
Computers & Security 144 (2024) 103985

A
0
n

a

b

c

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Adopting security practices in software development process: Security
testing framework for sustainable smart cities
Yusuf Mothanna a, Wael ElMedany a, Mustafa Hammad b, Riadh Ksantini a, Mhd Saeed Sharif c,∗
College of Information Technology, University of Bahrain, Bahrain
Department of Computer Science, Mutah University, Jordan
Intelligent Technologies Research Group, Computer Science and Digital Technologies, ACE, UEL, London, UK

A R T I C L E I N F O

Keywords:
Smart city application
Software development process
Security testing
Security practices

A B S T R A C T

The dependence on smart city applications has expanded in recent years. Consequently, the number of
cyberattack attempts to exploit smart application vulnerabilities significantly increases. Therefore, improving
smart application security during the software development process is mandatory to ensure sustainable smart
cities. But the challenge is how to adopt security practices in the software development process. There are
Several established and mature security testing frameworks exist that consider security requirements and
testing during Several already established and mature security testing frameworks exist that consider security
requirements and testing during Software Development Life Cycle (SDLC), but there is a unique challenges
posed by smart city applications and the need for a comprehensive approach to address the evolving threat
landscape in this context. This paper proposed a framework that adopts security testing practices in all phases
of the software development process. The proposed framework identifies several security activities and steps
that can be applied in each phase of the software development process.
1. Introduction

Nowadays, information and communication technology and smart
city implementation play vital roles in business and daily life. Or-
ganizations and individuals depend on smart applications to achieve
their goals in many aspects of life. Nevertheless, the proliferation of
smart applications encourages cyber hackers to discover and exploit
the vulnerabilities in software applications to perform malicious acts
and cause harmful effects and impacts. The risks posed by hackers
have increased tremendously in recent years. Organizations are thriv-
ing to handle these threats and confront these challenges. Therefore,
enhancing smart city application security is essential to overcome the
difficulties and maintain the implementation of smart cities. However,
organizations have released that it is important to build proper defenses
to improve software application security.

One of the biggest challenges organizations realize is integrating
security practices in the software development process to improve
security. Security practices should be considered and implemented
during the development process from the first phase. In the traditional
software development approaches, security practices are normally in-
troduced in the final stages. This approach consists of various problems
such as increasing the possibilities of generating additional costs, rais-
ing development times, and decreasing the level of security protection
of the smart application.

∗ Corresponding author.
E-mail address: s.sharif@uel.ac.uk (M.S. Sharif).

Integrating proper security practices and activities in all phases of
the software development process is necessary. The costs, time, and
efforts of detecting and maintaining vulnerabilities in the last phases
exponentially increase. Also, implementing security from the earlier
stage of the software development process makes the application less
vulnerable and more secure. Therefore, how to adopt security practices
in the software development process?

While established frameworks like SAMM are indeed robust, they
may not be tailored to the specific requirements and intricacies as-
sociated with smart city development. The main contribution of this
work is a proposal of a new security testing framework for the software
development process. The proposed framework aims to improve the
security of smart city applications by considering security practices in
the development process.

Our framework aims to fill this gap by providing a specialized
approach that integrates security testing practices seamlessly into ev-
ery phase of the software development process, ensuring the security
of smart city applications. The proposed framework has four main
phases of applying security testing for the smart application. The first
phase intends to define security testing goals and enhance the security
knowledge of the team. Then, identify security guidelines by apply-
ing risk assessment and analyzing security requirements. The third
vailable online 6 July 2024
167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cose.2024.103985
Received 1 March 2023; Received in revised form 8 June 2024; Accepted 2 July 20
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

24

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
mailto:s.sharif@uel.ac.uk
https://doi.org/10.1016/j.cose.2024.103985
https://doi.org/10.1016/j.cose.2024.103985
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103985&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers & Security 144 (2024) 103985Y. Mothanna et al.

c
r
o

t
s
p
n
s
i
a
a
s

i
e
C
d
I
b
g

c
t
R
o
A
T
t
i
s
m
l

i
A

phase focuses on executing the security testing according to security
guidelines and analyzing testing results. The final phase describes the
security activities to ensure continuous improvement of software ap-
plication security. In addition, the study compares and discusses some
common useful secure software development models. The following
sections involve a background and related work, an overview of the
proposed security testing framework for the software development
process, outcomes of the proposed framework phases, security testing
and discussion, and a conclusion.

2. Background and related works

Protecting confidential data and maintaining the integrity and avail-
ability of smart cities’ services are essentials hence it is vital to incor-
porate effective security and privacy considerations within the smart
cities design to maintain their sustainability (Haque et al., 2022; Kalu-
arachchi, 2022; Rao and Deebak, 2022). Several research works dis-
cussed the updated security challenges related to smart applications.
For example, the research study (Cui et al., 2018) presents several
approaches and techniques to protect smart applications (Al-Qarafi
et al., 2022; Kaushal et al., 2022; Rana et al., 2023). Also, the authors
onsulted that the rapid development of smart city applications is
equired more efforts and studies to mitigate the security challenges
f smart cities.
Moreover, the research work in Ijaz et al. (2016) presented security

hreats, vulnerabilities, and controls for smart cities as well as analyzed
ecurity best practices of smart cities. The work in Ullah et al. (2021)
roposed a risk management framework based on technology, orga-
ization, and environment to assess and manage the risks related to
mart cities. The authors presented a collection of significant risks and
dentified appropriate treatments to enhance citizens’ safety, security,
nd privacy. The study mentioned some risks associated with smart city
pplications. Therefore, securing the smart city applications during the
oftware development process is important.
Many models and standards have been studied and compared to

mprove security in software applications (Taheri et al., 2023; Khan
t al., 2022; Ogbodo et al., 2022). Kara (2012) examined the Common
riteria (CC) secure software development approach with other security
evelopment models. The author proposed that CC is an international
nformation Technology security standard (ISO/IEC 15408) and can
e implemented as developers’ secure software development lifecycle
uidance.
However, the author suggested that adding some security functions

ould increase the security maturity of software development, such as
he law, policy, procedure, and compliance. The researcher in Faizi and
ahman (2019) explained security integration in the software devel-
pment process and various secure software development frameworks.
lso, the authors provided guidelines for selecting the best framework.
he paper concluded that based on the organization’s characteristics,
he development team must choose the best-fit methodology to be
mplemented. In Sharma and Misra (2017), authors explained several
ecure software developments models. The work discussed the model’s
ethodologies to protect software application and their advantages and
imitations.
Various studies are proposed new frameworks or models for secur-

ng software development (Akbar et al., 2022; Ghelani et al., 2022;
nsari et al., 2022; Taherdoost, 2022). Authors in Núñez et al. (2020)
analyzed the available security software development models and pro-
posed a new methodology for securing software applications which
is Viewnext-UEx model. The proposed model is assessed with a real
environment, which reduces vulnerabilities detection by 66 percentage.
The authors validated that using the new methodology is improved the
security and quality of software applications.

In Tung et al. (2016), authors proposed an integrated security
2

testing framework to secure the software development process in each
phase. The framework used security practices and activities to gener-
ate guidelines and integrated security testing tools to provide testing
services then improve testing services based on the testing result anal-
ysis. The authors tested the framework and constructed a prototype
system that integrated various security testing activities and tools. The
results indicated that the framework could provide stable services with
acceptable quality and perform efficient services during the software
development process.

Other studies consider agile perspective in secure software lifecycle
to enhance the protection and defense of software applications (Valdés-
Rodríguez et al., 2023; Khan et al., 2022). Proposed research in de
Vicente Mohino et al. (2019) described a new software development
model that defined security practices in the development lifecycle by
taking agile methodologies. The new models considered the security as-
pects in each development phase to detect and solve the vulnerabilities
without extra time and cost. The paper described and compared the cur-
rent secure software development lifecycle models at security activities,
resources, artifacts, agile properties, and use in the software industry.
The authors concluded that the model improved the software’s quality
and security, increased the added value to the software, and involved
each team member in the process.

In Rindell et al. (2018), authors described the software development
security approaches and mapped them with agile software development
methods. The study provided a framework for adopting security prac-
tices with agile processes to align the security objective in the software
development process.

Adopting security testing in the software development process en-
sured application protection. Authors in Mahendra and Khan (2016)
reviewed security testing frameworks, methodologies, and techniques
in each phase of the software development lifecycle. In addition, the
article mentioned that most security testing methods are applied in
different phases of the software development process. Also, security
testing can be performed in design phased before the implementation.
The paper concluded a need for a security testing framework process
at the design phase of the software development process. On the other
hand, authors in Lingham et al. (2020) discussed the techniques and
approaches to define and eliminate software applications vulnerabili-
ties. Also, the works presented in detail security features incorporated
with the software development process, which is often ignored during
the implementation.

Several secure software development lifecycle models are proposed
to improve software application security. This paper reviewed three
common known models, which are Microsoft Security Development
Lifecycle (Microsoft SDL), Software Assurance Maturity Model (SAMM)
from Open Web Application Security Project (OWASP), and Building
Security In Maturity Model (BSIMM). Microsoft (2021) introduced
security practices in all phases of the software development process,
including guidance, best practices, tools, and techniques to reduce
development costs.

The OWASP (Software, 2021) is an online community and proposed
SAMM model with a collection of security practices mapped to software
development functions. The model defined four business functions
which are governance, contraction, verification, and operations. In
addition, each business function has a set of security practices to reduce
the risks of software applications. Building Security In Maturity Model
(BSIMM) (Building, 2021) is a group of firms from different industries
that are participated in studying real-world software security projects.
BISMM proposed a security framework to assess the organization and
prioritize the change required to increase the security maturity of the
software development process. The framework is outlined in four do-
mains, 12 practices, and 122 activities. Table 1 presents a comparison
between security practices of Microsoft SDL, SAMM, and BISMM.

Based on (Microsoft, 2021; Software, 2021; Building, 2021) review,
all models considered the security practices and activities in each phase
of the software development process. The SAMM and BSMM models

mentioned the policies, laws, regulations, and strategic direction in the



Computers & Security 144 (2024) 103985Y. Mothanna et al.
Table 1
Security practices of Microsoft SDL, SAMM, and BSIMM on software development process.
Software development
phase

Microsoft SDL SAMM BSIMM

Requirements - Policy and compliance - Compliance and policy
- Provide training - Education and guidance - Training
- Define security requirements - Security requirements and security

architecture
- Architecture analysis

- Define metrics and compliance report - Strategy and metrics - Strategy and metrics

Design - Perform threat modeling - Threat assessment - Attack models
- Establish design requirements Design review - Security features and Design
- Define and use cryptography standards

Implementation - Perform Static Analysis Security Testing (SAST) - Implementation review (Code Review) - Code Review
- Use approved tools and design review
- Manage the security risk of using third-party
components

Testing - Perform Dynamic Analysis Security Testing
(DAST)

- Security testing - Security testing

- Perform penetration testing - Penetration testing

Maintenance - Establish a standard incident response process - Issue management and operational
enablement

- Configuration management and
vulnerability management

- Environment hardening - Software environment
requirements phase, but Microsoft SDL did not state them directly. The
training, security requirements, compliance, and metrics are considered
in all models. The security practices and activities are mostly similar in
all models in the design phase. In the Implementations phase, Microsoft
SDL is focused on risk management of the third party, but the security
practices and activities are mostly similar in all models. Microsoft SDL
in the testing phase focused on implementing dynamic analysis security
testing. Security testing in SAMM is based on the defined security
requirement and the organization-wide baseline.

In BSMM, security testing is performed based on the needs and fea-
tures following the quantality assurance process. The testing depends
on the white box and fuzzy testing in this phase. All models prefer
to perform penetration testing and use automated tools. Managing
incident response helps address new threats that can emerge over time,
and all models considered incident response management in the main-
tenance phase. SAMM and BSMM are focused on the environment and
operation management, increasing the protection level by little damage
in cased o vulnerabilities are exploited and ensuring the information
quality and availability according to expectation.

Based on the three models review and descriptions, this paper pro-
posed the security testing framework of the software development pro-
cess. In addition, the article identified security requirements, including
practices, activities, and tools in each phase of software development.

3. An overview of the proposed security testing framework of
software development process

Security holds a significant role in the software development process
and security testing is essential to secure software applications to
prevent data breaches and security attacks.

3.1. Rationale for developing a new framework

This subsection aims to provide a comprehensive rationale for the
development of our proposed framework. It delves into the specific
challenges posed by smart city applications and justifies the necessity
for a specialized approach. By addressing the limitations of existing
frameworks, particularly SAMM, we aim to highlight how our frame-
work bridges crucial gaps in ensuring the security of smart city software
3

development.
3.1.1. Challenges in smart city applications
The expansion of smart city applications has brought forth unique

challenges in terms of security. The interconnected nature of these
applications and the increasing number of cyberattack attempts make
conventional security testing frameworks insufficient. Smart city en-
vironments demand a more specialized and integrated approach to
address the evolving threat landscape effectively.

3.1.2. Limitations of existing frameworks
While established frameworks like SAMM have proven effective in

conventional software development, they may not adequately cater to
the intricacies of smart city application security. Our analysis of SAMM
and other frameworks revealed certain limitations, including:

• Lack of Tailored Approach: Existing frameworks may lack a tai-
lored approach that comprehensively integrates security testing
practices into all phases of the smart city software development
process.

• Inadequate Coverage of Smart City-specific Risks: Smart city ap-
plications face unique risks that stem from their interconnect-
edness, reliance on IoT devices, and exposure to diverse data
sources. Conventional frameworks may not sufficiently address
these specific risks.

3.1.3. Bridging gaps with our framework
Our proposed framework is designed to overcome the identified

limitations by providing:

• Comprehensive Integration: Unlike existing frameworks, our ap-
proach ensures the integration of security testing practices from
the initial stages of development, covering all phases of the
software development life cycle (SDLC).

• Smart City-specific Considerations: The framework takes into ac-
count the unique challenges posed by smart city applications,
offering tailored security measures to mitigate specific risks as-
sociated with interconnected systems and IoT devices.

• Early Risk Mitigation: By embedding security testing in the early
phases of development, our framework aims to proactively iden-
tify and mitigate potential security risks, reducing the likelihood
of vulnerabilities persisting into the final product.

3.2. Proposed security testing framework

This paper proposes a security testing framework for the software
development process. Based on the proposed framework, security test-

ing is considered from an early stage of the development process. Fig. 1



Computers & Security 144 (2024) 103985Y. Mothanna et al.
Fig. 1. An overview of security testing framework.
presents an overview of the main phases and practices of the proposed
security testing framework.

The following is a description of each phase and its practices of the
proposed framework.

3.2.1. Preparation phase
The preparation phase is essential to identify the security testing

goals for the software development process and enhance the knowledge
of software development teams. This phase involves three security prac-
tices which are reviewing policies and procedures, defining evaluation
metrics, and implementing a training program (ISO, 2021a).

1. Review Policies and Procedures
Reviewing security policies and procedures can be conducted by
implementing the following functions:

• Emphasize alignment with smart city regulations and in-
dustry standards, such as PCI, DSS, HIPPA, and GDPR.

• Specify how the review integrates smart city-specific secu-
rity needs and objectives.

• Define and assess the related policies, regulations, and
standards.

• Discuss the assessment results with other groups, such as
legal, quality, and strategies.

• Share the results with the top management for approval.

Reviewing security policies and procedures is important to un-
derstand the legal and regulations requirements and to be
aligned with security strategy objectives. Likewise, This review
helps to consider the industry best practices such as Payment
Card Industry Data Security Standard (PCI DSS), Healthcare
Insurance Portability and Accountability Act. (HIPAA), and Gen-
eral Data Protection Regulation (GDPR) in the security testing
goals.

2. Define Evaluation Metrics
Defining evaluation metrics for security testing can be performed
by:

• Tailor evaluation metrics to reflect smart city security goals
and Key Performance Indicators (KPIs).

• Highlight criteria relevant to the unique aspects of smart
city software development.

• Identify the Key Performance Indicator (KPI) of security
goals.

• Define the evaluation criteria of security tasks.
• Execute a tracking system to ensure security tasks are
completed and generate accurate reports.
4

Define evaluation metrics aid in ensuring that the security goals
are understood and applied during the entire development pro-
cess.

3. Training program
A security training program has to be developed for the devel-
opment teams by following steps:

• Integrate examples and case studies related to smart city
application security.

• Emphasize the distinctive aspects of attack vectors and
defense strategies in smart city contexts.

• Create a training path of the team based on roles and
responsibilities.

• Conducted security awareness workshops or e-learning ap-
proaches as a baseline for everyone.

• Perform training on risk assessment methodology and se-
curity testing tools.

• Develop a portal that involves resources of protecting soft-
ware such as white papers, tools guidelines, training mate-
rials, and updated vulnerabilities.

Software development teams must know the security baseline
and develop secure software. In addition, the team should un-
derstand the attack techniques and how to fix vulnerabilities.
Providing training in the initial phase reduces software develop-
ment mistakes. Also, the proper training increases the security
Knowledge and skills of development teams, which minimizes
software maintenance.

3.2.2. Requirements phase
The requirements phase helps establish security guidelines and

analyzes the requirements based on business functions, security best
practices, and risks assessment results. This phase consists of two steps
which are risk assessment and security requirements analysis.

1. Risk assessment
Risk assessment is the process of identifying, assessing, and
reducing risks to an acceptable level. This phase is crucial for
smart city applications and involves comprehensive planning
and execution to understand potential threats and vulnerabilities
specific to this context (ISO, 2021c; NIST, 2021):

• Explicitly state considerations for smart city assets, in-
cluding IoT devices, interconnected networks, and citizen
data.

• Align risk criteria with the unique characteristics of smart
city ecosystems.

• Create a comprehensive plan of risk assessment that in-
cludes the following:



Computers & Security 144 (2024) 103985Y. Mothanna et al.

3

t
t
a
c
t

– Set criteria and risk appetite: Establish criteria for
prioritization, considering the unique risk appetite
for smart city applications.

– Define scope and boundaries: Determine the func-
tions and people involved, allocating resources effec-
tively for better optimization.

– Identify roles and responsibilities: Clearly define
roles and responsibilities of individuals involved in
the risk assessment process.

• Conduct risk assessments, which include the following
steps:

– Assets Identification: Identify and categorize infor-
mation assets critical to the smart city application,
including but not limited to records, physical devices,
software, communications services, general utilities,
people, qualifications, skills, and experience.

– Risk Identification: Define and extract a list of risk
scenarios and consequences related to identified as-
sets and functions, considering the comprehensive
identification of assets, threats, and vulnerabilities.

– Risk Analysis: Determine the likelihood of identified
risk scenarios occurring, considering the causes and
sources of risk and their potential impact.

– Risk Evaluation: Classify and prioritize risk scenar-
ios based on their severity and potential impact on
the smart city application.

Risk assessment is the core step of the requirement phase. The
risk assessment must be prepared carefully and accurately, es-
pecially since its results will reflect the whole security testing
status. The risk assessment results help to identify appropri-
ate actions and priorities for security testing of the software
development process.

2. Security Requirements Analysis
Security requirement analysis is essential for identifying security
testing practices and activities specific to the software develop-
ment process of smart city applications. Implementation steps
include:

• Study risk assessment reports and security best prac-
tices: Analyze risk assessment reports, incorporating in-
sights into potential key security issues.

• Perform threat modeling: Specify additional security is-
sues through a proactive threat modeling process.

• Review legal and industry standards: Consider legal
requirements and industry standards, especially those rel-
evant to smart city applications.

• Specify security requirements: Develop security require-
ments based on the identified security issues and stan-
dard requirements, emphasizing proactive practices and
enumerating security testing techniques.

The security requirements emphasize proactive practices by
identifying security risks then enumerating security testing tech-
niques.

.2.3. Implementation phase
The implementation phase aims to execute the security testing on

he software development processes from the initial stage according
o the security guidelines. The results of the implementation phase
re testing reports that include the methodologies, tools, findings, and
orrection status. This phase involves three steps which are testing plan,
5

esting execution, and testing results analysis:
1. Testing plan
The testing plan is developed according to security requirements
and guidelines. The plan is documents describing the methodolo-
gies and approaches of software security testing. The following
steps assist in building the plan documents (Radack et al., 2008):

• Include examples and scenarios relevant to smart city ap-
plications.

• Ensure that the testing plan reflects the diversity of security
challenges posed by interconnected urban systems.

• Comprehend the security specifications and standards out-
lined in the guidelines, and outline the testing workflow in
detail.

• Define the severity of the testing finding and actions prior-
ity.

• Set the testing instructions and define the testing ap-
proaches and tools categorized into automatic,
semi-automatic, manual, and code review.

• Build the testing cases based on the security guideline.
Each test case is associated with a specific security guide-
line.

The testing plan is the first step of the implementation phase
to ensure that all security guidelines are considered during the
testing. The testing plan details testing workflows, instructions,
tools, and testing cases. Also, the well-developed plan provides
the efficiency and effectiveness of the security testing execution.

2. Testing execution
The major step of the implementation phase is the testing ex-
ecution. The execution aims to inspect the software applica-
tion during the development process to find security problems.
The following activities help to achieve the execution inten-
tions (Jammeh, 2020):

• Specify smart city-specific security testing approaches ad-
dressing IoT vulnerabilities, dynamic network configura-
tions, and challenges of real-time data processing.

• Perform the testing case in each phase of the software
development process and integrate the approved testing
tools.

• Apply the below security testing to identify the vulnera-
bilities in the software which are Static application secu-
rity testing (SAST), Dynamic application security testing
(DAST), vulnerability scanning, penetration testing, con-
figuration management, compliance and infrastructure as
code.

Security testing approaches should be considered in various
phases of software development. The testing helps reduce soft-
ware vulnerabilities and improve the quality of the software.

3. Testing results analysis
Different security testing approaches are applied in the testing
execution step, generating various testing results. Therefore,
combining and comparing the testing results are helpful to solve
the problems effectively in different dimensions. The below are
the main steps of the analysis (Radack et al., 2008):

• Emphasize the relevance of analysis criteria to smart city
security concerns.

• Consider incorporating data analytics techniques tailored
for the intricacies of smart city applications.

• Define the objective of the security testing analysis and
specify the criteria for comparing the testing result.

• Store the testing results in a repository and integrate vari-
ous testing results in a converged report.

• Identify the new security issues according to data mining
or statistics tools and develop an action list to solve the

new issues.



Computers & Security 144 (2024) 103985Y. Mothanna et al.

p
s
a

5

v

Analysis of the security testing result improves the vulnera-
bilities detection of the software. This practice performs test
results with severity and recommends fixing the problems. More-
over, the analysis results enhance the quality of security testing
execution.

3.2.4. Improvement phase
Security testing is a continuous process. Therefore, the improve-

ment phase is required to find unknown security issues. This phase
involves three steps, which are security monitoring, incident response
management, and vulnerabilities repository:

1. Security monitoring
Security monitoring is an automatic tool that gathers and in-
spects indicators of potential threats. The following steps help
to develop security monitoring for the software environment
(Dempsey et al., 2011):

• Highlight the distinctive features of security monitoring in
smart city environments, including real-time threat detec-
tion across diverse components.

• Determine the requirements by identifying objectives, pri-
orities, and workflows.

• Implement an appropriate security monitoring tool based
on the defined requirements.

Monitoring the software environment is necessary to detect at-
tacks immediately and support operation security and incident
response.

2. Incident response management
The incident response focuses on handling security events to
increase the efficiency of reactions rather than uninformed re-
sponse. The following steps are helpful to establish incident
response management (ISO, 2021b):

• Address the dynamic nature of smart city threats and re-
sponses, ensuring that incident response plans are agile and
adaptive.

• Develop an incident response plan to address new threats.
• Identify the incident response team and points of contact
for security issues.

• Establish incident response process, protocols, and commu-
nication channels.

• Conduct the root cause analysis of the security issues and
prepare incident response reports.

The quick detection and response of security events minimize
the significant impact of the software application. In addition,
incident details are dissected to enhance the security posture of
the software application.

3. Vulnerabilities repository
The vulnerability repository is a database of vulnerabilities de-
veloped and improved based on the implemented security prac-
tices during the software development process. The following
activities assist in developing a vulnerability repository:

• Emphasize continual learning from security events specific
to smart city applications to proactively enhance security
measures.

• Review and analysis the new threat details from security
monitoring and incident response reports.

• Review the most common vulnerabilities from another
repository.

• Develop the repository to improve the software application
security.

Vulnerability repository focuses on learning from the security
6

failure and error to improve the security measures and become w
proactive rather than reactive. The improvement phase is a con-
tinuous practice of securing the software development process
that efficiently resolves vulnerabilities.

4. Outcomes of security testing framework

The proposed security testing framework has four main outcomes
which security goals, security guidelines, security testing reports, and
enhancement reports. The outcome of each phase of the proposed
framework can be used as input of the next phase, as shown in Fig. 2.

Fig. 2 presents the security goals as an outcome of the preparation
hase, security guidelines as an outcome of the requirements phase,
ecurity testing reports as an outcome of the implementation phase,
nd enhancement reports as an outcome of the Improvement phase.

1. Security goals
The preparation phase focuses on defining the security goals of
the security testing. In addition, this phase supports specifying
a matrix with clear evaluation criteria and security goals KPI.
Developing an evaluation metric is essential to define the accep-
tance criteria and achieve the security testing goals. Also, this
phase aims to build team skills in security knowledge.
Well-define security goals enhance specifying the requirements
of security testing. Therefore, the security goals are the main
input in the second phase of the framework, which is the re-
quirements.

2. Security Guidelines
The outcome of the requirements phase is security guidelines
that include security methodologies, functions, technique speci-
fications, tools, and coding practices to combat security issues.
According to risk assessment and requirements analysis, under-
standing security issues is necessary to identify proper security
guidelines.
The appropriate security guidelines support applying effective
security testing. Consequently, security guidelines consider as
the most important source of the implementation phase.

3. Testing Reports
The outcome of the implementation phase is security testing
reports. The testing reports depend on a proper testing plan and
effective testing execution. According to the testing execution
results analysis, the testing reports are produced with details
of security issues with actions to solve the problems. In addi-
tion, the testing reports include descriptions of challenges that
appeared during the security testing implementation.
The security testing reports are one of the main inputs of the
next phase, which is the improvement phase. The reports help
create monitoring use cases, develop an incident response plan,
and build the vulnerabilities repository.

4. Enhancement Reports
The outcome of the improvement phase is enhancement reports.
The reports can be generated by getting information from three
sources which are continuous security monitoring detections,
incident response details, and vulnerabilities repository. The
enhancement reports help mitigate future failures and errors.
In addition, the reports support vulnerabilities reduction and
proactive actions.
The enhancement reports improve all previous phases of the
proposed framework. The reports are important for current and
future software applications to increase security posture.

. Security testing and discussion

Performing the proposed security testing framework has many ad-
antages during the software development process. One of the frame-

ork’s main strengths is the continuous integration of security testing



Computers & Security 144 (2024) 103985Y. Mothanna et al.

w
t
p

t
a
w
t
i
i
s
d
p
i
i
i
t
p

a
d
t
c

Fig. 2. Outcomes of security testing framework phases.
Fig. 3. Integration of proposed security testing practices with software development phases.
ith all phases of software development. Fig. 3 describes the integra-
ion of security testing framework practices in software development
hases.
As shown in Fig. 3, the software development phases are listed on

he left side, and the proposed security testing phases are introduced
t the top. Then, the proposed security testing practices are mapped
ith the software development phases, demonstrating integrating the
esting practices with the development process. Therefore, all practices
n the preparation and requirement phase of the testing framework are
ntegrated with the requirements phase of software development except
ecurity requirements analysis which is between the requirements and
esign phases of software development. Also, the implementation phase
ractices of testing frameworks can be integrated with the design and
mplementation phase of software development where testing plan with
mplementation phase, testing execution with implementation and test-
ng phase, and testing results analysis with the testing phase. Finally,
he improvement phase practices are integrated with the maintenance
hase of software development.
Other strengths of the security testing framework are flexibility

nd improvement. The proposed framework has many activities to
efine the security goals and requirements to customize the security
esting. Furthermore, those activities are important for developing se-
7

urity testing approaches, for example, considering new techniques and
technology. Therefore, the proposed framework considers flexibility to
achieve the efficiency and effectiveness of security testing. On the other
hand, the last phase of the framework focuses on improvement. Secu-
rity improvement is a continuous process and essential to ensure high
performance of security testing. Security monitoring, incident response,
and vulnerabilities repository are activities that aim to enhance the
quality of the software from the security perspective and keep feeding
other security practices with new threats and known vulnerabilities.

The limitation of the proposed framework lies in the absence of
experimental evaluation in this paper. As a potential avenue for fu-
ture research, conducting experiments to validate the framework is
recommended.

6. Conclusion

In the last few years, the implementation and dependency of smart
city applications are increased. Consequently, improving application se-
curity is mandatory to ensure sustainable smart cities. Usually, security
testing practices are considered in the last stages during the develop-
ment process. This paper proposes a new security testing framework to
develop secure applications considering all phases of the development
process. The proposed framework adopts various security actions to

define the security goals, develop security guidelines, execute security



Computers & Security 144 (2024) 103985Y. Mothanna et al.

y

J

K

M

2

2

N

O

R

R

R

R

S

2

T

T

T

U

V

Y

testing and continuously improve the security of software applications.
This paper has reviewed and compared many well-known secure soft-
ware development lifecycle models. This study does not evaluate the
new framework by applying an experiment. Therefore, future work
can evaluate the proposed framework with an experiment to measure
efficiency and study the applicability in cloud pipelines.

CRediT authorship contribution statement

Yusuf Mothanna: Writing – original draft, Software, Formal anal-
sis, Data curation, Conceptualization. Wael ElMedany: Writing –
review & editing, Validation, Project administration, Methodology, In-
vestigation. Mustafa Hammad: Writing – review & editing, Visual-
ization, Methodology. Riadh Ksantini: Writing – original draft, Vi-
sualization, Supervision, Investigation. Mhd Saeed Sharif: Writing
– review & editing, Supervision, Resources, Project administration,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Akbar, M.A., Smolander, K., Mahmood, S., Alsanad, A., 2022. Toward successful
DevSecOps in software development organizations: A decision-making framework.
Inf. Softw. Technol. 147, 106894.

Al-Qarafi, A., Alrowais, F., S. Alotaibi, S., Nemri, N., Al-Wesabi, F.N., Al Duhayyim, M.,
Marzouk, R., Othman, M., Al-Shabi, M., 2022. Optimal machine learning based
privacy preserving blockchain assisted internet of things with smart cities
environment. Appl. Sci. 12 (12), 5893.

Ansari, M.T.J., Pandey, D., Alenezi, M., 2022. STORE: Security threat oriented re-
quirements engineering methodology. J. King Saud Univ.-Comput. Inf. Sci. 34 (2),
191–203.

2021. Building security in maturity model. https://www.bsimm.com/framework.html.
(Accessed 02 December 2021).

Cui, L., Xie, G., Qu, Y., Gao, L., Yang, Y., 2018. Security and privacy in smart cities:
Challenges and opportunities. IEEE Access 6, 46134–46145.

de Vicente Mohino, J., Bermejo Higuera, J., Bermejo Higuera, J.R., Sicilia Mon-
talvo, J.A., 2019. The application of a new secure software development life cycle
(S-SDLC) with agile methodologies. Electronics 8 (11), 1218.

Dempsey, K.L., Johnson, L.A., Scholl, M.A., Stine, K.M., Jones, A.C., Orebaugh, A.,
Chawla, N.S., Johnston, R., et al., 2011. Information security continuous monitoring
(ISCM) for federal information systems and organizations.

Faizi, S., Rahman, S., 2019. Choosing the best-fit lifecycle framework while addressing
functionality and security issues. In: CATA. pp. 107–116.

Ghelani, D., Hua, T.K., Koduru, S.K.R., 2022. A model-driven approach for online
banking application using angularjs framework. Am. J. Inf. Sci. Technol. 6 (3),
52–63.

Haque, A.B., Bhushan, B., Dhiman, G., 2022. Conceptualizing smart city applications:
Requirements, architecture, security issues, and emerging trends. Expert Syst. 39
(5), e12753.

Ijaz, S., Shah, M.A., Khan, A., Ahmed, M., 2016. Smart cities: A survey on security
concerns. Int. J. Adv. Comput. Sci. Appl. 7 (2), 612–625.

2021a. ISO/IEC 27001:2013 information technology - security techniques - informa-
tion security management systems – requirements. https://www.iso.org/standard/
54534.html. (Accessed 015 December 2021).

2021b. ISO/IEC 27035-2:2016 information technology - security techniques - infor-
mation security incident management - Part 2: Guidelines to plan and prepare
for incident response. https://www.iso.org/standard/62071.html. (Accessed 18
December 2021).

2021c. ISO 31000:2018 risk management – guidelines. https://www.iso.org/standard/
65694.html. (Accessed 17 December 2021).

ammeh, B., 2020. DevSecOps: Security expertise a key to automated testing in ci/cd
pipeline.

aluarachchi, Y., 2022. Implementing data-driven smart city applications for future
cities. Smart Cities 5 (2), 455–474.
8

Kara, M., 2012. Review on common criteria as a secure software development model.
Int. J. Comput. Sci. Inf. Technol. 4 (2), 83.

Kaushal, R.K., Bhardwaj, R., Kumar, N., Aljohani, A.A., Gupta, S.K., Singh, P.,
Purohit, N., 2022. Using mobile computing to provide a smart and secure Internet
of Things (IoT) framework for medical applications. Wirel. Commun. Mob. Comput.
2022, 1–13.

Khan, R.A., Khan, S.U., Khan, H.U., Ilyas, M., 2022. Systematic literature review on
security risks and its practices in secure software development. Ieee Access 10,
5456–5481.

Lingham, A.D., Kin, N.T.K., Jing, C.W., Loong, C.H., et al., 2020. Implementation of
security features in software development phases. arXiv preprint arXiv:2012.13108.

ahendra, N., Khan, S.A., 2016. A categorized review on software security testing. Int.
J. Comput. Appl. 154 (1), 21–25.

021. Microsoft security development lifecycle. https://www.microsoft.com/en-us/
securityengineering/sdl/. (Accessed 03 December 2021).

021. NIST risk management framework. https://csrc.nist.gov/projects/risk-
management/about-rmf. (Accessed 18 December 2021).

úñez, J.C.S., Lindo, A.C., Rodríguez, P.G., 2020. A preventive secure software
development model for a software factory: A case study. IEEE Access 8,
77653–77665.

gbodo, E.U., Abu-Mahfouz, A.M., Kurien, A.M., 2022. A survey on 5G and LPWAN-
IoT for improved smart cities and remote area applications: From the aspect of
architecture and security. Sensors 22 (16), 6313.

adack, S., et al., 2008. Guide to Information Security Testing and Assessment. Tech.
Rep., Technical report, National Institute of Standards and Technology.

ana, S.K., Rana, A.K., Rana, S.K., Sharma, V., Lilhore, U.K., Khalaf, O.I., Galletta, A.,
2023. Decentralized model to protect digital evidence via smart contracts using
layer 2 polygon blockchain. IEEE Access.

ao, P.M., Deebak, B., 2022. Security and privacy issues in smart cities/industries:
technologies, applications, and challenges. J. Ambient Intell. Humaniz. Comput.
1–37.

indell, K., Hyrynsalmi, S., Leppänen, V., 2018. Aligning security objectives with agile
software development. In: Proceedings of the 19th International Conference on
Agile Software Development: Companion. pp. 1–9.

harma, A., Misra, P.K., 2017. Aspects of enhancing security in software development
life cycle. Adv. Comput. Sci. Technol. 10 (2), 203–210.

021. Software assurance maturity model. https://owaspsamm.org/model/. (Accessed
01 December 2021).

aherdoost, H., 2022. A critical review of blockchain acceptance models—blockchain
technology adoption frameworks and applications. Computers 11 (2), 24.

aheri, R., Ahmed, H., Arslan, E., 2023. Deep learning for the security of
software-defined networks: a review. Cluster Comput. 26 (5), 3089–3112.

ung, Y.-H., Lo, S.-C., Shih, J.-F., Lin, H.-F., 2016. An integrated security testing
framework for secure software development life cycle. In: 2016 18th Asia-Pacific
Network Operations and Management Symposium. APNOMS, IEEE, pp. 1–4.

llah, F., Qayyum, S., Thaheem, M.J., Al-Turjman, F., Sepasgozar, S.M., 2021. Risk
management in sustainable smart cities governance: A TOE framework. Technol.
Forecast. Soc. Change 167, 120743.

aldés-Rodríguez, Y., Hochstetter-Diez, J., Díaz-Arancibia, J., Cadena-Martínez, R.,
2023. Towards the integration of security practices in agile software development:
A systematic mapping review. Appl. Sci. 13 (7), 4578.

usuf Mohamed Ali Muthanna Is a Ph.D. student in Computer Science, college of It,
University of Bahrain.

Wael Elmedany holds a PhD degree in Electrical Engineering, Manchester University,
UK, 1999; MSc degree in computer communications, Menoufia University, Egypt, 1991;
BSc degree in Electronic Engineering, Menoufia University, Egypt 1987. He is the
founding and managing editor of International Journal of Computing and Digital
Systems (IJCDS). He is the founder and Chair of MobiApps, DPNoC, and WoTBD
workshops series. El-Medany is a senior IEEE member, member of editorial boards and
TPC member of many international journals and conferences, and acts as chairperson
in many conferences. His research interests in ASIC design, FPGA, embedded systems,
remote monitoring systems, and reconfigurable computing.

Mustafa M. Hammad, Ph.D. Associate Professor Department of Computer Science,
Faculty of IT Mutah University Al-Karak, Jordan

Riadh Ksantini received the M.Sc. and Ph.D. degrees in Computer Science from the
Université de Sherbrooke, Sherbrooke, QC, Canada, in 2003 and 2007, respectively.
From 2001 to 2007, he was a graduate research associate with Bell Canada Laboratories
and the research center MOIVRE (MOdElisationen Imagerie, Vision et REseaux de
neurones). Presently, he is Associate Professor at the Department of Computer Science,
College of IT, University of Bahrain, Adjunct Associate Professor at the School of
Computer Science, within the Faculty of Science of the University of Windsor, Windsor,
Ontario, Canada, and Adjunct Professor at the Department of Computer Science,

http://refhub.elsevier.com/S0167-4048(24)00290-6/sb1
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb1
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb1
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb1
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb1
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb2
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb2
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb2
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb2
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb2
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb2
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb2
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb3
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb3
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb3
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb3
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb3
https://www.bsimm.com/framework.html
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb5
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb5
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb5
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb6
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb6
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb6
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb6
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb6
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb7
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb7
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb7
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb7
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb7
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb8
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb8
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb8
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb9
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb9
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb9
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb9
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb9
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb10
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb10
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb10
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb10
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb10
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb11
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb11
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb11
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/62071.html
https://www.iso.org/standard/65694.html
https://www.iso.org/standard/65694.html
https://www.iso.org/standard/65694.html
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb16
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb16
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb16
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb17
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb17
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb17
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb18
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb18
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb18
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb18
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb18
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb18
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb18
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb19
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb19
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb19
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb19
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb19
http://arxiv.org/abs/2012.13108
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb21
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb21
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb21
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://csrc.nist.gov/projects/risk-management/about-rmf
https://csrc.nist.gov/projects/risk-management/about-rmf
https://csrc.nist.gov/projects/risk-management/about-rmf
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb24
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb24
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb24
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb24
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb24
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb25
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb25
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb25
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb25
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb25
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb26
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb26
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb26
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb27
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb27
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb27
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb27
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb27
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb28
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb28
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb28
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb28
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb28
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb29
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb29
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb29
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb29
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb29
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb30
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb30
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb30
https://owaspsamm.org/model/
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb32
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb32
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb32
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb33
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb33
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb33
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb34
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb34
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb34
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb34
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb34
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb35
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb35
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb35
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb35
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb35
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb36
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb36
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb36
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb36
http://refhub.elsevier.com/S0167-4048(24)00290-6/sb36


Computers & Security 144 (2024) 103985Y. Mothanna et al.
Université du Québec à Montréal (UQAM). Prior to that, he was Postdoctoral Research
Associate in the Ecole de Technologie Superieure, University du Quebec, Montreal,
Canada. He has also served as Visiting Fellow Research Scientist at the Canadian
Space agency, and Postdoctoral Research Associate in the School of Computer Science,
within the Faculty of Science of the University of Windsor. In 2008, he was awarded
a fellowship (of excellence) for postdoctoral research from the granting agency - Fonds
quebecois de la recherche sur la nature et les technologies - (FQRNT). His PhD was
evaluated and ranked third Ph.D. in Quebec for 2007 by the committee of Information
Technology and Communications. His research interests include Artificial Intelligence,
Machine/Deep Learning, Pattern Recognition and Computer Vision. His research work
on Artificial Intelligence and Data Science has always involved collaboration between
academia and industry. More than 70 Articles stemming from his research work have
been published in several prestigious journals and conferences.

Dr Saeed Sharif is the Leader of Intelligent Technologies Research Group, Course
Leader for Msc Computer Science and Course Leader for Msc Computer Science with
industrial Placement at the school of architecture, computing, and engineering. He has a
PhD in artificial intelligence from Brunel University London. His research interests and
expertise include Artificial Intelligence, Innovative Tele-Health, Medical Technology,
Digital Health Care and Medical Assistive Technology, Medical Image Analysis and
Visualization, Intelligent Diagnosis Systems, Smart Biomedical Image, and Bio Signal
9

Acquisition (MRI, PET, EEG), Nanotechnology, Medical Biotechnology, Security, and
Big Data Analysis. He is working closely with clinicians and policy makers nationally
and internationally to improve the clinical settings and the healthcare systems. He
has led the research development of different research projects associated with many
industries and NHS trusts. He has developed his research with the goal of improving
the effectiveness, efficiency of medical and health care systems.

Dr Saeed has published a significant number of research articles in highly reputable
journals, international conferences, and book chapters, such as Elsevier Applied Soft
Computing, Computer Methods and Programs in Biomedicine etc. He is a member of
the technical committee of several international conferences such as IEEE International
Conference on Computer Systems and Applications and IEEE International Conference
on Computer and Information Technology. He has participated in many national and
international conferences e.g., ICIP. He has served as a reviewer for many journals e.g.,
IET IPJ, Elsevier CBMJ. He is Guest Editor at international journals. He received many
academic and research awards. He is a Fellow of The UK Higher Education Academy,
and member of the British Computer Society.


	Adopting security practices in software development process: Security testing framework for sustainable smart cities
	Introduction
	Background and Related Works
	An Overview of the Proposed Security Testing Framework of Software Development Process
	Rationale for Developing a New Framework
	Challenges in Smart City Applications
	Limitations of Existing Frameworks
	Bridging Gaps with Our Framework

	Proposed Security Testing Framework
	Preparation Phase
	Requirements phase
	Implementation Phase
	Improvement phase


	Outcomes of security testing framework
	Security Testing and Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


