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Abstract: Background: Cancer remains a leading cause of morbidity and mortality world-
wide. Traditional treatments like chemotherapy and radiation often result in significant
side effects and varied patient outcomes. Immunotherapy has emerged as a promising
alternative, harnessing the immune system to target cancer cells. However, the complexity
of immune responses and tumor heterogeneity challenges its effectiveness. Objective:
This mini-narrative review explores the role of artificial intelligence [AI] in enhancing the
efficacy of cancer immunotherapy, predicting patient responses, and discovering novel
therapeutic targets. Methods: A comprehensive review of the literature was conducted,
focusing on studies published between 2010 and 2024 that examined the application of AI
in cancer immunotherapy. Databases such as PubMed, Google Scholar, and Web of Science
were utilized, and articles were selected based on relevance to the topic. Results: AI has
significantly contributed to identifying biomarkers that predict immunotherapy efficacy
by analyzing genomic, transcriptomic, and proteomic data. It also optimizes combination
therapies by predicting the most effective treatment protocols. AI-driven predictive models
help assess patient response to immunotherapy, guiding clinical decision-making and
minimizing side effects. Additionally, AI facilitates the discovery of novel therapeutic
targets, such as neoantigens, enabling the development of personalized immunotherapies.
Conclusions: AI holds immense potential in transforming cancer immunotherapy. How-
ever, challenges related to data privacy, algorithm transparency, and clinical integration
must be addressed. Overcoming these hurdles will likely make AI a central component of
future cancer immunotherapy, offering more personalized and effective treatments.
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1. Introduction
Cancer remains one of the most significant challenges to global health, contribut-

ing to nearly 10 million deaths annually, making it the second-leading cause of death
worldwide [1]. The global burden of cancer continues to escalate due to several factors, in-
cluding an aging population, lifestyle changes, and the increasing prevalence of risk factors
such as tobacco use, obesity, and physical inactivity [1]. This alarming trend highlights
the urgent need for innovative cancer treatment strategies, as traditional methods, while
effective in some cases, have significant limitations.

Traditional cancer treatments, such as surgery, chemotherapy, and radiation therapy,
have been the mainstay of oncological care for decades [2]. However, they are not without
significant drawbacks. Chemotherapy, for example, involves the use of cytotoxic drugs
designed to target and kill rapidly dividing cells, a hallmark of cancer [3]. Unfortunately,
this lack of specificity means that chemotherapy also affects healthy cells, leading to
a range of toxicities, including gastrointestinal adverse events, fatigue, hair loss, and
immunosuppression [3,4]. This broad impact on both malignant and non-malignant cells
can significantly diminish a patient’s quality of life and, in some cases, limit the extent to
which chemotherapy can be administered [3].

Additionally, chemotherapy’s efficacy is often compromised by the development of
drug resistance [5]. Cancer cells can evolve mechanisms to evade the cytotoxic effects of
chemotherapy, leading to a reduction in treatment effectiveness over time. This resistance
can be intrinsic, present before treatment begins, or acquired after exposure to chemother-
apy, resulting in relapses and disease progression [5,6]. The challenge of overcoming
drug resistance remains a major obstacle in the effective management of many cancers [7].
Radiation therapy, another cornerstone of traditional cancer treatment, uses high-energy
radiation to damage the DNA of cancer cells, thereby preventing them from replicating
and spreading [8]. While radiation therapy can be more targeted than chemotherapy, it
still poses risks to surrounding healthy tissues [8]. This can result in side effects such as
skin damage, fatigue, and an increased risk of secondary cancers [8,9]. The precision of
radiation therapy has improved with technological advancements, but challenges remain,
especially when tumors are located near vital organs or in areas difficult to reach without
affecting healthy tissue [8,10].

In recent years, immunotherapy has emerged as a promising alternative to these
traditional treatments [11–14]. An effective anti-tumor immune response consists of several
essential stages—the release of tumor antigens from damaged or dying cancer cells; the
uptake and presentation of these antigens by dendritic cells and other antigen-presenting
cells; the priming and activation of T cells; the trafficking, infiltration, and accumulation
of T lymphocytes and natural killer [NK] cells; and the recognition and elimination of
cancer cells by cytotoxic T lymphocytes and NK cells. This sequence provides a vital
framework for understanding the mechanisms behind both response and resistance to
immunotherapy [11,15]. Unlike chemotherapy and radiation, which directly target cancer
cells or the tumor itself, immunotherapy harnesses the body’s immune system to recog-
nize and destroy cancer cells [11,16]. This approach capitalizes on the natural ability of
the immune system to distinguish between normal and abnormal cells, offering a more
targeted and potentially less toxic form of treatment [11]. However, the application of im-
munotherapy is not without its complexities [17,18]. The human immune system is a highly
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intricate network of cells, molecules, and tissues that work together to defend the body
against infections and other diseases [19]. In the context of cancer, the immune system’s
role becomes even more complex. Cancer cells are adept at evading immune detection,
often by exploiting regulatory pathways that suppress immune responses [20–22]. This
ability to “hide” from the immune system is one of the primary challenges in developing
effective immunotherapies.

Furthermore, tumors are not uniform entities, but they are composed of heteroge-
neous populations of cells with different genetic and molecular characteristics [21]. Whole-
genome sequencing and whole-exome sequencing are vital tools in cancer research [23].
They contribute to the detection of predisposition genes, risk stratification, and the iden-
tification of rare single-nucleotide polymorphisms [23]. These technologies facilitate the
discovery of associations between various syndromes and cancer, provide insights into the
tumor microenvironment, and help identify previously unknown mutations that could be
valuable for future personalized treatments [23]. This heterogeneity can lead to varying
responses to immunotherapy within the same tumor, with some cells being effectively
targeted while others persist and contribute to disease progression [20]. Additionally, the
tumor microenvironment—a complex milieu of immune cells, blood vessels, and other
components surrounding the tumor—can either support or hinder the immune response,
further complicating the effectiveness of immunotherapy [20,21,24]. Despite these chal-
lenges, the potential of immunotherapy to transform cancer treatment is immense [25].
The development of immune checkpoint inhibitors, which block proteins that prevent
the immune system from attacking cancer cells, has already led to significant advance-
ments in the treatment of several cancers, including melanoma, lung cancer, and renal cell
carcinoma [25–28]. However, these therapies are not universally effective, and a substantial
proportion of patients do not respond to them or experience only partial responses [25,29].

As researchers continue to unravel the complexities of the immune system and its
interactions with cancer, the integration of artificial intelligence [AI] has emerged as a
transformative tool in the development of cancer immunotherapy. By analyzing vast
datasets, AI can identify patterns, predict patient responses, and enable the creation of more
personalized and effective treatment strategies [30]. This combination of immunotherapy
and AI holds immense potential for advancing cancer care, offering the possibility of more
precise, targeted, and successful interventions that improve both patient outcomes and
quality of life.

Despite this promise, significant challenges remain. The global burden of cancer,
coupled with the limitations of traditional treatments like chemotherapy and radiation,
underscores the urgent need for innovative approaches such as immunotherapy [31]. How-
ever, the complexity of immune responses, tumor heterogeneity, and treatment resistance
pose barriers to its efficacy [32]. To address the existing gaps in the literature, this review
identifies a critical need for a comprehensive synthesis of AI’s applications in cancer im-
munotherapy that not only highlights its transformative potential but also addresses the
practical challenges and future opportunities. While previous studies have explored specific
aspects of AI in cancer care, such as biomarker discovery or patient stratification, many fail
to provide a holistic view that integrates these advancements with the broader challenges
of implementation, regulatory approval, and clinical integration. This review is novel in its
approach as it combines an evaluation of AI’s current contributions with a forward-looking
analysis of its role in advancing personalized immunotherapy. The key objectives of this
review are: (1) to summarize the current applications of AI in enhancing the efficacy of
cancer immunotherapy, (2) to identify challenges in integrating AI into clinical practice, and
(3) to propose future directions for research and development in this rapidly evolving field.
By bridging the gap between theoretical potential and practical implementation, this review
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aims to guide researchers, clinicians, and policymakers in leveraging AI to transform cancer
immunotherapy into a more precise, efficient, and accessible treatment modality.

Figure 1 illustrates the multi-step process of integrating AI into cancer immunotherapy,
emphasizing its transformative role in improving precision and efficiency. Data acquisition
forms the foundation of the process, with input from various sources, including genomic
sequences, patient medical records, immune profiling, and imaging data. These diverse
datasets are analyzed, processed, and integrated into AI and machine-learning (ML) models.
The models are trained to recognize patterns predictive of patient responses to immunother-
apy, serving as a decision-support tool for clinicians. This personalized approach helps
tailor treatment strategies to individual patients. Furthermore, the system incorporates
a feedback loop by continuously monitoring patient progress and feeding response data
back into the AI, enabling ongoing refinement and improvement of healthcare delivery. As
illustrated, this iterative process enhances precision in cancer immunotherapy, leading to
more targeted and efficient therapies.
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2. Methods
This narrative review was conducted to explore the current applications, challenges,

and potential future directions of AI in the field of cancer immunotherapy. The review
aimed to synthesize existing literature and provide a comprehensive overview of the inter-
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section between AI and immunotherapy, focusing on how AI can enhance the effectiveness
of cancer treatments.

2.1. Literature Search Strategy

A comprehensive literature search was conducted across multiple databases, including
PubMed, Google Scholar, Scopus, and Web of Science, to identify relevant studies, reviews,
and reports published between January 2010 and July 2024. The time frame was selected be-
cause advancements in AI and its applications in cancer immunotherapy have significantly
accelerated over the past decade, with notable breakthroughs occurring after 2010. Earlier
studies were excluded to ensure the focus remained on recent and relevant developments
in AI methodologies, and their integration with cancer immunotherapy. The search terms
used included “Artificial Intelligence”, “AI”, “machine learning”, “deep learning”, “cancer
immunotherapy”, “immune checkpoint inhibitors”, “biomarkers”, “treatment resistance”,
“tumor heterogeneity”, and “personalized medicine”. Boolean operators (AND, OR) were
employed to combine these keywords effectively.

Figure 2 illustrates the PRISMA flowchart detailing the selection process for the in-
cluded studies. The initial search identified 360 articles across four databases: PubMed (120),
Google Scholar (80), Scopus (100), and Web of Science (60). After screening, 268 articles
were excluded based on predefined inclusion and exclusion criteria, leaving 92 articles for
full-text review. Of these, 38 were further excluded after in-depth evaluation, resulting in
54 studies included in the final review.
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2.2. Inclusion and Exclusion Criteria

The inclusion criteria for this review were as follows: (1) studies published in peer-
reviewed journals; (2) articles discussing the application of AI in immunotherapy for
cancer treatment; (3) reviews and meta-analyses that provided comprehensive overviews
of relevant topics; and (4) studies focusing on the challenges and future directions of
integrating AI with immunotherapy. Exclusion criteria included: (1) articles not available in
English; (2) studies focusing solely on non-cancer-related immunotherapies; and (3) papers
that lacked a clear discussion of AI’s role in immunotherapy.

2.3. Data Extraction and Synthesis

Articles that met the inclusion criteria were carefully reviewed, and relevant data
were extracted, including study objectives, methodologies, key findings, and conclusions.
Emphasis was placed on identifying patterns and trends in the application of AI to various
aspects of immunotherapy, such as biomarker discovery, prediction of patient responses,
optimization of combination therapies, and identification of novel therapeutic targets. The
findings were synthesized to provide a cohesive narrative on the current state of AI in
cancer immunotherapy, highlighting both successes and challenges.

Figure 3 illustrates the distribution of the 54 studies included in the review across
various key subsections. The largest focus is on biomarker identification (12 papers),
followed by predicting patient response (10 papers) and drug development (9 papers).
Other areas, such as combination therapies (8 papers), chimeric antigen receptor T (CAR-T)
cell therapy (7 papers), and monitoring treatment response and clinical trial optimization
(4 papers each), are also represented.
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2.4. Quality Assessment

The quality of the included studies was assessed based on their methodology, the
robustness of the data presented, and the relevance of the findings to the review’s objec-
tives. Studies that provided high-quality, reproducible results with clear implications for
clinical practice were prioritized in the synthesis of the review. Figure 4 presents a visual
representation of the distribution of machine- and deep-learning techniques across key
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areas of the review. Biomarker identification accounts for the largest share, reflecting its
significant role in leveraging AI for personalized cancer immunotherapy. Other areas,
including predicting patient response, drug development, combination therapies, CAR-T
cell therapy, monitoring treatment response, and clinical trial optimization, also exhibit
notable applications of these techniques.
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3. The Role of AI in Cancer Immunotherapy
AI is increasingly being integrated into the field of cancer immunotherapy, offering

unprecedented opportunities to enhance treatment efficacy, predict patient responses, and
discover novel therapeutic targets [30]. By leveraging its ability to process and analyze vast
and complex biological datasets, AI is addressing some of the key challenges that have
traditionally limited the effectiveness of immunotherapy. As immunotherapy continues to
evolve as a cornerstone of cancer treatment, AI is poised to play a crucial role in refining
and optimizing these therapies, ultimately leading to more personalized and effective
patient care. Table 1 provides a detailed overview of the various ways AI is being applied to
enhance cancer immunotherapy, offering a clearer understanding of how AI can contribute
to more effective, personalized cancer treatment strategies. The table includes descriptions,
methodologies, specific examples, and the overall impact of each AI application, making it
a valuable resource for understanding the scope and potential of AI in this field.

Table 1. Comprehensive overview of AI applications in cancer immunotherapy.

Application Description Methodology Examples Impact on Treatment

Biomarker
Identification [30]

AI analyzes complex
biological data to
discover biomarkers
that predict
immunotherapy
response

Supervised ML
algorithms (e.g.,
Random Forest,
Support Vector
Machines) and DL
algorithms (e.g.,
Convolutional
Neural Networks,
Recurrent Neural
Networks) applied to
multi-omics data
[genomic,
transcriptomic,
proteomic)

Identification of
TMB, MSI, PD-L1
expression levels,
and gene signatures
predictive of ICI
response

Enables personalized
treatment by
stratifying patients
based on likely
treatment response,
improving efficacy,
and minimizing
adverse effects
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Table 1. Cont.

Application Description Methodology Examples Impact on Treatment

Optimization of
Combination
Therapies [33]

AI predicts the most
effective
combinations of
immunotherapy
with other treatments
[e.g., chemotherapy,
radiation]

Reinforcement
learning models and
Bayesian networks
applied to clinical
trial data, real-world
evidence, and
patient-specific data

Successful
combinations of ICIs
with chemotherapy
or radiation therapy
in lung cancer and
melanoma

Reduces reliance on
trial and error,
accelerates the
identification of
optimal treatment
regimens, and
enhances overall
therapeutic
outcomes

Predicting Patient
Response [30,34,35]

AI models forecast
which patients will
benefit from specific
immunotherapy
treatments and who
might experience
severe side effects

Gradient Boosting
Machines, Logistic
Regression, and DL
models (e.g.,
Multi-Layer
Perceptrons) using
patient data (e.g.,
genomic profiles,
immune signatures,
imaging data)

ML predictions for
PD-1/PD-L1
inhibitor responses
in melanoma and
non-small cell lung
cancer

Guides clinical
decision-making,
allowing for more
precise, personalized
treatment, and
avoiding
unnecessary side
effects

Discovering Novel
Therapeutic Targets
[30,36]

AI uncovers new
targets for
immunotherapy by
analyzing vast
biological datasets

Unsupervised ML
models (e.g.,
Clustering, Principal
Component
Analysis) and
Generative
Adversarial
Networks (GANs)
applied to genetic,
epigenetic, and
transcriptomic data

Identification of
neoantigens and
novel ICIs for
developing
personalized
vaccines and new
therapeutic agents

Expands the range of
therapeutic options,
leading to the
development of new
immunotherapy
agents tailored to
specific tumor types

Enhancing Drug
Discovery [37,38]

AI accelerates the
discovery and
development of new
immunotherapeutic
agents

Virtual screening, DL
molecular modeling
(e.g., Graph Neural
Networks), and
simulation of drug
interactions

AI-driven discovery
of novel checkpoint
inhibitors and
monoclonal
antibodies for cancer
treatment

Shortens the drug
development
timeline, reducing
costs and bringing
effective treatments
to market more
quickly

Monitoring
Treatment
Response [39]

AI facilitates
real-time monitoring
of patient responses
during
immunotherapy

Time-series analysis
models and DL
algorithms (e.g.,
Long Short-Term
Memory networks)
applied to data from
wearables, imaging,
and EHR

AI-integrated
wearable devices
monitor
physiological
changes and detect
early signs of
adverse reactions

Enables timely
interventions,
optimizing treatment
outcomes and
improving patient
safety during
therapy
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Table 1. Cont.

Application Description Methodology Examples Impact on Treatment

Improving Patient
Selection for Clinical
Trials [40]

AI identifies suitable
candidates for
clinical trials based
on predictive models

Natural Language
Processing (NLP),
supervised ML
models (e.g.,
Decision Trees), and
DL models (e.g.,
Transformers)
applied to EHR,
genetic profiles, and
clinical history

Enhanced
recruitment for
immunotherapy
trials, particularly for
rare cancer types or
specific genetic
subtypes

Increases the
efficiency and
success rate of
clinical trials,
ensuring that trials
are populated with
the most suitable
candidates

Adaptive Treatment
Strategies [41]

AI supports dynamic
adjustment of
treatment plans
based on ongoing
patient data

Adaptive
reinforcement
learning and
real-time DL models
integrating data from
multiple sources for
adjusting treatment
parameters

AI-driven adaptive
dosing and
sequencing strategies
in immunotherapy to
enhance
effectiveness and
reduce toxicity

Personalizes
treatment regimens,
improving outcomes
by adapting to
individual patient
responses over time

Abbreviations: Artificial Intelligence, AI; Tumor Mutational Burden, TMB; Machine Learning, ML; Deep Learning,
DL; Microsatellite Instability, MSI; Programmed Cell Death Ligand 1, PD-L1; Immune Checkpoint Inhibitors, ICIs;
Programmed Cell Death Protein 1, PD-1; Electronic Health Records, EHR.

3.1. Enhancing Immunotherapy Efficacy

The efficacy of immunotherapy varies significantly among patients, largely due to
the complex and heterogeneous nature of tumors [32,42]. AI has also provided critical
insights into CAR-T cell therapy, particularly in enhancing the design and optimization of
CAR constructs [43,44]. By leveraging advanced algorithms, AI enables the identification
of optimal target antigens and the prediction of CAR-T cell performance, significantly
improving both safety and efficacy [43,44]. Additionally, AI-driven models streamline the
engineering of CAR constructs, reducing the time and costs associated with traditional
trial-and-error approaches [45]. AI has emerged as a powerful tool for identifying biomark-
ers that predict the effectiveness of immunotherapy, which is crucial for personalizing
treatment and improving outcomes [30]. Traditionally, the discovery of biomarkers has
been a labor-intensive process, limited by the complexity of biological data and the need
for sophisticated analytical methods. AI, particularly through ML and deep-learning (DL)
algorithms, has revolutionized this process by enabling the rapid analysis of large-scale
genomic, transcriptomic, and proteomic data to uncover novel biomarkers that might be
overlooked using conventional methods [43].

One of the key applications of AI in this context is the identification of biomarkers
associated with the response to immune checkpoint inhibitors (ICIs), such as Programmed
Cell Death Protein 1 (PD-1)/Programmed Cell Death Ligand 1 (PD-L1) and Cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) inhibitors [33]. These biomarkers can include
specific genetic mutations, patterns of gene expression, or characteristics of the tumor
microenvironment [33,46]. For example, studies have shown that AI can effectively analyze
tumor mutational burden (TMB) and microsatellite instability (MSI), both of which are
associated with better responses to ICIs [47,48]. AI models can integrate these biomarkers
into predictive algorithms, helping clinicians to stratify patients and select those who are
most likely to benefit from immunotherapy [33]. Figure 5 highlights the role of AI in
biomarker identification using genomic, transcriptomic, and proteomic data. The flowchart
depicts how DNA (genomic), RNA (transcriptomic), and protein structures [proteomic] are
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processed by AI systems to identify key biomarkers, such as PD-1, TMB, and MSI. These
biomarkers are critical in guiding personalized treatment decisions in the clinical stage. By
leveraging AI’s ability to analyze complex datasets, Figure 5 demonstrates how AI-driven
biomarker discovery bridges the gap between laboratory findings and clinical applications,
improving the precision and efficacy of cancer immunotherapy.
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In addition to identifying biomarkers, AI also plays a crucial role in optimizing com-
bination therapies, which have shown great promise in enhancing the effectiveness of
immunotherapy [30]. Immunotherapy, when used in combination with other treatments
such as chemotherapy, radiation therapy, or targeted therapies, can produce synergistic
effects that improve overall treatment outcomes [49,50]. However, determining the most
effective combination of therapies for individual patients has traditionally been a challeng-
ing and time-consuming process. AI models can analyze clinical data from diverse sources
to predict the most effective treatment combinations, considering the unique genetic and
molecular characteristics of each patient’s tumor [41].

For example, AI-driven analyses have been used to predict the success of combining
ICIs with chemotherapy or radiation therapy [51]. These models consider various factors,
including the genetic profile of the tumor, the presence of specific immune cells in the
tumor microenvironment, and the patient’s overall health status [51]. By doing so, AI
can help clinicians identify the optimal treatment regimen for each patient, reducing the
reliance on trial and error and minimizing the risk of exposing patients to ineffective or
harmful therapies [41]. Moreover, AI has the potential to refine the timing and sequencing
of combination therapies [52]. For instance, research has shown that the effectiveness of
combining radiation therapy with immunotherapy can depend on the sequence in which
the treatments are administered [53]. AI models can simulate different treatment scenarios
and predict the most effective sequence and timing for each patient, thereby maximizing
the therapeutic benefits while minimizing side effects [54].
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3.2. Predicting Patient Response

One of the most significant challenges in cancer immunotherapy is the variability in
patient responses [55]. While some patients experience dramatic and long-lasting remis-
sions, others may see little-to-no benefit, and some may even suffer severe immune-related
adverse events (irAEs) [55,56]. Accurately predicting which patients are likely to respond
to immunotherapy—and which are at risk for adverse effects—is critical for optimizing
treatment strategies and improving patient outcomes [56,57]. AI has been instrumental
in developing predictive models that assess a patient’s likelihood of responding to im-
munotherapy, thereby enabling more personalized and effective treatment plans [58–60]. AI
models for predicting patient response to immunotherapy often integrate data from a wide
range of sources, including genomic profiles, imaging data, and electronic health records
(EHRs) [33]. By analyzing this comprehensive dataset, AI can identify patterns and correla-
tions that may not be apparent through traditional statistical methods [30,34]. For instance,
ML algorithms have been used to predict responses to PD-1/PD-L1 inhibitors by analyzing
a combination of genomic alterations, immune signatures, and clinical features [61]. A
recent study demonstrated that a DL model could accurately predict patient response to
PD-1 blockade therapy by analyzing pre-treatment histology slides [61]. This non-invasive
approach could help identify patients who are most likely to benefit from these therapies,
thereby guiding clinical decision-making and improving outcomes [61].

In addition to predicting treatment efficacy, AI models are also being used to anticipate
potential side effects, particularly irAEs, which can be severe and life-threatening. AI-driven
tools have been developed to predict the likelihood of irAEs based on patient-specific fac-
tors, allowing clinicians to take proactive measures to mitigate risks [41]. For example, an
AI model was able to predict the occurrence of irAEs in patients undergoing ICIs therapy
by analyzing baseline immune-related biomarkers and clinical data [41]. This predictive
capability provides a framework for personalized monitoring and management of side ef-
fects, which is critical for ensuring patient safety during treatment. Furthermore, AI plays a
crucial role in refining patient selection for clinical trials involving immunotherapy [48]. By
predicting patient responses more accurately, AI can help identify appropriate candidates
for specific trials, increasing the likelihood of successful outcomes and accelerating the
development of new therapies [62]. For instance, AI algorithms have been used to screen
patients for trials based on their predicted response to specific immunotherapies, thereby
improving the efficiency and effectiveness of the trial process [40].

3.3. Discovering Novel Therapeutic Targets

The discovery of novel therapeutic targets is essential for the continued development
of effective cancer immunotherapies [63]. AI has emerged as a powerful tool for identifying
new targets that may not be apparent through traditional research methods [64]. By
analyzing vast datasets, including genetic, epigenetic, and transcriptomic data, AI can
identify potential targets that could lead to the development of new immunotherapeutic
agents, thereby expanding the arsenal of treatments available to oncologists [41]. One of the
most promising applications of AI in this area is the identification of neoantigens, which
are unique to tumor cells and can be targeted by personalized vaccines [36]. Neoantigens
arise from tumor-specific mutations and are not present in normal tissues, making them
ideal targets for immunotherapy [65]. However, identifying neoantigens is a complex
and time-consuming process, requiring the analysis of large-scale genomic data [36]. AI
algorithms have been developed to rapidly analyze a patient’s tumor genome and identify
neoantigens with high accuracy [36,66]. For example, AI-driven tools have been used to
predict which neoantigens are most likely to be recognized by the patient’s immune system,
paving the way for the development of personalized cancer vaccines [66].
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AI is also being used to discover new immune checkpoints and other targets that could
be exploited for cancer immunotherapy [67]. For instance, DL models have been applied
to analyze gene expression data and identify novel immune-regulatory pathways that
could be targeted to enhance anti-tumor immunity [68]. These discoveries could lead to the
development of new classes of immunotherapeutic agents, expanding the range of options
available to clinicians and improving patient outcomes. In addition to identifying new
therapeutic targets, AI can also help prioritize these targets for further development [41].
By integrating data from various sources, including clinical trials, preclinical studies,
and real-world evidence, AI models can assess the potential impact of targeting specific
pathways or molecules, thereby guiding the development of new drugs [69]. This ability to
prioritize targets based on their predicted clinical relevance could accelerate the translation
of research findings into effective therapies, ultimately benefiting patients.

4. AI Metrics and Comparative Analysis in Cancer Immunotherapy
To comprehensively evaluate the impact of AI in cancer immunotherapy, it is essential

to consider specific performance metrics such as accuracy, area under the curve (AUC),
precision, recall, sensitivity, and specificity [70]. These metrics provide a quantitative basis
for assessing the effectiveness of AI models and their ability to outperform traditional,
non-AI approaches in critical applications [70]. The inclusion of these metrics highlights the
tangible advancements AI has brought to cancer treatment, including increased precision,
speed, and scalability [70].

4.1. Biomarker Identification

AI models, particularly those utilizing ML and DL, have achieved accuracy rates
of 85% to 95% in identifying predictive biomarkers for immunotherapy, such as PD-L1
expression, TMB, and MSI [71,72]. For example, using Random Forest models, studies
have demonstrated improved stratification of patients likely to benefit from ICIs, directly
impacting personalized treatment strategies [73] (see Table 1). Also, DL models such as
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are also
employed to process and analyze large-scale datasets [73]. CNNs are particularly effective
for spatial and structural data, such as imaging-based biomarker detection, while RNNs
are used for sequential data, capturing temporal dynamics [73]. These methods enable the
discovery of complex biomarkers, such as gene expression signatures, which are predictive
of ICI responses [73] (see Table 1).

Additionally, the AUC values for these models range between 0.70 and 0.95, reflect-
ing high reliability in distinguishing responders from non-responders to treatments like
ICIs [71]. In contrast, traditional biomarker discovery methods, which rely heavily on
manual analysis and conventional statistical approaches, often yield lower accuracy, are
time-intensive, and lack reproducibility [71]. The ability of AI to integrate multi-omics data
has revolutionized biomarker identification by uncovering complex patterns not apparent
through traditional methods [74].

4.2. Patient Response Prediction

AI models, such as those using supervised learning algorithms like Random Forest
and Support Vector Machines (SVM), demonstrate significant advantages in predicting
patient responses to immunotherapy [75]. Gradient Boosting Machines, Logistic Regression
models, and k-Nearest Neighbors (k-NN) are widely used ML techniques for analyzing
diverse patient-specific data, including immune signatures, imaging data, and genomic
profiles [76]. These models provide robust predictions of patient responses to therapies such
as PD-1/PD-L1 inhibitors [76]. Also, DL models, such as Multi-Layer Perceptrons (MLPs),
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further enhance prediction accuracy by capturing complex, nonlinear interactions in high-
dimensional datasets [77]. For example, MLPs have been shown to predict treatment
outcomes with high precision, allowing clinicians to avoid ineffective treatments (see
Table 1).

These models achieve an AUC mean value of 0.82, enabling precise stratification of
patients likely to benefit from ICIs or other therapies [76]. Traditional non-AI methods, such
as static predictive models or reliance on clinical judgment, lack this level of granularity
and often fail to account for the dynamic and multifactorial nature of tumor-immune
interactions [78]. The use of AI for patient response prediction reduces the risk of inef-
fective treatments and minimizes unnecessary side effects, improving overall therapeutic
outcomes [79].

4.3. Therapeutic Target Discovery

In the discovery of novel therapeutic targets, DL models using multi-layer neural
networks achieve precision rates up to 98.58% and a significant decrease in recall rates,
surpassing traditional laboratory-based methods [78,80]. AI can rapidly analyze vast
datasets, including genomic and epigenetic information, to identify actionable targets such
as neoantigens or novel immune checkpoints [48]. Unsupervised ML techniques such as
Clustering and Principal Component Analysis (PCA) are used to identify underlying struc-
tures in datasets [81]. These methods group similar data points, enabling the identification
of unique tumor profiles and actionable therapeutic targets [81]. Advanced DL models,
particularly Generative Adversarial Networks (GANs), are employed to simulate tumor mi-
croenvironments and identify neoantigens—tumor-specific proteins that can be targeted by
personalized cancer vaccines [82]. GANs are uniquely capable of generating realistic data
distributions, which are invaluable for modeling rare or underrepresented tumor types [82].
For example, GANs have been utilized to identify novel immune checkpoints, as described
under Discovering Novel Therapeutic Targets in Table 1. Traditional approaches to target
discovery are often limited by the scale and complexity of data, leading to slower identifi-
cation rates and fewer actionable discoveries [43]. AI accelerates this process, providing
clinicians and researchers with a broader arsenal of therapeutic options [43].

4.4. Drug Development

In drug discovery, AI models such as generative adversarial networks [GANs] and
virtual screening techniques have shown remarkable improvements [75]. These models
show more efficiency than traditional screening methods [75]. Drug discovery has been
transformed by AI through techniques like Graph Neural Networks (GNNs) and virtual
screening algorithms [83]. These DL models simulate molecular interactions, enabling
rapid identification of candidate drugs for cancer immunotherapy. For instance, GNNs are
used to predict drug-target-binding affinities, which significantly accelerates the discovery
of novel checkpoint inhibitors and monoclonal antibodies. Virtual screening powered
by these models has been shown to achieve a higher hit rate compared to traditional
methods [83,84] [see Table 1]. AI reduces the time and cost associated with developing
new immunotherapeutic agents by simulating molecular interactions and optimizing drug
candidates, enabling faster transitions from research to clinical trials [85].

Furthermore, ML has significantly advanced molecular docking analyses, revolu-
tionizing the drug development process for immunotherapy applications [86]. Docking
analyses involve predicting the interaction between molecules, such as how a drug binds
to a target protein, which is critical for designing effective immunotherapeutic agents [86].
Traditional docking methods often face challenges in predicting accurate 3D structures
due to the complexity of molecular interactions [86]. However, ML tools, including deep
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neural networks and reinforcement learning models, have substantially improved the relia-
bility and precision of these predictions [87]. By analyzing vast datasets of protein–ligand
interactions, ML algorithms can accurately model 3D binding conformations, even for
complex immunotherapy targets such as immune checkpoints and neoantigens [86]. These
advancements not only enhance the accuracy of docking analyses but also accelerate the
identification of high-affinity molecules, reducing the time and costs associated with tradi-
tional drug discovery methods [86]. The ability of ML to streamline and improve docking
predictions is crucial in developing next-generation immunotherapeutic agents, such as
immune checkpoint inhibitors and personalized cancer vaccines, thereby transforming the
landscape of drug development in immunotherapy [86].

4.5. Clinical Trial Optimization

Optimizing clinical trials, particularly for patient recruitment, relies on ML techniques
such as Decision Trees and Random Forests, as well as natural language processing (NLP)
models like Transformers [88]. These methods analyze EHRs, genetic profiles, and demo-
graphic data to identify eligible candidates [88]. DL algorithms such as Transformer-based
models also enable the automated analysis of large-scale clinical data, improving trial
design and execution [88]. This is particularly critical for rare cancers, where patient popu-
lations are small and difficult to stratify [88]. As noted in Table 1, these techniques enhance
recruitment precision and improve trial success rates.

Predictive models used in this context achieve an exclusion accuracy of 95.7% and
a recruitment precision of 91.6%, addressing common challenges in enrolling suitable
candidates, especially for rare cancers [88]. Traditional trial designs often struggle to meet
recruitment targets and adequately stratify patients based on complex criteria [88]. AI
not only enhances recruitment efficiency but also enables dynamic adjustments to trial
protocols, improving trial success rates and reducing costs [88].

4.6. Real-Time Monitoring

In real-time monitoring, AI systems integrating IoT-enabled wearables and time-series
analysis deliver high accurate and specificity rates [89]. These metrics reflect the capability
of AI to detect physiological changes and predict adverse reactions in real time, allowing
for timely interventions [89]. Real-time monitoring of patients undergoing immunotherapy
leverages time-series analysis models and DL techniques like Long Short-Term Memory
(LSTM) networks. These models process continuous data streams from wearable devices,
imaging, and EHRs to detect early signs of adverse reactions or treatment responses [89].
For example, LSTMs are used to predict irAEs based on dynamic physiological data,
allowing for timely interventions [89] (see Table 1). Non-AI monitoring systems, which rely
on periodic assessments, often fail to provide predictive insights, delaying responses to
critical events [89].

5. Future Directions
The application of AI in cancer immunotherapy is poised for significant advancements,

promising to further refine and enhance the effectiveness of cancer treatments [30]. As AI
technology continues to evolve, several promising avenues for research and development
are emerging, each with the potential to transform the landscape of cancer care [72,90].
Table 2 provides a detailed exploration of the future directions for AI in cancer immunother-
apy, outlining the specific benefits, ongoing research efforts, and challenges associated with
each direction.
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Table 2. Comprehensive future directions for AI in cancer immunotherapy.

Future Direction Description Potential Benefits Challenges to Address

Adaptive Treatment
Strategies [30]

AI enables dynamic
adjustment of treatment
protocols based on
real-time patient response
data, ensuring optimal
dosing and timing

Improves patient outcomes
by continuously adapting
treatment plans to
changing patient
conditions, reducing
toxicity, and enhancing
efficacy

Developing robust
real-time monitoring
systems, managing the
computational demands of
real-time data processing,
and ensuring clinical
acceptance of AI-guided
adaptive protocols

Personalized
Immunotherapy [30,68]

AI creates tailored
treatment plans by
integrating multi-omics
data (genomic,
transcriptomic, proteomic)
with clinical data for each
patient

Maximizes treatment
efficacy and minimizes
side effects by delivering
personalized treatment
regimens

Complexity in integrating
diverse data sources,
ensuring the
interpretability of
AI-generated treatment
plans, and gaining
regulatory approval for
personalized approaches

AI-Driven Clinical Trials
[40,91,92]

Use of AI to optimize all
stages of clinical trials,
from patient recruitment
and trial design to data
analysis and outcome
prediction

Reduces the time and cost
associated with clinical
trials, improves patient
matching, and enhances
the likelihood of trial
success

Standardization of trial
protocols across different
regions, regulatory
approval, and ensuring the
generalizability of
AI-driven trial outcomes
across diverse patient
populations

AI-Enhanced Imaging for
Immunotherapy [54]

AI improves the
interpretation of imaging
data (e.g., PET scans, CT
scans) to assess tumor
response to
immunotherapy more
accurately

Provides more precise
evaluations of treatment
effectiveness, leading to
better-informed clinical
decisions and adjustments
in therapy

Addressing variability in
imaging quality, ensuring
the integration of
AI-driven imaging with
other clinical data, and
gaining clinician trust in AI
interpretations

AI in Drug Discovery and
Development [69,93]

AI accelerates the
identification and
development of new
immunotherapeutic agents
by predicting molecular
interactions and simulating
drug responses

Shortens the drug
development timeline,
reduces costs, and
enhances the precision of
drug-target interactions,
leading to more effective
treatments

Addressing the accuracy of
AI predictions, regulatory
challenges in drug
approval, and the need for
extensive validation
studies to confirm
AI-generated drug
candidates’ efficacy and
safety

Real-Time Data Analysis
[91,94]

Integration of AI with
real-time data from
wearable devices, EHRs,
and mobile apps to
continuously monitor
patients during
immunotherapy

Enables continuous,
personalized monitoring of
patient health, leading to
timely interventions and
optimized treatment
outcomes

Ensuring data privacy and
security, managing data
overload, and developing
algorithms that can
accurately interpret and act
on real-time data in a
clinical setting
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Table 2. Cont.

Future Direction Description Potential Benefits Challenges to Address

AI for Predictive
Toxicology [95]

AI predicts potential
toxicities and side effects of
new immunotherapies
before clinical trials,
reducing the risk of
adverse effects

Enhances patient safety,
reduces trial failure rates
due to toxicity, and
accelerates the
development of safer
immunotherapeutic drugs

Ensuring the robustness
and accuracy of AI models
in predicting rare toxicities,
integrating these
predictions into the drug
development pipeline, and
balancing predictive
sensitivity with clinical
relevance

AI in Immune System
Modeling

AI models complex
immune system
interactions to better
understand how tumors
evade immune detection
and how therapies can be
optimized

Provides deeper insights
into immune–tumor
interactions, leading to the
development of more
effective immunotherapy
strategies

Complexity in modeling
the immune system
accurately, ensuring that AI
models are based on
validated biological
principles, and integrating
these models with clinical
decision-making processes

Abbreviations: Artificial Intelligence, AI; Electronic Health Records, EHR; Positron Emission Tomography, PET;
Computed Tomography, CT.

5.1. Real-Time Data Analysis

One of the most exciting prospects for the future of AI in cancer immunotherapy is
the integration of real-time data analysis [91,94]. Currently, patient monitoring during
immunotherapy is often periodic, relying on scheduled clinical visits and routine tests.
However, continuous monitoring of patients could provide a more dynamic and responsive
approach to treatment. AI can play a pivotal role in this by analyzing real-time data
from various sources such as wearable devices, EHRs, and mobile health applications [91].
Wearable devices can monitor a range of physiological parameters, including heart rate,
temperature, and activity levels, which can provide early indicators of adverse reactions
to immunotherapy or signals that a treatment is working effectively. By feeding this data
into AI algorithms, clinicians can receive alerts about potential issues before they become
critical, allowing for timely interventions. For example, if a patient shows early signs of an
immune-related adverse event, an AI system could recommend a change in medication or
dosage, potentially preventing more severe complications [30].

Moreover, the integration of real-time data analysis could enable more precise adjust-
ments to treatment regimens [91]. For instance, AI could analyze fluctuations in biomarkers
or tumor response as they happen, allowing oncologists to adjust the type or intensity of
immunotherapy in real time, thereby optimizing treatment efficacy and reducing unneces-
sary side effects [41]. This real-time approach could also facilitate adaptive clinical trials,
where AI continuously assesses data to refine treatment protocols as the trial progresses,
increasing the likelihood of success and accelerating the development of new therapies [91].

5.2. AI-Driven Clinical Trials

Clinical trials are a critical component of developing new cancer therapies, but they
are often time-consuming, expensive, and logistically challenging. AI has the potential to
revolutionize the design and execution of clinical trials, making them more efficient and
effective. One of the primary ways AI can impact clinical trials is through the optimization
of patient recruitment [40,92,96]. Currently, patient recruitment is a significant bottleneck in
clinical trials, with many trials failing to meet enrollment targets [92]. AI can analyze large
datasets, including EHRs, genetic information, and demographic data, to identify suitable
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candidates for specific trials more quickly and accurately [40]. This targeted approach
can ensure that trials are populated with patients who are most likely to benefit from the
treatment being studied, thereby improving the quality and relevance of trial outcomes [96].

AI can also optimize trial design by simulating various scenarios and predicting
the most effective trial protocols. For example, AI models can analyze historical trial
data to identify patterns and factors that contributed to the success or failure of previous
studies [40,97]. These insights can then be used to design trials that are more likely
to succeed, reducing the need for multiple phases of testing and shortening the time
required to bring new treatments to market [40]. Additionally, AI can be used to analyze
interim trial data in real time, allowing for dynamic adjustments to trial protocols based
on ongoing results. This adaptability can enhance the efficiency of trials and reduce costs,
ultimately speeding up the development of new immunotherapies. Furthermore, AI-driven
analysis of clinical trial data can improve the accuracy and granularity of trial outcomes [98].
Traditional methods of analyzing trial data often rely on predefined endpoints and statistical
methods that may not fully capture the complexity of patient responses. AI can analyze
vast amounts of trial data, identifying subtle patterns and correlations that might be missed
by conventional analysis. This can lead to a deeper understanding of how and why certain
treatments work, providing valuable insights that can inform future research and clinical
practice [99].

5.3. Personalized Immunotherapy

The ultimate goal of AI in cancer immunotherapy is to achieve fully personalized
treatment plans tailored to the unique characteristics of each patient’s cancer. Personalized
immunotherapy aims to maximize efficacy while minimizing side effects by accounting for
the individual genetic, molecular, and clinical features of the patient’s tumor and immune
system [54]. AI is uniquely suited to this task because of its ability to integrate and analyze
complex datasets from multiple sources. AI can combine data from genomic sequencing,
transcriptomic analysis, proteomic profiling, and clinical records to create a comprehensive
profile of each patient’s cancer [68]. This profile can then be used to predict how the patient
will respond to different immunotherapies, allowing clinicians to choose the most effective
treatment regimen. For example, AI can identify specific mutations or neoantigens that
make a tumor more susceptible to certain ICIs, or it can suggest combinations of therapies
that are likely to produce a synergistic effect [36].

AI serves as a robust tool for detecting tumors with mismatch repair (MMR) deficiency
from histopathology slides, significantly advancing pathological evaluation and patient
eligibility for immunotherapy [47]. Through the analysis of digital slides, AI models can
predict key pathological features, such as Gleason scores in prostate cancer patients, which
directly inform treatment decisions [47]. This capability is critical for identifying patients
who are likely to benefit from ICI and other immunotherapies [100].

Recent studies have further highlighted the potential of AI in PD-L1 expression and
tumor-infiltrating lymphocyte (TIL) assessments [47,100]. PD-L1 expression levels, deter-
mined through immunohistochemistry, are a key biomarker for ICI eligibility. AI models
have demonstrated exceptional accuracy in automating the evaluation of PD-L1 levels,
reducing interobserver variability, and enhancing reproducibility in clinical practice [100].
Similarly, AI-based methods for TIL quantification provide insights into the immune
microenvironment, which is crucial for determining tumor response to immunotherapy.
These tools standardize TIL counting, offering a more objective approach compared to
manual evaluations.

Additionally, AI tools can predict MMR status or susceptibility to ICI therapy by
analyzing morphological patterns in hematoxylin and eosin (H&E)-stained slides. Studies
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have shown that AI can identify subtle histological features associated with MMR deficiency,
such as nuclear atypia and stromal changes, that may not be apparent through traditional
pathological assessments [100]. These models have achieved promising results in predicting
MMR status with high sensitivity and specificity, thereby streamlining patient selection
for immunotherapy.

By integrating these capabilities, AI not only enhances diagnostic precision but also
expedites the identification of eligible patients for advanced cancer treatments. Its applica-
tion in pathological evaluation represents a significant step toward more personalized and
effective immunotherapy strategies, ensuring that patients receive the most suitable and
timely interventions.

In addition to selecting the appropriate therapy, AI can also personalize the dosing and
scheduling of treatments [43]. Traditional dosing regimens are often based on population
averages, which may not be optimal for every patient [43]. AI can analyze real-time data on
a patient’s response to therapy, adjusting the dosage or timing of treatments to maximize
effectiveness and minimize toxicity [43,101]. This approach, known as adaptive dosing,
could significantly improve patient outcomes, particularly for those with complex or
advanced cancers. Moreover, personalized immunotherapy could extend beyond treatment
selection to include the development of custom therapies [36]. For instance, AI can aid in
the design of personalized cancer vaccines by identifying neoantigens unique to a patient’s
tumor [36]. These vaccines can then be tailored to stimulate the patient’s immune system to
target and destroy cancer cells more effectively [36]. This level of personalization represents
a significant leap forward in the ability to treat cancer, moving from a one-size-fits-all
approach to one that is precisely tailored to the individual’s needs.

5.4. Benchmarks for Measuring Success in AI-Driven Cancer Immunotherapy

To ensure the effectiveness and practical integration of AI in cancer immunother-
apy, benchmarks for success must be clearly defined. These benchmarks allow for sys-
tematic evaluation of the progress in addressing key challenges, including personalized
immunotherapy, drug discovery, and patient monitoring.

For biomarker identification, success can be measured by the precision and recall
of AI models in predicting biomarkers such as PD-1, TMB, and MSI, compared to tradi-
tional methods [33]. Metrics like the AUC and F1 score provide quantifiable benchmarks,
with clinical trials validating whether AI-identified biomarkers lead to improved patient
stratification and treatment outcomes [33].

In personalized immunotherapy, the effectiveness of AI-generated treatment plans can
be assessed through clinical trials comparing progression-free survival and overall survival
rates of patients receiving AI-guided treatments versus conventional approaches [75]. The
success of these plans can be determined by statistically significant improvements in patient
outcomes and their adoption in real-world clinical settings [75].

AI-driven drug discovery benchmarks include the time and cost reductions achieved
in identifying and validating new drug candidates [102]. The success of AI in this domain
can be measured by reductions in the average drug discovery timeline and costs, as well as
the transition of AI-discovered candidates to the Food and Drug Administration (FDA) or
the European Medicines Agency (EMA) approvals after demonstrating safety and efficacy
in Phase I clinical trials [102]. Similarly, monitoring treatment response involves assessing
the real-time accuracy of AI in detecting irAEs [102]. A reduction in false positive and
negative rates and improvements in patient safety metrics, such as fewer hospitalizations
due to early adverse event detection, would indicate success [102].

For clinical trial optimization, the efficiency of patient recruitment and stratification
using AI can be measured by increased enrollment rates, reduced recruitment timelines,
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and enhanced trial success due to precise matching of patients to suitable trials [103]. Faster
trial completion and successful regulatory milestones validate AI’s contribution to this
area [103].

While the focus of this review is on traditional AI methods, generative AI’s potential
role in personalized immunotherapy can be evaluated by comparing the efficacy of AI-
generated treatment plans through randomized controlled trials, ensuring regulatory
compliance, and gauging clinician adoption rates. Clear benchmarks like these enable
systematic evaluation of AI’s progress and its impact on cancer immunotherapy, ensuring
its ethical and practical integration into clinical workflows.

6. Limitations and Challenges
Despite its transformative potential, integrating AI into cancer immunotherapy is

fraught with several limitations and challenges that must be addressed to unlock its full
benefits. These limitations span technical, regulatory, logistical, and ethical dimensions,
each requiring targeted solutions.

One of the foremost limitations is data availability, quality, and diversity. AI models are
inherently data-driven, relying on large, high-quality datasets for training and validation.
However, access to such data is restricted by privacy regulations, institutional barriers, and
ethical concerns [104]. Even when data are available, they often suffer from variability in
formats, incomplete records, and imbalances in demographic representation, particularly
for underrepresented populations and rare cancer types [104]. This lack of diversity can
lead to biased AI predictions, reducing the generalizability and fairness of AI applications
across different patient groups.

Another significant challenge is algorithm transparency and interpretability. Many
advanced AI systems, particularly deep-learning models, operate as “black boxes”, pro-
viding accurate predictions but lacking clear explanations for their outputs [105]. This
opacity is a critical barrier in clinical settings, where clinicians need to trust and understand
AI-driven recommendations [105]. Without interpretability, the clinical adoption of AI tools
becomes challenging, as medical professionals are hesitant to rely on systems they cannot
fully explain to patients or validate within their existing frameworks [105].

Regulatory and validation challenges further complicate the pathway for AI integra-
tion. Regulatory agencies such as the FDA and EMA require rigorous evidence to approve
AI tools as Software as a Medical Device (SaMD) [105]. This involves compliance with
stringent standards like ISO 13485 for quality management and IEC 62304 for software life
cycle processes, alongside robust prospective clinical trials or multi-center studies [106].
These processes are resource-intensive, expensive, and time-consuming, leading to a bottle-
neck in bringing AI-driven innovations to clinical practice [105]. Additionally, regulatory
frameworks for AI in healthcare are still evolving, creating uncertainty for developers and
delaying widespread adoption [105].

The logistical challenges of clinical implementation also represent a significant
hurdle [106]. For AI systems to be effectively deployed, healthcare infrastructures must
support standardized data formats and seamless interoperability between AI platforms and
existing EHR systems [106]. Moreover, healthcare professionals need adequate training to
use these tools effectively, understand their outputs, and integrate them into clinical work-
flows [106]. Many institutions lack the resources or expertise to address these requirements,
slowing the adoption process [106].

From an ethical and legal standpoint, concerns about data privacy, patient consent,
and the potential misuse of AI models remain paramount. AI systems require sensitive
patient data for training, raising questions about how this data is stored, shared, and
protected [104]. Without clear ethical guidelines and legal safeguards, breaches of data



Diseases 2025, 13, 24 20 of 25

privacy could lead to loss of public trust and legal repercussions [104]. Furthermore, AI’s
ability to automate aspects of healthcare delivery raises concerns about accountability—
particularly if an AI-driven decision results in an adverse outcome [104].

Finally, technical challenges in AI model development must be acknowledged. AI sys-
tems require continuous updates and retraining as new data become available, necessitating
robust feedback loops and monitoring mechanisms [105]. Moreover, handling real-world
data, which is often noisy and incomplete, poses additional difficulties in ensuring the
reliability and reproducibility of AI models [105].

Addressing these limitations will require a multidisciplinary approach involving col-
laboration among technologists, clinicians, regulators, and policymakers. Efforts must focus
on enhancing data accessibility while ensuring privacy, developing explainable AI models,
establishing clear regulatory pathways, and creating robust infrastructures to integrate AI
into clinical workflows. By addressing these challenges systematically, the promise of AI in
revolutionizing cancer immunotherapy can be realized safely and equitably.

7. Conclusions
AI is transforming cancer immunotherapy by enhancing treatment efficacy, predicting

patient responses, and discovering novel therapeutic targets. Its integration into oncology
is driving a shift toward personalized and precise care. However, realizing AI’s potential
depends on addressing key challenges, including ensuring data privacy, algorithm trans-
parency, and clinician trust. Regulatory compliance is crucial, with few AI applications
currently achieving FDA clearance or CE marking. Validation through prospective clinical
trials and adherence to rigorous standards, such as ISO 13485 and IEC 62304, is essential
for safe implementation in clinical workflows.

As logistical barriers such as data standardization, system interoperability, and clini-
cian training are resolved, AI is poised to play a central role in cancer care. By personalizing
treatments, optimizing clinical trials, and providing real-time insights, AI offers the po-
tential for more effective therapies and improved patient outcomes. While challenges
remain, the progress being made underscores the promise of AI as a transformative force
in oncology, paving the way for safer and more impactful integration into clinical practice.
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