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ABSTRACT

This chapter explored various techniques and modelling methodologies designed to estimate occupancy 
level in indoor environments. It also introduces an innovative image-​based occupancy detection system 
that leverages edge computing and machine vision to accurately detect and classify occupants and other 
objects in an indoor environment which requires a certain thermal comfort level. By enabling real-​time 
adjustments to HVAC operations based on actual occupancy, it can significantly reduce unnecessary 
energy consumption in unoccupied areas, thus improving overall energy management. The integration 
of edge computing allows for local data processing, which not only minimizes the computational load 
on centralized servers but also addresses privacy concerns by reducing the need for external data trans-
mission. This is particularly important in environments where sensitive information about occupants 



may be captured. A case study is presented in the end to demonstrate and examines the performance of 
several object detection models in the context of academic office occupancy detection.

CHAPTER OVERVIEW

Energy efficiency in buildings is a crucial component in tackling global sustainability challenges, 
particularly as Heating, Ventilation, and Air Conditioning (HVAC) systems are among the largest con-
sumers of electricity. These systems often account for nearly half of a building’s total energy consump-
tion, making their optimization essential for reducing energy waste and minimizing the environmental 
impact of buildings. Occupancy-​based control (OBC) systems offer innovative solutions to reduce energy 
consumption in buildings via demand-​response control mechanism. By using sensors (e.g., temperature, 
humidity, light sensors, as well as specialized sensors like PIR sensors, smart meters, and thermal cam-
eras) such systems can perceive environmental changes and estimate buildings' occupancy for adapting 
heating, ventilation and cooling in real time. Traditional systems have combined environmental sensors 
with intelligent techniques, such as machine learning and statistical modeling, to establish relationships 
between environmental parameters and occupancy levels.

This chapter explored various techniques and modelling methodologies designed to estimate occupancy 
level in indoor environments. It also introduces an innovative image-​based occupancy detection system 
that leverages edge computing and machine vision to accurately detect and classify occupants and other 
objects in an indoor environment which requires a certain thermal comfort level. By enabling real-​time 
adjustments to HVAC operations based on actual occupancy, it can significantly reduce unnecessary 
energy consumption in unoccupied areas, thus improving overall energy management. The integration 
of edge computing allows for local data processing, which not only minimizes the computational load 
on centralized servers but also addresses privacy concerns by reducing the need for external data trans-
mission. This is particularly important in environments where sensitive information about occupants 
may be captured.

A case study is presented to demonstrate and examines the performance of several object detection 
models in the context of academic office occupancy detection. A custom dataset is created, consisting 
of 1,728 images from office settings, manually annotated to include eight object classes: person, cell 
phone, printer, mouse, computer, laptop, keyboard, and tablet. The models trained on this dataset include 
YOLOv8n, YOLOv9c, and YOLOv10n, as well as baseline models such as Faster R-​CNN. To overcome 
challenges such as high computational loads, occlusion, and lighting inconsistencies, the dataset is thor-
oughly prepared, augmented, and annotated to enhance model training. By analyzing the strengths and 
weaknesses of these models, the study highlights their capabilities in accurately detecting occupants and 
while ensuring robust performance in real-​world scenarios. Ultimately, this framework aims to provide 
a scalable and privacy-​conscious solution for managing energy use in buildings, contributing to the 
broader objective of environmental sustainability.
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1. INTRODUCTION

Energy efficiency is a significant challenge in today's world due to the growing global demand for 
energy and the environmental impacts associated with its production and consumption. As economies 
expand and populations increase, more energy is required to power industries, transportation, homes, 
and technology. Additionally, outdated infrastructure and resistance to adopting new, energy-​efficient 
technologies further exacerbate the problem. Buildings are among the largest energy consumers in the 
U.S., with significant energy demand driven by their heating, ventilation, and air conditioning (HVAC) 
systems. In 2018, HVAC systems accounted for nearly 50% of the total electricity consumption in build-
ings across the country(Koebrich et al., 2019). This high energy usage results from the need to maintain 
comfortable indoor climates, especially in varying weather conditions. Also, a lot of energy is wasted in 
large indoor areas due to centralized air conditioning, irrespective of the presence of occupants.

With millions of residential, commercial, and industrial buildings relying on energy-​intensive HVAC 
systems, this sector plays a major role in the overall energy footprint. Improving the efficiency of HVAC 
systems and adopting smarter building technologies could significantly reduce energy consumption, 
lower operational costs, and contribute to environmental sustainability by reducing greenhouse gas 
emissions. One way to reduce the energy consumption of HVAC is by efficiently controlling HVAC units 
via demand-​response control mechanisms. Occupancy-​based control (OBC) offer innovative solutions 
to reduce energy consumption in buildings, by optimizing HVAC system usage. By using sensors and 
cameras equipped with computer vision technology, buildings can detect real-​time occupancy patterns, 
identifying when and where spaces are in use. This allows HVAC systems to adjust heating, cooling, 
and ventilation dynamically, supplying energy only to occupied areas and reducing waste in unoccupied 
ones. Occupancy detection can be integrated with advanced algorithms to predict occupancy trends 
and optimize energy use further, ensuring that systems operate only when necessary, lowering energy 
consumption and enhancing the overall energy efficiency of buildings.

There have been continuing advances in sensing technology for monitoring the interaction between 
the building system and occupants, e.g., motion sensors (Yun and Lee, 2014, Hashimoto et al., 1997, 
Agarwal et al., 2010), Infrared Proximity Sensors (PIR) (Rastogi and Lohani, 2020), CO2 concentration 
sensors (Wang et al., 1999), and thermal images (Beltran et al., 2013, Gomez et al., 2018, Griffiths et 
al., 2018). The motion and proximity sensor has limited range and fails to count people with increasing 
objects (Wahl et al., 2012). In addition, the detection likely fails for the static objects. CO2 concentration-​
based solution has a relatively poor real-​time performance, and the measurement precision is likely to be 
significantly reduced when the doors or windows are opened. Thermal cameras usually cannot recognize 
the characteristics of the detected object (Anjomshoaa et al., 2018).

Video based occupancy detection methods are emerging as effective approaches for recognizing ac-
tivity in buildings (Petersen et al., 2016). These methods utilize computer vision technology to analyze 
video, extracting information such as number of people, their location and even behaviors. Typically, 
video analysis involves detecting features like the head, face, body contour, or movement. However, these 
methods can face challenges, particularly in environments with many obstacles or when only parts of a 
person’s body are visible. Detection methods that rely on a single body characteristic often struggle in 
real-​world applications. Additionally, in terms of cost, users prefer to utilize existing surveillance footage 
rather than installing new cameras. A key challenge with video-​based occupancy detection methods is 
the concern over privacy, as these systems capture sensitive personal data, raising issues around data 
protection, unauthorized access, and the need for anonymization and secure storage.
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This chapter presents an image-​based occupancy detection system utilizing edge computing, specifically 
designed to automatically monitor indoor spaces for energy-​saving purposes. Using machine vision and 
RGB images for indoor occupancy detection offers several advantages, making it an effective solution for 
optimizing energy use and enhancing building management. RGB images provide rich visual data that 
can accurately identify occupants, differentiate between people and objects, and track movement within 
a space. This allows systems to make real-​time adjustments to HVAC based on actual usage, reducing 
energy waste. Additionally, machine vision can work without requiring invasive or intrusive sensors on 
individuals, preserving privacy while maintaining functionality. By leveraging edge computing, the system 
processes data locally, ensuring faster response times and enhanced privacy protection by minimizing 
the need for data transmission to external servers. The system efficiently detects and tracks occupancy 
in real time, enabling dynamic adjustments to energy consumption of HVAC based on actual usage, thus 
optimizing energy efficiency in typical indoor environments such as offices, homes, and commercial 
buildings, enhancing overall building management and sustainability.

There are numerous machine vision models that are ready for deployment in edge computing envi-
ronments, suitable for efficient occupancy detection once properly trained. In this chapter, a case study 
is conducted to examine the performance of various object detection models specifically for occupancy 
detection in office environment while also aiming to ensure the models' universal applicability across 
various environments. Previous machine vision approaches have faced several limitations, including high 
computational loads, occlusion challenges, difficulties in detecting small objects, lighting inconsistencies, 
camera placement issues, and difficulties in system generalization. To address these challenges, our main 
objectives is preparing a diverse set of data, accurately annotating this data to enhance model training, 
and training multiple machine vision models, including YOLOv8n, YOLOv9c, and YOLOv10n. We also 
compare their performance against baseline models like Faster R-​CNN. This comprehensive approach 
aims to create robust, efficient, and adaptable occupancy detection systems in the next phase that can 
effectively manage energy consumption and improve building management in real-​world scenarios.

2. OCCUPANCY DETECTION TECHNIQUES AND METHODS

Occupancy information in a building is critical in terms of indoor environmental quality, energy 
consumption and building energy simulation. In this section, we review the techniques and methods 
along modelling methodologies in occupancy estimation in buildings. Also discuss the advantages and 
limitations of these approaches proposed in recent past, providing insights for their potential application 
in Occupant-​Based Control (OBC) systems.

2.1 Sensor-​based Occupancy Detection Techniques and Methods

Most occupancy detection systems rely on the deployment of multiple environmental sensors, such 
as carbon dioxide (CO2), temperature, humidity, and light sensors, as well as specialized sensors like 
PIR sensors, smart meters, and thermal cameras (Rueda et al., 2020). Existing studies have combined 
these technologies with intelligent techniques, such as machine learning and statistical modeling, to 
establish relationships between environmental parameters and occupancy levels. For instance, Hobson 
et al. (2019) use Wi-​Fi access point, CO2 sensors, PIR motion detector to collect data stream from an 
academic office environment to develop occupancy count estimation for HVAC control purpose. Various 
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ML based techniques such as linear regression and ANN are used to estimate occupancy information. 
In their case study linear regression models outperforms other methods. The study found Wi-​Fi enabled 
device counts are useful for occupancy-​count estimations achieving a mean R2 of 80.1–83.0% when 
compared to ground truth counts during occupied hours.

Similarly, Dorokhova et al.(2020) used rule-​based based system for occupancy forecasting using 
sensors such as Temperature, CO2, Humidity and Luminosity. It explores both supervised models with 
an accuracy up to 98.3 on cross validation and unsupervised algorithms with a cross-​validation accuracy 
of 96.7 for predicting occupancy with high accuracy. In a case study of a mid-​sized building in Portu-
gal, a potential energy saving of 15.4% is demonstrated. The methodology includes extensive feature 
engineering to enhance data pre-​processing and employs machine learning models like SVM, ANN, 
and LSTM for occupancy forecasting. The highest performing algorithms is LSTM for unsupervised 
and Feedforward ANN for supervised algorithms. Similarly, (Jiang et al., 2016) developed an indoor 
occupancy estimator to estimate real-​time occupancy based on CO2 measurements, using a dynamic 
model of occupancy levels. The proposed Feature Scaled Extreme Learning Machine (FS-​ELM), an 
improved version of the standard ELM, is introduced for this purpose. Since CO2 data often contains 
significant spikes, pre-​smoothing the data is found to significantly enhance estimation accuracy. Given 
that real-​time globally smoothed data isn't always available, the study proposed using locally smoothed 
data instead. The occupancy estimator, tested in an office setting with 24 cubicles and 11 open seats, 
achieved an accuracy of up to 94% with a tolerance of four occupants.

Dong and Lam (2014a) has presented a methodology reduce energy consumption based on predic-
tion of occupant behaviour patterns and local weather conditions using CO2, acoustics, motion and 
lighting as input features. Adaptive Gaussian Process, Hidden Markov Model, Episode Discovery and 
Semi-​Markov Model are modified and implemented into this study. Similarly, (Sayed et al.) developed 
an efficient and non-​intrusive system for detecting occupancy in indoor spaces. The proposed method 
utilized an environmental sensing board to collect ambient data, which included temperature, humidity, 
pressure, light level, motion, sound, and CO2 levels. This data is then processed using a DL model, spe-
cifically a CNN, deployed on an edge device to ensure low-​cost computing and enhanced data security. 
The accuracy achieved in this study is about 99.76%.

Abdel-​Razek et al.(2022) used thermal comfort indices to estimate whether a room is occupied or 
empty. Data from fluctuations in light, CO2, and humidity levels are analyzed to assess the reliability of 
occupancy prediction. Additionally, kNN, ANNs, and DTs are applied as classification techniques. The 
results indicated that the kNN model outperformed both DT and ANN, achieving an accuracy of 99.50%.

Kou et al. (2021) investigated residential demand response (DR) implementations based on HVAC, 
focusing on effective control algorithms to coordinate the operating schedules of multiple HVAC de-
vices. They developed both model-​based and data-​driven HVAC control strategies aimed at minimiz-
ing customers' electricity costs, discomfort, and utility-​level load violations, using input data such as 
outdoor temperature (weather forecasts), indoor temperature, and non-​HVAC electrical consumption. 
The model-​based approach employed a thermal resistance-​capacitance (RC) model and a distributed 
solution algorithm to establish optimal day-​ahead HVAC operation schedules, achieving a 22% cost 
savings compared to the data-​driven approach. In contrast, the data-​driven approach, utilizing neural 
networks to interact with the environment during training for online decision-​making, did not require 
outdoor temperature forecasts and is 46 times faster in computational speed, although it incurred higher 
electricity and discomfort costs.
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2.2 Edge and Machine Learning Methods

There are studies using similar environmental sensors technologies as discussed in section 2.1, 
however, the deployment is conducted on the edge node. For instance, Rastogi et al. (2020) developed 
a methodology for estimating indoor occupancy using Linear and Quantile (QR) algorithms for indoor 
environment using CO2, temperature, relative humidity, and motion levels. Since the data generated by 
the setup is vast, sending it all to the cloud for processing may result in delayed prediction; hence, the 
suggested models are designed to be executed on an edge device.

In these studies, Zemouri et al. (Zemouri et al., 2019, Zemouri et al., 2018) addressed the effectiveness 
of machine learning algorithms used to predict human occupancy in closed office areas using temperature 
and humidity data as occupancy predictors. They employed a Raspberry Pi as an edge device to perform 
real-​time occupancy detection. The findings revealed that kNN outperformed the other algorithms in 
all performance measures.

2.3 Vision-​Based Techniques and Methods

Since mostly studies focused on sensing occupancy information through the count of occupants and 
their distribution in a certain environment, there is limited research and its material on sensing the actual 
objects which requires certain thermal comfort level. This is necessary to allow HAVC to dynamically 
adjust the heating and cooling requirements. Computer vision and AI-​ based occupancy detection solutions 
are emerging as effective approaches for recognizing activity in buildings using that can be implemented 
into building HVAC systems for higher accuracy monitoring and control. For Instance, Hu et al. (2022) 
presented a deep-​learning-​based approach for building occupancy detection using CCTV cameras. The 
method involves feature extraction through a deep convolutional neural network that constructs feature 
pyramids and a three-​stage detection process using sequential detectors with increasing Intersection 
over Union (IoU) thresholds. Data is gathered by recording CCTV videos from a university building 
over five weeks, resulting in nearly 10,000 labeled images. Experimental results demonstrated that the 
proposed model achieved high detection accuracy with a Precision of 89.7%, a Recall of 89.2%, and an 
overall mean average precision (mAP) of 44.5%. The study highlights the effectiveness of this approach 
for real-​time occupancy detection in complex indoor environments.

Tien et al.(2020) used thermal Cameras for detecting and predicting occupancy heat emissions to 
enable demand-​driven control solutions in building energy management systems (BEMS). Developed a 
convolutional neural network (CNN) which detect and classify occupant activities from images such as 
sitting, standing, walking, and napping, generating real-​time occupancy heat emission profiles that can 
optimize HVAC systems. Data is gathered by using images from online sources and captured images 
of various occupant activities in office spaces, with real-​time live detection tests conducted in an office 
space in Nottingham, UK. The study achieved an average detection accuracy of 80.62%, with the highest 
detection accuracy being 89.39% for static images and about 93.7% for occupancy detection. This ap-
proach showed potential for better managing building energy loads and improving indoor environmental 
quality by accurately detecting occupant activities and adjusting HVAC systems accordingly.

Similarly, Wang et al.(2023) proposed indoor occupancy detection system using an advanced YOLOv5 
model. The method involves improving the YOLOv5 algorithm with a decoupled prediction head to 
better manage classification and regression tasks separately, which enhances the detection accuracy. A 
self created dataset is prepared with various indoor scenes, and the training involved significant image 
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preprocessing, resizing, and categorizing images into classes such as sitting, standing, walking, nap-
ping, and none. The machine learning algorithm used in this study is a modified version of YOLOv5, 
specifically the DFV-​YOLOv5. The improved YOLOv5 model achieved high accuracy, with the best 
value being 86.3% for one of the key performance indicators. This result demonstrates significant im-
provements over other baseline models used for comparison in the study.

Lee et al., (2018) presented a method for counting people using a stereo camera mounted on the 
NVIDIA Jetson TX2 to improve accuracy in crowded environments by addressing occlusion issues. 
The process involves camera calibration, stereo matching using the Semi-​Global Matching algorithm, 
background subtraction with a Gaussian Mixture Model (GMM), and Kalman filter-​based tracking. Data 
is gathered using IMX 185 cameras installed at heights of 3 to 5 meters, recording 23 high-​definition 
video sequences. The method achieved over 95% accuracy in most scenarios, with an overall accuracy 
of 98.95%, and demonstrated real-​time processing capabilities with HD resolution at 12.5 frames per 
second, highlighting its effectiveness for surveillance and crowd monitoring.

Likewise, Sun et al. (2022) aims to enhance indoor occupancy measurement accuracy by combining 
motion detection and static estimation techniques. The method involves a four-​stage algorithm: occupancy 
detection, static estimation using Fully Convolutional Head Detector (FCHD), motion detection at room 
entrances using GMM and Camshift tracker, and a fusion estimation method that utilizes the Kalman filter 
and Occupancy Frequency Histogram to integrate results from the two techniques. Data is gathered using 
two USB cameras installed at the room entrance and interior, capturing video data over two days. The 
motion detection events and static head detections are processed using Nvidia Jetson Nano, employing 
OpenCV for computer vision tasks and Pytorch for deep learning computations. The machine learning 
algorithms used are FCHD for head detection, GMM for background subtraction, Camshift tracker for 
motion tracking, and Kalman filter for fusing motion detection and static estimation results. The study 
achieved an occupancy detection accuracy of 97.8%, with an occupancy estimation score ranging from 
78.52% to 79.18% and a mean square error (MSE) between 0.21 and 0.23, demonstrating high accuracy 
and efficiency in real-​world applications.

Simliary, Paidi et al. (2020) used thermal cameras to acquire vehicle occupancy information in an 
open parking lot using deep learning techniques. Frames from these videos are extracted and manually 
labeled due to the lack of pre-​labeled thermal images. Multiple deep learning networks, including Yolo, 
Yolo-​conv, GoogleNet, ResNet18, and ResNet50, are evaluated for vehicle detection. Data is gathered 
using an Axis Q1942-​E thermal camera installed on a two-​storey building, capturing videos in different 
weather conditions such as snow, rain, darkness, and brightness. The videos are stored locally, and frames 
representing diverse conditions are manually labeled to prepare the dataset. The machine learning algo-
rithms used include Yolo, Yolo-​conv, GoogleNet, ResNet18, and ResNet50. These networks are tested 
for their efficiency in detecting vehicles in thermal images. Among these, ResNet18 performed the best, 
achieving an average precision of 96.16% and a log-​average miss rate of 19.40. The study highlights the 
effectiveness of using thermal cameras and deep learning for real-​time vehicle occupancy detection, 
suitable for varying illumination and environmental conditions.

Likewise, (Yu et al., 2023) presented YOLOv5s model for face mask recognition in heterogeneous 
IoT environments. The proposed method includes embedding a Coordinate Attention (CA) mechanism, 
integrating a Bidirectional Feature Pyramid Network (BiFPN) block, adding an Adaptive Spatial Feature 
Fusion (ASFF) layer, and merging Scaled Intersection over Union (SIoU) to improve detection accuracy 
and computational efficiency. Data is gathered from diverse sources, including the AIZOO face mask 
dataset, an internet-​sourced dataset, and a self-​built dataset incorporating photos taken on campus merged 
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with the Real-​World Masked Face Dataset (RMFD). The study employed the YOLOv5 model, enhanced 
with the aforementioned components to address specific challenges in face mask detection across dif-
ferent computing platforms. The improved YOLOv5s model achieved superior accuracy compared to 
baseline models, with a detection accuracy of up to 95.4% on heterogeneous IoT platforms. This indi-
cates a significant improvement in face mask recognition, making it suitable for real-​time applications 
in various environments.

3. NOVELTY AND GAPS IN KNOWLEDGE

Most of the existing studies on building occupancy estimation has used motion sensor (Yun and Lee, 
2014, Hashimoto et al., 1997, Agarwal et al., 2010, Hobson et al., 2019), Infrared Proximity Sensors 
(PIR) (Rastogi and Lohani, 2020, Hobson et al., 2019), CO2 concentration sensors (Wang et al., 1999, 
Dorokhova et al., 2020), and thermal images (Beltran et al., 2013, Gomez et al., 2018, Griffiths et al., 
2018). The motion and proximity sensor has limited range and fails to count people with increasing 
objects (Wahl et al., 2012). In addition, the detection likely fails for the static objects. CO2 concentration-​
based solution has a relatively poor real-​time performance, and the measurement precision is likely to be 
significantly reduced when the doors or windows are opened. Thermal cameras usually cannot recognize 
the characteristics of the detected object (Anjomshoaa et al., 2018). Furthermore, all these methods 
are effective in determining whether a room is occupied but are unable to accurately estimate the exact 
number of occupants. Additionally, they are sensitive to environmental factors such as airflow and solar 
radiation. Environmental sensors like carbon dioxide and temperature sensors also have limitations in 
real-​time detection, as their performance can be compromised by open windows and doors.

While vision-​based methods (Yu et al., 2023, Wang et al., 2023, Tien et al., 2020, Paidi et al., 2020) 
for detecting the number and locations of occupants and recognizing their activities or behaviors show 
promise, they face significant challenges. Identifying individuals in complex academic office environ-
ments, where obstacles like furniture, equipment, and partitions are common, is difficult, especially, 
detecting occupant activities when parts of the body are obscured or occlusion issues in densely populated 
areas. Moreover, these methods raise serious concerns about data privacy. Many existing studies focus 
primarily on improving the performance and accuracy of deep learning models for human presence 
detection and activity classification. However, less attention has been given to addressing the issues 
of computational load and privacy protection. This leaves a gap in developing solutions that minimize 
unnecessary computational burdens and safeguard privacy.

Further exploration is necessary to refine these methods, addressing both privacy concerns and the 
computational demands of real-​time processing. In response to these challenges, we propose a general-
ized edge-​based framework that aims to reduce both privacy risks and computational load, making the 
system more efficient and secure. This work focous on an image-​based deep learning framework for 
occupancy detection in typical indoor spaces, particularly for energy-​saving purposes. The proposed 
end-​to-​end edge-​based architecture utilizes RGB images from video streams along with edge-​optimized 
deep learning models, to classify indoor objects into distinct categories. Since various objects, beyond 
people, also require specific thermal comfort conditions, the goal is to detect all objects that require such 
comfort such as people, computer, laptops, servers, etc. This will allow for the automated control of HVAC 
systems, optimizing energy use by ensuring that thermal comfort is maintained only where necessary.
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By using edge-​based processing, the system ensures that sensitive data is handled locally, reducing 
privacy risks associated with transmitting images to cloud servers. Additionally, this approach minimizes 
computational overhead by leveraging lightweight models and localized processing, making it ideal for 
real-​time applications in energy-​efficient building management.

4. DESIGN OF THE IOT-​ENABLED OCCUPANCY-​
BASED HVAC CONTROL SYSTEM

The overall architecture of the IoT-​based control system is shown in Figure. 1. It consists of a set of 
RPi Cameras that streams images to an edge node. We plan to set up four RPi Cam to capture the room 
from different angles. RPi Cam will be configured with the edge device to transmit image stream and run 
the DNNs module to predict a room occupancy in terms of people and other objects that require certain 
thermal comfort and their count. The analysis results will be sent to the IoT cloud. The HVAC control 
unit will deploy Model Predictive Control (MPC) to communicate with the IoT cloud server to receive 
occupancy prediction results and run the MPC algorithm. The HVAC modules modify the temperature 
of the HVAC unit according to the decisions taken by the MPC algorithm.

Figure 1. The overall architecture of the proposed IoT-​based solution

To implement embedded intelligence at the edge device following research questions will be addressed:

1. 	 What type of sensing technology is available for object identification in an indoor environment?

Raspberry Pi Cameras (RPi Cam) for image streaming from an indoor space with high accuracy 
will be used. RPi Cam supports MIPI-​CSI designed to use low power, smaller size, faster bandwidth, 
higher resolution and reduced latency. These features confirm to the resource constrained specification 
of the edge node.
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2. 	 What type of edge technology can be used to deploy intelligent solutions?

Previously researchers have used cloud-​based systems for streaming raw data from an end device to 
the centralized servers or IoT cloud for analysis and send the results back to the end device (Ryu and 
Moon, 2016, Dong and Lam, 2014b, Carli et al., 2020). With the availability of low-​cost and low-​power 
IoT devices with edge computing features, it is possible to run advanced artificial intelligence algorithms 
at the edge where data originates. In the line of edge computing, previous studies have mainly designed 
edge nodes using few Micro Controller Units (MCUs) boards aiming to run AI algorithms at the local 
node (Metwaly et al., 2019). However, the configuration of the sensing device with the edge node is 
complex and needs manual calibration. Furthermore, cloud storage is required for intensive image 
computation. The adoption of Edge AI has led to developing specialized devices capable of perform-
ing AI inferencing efficiently, e.g., Nvidia Jetson Nano1, Google Coral2, and AWS DeepLens3. In the 
proposed edge computing architecture, the RPi Cam streams the data to an edge instead of uploading it 
directly to the cloud. The RPi Cam will be configured with the edge device using the NVIDIA Jetson 
Nano snapshot board. The Snapshot is the edge AI video capture device designed to run multiple neural 
networks in parallel for image classifications, object detection, and speech processing applications. Fur-
thermore, the accompanying AGX Xavier Developer Kit provides tools and libraries to develop Edge 
AI applications. One device can support up to four RPi Cam connected via Wi-​Fi or HDMI. Therefore, 
the snapshot board is more feasible and ready to use as an edge node to deploy deep learning-​based 
occupancy estimation models.

3. 	 What are the most appropriate deep learning models that can be embedded at edge nodes for 
perceiving real-​time environmental changes?

We will develop and train multiple deep-​learning models to detect occupancy and perceive environ-
mental changes in real-​time. We will explore various deep-​learning-​based models such as Feedforward 
Neural Networks (Moons et al., 2019), Convolutional Neural Networks (CNNs) (Gomez et al., 2018), 
Recurrent Neural Networks (RNNs) (Chung et al., 2014), and YOLO for image processing and object 
detections. At first, we will use GPU instances to train and test these models for realizing the proof of 
concept. Then we will use a tiny version of the most accurate model through model compression and 
network tuning so that the model can be deployed on the resource constraints microcontroller. To train 
any Neural Network, a large set of tagged training data is required. We plan to collect a dataset targeted 
at object recognition in the context of any office/classroom and tag data using Amazon Mechenical 
Turk4, a crowdsourcing service that can be used to tag a huge amount of data.

5. CASE STUDY FOR OCCUPANCY DETECTION

In order to assess the performance of deep learning models, a case study is conducted, specifically for 
occupancy detection in an academic office environment. Previous machine vision approaches have faced 
several limitations, including high computational loads, occlusion challenges, difficulties in detecting 
small objects, lighting inconsistencies, camera placement issues, and difficulties in system generalization. 
To address these challenges, our main objectives is preparing a diverse set of data including people and 
other categories which requires certain thermal comfort, accurately annotating this data to enhance model 
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training, and training multiple machine vision models, including YOLOv8n, YOLOv9c, and YOLOv10n 
and comparing their accuracy with baseline model, Faster R-​CNN. This comprehensive approach aims to 
create robust, efficient, and adaptable occupancy detection systems in the next phase that can effectively 
manage energy consumption and improve building management in real-​world scenarios. The dataset 
is prepared using Roboflow, which allowed us to efficiently create dataset by merging multiple office 
settings into a single cohesive dataset. For our purposes, the data needs to be annotated—a task easily 
accomplished with Roboflow. Additionally, Roboflow offers various functions for preprocessing the data.

5.1 The Occupancy Dataset Description

A custom dataset is used consisting of 1728 images from various office settings for the models 
training, with various possible classes for object recognition. The images are extracted at 1fps (frame 
per second) from 16 videos which are found on free websites like Pixabay. Afterwards the images are 
manually annotated into one of eight classes such as person, cell phone, printer, mouse, computer, lap-
top, keyboard and tablet. To prepare the dataset for training, the images are resized to 640x640, and a 
static crop is applied to retain the central 25%-​75% for each image. Greyscale is applied and the images 
are tiled in 2 rows x 2 columns. Furthermore, the augmentation is applied to enhance the robustness, 
as shown in Table 1. After augmentation, the dataset is split into training, validation and testing. The 
annotated dataset is saved in both COCO and YOLO annotation, ensuring compatibility with multiple 
deep learning frameworks. The prepared dataset is then used to train the selected models, enabling them 
to recognize objects and occupants for effective HVAC system automation.

Table 1. Augmentation settings for the selected dataset
Augmentation Steps Step Setting

Flip Horizontal and Vertical

Noise Of 0.1% of pixel

Bounding box rotation -​5% to +5%

Bounding box sheer -​10% to +10%

The image samples in the dataset are shown as an example in Figure.2. The dataset is created with 
the intention of overcoming limitations such as occlusion, camera angle issues, universal viability 
and ability to detect other heat emitting objects such as computers, cell phones and tablets. Looking 
through all the pictures they are all the same sorts of images but in different settings which should give 
the model a good understanding of how to perform in a variety of office layouts and thereby making 
the model universally viable. The matter of occlusion is tackled by carefully annotating the persons or 
object for example 1st image shows 2 full people and part of a 3rd person, image 2 shows 6 people 5 
of them are clearly visible and the 6th is occluded. To tackle the issue of camera placement, when the 
dataset is created, we carefully chose different images where the camera is placed in different angles 
and positions. Lastly all other objects like computers, cell phones etc. where also annotated to pick these 
up whilst running object detection. Small devices such as cell phones or tablets are not likely to make 
a huge difference to the room temperature however, an office floor with a large number of computers 
could make a significant difference.
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Figure 2. Examples of sample images in the dataset

5.2 Object Detection Models: Performance and Evaluation

First, its trained on different object detection such as YOLOv8n, YOLOv9c, and YOLOv10n against 
the Faster R-​CNN baseline, emphasizing detection speed, computational efficiency, and small object 
detection. The trained models are evaluated based on two key metrics: Mean Average Precision (mAP) 
and computational efficiency. The following evaluations are conducted:

• 	 mAP: The models are evaluated using mAP@50 and mAP@​50​-​​95 to measure their accuracy at 
different Intersection over Union (IoU) thresholds.

• 	 mAP@50: Measures precision at a 50% IoU threshold, which is more lenient and captures larger 
objects.

• 	 mAP@​50​-​​95: A stricter metric that measures precision across various IoU thresholds, providing 
insight into the model's performance with smaller or more occluded objects.

• 	 Detection Speed: The time taken to process each image is measured to evaluate the model’s suit-
ability for real-​time detection.

• 	 Resource Efficiency: The models are compared in terms of the number of parameters and compu-
tational load, with a focus on reducing resource usage while maintaining high detection accuracy.

The performance of YOLOv8n, YOLOv9c, and YOLOv10n is compared against Faster R-​CNN, 
which is chosen as baseline models due to its popularity in object detection research. Faster R-​CNN, 
though accurate, is slower and more resource-​intensive.
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5.2.1 Faster R-​CNN

The Faster R-​CNN model achieved a mAP of 87.4% at IoU threshold 0.50 and 60% at IoU thresh-
olds ranging from 0.50 to 0.95, indicating strong object detection performance, especially at lower IoU 
thresholds. Figure. 3 shows epochs along the x-​axis, with mAP and mAP @50-​95 on the y-​axis, tracking 
the performance of the Faster R-​CNN model as training progresses. Initially, at the lower epochs, both 
mAP and mAP@​50​-​​95 start relatively low, indicating that the model is still learning and hasn’t achieved 
high precision yet. As the epochs increase, the lines representing mAP and mAP@​50​-​​95 gradually rise, 
demonstrating the model's improving ability to correctly detect and classify objects. Around the mid-​
point of the graph, you may notice a steady increase, showing that the model is refining its predictions 
and approaching its peak performance. Toward the later epochs, the graph begins to plateau, meaning the 
model has learned most of what it can from the data. At this point, the mAP and mAP@​50​-​​95 stabilize, 
indicating convergence. Any slight dips or oscillations in the curves might suggest overfitting The need 
for further tuning, but overall, the upward trend reflects the model’s successful learning process over time.

Figure 3. mAP for Faster R-​CNN

Figure. 4 provides a summary of the Faster R-​CNN model’s training and performance, showing various 
loss and metric trends across epochs. The train/box loss, train/cls loss, and train/dfl_loss all show a clear 
downward trend, indicating that the model is improving in its ability to predict object bounding boxes 
and classify objects accurately during training. However, on the validation side, both the val/box_loss 
and val/cls_loss show fluctuations, though with a slight overall decrease. This suggests that while the 
model is learning, its performance on unseen data remains inconsistent. Similarly, the val/dfl_loss fluc-
tuates more significantly, indicating that the model struggles with object localization on validation data.

For the metrics, precision(B) and recall(B) show variable patterns but maintain relatively high values, 
reflecting good, though inconsistent, object detection and classification performance. The mAP50(B) and 
mAP50-​95(B), which measure average precision, show an overall upward trend, suggesting improving 
detection accuracy, though with some variability.
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Figure 4. Training visualization for Faster R-​CNN

5.2.2 YOLO v8n

The YOLOv8n model achieved a mAP of 87.2% at IoU threshold 0.50 and 59.4% at IoU thresholds 
ranging from 0.50 to 0.95, demonstrating competitive object detection performance, particularly at lower 
IoU thresholds. Figure. 5 shows the training progress of YOLO V8 Nano across different metrics. The 
training box loss, classification loss, and distribution focal loss all exhibit sharp downward trends, partic-
ularly in the early epochs, indicating that the model is learning quickly and reducing errors in bounding 
box predictions and classifications. By around 100 epochs, the losses stabilize, suggesting the model 
has converged and learned the underlying patterns in the data. The precision and recall metrics improve 
steadily throughout training, with precision approaching 0.9 and recall nearing 0.85 by the final epoch, 
indicating that the model is becoming increasingly accurate and consistent in its predictions. Similarly, 
both mAP50 and mAP50-​95 rise steadily, showing that the model's accuracy is improving not just at 
the 50% IoU threshold but across stricter IoU thresholds, reflecting robust performance. The validation 
losses follow a similar pattern as training, but with some fluctuations, suggesting occasional overfitting 
but generally strong generalization to unseen data.
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Figure 5. Training Visualization for YOLO V8 Nano

Figure.6. shows the model's precision across different recall levels for various object classes. Each line 
represents a different object class, with scores close to 1 indicating high precision and recall. The “Cell 
Phone” class performs the best, with almost perfect precision (0.988), showing that the model is highly 
accurate and consistent at detecting cell phones. “Laptop” and “Computer” also show strong performances 
with precision scores of 0.884 and 0.865, respectively. However, the “Tablet” class shows the lowest 
performance, with a precision of 0.761, indicating the model's difficulty in accurately detecting tablets, 
possibly due to confusion with similar objects. Overall, the average precision across all classes is 0.874 
mAP@​0​.5, suggesting the model is performing well but has some difficulty with specific categories.

Figure 6. Precision and Recall Curve YOLO V8 Nano
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Figure.7. shows how well YOLO V8 Nano is able to classify various objects during testing. Along 
the diagonal, we observe high values, indicating strong performance in correctly classifying objects. For 
example, the model correctly classifies “Computer” 92% of the time, and “Tablet” 86% of the time. It 
perfectly classifies “Cell Phone” 100% of the time, which is a strong indication of the model's ability in 
that class. For “Person,” there is some confusion, with an 86% classification accuracy, but also a 12% 
misclassification as “Background.” This misclassification shows the model struggles in distinguishing 
between persons and backgrounds. Other small confusions are visible with categories like “Laptop” and 
“Mouse” where small percentages of incorrect classifications exist. Overall, the model performs well 
but has some difficulty with background distinction.

Figure 7. Normalized Confusion Matrix YOLO V8 Nano

Figure. 8 depicts YOLO V8 Nano's predictions on a test set, where it successfully detects and la-
bels various objects such as “person,” “laptop,” “tablet,” and “cell phone.” Each object is enclosed in 
a bounding box with a confidence score. The model correctly identifies multiple instances of people 
and laptops, with confidence scores ranging from 0.6 to 1.0. For instance, it detects a “person” with 
0.9 confidence in the center and multiple “laptops” with confidence as high as 1.0. However, it seems 
to struggle with “tablet” and “cell phone” detections, with confidence scores as low as 0.3 to 0.5. This 
indicates the model is good at detecting larger, more distinctive objects (like people and laptops) but 
faces challenges with smaller or more similar-​looking items like “tablets” and “cell phones.”
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Figure 8. YOLO V8 Nano prediction on Test Data

5.2.3 YOLO v9c

The YOLOv9c model achieved a mean Average Precision (mAP) of 88.0% at IoU threshold 0.50 
and 59.8% at IoU thresholds ranging from 0.50 to 0.95, indicating strong object detection performance 
with a notable improvement at the lower IoU threshold compared to previous models. Figure. 9 shows 
various training metrics and loss curves over 100 epochs for YOLOv9c. The train/box_loss and train/
cls_loss curves depict a sharp decrease, starting from approximately 1.2 and 2.5 respectively, and leveling 
out around 0.4 and 0.5. This indicates that the model's ability to predict bounding boxes and classify 
objects improves as training progresses. The train/dfl_loss curve, representing the distribution focal loss, 
follows a similar trend, starting around 1.6 and stabilizing near 1.1. The val/box_loss and val/cls_loss 
curves show more variability but decrease consistently, which suggests that the model is generalizing 
fairly well to unseen data, although some fluctuations may indicate slight overfitting. Metrics like pre-
cision, recall, and mAP (mean Average Precision) show steady improvement over epochs. Precision 
rises to around 0.88, and recall climbs above 0.75, demonstrating that the model’s accuracy and ability 
to retrieve correct detections are improving over time. Both mAP_0.5 and mAP_0.5:0.95 curves also 
show significant growth, with mAP_0.5 peaking at around 0.8 and mAP_0.5:0.95, a stricter evaluation 
metric, peaking around 0.6, reflecting consistent improvements in detecting objects with more stringent 
overlap conditions.
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Figure 9. Training visualization of YOLOv9c

Figure.10 visualizes how YOLOv9c performs across different object classes. Each line represents a 
class, with performance evaluated based on precision versus recall. The cell phone class performs best, 
achieving near-​perfect precision at 0.968, showing that the model is highly accurate in identifying cell 
phones. Other classes such as computer and laptop also exhibit strong performance, with precision val-
ues of 0.885 and 0.865, respectively. The tablet class performs the weakest, with a precision of 0.798, 
suggesting that the model has more difficulty detecting tablets compared to other objects. The overall 
mAP@​0​.5 for all classes is 0.874, which is a strong indication of the model’s good performance across 
most categories, though some object classes still show room for improvement.

Figure 10. Precision and Recall curve of YOLOv9c
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Figure. 11 shows how well YOLOv9c classifies different objects by comparing predicted and true 
labels. The diagonal values represent correct classifications, with the highest accuracies seen for “Com-
puter” at 91%, “Cell Phone” at 91%, and “Person” at 82%. However, there is some confusion, particularly 
for the “Person” category, which is misclassified as “Background” 16% of the time. Additionally, the 
“Mouse” category has an accuracy of 80%, with some confusion possibly occurring with similarly shaped 
objects or backgrounds. For “Background,” the model has a false positive rate of 18% when identifying 
it as “Person.” These off-​diagonal values indicate areas where the model could be improved to reduce 
misclassification, particularly for background and person distinctions.

Figure 11. Confusion Matrix of YOLOv9c

Figure. 12 shows the predictions made by YOLOv9c on a test dataset. The model correctly identifies 
objects such as “Computer,” “Person,” “Cell Phone,” and “Laptop,” with confidence scores generally 
ranging from 0.8 to 1.0. For example, multiple “Computer” instances are detected with high confidence 
(0.9), as well as “Person” and “Laptop” instances with confidence levels as high as 1.0 and 0.9. The “Cell 
Phone” class is identified with confidence scores around 0.8, indicating reasonably accurate detection. 
Overall, YOLOv9c demonstrates strong detection capabilities, with consistently high confidence scores 
across most objects, though occasional low-​confidence detections (e.g., “Laptop” at 0.4) indicate the 
potential for further fine-​tuning to improve recognition of specific items.
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Figure 12. Prediction of YOLOv9c on Test Data

5.2.4 YOLO v10n

The YOLOv110n model achieved a mean mAP of 81.6% at IoU threshold 0.50 and 54.5% at IoU 
thresholds ranging from 0.50 to 0.95, indicating a lower object detection performance compared to 
earlier YOLO models, particularly at higher IoU thresholds. Figure.13 illustrates the YOLOv10n mod-
el’s training progress over 100 epochs. The train/box_loss, train/cls_loss, and train/dfl_loss all exhibit 
significant decreases over time, reflecting that the model is effectively learning to localize objects and 
classify them correctly. Similarly, the metrics/mAP50(B) and metrics/mAP50-​95(B) curves show steady 
improvements, with mAP50 approaching 0.8 and mAP50-​95 (a stricter metric) rising to around 0.55. The 
metrics/precision(B) and metrics/recall(B) also improve consistently, with precision approaching 0.8 by 
the end of training and recall nearing 0.75. These results suggest that the model is learning effectively 
and improving in both precision and recall, although the performance can still be refined, particularly 
for challenging object classes.
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Figure 13. Training Visualization for YOLOv10n

The precision-​recall curve provides insight into the trade-​off between precision and recall for 
YOLOv10n across different object categories. Person and Laptop classes perform well, with high preci-
sion and recall values of 0.862 and 0.855, respectively. Computer also performs well with a precision of 
0.853. However, the Tablet class has the lowest precision at 0.679, indicating that the model struggles to 
consistently identify tablets. The overall mean Average Precision (mAP) across all classes at a 0.5 IoU 
threshold is 0.816, which shows that the model performs reasonably well but can be improved, especially 
for classes like “Tablet” and “Cell Phone.”

Figure 14. Precision and Recall for YOLOv10n

Figure. 15 shows a normalized confusion matrix which shows the model's performance in classifying 
objects during testing. The diagonal cells represent the percentage of correct predictions, and the non-​
diagonal cells represent misclassifications. YOLOv10n achieves 91% accuracy in detecting “Computer” 
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and 83% for “Person.” However, it struggles with detecting “Tablet,” with only 57% accuracy, and with 
“Background,” where there is significant confusion, particularly for “Person,” with a 17% misclassifi-
cation rate. The model also confuses “Cell Phone” and “Tablet” quite often, with only 82% accuracy 
for “Cell Phone.” This highlights areas where the model's performance could be improved, particularly 
in distinguishing between visually similar objects like “Tablet” and “Cell Phone,” and in separating 
objects from the background.

Figure 15. Confusion Matrix for YOLOv10n

In Figure.16 YOLOv10n correctly detects and labels objects such as “Computer,” “Cell Phone,” and 
“Person.” The confidence scores for these predictions range from 0.3 to 1.0. Notably, the model detects 
a “Computer” with high confidence (up to 1.0 in several instances) and consistently identifies “Person” 
with confidence ranging from 0.5 to 1.0. However, it struggles with identifying the “Cell Phone,” with 
confidence scores as low as 0.4. This suggests that while YOLOv10n is effective at detecting larger 
objects like “Computer” and “Person,” it faces challenges when detecting smaller or less distinct objects 
like “Cell Phone,” leading to lower confidence scores in those instances.
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Figure 16. Prediction of YOLOv10n on Test Data

5.2.5 Comparison with Baseline Methods

In the result section, the performance of YOLOv8n, YOLOv9c, and YOLOv10n is compared against 
Faster R-​CNN and YOLOv5, based on findings from recent studies. Faster R-​CNN, as reported in 
studies like (Kou et al., 2021), typically achieves mAP@50 scores between 85-​90% and an mAP@​50​
-​​95 around 40-​60%. While these results demonstrate high precision, especially with small or complex 
objects, the model’s significant drawbacks include its detection time of 150-​200 milliseconds per image 
and a large model size of around 42 million parameters. This makes it unsuitable for real-​time detection 
tasks, despite its accuracy.

On the other hand, YOLOv5 (Yu et al., 2023, Wang et al., 2023) achieves mAP@50 values between 
87-​90% and mAP@​50​-​​95 scores between 55-​60%, with detection times ranging between 10-​30 milli-
seconds per image. While this model is much faster and more efficient than Faster R-​CNN, it still has a 
higher computational cost than newer models like YOLOv8n and YOLOv9c, requiring around 12 million 
parameters in its medium-​sized configureurations.

In comparison, the models trained in this study shown remarkable improvements in both speed and 
resource efficiency. YOLOv8n achieves a mAP@50 of 87.2% and an mAP@​50​-​​95 of 59.4%, while re-
quiring only 7 million parameters and having a detection time of 10-​20 milliseconds per image, making 
it highly suitable for real-​time applications. YOLOv9c, with a mAP@50 of 88.0% and a mAP@​50​-​​95 
of 59.8%, offers the best balance between accuracy and efficiency, outperforming both Faster R-​CNN 
and YOLOv5 in terms of precision and resource usage. YOLOv10n, though slightly less accurate with 
a mAP@50 of 81.6% and mAP@​50​-​​95 of 54.5%, still provides a reasonable trade-​off between speed 
and precision, with 10 million parameters and detection times of 15-​30 milliseconds.
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6. DISCUSSION AND FUTURE WORK

The results of this study demonstrate significant advancements in occupancy detection models, par-
ticularly when comparing the performance of YOLOv8n, YOLOv9c, and YOLOv10n against established 
benchmarks such as Faster R-​CNN and YOLOv5. Faster R-​CNN, while recognized for its high precision 
in detecting small and complex objects, falls short in real-​time applications due to its detection time of 
150-​200 milliseconds per image and its considerable model size of approximately 42 million param-
eters. Despite achieving mean Average Precision (mAP) scores ranging from 85-​90% at IoU 0.50 and 
40-​60% at IoU 0.50-​0.95, these drawbacks make it impractical for environments that require immediate 
occupancy detection.

YOLOv5 demonstrates a better balance between speed and accuracy, achieving mAP@50 scores 
between 87-​90% and mAP@​50​-​​95 scores between 55-​60%. With detection times ranging from 10-​30 
milliseconds, YOLOv5 is more efficient than Faster R-​CNN, though it still computational intensive with 
approximately 12 million parameters in its medium-​sized configureurations. YOLOv8n, YOLOv9c, and 
YOLOv10n—show remarkable improvements in both speed and resource efficiency. YOLOv8n stands 
out with a mAP@50 of 87.2% and a mAP@​50​-​​95 of 59.4%, requiring only 7 million parameters and 
achieving detection times of 10-​20 milliseconds per image. This combination of accuracy and speed 
positions YOLOv8n as highly suitable for real-​time occupancy detection applications. YOLOv9c further 
enhances this performance, boasting a mAP@50 of 88.0% and a mAP@​50​-​​95 of 59.8%, making it the 
model with the best balance between accuracy and efficiency in this study. This model outperforms 
both Faster R-​CNN and YOLOv5 in terms of both precision and resource usage, solidifying its role as 
a preferred choice for real-​time applications that require prompt decision-​making. YOLOv10n shows 
slightly lower accuracy with a mAP@50 of 81.6% and a mAP@​50​-​​95 of 54.5%, it still provides a reason-
able trade-​off between speed and precision, making it a viable option in scenarios where computational 
resources are limited, or where the emphasis is placed on processing speed.

These findings show that further exploration in the field of occupancy detection should focus on 
several key areas to enhance the capabilities and applications of the models presented in this study. 
Integrating multi-​modal data sources, such as PIR, infrared, CO2 sensors, alongside video analysis, 
can improve detection accuracy in complex environments. Additionally, prioritizing privacy protection 
through advanced techniques like data anonymization and federated learning will ensure occupant 
privacy while still harnessing valuable occupancy data. Long-​term performance monitoring in diverse 
real-​world settings will provide insights into occupancy patterns, informing better HVAC control strat-
egies and maximizing energy savings. Implementing adaptive learning algorithms will enable models 
to continuously update and refine themselves based on new data, thereby enhancing their effectiveness 
over time. Finally, assessing the cost-​effectiveness and scalability of these systems will be crucial for 
their widespread adoption, particularly in retrofitting existing buildings. By addressing these areas, future 
research can significantly contribute to the development of more robust, efficient, and sustainable occu-
pancy detection systems, ultimately advancing the optimization of energy use in indoor environments 
and promoting environmental sustainability
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BEMS: Building energy management systems.
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