place one segment at the time (starting from the first 

segment of the input).  Therefore, in this model a verbal response to a given target is 

accomplished by the direct activation of phonemic features. However, in Dell et al.‟s 

(1993) PDP model phonemic features are activated as a full, inseparable set 

corresponding to a specific segment of the input. To be consistent with this model 

therefore, effects from partial phonemic feature overlap should not have been found 

(Feature condition). Yet, the results from Experiments 2 and 3 clearly showed 

interference in this condition. Consequently, akin to WEAVER the outcomes from the 

picture naming task could not be accounted for within the PDP (Dell et al., 1993) 

model‟s architecture. As such, of the general language production models evaluated in 

Chapter 1, Dell‟s (1986) model is the only one that is able to account for the picture 

naming findings of Experiments 1, 2 and 3 reported herein. 

 

A primary reason for conducting these experiments was to establish the likelihood that 

phonological encoding mechanisms are shared for both word reading and picture 

naming (Kinoshita, 2000; Kinoshita & Woollams, 2002; Malouf & Kinoshita, 2007; 

Roelofs, 2004). There have clearly been differences in the results across these 
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experiments that were hard to reconcile with the concept of shared encoding 

mechanisms. As discussed, the persistent observation of interference in picture naming 

might best be explained with reference to Dell‟s (1986) model. However, similar 

inhibiting effects were not observed for word reading. One possible explanation for why 

both word and non-word targets inhibited picture naming but not word reading is as 

follows. 

 

In general, picture naming is a more complex task than word reading which is why 

participants take on average 150 ms longer to produce a verbal response to pictures 

compared to word targets (see Roelofs, 2003, for discussion). Given that word reading 

is much faster to accomplish than picture naming, it could be suggested that during the 

word reading task there is only enough time to process the initial segment of the prime 

whereas in picture naming the entirety of the prime is fully processed. If this were in 

fact the case, it would explain why for word reading a MOPE was found in all three 

experiments and specifically, why in Experiments 2 and 3 no interference from the 

mismatching end segments between primes and word targets was observed. However, if 

in contrast to word reading the prime in the picture naming task is fully processed, this 

could account for the observed differences between the two tasks and in particular for 

the interference from both word and non-word primes on picture target naming 

(Experiments 2 and 3).  

 

Finally, the outcomes from Experiments 1, 2 and 3 indicated that phonemic feature 

similarity between the onsets of a prime and target plays a distinctly different role in 

word reading compared to picture naming. For word reading the results in the Feature 

condition in Experiment 2 provided support for the findings of Lukatela et al. (2001) 
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that featural similarity facilitates word reading. In contrast however, picture naming in 

Experiments 1, 2 and 3 was slowed down further when the onsets of primes and targets 

shared all but one of their features. These results implied that phonemic feature 

similarity between the onset of a prime and target introduces competition into the 

system that interferes with the picture naming process. Consequently, the data from 

Experiments 1, 2 and 3 showed that during phonological encoding phonemes appear to 

be specified for their features. However, phonemic feature similarity in the onset 

position of primes and targets seemed to have contrary effects on the encoding process 

of each target type.  

 

Importantly, since in both domains effects from phonemic feature similarity were 

observed, it was necessary to establish whether these effects were specific to target 

onsets or whether they would also be observed in the other segments of either word and 

picture targets such as for example, the coda position (i.e., the final consonant or 

consonant cluster). As such, this issue and the possibility that the differing results 

between word reading and picture naming from Experiments 2 and 3 might have been 

due to the extent to which the prime had been processed in each task needed to be 

addressed before firm conclusions regarding the herein reported data could be reached. 

This was done in the following three experiments in which as discussed in the next 

chapter, phonemic feature similarity in the coda position of primes and both word and 

picture targets was manipulated.    

 

In conclusion, the results from the masked priming research conducted so far 

demonstrated facilitation in word reading when both word and non-word primes shared 

their onsets whereas picture naming was inhibited in the same conditions. This contrast 
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in findings is suggestive of separate processes and is thus contrary to Kinoshita‟s (2000; 

Kinoshita & Woollams, 2002; Malouf & Kinoshita, 2007) and Roelofs‟ (2004) assertion 

that phonological encoding mechanisms might be shared for the two target types. The 

observation of facilitation found in the Feature condition for word reading when the 

onsets of word primes and targets shared all but one of their phonemic features 

(Experiment 2) allowed for the word reading data obtained with the employment of 

word (lexical) primes to be accounted for with reference to the role of phonemic 

features. Whilst this interpretation is consistent with Lukatela et al.‟s (2001) 

conclusions, it is incompatible with the influential word reading models described and 

evaluated in Chapter 1, due to the fact that in these models phonemes are not specified 

for their features. Similarly, the interference from phonemic feature similarity (Feature 

condition) observed in picture naming (Experiments 2 and 3) cannot be explained with 

reference to the WEAVER general language production model that also considers 

phonemes as abstract entities. However, Dell‟s (1986) segmental model that 

incorporates phonemic features within its processing framework can account for the 

picture naming data. Finally, the interference from word and non-word primes on 

picture naming might best be explained with reference to Schiller‟s (2008) post-lexical 

level account. The fact that this effect was not found in word reading might simply 

mean that in this task there is only enough time to process the initial segment of the 

prime whereas in picture naming the whole prime is processed. Consequently, it was 

necessary to establish whether in both or either the word reading and picture naming 

tasks, similar effects would be found with other segments (e.g., in the coda position). 

The aim of the research reported in the following chapter therefore, was to investigate 

both word reading and picture naming processes further, firstly to address the issues 
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raised above and secondly, to provide additional validation of the findings observed in 

Experiments 1, 2 and 3.  
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CHAPTER 5: Masked priming effects when manipulating 

phonemic features in the end/coda segment position of 

monosyllabic words and pictures 

 

 

5.1. Introduction 

 

 

The picture naming data collected so far revealed that picture targets were named 

significantly faster only with matching single segment onset primes (Identical condition 

in Experiment 1) but not with word and non-word primes (Experiments 2 and 3, 

respectively). In fact, these latter two prime types interfered with the picture naming 

process with this interference occurring regardless of whether onsets between primes 

and targets were related or not. Given that the same pattern of results was found with 

both word and non-word primes, consistent with Schiller‟s (2008) post-lexical level 

account it was argued that the observed interference was likely due to competition for 

selection between the mismatching phonemes activated by a prime and the 

corresponding phonemes activated by its target.  

 

As discussed in Chapter 4, the picture naming results from Experiments 1, 2 and 3 

could best be accounted for with reference to the architecture incorporated into Dell‟s 

(1986) model. This model explains not only the facilitation that was observed from 

related single segment onset primes (Identical condition in Experiment 1) but also the 

interference from both word (Experiment 2) and non-word (Experiment 3) primes. 
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Based on the working assumptions of Dell‟s (1986) model it could thus be suggested 

that following the presentation of a prime, the phonemes and phonemic features 

corresponding to the prime were activated and remained active within the system whilst 

the target‟s phonemes were being processed. Consequently, if an activated phoneme/s 

of a prime was identical to its corresponding target phoneme/s the selection of the 

target‟s phoneme/s was facilitated, with this facilitation resulting in the shorter response 

latencies that were in fact recorded in the Identical condition in Experiment 1. If 

however, the prime‟s phonemes differed to the picture target‟s phonemes they competed 

with the latter phonemes for selection. The elapsed time necessary to resolve this 

competition therefore meant that the naming of picture targets in the Identical, Feature 

and Unrelated conditions in Experiments 2 and 3 took longer relative to the Control 

condition that consisted of percentage signs (e.g., %%%%).  As such, Schiller‟s (2008) 

post-lexical level account for the observed interference from both word and non-word 

primes (Experiments 2 and 3) was consistent with the working assumptions of Dell‟s 

(1986) model.  

 

Further, due to the presence of bidirectional connections between the phoneme and 

feature levels incorporated within its architecture, Dell‟s (1986) model can also explain 

why the magnitude of the observed interference in Experiments 1 to 3 was largest of all 

in the Feature condition in which the onsets of primes and targets shared all but one of 

their phonemic features. According to Dell (1986), the degree of feedback increases as 

the degree of featural overlap between competing phonemes increases. Consistent with 

this model therefore, due to the almost complete phonemic featural overlap between the 

onsets of both primes and targets in the Feature condition, feedback from the features 

activated by the prime‟s initial phoneme thus meant that the competition for selection in 
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the initial phoneme position between a prime and its target was at its most intense and 

thus took the longest to resolve. Yet, in the Unrelated condition in which the onsets of 

primes and targets differed by at least two phonemic features, there was less 

competition for selection between the respective phonemes resulting in a smaller 

magnitude of interference compared to the Feature condition.   

 

Importantly, according to Dell‟s (1986) model the activation of phonemes that 

correspond to a given monosyllabic target during the phonological encoding process 

occurs in parallel. Therefore, by making the assumption that within such a system the 

pre-activation of the target‟s onset by the brief presentation of a single segment onset 

prime that fully shares its onset with the target results in a reduction in the overall time 

taken to produce a verbal response, it would be logical to argue that similar facilitation 

should also be observed when single segment primes and targets share a phoneme in the 

end/coda position. By extension, if mismatching phonemes activated by both word and 

non-word primes compete for selection with the corresponding phonemes of picture 

targets, similar interference should also be found regardless of their position within a 

given word-form.  This possibility thus required further investigation.  

 

The word reading results from Experiments 1 to 3 revealed that the naming of word 

targets was facilitated by both shared onsets between primes and targets (i.e., Identical 

condition in Experiments 1 and 3) as well as shared phonemic features between these 

onsets (i.e., Identical and Feature conditions in Experiment 2). Since in this task the 

outcomes with non-lexical (i.e., single segment onset and non-word) primes differed to 

those found with lexical (i.e., word) primes, the word reading data collected so far 

suggested that word reading can be accomplished via two distinct routes and was thus 
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consistent with the dual-route theoretical framework (e.g., DRC, Coltheart et al., 2001). 

However, contrary to this theoretical framework it implied that the processing of a 

given input by the lexical route occurs via its phonemic features.   

 

Further, to explain why facilitation was observed in word reading whereas picture 

naming was inhibited by the brief presentation of both word and non-word primes 

(Experiments 2 and 3, respectively), it was suggested that the contrasting pattern of 

results between tasks could have reflected the extent to which the primes were 

processed in each task. Specifically, it was postulated that as word reading is a much 

faster process to accomplish than picture naming, it is possible that during masked 

priming in word reading there is only enough time to process the initial/onset segment 

of a prime whereas in picture naming the whole prime is fully processed. This would 

also explain why in Schiller‟s (2004, 2008) masked priming research, null effects were 

found from shared end segments between word primes and word targets (e.g., 

%propaan%%-BANAAN) yet in the equivalent priming condition (e.g., %robijn%-

BANAAN), picture naming was inhibited. However, this argument is in large part 

inconsistent with the masked form-priming effects described and evaluated in Chapter 

2. As discussed, these form-priming effects are independent of the MOPE and reflect 

effects due to the remaining phonemes that are shared between primes and word targets 

(e.g., defore-BEFORE versus dranch-BEFORE – Forster & Davis, 1991, Experiment 5). 

As such, they suggest that in masked priming in word reading more than just the 

initial/onset phoneme of a prime is processed. Nonetheless, it still remained an open 

question as to whether or not in this task the prime is completely processed. Addressing 

this question therefore, was important to more convincingly account for the 
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discrepancies between the word reading and picture naming data from Experiments 2 

and 3.  

 

Finally, the purpose of the herein reported research was to investigate phonological 

encoding processes for both word reading and picture naming to either validate or reject 

Roelofs‟ (2004) conclusions that these processes are shared for the two tasks. Although 

some of the data collected so far (Experiments 2 and 3) suggests that differences might 

exist in how phonology is constructed for each target type, it was deemed to be 

important to continue further enquiries whilst employing both tasks within the same set 

of experiments. Such investigations were considered likely to provide additional 

information relevant to the phonological encoding processes that occur during each 

task. The aim of Experiments 4 to 6 therefore, was to address the issues discussed above 

by manipulating phonemic feature similarity in the end/coda position of primes and 

both word and picture targets whilst employing the three types of primes used in the 

earlier experiments namely, single segment, word and non-word primes, respectively.  

 

 

 

5.2. Experiment 4 - Single segment coda primes 

 

 

5.2.1. Introduction 

 

In his masked priming research Schiller (2008) found that compared to controls (e.g., 

%%%%%%%%-BANAAN) the naming of picture targets was inhibited by the brief  
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presentation of related single segment coda primes (e.g., %%%%%%n%-BANAAN). 

This observation was thus contrary to both the picture naming results from Experiment 

1 as well as Schiller‟s (2008) own data which together showed facilitation from related 

single segment onset primes (e.g., %b%%%%%%-BANAAN). Further, since the 

outcomes from matching single segment coda primes in Schiller‟s (2008) study differed 

to those when he employed matching single segment onset primes, at first glance they 

seemed to be incompatible with the working assumptions of Dell‟s (1986) model. This 

is because in this model the activation of phonemes corresponding to a given input 

occurs in parallel. This parallelism thus implies consistency of results across the two 

prime types.  

 

However, Dell‟s (1986) model also assumes that for a multi-syllable input there is a 

parallel activation of phonemes corresponding to a given syllable but a serial rightward 

activation of its syllables. Given that in his study Schiller (2008) employed disyllabic 

picture targets, it is possible that his outcomes with related single segment coda primes 

reflected effects that occurred during both within and between syllable/s processing. As 

such, observable effects using primes related in the coda position may well be different 

with monosyllabic compared to multisyllabic targets and consequently, it remained an 

open question as to whether or not similar results to Experiment 1 would be obtained 

with monosyllabic picture targets when related coda primes are used.  

 

Additionally, even though in his picture naming study Schiller (2008) used single 

segment coda primes, this priming condition was not employed in his word reading 

research. As discussed in the previous section (section 5.1.) it is plausible that due to its 
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speeded accomplishment, in word reading there is only enough time to process the 

initial segment/s of a prime. If confirmed, this could provide an explanation as to why 

mismatching segments between both word and non-word primes interfered with the 

picture naming but not with the word reading process. The aim of Experiment 4 

therefore, was to assess masked priming effects on the naming of both word and picture 

targets when phonemic feature similarity in the coda position of single segment coda 

primes was manipulated. To this end and as in the first three experiments of this thesis, 

each word and picture target was primed by four types of primes namely, Identical in 

which the codas of both a prime and its target was identical (e.g., %%t - BAT), Feature 

in which the codas of both prime and target shared all but one of their phonemic 

features (e.g., %%d - BAT), Unrelated in which the codas differed by at least two 

phonemic features (e.g., %%h - BAT) and finally Control that consisted of percentage 

signs (e.g., %%% - BAT).  

 

To be consistent with the working assumptions of Dell‟s (1986) model it was predicted 

that the picture naming results from Experiment 4 would echo those from Experiment 1. 

It was thus expected that picture targets would be named faster in the Identical 

condition relative to all the other conditions and that the differences between the 

Identical and Feature as well as Identical and Control conditions would be statistically 

significant. However, it remained to be seen whether there would be observable effects 

in the word reading task. 
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5.2.2. Method 

 

 

5.2.2.1.Participants 

 

 

Forty-eight participants took part in this experiment. Their mean age was 29.35 and 

ranged from 18 to 50 years. 

 

 

5.2.2.2. Design and Stimuli 

 

 

The design was identical to the one employed in Experiments 2 and 3 except that due to 

a limitation in the number of stimuli choices there were only 272 trials (34 words x 4 

blocks plus 34 pictures x 4 blocks). Further, as in the other two experiments each 

participant was required to name either words or pictures presented in four experimental 

blocks (136 trials). Thirty-four (6 practice + 28 target) words and their corresponding 

pictures were employed in this experiment. The average written frequency of the word 

targets was 46.75 per million whereas the average spoken frequency of the picture 

targets was 25.71 per million. Both of these means were based on the English version of 

the CELEX database (Baayen et al., 1995). Akin to Experiments 1, 2 and 3 the primes 

were organized into four priming conditions namely, Identical (e.g., %%t - BAT), 

Feature (e.g., %%d - BAT), Unrelated (e.g., %%n - BAT) and Control (e.g., %%% - 

BAT). Table 7 displays the means for each control variable of the single segment coda 
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primes (i.e. Identical, Feature and Unrelated). All of the targets and primes were 

selected based on the criteria described in Chapter 3 (3.4.).  A complete list of targets 

and single segment coda primes in the Identical, Feature and Unrelated priming 

conditions is included in Appendix E.  

 

Table 7 

Means for the control variables of the single segment coda primes in the Identical, 

Feature and Unrelated conditions of Experiment 4. 

 

                                                                                              

                                                                                          Priming Conditions 
 

Control variables 
 

Identical 
 

Feature 
 

Unrelated 
 

Number of constrained unigrams 

Constrained unigrams frequency 
 

 

        99.41     

      518.22 
     

 

       46.61     

     249.90  
  

 

        53.85     

      293.25 
 

 

Note. The above means are based on the English version of the CELEX (1995) database (Medler & 

Binder, 2005) and refer to how often a word form is encountered in 1,000,000 presentations of text. 

Constrained unigram = last letter. 
 

 

 

5.2.2.3. Procedure 

 

 

Post experimental interviews revealed that one participant noticed seeing something 

before the presentation of the targets but was unable to identify what he had seen.  

 

 

 

 



 158 

5.2.3. Results  

 

 

A total of 1.5% error (0.15% technical errors + 1.35% errors) and 5.56 % trimmed data 

were removed from the latency analyses. Further, the data from five participants (three 

in word reading and two in picture naming) consisted of outliers.  As the results with 

outliers differed to those without outliers the latter were reported herein. Mean naming 

latencies, standard deviations, percentage errors and mean priming effects for both word 

reading and picture naming in all four priming conditions are displayed in Table 8.  

 

 

Table 8 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 4.                                  

                                                                                         

                                                                                             Task 

  
 

Word reading 
 

Picture naming 
 

Priming condition (example)  
 

RT 
 

SD 
 

%E   PE 
 

RT 
 

SD 
 

%E   PE 
 

Identical (%%t - BAT)  
 

482.48 
 

38.04 
 

0.7     6 
 

583.18 
 

38.95 
 

2.1    10 

Feature (%%d - BAT)  488.98 39.13 0.9    -1 595.71 40.64 1.3    -3 

Unrelated (%%h - BAT)  486.08 36.57 1.0     2 589.95 34.63 1.3     3 

Control (%%% - BAT)  488.01 30.64 1.4 592.74 35.04 2.1 
 

Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 

 

For naming latency, the main effect of Task was significant, F1(1,41) = 92.62, MSE = 

5019.12, p < .001, η² = .69; F2(1,27) = 510.90, MSE = 1037.28, p < .001, η² = .95, as 

was the main effect of Priming Condition, F1(3,103) = 5.31, MSE = 163.16, p = .003, η² 
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= .16 (Greenhouse-Geisser); F2(2,66) = 3.97, MSE = 320.24, p = .017, η² = .13 

(Greenhouse-Geisser). The interaction between Task and Priming Condition was not 

significant, F1(3,103) = .50, p > .05 (Greenhouse-Geisser); F2(3,81) = .50, MSE = 

257.49, p > .05. Planned comparisons showed that the response latencies were 

significantly shorter in the Identical condition compared to Control condition [t1(42) = 

3.45, p = .001; t2(27) = 2.78, p = .010]. There was however, no significant difference 

between the Feature and Unrelated conditions; both ps > .05. Pairwise comparisons 

(Bonferroni adjusted) showed that response latencies were significantly shorter in the 

Identical condition compared to the Feature condition [t1(42) = 9.52, p = .005; t2(27) = 

9.93, p = .042]. They were also shorter in the Identical condition relative to the 

Unrelated condition [t1(42) = 5.18, p = .047; t2(27) = 4.22, p > .05] but this difference 

was only significant by participants. Further, there was no significant difference 

between the Feature and Control as well as the Unrelated and Control conditions; all ps 

> .05. 

 

The overall error rate in the word reading task was 1.0%. Therefore, only the errors in 

the picture naming task were analyzed. However, they yielded no significant effects; 

both ps > .05. 
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5.2.4. Discussion 

 

 

The results from Experiment 4 showed that when primed by single segment coda primes 

both word and picture targets were named significantly faster in the Identical condition 

relative to all other conditions (i.e., Feature, Unrelated and Control). It should be noted 

that the outcomes with outliers were very similar to those without outliers except that in 

this case the difference between the Identical and Unrelated conditions was not 

statistically significant. As such, the data from Experiment 4 echoed that from 

Experiment 1 in which single segment onset primes were employed. Also, akin to 

Experiment 1 no additional effects were observed. Further, the error data was in line 

with the error data from Experiments 1, 2 and 3 in that fewer errors were made in the 

word reading task compared to the picture naming task and in both tasks the error scores 

were unaffected by the priming conditions employed. 

 

As predicted, the picture naming results from Experiment 4 were in line with those of 

Experiment 1. Given that in the absence of mismatching phonemes related single 

segment onset and coda primes both facilitated picture naming, these outcomes 

appeared to be consistent with the working assumptions of Dell‟s (1986) model. 

Specifically, they support the notion that the activation of phonemes corresponding to a 

given monosyllabic input occurs in parallel across its word-form in a way that is 

incorporated into this model.  However, this parallelism also implies that if 

mismatching end phonemes between primes and picture targets inhibit the picture 

naming process (Experiments 2 and 3), the same should be true for mismatching 

phonemes regardless of their position within a given word-form. This assumption still 

needed to be tested.  
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Akin to pictures, word targets in Experiment 4 were also named significantly faster 

following the brief presentation of related single segment coda primes. Since in this 

experiment matching single segment coda primes facilitated the word reading process, it 

could be inferred that in masked priming during word reading the primes are in fact 

fully processed.  Further, in line with the earlier word reading data (Experiments 1 to 3) 

these results could also be accounted for with reference to the dual-route theoretical 

framework (e.g., DRC; Coltheart et al., 2001) and can be explained as follows. Because 

single segment coda primes are by definition non-lexical primes, based on the 

arguments presented in Chapter 4 it could be assumed that following their presentation 

the non-lexical route was fully engaged. Thus, after the display of a single segment coda 

prime the non-lexical route began its serial left-to-right processing. As the initial 

phoneme positions of such a prime consisted of percentage signs, only the phoneme 

corresponding to its end/coda phoneme was activated and remained active within the 

system whereas there was no activation of phonemes in the earlier positions. Once the 

word target was presented the non-lexical route began processing that target, again in a 

serial rightward manner. The absence of prior activation in the initial phoneme positions 

meant that the activation of the initial phonemes of the word target occurred at its usual 

pace. For the final phoneme position of the target the pre-activation of this phoneme 

following the presentation of a related prime in the Identical condition allowed for its 

faster selection relative to all the other conditions, resulting in the observed facilitation 

in this condition. However, although the word reading findings obtained with single 

segment coda primes were consistent with the workings of the non-lexical route, it 

remained to be seen if the same would be true when the lexical route is fully engaged. 
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Considered together, the word reading outcomes from Experiment 4 were consistent 

with the dual-route theoretical framework (e.g., DRC; Coltheart et al., 2001) and 

suggested that in this task the prime is fully processed. In contrast, the picture naming 

results were in keeping with the working assumptions of Dell‟s (1986) model. However, 

it was important to continue with this line of enquiry to provide further confirmation for 

the arguments presented above. To this aim, in the following experiment word primes 

were employed with both word and picture targets whilst akin to Experiment 4 

phonemic feature similarity in the end/coda position was manipulated.   

 

 

 

 

 

5.3. Experiment 5 – Word primes 

 

 

5.3.1. Introduction 

 

 

 As discussed (section 5.2.4), the results from Experiment 4 showed that the naming of 

both word and picture targets was significantly faster in the Identical condition relative 

to all other conditions. Since the two data sets revealed facilitation from related single 

segment coda primes, these outcomes suggested that in both tasks the primes were fully 

processed. Therefore, it could not be argued that the interference observed in 

Experiments 2 and 3 from mismatching segments between primes and picture targets 

that was not found with word targets was due to the extent to which the primes were 

processed in each task.  Further, given that the picture naming results from Experiment 
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4 were consistent with those from Experiment 1 that employed single segment onset 

primes, it was postulated that these findings were in line with the working assumptions 

of Dell‟s (1986) model. That is because in this model there is a parallel activation of 

phonemes corresponding to a given monosyllabic input and it is this parallelism that 

implies consistency of results from related single segment primes regardless of their 

position within a word-form. By extension, it could also be assumed that if mismatching 

end segments between primes and picture targets interfere with the picture naming 

process (Experiments 2 and 3), the same should be true when the mismatch occurs in 

the initial segment positions. The latter assumption was tested in this experiment using 

word primes where the initial segments/phonemes differed to those of their 

corresponding picture targets and in which, as in Experiment 4, phonemic feature 

similarity in the end/coda position was manipulated (e.g., cot-BAT – Identical 

condition). 

 

Additionally, the employment of such primes was expected to provide further insight 

into phonological encoding processes involved in word reading. As argued, the word 

reading data collected so far seemed to be consistent with the dual-route theoretical 

framework (e.g., DRC; Coltheart et al., 2001). Specifically, the word reading results 

from Experiments 1 to 3 implied that in masked priming the observed effects with non-

lexical primes (i.e., single segment and non-word – Experiments 1 and 3, respectively) 

might have reflected processes occurring at the non-lexical route whilst the effects 

found with lexical primes (i.e., word – Experiment 2) might have been due to processes 

taking place at the lexical route. Consequently, in Experiments 1 and 3 word targets 

were read significantly faster only when primes and targets shared their onsets 

(Identical condition) whereas in Experiment 2 facilitation was observed when the onsets 
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of primes and word targets shared both all and all but one of their phonemic features 

(Identical and Feature conditions, respectively).  

 

Although the word reading results from Experiment 4 that employed single segment 

coda (non-lexical) primes seemed to be consistent with the working assumptions of the 

non-lexical route and were thus in line with the argument just presented, it remained to 

be seen whether the same would be true when the lexical route is fully engaged through 

the use of word (lexical) primes in Experiment 5 whilst manipulating phonemic feature 

similarity in the end/coda position. Given that the activation of phonemes corresponding 

to a given input occurs in parallel both in Dell‟s (1986) model and at the lexical route of 

the dual-route theoretical framework (e.g., DRC; Coltheart et al., 2001), it was predicted 

that the word reading and picture naming data from Experiment 5 would echo the 

outcomes for the corresponding task in Experiment 2 that also employed word primes. 

As such, in this experiment word targets were predicted to be read significantly faster in 

the Identical condition compared to all the other conditions (i.e., Feature, Unrelated and 

Control conditions). They were also expected to be read significantly faster in the 

Feature condition relative to the Unrelated condition.  In contrast, picture naming was 

anticipated to be inhibited by the brief presentation of word primes in the Identical, 

Feature and Unrelated conditions and these inhibitory effects were predicted to be 

statistically significant relative to the Control condition.    
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5.3.2. Method 

 

 

5.3.2.1. Participants 

 

 

Forty-eight participants took part in this experiment. Their mean age was 28.27 and 

ranged from 19 to 48 years.  

 

 

5.3.2.2. Design and Stimuli 

 

 

Again, the design was almost identical to the one employed in Experiments 2, 3 and 4. 

The only difference related to the total number of trials, which was 176 (22 words x 4 

blocks plus 22 pictures x 4 blocks). Also, akin to the other three experiments 

participants were required to name either words or pictures presented in four separate 

blocks (88 trials). Twenty-two (6 practice + 16 target) words and their corresponding 

pictures were employed in this experiment. The average written frequency of the word 

targets was 77.90 per million whereas the average spoken frequency of the picture 

targets was 51.39 per million. Both of these means were based on the English version of 

the CELEX database (Baayen et al., 1995). The word primes were organized into four 

priming conditions namely, Identical (e.g., cot - BAT), Feature (e.g., cod - BAT), 

Unrelated (e.g., con - BAT) and Control (e.g., %%% - BAT). Table 9 displays the 

means for each control variable of the word primes (i.e. Identical, Feature and 
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Unrelated). All of the targets and primes were selected based on the criteria described in 

Chapter 3 (3.4.).  A complete list of targets and word primes in the Identical, Feature 

and Unrelated priming conditions is included in Appendix F.  

 

 

Table 9 

Means for the control variables of the word primes in the Identical, Feature and 

Unrelated conditions of Experiment 5. 

 

                                                                                              

                                                                                           Priming Conditions 
 

Control variables 
 

Identical 
 

Feature 
 

Unrelated 
 

Orthographic frequency  

Number of orthographic neighbours 

Neighbourhood frequency 
 

      

     15.47 

      15.81 

      72.67      

       

     14.00 

      13.00 

      114.15      

       

      13.97 

      13.31 

       82.13 
     

 

Note. The above means are based on the CELEX (1995) database (Medler & Binder, 2005). Frequency = 

how often a word form is encountered in 1,000,000 presentations of text; orthographic neighbours = 

words that differ from each other by only one letter. 

 

 

 

5.3.2.3. Procedure 

 

 

Post experimental interviews revealed that two participants noticed seeing something 

before the presentation of the targets but were unsure about what they had seen.  
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5.3.3. Results   

 

 

A total of 2.2% error (0.5% technical errors + 1.7% errors) and 4.9% trimmed data were 

removed from the latency analysis. Also, the data from two participants (one in word 

reading and one in picture naming) consisted of outliers. However, since the pattern of 

observed results remained the same in the analyses both with and without outliers, the 

former were reported herein. Mean naming latencies, standard deviations, percentage 

errors and mean priming effects for both word reading and picture naming in all four 

priming conditions are displayed in Table 10.  

 

 

Table 10 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 5.  

 

                                                                                 

                                                                                               Task 

  
 

Word reading 
 

Picture naming 
 

Priming condition (example)  
 

RT 
 

SD 
 

%E   PE 
 

RT 
 

SD 
 

%E   PE 

Identical (cot – BAT)  498.69 59.81 0.3     -7 613.70 61.86 3.6   -10 

Feature (cod – BAT)  506.20 61.04 0.3   -14 617.50 68.76 2.6   -14 

Unrelated (con – BAT)  498.36 55.49 0.8     -6 614.74 62.23 2.3   -11 

Control (%%% - BAT)  491.97 52.47 0.3 603.71 62.30 3.1 
Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 
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For naming latency, the main effect of Task was significant, F1(1,46) = 44.94, MSE = 

13786.28, p < .001, η² = .49; F2(1,15) = 145.05, MSE = 2949.46, p < .001, η² = .91, as 

was the main effect of Priming Condition, F1(3,138) = 5.15, MSE = 311.99, p = .002, η² 

= .10; F2(3,45) = 6.89, MSE = 195.37, p = .001, η² = .32. The interaction between Task 

and Priming Condition was not significant, F1(3,138) = .24, p > .05; F2(3,45) = .50, 

MSE = 196.43, p > .05. Planned comparisons showed that participants‟ response 

latencies were significantly longer in the Identical condition compared to the Control 

condition [t1(47) = 2.27, p = .028; t2(15) = 2.28, p = .038]. However, there was no 

significant difference between the Feature and Unrelated conditions; both ps > .05. 

Pairwise comparisons (Bonferroni adjusted) showed that response latencies were 

significantly longer in the Feature condition relative to the Control condition [t1(47) = 

14.01, p = .010; t2(15) = 15.63, p < .001]. They were also longer in the Unrelated 

condition compared to the Control condition as well as in the Feature condition relative 

to the Identical condition but these differences were not statistically significant; all ps 

>.05. Finally, there was no significant difference between the Identical and Unrelated 

conditions; both ps > .05. 

 

The overall error rate in the word reading task was 0.4%. Therefore, only the errors in 

the picture naming task were analyzed. However, they yielded no significant effects; 

both ps > .05. 
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5.3.4. Discussion 

 

 

The results from Experiment 5 revealed that both word and picture targets were named 

slower in the Identical, Feature and Unrelated conditions compared to the Control 

condition. However, only the differences between the Identical and Control as well as 

the Feature and Control conditions were statistically significant. Considering that in 

both tasks the differences between the Identical and Control as well as the Unrelated 

and Control conditions were numerically almost identical, it was unclear why the 

former difference was statistically significant whereas the latter was not. The error data 

was consistent with the error data from the previous experiments and showed that 

although more errors were made in picture naming compared to word reading, neither 

of these error scores were affected by the priming conditions employed.  

 

The analysis of the word reading data from Experiment 5 yielded surprising results.  

Interference was observed when reading aloud word targets regardless of whether word 

primes in the coda position were related with targets or not. These results were 

inconsistent with both the predictions for this experiment and the word reading data 

from Experiment 2. As such, they were contrary to the working assumptions of the 

lexical route of the dual-route theoretical framework (e.g., DRC; Coltheart et al., 2001) 

whose architecture implies consistency of results across Experiments 2 and 5. That is 

because this architecture incorporates the parallel activation of phonemes corresponding 

to a given monosyllabic input during the processing of its word-form. Further, the word 

reading results from Experiment 5 also showed that these targets were named slowest of 

all in the Feature condition in which the codas of both primes and targets shared all but 
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one of their phonemic features. Although this effect was not statistically significant 

relative to both the Identical and Unrelated conditions, its presence provided further 

support for the argument that in this task, as in picture naming, the prime is fully 

processed. In Experiment 5 the initial segments/phonemes of word primes were the 

same across the Identical, Feature and Unrelated conditions whilst phonemic feature 

similarity in the end/coda position was manipulated. Since the presentation of such 

primes resulted in the largest of all interference occurring in the Feature condition, it 

would be logical to conclude that this effect was due to the end/coda phoneme thereby 

suggesting a full processing of primes. However, this does not explain why in 

Experiment 2 phonemic feature similarity (Identical and Feature conditions) facilitated 

word reading whereas in Experiment 5 this similarity seemed to interfere with the word 

reading process and further, why in the former experiment only facilitation from word 

primes was observed whilst in the latter experiment such primes inhibited word reading. 

Consequently, this pattern of interference from word primes on word targets required 

further investigation before any inferences regarding the word reading data from 

Experiment 5 could be reached.  

 

As predicted, the naming of picture targets in Experiment 5 was inhibited by the brief 

presentation of word primes in which phonemic feature similarity in the coda positions 

of both stimuli was manipulated (Identical, Feature and Unrelated conditions). As such, 

the picture naming results from Experiment 5 were consistent with the picture naming 

data from Experiments 2 and 3. Further and in line with the picture naming outcomes 

from Experiments 1 to 4, in Experiment 5 there was also a trend towards the largest 

interference of all being observed when all but one of the phonemic features were 

shared in the coda position (Feature condition) of both word primes and picture targets.  
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However, before firm conclusion regarding the picture naming data from Experiment 5 

could be reached, it was important to establish whether the same pattern of results 

would be replicated with non-word primes in which, as with the word primes, phonemic 

feature similarity in the end/coda position between primes and targets was manipulated. 

This was done in the following experiment.  

 
 

 

5.4. Experiment 6 – Non-word primes 

 

 

5.4.1. Introduction 

 

Experiment 6 was conducted as a follow up to Experiment 5 with its aim two-fold. 

Firstly and as previously discussed, whilst the word reading results from Experiments 1 

to 4 were consistent with the dual-route theoretical framework (e.g., DRC, Coltheart et 

al., 2001), the word reading outcomes from Experiment 5 were not.  Therefore, it was 

important to continue with this line of investigation to assess whether the employment 

of non-word primes in which phonemic feature similarity in the end/coda position was 

manipulated could provide an explanation for this discrepancy. Secondly and with 

regards to the picture naming task, Experiments 2, 3 and 5 were consistent in revealing 

interference in picture naming in all conditions relative to controls (i.e., Identical, 

Feature and Unrelated). However, in Experiments 2 and 3 there was a trend towards this 

interference being largest of all in the Feature condition in which the onsets of both 

primes and targets shared all but one of their phonemic features whereas in Experiment 
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5 this trend was not observed. Consequently, it was important to continue with this 

enquiry to establish the precise pattern of effects in picture naming when phonemic 

feature overlap was varied in the coda position of non-word primes and targets.   

 

Akin to Experiments 4 and 5 therefore, in Experiment 6 phonemic feature similarity in 

the coda position between primes and both word and picture targets was manipulated. 

This time however, non-word primes were employed. In keeping with the previous 

experiments each word and picture target (e.g., BAT) was preceded by the brief 

presentation of four types of primes namely, Identical (e.g., zut - BAT) in which primes 

and targets shared their codas, Feature (e.g., zud - BAT) in which the codas of primes 

and targets shared all but one of their phonemic features, Unrelated (e.g., zun - BAT) in 

which the codas differed by at least two phonemic features and finally Control (e.g., 

%%% - BAT) that consisted of percentage signs.  

 

In consideration of the unexpected observation of interference from word primes in the 

word reading task of Experiment 5 which as discussed, was inconsistent with the 

outcomes from Experiment 2 and thus contrary to the working assumptions of the 

lexical route of the dual-route theoretical framework (e.g., DRC; Coltheart et al., 2001), 

it remained to be seen how coda segment related non-word primes would affect the 

word reading process. However, it was anticipated that the outcomes in the picture 

naming task would be in line with the findings for the corresponding task in 

Experiments 2, 3 and 5. As such, it was expected that non-word primes would interfere 

with the picture naming process in all conditions (i.e., Identical, Feature and Unrelated) 

relative to the Control condition and that this interference would be largest of all when 
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the codas of both non-word primes and picture targets shared all but one of their 

phonemic features (Feature condition). 

 

 

5.4.2. Method 

 

 

5.4.2.1. Participants 

 

 

Forty-eight participants took part in this experiment. Their mean age was 27.17 and 

ranged from 18 to 50 years.  

 

 

5.4.2.2. Design and Stimuli 

 

 

The design was exactly the same as that employed in Experiment 5. The twenty-two (6 

practice + 16 target) words and their corresponding pictures used in this experiment 

were identical to those in Experiment 5. The non-word primes were organized into four 

priming conditions namely, Identical (e.g., zut - BAT), Feature (e.g., zud - BAT), 

Unrelated (e.g., zun - BAT) and Control (e.g. %%% - BAT). Table 11 displays the 

means for each control variable of the non-word primes (i.e., Identical, Feature and 

Unrelated). Each of the targets and primes were selected based on the criteria described 
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in Chapter 3.  A complete list of targets and non-word primes in the Identical, Feature 

and Unrelated priming conditions is included in Appendix G.  

 

 

 

Table 11 

Means for the control variables of the word primes in the Identical, Feature and 

Unrelated conditions of Experiment 6. 

 

                                                                                               

                                                                                           Priming Conditions 
 

Control variables 
 

Identical 
 

Feature 
 

Unrelated 
 

Number of orthographic neighbours 

Neighbourhood frequency 

     

     10.44 

   133.40 

     

      9.88 

  140.71 

      

         8.13 

       91.76 
 

Note. The above means are based on the CELEX (1995) database (Medler & Binder, 2005). Orthographic 

neighbours = words that differ from each other by only one letter; Neighbourhood frequency = the 

average frequency (per million) of the orthographic neighbours. 

 

 

 

5.4.2.3. Procedure 

 

 

Post experimental interviews revealed that two participants noticed seeing something 

before the presentation of the targets but were unsure about what they had seen.  
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5.4.3. Results   

 

 

A total of 2.0% error (0.6% technical errors + 1.4% errors) and 5.2% trimmed data were 

removed from the latency analysis. Mean naming latencies, standard deviations, 

percentage errors and mean priming effects for both word reading and picture naming in 

all four priming conditions are displayed in Table 12.  

 

 

Table 12 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 6.  

 

                                                                                               Task 

    Word reading     Picture naming 

 

Priming condition (example)  
 

RT 
 

SD 
 

%E   PE 
 

RT 
 

SD 
 

%E   PE 
 

Identical (zut – BAT)  
 

484.17 
 

63.87 
 

0.8     6 
 

594.10 
 

50.00 
 

0.8    -2 

Feature (zud – BAT)  487.21 63.99 0.3     3 592.34 50.08 2.6    -1 

Unrelated (zun – BAT)  488.51 67.40 0.3     2 593.44 41.11 3.1    -2 

Control (%%% - BAT)  490.24 64.36 0.0 591.64 47.27 3.1 
 

Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 

 

For naming latency, the main effect of Task was significant, F1(1,46) = 43.69, MSE = 

12192.57, p < .001, η² = .49; F2(1,15) = 195.04, MSE = 1878.43, p < .001, η² = .93, 

whereas the main effect of Priming Condition was not, F1(3,118) = .17, MSE = 273.28, 

p > .05 (Greenhouse-Geisser); F2(2,25) = .10, MSE = 525.93, p > .05, (Greenhouse-
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Geisser). Also, the interaction between Task and Priming Condition was not significant, 

F1(3,138) = .63, p > .05; F2(3,45) = .44, MSE = 257.80, p > .05.  

 

The overall error rate in the word reading task was 0.3%. Therefore, only the errors in 

the picture naming task were analyzed. They showed that the main effect of Priming 

Condition was significant by participants but not by items F1(3,69) = 2.84, MSE = .268, 

p = .044, η² = .11; F2(1,20) = 1.69, MSE = 1.53, p > .05, (Greenhouse-Geisser). 

Planned comparisons of the participants data revealed that significantly fewer errors 

were made in the Identical condition relative to the Control condition [t1(23) = 2.84, p = 

.009]. However, there was no significant difference in the error scores between the 

Feature and Unrelated conditions; p > .05. Pairwise comparisons (Bonferroni adjusted) 

showed that there was no difference in the error scores between the Identical and 

Feature, Identical and Unrelated, Feature and Control as well as the Unrelated and 

Control conditions; all ps > .05.  

 

 

5.4.4. Discussion 

 

 

The latency data from Experiment 6 showed that neither word reading nor picture 

naming were affected by the priming conditions employed.  The error scores revealed 

that fewer errors were made in the word reading task compared to the picture naming 

task. This was consistent with the error data from all the other experiments. However, 

contrary to the previous experiments a main effect of priming condition was found in 

the picture naming task. This effect was significant by participants but not by items. The 
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participants‟ error data revealed that significantly fewer errors were made in the 

Identical condition relative to the Control condition which suggested that at least in this 

task the final segment of non-word primes had some effect on the picture naming 

process. These findings along with the results from Experiments 4 and 5 were evaluated 

in more detail in the general discussion that follows. 

 

 

 

5.5. General discussion 

 

 

Experiments 4, 5 and 6 employed the masked priming paradigm to assess word reading 

and picture naming when phonemic feature similarity in the coda position of primes and 

targets was manipulated. However, the outcomes from these experiments were less 

consistent than those obtained from Experiments 1, 2 and 3 that were designed to assess 

the effects of phonemic feature overlap in the onset position of these stimuli. In 

Experiment 4 it was found that when primed by single segment coda primes, both 

words and pictures were named significantly faster in the Identical condition compared 

to the Feature and Control conditions. They were also named faster in the Identical 

condition relative to the Unrelated condition although this difference in naming 

performance was not statistically significant. In contrast, the masked presentation of 

word primes in Experiment 5 inhibited the naming process of these two target types 

with this finding significant in both the Identical and Feature conditions compared to 

the Control condition. However, even though naming performance was numerically 

very similar in the Unrelated condition compared to the Identical condition, the slower 
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naming of targets in the Unrelated condition relative to the Control condition was not 

significant. Further, in Experiment 5, the observed interference was largest of all when 

word primes and both word and picture targets shared all but one of their phonemic 

features (Feature condition). Finally, the latency data from Experiment 6 showed null 

effects from non-word primes on both target types. 

 

The error scores obtained from Experiments 4 and 5 were consistent with those of 

Experiments 1, 2 and 3 in that more errors were made in picture naming compared to 

word reading with the error scores for both tasks unaffected by the priming conditions 

employed. In Experiment 6 more errors were again made in the picture naming task. 

This time though and in contrast to the other experiments, significantly fewer errors 

were made in the Identical condition in which non-word primes and picture targets were 

related in the coda position relative to the Control condition that consisted of percentage 

signs. This suggested that at least in the picture naming task of Experiment 6 the final 

segment of non-word primes had some effect on picture naming. However, it was 

unclear why this effect was only found with non-word primes related in the coda 

position and not with any of the other prime types.  

 

The word reading results from Experiments 4 and 6 were both consistent with the 

notion that in the masked priming of word targets observed effects with non-lexical 

primes (i.e., single segment and non-word) are due to effects occurring at the non-

lexical route that as described earlier operates in a serial rightward manner. 

Consequently, in the absence of mismatching initial segments/phonemes between 

primes and word targets facilitation from shared single segment coda primes (Identical 

condition) was found in Experiment 4. The same argument can also be used to explain 
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why the presence of mismatching initial segments/phonemes between non-word primes 

and word targets caused any possible benefits from shared codas (Identical condition) to 

be simply lost in Experiment 6. Hence, null effects were reported from that experiment. 

In contrast however, the outcomes from Experiment 5 showed that word primes 

interfered with the word reading process with this interference appearing to be largest of 

all when the codas of these two stimuli shared all but one of their phonemic features 

(Feature condition). These results were contrary to the word reading data from 

Experiment 2 and thus incompatible with the earlier presented argument that in this 

paradigm effects found in word reading with the employment of lexical (word) primes 

are due to the workings of the lexical route. Given that in this route the processing of a 

given input takes place in parallel across its word-form and that the word reading results 

from Experiment 2 showed facilitation when all and also all but one of the phonemic 

features were shared in the onset position of word primes and word targets (Identical 

and Feature conditions, respectively), it was anticipated that the word reading outcomes 

from Experiment 5 would reveal similar effects to those in Experiment 2. However, this 

was not the case. Whilst in both experiments effects from phonemic features were 

observed (Identical & Feature conditions), at this point it was unclear why word primes 

in which phonemic feature similarity in the onset position of primes and targets was 

manipulated resulted in facilitating the naming of word targets whereas word primes in 

which this manipulation took place in the coda position interfered with the word reading 

process.  Further enquiry was thus required to clarify this issue. 

 

The experimental manipulation of phonemic feature similarity in the end/coda position 

of primes and picture targets revealed that matching single segment coda primes 

(Identical condition) facilitated picture naming in Experiment 4 whilst word primes 
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interfered with this task (Identical, Feature and Unrelated conditions) in Experiment 5. 

Further and akin to the earlier experiments (Experiments 1 to 3), the observed 

interference was largest when all but one of the phonemic features between the codas of 

word primes and picture targets were shared (Feature condition - Experiments 4 & 5).  

As such, the results for picture naming from Experiments 4 and 5 can also be accounted 

for with reference to the architecture incorporated into Dell‟s (1986) model. As 

discussed previously, within this model the phonemes corresponding to a given input 

are activated in parallel and this parallelism thus explains the consistency of results 

between experiments across each prime type (i.e., Experiment 1 versus Experiment 4, 

Experiment 2 versus Experiment 5). However, the latency data from Experiment 6 

showed null effects from non-word primes on picture naming even though as indicated 

by the error scores, fewer errors were made in the Identical condition in which the codas 

of these two stimuli shared the same phoneme. The picture naming data from 

Experiment 6 were therefore wholly inconsistent with that of Experiment 3 that also 

employed non-word primes. Consequently, it was unclear why in Experiment 3 non-

word primes inhibited picture naming whereas in Experiment 6 they only affected the 

error scores and had no observable effect on the latency data. The findings from 

Experiment 6 were thus contrary to all the earlier reported picture naming results 

(Experiments 1 to 5) and were therefore difficult to explain with reference to Dell‟s 

(1986) model. As such, they required further detailed investigation. To this aim and to 

address the discrepancies observed in the word reading task (Experiment 2 versus 

Experiment 5), it was decided to employ the masked sandwich priming paradigm (e.g., 

Lupker & Davis, 2009) in Experiments 7 and 8 to attempt to provide an explanation for 

the inconsistencies in the data collected so far that are discussed above. The exact 
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motivation for using the masked sandwich priming paradigm is explained in the 

Introduction to the following chapter.  
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CHAPTER 6: Masked sandwich priming effects when 

manipulating phonemic feature similarity in the initial and 

end/coda segment positions of non-word primes with both 

word and picture targets 

 

 

6.1. Introduction 

 

The final two experiments of this thesis (Experiments 7 and 8) employed the masked 

sandwich priming paradigm (e.g., Lupker and Davis, 2009). In this paradigm the target 

itself is displayed (in word form) as an initial prime prior to the presentation of the main 

prime (e.g., belt-bude-BELT). As discussed in the previous chapter, the majority of the 

word reading data collected so far was consistent with the dual-route theoretical 

framework (e.g., DRC, Coltheart et al., 2001) and suggested that in masked priming, 

effects observed with non-lexical primes (i.e., single segment and non-word primes) 

occur during processing via the non-lexical route whereas effects found with lexical 

primes (i.e., word primes) reflect processes that take place through the lexical route. 

However, contrary to this theoretical framework the outcomes from Experiments 2 and 

5 suggested (as argued by Lukatela et al., 2001) that within the lexical route the 

processing of words is driven by phonemic features. As such, in Experiments 2 and 5 

effects were observed with both complete featural overlap and also when all but one of 

the phonemic features between the corresponding phonemes of word primes and word 

targets (Identical and Feature conditions) were shared. Nonetheless, at this point it was 



 183 

unclear why in Experiment 2 the observed effects were facilitating in nature whereas 

interference was found in Experiment 5. Prior to conducting Experiment 5 it was 

anticipated that due to the parallel activation of phonemes within the lexical route, 

observed effects would be consistent across these two experiments regardless of the 

position of the phoneme within a word-form (onset versus coda position) that was 

exposed to the experimental manipulation.  Consequently, Experiments 7 and 8 were 

conducted to attempt to tease apart the reasons for this discrepancy in naming 

performance by directly engaging the lexical route for the subsequent processing of 

word targets through the use of the masked sandwich priming paradigm. When using 

this paradigm for word reading, the brief display of the actual target as an initial prime 

should result in the full engagement of the lexical route because this prime is in itself a 

lexical item. Given that the subsequent presentation of the non-word main prime and 

word target occur rapidly thereafter, the prior engagement of the lexical route following 

the presentation of the initial prime should then force the processing of the main prime 

and word target through this activated lexical route. As such, effects observed with non-

word primes in this masked sandwich priming paradigm should reflect processes 

occurring at the lexical route and thus have the potential to provide an explanation for 

the observed discrepancies between the word reading data from Experiment 2 and that 

of Experiment 5.  

 

The picture naming outcomes reported in Chapters 4 and 5 were consistent with the 

working assumptions of Dell‟s (1986) model which incorporates the parallel activation 

of phonemes corresponding to a given monosyllabic input during the phonological 

encoding process. That was why regardless of their position within a word-form (onset 

versus coda position), matching single segment primes (Identical condition) facilitated 



 184 

picture naming in Experiments 1 and 4 whereas the presence of mismatching phonemes 

between both word and non-word primes (Identical, Feature and Unrelated conditions) 

inhibited this process in Experiments 2, 3 and 5. However, the picture naming results 

from Experiment 6 that examined coda position manipulations showed null effects from 

non-word primes. These outcomes were thus contrary to those of Experiment 3 in which 

non-word primes were also used and therefore could not be accounted for with 

reference to Dell‟s (1986) model.  Consequently, in Experiments 7 and 8 for picture 

naming it was decided to employ the masked sandwich priming paradigm to firstly 

assess if the data collected could provide an explanation for the observed discrepancy 

between the results from Experiment 3 and those of Experiment 6 and secondly, to more 

directly test the nature of the interference between both word and non-word primes and 

picture targets reported in Experiments 2, 3 and 5. Given the likelihood that this 

interference was due to competition for selection from the mismatching phonemes 

between the corresponding phonemes of primes and targets, it was logical to assume 

that the presentation of the actual target prior to the display of a non-word prime should 

result in the pre-activation of the picture target‟s phonemes. This pre-activation of the 

entire set of the target‟s phonemes should therefore largely reduce if not eliminate the 

competition between the mismatching phonemes that was observed using the traditional 

masked priming paradigm. This in turn should then allow for any benefits from the 

shared phonemes between the main prime and target (Identical condition) to be found. 

Finally, by varying the degree of featural overlap between respective phonemes, this 

experimental manipulation might provide further insight into why in Experiments 1 to 5 

there was a trend towards the largest interference of all occurring in the Feature 

condition in which the onsets of primes and picture targets shared all but one of their 

phonemic features. 
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In Experiments 7 and 8 therefore, the non-word primes along with the word and picture 

targets from Experiments 3 and 6 (respectively) were used in the masked sandwich 

priming paradigm. As such, Experiment 7 examined manipulations in the onset position 

between primes and targets whilst Experiment 8 examined similar manipulations in the 

coda position. For word reading, this was done to ascertain whether by forcing the 

engagement of the lexical route thus reflecting processes occurring through that route it 

would be possible to tease out an explanation for why facilitation was observed with 

word primes in Experiment 2 whereas in Experiment 5 these primes interfered with the 

word reading process. For picture naming, the brief presentation of the actual target in 

this paradigm should result in the pre-activation of the picture target‟s phonemes which 

in turn should allow for any facilitating effects from matching phonemes (and/or 

features) between a main prime and its target to be fully expressed.  

 

 

 

6.2. Experiment 7 - Manipulation of phonemic feature overlap in the 

onset segment position of non-word primes with both word and picture 

targets 

 

 

6.2.1. Introduction 

 

Experiment 7 was designed as a follow up to the masked priming study of Experiment 3 

in which the initial segment position of non-word primes and both word and picture 
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targets was manipulated. Whilst Experiment 7 used exactly the same stimuli as 

Experiment 3, it contrasted in that it employed the masked sandwich priming paradigm 

(e.g., Lupker & Davis, 2009) for the experimental manipulation. In line with 

Experiment 3 the non-word primes were presented in four priming conditions namely, 

Identical (e.g., belt – bude – BELT), Feature (e.g., belt – pude – BELT), Unrelated (e.g., 

belt – jude – BELT) and Control (e.g., belt - %%%% -BELT).  

 

With regards to the word reading task and as discussed earlier, the brief display of the 

actual target as an initial prime was expected to fully engage the lexical route which 

should then force the processing of both the main prime and word target through this 

activated route. As such, any masked sandwich priming effects observed with non-word 

primes in this experiment should therefore reflect processes occurring within the lexical 

route rather than at the non-lexical route that appeared to be the locus for the observed 

effects in Experiment 3. Given that in the Control condition the initial prime was the 

name of the actual word target whereas the main prime consisted purely of percentage 

signs, the pre-activation of target‟s name following the presentation of the first prime 

along with the absence of any additional activations after the display of the second 

prime was expected to facilitate reading responses in the Control condition. However, in 

the other three conditions (i.e., Identical, Feature and Unrelated) in which the main 

prime was a non-word, the activations resulting from the mismatching segments of this 

prime was expected to introduce noise into the system. Consequently, it was predicted 

that response latencies to word targets would be faster in the Control condition 

compared to all other conditions.  Further, if the findings from Experiment 2 were 

correct, specifically that at the lexical route masked priming effects are due to a shared 

featural environment and are therefore positively correlated with the degree of 
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phonemic feature overlap between the onsets of primes and targets, by forcing the 

processing of all stimuli via the lexical route it was predicted that word targets would 

also be read faster in the Identical condition relative to both the Feature and Unrelated 

conditions as well as in the Feature condition compared to the Unrelated condition.   

 

Akin to word reading, it was anticipated that picture targets would be named 

significantly faster in the Control condition relative to the Identical, Feature and 

Unrelated conditions. This is because consistent with Dell‟s (1986) model, the 

presentation of a target‟s name as an initial prime should pre-activate all the phonemes 

corresponding to the picture target‟s phonemes and there should be no additional 

activity resulting from the display of the main prime that consisted of percentage signs. 

However, whilst the presentation of the initial prime in the Identical, Feature and 

Unrelated conditions should again result in the pre-activation of the target‟s phonemes 

that could potentially reduce the intensity of competition between the mismatching 

phonemes of the main prime and picture target, it was difficult to predict at this point 

whether there would be observable effects due to shared onsets (Identical condition) or 

shared phonemic features in the onset position (Identical and Feature conditions) 

between the main primes and their targets. 

 

 

 

 

 

 

 



 188 

6.2.2. Method 

 

 

6.2.2.1. Participants 

 

 

Forty-eight participants took part in this experiment. Their mean age was 24.08 and 

ranged from 18 to 44 years. 

 

 

6.2.2.2. Design 

 

 

The design was identical to that used in Experiment 3.  

 

 

6.2.2.3. Stimuli 

 

 

The word and picture targets as well as the non-word primes were exactly the same as 

those employed in Experiment 3.  
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6.2.2.4. Procedure 

 

 

In this experiment the masked sandwich priming paradigm was employed. As such, the 

procedure corresponded to that described for this paradigm in Chapter 3. 

 

Post experimental interviews revealed that fifteen participants (seven in word reading 

and eight in picture naming) noticed seeing something before the presentation of the 

targets. Further, some of those who were aware of the presence of primes reported 

seeing words whereas others thought that they could see a row of letters.  

 

 

 

6.2.3. Results  

 

A total of 1.4% error (0.4% technical errors + 1.0% errors) and 4.7 % trimmed data 

were removed from the latency analyses. Further, the data from one participant (in the 

word reading task) was removed from the analyses due to an experimental error. 

Finally, the data from four participants (one in word reading and three in picture 

naming) consisted of outliers.  However, since the pattern of observed results remained 

the same in the analyses both with and without outliers, the former are reported herein. 

Mean naming latencies, standard deviations, percentage errors and mean priming effects 

for both word reading and picture naming in all four priming conditions are displayed in 

Table 13.  

 



 190 

Table 13 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 7.      

                               

                                                                                  

                                                                                                 Task 

  
 

Word reading 
 

Picture naming 
 

Priming condition (example)  
 

RT 
 

SD 
 

%E   PE 
 

RT 
 

SD 
 

%E  PE 
 

Identical (belt-bude-BELT)  
 

472.52 
 

43.37 
 

0.2     -9 
 

582.33 
 

52.84 
 

1.6  -29 

Feature (belt-pude-BELT)  484.52 43.84 0.6   -21 596.23 49.89 2.0  -42 

Unrelated (belt-jude-BELT)  489.81 39.89 0.4   -26 601.16 49.89 2.2  -47 

Control (belt-%%%%-BELT)  463.40 45.97 0.0 553.75 55.53 0.6 
 

Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 

 

 

For naming latency, the main effect of Task was significant, F1(1,45) = 59.86, MSE = 

8786.30, p < .001, η² = .57; F2(1,35) = 904.49, MSE = 905.09, p < .001, η² = .96, as 

was the main effect of Priming Condition, F1(3,135) = 88.37, MSE = 143.93, p < .001, 

η² = .66; F2(2,84) = 72.53, MSE = 350.91, p < .001, η² = .67 (Greenhouse-Geisser). The 

interaction between the two was also significant, F1(3,135) = 8.71, p < .001, η² = .16; 

F2(3,105) = 8.13, MSE = 234.23, p < .001, η² = .19.  

 

Separate analyses of Task showed that in the word reading task there was a significant 

main effect of Priming Condition, F1(3,66) = 34.00, MSE = 95.72, p < .001, η² = .61; 

F2(3,105) = 33.83, MSE = 160.21, p < .001, η² = .49. Planned comparisons showed that 

response latencies were significantly faster in the Control condition compared to the 

Identical condition [t1(22) = 3.38, p = .003; t2(35) = 3.45, p < .001]. They were also 
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faster in the Feature condition relative to the Unrelated condition [t1(22) = 2.51, p = 

.020; t2(35) = 1.48, p > .05] however, this effect was significant only by participants but 

not by items. Pairwise comparisons (Bonferroni adjusted) revealed that response 

latencies were significantly faster in the Control condition compared to both the Feature 

[t1(22) = 21.12, p < .001; t2(35) = 22.45, p < .001] and Unrelated [t1(22) = 26.41, p < 

.001; t2(35) = 26.77, p < .001] conditions. They were also faster in the Identical 

condition relative to both the Feature [t1(22) = 12.01, p < .001; t2(35) = 13.22, p < .001] 

and Unrelated [t1(22) = 17.29, p < .001; t2(35) = 17.54, p < .001] conditions.  

 

There was also a significant main effect of Priming Condition in the picture naming 

task, F1(3,69) = 57.25, MSE = 190.04, p < .001, η² = .71; F2(3,105) = 47.51, MSE = 

355.13, p < .001, η² = .58. Planned comparisons showed that response latencies were 

significantly faster in the Control condition compared to the Identical condition [t1(23) 

= 7.16, p < .001; t2(35) = 5.35, p < .001]. However, there was no significant difference 

in the response latencies between the Feature and Unrelated conditions, both ps > .05. 

Pairwise comparisons (Bonferroni adjusted) revealed that response latencies were 

significantly faster in the Control condition relative to both the Feature [t1(23) = 42.48, 

p < .001; t2(35) = 44.04, p < .001] and Unrelated [t1(23) = 47.40, p < .001; t2(35) = 

47.49, p < .001] conditions. They were also faster in the Identical condition relative to 

both the Feature [t1(23) = 13.91, p = .003; t2(35) = 15.74, p < .001] and Unrelated 

[t1(23) = 18.83, p < .001; t2(35) = 19.19, p < .001] conditions.  

 

The overall error rate in the word reading task was 0.3%. Therefore, only the errors in 

the picture naming task were analysed. They showed a significant main effect of 

Priming Condition, F1(2,51) = 3.29, MSE = .661, p = .041, η² = .13 (Greenhouse-
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Geisser); F2(3,105) = 2.97, MSE = .358, p = .035, η² = .08. Planned comparisons 

revealed that less errors were made in the Control condition relative to the Identical 

condition [t1(23) = 2.84, p = .009; t2(35) = 1.66, p > .05] although this effect was only 

significant by participants but not by items. There was however, no significant 

difference in error scores between the Feature and Unrelated conditions, both ps > .05. 

Pairwise comparisons (Bonferroni adjusted) showed that significantly fewer errors were 

made in the Control condition relative to the Unrelated condition [t1(23) = .58, p = .021; 

t2(35) = .39, p > .05]; with this effect again significant only by participants but not by 

items. Finally, there was no significant difference in the error scores between the 

Control and Feature, Identical and Feature as well as the Identical and Unrelated 

conditions; all ps > .05. 

 
  

 

6.2.4. Discussion 

 

 

The results from Experiment 7 demonstrated an interaction between Task and Priming 

Condition. Due to this interaction the data for word reading and picture naming were 

analysed separately. These analyses revealed that word targets were read significantly 

faster in the Control condition relative to all other conditions (i.e., Identical, Feature and 

Unrelated). They were also read significantly faster in the Identical condition compared 

to both the Feature and Unrelated conditions. Response latencies were also shorter in 

the Feature condition relative to the Unrelated condition. However, this difference was 

significant only by participants but not by items. The picture naming data showed 
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similar effects to those found in word reading except that the magnitude of the 

differences in naming latencies between the Control condition and all other conditions 

(i.e., Identical, Feature and Unrelated) was larger in this task compared to word reading. 

Additionally and in contrast to word reading, there was no significant difference in 

response latencies to picture targets between the Feature and Unrelated conditions. It is 

this contrast that can thus account for the significant interaction found between these 

two tasks. Finally, akin to the previous experiments fewer errors were made in word 

reading compared to picture naming. The analysis of the error scores from the picture 

naming task showed that more errors were made in the Identical, Feature and Unrelated 

conditions relative to the Control condition. However, the difference between the 

Control and the Feature conditions was not significant whereas the differences between 

the Control condition and both the Identical and Unrelated conditions were significant 

by participants but not by items.  

 

As predicted, the results from Experiment 7 showed that the naming of both word and 

picture targets was significantly faster in the Control condition relative to all other 

conditions (i.e., Identical, Feature and Unrelated conditions). In the Control condition 

the display of the actual target‟s name as an initial prime was followed by the brief 

presentation of percentage signs as the main prime (e.g., belt - %%%% - BELT) 

whereas in the other three conditions the main prime consisted of a non-word in which 

phonemic feature similarity in the onset position of both the non-word prime and its 

target was manipulated (e.g., belt-jude-BELT – Unrelated condition). It could therefore 

be concluded that consistent with the arguments presented earlier for word reading, the 

display of the target‟s name as the initial prime engaged the lexical route and thus 

resulted in the pre-activation of the actual word target at that route. Given that in the 
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Control condition the word target was already pre-activated and further, that there were 

no additional activations within the system resulting from the presentation of the main 

prime that consisted of percentage signs, target naming thus required less time 

compared to all other conditions in which the display of both lexical and non-lexical 

primes might have induced noise into the system that needed to be resolved prior to 

target naming.  

 

During the picture naming task and in line with Dell‟s (1986) model, the presentation of 

target‟s name as the initial prime resulted in the pre-activation (in parallel) of all the 

picture target‟s phonemes at the phoneme level. This, combined with the absence of any 

additional activations in the Control condition following the display of percentage signs 

as the main prime meant faster target naming in that condition relative to the other 

conditions in which the second prime was a non-word.  This is because in the Identical, 

Feature and Unrelated conditions the mismatching phonemes activated by non-word 

primes would have competed for selection with the corresponding picture target‟s 

phonemes and thus either reduced or possibly even eliminated any facilitating effects 

that were introduced by the initial prime. This also explains why for the picture naming 

task, fewer errors were made in the Control condition compared to all other conditions.  

 

Further, the word reading data from Experiment 7 also revealed that word targets were 

read significantly faster in the Identical condition relative to both the Feature and 

Unrelated conditions. They were also read significantly faster in the Feature condition 

compared to the Unrelated condition. In contrast to Experiment 3, this latter observation 

thus showed phonemic feature effects and was therefore consistent with the predictions 

for this experiment and also with the results of Experiment 2 that used word primes. 
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Since in Experiments 3 and 7 the same stimuli were employed with the only difference 

being that in Experiment 7 the actual target was displayed as an initial prime prior to the 

presentation of the non-word prime, it could be concluded that in Experiment 7 the brief 

presentation of the target as an initial prime did in fact engage the lexical route and thus 

the observations reflected effects occurring at that route. Consequently, the word 

reading data from Experiment 7 provided further empirical support for the argument 

presented in the previous two chapters that in the traditional masked priming paradigm, 

effects on word targets from non-lexical primes (i.e., single segment and non-word 

primes) are due to processes taking place through the non-lexical route whereas those 

with lexical primes (i.e., word primes) occur at the lexical route.  

 

Similarly to the word reading task, picture targets in Experiment 7 were named 

significantly faster in the Identical condition relative to both the Feature and Unrelated 

conditions. However, even though naming latencies were faster in the Feature condition 

compared to the Unrelated condition, unlike with word reading the difference between 

these two conditions was not significant. This contrasted with the outcomes from 

Experiment 3 in which non-word primes in the Identical, Feature and Unrelated 

conditions interfered with the picture naming process with this interference being 

largest of all when the onsets of primes and targets shared all but one of their phonemic 

features (Feature condition). However, this discrepancy between the results from 

Experiments 3 and 7 can still be accommodated within the workings of Dell‟s (1986) 

model and can be explained as follows. After the display of the target‟s name as the 

initial prime during picture naming in Experiment 7 the phonemes corresponding to the 

picture target‟s phonemes were activated (in parallel) at the phoneme level and 

remained active within the system. Then the non-word prime was presented. Since in 
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both the Feature and Unrelated conditions all of the phonemes corresponding to this 

prime differed to the relevant picture target‟s phonemes, they competed for selection 

with the target‟s phonemes. The same was true for the Identical condition in which 

except for the onset position that was common for each of the initial prime, main prime 

and the target, the remaining phonemes of the non-word prime differed to and thus 

competed with the relevant picture target‟s phonemes for selection. However, in the 

onset position in the Identical condition the non-word prime‟s phoneme would have 

been pre-activated following the display of the initial prime. This pre-activation then 

acted to reinforced the facilitating effects from the shared segment in this position 

between the non-word prime and the target itself, with the result of clear facilitation in 

the Identical condition relative to both the Feature and Unrelated conditions.  

 

In Experiment 3 and as discussed earlier, an almost fully shared featural environment 

between the initial phoneme of a prime and picture target induced the greatest amount 

of competition within the system with the result that naming latencies were slowest of 

all in the Feature condition. However, this finding was not replicated in Experiment 7 

where if anything there was a trend towards faster target naming in the Feature 

condition compared to the Unrelated condition. This discrepancy in results can be 

explained with reference to differences in the paradigms employed. Specifically, in the 

Feature condition of Experiment 7 the picture target‟s onset was already pre-activated 

as a consequence of the presentation of the initial prime. Referring to Dell‟s (1986) 

model, the bi-directional connections between the phoneme and feature levels would 

then have to apply to both the representations of the initial prime and non-word prime 

and also to the representations of the non-word prime and picture target. For the Feature 

condition therefore, in the onset position feedback between the pre-activated phoneme 
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and features of the initial prime (i.e., the target‟s phoneme and features) and the non-

word prime together with feedback between the non-word prime and the target itself 

appeared to act to eliminate the presence of additional interference from featural 

similarity that was found in the same condition in Experiment 3. It may even be that the 

combination of feedback between the activated phonemes and features in the initial 

segment position of the three separate stimuli that are presented during the masked 

sandwich priming paradigm results in reducing the level of competition within the 

system when the degree of featural overlap between the main prime and target is 

increased. If so, this would account for the trend towards faster target naming in the 

Feature condition compared to the Unrelated condition in Experiment 7 that was 

suggested by the data.  

 

Finally, even though the picture naming results from Experiment 7 seemed to be 

compatible with the working assumptions of Dell‟s (1986) model and also that the word 

reading data from this experiment appeared to be in line with the dual-route theoretical 

framework (e.g., Coltheart et al., 2001), it is important to note that there was a 

substantial difference between the Control condition in Experiment 7 and those 

employed in the other experiments. In this condition of Experiment 7 the actual target‟s 

name was presented as the initial prime prior to the display of percentage signs as the 

main prime. However, in all the previous experiments the Control prime was simply a 

string of percentage signs.  As such, it was difficult to ascertain whether in both tasks 

the above reported masked sandwich priming effects were representative of facilitation 

or whether they were simply due to less interference occurring in both the Identical and 

Feature conditions compared to the Unrelated condition.  Consequently, for the final 

masked sandwich priming experiment that completed the experimental work undertaken 
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within this thesis it was decided to modify the Control condition to be one that was 

more consistent with Experiments 1 to 6.  

 
 

 

 

6.3. Experiment 8 – Manipulation of phonemic feature overlap in the 

coda segment position of non-word primes with both word and picture 

targets 

 

 

6.3.1. Introduction 

 

 

As discussed in the introduction to this chapter, Experiment 8 was conducted as a 

follow up to Experiment 6 that examined manipulations in the coda position of non-

word primes and targets. Consequently, the masked sandwich priming procedure (e.g., 

Lupker and Davis, 2009) was employed in conjunction with the same non-word primes 

and both the word and picture targets from Experiment 6. As mentioned in the previous 

section, the display of the target‟s name as the initial prime in the Control condition of 

Experiment 7 had disadvantages. Specifically, based on the data collected from this 

experiment it was not possible to draw firm conclusions as to whether the observed 

effects for each task in the Identical and Feature conditions were due to facilitation from 

shared onsets and/or their phonemic features or whether they were simply a reflection of 

less interference within the system resulting from the presentation of these primes 
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compared to the primes used in the Unrelated condition. As such, in order to produce 

neutral effects in the Control condition to ascertain more directly whether the observed 

effects were facilitating or inhibiting a decision was made for this condition in 

Experiment 8 to be changed to one that was similar to those employed in Experiments 1 

to 6.   Consequently, in the Control condition of Experiment 8 the initial prime 

consisted of a row of „&‟ symbols rather than the target name itself whilst the main 

prime remained unchanged as a row of percentage signs.  In line with the previous 

experiments therefore, in Experiment 8 there were four priming conditions namely, 

Identical (e.g., bat – zut –BAT), Feature (e.g., bat – zud – BAT), Unrelated (e.g., bat – 

zun – BAT) and Control (e.g., &&& - %%% - BAT). 

 

As discussed, the word reading data from Experiment 7 was consistent with the 

argument presented earlier that in masked sandwich priming the brief display of the 

actual target as an initial prime fully engages the lexical route and thus reflects effects 

that occur at that route. That was why the results of Experiment 7 echoed those from 

Experiment 2 that employed word primes and showed phonemic feature effects in the 

onset position of non-word primes and word targets  (Feature versus Unrelated 

conditions) even though the main prime was a non-lexical item.  As such, it was 

anticipated that the same would also be true in Experiment 8 in which the non-word 

primes and word targets from Experiment 6 were used in the masked sandwich priming 

paradigm. However, given that the observed effects in Experiment 2 were facilitating in 

nature (and most probably in Experiment 7 too) whereas in Experiment 5 these effects 

were interpreted as interference, it was difficult to predict whether the word reading 

results from Experiment 8 would be consistent with the former or the latter findings. 

Either way, it was expected that the word reading data collected from Experiment 8 
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should provide an explanation for this discrepancy and thus contribute greatly to the 

discussion. 

 

Regarding the picture naming results from Experiment 7, it was argued that these 

outcomes were compatible with the working assumptions of Dell‟s (1986) model and 

that was why picture targets were named significantly faster in the Control condition 

relative to all other conditions as well as in the Identical condition compared to both the 

Feature and Unrelated conditions. It was also suggested that the combination of 

feedback between the activated phonemes and features in the initial segment position of 

the three separate stimuli presented during masked sandwich priming appears to act in a 

way that reduces the level of competition within the system when the degree of featural 

overlap between the main prime and target is increased. This explanation would account 

for the trend towards faster target naming in the Feature condition compared to the 

Unrelated condition in Experiment 7 that was contrary to the  outcome between those 

conditions in Experiment 3. Importantly however, the picture naming data from 

Experiment 6 could not be accounted for with reference to Dell‟s (1986) model in that 

this data showed null effects from coda position manipulations. Consequently, it 

remained to be seen whether the employment of the same non-word primes and picture 

targets from that experiment within the masked sandwich priming paradigm would yield 

effects.  
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6.3.2. Method 

 

 

6.3.2.1. Participants 

 

 

Forty-eight participants took part in this experiment. Their mean age was 22.75 and 

ranged from 18 to 45 years. 

 

 

6.3.2.2. Design 

 

 

The design was identical to that used in Experiment 6.  

 

 

6.3.2.3. Stimuli 

 

 

The word and picture targets as well as the non-word primes were exactly the same as 

those employed in Experiment 6.  
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6.3.2.4. Procedure 

 

 

The procedure was exactly the same as that used in Experiment 7. Post experimental 

interviews revealed that sixteen participants (nine in word reading and seven in picture 

naming) noticed seeing something before the presentation of the targets. Further, some 

of those who were aware of the presence of primes reported seeing the actual target‟s 

name whereas others thought that they could see either words or a row of letters. 

 

 

 

6.3.3. Results  

 

 

A total of 2.4% error (0.6% technical errors + 1.8% errors) and 5.4 % trimmed data 

were removed from the latency analyses. Further, the data from one participant (in the 

picture naming task) consisted of outliers.  However, since the pattern of observed 

results remained the same in the analyses both with and without outliers, the former are 

reported herein. Mean naming latencies, standard deviations, percentage errors and 

mean priming effects for both word reading and picture naming in all four priming 

conditions are displayed in Table 14.  
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Table 14 

Mean Naming Latencies (RT, in Milliseconds), Standard Deviations (SD), Percentage 

Errors (%E) and Mean Priming Effects (PE, in Milliseconds) for both word reading and 

picture naming in all four priming conditions for Experiment 8.     

                                 

                                                                                   

                                                                                                Task 

  
 

Word reading 
 

Picture naming 
 

Priming condition (example)  
 

RT 
 

SD 
 

%E   PE 
 

RT 
 

SD 
 

%E  PE 
 

Identical (bat-zut-BAT)  
 

486.86 
 

43.77 
 

0.3   -10 
 

613.61 
 

66.74 
 

3.6   -11 

Feature (bat-zud-BAT)  488.16 39.33 0.0   -11 614.09 66.41 3.1   -12 

Unrelated (bat-zun-BAT)  489.80 41.02 0.8   -13 618.87 55.60 2.9   -17 

Control (&&&-%%%-BAT)  476.97 38.96 0.5 602.21 44.89 3.4 
 

Note. The above means (RT) and standard deviations (SD) are based on the analysis by participants; PE – 

refers to comparisons to the Control condition as in Schiller‟s (2004, 2008) research. 

 

 

 

For naming latency, the main effect of Task was significant, F1(1,46) = 80.96, MSE = 

9524.18, p < .001, η² = .64; F2(1,15) = 274.95, MSE = 1918.65, p < .001, η² = .95, as 

was the main effect of Priming Condition, F1(3,138) = 7.44, MSE = 264.12, p < .001, η² 

= .14; F2(3,45) = 8.98, MSE = 158.54, p = .001, η² = .37. The interaction between Task 

and Priming Condition was not significant, F1(3,138) = .13, p > .05; F2(3,45) = .14, 

MSE = 313.33, p > .05. Planned comparisons showed that relative to the Control 

condition response latencies were significantly longer in the Identical condition [t1(47) 

= 3.04, p = .004; t2(15) = 3.23, p = .006]. However, there was no significant difference 

in the response latencies between the Feature and Unrelated conditions; both ps > .05. 

Pairwise comparisons (Bonferroni adjusted) showed that relative to the Control 

condition response latencies were significantly longer in both the Feature [t1(47) = 
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11.53, p = .033; t2(15) = 12.75, p = .006] and Unrelated [t1(47) = 14.74, p < .001; 

t2(15) = 14.96, p = .003] conditions. There was however, no significant difference in 

the response latencies between the Identical and Feature as well as the Identical and 

Unrelated conditions; all ps > .05. 

 

The overall error rate in the word reading task was 0.4%. Therefore, only the errors in 

the picture naming task were analysed. However, they yielded no significant effects; 

both ps > .05. 

 

 

6.3.4. Discussion 

 

 

The latency data from Experiment 8 showed that both word and picture targets were 

named significantly faster in the Control condition compared to all other conditions 

(i.e., Identical, Feature and Unrelated). No further effects were found. These results 

were thus inconsistent with those from Experiment 6 that employed the same non-word 

primes and both word and picture targets. They were however, similar to the findings 

from Experiment 5 in which word primes were used. Further, akin to the previous 

experiments more errors were made in picture naming compared to word reading. 

However, the analyses of the error data from the picture naming task revealed that error 

scores were unaffected by the priming conditions employed. All of the findings from 

Experiment 8 are discussed in more detail in the general discussion that follows.  
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6.4. General discussion 

 

 

Based on the masked priming data for word reading from Experiments 1 to 6, it was 

argued that observed effects with non-lexical primes (i.e., single segment and non-word 

primes) are due to processes occurring through the non-lexical route whereas lexical 

primes (i.e., word primes) engage the lexical route and thus reflect effects taking place 

via that route. It was also postulated that at the non-lexical route effects are caused by 

shared phonemes between primes and targets (Identical condition in Experiments 1, 3, 

4, 6) whilst at the lexical route they are driven by a shared featural environment 

between the relevant phonemes of these two stimuli (Identical and Feature conditions in 

Experiments 2 and 5). Further, although the first part of this argument was consistent 

with the dual-route theoretical framework (e.g., Coltheart et al., 2001) the observation 

of phonemic feature effects was not. This is because according to the dual-route 

theoretical framework, phonemes at both the lexical and non-lexical routes are 

represented as abstract entities and therefore not specified for their features. 

Consequently, it was important to validate these findings. To this aim, in Experiments 7 

and 8 the non-word primes and word targets from Experiments 3 and 6 (respectively) 

were used in the masked sandwich priming paradigm. During this experimental 

procedure the actual target is presented as an initial (word) prime prior to the display of 

the main (in this case non-word) prime. The brief display of the target‟s name as the 

initial prime was expected to fully engage the lexical route and thus show effects 

occurring at that route. By so doing, it was anticipated that the word reading data from 

Experiments 7 and 8 would reveal phonemic feature effects and possibly provide an 



 206 

explanation for why these effects were facilitating in Experiment 2 whereas in 

Experiment 5 interference was observed.     

 

As predicted, the results from Experiment 7 revealed that word targets were read 

significantly faster in the Identical condition relative to both the Feature and Unrelated 

conditions as well as in the Feature condition compared to the Unrelated condition. 

They thus showed phonemic feature effects that were consistent with the data from 

Experiment 2 that used word primes but were contrary to the outcomes from 

Experiment 3 that employed the same non-word primes and word targets as Experiment 

7. The Control condition of Experiment 7 consisted of the display of the actual target as 

an initial prime prior to the presentation of percentage signs as the main prime. Given 

the strong facilitating effects caused by this sequence of prime presentation in the 

Control condition, it was hard to draw a baseline from which to compare additional 

effects that occurred in this experiment. As such, it was difficult to know whether the 

observed effects in both the Identical and Feature conditions compared to the Unrelated 

condition were representative of facilitation or simply of less interference within the 

system with those conditions. Nonetheless, a visual inspection of the means in the 

Identical, Feature and Unrelated conditions across Experiments 7 and 3 revealed that 

these means were very similar (e.g., 489.81 ms versus 489.41 ms – Unrelated condition 

in Experiments 7 and 3, respectively). This suggested that akin to Experiment 2, the 

phonemic feature effects observed in Experiment 7 were facilitating in nature.  

 

In contrast, word targets in Experiment 8 were read significantly slower in the Identical, 

Feature and Unrelated conditions relative to the Control condition, which in this 

experiment was designed to provide a more neutral baseline and to be similar to the 
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controls employed in Experiments 1 to 6 (i.e. &&& - %%% - BAT). These results were 

again contrary to those from Experiment 6 in which the same non-word primes and 

word targets were used however, they were consistent with the outcomes from 

Experiment 5 that employed word primes. As such, the word reading data from both 

Experiments 7 and 8 provided a direct validation of the argument that in masked 

priming observed effects during word reading with lexical primes (i.e., word primes) are 

due to processes occurring at the lexical route. However, it was still unclear why in 

Experiments 2 and 7 facilitation was found whereas in Experiments 5 and 8 the 

observed effects were inhibitory in nature. 

 

Even though the picture naming data from Experiments 1 to 5 seemed to be consistent 

with the working assumptions of Dell‟s (1986) model, the findings of null effects across 

all conditions in Experiment 6 were not. This is because in line with the findings from 

Experiments 2, 3 and 5, it was anticipated that in Experiment 6 the mismatching 

phonemes activated by the non-word prime would compete for selection with the 

corresponding phonemes of the picture target resulting in slower target naming in the 

Identical, Feature and Unrelated conditions relative to Controls. Since the picture 

naming results from Experiment 6 were inconsistent with those predictions, they 

somewhat undermined the competing phonemes account for interference in picture 

naming that was presented in the previous two chapters. Consequently, it was decided to 

employ the masked sandwich priming paradigm in Experiments 7 and 8 to attempt to 

tease apart an explanation for this discrepancy in naming performance. Given that in the 

masked sandwich priming paradigm the picture target‟s name is displayed as the initial 

prime prior to the presentation of the main prime, it was anticipated that the 

employment of this experimental procedure in Experiments 7 and 8 to the non-word 
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primes and picture targets from Experiments 3 and 6 (respectively) might act to either 

reduce or even completely eliminate the competitive effects caused by the mismatching 

phonemes activated by a non-word primes and its target. If so, this should then allow 

for any resulting benefits from the shared phonemes and/or features between the 

relevant phonemes of these two stimuli to be observed. The picture naming results from 

Experiment 7 went some way towards confirming this hypothesis in that picture targets 

were named significantly faster in the Identical condition relative to both the Feature 

and Unrelated conditions. They were also suggestive of a trend towards facilitation in 

the Feature condition compared to the Unrelated condition that was contrary to the 

finding of Experiment 3 in which there was a trend towards interference between those 

conditions. This discrepancy in the Feature condition between the two experiments was 

accounted for with reference to Dell‟s (1986) model along with the order of stimuli 

presentation within each paradigm. In traditional masked priming it seems that feedback 

and hence the level of competition within the system is at its most intense when the 

phoneme in the onset position of a prime shares all but one of its features with the 

phoneme in the onset position of a target. However, when three stimuli are presented in 

quick succession during masked sandwich priming, the bi-directional connections 

between the phoneme and feature levels incorporated into Dell (1986) have to apply to 

both the representations of the initial prime and non-word prime and also to the 

representations of the non-word prime and picture target. It is likely therefore, that the 

combination of feedback between the activated phonemes and features of these three 

stimuli (bearing in mind that the first of these stimuli is the printed name of the last) 

results in reducing the level in the onset position of competition within the system when 

the degree of featural overlap between the main prime and target is increased. 
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Further, akin to the word reading task the display of the picture target‟s name in the 

Control condition of Experiment 7 meant that it was difficult to conclude whether the 

observed effects in the Identical condition was due to facilitation or just less 

interference within the system in that condition relative to the Feature and Unrelated 

conditions. Nonetheless, given the finding in Experiment 7 of a significant difference in 

the response latencies between the Identical and both the Feature and Unrelated 

conditions, it could be suggested that the brief display of the target‟s name as the initial 

prime did in fact result in the pre-activation of the target‟s phonemes. This in turn likely 

acted to reduce the interfering effects caused by the mismatching phonemes activated 

by the non-word prime and the corresponding phonemes of the picture target allowing 

for the benefits from the shared phoneme in the onset position between the main prime 

and target (Identical condition) to be observed.  

 

Further, although the picture naming outcomes from Experiment 7 were in line with the 

predictions for this experiment, the results from Experiment 8 were not. In Experiment 

8 picture targets were named significantly slower in each of the Identical, Feature and 

Unrelated conditions compared to the Control condition (e.g., &&& - %%% - BAT). 

This was after the Control condition was amended from that employed in Experiment 7 

to one that was more like the Control conditions used in the earlier experiments (e.g., 

%%% - BAT -  in Experiment 6). Similarly to Experiment 8, the results for picture 

naming from Experiment 6 showed effects that were also inconsistent with the 

preceding experiments. Importantly, because Experiment 8 used the same non-word 

primes and picture targets as Experiment 6, it could be concluded that the outcomes 

from both Experiments 6 and 8 were subject to additional effects caused by the stimuli 

employed.  
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All in all, the word reading results from Experiments 7 and 8 were in line with those for 

the corresponding task in Experiments 2 and 5 respectively and thus confirmed the 

argument presented within this thesis that in word reading, masked priming effects with 

lexical primes (i.e., word primes) are due to processes occurring at the lexical route. 

However, it was still unclear why facilitating effects were found in Experiments 2 and 7 

whereas in Experiments 5 and 8 the observed effects were inhibitory in nature. Further, 

although the picture naming data from Experiment 7 were consistent with the working 

assumptions of Dell‟s (1986) model, the outcomes from Experiment 8 were not. Given 

that in the latter experiment the non-word primes and picture targets from Experiment 6 

were used, and also that the data from Experiment 6 was again inconsistent with Dell‟s 

(1986) model, it could be postulated that these differences were due to some specific 

aspects of the stimuli employed. All of the discrepancies discussed above are addressed 

fully in the following concluding chapter of this thesis.  
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CHAPTER 7: Aims revisited, summary of findings, future 

directions and conclusions  

 

 

7.1. Chapter outline 

 

The main purpose of this thesis was to answer the question: „Are there shared 

phonological encoding mechanisms for both word reading and picture naming?‟ This 

chapter begins with a short review of the key literature that provided inspiration and 

motivation for conducting the experimental work undertaken to attempt to answer the 

above question. This is followed by a brief summary of the data that was collected from 

Experiments 1 to 8. The word reading results from Experiments 1 to 8 are then 

considered at length with reference to the dual-route theoretical framework (e.g., DRC; 

Coltheart et al., 2001) after which the outcomes for picture naming are discussed in 

relation to the working assumptions of Dell‟s (1986) general language production 

model.  Next, the likelihood that shared phonological encoding mechanisms exist for 

these two target types is examined and suggestions are made as to how this research 

could be expanded upon in the future.  

 

7.2. Aims revisited 

 

The purpose of the herein reported research was to investigate phonological encoding 

mechanisms for both word reading and picture naming. This experimental work was 

inspired by the form-preparation study conducted by Roelofs (2004) who found that 
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relative to corresponding heterogeneous sets the naming of both words and pictures was 

facilitated in begin-homogeneous sets (e.g., bok, boor, bel versus roos, bok, kam) but 

not in end-homogeneous sets (e.g., rat, krat, vat versus peer, rat, clip). Based on these 

results Roelofs (2004) argued that phonological encoding processes for both word 

reading and picture naming operate in a serial rightward manner consistent with the 

working assumptions of WEAVER‟s (e.g., Roelofs, 1997a) segment-to-frame 

association process. Given his finding of similar outcomes when he mixed both words 

and pictures within the same sets, Roelofs (2004) concluded that phonological encoding 

mechanisms might be shared for the two tasks and proposed a possible merging of 

models of general language production such as WEAVER (e.g., Roelofs, 1997a) with 

word reading models such as DRC (Coltheart et al., 2001) at the segment-to-frame 

association stage.  Additionally, Roelofs (1999) observed preparation benefits when 

pictures were presented for naming in sets that fully shared their onsets (e.g., bami, 

bajes, balie) but not when onsets shared all but one of their phonemic features (e.g., 

bajes, bami, paling). He thus concluded that the findings from that study were also 

consistent with WEAVER‟s (e.g., Roelofs, 1997a) segment-to-frame association 

process because during this process in WEAVER (e.g., Roelofs, 1997a) phonemes are 

represented as abstract entities and therefore not specified for their features. 

Consequently and as illustrated by Roleofs‟ (1999, 2004) data, preparation benefits can 

only be observed when the items within a given set fully share their onsets. 

 

In separate masked priming research that was designed to investigate the locus of the 

MOPE for word reading Kinoshita (2000; Kinoshita & Woollams, 2002; Malouf & 

Kinoshita, 2007) accounted for her results with reference to the DRC (Coltheart et al., 

2001) model. She postulated that the MOPE occurs after the emergence of word‟s 
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representation from either the lexical or non-lexical route and results from rightward 

processing during segment-to-frame association in a manner similar to that incorporated 

into WEAVER (e.g., Roelofs, 1997a). As such, her conclusions were fully compatible 

with Roelofs‟ (2004) assertions of shared encoding mechanisms for both word reading 

and picture naming. 

 

However, in masked priming research conducted by Lukatela et al. (2001), it was found 

that participants‟ lexical decisions were faster when the onsets of non-word primes and 

word targets shared all but one of their phonemic features (e.g., zea-SEA) compared to 

when these onsets differed by at least two phonemic features (e.g., vea-SEA). These 

phonemic feature effects for words were therefore incompatible with the working 

assumptions of WEAVER‟s (e.g., Roelofs, 1997a) segment-to-frame association 

process according to which, phonemic feature effects should not be observed. They 

were also contrary to the findings of null effects from featural similarity for picture 

naming from Roelofs‟ (1999) and as such, they were suggestive of differences in 

phonological encoding mechanisms for both word reading and picture naming.  

Additional difficulties for the notion of shared encoding mechanisms were introduced 

by the findings of Schiller‟s (2004, 2008) two masked priming studies that reported 

contrasting results for word reading and picture naming. Schiller (2004, 2008) observed 

that compared to controls (e.g., %%%%%%%%%% - BANAAN), word reading was 

facilitated by the brief presentation of word primes related in the onset position with 

targets (e.g., %%balans%% - BANAAN - Schiller, 2004) whereas interference was 

found in the same condition for picture naming (e.g., %beroep% - BANAAN - Schiller, 

2008). These outcomes were again suggestive of separate phonological encoding 

processes and did not fit with Roelofs‟ (2004) results that showed similar preparation 
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benefits across the two tasks. Consequently, the discrepancy between Roelofs‟ (2004) 

and Schiller‟s (2004, 2008) studies along with the findings of phonemic feature effects 

for words (Lukatela et al., 2001) but not for pictures (Roelofs, 1999) needed to be 

addressed. To this aim, it was decided to employ the masked priming paradigm in the 

research work undertaken as part of this thesis to conduct a detailed examination of the 

role of phonemic features in each task and by so doing, to determine with more 

confidence the existence or not of shared phonological encoding mechanisms for both 

word reading and picture naming.   

 

 

 

7.3. Summary of findings 

 

 

7.3.1. Experiments 1 to 3 

 

 

Experiments 1 to 3 were designed to evaluate masked priming effects when 

manipulating phonemic features in the onset (initial) segment position between primes 

and both monosyllabic word and corresponding picture targets. In each experiment the 

same four priming conditions were used. These were the Identical condition in which a 

prime and target shared their initial segment, the Feature condition where the initial 

segment of both prime and target shared all their features but voicing, the Unrelated 

condition in which the initial segment of a prime and target differed by at least two 

phonemic features and finally, the Control that consisted of percentage signs. For the 
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target word or picture „BELT‟ in Experiment 1 for example, these priming conditions 

were thus „b%%%‟, „p%%%‟, „j%%%‟ and „%%%%‟ respectively. The main 

difference between these experiments related to the type of prime employed. In 

Experiment 1 the primes were single segment onset primes, Experiment 2 used word 

primes and Experiment 3 employed non-word primes.  

 

The word reading data from Experiments 1 to 3 revealed that word targets were named 

faster when primes and targets shared their onset (Identical condition). In Experiment 1 

this effect was significant relative to both the Feature and Control conditions whereas in 

Experiments 2 and 3 it was significant compared to all three conditions  (i.e., Feature, 

Unrelated and Control). An additional observation was that word targets were read 

significantly faster in the Feature condition compared to the Unrelated condition. 

However, this phonemic feature effect was only found when word primes (Experiment 

2) were employed and not with either single segment onset (Experiment 1) or non-word 

(Experiment 3) primes. Akin to the word reading task, picture naming was also 

facilitated by the brief presentation of matching single segment onset primes (Identical 

condition in Experiment 1) with this effect significant relative to both the Feature and 

Control conditions. However, compared to the Control condition the naming of picture 

targets was significantly slower when targets were primed by both word (Experiment 2) 

and non-word (Experiment 3) primes. Further, with both prime types this inhibitory 

effect was largest of all in the Feature condition in which the initial segment of both 

prime and target shared all their phonemic features but voicing.  
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7.3.2. Experiments 4 to 6 

 

 

The aim of Experiments 4 to 6 was to examine masked priming effects when 

manipulating phonemic features in the coda (end) segment position. In keeping with the 

earlier experiments, monosyllabic word and corresponding picture targets were 

presented for naming in four priming conditions namely, Identical, Feature, Unrelated 

and Control. These priming conditions were designed in a similar manner to those in 

Experiments 1 to 3 with the only difference being that phonemic feature similarity was 

manipulated in the coda segment position. Also, in line with the earlier experiments, 

this research employed single segment (Experiment 4), word (Experiment 5) and non-

word (Experiment 6) primes.  

 

The data from Experiments 4 to 6 showed a similar pattern of results for both word 

reading and picture naming. In Experiment 4 it was found that relative to the Feature, 

Unrelated and Control conditions both target types were named significantly faster in 

the Identical condition where primes and targets shared their codas. However, in 

Experiment 5 word primes inhibited both word and picture naming with this effect 

significant in the Identical and Feature conditions compared to the Control condition. 

Finally, the latency data from Experiment 6 that employed non-word primes showed 

null effects for both tasks even though in picture naming fewer errors were made in the 

Identical condition relative to all other conditions.  
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7.3.3. Experiments 7 and 8 

 

 

The final two experiments (Experiments 7 and 8) used the masked sandwich priming 

paradigm (e.g., Lupker & Davis, 2009). This paradigm is similar to the traditional 

masked priming procedure except that during masked sandwich priming the target is 

briefly presented in a written form as an initial prime prior to the presentation of the 

main prime (e.g., belt – bude - BELT). As such, the display of each target is preceded 

by the brief presentation of two primes. Experiment 7 employed the same word and 

picture targets and non-word primes that were used in Experiment 3 whilst the stimuli 

employed in Experiment 8 were identical to those of Experiment 6.  

 

The results from Experiment 7 showed that both word and picture targets were named 

significantly faster in the Control condition compared to the Identical, Feature and 

Unrelated conditions. They were also named significantly faster in the Identical 

condition relative to both the Feature and Unrelated conditions. However, whilst the 

data from this experiment showed largely similar effects across tasks, a difference in the 

pattern of results was that word targets were named significantly faster in the Feature 

condition compared to the Unrelated condition thus demonstrating a phonemic feature 

effect. This effect was not observed for picture naming. Finally, as with Experiment 7 

the data from Experiment 8 showed that both target types were named significantly 

faster in the Control condition relative to the Identical, Feature and Unrelated 

conditions.  
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However, the control condition of Experiment 8 differed to that used in Experiment 7.  

In Experiment 7 the Control condition consisted of the target‟s name presented as the 

initial prime prior to the display of percentage signs as the main prime. Consequently, it 

was likely that in this condition of Experiment 7 the activation of the target‟s phonemes 

resulting from the display of its name as the initial prime in conjunction with the 

absence of mismatching phonemes due to the lack of additional activations within the 

system following the presentation of percentage signs as the main prime allowed for 

faster target naming in that condition relative to all other conditions. This was because 

in each of the remaining conditions in which the main prime was a non-word, 

activations from the mismatching phonemes of the main prime would have induced 

noise into the system that likely reduced or even eliminated any benefits from the initial 

prime. This can explain why in the picture naming task of Experiment 7 fewer errors 

were made in the Control condition compared to the Identical, Feature and Unrelated 

conditions. As such, the employment of this type of Control made it difficult to draw a 

baseline from which to compare additional effects that were observed in the other 

conditions. Consequently, in Experiment 8 the Control condition was amended to be 

more similar to that employed in the earlier experiments so that it would produce 

neutral effects. Rather than the display of the target‟s name therefore, the initial prime 

in the Control condition of Experiment 8 was changed to a row of „&‟ signs. An 

overview of the priming effects observed in the latency data (by participants) in both 

word reading and picture naming across Experiments 1 to 8 is included in Table 15 that 

follows.  
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Table 15 

An overview of the priming effects observed in the latency data (by participants) in both 

word reading and picture naming across Experiments 1 to 8.      





  

Exp. 1 

 

Exp. 2 

 

Exp. 3 

 

Exp. 4 

 

Exp. 

5 

 

Exp. 6 

 

Exp. 7 

 

Exp. 8 

Conditions 

Compared 

 

W * P    

 

W     P      

 

W     P     

 

W  *  

P     

 

W  * 

P     
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W      P 
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<      < 

<      < 

>      > 

<      x 

>      > 

>      > 

 

    x 

    x 
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    x 
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    > 


 

Note. W – word reading; P – picture naming; * - no interaction; ID – Identical condition; FT – Feature 

condition; UN – Unrelated condition; CO – Control condition; < - named faster in the first condition 

relative to the second condition; > - named slower in the first condition relative to the second condition; x 

– no effect.
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7.4. The data from Experiments 1 to 8 and phonological encoding. 

 

 

7.4.1. The word reading data from Experiments 1 to 8 and phonological encoding. 

 

 

The results from the herein reported research clearly showed that regardless of the type 

of prime employed (i.e., single segment, word or non-word), the reading of word targets 

was facilitated when primes and targets shared their onsets (Identical condition in 

Experiments 1, 2 and 3). Facilitation was also found when the onsets of word primes 

and word targets shared all but one of their phonemic features (Feature condition in 

Experiment 2). However, this effect was not found in the same condition with either 

single segment (Experiment 1) or non-word (Experiment 3) primes. Further, when the 

same non-word primes and word targets from Experiment 3 were used in the masked 

sandwich priming paradigm employed in Experiment 7 (in which the word target was 

presented as an initial prime prior to the display of the non-word prime), facilitating 

effects from both full (Identical condition) and all but one (Feature condition) phonemic 

feature overlap between the onsets of non-word primes and word targets were observed.  

 

As discussed in the previous chapters, the data from the above experiments 

(Experiments 1, 2, 3 and 7) therefore suggest that for single word reading in both 

masked priming and masked sandwich priming, the nature of the observed effects is 

dependent on the type of prime employed. It was argued that lexical primes (i.e., word 

primes) fully engage the lexical route and thus show effects occurring at that route. In 

contrast, the effects found with non-lexical primes (i.e., single segment and non-word 
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primes) are due to processes taking place at the non-lexical route. It was also postulated 

that at the lexical route, any observed effects are due to phonemic feature similarity 

between the initial phonemes of primes and targets (Identical and Feature conditions in 

Experiments 2 & 7) whereas at the non-lexical route effects only occur when there is 

full phonemic feature overlap between the initial phonemes of these two stimuli 

(Identical condition in Experiments 1 & 3). This argument was validated by the results 

from Experiment 7 in which the lexical route was experimentally engaged through the 

employment of the masked sandwich priming paradigm with the non-word primes and 

word targets from Experiment 3.  

 

However, even though Lukatela et al. (2001) observed phonemic feature similarity 

effects in their masked priming research that employed non-word primes and at first 

glance their results appear to be contrary to the argument presented above, a 

consideration of the task employed by these authors provides a logical explanation for 

this discrepancy.  In Lukatela et al.‟s (2001) research participants were engaged in the 

lexical decision task. They were therefore asked to decide whether a given target was a 

word or non-word. Since the processes underlying the making of such a decision cannot 

be accomplished without prior access to lexical knowledge (and therefore, the activation 

of the lexical route), the nature of the lexical decision task thus automatically engages 

the lexical route regardless of the type of prime employed. Based on the results from 

Lukatela et al.‟s (2001) research as well as the word reading data from Experiments 1, 

2, 3 and 7 it can therefore be concluded that in masked priming the effects observed in 

the lexical decision task occur during processing at the lexical route and are independent 

of the type of prime employed whereas in the word reading task in which access to 

lexical knowledge is not always necessary, effects found with lexical (i.e., word) primes 



 222 

are due to the workings of the lexical route whilst those observed with non-lexical (i.e., 

single segment and non-word) primes reflect processes occurring at the non-lexical 

route.  

 

The notion of two routes of targets‟ processing (i.e., lexical and non-lexical) during 

masked priming in word reading is consistent with the dual-route theoretical framework 

incorporated in the DRC (Coltheart et al., 2001) model. According to this model and as 

described in Chapter 1, during reading there is a separate yet simultaneous processing of 

a given input by both the lexical and non-lexical routes. Within the lexical route, each 

letter/phoneme of an input excites all the words in the system which contain that 

specific letter/phoneme in that position. This excitatory process takes place in parallel 

across the input‟s word form. In contrast to the lexical route, processing within the non-

lexical route occurs in a serial rightward manner. As such, on receiving activation from 

the first letter of an input its corresponding phoneme is activated after which the 

processing of the second letter of the input begins. This process continues until all the 

letters of a given input are converted into their corresponding phonemes. The direct 

mapping of orthography to phonology thus takes place through both routes. However, it 

must be noted that in DRC as it currently stands, phonemes are not specified for their 

features in either of these two routes. Finally, the representation that emerges first from 

either route then enters the phonemic buffer prior to further processing. 

 

It is important to consider how the word reading data from Experiments 1, 2, 3 and 7 

contribute to the discussion regarding the locus of the MOPE. As mentioned throughout 

this thesis, Kinoshita (2000) argued that the MOPE occurs after the processing of a 

given input through either the lexical or non-lexical routes of the DRC model and takes 
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place at the phonemic buffer level. She suggested that at this level the information 

provided by either of these routes is processed in a serial, rightward manner similar to 

the segment-to-frame association process incorporated into the WEAVER (e.g., 

Roelofs, 1997a) general language production model. According to Kinoshita (2000), it 

is at this stage that residual representations of the prime impact on target processing. 

However, since in DRC both routes share the phonemic buffer level, for this argument 

to be plausible the nature of the observed effects should be independent of the type of 

prime employed. Yet, the outcomes from Experiments 2 and 7 that employed lexical 

(i.e., word) primes showed facilitation from both full (Identical condition) and all but 

one (Feature condition) phonemic feature similarity between the onsets of primes and 

targets. In contrast, in Experiments 1 and 3 that employed non-lexical (i.e., single 

segment and non-word) primes, facilitation was only observed from full (Identical 

condition) phonemic feature overlap between these two stimuli. Consequently, the word 

reading results from Experiments 1, 2, 3 and 7 are contrary to Kinoshita‟s (2000) 

explanation for the locus of the MOPE. Rather, these results can be accounted for more 

appropriately by postulating that this effect takes place prior to the phonemic buffer 

level and occurs during processing through either the lexical or non-lexical route.  

 

Further and as mentioned above, in the DRC (Coltheat et al., 2001) model phonemes are 

currently represented as abstract entities. They are thus not specified for their phonemic 

features. To be consistent with the working assumptions of this model therefore, no 

effects from phonemic feature similarity should have been observed (Feature condition 

in Experiments 2 and 7). Also, in line with the DRC model it should be assumed that 

the herein reported facilitation from shared onsets between primes and targets (Identical 

condition in Experiments 1, 2, 3 and 7) was due to shared abstract phonemes rather than 
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full phonemic feature overlap. However, according to the DRC model the information 

that emerges first from either the lexical or non-lexical route is then processed at the 

phonemic buffer level that is shared by both routes. The presence of a shared phonemic 

buffer level thus implies consistency of output from either of these routes into the 

phonemic buffer. Consequently, if at the non-lexical route phonemes are not specified 

for their features, the same should be true for the lexical route. Yet, the results from 

Experiments 2 and 7 clearly showed effects due to phonemic feature similarity between 

the onsets of primes and targets (Feature condition) that can only occur during 

processing via the lexical route. As such, it is reasonable to postulate that 

representations that emerge from the lexical route are in fact fully defined for their 

features prior to entering the phonemic buffer rather than being something that consists 

of a string of phonemes that themselves are represented as abstract entities. Based on 

the principle of a shared phonemic buffer therefore, if the output from the lexical route 

is defined for its features then it must also be the case that phonemes selected via the 

non-lexical route are also defined for their features. Consequently, using this line of 

reasoning it can be concluded that the MOPE found in the Identical condition in 

Experiments 1, 2, 3 and 7 was due to full phonemic feature overlap between the onsets 

of primes and targets. However, this last point would not be valid if it could be argued 

that there are separate phonemic buffers for each route. In such a case it might be 

possible that at the non-lexical route the MOPE is caused by shared abstract phonemes 

in the onset position between primes and targets whereas at the lexical route this effect 

results from a shared featural environment between the onsets of these two stimuli. 

 

The results from these experiments also suggest that the nature of the prime plays an 

important role in determining the route through which word targets are processed during 
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the reading of mono-syllabic words in the masked priming paradigm. The finding of 

lexical effects with lexical primes and non-lexical effects with non-lexical primes 

suggests that the initial processing of the prime engages one of the two routes through 

which the target is then processed. Specifically, the engagement of the lexical route 

caused by the prior presentation of a word (lexical) prime causes target processing to 

occur via the lexical route. In contrast, single segment and non-word (non-lexical) 

primes can only be processed via the non-lexical route and the engagement of this route 

then causes the target to be processed via the same route. 

 

Applying the above argument, the results from Experiments 1, 2, 3 and 7 can be 

explained in the following manner. After the presentation of the single segment and 

non-word (non-lexical) primes in Experiments 1 and 3 respectively, target words were 

then processed via the non-lexical route that according to the DRC model operates in 

the serial rightward manner. The facilitation observed in the Identical condition was 

thus caused by the pre-activation of the target‟s onset that resulted from the presentation 

of a prime related to the target in the onset position. This in turn meant that word targets 

were read faster in the Identical condition relative to all other conditions in which the 

onsets of primes and targets were unrelated. However, as this is a non-lexical process 

there were no observed effects when the onsets of primes and targets shared all but one 

of their phonemic features (Feature condition). In Experiment 2, following the display 

of the word (lexical) prime, target processing took place in parallel via the lexical route. 

Within this route representations activated by the prime corresponding to the shared 

featural environment in the initial segment position between a prime and target (both 

full and all but one feature overlap) facilitated target selection. As such, in Experiment 2 

a MOPE was observed in both the Identical and Feature conditions. Even though non-
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word primes were employed in the masked sandwich priming paradigm of Experiment 

7, the presentation of the target word (a lexical prime) as the initial prime prior to the 

presentation of the non-word prime engaged the lexical route and consequently forced 

the processing of both the main (non-word) prime and target to take place through that 

route. The result of this was that facilitation was also observed in both the Identical and 

Feature conditions due to the shared featural environment in the onset position in these 

conditions. 

 

Additional support for this argument was provided by the word reading data from 

Experiments 4, 5, 6 and 8. As discussed, these experiments were designed to evaluate 

effects from phonemic feature similarity in the coda (end) segment/phoneme position of 

both primes and targets. It was found that full phonemic feature overlap in the coda 

segment/phoneme position between single segment primes and word targets (Identical 

condition in Experiment 4) facilitated word reading. However, in Experiment 6 that 

employed non-word primes, the obtained data showed null effects.  In contrast, when in 

Experiment 8 the stimuli from Experiment 6 were used in the masked sandwich priming 

paradigm the reading of word targets was inhibited by the brief presentation of non-

word primes (Identical, Feature and Unrelated conditions).  Similar inhibitory effects 

were also found in Experiment 5 that employed word primes. This time however, only 

the effects from full (Identical condition) and all but one (Feature condition) phonemic 

feature similarity were statistically significant whilst the interference found in the 

Unrelated condition was not.  

 

The word reading data from Experiments 4, 5, 6 and 8 can also be explained within the 

amended dual route framework using the arguments presented above.  In Experiment 4 
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that employed single segment coda primes, after the presentation of the prime only the 

phoneme corresponding to the prime in the coda segment position would have been 

activated prior to target processing. Consequently, during the processing of a word 

target there would have been no active phonemes within the system in the initial 

segment positions to interfere with the serial, rightward activation and then selection of 

the target‟s corresponding phonemes, thus allowing for any benefit from the shared 

coda phoneme between the prime and target (Identical condition) to be observed. 

However, since only effects from full phonemic feature overlap (Identical condition) 

can be found at the non-lexical route, consistent with this argument no facilitation from 

all but one phonemic feature similarity (Feature condition) was obtained in Experiment 

4.  In Experiment 6 in contrast, the unrelated initial phonemes activated by the brief 

presentation of the non-word prime likely interfered with the serial, rightward activation 

and then selection of the word target‟s initial phonemes. This interference would have 

meant that by the time the initial phonemes of the target were activated, any facilitation 

from the shared coda segment/phoneme between a non-word prime and word target 

(Identical condition) was simply lost. Further, due to the fact that for each target the 

initial phonemes of the non-word primes were kept constant across conditions 

(Identical, Feature and Unrelated), it could be assumed that any interference caused by 

the initial phonemes of the non-word primes was the same in each condition hence, null 

effects were observed in all three conditions. 

 

Further, as postulated by Coltheart et al. (2001), in the DRC model the processing of a 

given input via the lexical route takes place in parallel across its word form; with each 

abstract letter/phoneme of the input simultaneously exciting all the words in the system 

which contain that specific letter/phoneme in that position. This parallelism thus implies 
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that within this route any observed effects should be consistent regardless of the 

position of overlap between the corresponding phonemes of primes and targets. Yet, the 

word reading results from Experiment 5 that employed word (lexical) primes showed 

inhibitory effects whereas in Experiments 2 and 7, facilitation from both full (Identical 

condition) and all but one (Feature condition) phonemic feature similarity was found. 

Although (as already argued) the outcomes from the latter two experiments strongly 

suggest that within the lexical route any observed effects are due to phonemic feature 

similarity between the corresponding phonemes of primes and targets, this does not 

explain why the word primes in Experiment 5 inhibited the reading of word targets. 

Further, when in Experiment 8 the same stimuli from Experiment 6 were employed with 

the masked sandwich priming paradigm, the presentation of the target word (lexical 

prime) as an initial prime engaged the lexical route meaning that the main (non-word) 

prime and target processing continued via this route. As such, the same processes that 

affected naming performance in Experiment 5 caused similar inhibiting effects in 

Experiment 8 with interference observed across all three conditions (i.e., Identical, 

Feature and Unrelated conditions). Given that the results from Experiment 8 provided a 

direct validation of the findings from Experiment 5, the interference observed in both 

experiments seems to be a reliable finding and thus required an explanation. To account 

for this interference it could be suggested that within the lexical route, representations 

that arise from the shared coda segment between a prime and target are insufficient to 

aid the target selection process. In contrast, the representations that arise from the earlier 

mismatching segments between these two stimuli compete for selection and therefore 

interfere with target processing resulting in the observed interference. However, this 

explanation automatically assigns a more important role to the initial segment position 

and by so doing undermines one of the principle assumptions of the workings of the 
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lexical route within the DRC (Coltheart et al., 2001) model that phonemes 

corresponding to a given input are activated in parallel.  

 

A possible compromise that could be applied to the assumption of parallel activation 

within the lexical route is that whilst activations do occur in parallel across a 

monosyllabic word-form, it is plausible that the onset is activated as a separate unit 

whilst both the vowel and coda (that together constitute the rhyme) are processed 

together and are therefore activated as a second separate unit. This would then provide a 

feasible explanation for the interference observed in Experiments 5 and 8. In these 

experiments phonemic feature similarity in the coda position of primes and targets was 

manipulated whilst the vowels of primes (i.e., the primes in Experiment 5 and the main 

primes in Experiment 8) differed to those of the targets. By considering the rhyme as a 

separate and discrete unit in itself therefore, the rhymes of the primes in each of the 

Identical, Feature and Unrelated conditions were thus mismatched with the rhymes of 

the targets even though the phonemes in the coda position were shared in the Identical 

condition and shared all but one of their features in the Feature condition. As such, the 

mismatched rhymes introduced noise into the system that resulted in a similar level of 

interference being observed in all conditions relative to Controls. By way of contrast, in 

Experiments 2 and 7 the phonemic feature manipulation occurred in the onset position 

that as argued in this amended lexical route, would be activated in parallel as its own 

separate and discrete unit. Consequently, in these two experiments the shared featural 

environment in the onset position facilitated word reading in both the Identical and 

Feature conditions. However, this argument of parallel yet separate processing of the 

onset and rhyme within the lexical route still needs to be empirically tested. 
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Taken together, the word reading results from Experiments 1 – 8 showed that in the 

naming of monosyllabic word targets using both the masked priming and masked 

sandwich priming paradigms, the construction of phonology for a given input appears to 

depend on the type of prime used. Specifically, the presentation of lexical primes 

seemed to direct processing through the lexical route whereas non-lexical primes caused 

this process to occur via the non-lexical route. These findings were thus consistent with 

the working assumptions of the DRC (Coltheart et al., 2001) model. The key difference 

in the observed effects involved the role of phonemic feature similarity. The 

engagement of the lexical route led to effects due to phonemic feature similarity 

between the corresponding phonemes of primes and targets whereas when processing 

took place through the non-lexical route, only effects from shared phonemes between 

the corresponding phonemes of these two stimuli could be found. Importantly, the 

findings of effects due to phonemic feature similarity are fully in line with those 

reported by Lukatela et al. (2001). They are however, contrary to the strict workings of 

the DRC (Coltheart et al., 2001) model as it currently stands in which at each route 

phonemes are not specified for their features. Finally, the results from Experiments 2 

and 7 along with those from Experiments 5 and 8 suggest that at the lexical route the 

nature of the observed masked priming effects depends on the position of the phoneme 

exposed to the experimental manipulation, with phonemic feature manipulation in the 

onset position of primes and targets facilitating word reading (Identical and Feature 

conditions in Experiments 2 & 7) whereas a similar manipulation in the coda position of 

these two stimuli caused interference (Identical, Feature and Unrelated conditions in 

Experiments 5 & 8). This discrepancy of effects was explained by arguing that it is 

possible that at the lexical route there is a parallel yet separate activation of the onset 

and rhyme. However, this hypothesis still needs to be tested. 
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7.4.2. The picture naming data from Experiments 1 to 8 and phonological    

encoding. 

 

 

Akin to word reading, Experiments 1, 2, 3 and 7 of the picture naming research were 

designed to evaluate effects from phonemic feature similarity in the onset position of 

primes and targets. They showed that matching single segment primes facilitated picture 

naming (Identical condition in Experiment 1) however, the brief presentation of word 

primes in Experiment 2 caused interference (Identical, Feature and Unrelated 

conditions). Further, this interfering effect was largest of all when the onsets of primes 

and targets shared all but one of their phonemic features (Feature condition).  

 

The outcomes from Experiment 2 were suggestive of interference during the lemma 

selection process (Schiller, 2008). It was argued earlier that the presentation of a word 

prime activated the prime‟s lemma which then competed and thus interfered with the 

activation and selection of the picture target‟s lemma. To test this theory, non-word 

primes were employed with the same picture stimuli in Experiment 3. Since non-word 

primes do not have lemmas, no specific lemma should in theory be activated following 

their display. It was therefore postulated that the employment of non-word primes 

should eliminate any lemma level effects that might have occurred during Experiment 2 

thus allowing for effects from the later (i.e. phonological encoding) level to be fully 

expressed. Consequently, it was predicted that akin to the data from Experiment 1, the 

results from Experiment 3 should show facilitation from shared onsets between primes 

and targets (Identical condition). However, the results from Experiment 3 were similar 

to those from Experiment 2 with interference observed from non-word primes on the 
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naming of picture targets in all conditions. This effect was again largest of all in the 

Feature condition. Since a trend towards larger interference in the Feature condition was 

observed in both Experiments 2 and 3, these findings should not be dismissed. 

 

The most likely interpretation of these observations of interference in Experiments 2 

and 3 was therefore that these effects occurred during phonological encoding and were 

due to competition for selection between the mismatching phonemes of a prime and its 

target (Schiller, 2008). The validity of this argument was evaluated in Experiment 7 in 

which the stimuli from Experiment 3 were used in the masked sandwich priming 

paradigm. In this paradigm the written name of the picture target is displayed as an 

initial prime prior to the presentation of the main prime. As such, it was hypothesized 

that the pre-activation of all of the target‟s phonemes by the initial prime should 

reduce/eliminate any interference caused by the mismatching phonemes of the main 

prime allowing for any facilitating effects from shared phonemes and/or features to be 

fully expressed. The data from Experiment 7 confirmed this hypothesis.  

 

As explained in the general discussion to Chapter 4, the picture naming results from 

Experiments 2 and 3 were inconsistent with some of the working assumptions of the 

WEAVER (e.g., Roelofs, 1997a) general language production model. According to this 

model, the phonological encoding stage begins with the activation of both the abstract 

phonemes corresponding to a given input and its metrical structure that refers to the 

number of syllables and stress pattern across the input. Next, the activated abstract 

phonemes are inserted into the metrical structure in a process referred to as segment-to-

frame association. In WEAVER (e.g., Roelofs, 1997a), the segment-to-frame 

association process starts with the first phoneme of an input and continues until all the 
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phonemes of that input have been inserted into the structure. A further rule of this 

model is that for each input the segment-to-frame association process has to start from 

the beginning. Therefore, whilst it is possible to observe a preparation benefit (e.g., 

Roelofs, 2004) if there are matching phonemes in the initial segment/s position, the 

model does not allow for interference caused by a mismatch between the corresponding 

phonemes of primes and targets in any segment position. Also, within the architecture 

incorporated into WEAVER (e.g., Roelofs, 1997a) phonemes are not specified for their 

phonemic features during the phonological encoding stage. As such, there should be no 

effects from phonemic feature similarity (Feature condition) between the corresponding 

phonemes of primes and targets. However, the results from Experiments 2 and 3 clearly 

showed interference from both word and non-word primes on the naming of picture 

targets that was largest of all in the Feature condition in which the onsets of primes and 

targets shared all but one of their phonemic features.  Consequently, the data from these 

two experiments cannot be accounted for with reference to WEAVER (e.g., Roelofs, 

1997a).  

 

However, the outcomes from Experiments 2 and 3 are in line with the working 

assumptions of Dell‟s (1986) general language production model.  As discussed in 

Chapter 1, this model assumes that during the phonological encoding of a monosyllabic 

morpheme (the smallest unit of meaning in a word e.g., BELT), the syllable 

corresponding to the morpheme is activated and assigned current node status.  Next the 

syllable‟s phonemes are activated whilst at the same time a syllable frame is created. 

This is followed by the activation of the features corresponding to these phonemes. 

Further, according to Dell‟s (1986) model there are bi-directional connections between 

each of these processing levels which means that the activation at one level directly 



 234 

influences and is influenced by the activations at both the level directly above and 

below it. Consequently and as argued by Roelofs (1999), due to the backward spreading 

of activation from features to segments in Dell (1986), a segment such as /p/ will 

receive feedback from all but one of the features of the target segment /b/ and thus /p/ 

will compete for selection along with the target segment /b/.  However, a segment such 

as /j/ shares fewer features with the target segment /b/ compared to /p/ and hence will 

receive less feedback from that segment resulting in a reduced level of competition 

between /j/ and /b/. 

 

Additionally, in Dell‟s (1986) model only the activation levels of selected phonemes are 

set back to zero whereas the activation levels of unselected phonemes are left to decay 

over time.  Since during masked priming no verbal response to a prime is required, it 

could thus be inferred that in this paradigm the phonemes activated by the prime are not 

selected and thus remain active within the system whilst the phonemes of a given target 

are being processed. By applying the principles underlying the workings of Dell‟s 

(1986) model, the masked priming effects observed in the picture naming task in 

Experiments 2 and 3 could therefore be explained in the following manner. In 

Experiments 2 and 3 phonemic feature similarity in the onset position of a prime and 

target was manipulated whilst the remaining phonemes of the prime were kept constant 

across each of the Identical, Feature and Unrelated conditions. Aside from the onset 

position, these remaining phonemes were all different to the corresponding phonemes of 

the target (e.g., prime - bude; target – BELT – Identical condition in Experiment 3) As 

such, following the brief presentation of a word or non-word prime the phonemes 

corresponding to the prime for each syllable/word position were activated and remained 

active within the system before decaying over time. Consequently, when a picture target 
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was then displayed for naming all the mismatching phonemes activated by the prime 

competed with the target‟s phonemes for selection with this competition taking time to 

resolve. This explanation can thus account for why in Experiments 2 and 3 picture 

targets were named significantly slower in all conditions compared to the Control 

condition that consisted purely of percentage signs (e.g., %%%%) with this interference 

being independent of whether or not a prime and target shared their onset (Identical 

condition).  

 

Furthermore, the largest interference of all was observed in the Feature condition and 

this can also be explained using the working assumptions of Dell‟s (1986) model. It 

could therefore be argued that during picture naming the phonemes activated by the 

picture target‟s phonemes activated their corresponding features, which in turn caused 

feedback to the features of the other phonemes within the system. According to Dell 

(1986), this feedback increases in line with the number of shared features between 

competing phonemes and is therefore at its greatest when all but one of the 

corresponding features are shared, such as was the case in the Feature condition 

between a prime and target pair (e.g., pude – BELT). In this example therefore, the 

initial phoneme /p/ of the prime would have received stronger feedback from the 

features of the target‟s initial phoneme /b/ compared to the initial phoneme /j/ of the 

corresponding prime in the Unrelated condition (e.g., jude – BELT) that shared fewer 

features with the target. The phoneme /p/ in the Feature condition would thus have 

competed more strongly for selection compared to the phoneme /j/ in the Unrelated 

condition and it is this increased level of competition for selection between the 

phonemes /p/ and /b/ that resulted in the largest interference of all occurring in the 

Feature condition.  
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In contrast, for the Identical condition (e.g., bude - BELT) where all the features of the 

initial phoneme of both the prime and target were the same, feedback between the 

features of these like for like phonemes would have acted to facilitate the selection of 

the target phoneme /b/. In the absence of other mismatching phonemes from other 

segment positions, this would also mean that full phonemic feature overlap in the onset 

position of primes and targets should have facilitated the picture naming process. This 

perspective was supported by the fact that facilitation was found in the Identical 

condition in Experiment 1 in which picture targets were primed by related single 

segment onsets primes. It was also validated by the data from Experiment 7 in which, as 

argued earlier, the presentation of the target‟s written name as an initial prime prior to 

the display of the non-word prime reduced the interfering effect from the mismatching 

phonemes between the main prime and picture target. Consequently, in Experiment 7 

facilitation from shared onsets (Identical condition) between primes and targets was 

found.  

 

However, in Experiment 7 there was also a trend towards facilitation in the Feature 

condition relative to the Unrelated condition. This effect was again accounted for with 

reference to Dell‟s (1986) model by arguing that it was caused by the interaction 

between the three stimuli presented during the masked sandwich priming procedure. 

Specifically, it was postulated that in the Feature condition of Experiment 7 the picture 

target‟s onset was already pre-activated as a consequence of the presentation of the 

initial prime. The bi-directional connections between the phoneme and feature levels 

would then have to apply to both the representations of the initial prime and non-word 

prime and also to the representations of the non-word prime and picture target. For the 
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Feature condition therefore, in the onset position feedback between the pre-activated 

phoneme and features of the initial prime (i.e., the target‟s phoneme and features) and 

the non-word prime together with feedback between the non-word prime and the target 

itself appeared to act to eliminate the presence of additional interference from featural 

similarity that was found in the same condition in Experiment 3. It may even be that the 

combination of feedback between the activated phonemes and features in the initial 

segment position of the three separate stimuli that are presented during the masked 

sandwich priming paradigm results in reducing the level of competition within the 

system when the degree of featural overlap between the main prime and target is 

increased. If so, this would account for the trend towards faster target naming in the 

Feature condition compared to the Unrelated condition in Experiment 7 that was 

suggested by the data.  

 

However, a working assumption of Dell‟s (1986) model is that at each level the 

processing of a monosyllabic input occurs in parallel across that input. Based on this 

assumption therefore, it was hypothesized that the results from Experiments 4, 5, 6 and 

8 that were designed to evaluate effects from phonemic feature similarity in the 

end/coda phoneme position should be similar to the outcomes from the corresponding 

Experiments 1, 2, 3 and 7. Whilst the results demonstrated that this was true for 

Experiments 4 and 5, it was however, not the case for Experiments 6 and 8. As reported, 

akin to the data from Experiment 1, the results from Experiment 4 showed facilitation 

from matching single segment coda primes (Identical condition). Also, in line with the 

outcomes from Experiment 2 word primes inhibited the naming of picture targets 

(Identical, Feature and Unrelated conditions) in Experiment 5.  
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However, although non-word primes interfered with picture naming in Experiment 3, 

the employment of non-word primes in Experiment 6 yielded null effects in the latency 

data whilst the error scores showed that fewer errors were made in the Identical 

condition relative to all other conditions. It could therefore be assumed that the results 

from that experiment might have reflected some speed-accuracy trade-off. Further, the 

data using the masked sandwich priming paradigm from Experiment 8 showed 

inhibitory effects in the Identical, Feature and Unrelated conditions whereas facilitation 

was observed in Experiment 7 from shared phonemes between primes and targets in the 

onset position (Identical condition).  Since the same stimuli were used in both 

Experiments 6 and 8 and also that it was the results from these two experiments that 

were inconsistent with the findings from each of the other experiments that comprised 

this research, it might be that these two particular outcomes reflected some additional 

effects caused by the specific stimuli employed in Experiments 6 and 8. Perhaps, these 

results might have been influenced by the choice of either/both primes and/or targets. 

Addressing these anomalies in future research could therefore provide further insight 

into the phonological encoding process of a picture name.  

 

To sum up, the picture naming data from Experiments 1, 2, 3, 4, 5 and 7 were consistent 

with the working assumptions of Dell‟s (1986) general language production model.  

They thus provide evidence to suggest that the phonological encoding process that 

occurs during picture naming takes place in parallel across the word form. As such, 

regardless of the position of overlap, shared phonemes between the corresponding 

phonemes of primes and targets facilitated picture naming. Additionally, any 

mismatching phonemes activated by the brief presentation of a prime interfered with the 

activation/selection process of the corresponding target‟s phonemes; with this 
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interference being largest of all when these phonemes shared all but one of their 

phonemic features (Feature condition, Experiments 1, 2, 3, 4, 5 and 7). However, the 

picture naming results from Experiments 6 and 8 were inconsistent with this theoretical 

framework and might have been reflective of some additional effects caused by the 

stimuli choice that requires further investigation.  

 

 

 

7.5. The notion of shared phonological encoding mechanisms for both 

word reading and picture naming 

 

 

The results from the research undertaken in this thesis were strongly suggestive of 

phonemic features being involved during the phonological encoding process that takes 

place in picture naming.  Additionally, the findings for word reading were accounted for 

with reference to the DRC (Coltheart et al., 2001) model and showed that the 

observations with lexical primes (i.e., word primes) appear to be due to processes 

occurring at the lexical route, with these effects resulting from a shared featural 

environment between primes and targets. Given that picture naming is a task that can 

only be accomplished with lexical access, it is therefore plausible that a processing 

route akin to the lexical route of the DRC (Coltheart et al., 2001) model might be shared 

for both word reading (with lexical primes) and picture naming with phonological 

encoding occurring through this route during the two tasks. If so, this would eliminate 

the need for separate storage in the mental lexicon for each domain.  However, the 

picture naming data from Experiments 1 to 8 were in large part consistent with the 
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working assumptions of Dell‟s (1986) model. Consequently, for the above to be true it 

would have to be argued that the lexical route operates in a manner similar to that 

incorporated in this model. This in turn would have to account for the word reading 

results observed with lexical primes (Experiments 2, 5, 7 & 8) and explain why some of 

these outcomes differed to those reported in the picture naming task (Experiment 2). 

Before attempting to do so, it is important to note that word reading is a much faster 

process to accomplish than picture naming. As such, these discrepancies might be due 

to the speed of processing during each task. Specifically, because in Dell‟s (1986) 

model there are bi-directional connections between the syllable, phoneme and feature 

levels, it is possible that these differences reflect the degree of feedback between these 

levels that might vary according to the speed taken to accomplish the task employed.  

 

Consider the data from Experiment 5 that manipulated phonemic feature similarity in 

the coda position of word primes and targets. These results showed that the brief 

presentation of word primes interfered with the naming of both word and picture 

targets. As discussed, the interference in the picture naming task was accounted for by 

arguing that that this effect was caused by competition for selection between the 

mismatching phonemes activated by the primes and the corresponding phonemes of 

their targets. Since similar interference was observed in word reading, the same account 

to explain that interference can easily be extended to word reading. Further, competition 

for selection can also explain the outcomes from Experiment 7. In this experiment the 

two target types were named significantly faster in the Identical condition relative to 

both the Feature and Unrelated conditions. It was postulated that in Experiment 7 the 

display of the target‟s name as the initial prime reduced the competitive effects from the 

mismatching phonemes between the main prime and the target, thus allowing 
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facilitation from the shared phonemes between these two stimuli to be observed. 

However, the results from Experiment 7 also showed that word reading was 

significantly faster in the Feature condition compared to the Unrelated condition 

whereas in picture naming there was only a trend towards facilitation between the same 

conditions. The fact that this effect was significant in word reading but not in picture 

naming might therefore be due to word reading being a faster task to accomplish than 

picture naming. For pictures, this slower processing might have allowed the activated 

representations of the target‟s name that resulted from the display of the initial prime to 

have somewhat decayed before target processing. Hence, in picture naming it was only 

possible to observe a trend towards facilitation between the Feature and Unrelated 

conditions.    

 

Even though the word reading data from Experiment 8 was consistent with that for the 

corresponding task in Experiment 5 and showed interference from primes on word 

reading, the former findings cannot be accounted for with reference to Dell‟s (1986) 

model. This is because in line with the outcomes from Experiment 7, the display of the 

target‟s name as the initial prime should have reduced the competitive effects caused by 

the mismatching phonemes activated by the main prime and its target and thus should 

have allowed for the facilitating effects from the shared phonemes between these two 

stimuli to be observed.  However, because this did not happen and since similar results 

to word reading were also observed in picture naming in Experiment 8, it was argued 

that the inapplicability of these findings to the working assumptions of Dell‟s (1986) 

model might be due the to stimuli choice for that experiment. If so, this would also 

explain why the picture naming outcomes from Experiment 6 that employed the same 

non-word primes and targets as Experiment 8 were also incompatible with this model.  
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Finally, the results from Experiment 2 showed contrasting effects across the two tasks 

with facilitation observed in word reading and interference found in picture naming. 

Although the latter results were consistent with the workings of Dell‟ s (1986) model, 

the facilitation found in both the Identical and Feature conditions in the word reading 

task was not. Further, because the observation of a MOPE in word reading is a widely 

accepted phenomenon, these results cannot be easily dismissed and thus imply that the 

word reading outcomes from Experiment 2 are reliable. However, these particular 

results are clearly not compatible with the workings of Dell‟s (1986) model. This in turn 

suggests that if both words and pictures are processed via a lexical route akin to that 

incorporated in this model, then there might be differences in how phonology is 

constructed for each target type through such a route. One such difference could be that 

although in both tasks there is a parallel activation of phonemes corresponding to a 

given input, it might be that in picture naming each phoneme is activated separately 

whereas in word reading the onset is activated as one unit whilst the rhyme (vowel and 

coda) is activated as another separate and discrete unit. This possibility thus requires 

further investigation to ascertain which, if any of the working assumptions of Dell‟s 

(1986) model might be shared between both word reading and picture naming. 
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7.6. Future research 

 

 

The previous section explored the notion of shared phonological encoding mechanisms 

for both word reading and picture naming that was the main focus of the experimental 

work undertaken in this thesis. It was suggested that due to picture naming being a task 

that can only be accomplished via lexical access and also because in word reading 

effects observed with lexical primes (i.e., word primes) are thought to result from 

processes occurring at the lexical route of a dual-route framework such as that 

incorporated in the DRC (Coltheat et al., 2001) model, it might be possible that a single 

lexical processing route is thus shared for both tasks. This suggestion seemed logical for 

the following two reasons. Firstly, it would eliminate the need for separate lexical 

storage for each domain. Secondly, most of the picture naming and word reading (with 

word primes) data in fact showed consistent results across the two tasks with phonemic 

feature effects observed with both target types. Importantly, the interpretation of these 

results suggested that phonemic feature effects are reflective of lexical route processing. 

 

However, given that the majority of the picture naming results were consistent with 

Dell‟s (1986) model, for a single shared lexical route to be operative it would have to be 

argued that processing through such a route operates in the manner similar to that 

model. Consequently, the word reading outcomes with word primes (Experiments 2, 5, 

7, 8) would also have to be accounted for with reference to Dell‟s (1986) model. This 

was possible for the word reading data from Experiments 5, 7 and 8 but not from 

Experiment 2. In the latter experiment word reading was significantly faster in the 

Identical condition relative to the Feature, Unrelated and Control conditions as well as 
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in the Feature condition compared to the Unrelated condition. These particular results 

were thus contrary to those for picture naming in Experiment 2 and were therefore 

incompatible with the workings of Dell‟s (1986) model. This is because according to 

Dell‟s (1986) model the mismatching phonemes activated by word primes should 

compete for selection with the corresponding targets‟ phonemes resulting in longer 

target naming in the Identical, Feature and Unrelated conditions relative to the Control 

condition in which the primes consisted of percentage signs. The discrepancy between 

the word reading and picture naming outcomes from Experiment 2 thus suggested that 

there might be differences in how phonology is constructed for each task. One possible 

difference might be that even though there is a parallel activation of phonemes 

corresponding to a given input in both domains, there may well be a variation in how 

these phonemes are activated. Specifically, it may be that in word reading the onset is 

activated as one unit whereas the rhyme (vowel and coda together) may be activated as 

a separate and discrete unit. In pictures, it may be that each phoneme is activated 

separately. If confirmed, this would mean that the interference observed in word reading 

in Experiments 5 and 8 was due to the rhyme being processed as a single unit that 

resulted in competition for selection between the mismatching rhymes of primes and the 

corresponding rhymes of word targets even though the codas of these stimuli shared 

their phonemic features in both the Identical and Feature conditions. However, this 

argument still needs to be empirically tested. 

 

One possible line of inquiry could be to manipulate phonemic feature similarity in the 

coda position of rhyme primes with both word and picture targets during masked 

sandwich priming whilst maintaining constancy in the vowel position between primes 

and targets. Based on the arguments presented herein, the display of the target‟s name 
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as the initial prime in word reading should force the processing of the rhyme prime 

(non-lexical prime) and target via the lexical route. If as suggested above, the lexical 

route is then engaged and the rhyme is activated as a separate and discrete unit, the 

shared vowel between the main prime and word target would not be expected to 

interfere with the processing of the coda and should thus allow facilitating effects from 

shared phonemic features in the coda position (Identical and Feature conditions) to be 

observed. At the same time, the picture naming results from such a study could provide 

an explanation for why the masked sandwich priming data for pictures from Experiment 

8 that manipulated phonemic feature similarity in the coda position of non-word primes 

and picture targets was contrary to the predictions for that experiment and therefore 

incompatible with Dell‟s (1986) model. 

 

Further, even though the word reading data from Experiment 2 seemed to be 

inconsistent with the notion of shared phonological encoding mechanisms for both word 

reading and picture naming and could not be accounted for with reference to Dell‟s 

(1986) model, it is still plausible that some aspects of that model might be applicable to 

word reading. Given that in Dell‟s (1986) model there are three main processing levels 

namely, the syllable, the phoneme and the feature levels, research focused on addressing 

these levels individually during both word reading and picture naming has the potential 

to reveal which if any of these levels are common for the two tasks and by so doing, 

provide further valuable insight into phonological encoding mechanisms for each 

domain.  

 

Finally, the experimental work reported within this thesis was designed to assess 

phonological encoding mechanisms for both word reading and picture naming. To this 
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aim monosyllabic words and their corresponding pictures were employed in both the 

masked priming and masked sandwich priming paradigms. As such, it must be noted 

that the conclusions reached can only be applied to monosyllabic targets and these two 

very similar experimental procedures. Consequently, a validation of the herein reported 

findings using a different experimental paradigm and/or multi-syllabic words and 

pictures would enhance the applicability of these conclusions more generally to the 

phonological encoding processes that occur during each task. 

 

 

 

7.7. Conclusions 

 

 

The main purpose of the research reported within this thesis was to evaluate 

phonological encoding for both word reading and picture naming to assess the validity 

of Roelofs‟ (2004) conclusions that encoding mechanisms might be shared for the two 

tasks. This was conducted with the employment of the masked priming paradigm as 

well as the masked sandwich priming paradigm and by the manipulation of phonemic 

feature overlap in both the initial and end segment position of primes and monosyllabic 

targets. Most current models of general language production such as WEAVER (e.g., 

Roelofs, 1997a) account for the role of phonemic features once the phonological 

encoding process has been completed. However, whilst Kinoshita‟s (2000) re-

interpretation of the locus of the MOPE implies an encoding process for word reading 

that is similar to that incorporated into WEAVER (e.g., Roelofs, 1997a) and by 

extension to picture naming, Lukatela et al.‟s (2001) results suggest that features are 
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actually involved in the word reading processes. As such, the manipulation of phonemic 

features was considered the most appropriate way to address both the research question 

above and also to gain further insight into the precise processes that occur for each task. 

The results across the set of experiments reported in this thesis were consistent in 

demonstrating that features are in fact involved in both tasks. Specifically, the results 

for word reading fit within a revised version of the DRC (Coltheart et al., 2001) model 

that accounts for the role of phonemic features within the lexical route. In particular, it 

was shown that word reading was facilitated when all but one of the features in the 

onset position between a prime and its target were shared. Further, the observed effects 

from featural similarity were explained with reference to processing at the lexical route 

and were fully supportive of the findings of Lukatela et al. (2001). The results for 

picture naming were incompatible with the architecture incorporated into WEAVER 

(e.g., Roelofs, 1997a) and fit more appropriately within the working assumptions of 

Dell‟s (1986) general language production model that involves phonemic features 

during a phonological encoding process that takes place in parallel across a word form. 

Addressing the issue of shared phonological encoding mechanisms for both word 

reading and picture naming, the possibility that these two tasks might be processed via a 

single lexical route such as that incorporated into the dual-route framework was 

suggested. From a strategic perspective, this would make sense in that it would 

eliminate the requirement for separate lexical storage. However, to be so, this lexical 

route would need to operate in a manner similar to Dell‟s (1986) model and thus the 

word reading data with lexical primes would also have to be compatible with that 

model. This was true for some but not all of the results obtained in the word reading 

task. Consequently, future research should address this discrepancy whilst also 

evaluating which if any aspects of Dell‟s (1986) model might be applicable to both 
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domains. Such an enquiry could contribute greatly to the current understanding of 

phonological encoding processes that occur during each task.  
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Appendix A – an example of a consent form and                                                                 

participants’ instructions  

 

 

 
UNIVERSITY OF EAST LONDON 

 

 

Consent to Participate in an Experimental Programme Involving the 

Use of Human Participants 

 
 

Single word reading and object naming: 

Phonological encoding in English language production. 

 
 

I have read the information leaflet relating to the above programme of research in which I have been 

asked to participate and have been given a copy to keep. The nature and the purposes of the research have 

been explained to me, and I have had the opportunity to discuss the details and ask questions about this 

information. I understand what is being proposed and the procedures in which I will be involved have 

been explained to me. 

 

 

I understand that my involvement in this study, and particular data from this research, will remain strictly 

confidential. Only the researcher involved in the study and the project supervisor will have access to the 

data. It has been explained to me what will happen to the data once the experimental programme has been 

completed. 

 

 

I hereby fully and freely consent to participate in the study which has been fully explained to me. 

 

 

Having given this consent I understand that I have the right to withdraw from the programme at any time 

without disadvantage to myself and without being obliged to give any reason.  

 

 

Participant‟s name (BLOCK CAPITALS):  ……………………………………...……… 

 

Participant‟s signature:                                 ……………………………………...……… 

 

Investigator‟s name:                                     …………………………………………...… 

 

Investigator‟s signature:                               …………………………………………...… 

 

Date:                                                             ……………………………………………... 
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UNIVERSITY OF EAST LONDON 
 

Stratford Campus 

 

Romford Road 

 

London E15 4LZ 

 

 

University Research Ethics Committee 

 

 
If you have any queries regarding the conduct of the programme in which you are being 

asked to participate please contact the Secretary of the University Research Ethics 

Committee: Ms D Dada, Administrative Officer for Research, Graduate School, 

University of East London, Docklands Campus. London E16 2RD 

(telephone 0208 223 2976, e-mail d.dada@uel.ac.uk) 

 

 

The Principal Investigator 
 

Anna O‟Reilly 

University of East London, Stratford Campus 

Romfrod Road, London E15 4LZ 

(tel: 0208 223 4592, mobile: 07884313384, e-mail a.oreilly@uel.ac.uk) 

 

 

Consent to Participate in a Research Study 
 

The purpose of this letter is to provide you with the information that you need to 

consider in deciding whether to participate in this study. 

 

 

Project Title 
 

Single word reading and object naming: 

Phonological encoding in English language production. 

 

 

Project Description 
 

The purpose of the study is to examine processes involved in single word reading/object 

naming (the precise details will be provided with each study).  
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Confidentiality of the Data 
 

All experimental data will be recorded electronically and stored on a compact disc. 

After completing the experiment, each participant will be provided with a number under 

which their data will be stored to aid the withdrawal process if any participant decides 

to withdraw at a later stage. Only the researcher and the researcher‟s supervisors will 

have access to the data unless the research findings are published.   

 

 

Location 
 

This study will be conducted at the University of East London‟s Stratford campus. 

 

 

Disclaimer 
 

You are not obliged to take part in this study, and are free to withdraw at any time 

during the tests. Should you choose to withdraw from the programme you may do so 

without disadvantage to yourself and without any obligation to give a reason. 
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I N S T R U C T I O N S 

 
 
 

Single word reading and object naming: 

Phonological encoding in English language production.  

 

 

 

Dear Participant 
 

 

Welcome and thank you for agreeing to take part in this research which has been 

designed to examine the processes involved in single word reading/ object naming. 

 

 

The experiment should take less than 30 minutes. During the study you will be asked to 

name sets of words/ pictures presented to you on a computer screen. Please try to name 

the words/ pictures as quickly and as accurately as possible while avoiding making 

unnecessary sounds that could trigger the voice key.  

 

 

If you make a mistake or fail to recognise a word/ object before the next one is 

presented, please do not attempt to correct your response. When the next word/ object is 

presented please continue with the naming process.  

 

 

If you have any questions or if you are unsure of what is expected of you please do not 

hesitate to ask the researcher.  

 

 

Before proceeding with the research please sign the consent form provided. 

 

 

Please remember that you have the right to withdraw from the study at any time and are 

NOT required to provide an explanation for doing so.  If you decide to withdraw from 

the study at a later date please contact the researcher Anna O‟Reilly on 0208 223 4592, 

07884313384 or a.oreilly@uel.ac.uk, providing the number assigned to your data which 

is…………… to aid in this process.  

 

  

You are not required to provide any personal details other than your age. Your data will 

be treated as confidential and will be analysed as part of a larger database.    
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The researcher will be grateful for any comments you may have regarding this study or 

its procedures and there will be time allocated after the experiment for doing so.   

 

 

To find out more about the outcome of the study please contact the researcher Anna 

O‟Reilly in ………………  on the above numbers. 

 

 

And finally, please retain these instructions for future reference.  

 

 

 

 

Once again, thank you for your time and contribution. 
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Appendix B – Stimuli used in Experiment 1 

 

 
Target Identical Feature Unrelated 

BELL b%%% p%%% z%%% 

BELT b%%% p%%% z%%% 

BIRD b%%% p%%% z%%% 

BOAT b%%% p%%% z%%% 

BONE b%%% p%%% s%%% 

BOOT b%%% p%%% s%%% 

CAGE c%%% g%%% l%%% 

CAKE c%%% g%%% l%%% 

CANE c%%% g%%% l%%% 

COAT c%%% g%%% l%%% 

CORK c%%% g%%% l%%% 

CORN c%%% g%%% l%%% 

DEER d%%% t%%% v%%% 

DESK d%%% t%%% v%%% 

DIME d%%% t%%% v%%% 

DOLL d%%% t%%% n%%% 

DUCK d%%% t%%% v%%% 

FORK f%%% v%%% m%%% 

GIRL g%%% k%%% m%%% 

GOAT g%%% k%%% p%%% 

KING k%%% g%%% l%%% 

KITE k%%% g%%% l%%% 
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PIPE p%%% b%%% n%%% 

POOL p%%% b%%% n%%% 

SAFE s%%% z%%% d%%% 

SEAL s%%% z%%% l%%% 

SINK s%%% z%%% y%%% 

SOCK s%%% z%%% h%%% 

TAIL t%%% d%%% y%%% 

TANK t%%% d%%% y%%% 

TENT t%%% d%%% y%%% 

VEST v%%% f%%% t%%% 
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Appendix C – Stimuli used in Experiment 2 

 

     

Target  Identical Feature Unrelated 

BAT bin pin sin 

BED bay pay jay 

BOX bee pee zee 

BUS bad pad sad 

CAN cod god sod 

CAR cob gob sob 

CAT coo goo loo 

CUP cad gad lad 

DOG dip tip nip 

FAN fie vie hie 

FOX fat vat mat 

GUN gab cab lab 

PEN pug bug jug 

PIG par bar jar 

SAW sen zen hen 

SUN sip zip dip 

TIE tab dab jab 

BELL buck puck suck 

BELT bunk punk junk 

BIRD bump pump sump 

BONE beat peat seat 
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BOOT bang pang sang 

CAKE cold gold sold 

DESK dine tine nine 

DUCK dale tale vale 

FOOT fine vine mine 

FORK fast vast mast 

GIRL gore core yore 

GOAT gage cage sage 

KITE kale gale sale 

PIPE pail bail sail 

SINK seal zeal heal 

SOCK sing zing ling 

TANK tune dune june 

TENT tame dame name 

VEST vile file mile 
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Appendix D – Stimuli used in Experiments 3 & 7 
 

 

 

Target Identical Feature Unrelated 

BAT bof pof sof 

BED bav pav jav 

BELL bive pive sive 

BELT bude pude jude 

BIRD bazz pazz sazz 

BONE beft peft seft 

BOOT bife pife sife 

BOX bem pem zem 

BUS boz poz soz 

CAKE coid goid soid 

CAN cug gug sug 

CAR cuz guz suz 

CAT cux gux lux 

CUP com gom lom 

DESK doop toop noop 

DOG dur tur nur 

DUCK dabe tabe vabe 

FAN fup vup hup 

FOOT fige vige mige 

FORK fasp vasp masp 

FOX fut vut mut 
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GIRL gobe cobe yobe 

GOAT guge cuge suge 

GUN gaj caj laj 

KITE kaun gaun saun 

PEN piv biv jiv 

PIG pez bez jez 

PIPE parl barl sarl 

SAW sev zev hev 

SINK salc zalc halc 

SOCK sirm zirm lirm 

SUN ses zes des 

TANK tume dume jume 

TENT tilk dilk nilk 

TIE tep dep jep 

VEST viln filn miln 
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Appendix E – Stimuli used in Experiment 4 
 

 

 

Target Identical Feature Unrelated 

BAG %%g %%k %%l 

BAT %%t %%d %%h 

BED %%d %%t %%n 

BOOT %%%t %%%d %%%y 

BUG %%g %%k %%m 

BUS %%s %%z %%v 

CAT %%t %%d %%y 

CRAB %%%b %%%p %%%n 

CUP %%p %%b %%j 

DOG %%g %%k %%p 

FLAG %%%g %%%k %%%m 

FOOT %%%t %%%d %%%h 

FROG %%%g %%%k %%%l 

GOAT %%%t %%%d %%%n 

HAT %%t %%d %%n 

HOOF %%%f %%%v %%%r 

HOOK %%%k %%%g %%%p 

LEAF %%%f %%%v %%%r 

LEG %%g %%k %%m 

LOG %%g %%k %%p 

MAP %%p %%b %%s 
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MOP %%p %%b %%n 

NET %%t %%d %%h 

PIG %%g %%k %%m 

PLUG %%%g %%%k %%%m 

ROAD %%%d %%%t %%%y 

ROOF %%%f %%%v %%%h 

RUG %%g %%k %%l 
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Appendix F – Stimuli used in Experiment 5 
 

 

 

Target Identical Feature Unrelated 

BAG dog doc don 

LOG sag sac sap 

BED fad fat fan 

CUP rip rib rim 

TOP cap cab cam 

MOP tap tab tan 

BAT cot cod con 

HAT kit kid kin 

NET pat pad pal 

BOAT skit skid skin 

CRIB slab slap slam 

COAT slit slid slim 

FOOT beat bead bean 

ROAD quid quit quin 

HOOK flak flag flap 

MAP nip nib nil 
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Appendix G – Stimuli used in Experiments 6 & 8 
 

 

 

 

Target Identical Feature Unrelated 

BAG vog voc vop 

LOG zag zak zam 

BED vod vot von 

CUP lep leb lem 

TOP vap vab vam 

MOP lup lub lum 

BAT zut zud zun 

HAT fot fod fon 

NET zat zad zal 

BOAT clet cled clen 

CRIB fleb flep flen 

COAT veet veed veen 

FOOT zait zaid zain 

ROAD cred cret cren 

HOOK zeek zeeg zeem 

MAP zop zob zol 

 

 

 

 

 

 


