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Abstract We describe here a new method for surface approximation on the
basis of given values at a regular grid. The resulting approximant is a contin-
uous piece-wise harmonic function.

1 Introduction

There exist various algorithms for surface approximation. Most of them use
polynomial spline functions. We present here another approach, which is based
on harmonic functions.

Suppose that G is a given domain in the plane and ¢ is a function defined
on the boundary I" of G. It is well known that under certain restrictions on I
and ¢, there exists a unique harmonic function u(z,y) on G which coincides
with @(z) on I'. This fact suggests the following quite natural and simple
way of approximation. Suppose that (z;,y;) is a regular grid in G and {D,,}
are the rectangular cells of the grid, with boundaries {I,,}, respectively. Let
f(z,y) be a function defined on G. Assume that the values of f are known or
easily available on the lines of the grid, i.e., on each I},. Denote by ., (x,y)
the harmonic continuation of f on D,,. In other words, u,, is the unique
solution of the Dirichlet problem

Au=0 on D,,
U|Fm :fv

1)

where, as usual,
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and u[p = f means that u(z,y) = f(z,y) for (z,y) € T
Having u,, for each m, one can approximate f on G by the piece-wise
harmonic function S(z,y) defined as follows:

S(z,y) == um(z,y) for (z,y) € D, all m.

Clearly S is a continuous function and possesses good approximation prop-
erties. There is however a serious reason which stops the people from using
this method of approximation in practice. It is the necessity of solving the
partial differential equation (1) for each m (The number of cells D, may be
very large for fine grids).

We propose here a simple way of constructing S(z,y) which avoids the
solution of (1) in each cell D,,. The numerical experiments show that the
method is fast and it produces good approximations in some typical cases.

2 Description of the algorithm

Let us first describe roughly the main idea and look at the precise details.
Suppose that the grid on @ is defined by the points {z;,y;},

i =x9+1th,1=0,..., N,
yi =yo+3jh,1=0,..., M.

Denote by D;; the elementary square cell with vertices

(i, 95), (Tig1,¥5)5 (Tig1, Y1), (Tis Y1)

Let I; be the boundary of D;;. Suppose that the values of f(z,y) are
known on I, for every (i, 7). Introduce the boundary functions

wij(z,y) == f(z,y) for (z,y) € I};.

In order to construct the piece-wise harmonic approximation Sp(z,y) of
f(z,y) (as described in the previous section) we need the solutions of the
equations

Au=0 on Dy
ri; = Pij-

(2)

For this purpose we transform D;; into the unit square D* with vertices
(0,0),(1,0),(1,1), (0,1). Then the boundary function ¢;;(z,y) goes (under

u
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this linear transformation) to a certain function ¢ (z,y) on the boundary I'*
of D*. Let {¢o,11,...,%,} be a bases of appropriate preassigned boundary
functions on ™. Assume that we know somehow the solutions of the normal-
ized problems

Au =0 on D*
e = )
I =Y
for j = 0,..,r. Note that this is a small number of equations, which can
be solved previously (once forever) and the solutions u;,j = 0,...,r, stored.

Let us find an approximation ¢ € span{vo,¥1,...,¥,} to . Suppose that

= cotho + 11 + - + G

Then

’INL(Z’, y) = Z CjUj(.’I,‘,y)
j=0

is the solution of the Dirichlet problem corresponding to the boundary
conditions ¢ on I'*. Finally, by the reverse linear transformation (D* — D;;)
we find from @ the wanted approximate solution of (2) and consequently, the
approximation Sy, of f on G.

Next we use this idea to construct explicitly a piece-wise harmonic ap-
proximation Sy, of f on the bases of the values {f;;} of f at the grid points
(x:i,y;). We call this method of construction Algorithm 1. First, we compute
the approximations {f, Zy]} of the derivatives 0f/0z, Of/0y at (z:,y;),
using the formulas ( see for example [3] )

e i = ficay
i - a1

g 2h
e —3fojt4fii— fo
fo; = 2h ’
s Sfng—4fN1it v

for 0 <i< N and j =0,...,N. Similarly we compute f;.

Then using cubic Hermite interpolation we define the functions ;; on the
boundary [5; of Dy;. Precisely, for z; < z < z;41 and y = y; the function
@i;(®,y) coincides with the cubic polynomial p(z) satisfying the interpolation
conditions

p(z:) = fij, P(®ix1) = firr,j
P'(l’i) = fjv P'(l’iﬂ) = f+1,j
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The definition of ¢;; on the other edges of D;; is similar.

It is clear that the function ;; can be presented as a sum of 12 terms,
separated in four groups, each group corresponding to one of the vertices of
D;;. For example, the group corresponding to the vertex (z;,y;) will be

where A, 4 and v are cubic polynomials on the edges of D;; such that

0 19,

and all other not specified values of A, u, v and their first partial derivatives
are equal to 0 at the vertices of D;;. Then the solution u;; of the Dirichlet
problem (2) is a linear combination, with coefficients fi, f&, fi;, (k1) €
{(,5),6G+1,5), @+ 1,7+ 1),(,7 + 1)}, respectively, of 12 specific functions
(solutions of Dirichlet problem with specific boundary conditions like A, u, ).
Because of the symmetry all these 12 functions can be obtained by symme-
try and rotation from the solutions u(x,y) and v(xz,y) of the following two
problems

‘ Au=0 on Dy;
uFij:A ’
‘ Av =0 on Dy
vlry; = M

Further, these two solutions can be obtained by a linear transformation
from the corresponding solutions «* and v* on the unit square D*. Thus all
we need is to solve previously the Dirichlet problem on D* with boundary
condition A*(x,y) and p*(z,y), where

22 — 32?2 +1 for 0<z <1, y=20
M,y =<2 -3y +1 for 0<y<1l, z=0

0 if x=1o0or y=1
N _Jaxz-1)?% for 0<z<1,y=0
“(“”’y)_{o if z=0o0r 1;y=1

(see u* and v* on Figure 1 and Figure 2, respectively ).
These two particular problems can be solved numerically with a high ac-
curacy using some standard numerical method. The values of u* and v* at
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Fig. 1. v"(z,y)

some finite number of points §2,, := {(k/n,i/n),k = 0,...,n,i = 0,...,n}
can be stored in the memory. In the examples below we have n = 5.

Note that the surface Sy, resulting from Algorithm 1 is continuous on G. In
addition, it follows from the construction that %Sh and (%Sh are continuous
at the grid points (z;,y;). Let us sketch below a modification of Algorithm 1
(we call it Algorithm 2), which produces a surface S, having first and second
derivatives continuous at the grid points.

Algorithm 2. Given { f;; }, compute the first derivatives {s;;, i=1,...,N—
1} of the cubic natural spline P;{z) with knots at {z;;, ¢ =1,...,N —1},
which interpolates the values {f;;, ¢ =0,...,N}. As shown in [2], for ev-
ery fixed j, the quantities s;;,7 = 1,...,N — 1} satisfy the linear system of
equations

Si—1,; + 485 + Si41,5 = 3(fi+1,j - fi—l,j)/h, 1=1,...,N — 1.

Having f;; and s;; define the boundary functions ¢;;(z,y) on z;; <
z < Tit1,4, Y = y; as the unique cubic polynomial p which satisfies the
interpolation conditions

p(zi) = fij, p(@it1) = firrj
P’(xi) = 8ij, P/($i+1) = Sit+1,5

and proceed further as in Algorithm 1.

3 Error estimation

We give here an estimation of the error

Rh(.’If,y) = f(xay) - Sh(.’lf,y)
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under certain restrictions on f, provided the solutions w* and v* of the
basic Dirichlet problems are known exactly or with a high accuracy.
Denote, as usual, by || f|| the uniform norm of f on G.

Theorem 1. Suppose that f € C*(G) and Sy(z,y) is the piece-wise harmonic
approzimation given by Algorithm 1. Then there is a constant C such that

I1f = Sull < CR.

Proof. Let €;;(x,y) be the error function in the Hermite -like interpolation
of f on I3;. Precisely,

eij(z,y) == f(z,y) — wij(z,y) on I}

First we shall give an estimation of |¢; ;|. In order to do this consider ¢;; on
any fixed side of I ;, say on {z; < z < 441, y = y; }- Note that ¢, ; coincides
on this side with the cubic polynomial p(f;x) which interpolates the data
fijs firr,g, F55 i1 ;- Thus p(f;z) is a linear operator of f which annihilates
the polynomials of first degree. Then, by the Peano kernel theorem,

leis| = 1f(z,95) = p(f; )] "
| o= ) (o) de

Assume now that 0 < ¢ < N (In case i = 0 or i = N the reasoning is
similar and we shall omit it). Since (z —t)+ = x — ¢ for = > ¢ and it vanishes
for x < t, it is clear that p((z — t)+;x) = 0 for ¢ outside I := (®i_1;, Zit1,;)-
Set

M := max_|Af|.
(z,y)eqG

Therefore

|m5M[wm4mmw
< 3Mh max|p((z —t)+;2)|

It is not difficult to see that p({(x — )1 ;) is a monotone function of z in
[xi+1,j,xi+1,j]. Therefore
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Ip((z = t)452)| < |zig1,; — ¢ < 2R
iftel. So,
lei,i| < 6MR®. (4)
Next part of the proof is standard. Consider the difference Ry, (z,y) on I5;.

Clearly Ry, is a solution of the Dirichlet’ problem

AR}L = Af on Dl‘j
Ry,

Iy; = €ij-

It is well-known from the theory of harmonic functions ( see [1]) that for
each (.’If,y) S Dij U Fl]

|Rp(z,y)| < max|e;;| + h? max |Af|.
Fij Dij

Now we apply the estimation (4) and complete the proof.
The same estimate holds also in case of Algorithm 2. The proof is similar.

4 Numerical experiments

We applied Algorithm 1 for numerical reconstruction of the surface f(z,y) in
the following two cases.
Example 1.

fl@y)=1-2" -y

The domain G is the square [—5,5] x [—5,5], and h = 1. The solutions
uw*(x,y) and v*(z,y) of the Dirichlet problem on the unit square D* are eval-
uated with a high precision at 100 points. Figure 3 illustrates the approxima-
tion surface Sy (xz,y) while the graph of the function f(x,y) is given on Figure
4.

Example 2.

_cos(z® +y?)
f(xay)_ 3—*—1'2—*—’1/2 -

Similarly to the Example 1 the domain G is the square [—5,5] x [—5, 5],
and h = 1. The solutions u*(z,y) and v*(z, y) of the Dirichlet problem on the
unit square D* are evaluated with a high precision at 100 points. Figure 5
illustrates the approximation surface Sy, (x,y) while the graph of the function
f(z,y) is given on Figure 6.
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