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Abstract 

Artificial Intelligence (AI) is increasingly being adopted in educational contexts to support 

data-driven decision-making, particularly in predicting student outcomes. However, the opaque 

nature of many high-performing models raises concerns around fairness, accountability, and 

interpretability which are factors that are especially critical in high-stakes environments such 

as GCSE examinations. This study investigates how Explainable AI (XAI) techniques can 

enhance the transparency and interpretability of machine learning models used to predict GCSE 

English Language and Mathematics performance. 

Using a real-world dataset from a secondary school in England, this research developed and 

evaluated predictive models, including Histogram-based Gradient Boosting (HGB) and a 

Multi-Layer Perceptron (MLP), to estimate student achievement outcomes. To address 

imbalances and maximise performance, the pipeline incorporated data pre-processing, feature 

engineering, and fairness-aware resampling strategies. The final HGB model achieved strong 

predictive accuracy while maintaining robustness across subgroups. 

To ensure interpretability, four XAI techniques namely SHAP (Shapley Additive 

Explanations), LIME (Local Interpretable Model-Agnostic Explanations), PDP (Partial 

Dependence Plots), and ALE (Accumulated Local Effects) were applied. These methods 

provided insight into the most influential features driving predictions, including attendance, 

CAT3 scores, SEN status, and EAL. Novel explainability metrics such as transparency score, 

explainability ratio, and interpretability ratio were proposed to systematically evaluate 

explanation quality and model clarity. 

In addition to technical evaluation, the study employed a stakeholder-centred design to assess 

how teachers, school leaders, and students interact with and interpret model explanations. 

Mixed-methods user studies revealed that personalised, context-sensitive explanations 

improved stakeholders’ decision confidence, supported intervention planning, and prompted 

critical reflection. Concerns were also raised about fairness, overreliance, and the ethical 

implications of demographic profiling. 

The research demonstrates that explainable models can enhance trust, transparency, and 

pedagogical utility when appropriately designed and evaluated in real-world educational 

settings. By integrating technical rigour with ethical and user-centred evaluation, this work 
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contributes to the development of responsible, interpretable AI systems that align with the 

values and needs of educators and learners. The study offers both methodological innovations 

and practical recommendations for the responsible deployment of XAI in education. 
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Chapter 1 – Research Background and Introduction 
 

The integration of Artificial Intelligence (AI) in education is revolutionizing pedagogical 

principles, instructional methods, and learning experiences. As AI continues to reshape the 

educational landscape, the need for Explainable AI (XAI), which refers to a branch of AI that 

makes model predictions interpretable to humans, becomes increasingly evident. XAI 

addresses the critical demand for transparency in AI-driven decision-making, enabling 

educators, students, and stakeholders to understand how AI models generate predictions. This 

study explores contemporary research on XAI in education, examining its implications, 

applications, and challenges while positioning it within the broader context of AI adoption in 

learning environments. Specifically, this research focuses on adapting existing XAI models for 

predicting student performance and enhancing their interpretability to support informed 

decision-making in educational settings. This chapter introduces the foundational concepts of 

XAI in education, outlines the specific challenges faced in predictive grading, and presents the 

rationale, aims, and objectives of the study. 

AI has demonstrated remarkable potential in personalized and adaptive learning, tailoring 

educational experiences to diverse learning styles and needs. By analysing large datasets, AI 

customizes learning pathways based on students' strengths and weaknesses in real time. Göçen 

& Aydemir (2020) emphasize AI’s role in personalized education, particularly in adaptive 

learning systems, where real-time analytics enhance student engagement and learning 

outcomes. However, as AI becomes more embedded in education, concerns about trust, 

accountability, and ethics emerge. Popenici and Kerr (2017) discuss AI’s impact on 

pedagogical roles, leading to intelligent tutoring systems and AI-assisted teaching models. 

While these innovations offer significant benefits, they also raise concerns about the 

transparency of AI decision-making. Hidayat et al. (2022) illustrate how AI enhances student 

achievement in mathematics but emphasize the need for explainable models to maintain trust 

and ensure effective educational outcomes. 

Various XAI methodologies can improve transparency in AI-driven education. For example, 

Bayesian Teaching, though traditionally used in medical applications, provides insights into 

improving AI interpretability and fostering better human-AI interactions (Folke et al., 2021). 
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By understanding how AI models arrive at conclusions, educators can more effectively 

leverage AI tools to enhance student engagement and academic performance. AI-assisted 

teaching models also show promise in language education. Luo (2024) highlights AI-driven 

improvements in teaching English listening and speaking, shifting from static content delivery 

to interactive, personalized learning experiences. This transformation aligns with the broader 

shift in traditional education, where adaptive methodologies foster deeper student engagement. 

Beyond instruction, AI optimizes administrative tasks, improving educational efficiency 

through data-driven decision-making. Zheng and Badarch (2022) highlight AI’s role in shaping 

institutional policies and automating administrative functions, allowing educators to focus 

more on student relationships and curriculum development. 

Despite AI's benefits, its widespread adoption necessitates addressing ethical concerns. Chen 

et al. (2020) warn of biases in AI algorithms that could perpetuate inequalities in learning 

experiences. Transparency is crucial for ensuring fairness, inclusivity, and respect for all 

learners. Zhou (2024) argues that AI deployment must be accompanied by equitable resource 

distribution to ensure accessibility for students from diverse socio-economic backgrounds. 

Policymakers, educators, and technology developers must collaborate to construct robust, 

ethical AI-integrated educational ecosystems. Interdisciplinary collaboration is also essential. 

Wang and Xie (2024) stress the importance of academic engagement in shaping AI-driven 

educational technologies. By incorporating diverse perspectives, institutions can develop a 

comprehensive understanding of AI’s role in education and optimize its implementation for 

meaningful learning experiences. As the discourse on AI in education evolves, it is crucial to 

continuously assess its applications and implications for educational reform. Zheng and 

Badarch (2022) emphasize that AI’s effectiveness depends on its alignment with instructional 

methodologies and overarching educational goals. A critical evaluation of AI’s role enables 

informed decision-making, ensuring that AI integration enhances both educational 

effectiveness and equity. 

One of AI’s most promising applications in education is student performance prediction. AI-

driven models analyse vast datasets encompassing student behaviour, engagement, and 

academic history to forecast future performance. Niu et al. (2021) demonstrate that accurate 

prediction models enable proactive intervention, reducing the risk of academic failure. 

However, Amann et al. (2020) argue that for these predictions to be truly beneficial, 

stakeholders must understand how AI models generate insights. Explainability fosters trust in 
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AI systems, empowering educators to use AI-driven recommendations effectively while 

maintaining pedagogical authority. Recent studies, such as Ouyang et al. (2023), explore AI’s 

integration with learning analytics in online education, highlighting how systematic AI 

modelling enhances learning outcomes. Similarly, Jobin et al. (2019) emphasize the importance 

of legal and ethical frameworks in AI adoption to ensure compliance with data privacy 

regulations and student rights. XAI enhances transparency in student performance prediction 

models, enabling more personalized learning interventions. Adnan et al. (2021) propose 

integrating machine learning with XAI techniques to help educators interpret students' 

academic trajectories. Improved prediction accuracy and interpretability empower educators to 

make informed decisions that enhance student learning experiences. 

Ethical considerations remain at the forefront of AI-driven education. Shahzad et al. (2024) 

argue that AI must be employed equitably to support students from diverse backgrounds. 

Establishing AI-specific guidelines within existing educational frameworks ensures that AI 

serves as an equitable tool for improving access to education. Various AI-driven predictive 

models, including similarity-based, model-based, and probabilistic approaches, are being 

developed to analyse student engagement and learning patterns (Jiao et al., 2022). However, 

student privacy and data ethics remain critical concerns. Holmes et al. (2021) advocate for a 

community-wide framework to address the ethical dimensions of AI in education, ensuring 

transparency, accountability, and responsible data usage. The intersection of XAI and student 

performance prediction represents a significant evolution in educational methodologies, driven 

by data-informed decision-making. As educational institutions harness AI’s potential, they 

must balance technological advancements with ethical considerations to promote transparency 

and fairness. Continued research, collaboration, and dialogue are essential to refining AI 

systems that align with pedagogical goals while maintaining institutional integrity. 

As AI technologies advance, stakeholders must ensure their application is guided by 

transparency, fairness, and inclusivity. This thesis aims to explore the impact of XAI in 

education, specifically in monitoring and predicting student performance. It seeks to answer 

the question: How can XAI techniques enhance the transparency and interpretability of 

machine learning models used for student performance prediction? 

By understanding the reasoning behind a model’s predictions, educators and practitioners can 

build greater trust in AI-driven insights. This transparency not only fosters confidence in AI-
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powered educational tools but also encourages wider adoption, ultimately supporting more 

informed decision-making and improving student outcomes. 

 

1.1 Identified Challenges in Adopting AI for Prediction in Education and the Need for 
Explainability 

 
AI models in education offer substantial predictive capabilities but often lack explainability, a 

factor critical to trust and adoption. Two core concepts underpin explainability: transparency, 

which refers to how clearly the inner workings of an AI model can be understood (e.g., through 

model structure or documentation), and interpretability, which concerns how well a human 

especially a non-technical stakeholder can comprehend and act on the AI's outputs. Many AI 

models function as "black boxes," obscuring both transparency and interpretability. This 

section examines the multifaceted challenges spanning technical, ethical, psychological, and 

regulatory dimensions, reinforcing the need for XAI in educational contexts to mitigate these 

concerns.  

 

1.1.1 Bias and Inequity in AI Predictions 

One of the most pressing concerns is the potential for AI systems to perpetuate existing biases, 

resulting in inequitable outcomes. AI models trained on historical data may reflect societal and 

institutional inequalities, leading to unfair predictions for marginalized groups. For instance, 

models built on data from high-performing schools may undervalue students from under-

resourced schools, reinforcing systemic disadvantages (Holmes et al., 2021). 

This lack of fairness is further compounded by opacity. When stakeholders cannot interrogate 

how predictions are generated, addressing discriminatory outcomes becomes nearly 

impossible. XAI provides tools to detect and mitigate such biases by offering transparent 

explanations of AI decision-making. 

1.1.2 Complexity of Educational Data 

Educational settings are inherently complex. Students vary widely in terms of learning styles, 

contexts, and engagement levels. AI systems often fail to capture this diversity, especially when 

contextual data is lacking or ignored. This can result in inaccurate or misleading predictions 

that undermine student support strategies (Calatayud et al., 2021). 
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Explainability helps educators understand when and why AI models make errors, enabling 

them to adjust interventions accordingly. Without such insights, even high-accuracy models 

can be ineffective or harmful in practice. 

1.1.3 Risk of Over-Reliance and Dehumanization 

The increasing reliance on AI tools such as automated grading and behavior monitoring 

systems risks dehumanizing education. These systems may prioritize patterns over pedagogical 

judgment, failing to assess creativity, critical thinking, or context (Sullivan et al., 2023). 

This over-reliance is dangerous when educators are unable to question or override AI outputs. 

XAI reasserts human agency by making the inner workings of AI transparent, allowing teachers 

to use AI as a supportive tool rather than a replacement. 

1.1.4 Psychological Impact on Students 

AI-generated predictions can influence students’ self-perceptions and aspirations. When these 

predictions are opaque or overly deterministic, they may cause unnecessary anxiety or 

discourage students from pursuing certain goals. Research has shown that students often 

internalize negative AI feedback, even when inaccurate, which can lead to reduced motivation 

and disengagement (Selwyn, 2022). 

XAI addresses this by making predictions more understandable and less intimidating. When 

students and educators can interpret the reasoning behind a prediction, they are better equipped 

to act on it constructively. 

1.1.5 Lack of Stakeholder Understanding and Trust 

Teachers, students, and school leaders often struggle to understand the rationale behind AI 

outputs, especially when models are complex and poorly documented (Manheim, 2019). This 

knowledge gap undermines trust and limits the effectiveness of AI tools in real-world 

classrooms. 

XAI acts as a bridge between technical systems and human users. By offering clear, user-

friendly explanations, it supports collaboration between AI and educational stakeholders, 

enhancing both understanding and adoption. 
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1.1.6 Regulatory and Philosophical Perspectives on Ethical AI 

The adoption of AI in education is also shaped by an evolving regulatory landscape. The UK 

government’s AI White Paper (2023) emphasizes a pro-innovation approach to AI regulation, 

underscoring the importance of transparency, accountability, and fairness in high-impact 

sectors like education. While not legally binding, the framework encourages sector-specific 

regulators such as Ofsted (Office for Standards in Education, Children's Services and Skills) 

and Ofqual (Office of Qualifications and Examinations Regulation) to establish clear guidance 

on the responsible deployment of AI technologies in schools. 

Ofqual, in particular, has acknowledged the importance of transparency and fairness in 

algorithmic grading, especially in the aftermath of the 2020 grading controversy. Meanwhile, 

Ofsted has expressed interest in the potential of AI to support educational inspection and 

improvement, while cautioning against opaque decision-making systems that cannot be 

justified or understood by educators and families (Centre for Data Ethics and Innovation, 

2020). 

These regulatory efforts align with global ethical AI initiatives, including the EU Artificial 

Intelligence Act and UNESCO’s Beijing Consensus, both of which highlight the need for 

explainable and equitable AI systems. The EU AI guidelines emphasize transparency and 

human oversight for high-risk AI applications such as education (European Commission, 

2021), while UNESCO (2019) stresses human-centred approaches in AI deployment, ensuring 

technology supports and complements rather than replaces pedagogical judgement. 

1.1.7 Ensuring Ethical, Inclusive, and Transparent AI Adoption 

Beyond accuracy, AI tools in education must align with ethical values, especially in protecting 

student privacy and promoting equity. Without proper oversight, AI-based interventions may 

unintentionally reinforce stereotypes or exclude vulnerable learners (Khosravi et al., 2022). 

XAI supports ethical AI development by exposing hidden patterns, allowing institutions to 

identify unintended harms, and fostering greater institutional accountability. 
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1.1.8 Making XAI Accessible to All Stakeholders 

For XAI to be effective, its outputs must be understandable to diverse stakeholders. Teachers 

need pedagogically relevant explanations; students need motivational insights; policymakers 

require systemic overviews. One-size-fits-all explanations are insufficient. 

This thesis addresses this need by advocating stakeholder-specific XAI strategies tailoring 

interpretability methods to the goals and expertise of each user group. 

1.1.9 Summary 

In summary, the widespread adoption of AI in education introduces serious challenges related 

to bias, opacity, trust, and psychological impact. XAI offers a viable solution to these problems 

by promoting transparency, enabling human oversight, and safeguarding fairness. Embedding 

XAI into educational AI systems is essential for developing tools that are accurate, ethical, and 

supportive of human-centred learning. As UK regulators and international frameworks 

increasingly emphasize explainability, this research aligns with broader societal efforts to 

ensure AI enhances, rather than compromises, equity and educational integrity. 

1.2 Problem Statement and Research Gap 

Many AI models function as "black boxes," offering little transparency or interpretability. This 

lack of explainability raises concerns regarding trustworthiness and effectiveness, as 

stakeholders such as educators, students, and administrators are often are unable to comprehend 

or act on AI-generated recommendations. Moreover, AI-driven predictions are susceptible to 

biases, particularly those influenced by socio-economic and demographic disparities, 

potentially reinforcing educational inequalities. Without mechanisms to elucidate AI decision-

making, the educational sector risks misinterpretation of predictions, misclassification of 

students, and missed opportunities for timely intervention. 

While XAI has been extensively explored in various other domains, its application in education 

particularly in student performance prediction remains underdeveloped. Few studies have 

examined the potential of XAI techniques such as SHAP (Shapley Additive explanations), 

LIME (Local Interpretable Model-agnostic Explanations), ALE (Accumulated Local Effects), 

and PDP (Partial Dependence Plots) in educational contexts, particularly in high-stakes 

examinations like the General Certificate of Secondary Education (GCSE). Existing literature 

underscores the necessity of transparency in AI-driven predictions to foster trust and usability 
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in education (Ouyang et al., 2023). However, most AI models emphasize predictive accuracy 

while overlooking interpretability, failing to accommodate the diverse needs of learners and 

educators. 

This gap is further compounded by the limited comparative research on multiple XAI 

techniques within a unified educational framework. The effectiveness of different XAI 

methodologies in student performance prediction remains largely unexplored (Livieris et al., 

2018). Additionally, existing AI models often fail to incorporate critical student-specific factors 

such as learning styles and engagement levels (Trisnawati et al., 2023), leading to 

oversimplified assessments that do not account for the complexities of real-world learning 

environments. 

Another critical but underexamined issue is the psychological impact of opaque AI predictions 

on students. Research indicates that students may experience heightened anxiety when 

confronted with AI-generated evaluations lacking clear explanations (Kim et al., 2022). 

Without transparency, AI-based assessments or predictions can diminish student confidence 

and engagement rather than providing constructive, actionable feedback. 

Addressing these limitations requires not only technical innovation but also careful adaptation 

of XAI frameworks to educational realities. This research addresses these limitations by 

systematically evaluating SHAP, LIME, ALE, and PDP within a single framework for GCSE 

performance prediction. By integrating fairness constraints offered by the adapted techniques 

to mitigate socio-economic biases and introducing tailored explanations for different 

stakeholders, this study aims to enhance the transparency, interpretability, and ethical 

deployment of AI in education. Furthermore, the introduction of novel evaluation metrics such 

as transparency score, explainability ratio, and interpretability ratio alongside sparsity and 

sensitivity analyses, will contribute to a more robust understanding of XAI’s role in educational 

settings. This comprehensive approach aims to bridge the gap between AI-driven predictions 

and real-world educational applicability, fostering a more equitable and comprehensible AI-

assisted learning environment. 

1.3 The Role and Challenges of Grade Prediction in the English Education System 

In the UK, predicted grades play a pivotal role in student progression, particularly in 

determining post-16 educational and university pathways. However, the COVID-19 pandemic 

in 2020 exposed significant vulnerabilities in existing assessment systems. With the 
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cancellation of formal GCSE and A-level examinations, Ofqual introduced the Direct Centre 

Performance model, an algorithm-driven framework intended to standardize grading in the 

absence of exams (Ofqual, 2020). The model, however, sparked national controversy when 

approximately 40% of students were downgraded compared to teacher predictions, 

disproportionately affecting those from state-funded schools (BBC News, 2020). Public outcry 

and parliamentary scrutiny led to the algorithm's abandonment, with final grades being based 

on teacher assessments. This event underscored the limitations of both traditional and 

algorithmic grading systems, reinforcing the need for more transparent, equitable, and 

trustworthy assessment approaches (Denes, 2023). 

While teacher-predicted grades (TPGs) have long been central to the English education system, 

particularly for university admissions, their reliability and fairness have come under increasing 

scrutiny. Multiple studies highlight systemic issues in TPG accuracy, with significant instances 

of both over- and under-prediction. These discrepancies not only affect students' admission 

outcomes but can also undermine confidence and equity (McManus et al., 2021). Research 

indicates that students from lower socio-economic backgrounds are more likely to receive 

lower predicted grades despite similar academic capabilities (Stopforth, Gayle & Boeren, 

2020). Biases based on ethnicity and gender have also been identified. Students from ethnic 

minority backgrounds and female students in STEM subjects are often under-predicted relative 

to their actual performance (Morris et al., 2021; Kim, Lee & Cho, 2022). These concerns 

highlight the urgent need to explore data-driven, explainable alternatives that ensure both 

accuracy and fairness. 

General Certificate of Secondary Education (GCSE) exams, typically taken at age 16, serve as 

key milestones in England’s education system, determining eligibility for post-16 

qualifications and influencing long-term educational trajectories. The 2017 transition from 

letter-based (A*–G) to numeric (9–1) grading aimed to provide finer differentiation of student 

achievement (Ofqual, 2020). However, the process of arriving at these grades whether through 

teacher predictions or algorithmic models continues to face scrutiny around fairness, 

transparency, and interpretability. 

Machine learning (ML) has demonstrated potential in enhancing the accuracy of grade 

predictions by learning patterns from large volumes of student data. However, predictive 

accuracy alone is insufficient. Without transparency, even accurate models risk rejection by 

stakeholders due to perceived opaqueness and lack of accountability. XAI techniques such as 
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SHAP (SHapley Additive Explanations), LIME (Local Interpretable Model-Agnostic 

Explanations), ALE (Accumulated Local Effects), and PDP (Partial Dependence Plots) offer 

promising solutions to bridge this gap. These tools can help educators, students, and 

policymakers understand how predictions are generated and assess whether these insights align 

with pedagogical fairness and expectations (Adnan et al., 2022). 

Emerging research is beginning to explore these approaches in educational contexts. For 

instance, Anders et al. (2020) applied ML techniques to predict student grades, but their models 

only correctly predicted around 25% of cases, with significant misclassification across others. 

Denes (2023) evaluated AI-based GCSE predictions in a selective independent school, 

achieving around 75% overall accuracy, with most predictions falling within one grade of the 

true outcome. However, notable outliers remained, with errors exceeding two or more grades 

thereby raising important concerns about the fairness and reliability of such tools in high-stakes 

assessments. 

1.3.1 Current Approaches and Limitations in Grade Prediction. 
 

Existing approaches to grade prediction in the UK predominantly rely on teacher assessments 

or statistical estimations, both of which are susceptible to bias and inconsistency. Teacher-

predicted grades (TPGs), while grounded in professional judgement, are influenced by 

subjective expectations and implicit biases, particularly around student background, ethnicity, 

and gender (Murphy and Wyness, 2020; Magowan, 2023). These biases can unfairly impact 

students’ academic trajectories, with under-prediction potentially limiting opportunities for 

further education or employment. While moderation procedures exist, they do not fully address 

these systemic disparities. 

Machine learning offers a scalable and data-informed alternative. By leveraging historical 

performance data such as assessments, attendance, behaviour, and engagement, ML models 

can predict future outcomes with greater consistency. However, these models often function as 

“black boxes,” lacking transparency in how predictions are made. This was evident during the 

2020 grading controversy, where opaque algorithmic decisions prompted widespread distrust 

and protest (Ofqual, 2020). Educators and students alike expressed frustration over not 

understanding the rationale behind algorithmic outputs, highlighting the critical importance of 

model interpretability and stakeholder engagement. 
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Furthermore, predictive models trained on biased data risk perpetuating historical inequalities. 

If models are not corrected for embedded socio-economic, ethnic, or gender-related disparities, 

they may reinforce rather than mitigate disadvantage (Mehrabi et al., 2021). Biases in data 

collection, feature selection, and modelling processes can subtly influence predictions in ways 

that are difficult to detect without explainability mechanisms. 

XAI provides a path forward by illuminating the inner workings of complex models. By 

offering intuitive, stakeholder-specific explanations, XAI facilitates trust and enables 

meaningful interpretation of predictions. For example, SHAP and LIME can show which 

features most influenced an individual student’s grade prediction, while PDP and ALE can 

illustrate average effects across the dataset. These tools enable teachers and school leaders to 

interrogate model outputs, identify potential biases, and make more informed decisions about 

interventions and support. 

Crucially, the success of AI in education depends not only on its technical performance but on 

its ability to complement human judgement. Stakeholder-centric explanations tailored to the 

information needs of students, teachers, and administrators can promote transparency, build 

confidence, and enhance the legitimacy of AI-assisted assessments (Fazil et al., 2024). 

In summary, while current grade prediction approaches in the UK face multiple challenges 

including subjectivity, opacity, and bias, emerging XAI techniques offer the potential to 

address these limitations. This research builds on that promise by developing and evaluating a 

robust, interpretable, and fair AI-based grade prediction system tailored to the UK secondary 

education context. 

 

1.4 Research Aim and Objectives 
 

1.4.1 Research Aim 

To adapt XAI techniques that enhance the transparency, interpretability, and trustworthiness 

of machine learning models used for predicting student performance in GCSE Mathematics 

and English within UK secondary education, thereby supporting informed and equitable 

educational decision-making. 
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1.4.2 Research Objectives 

1. To design and implement a multi-target ensemble classifier and a multi-layer 

perceptron classifier for predicting GCSE Mathematics and English grades, using 

student performance data from a UK secondary school 

2. To compare and evaluate the predictive performance of these models across key 

demographic and educational subgroups, such as socio-economic status, gender, and 

language background, ensuring fair generalisation across diverse student populations. 

3. To aim for at least a 5% improvement in prediction accuracy over baseline models, 

where feasible, by optimizing feature selection, hyperparameter tuning, and data 

augmentation techniques tailored to GCSE performance prediction. 

4. To adapt and apply XAI techniques such as SHAP, LIME, PDP, and ALE to the 

education domain, integrating domain-specific constraints (e.g., grading policies, 

assessment criteria, and learning behavior patterns) for improved contextual relevance. 

5. To generate tailored explanations using XAI techniques that address the interpretability 

needs of multiple stakeholders including students, teachers, school administrators, and 

policymakers ensuring that AI-generated insights are actionable and pedagogically 

meaningful. 

6. To develop and validate novel evaluation metrics for explainability, transparency, and 

interpretability such as fidelity, completeness, consistency, actionability, explainability 

ratio, and transparency score to assess the quality and trustworthiness of AI-generated 

predictions in educational contexts. 

1.4.3 Research Questions 

To address the overarching research aim, this study seeks to answer the following key research 

question: 

How can explainable AI techniques be designed and adapted to improve the transparency, 

interpretability, and trustworthiness of machine learning models used in student performance 

prediction? 

This is further broken down into the following sub-questions: 

1. What are the key features and variables that most significantly influence student 

performance, and how do they vary across different educational contexts? 
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2. Which student performance indicators (e.g., exam scores, attendance, engagement 

levels) can be effectively predicted using machine learning models, and how can these 

predictions support educational decision-making? 

3. How can complex machine learning models for student performance prediction be 

made more interpretable and transparent using XAI techniques such as SHAP, LIME, 

PDP, and ALE? 

4. How can XAI-driven explanations be tailored to meet the needs of different 

stakeholders, including students, teachers, school administrators, and policymakers, 

ensuring AI-generated insights are interpretable and actionable? 

5. What quantifiable evaluation metrics (e.g., explainability ratio, transparency score, and 

interpretability ratio) can be developed to assess the fidelity, completeness, consistency, 

actionability and trustworthiness of AI-driven student performance predictions? 

1.5 Key Terms and Definitions 

This section defines the foundational terms used throughout the thesis, grouped into three 

categories: (1) Artificial Intelligence and Machine Learning, (2) Explainable AI (XAI) 

Concepts, and (3) Educational Context and Stakeholder Engagement. 

1.5.1 Artificial Intelligence and Machine Learning 

1. Artificial Intelligence (AI): The field of computer science that enables machines to 

perform tasks typically requiring human intelligence, such as reasoning, learning, 

perception, and decision-making. 

2. Machine Learning (ML): A subfield of AI focused on developing algorithms that 

learn from data to make predictions or decisions without explicit programming. 

3. Machine Learning Pipeline: A structured end-to-end workflow that automates the 

development, training, validation, and deployment of machine learning models, 

enhancing reproducibility and efficiency. 

4. Ensemble Learning: A machine learning approach that combines multiple models 

(e.g., decision trees, neural networks) to improve prediction accuracy and robustness. 

5. Multi-Layer Perceptron (MLP) Classifier: A type of deep neural network used for 

classification tasks, consisting of multiple layers of interconnected neurons. 

6. Multi-Target Classification: A machine learning technique that enables simultaneous 

prediction of multiple outcome variables, such as both English and Mathematics GCSE 

grades. 
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7. Feature Selection: The process of identifying and selecting the most relevant input 

variables from a dataset to enhance model accuracy and reduce complexity. 

8. Hyperparameter Tuning: The process of optimizing configuration settings that 

govern a model’s learning process (e.g., learning rate, tree depth) to improve 

performance. 

9. Data Augmentation: A technique used to artificially expand the training dataset to 

improve generalizability and reduce overfitting. 

10. Synthetic Minority Over-sampling Technique (SMOTE): A method for addressing 

class imbalance by generating synthetic examples of minority class instances, 

enhancing fairness in classification tasks. 

1.5.2 Explainable AI (XAI) Concepts 

11. Explainable Artificial Intelligence (XAI): A branch of AI focused on making 

machine learning models transparent and interpretable by providing human-

understandable explanations for predictions. 

12. Transparency in AI: The degree to which the internal mechanisms of an AI model are 

visible and understandable—such as model architecture, parameters, or training 

processes. 

13. Interpretability in AI: The extent to which a human, particularly a non-technical user, 

can comprehend and derive meaning from an AI model’s output. 

14. Trustworthiness in AI: The extent to which AI-generated predictions are reliable, 

unbiased, and ethically aligned with human values, especially in high-stakes 

applications like education. 

15. Bias in AI Models: Systematic errors that unfairly disadvantage certain groups, often 

arising from unbalanced or unrepresentative training data or model assumptions. 

16. Fairness in AI: The commitment to ensuring AI systems do not discriminate against 

specific demographic or socio-economic groups and promote equity in decision-

making. 

17. Shapley Additive Explanations (SHAP): A model-agnostic technique that attributes 

a prediction to individual features based on their marginal contribution. 

18. Local Interpretable Model-Agnostic Explanations (LIME): A method that explains 

individual predictions by approximating the original model with a simpler, local 

interpretable model. 
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19. Partial Dependence Plots (PDP): Visual tools that depict the average effect of one or 

more input variables on model predictions. 

20. Accumulated Local Effects (ALE): An alternative to PDPs that accounts for feature 

interactions and avoids extrapolation, offering more accurate interpretation in complex 

models. 

21. Evaluation Metrics in XAI: Quantitative measures used to assess the effectiveness of 

explanations provided by AI models, especially in terms of their clarity and utility. 

These include: 

• 21.1 Fidelity: How well the explanation reflects the true reasoning of the model. 

• 21.2 Completeness: Whether the explanation includes all critical factors influencing 

the outcome. 

• 21.3 Consistency: The stability of explanations across similar cases. 

• 21.4 Actionability: Whether the explanation leads to decisions or interventions that 

improve outcomes. 

1.5.3 Educational Context and Stakeholder Engagement 

22. Student Performance Prediction: The use of ML techniques to forecast academic 

performance based on prior data such as attendance, grades, behavior, and engagement 

metrics. 

23. Educational Stakeholders: Individuals or groups impacted by AI use in education, 

including students, teachers, school leaders, policymakers, and parents. 

1.6 Research Methodology 

This thesis employs a multi-step approach to adapting XAI techniques for student performance 

prediction: 

1. Literature Review: A comprehensive analysis of the role of AI in education, explores machine 

learning models for prediction and a comprehensive analysis of existing XAI methods, 

focusing on their applicability to educational data and the specific needs of educational 

stakeholders. 

2. Data: Thorough presentation of data selection, data pre-processing and extensive exploratory 

data analysis.  
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3. Model Selection: Development and evaluation of various machine learning models, including 

random forests, gradient boosting, and deep learning models, trained on student performance 

datasets. 

4. XAI Adaptation 

5. User-Centric Evaluation: Testing the XAI methods with real-world educational stakeholders 

through user studies, focusing on how understandable and actionable the model explanations 

are.  

6. Metric Development: Creation of new metrics to evaluate the transparency, interpretability, 

and actionability of XAI models, with particular focus on balancing accuracy with 

explainability. 

7. Research Conclusion: Summary of findings, research limitation and challenges, summary of 

findings, key contribution and future directions. 

1.7 Thesis Structure 

This thesis is organized into seven chapters, each building on the preceding one to present a 

comprehensive investigation into explainable machine learning for predicting student 

performance in secondary education in the UK. 

Chapter 1 introduces the research context, objectives, and guiding questions, and outlines the 

significance and scope of the study. 

Chapter 2 presents a critical review of existing literature on student performance prediction, 

machine learning in education, algorithmic bias, and explainable AI (XAI). It identifies key 

research gaps, especially in the application of XAI techniques to the UK GCSE context. 

Chapter 3 details the research methodology, including data collection and preparation, feature 

selection, model development, and the design of stakeholder-focused evaluation studies. It also 

introduces the explainability metrics and evaluation techniques used in this study. 

Chapter 4 provides an in-depth account of model implementation and performance. It 

compares predictive models using a range of performance and explainability metrics and 

analyses the trade-offs between accuracy and transparency. 
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Chapter 5 presents the results of stakeholder evaluations, including feedback from teachers 

and policymakers on the interpretability and usefulness of the model outputs. It also compares 

decision-making outcomes with and without access to explainability insights. 

Chapter 6 discusses the findings in relation to existing research, highlighting both theoretical 

and practical implications. It reflects on the ethical dimensions of AI in education and the 

challenges of implementing fair and interpretable models in real-world settings. 

Chapter 7 concludes the thesis by summarizing key contributions, acknowledging limitations, 

and suggesting directions for future research, particularly the development of human-centered, 

context-sensitive XAI solutions in education. 

Figure 1 presents a visual overview of the thesis structure which begins with foundational 

context (Chapter 1), moves through literature and methodology (Chapters 2–3), and culminates 

in findings, stakeholder validation, and final conclusions (Chapters 4–7). 

 

 

Figure 1: Thesis Chapter Roadmap 
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1.8 Chapter Conclusion 

This chapter has outlined the background, challenges, and objectives of this research on XAI 

in student performance prediction. The study highlights the need for transparency, fairness, and 

accuracy in AI-driven educational models while addressing bias and ethical concerns. By 

integrating XAI techniques, this research aims to bridge the gap between AI’s predictive power 

and the need for human-interpretable decisions. The subsequent chapters build upon this 

foundation, exploring relevant literature, methodological design, model development, and 

stakeholder evaluations. Through this progression, the thesis seeks to contribute to a fairer, 

more transparent approach to AI-supported assessment in UK secondary education. 
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Chapter 2 – Literature Review 
 

Predicting student performance is a complex task influenced by multiple variables, including 

demographic, socio-economic, psychological, and environmental factors. These factors shape 

students' actions, decision-making processes, and learning outcomes (Hayes, 2021). 

Demographic parameters, often employed in population studies, provide statistical insights into 

student characteristics such as employment status, education level, income, and socio-

economic background (Basu & Goldhaber-Fiebert, 2015). Understanding these variables is 

crucial for educators, researchers, and policymakers to address gaps in education and design 

targeted interventions that support student success (Hayes, 2021). 

Machine learning (ML) has become a powerful tool for predicting student performance by 

analysing these variables and offering data-driven insights. ML models support early 

interventions, personalised learning, and curriculum adjustments based on predictive patterns 

(Ayienda et al., 2021; Tong & Li, 2024; Burke et al., 2024). However, the application of ML 

in educational settings presents challenges related to bias, fairness, and interpretability. 

Ensuring that these models provide accurate and meaningful predictions requires careful 

selection of input variables and an understanding of their implications for student learning. 

2.1 Literature Review Strategy 

This literature review adopted a thematic synthesis approach to systematically examine the 

current body of research on student performance prediction using ML and XAI. The review 

aimed to identify factors influencing academic outcomes, assess the effectiveness of predictive 

models, and evaluate the adoption of XAI techniques in educational contexts. 

2.1.1 Search Databases and Keywords 

The literature search was conducted using academic databases including: 

• Scopus 

• Web of Science 

• IEEE Xplore 

• Google Scholar 

• ERIC 



 
 
 

34 
 

Keywords and search strings included: 

• “Student performance prediction” 

• “Machine learning in education” 

• “Predicting GCSE outcomes” 

• “Educational fairness and AI” 

• “Explainable artificial intelligence in education” 

• “XAI for student success prediction” 

2.1.2 Inclusion and Exclusion Criteria 

• Inclusion: Peer-reviewed journal articles, conference papers, and systematic reviews 

published between 2015 and 2024, focusing on educational AI, student performance 

prediction, or XAI applications. 

• Exclusion: Non-English papers, studies with inadequate methodology transparency, 

and those not involving predictive analytics. 

2.1.3 Review Process 

Over 120 studies were identified. After title and abstract screening, 67 studies were shortlisted 

for full review. The studies were coded thematically across six core domains: 

1. Demographic and Socioeconomic Factors 

2. Behavioral and Psychological Traits 

3. Digital Literacy and Technology Use 

4. Feature Engineering and Preprocessing 

5. ML Models and Hybrid Techniques 

6. Fairness, XAI, and Ethical Considerations 

This process enabled the identification of key gaps in the literature, particularly around 

fairness-aware modelling, explainability in high-stakes environments like GCSEs, and 

stakeholder-specific interpretability. 
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2.2 Demographic and Socioeconomic Factors in Academic Performance 

Academic performance is shaped by a complex interplay of demographic, socio-economic, 

psychological, and environmental factors. Understanding these variables is crucial for 

developing accurate predictive models using machine learning (Suleiman, 2023; Saha et al., 

2022; Munir et al., 2023). This section critically examines key demographic factors affecting 

student performance, drawing on recent empirical studies and highlighting their implications 

for educational analytics and predictive modelling. 

2.2.1 Socioeconomic Status (SES) and Academic Performance 

Numerous studies have established a strong link between socio-economic status (SES) and 

student achievement. Sammons (1995) analysed educational disparities over nine years, 

emphasising how factors such as family income, parental education, and neighbourhood 

characteristics shape academic trajectories. Similarly, Nawa et al. (2020) found that medical 

students from non-urban areas in Japan were 7.2 times more likely to experience academic 

failure, underscoring how geographic disparities impact student success. 

In South Africa, Luwes et al. (2017) discovered that students whose native language was 

Afrikaans or Zulu outperformed those from different linguistic backgrounds. This finding 

aligns with Masud et al. (2019), who demonstrated that socio-economic conditions, parental 

education, and parenting styles strongly predicted student performance in Pakistan. 

Additionally, Wickrama et al. (2021) argued that early socio-economic disadvantages not only 

affect immediate academic success but also perpetuate long-term economic hardship, 

reinforcing cycles of inequality. Similarly, Jasim (2020) confirmed that family social status 

impacts academic achievement, suggesting that peer influences also play a crucial role in 

reinforcing these outcomes. 

In contrast, Al-Azawei & Al-Masoudy (2020) argue that while demographic characteristics do 

influence learning outcomes, behavioural and engagement factors often overshadow these 

effects. Their findings suggest that students' proactive behaviours significantly enhance 

academic performance, regardless of their socio-economic status. These discrepancies indicate 

that ML models predicting student performance must carefully weigh the relative importance 

of SES against behavioural traits to improve accuracy and fairness. 
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2.2.2 Gender and Academic Achievement 

The role of gender in academic achievement has long been debated, with researchers exploring 

differences in performance between male and female students. Some studies suggest that 

gender plays a key role in shaping academic success, while others argue that it is only one of 

many contributing factors. Malik et al. (2024) found that gender influences academic 

performance, particularly through variations in academic anxiety and motivation. Their 

research indicates that female students often report higher levels of academic anxiety, which 

can negatively impact their performance. However, Khan et al. (2024) challenge this 

perspective, suggesting that when self-efficacy and learning strategies are considered, gender 

differences become statistically insignificant. This implies that disparities in academic success 

may be driven more by psychological and engagement factors than inherent cognitive 

differences. 

Beyond individual academic capabilities, social and cultural expectations also shape how 

students perceive their abilities and cope with challenges. Malik et al. (2024) emphasise that 

gender norms influence self-perception and coping strategies, which, in turn, affect academic 

trajectories. Yao et al. (2024) support this claim, noting that while female students tend to 

report higher self-esteem, this advantage does not always translate into superior academic 

outcomes. These findings suggest that the relationship between gender, motivation, and 

achievement is complex and cannot be explained by gender alone. Instead, psychological and 

social influences play a crucial role in shaping students' academic experiences. 

Despite evidence suggesting gender-based differences in academic performance, other studies 

have shown that once additional factors are considered, gender’s influence diminishes. Khan 

(2021) examined how personality traits interact with academic success and found that female 

students benefited from openness to experience, while male students performed better when 

emotional stability was a contributing factor. This highlights the importance of looking beyond 

gender and considering personality and behavioural traits in analysing academic achievement. 

2.2.3 Parental and Cultural Influences on Learning 

Parental involvement is widely recognised as a key determinant of student success, though its 

impact varies based on parenting styles, socio-economic background, and student personality. 

Research suggests that authoritative parenting, which balances encouragement with structure, 
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fosters self-efficacy and improves academic outcomes (Hayek et al., 2022; Nair et al., 2024). 

Similarly, An et al. (2019) found that parental engagement in STEM subjects positively 

influences academic performance. 

However, the effectiveness of parental involvement depends on the child’s individual needs. 

Saka (2022) observed that some students thrive under structured guidance, while others benefit 

more from independent learning. Mihret et al. (2019) reported that in certain cultures, 

authoritarian parenting demanding high academic performance without emotional support can 

yield high grades, whereas other studies suggest that such rigidity can increase stress and 

disengagement (Ma et al., 2021; Zahedani et al., 2016). 

Socio-economic factors also influence parental involvement. Financial constraints and work 

commitments may limit parents’ ability to engage in their child’s education (Mugumya et al., 

2023). However, Butler (2021) challenges the assumption that lower-income parents are less 

invested in education, highlighting their strong commitment despite resource limitations. These 

nuances suggest that ML models must consider a wide range of parental engagement indicators 

beyond income or education level to provide more accurate predictions (Bettencourt et al., 

2020). 

2.2.4 Psychological and Behavioral Factors 

Psychological attributes such as self-esteem and self-regulation play a significant role in 

academic success. Vacalares et al. (2023) found a strong correlation between self-esteem and 

academic performance, though other studies suggest that academic success itself reinforces 

self-esteem (Nguyen et al., 2019). Additionally, students with low self-esteem are more likely 

to experience anxiety and stress, negatively impacting their ability to concentrate (Nguyen et 

al., 2019). 

Self-regulation, or the ability to manage emotions, focus, and sustain effort, is another key 

predictor of academic achievement. Research shows that students with poor self-regulation are 

less engaged and achieve lower academic outcomes (Atasoy & Pekel, 2021). Those with strong 

self-regulation skills, however, are more likely to set realistic goals and persist through 

challenges (Roth et al., 2017). 
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2.2.5 Technology and Digital Literacy 

In today’s educational landscape, digital literacy has become a key factor in student success. 

As schools and universities increasingly integrate technology into their teaching methods, 

understanding how digital skills impact academic performance has gained growing importance. 

While digital competency enables students to engage more effectively with learning materials, 

it is also shaped by factors such as socioeconomic background, cultural context, and access to 

technology.  

Research consistently shows a strong correlation between digital competencies and academic 

achievement. Mehrvarz et al. (2021) found that students with advanced digital skills tend to 

perform better in their studies, a finding supported by Zhao et al. (2021), who highlighted 

digital informal learning as a significant factor in educational success. Their analysis suggests 

that students who are proficient with technology are better equipped to navigate academic 

challenges and engage with course content. However, some researchers caution against 

viewing digital literacy as the sole determinant of academic performance. Weli et al. (2024) 

argue that while technology enhances learning, it does not automatically bridge academic gaps 

for at-risk students. Instead, they emphasize the importance of early identification of struggling 

learners and the use of educational technology to provide targeted interventions. 

Despite the advantages of digital literacy, not all students have equal access to technology, 

leading to disparities in academic performance. This persistent digital divide disproportionately 

affects students from lower-income backgrounds who may lack reliable internet access, 

personal devices, or exposure to digital tools at home. Weli et al. (2024) highlight that, factors 

such as parental education and socioeconomic status significantly influence a student’s ability 

to develop digital competencies. Zhao et al. (2021) echo this concern, noting that digital 

proficiency is often linked to a student's financial background. Without equal access to 

technology, students from disadvantaged backgrounds face an additional barrier to academic 

success. 

Lucas et al. (2022) raise another issue, arguing that self-reported digital competency may not 

always reflect actual proficiency. Many students perceive themselves as tech-savvy but may 

lack the practical skills necessary for effective digital learning. This gap between perceived 

and actual competence suggests that educators and researchers should adopt more rigorous 

assessment methods to understand students’ digital abilities more accurately. 
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Beyond socioeconomic disparities, cultural factors also influence digital literacy. Morales et 

al. (2024) found that students’ cultural backgrounds shape their attitudes toward technology 

and learning, affecting how they engage with digital tools. Some cultures emphasize traditional 

learning methods, while others encourage technology-driven education. These differences 

suggest that educational institutions must adopt culturally responsive teaching methods to 

ensure that digital learning strategies are effective across diverse student populations. 

Given the complex relationship between digital literacy and academic performance, machine 

learning models designed to predict student success must incorporate multiple variables. First, 

predictive models should integrate not only digital competency levels but also factors such as 

access to technology, socioeconomic background, and cultural influences. By accounting for 

these elements, machine learning can provide a more holistic understanding of student 

performance (Weli et al., 2024; Zhao et al., 2021). Second, advanced machine learning 

techniques can be used to model non-linear relationships between digital literacy and academic 

success, uncovering patterns that simpler models might overlook (Yahaya & Ogundola, 2024). 

Third, predictive models must be adaptable to different educational and cultural contexts. 

Kwiatkowska & Wiśniewska-Nogaj (2022) argue that localized data collection is essential for 

ensuring that models accurately reflect the realities of different student populations. 

Another critical consideration is addressing the digital divide in predictive analytics. Machine 

learning models should be designed to identify students who are at risk due to limited digital 

access and provide recommendations for interventions. Weli et al. (2024) and Lucas et al. 

(2022) emphasize that predictive models should help schools and policymakers allocate 

resources effectively to ensure that all students have the opportunity to develop strong digital 

skills. Additionally, continuous assessment is crucial. Rather than relying on a one-time 

measurement of digital literacy, ongoing tracking of students’ technology use and skills 

development can improve the accuracy of machine learning predictions (Mehrvarz et al., 2021; 

Litińa & Svētińa, 2023). 

The existing literature highlights digital literacy as an important factor in student success while 

also revealing the complexities surrounding access, cultural attitudes, and the digital divide. As 

educational institutions continue to adopt technology-driven learning methods, machine 

learning models must incorporate a diverse range of data to ensure accurate and fair predictions. 

By considering socioeconomic disparities, cultural influences, and evolving digital skills, these 
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models can help create more equitable learning environments and better support students in 

achieving academic success. 

2.2.6 Implications for Machine Learning in Student Performance Prediction 

The reviewed literature underscores the complexity of student performance, demonstrating that 

it cannot be accurately predicted using isolated demographic variables. While factors such as 

SES, gender, and parental involvement provide valuable insights, they do not operate in 

isolation. Behavioural, psychological, and technological dimensions must also be considered 

to develop a holistic understanding of academic achievement. 

Machine learning has become a valuable tool for predicting student performance, but it also 

presents challenges. One of the biggest concerns is bias in training data. If predictive models 

are trained on datasets that reflect existing inequalities, they risk reinforcing rather than 

correcting them (Imran et al., 2020). Ensuring that training datasets are diverse and 

representative is essential for producing fair and accurate predictions. Additionally, predictive 

models should not merely identify performance trends but also provide actionable insights that 

educators can use to support students. 

Machine learning has the potential to transform education by enabling early interventions and 

personalised learning strategies. However, for these models to be truly effective, they must be 

designed to reflect the complexity of student performance. By incorporating behavioural data, 

cultural influences, and psychological attributes, predictive models can move beyond simple 

classifications and contribute to more meaningful and equitable educational interventions. This 

research will therefore focus on refining feature selection methods and ensuring that predictive 

models remain interpretable and actively mitigate bias. 

2.3 Feature Engineering in Educational Performance Prediction 

Feature engineering is a foundational process in machine learning that involves transforming 

raw data into structured, informative inputs that improve the performance of predictive models. 

In the domain of educational data mining, feature engineering plays a particularly vital role in 

capturing the multifaceted nature of student learning and behavior. By extracting and refining 

features such as prior academic achievement, attendance records, engagement patterns, and 

socio-demographic variables, researchers can develop models that more accurately reflect 

students’ academic trajectories. 
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Jiang et al. (2022) define feature engineering as a process of understanding the application 

context and the intrinsic characteristics of the data. In the context of education, this involves 

recognizing the behavioral, academic, and contextual variables that influence student success. 

Effective feature engineering can bridge the gap between raw educational data and meaningful 

insights, enabling predictive models to uncover latent patterns that may otherwise remain 

hidden. 

Research in the field has consistently identified certain features as particularly predictive of 

student performance. Attendance and prior grades are among the most reliable indicators, with 

multiple studies emphasizing their centrality in forecasting academic outcomes. Mustapha 

(2023) underscores the importance of integrating a diverse set of features, including not only 

academic metrics but also engagement indicators and behavioral data, to capture a more 

nuanced profile of student performance. Socio-demographic variables such as gender, parental 

education, and socio-economic background have also been found to correlate strongly with 

learning outcomes, particularly in their influence on access to educational resources, support 

structures, and overall learning opportunities. 

In addition to traditional academic records, modern educational systems increasingly 

incorporate data from digital learning platforms. Learning Management Systems (LMS) and 

Massive Open Online Courses (MOOCs) generate a wealth of behavioral data, such as 

clickstream logs and interaction timestamps. Kőrösi and Farkas (2020) demonstrated how 

features extracted from raw clickstream data, including frequency of platform use and time 

spent on tasks, can be used to predict student success in online learning environments. Such 

data enables a shift from static to dynamic models of student performance prediction, allowing 

for more responsive and real-time analytics. 

To effectively handle diverse and often complex educational data, a range of feature 

engineering techniques has been applied. Categorical variables such as course enrolments or 

demographic characteristics are often encoded using methods like one-hot encoding or ordinal 

encoding, which make the data compatible with most machine learning algorithms. Feature 

transformation techniques such as scaling, normalization, and binning are also commonly 

employed to ensure that continuous variables contribute meaningfully to model learning. 

Mustapha (2023) highlights the importance of combining multiple engineering strategies to 

enhance the representational value of student performance data. 
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Dimensionality reduction techniques further contribute to the refinement of feature sets. 

Principal Component Analysis (PCA), for example, has been employed to reduce data 

complexity while preserving key information. These techniques not only improve 

computational efficiency but also enhance model accuracy by removing redundant or irrelevant 

features. Feature selection methods, such as recursive feature elimination and information gain, 

allow researchers to identify the most informative features while reducing the risk of 

overfitting. Naseer et al. (2020) found that models using optimized feature sets generated 

through information gain significantly outperformed those using raw data inputs. 

Beyond predictive performance, feature engineering also plays a key role in ensuring model 

fairness and interpretability. Al-Ahmad et al. (2022) emphasize the ethical implications of 

feature selection, particularly when dealing with sensitive attributes such as socio-economic 

status or ethnicity. Poorly selected features can unintentionally introduce bias into prediction 

models, disadvantaging certain student groups. Thoughtful feature engineering, combined with 

fairness-aware modelling practices, can help mitigate such risks by promoting equitable 

evaluation criteria. Moreover, by identifying and retaining only the most influential features, 

models become more interpretable, aiding educators and decision-makers in understanding the 

rationale behind predictions. 

In sum, feature engineering is an essential step in the development of robust, fair, and 

interpretable predictive models in education. The literature highlights a broad consensus on the 

importance of features such as attendance, prior achievement, and socio-demographics, while 

also acknowledging the growing relevance of behavioral and engagement data from digital 

learning platforms. A range of techniques, from encoding to dimensionality reduction, has been 

effectively employed to refine feature sets and improve model performance. Importantly, 

feature engineering also supports fairness and transparency, ensuring that predictive models 

not only achieve high accuracy but also uphold ethical standards in educational assessment. 

2.4 Machine Learning Models for Student Performance Prediction 

ML and AI have found extensive application across various domains, including education, 

advertising, financial analysis, and fraud detection (Hutt et al., 2019). In the educational 

sector, ML models are increasingly utilized to facilitate data-driven decision-making by 

analysing diverse student attributes to predict academic outcomes. However, challenges such 

as bias in training data, model interpretability, and fairness persist, raising important concerns 
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regarding the effectiveness and ethical implications of ML applications in educational settings 

(Hutt et al., 2019). This review explores different ML techniques used for student performance 

prediction, compares their effectiveness, and highlights ensemble learning and multilayer 

perceptron (MLP) as key methodologies for achieving optimal results. This literature review 

adopts a thematic approach, critically analysing existing studies on machine learning models 

in education, comparing different predictive techniques, and evaluating the role of XAI in 

enhancing the reliability of these models. 

 

2.4.1 Advances in ML for Predicting Educational Outcomes 

The ability of ML algorithms to analyse large-scale datasets has led to significant 

advancements in academic performance prediction. Alyahyan and Düştegör (2020) highlighted 

the potential of these methods to uncover patterns in student behaviour and academic trends. 

Their research demonstrated that ML models can provide more accurate predictions compared 

to traditional statistical approaches, enabling educators to identify at-risk students early. 

Both supervised and unsupervised learning techniques have been employed for performance 

prediction. While supervised learning methods such as Decision Trees (DTs) and Artificial 

Neural Networks (ANNs) have been widely used, unsupervised learning has been leveraged to 

uncover latent patterns in student data (Bajari et al., 2015). However, the effectiveness of these 

models varies depending on dataset characteristics and the inclusion of key predictive features. 

2.4.2 Performance of ML Techniques: Supervised Learning Approaches 

A wide range of studies have explored the effectiveness of various machine learning (ML) 

algorithms in predicting student performance, highlighting both their predictive capabilities 

and associated limitations. Wu (2021) employed Decision Trees (DTs) and Artificial Neural 

Networks (ANNs) to classify students based on multiple input parameters, showing the utility 

of these models in educational analytics. Decision Trees, in particular, have been favoured for 

their transparency and ease of interpretation. For instance, Rizvi, Rienties, and Khoja (2019) 

used a DT model to examine how demographic factors such as socioeconomic status, gender, 

and disabilities influence student outcomes. However, DTs are known to overfit training data, 

reducing their generalisability across different contexts. 
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In contrast, ANNs have become increasingly popular due to their ability to capture complex, 

non-linear relationships in educational data. Kehinde et al. (2021) developed an ANN model 

using prior academic records and demographic features to predict student admissions, 

achieving a precision rate of 92.3%. Their results demonstrated the strength of deep learning 

in modelling educational outcomes, though the study also acknowledged the challenge of 

limited interpretability, which can be problematic for educators seeking clear, actionable 

insights. 

Cruz-Jesus et al. (2020) conducted a comprehensive comparison of several ML techniques such 

as ANNs, Decision Trees, Extra Trees, Random Forests (RF), Support Vector Machines 

(SVM), K-Nearest Neighbours (KNN), and Logistic Regression. They found that ensemble 

methods such as Extra Trees and RF consistently outperformed individual classifiers, achieving 

accuracy rates around 75%. Ensemble models like RF, which aggregate predictions from 

multiple DTs, were particularly effective in reducing overfitting and improving robustness. 

This was corroborated by Baashar et al. (2021), who also found that RF and ANNs achieved 

the highest predictive performance when applied to educational datasets. 

Support Vector Machines have also shown strong classification performance, especially with 

high-dimensional data (Su et al., 2021). However, their computational intensity and sensitivity 

to parameter tuning can limit their practical application in large-scale, real-time educational 

settings. KNN models, though simple and interpretable, are susceptible to noise and rely 

heavily on distance metrics, which can impact performance when dealing with diverse and 

imbalanced datasets (Kavitha et al., 2022). As such, KNN is often considered more suitable as 

a baseline model rather than a primary predictive tool. 

Naïve Bayes (NB), known for its simplicity and scalability, can effectively handle high-

dimensional data. Nonetheless, its core assumption of feature independence frequently does 

not hold in educational contexts, where attributes such as attendance, socio-economic status, 

and prior achievement are often interrelated (Winzeck et al., 2018). 

Alyahyan and Düştegör (2020) also compared DTs, SVMs, and ANNs, noting that while DTs 

offer interpretability, they are prone to overfitting. SVMs delivered strong results in complex 

feature spaces, though required extensive tuning, and ANNs particularly multilayer perceptron 

(MLP) achieved the highest accuracy, albeit at the cost of transparency. 
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While high-performing models such as ANNs and ensemble techniques demonstrate promising 

results in terms of predictive accuracy, several studies have emphasised the need for 

explainable artificial intelligence (XAI). For example, both Baashar et al. (2021) and Cruz-

Jesus et al. (2020) stressed that despite the superior accuracy of models like RF and Extra Trees, 

their lack of transparency can hinder adoption in education, where trust and accountability are 

critical. 

2.4.3 Hybrid Models and Ensemble Techniques 
 

The application of hybrid classifiers in predicting student performance has garnered substantial 

interest within the educational data mining (EDM) community. These classifiers, which 

integrate multiple machine learning (ML) algorithms, are often found to outperform traditional 

single-model approaches by capitalizing on the strengths and compensating for the weaknesses 

of individual models. Ensemble techniques such as bagging, boosting, stacking, and voting fall 

under this umbrella and are increasingly recognized for their ability to enhance predictive 

performance in complex educational contexts. 

A key advantage of hybrid classifiers lies in their ability to harness algorithmic diversity. Hsu 

(2017) emphasizes that such diversity among base learners is not merely beneficial but essential 

for improving prediction outcomes. The rationale is that different algorithms may capture 

distinct patterns or handle noise and bias differently, leading to more generalizable models. 

Evangelista and Sy (2022) empirically support this view by demonstrating that both 

homogeneous (e.g., bagging and boosting) and heterogeneous (e.g., stacking and voting) 

ensembles yield superior prediction accuracy compared to individual classifiers. Similarly, 

Francis and Babu (2019) extend this discussion by incorporating clustering into hybrid 

classification frameworks, underscoring that combining different data mining techniques can 

further refine predictive insight in academic settings. 

Several studies provide empirical evidence of the effectiveness of hybrid approaches. Siddique 

et al. (2021) report a hybrid model combining multilayer perceptron (MLP), decision trees, and 

logistic regression achieved an accuracy of 98.5%, significantly outperforming standalone 

models. However, this impressive performance comes at the cost of increased computational 

complexity and reduced model interpretability. These factors may hinder real-world adoption 

in educational institutions. The same study reiterates these findings when evaluating MLP 
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alongside J48 decision trees and bagging/boosting methods, with MLP emerging as the top 

performer. While accuracy gains are evident, there is limited discussion on how these models 

fare in terms of fairness, transparency, or usability by educators which are dimensions 

increasingly important in educational AI applications. 

Ayienda et al. (2021) similarly found that hybrid classifiers combining KNN, SVM, Naïve 

Bayes, MLP, and linear regression yielded a predictive accuracy of 97.6%. Yet, despite the 

high performance, the study lacks granularity in explaining how each algorithm contributed to 

the ensemble or whether the model was evaluated across different student subgroups. This 

absence of fairness-aware evaluation raises questions about potential bias propagation in 

ensemble systems, a concern echoed in recent XAI and ethical AI literature. 

Voting-based ensemble methods, particularly those utilizing majority or weighted voting, have 

also shown promise in improving robustness. Ostvar and Moghadam (2020) describe how 

aggregating classifier outputs through simple or weighted voting reduces variability and error, 

leading to more stable predictions. Haque et al. (2016) expand on this by integrating genetic 

algorithms to optimize ensemble composition, demonstrating the method’s adaptability across 

classification tasks. While these innovations offer potential, they again introduce additional 

complexity, which could compromise transparency, an important consideration in high-stakes 

domains like education. As Kim et al. (2014) argue, hybrid voting mechanisms can refine 

outcomes further by weighting classifiers according to past performance, but such strategies 

may also obscure the decision-making process, making explanations harder to generate and 

understand. 

Gajwani and Chakraborty (2020) reinforce the effectiveness of hybrid methods by 

demonstrating that combining random forests with other classifiers improves prediction 

accuracy in academic performance forecasting. However, like other studies, they focus 

predominantly on accuracy metrics, without adequately addressing practical concerns such as 

computational efficiency, scalability to large student datasets, or explainability for non-

technical stakeholders like parents, teachers and school administrators. 

Ashraf et al. (2020) conclude that hybrid classification techniques not only improve accuracy 

but also increase robustness, a desirable trait in dynamic and diverse educational environments. 

Nonetheless, across much of the reviewed literature, there remains a tendency to prioritize 
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predictive performance over interpretability, fairness, and contextual applicability which are 

elements critical for ethical and effective AI deployment in education. 

In summary, the literature consistently highlights the predictive superiority of hybrid classifiers 

in student performance prediction tasks. Ensemble techniques whether through bagging, 

boosting, stacking, or voting have proven effective in leveraging algorithmic diversity to 

enhance accuracy and robustness. However, a critical review reveals a recurring emphasis on 

accuracy at the expense of other vital dimensions such as interpretability, fairness, and real-

world ‘deployability’. This work aims go beyond performance metrics to address these gaps, 

especially given the ethical implications of automated decision-making in education. Only by 

balancing predictive power with transparency and equity can hybrid classifiers be responsibly 

integrated into educational settings. 

2.4.4 Role of MLP in Predictive Modelling 

Among the various machine learning techniques applied in educational data mining, the 

Multilayer Perceptron (MLP), a type of feedforward artificial neural network, has consistently 

demonstrated exceptional predictive capabilities. MLP's architecture which comprises of 

multiple hidden layers and non-linear activation functions enables it to model both linear and 

complex non-linear relationships in data, making it particularly well-suited for predicting 

student academic outcomes. Its deep learning structure captures intricate interactions between 

features such as prior achievement, attendance, socio-economic status, behavioural patterns, 

and learning environments, all of which play crucial roles in student success. 

Several studies provide empirical support for the use of MLPs in educational settings. Siddique 

et al. (2021), for instance, identified MLP as the highest-performing model in their comparative 

study, achieving a predictive accuracy of 98.5%, significantly outperforming other standalone 

classifiers. Similarly, Ghorbani and Ghousi (2020) demonstrated the effectiveness of MLP in 

early identification of students at risk of academic underperformance, thereby facilitating 

timely interventions. Ayienda et al. (2021) also incorporated MLP into a hybrid ensemble with 

other classifiers such as KNN, SVM, and Naïve Bayes, reporting a strong predictive accuracy 

of 97.6%. These studies collectively reinforce MLP's suitability for modelling the complexity 

inherent in educational datasets. 
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In addition to its accuracy, MLP offers high adaptability across diverse data types and 

educational contexts. Its capacity to process both numerical and categorical data, along with its 

scalability across different input-output formats, makes it a valuable model for a wide range of 

prediction tasks. This adaptability is particularly important in education, where data sources 

can vary considerably in structure and quality. 

However, MLP’s strengths are tempered by certain limitations. One of the most frequently 

cited challenges is the lack of interpretability. As with many artificial neural networks, MLP 

functions as a black-box model, offering limited insight into how predictions are generated. 

This characteristic poses a barrier in educational contexts, where stakeholders such as teachers, 

students, and administrators require transparent explanations to trust and act upon model 

outputs. Comparisons across studies have shown that simpler models, including logistic 

regression, decision trees, and random forests, often provide more interpretable outputs while 

maintaining reasonably good performance (Rizvi, Rienties, & Khoja, 2019; Cruz-Jesus et al., 

2020). Although these models may not match MLP's predictive accuracy, their transparency 

offers better alignment with ethical and practical considerations in education. 

MLPs have also been successfully deployed within hybrid and ensemble frameworks to boost 

performance and stability. When combined with ensemble strategies such as bagging, boosting, 

or weighted voting, MLPs contribute significantly to model robustness by enhancing classifier 

diversity. However, the computational complexity and training time of MLP-based models 

must also be considered, particularly in institutions with limited technical resources. 

While the interpretability of MLP remains a challenge, this can be mitigated through the 

integration of explainable AI techniques and hybrid modelling approaches. Balancing 

performance with transparency is essential in educational contexts, and MLP offers a strong 

foundation upon which reliable, adaptable, and interpretable predictive systems can be built. 

 

 
2.4.5 Comparative Analysis of Machine Learning Techniques for Student Performance 
Prediction 

The increasing use of machine learning (ML) in educational data mining has enabled more 

accurate predictions of student academic performance, allowing institutions to implement 

proactive support strategies. The selection of an appropriate ML model is influenced not only 
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by its predictive accuracy but also by its interpretability, scalability, and suitability for the 

specific dataset in use. As Baashar et al. (2021) highlight, the effectiveness of a model is 

context-dependent and varies based on dataset complexity, class imbalance, and feature 

dimensionality. 

Artificial Neural Networks (ANNs), particularly the Multilayer Perceptron (MLP), have shown 

high accuracy in modelling non-linear relationships. Studies by Cruz-Jesus et al. (2020) and 

Ghorbani and Ghousi (2020) demonstrate MLP's capacity to learn intricate student-related 

patterns. However, the model's black-box nature and computational demands limit 

interpretability, which is essential in educational decision-making. 

Decision Trees (DTs) are valued for their interpretability and rule-based structure (Baashar et 

al., 2021). Despite this, they tend to overfit noisy datasets and underperform in complex 

scenarios. Random Forests (RF) mitigate this issue by aggregating multiple trees, improving 

generalization and offering feature importance insights (Rodriguez-Hernandez et al., 2021). 

However, their interpretability still falls short in fine-grained educational contexts. 

Support Vector Machines (SVMs) are powerful classifiers in high-dimensional spaces but are 

computationally intensive and lack transparency (Siddique et al., 2021). Similarly, K-Nearest 

Neighbors (KNN) performs well in small datasets but is sensitive to irrelevant features and 

scales poorly (Francis & Babu, 2019). Naïve Bayes (NB) models are scalable and effective for 

categorical data but assume feature independence, which is rarely valid in educational contexts 

(Sokkhey, 2020). 

Ensemble methods such as gradient boosting, particularly XGBoost, have achieved state-of-

the-art performance across educational benchmarks. These models iteratively improve 

accuracy and reduce overfitting. However, they are complex and computationally demanding. 

To address the need for efficient predictive modeling in educational performance, Histogram-

Based Gradient Boosting (HGB) has emerged as a viable and effective variant that retains 

high performance while significantly reducing computational load. This method discretizes 

continuous features into histograms, facilitating faster training, better handling of missing 

values, and improved support for categorical variables. Importantly, HGB leverages the 

principles of gradient boosting, using histogram representations to enhance efficiency without 

sacrificing prediction accuracy (LIU, 2024; Setyarini et al., 2024). 
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Recent studies underscore the effectiveness of HGB in predicting academic success. Liu 

emphasizes that the Histogram Gradient Boosting Regression (HGBR) approach provides 

significant advantages for regression tasks, demonstrating robust predictive capabilities due 

to its adaptive handling of diverse data types and structures (Liu, 2024). Likewise, Naeem et 

al. discuss HGB’s capacity for producing accurate predictions, resulting from its unique ability 

to iteratively refine models based on histogram approximations of data distributions (Setyarini 

et al., 2024). The combination of speed and performance makes HGB particularly suitable for 

educational contexts, where large datasets containing both continuous and categorical 

variables are common. 

 

Moreover, HGB's ability to scale effectively with large datasets further solidifies its role as a 

strong candidate for deployment in educational settings. Liu's research validates this approach 

by showcasing its superiority over traditional models, highlighting that HGB outperforms 

linear regression techniques or other classification techniques in predicting student 

performance, thus enabling timely intervention strategies for at-risk students (Liu, 2024). The 

framework's efficient resource utilization is particularly crucial in educational institutions 

where computational resources may be limited and timely results are required for decision-

making. 

Hybrid models, combining strengths of multiple algorithms (e.g., MLP with decision trees), 

often achieve the highest accuracy (Siddique et al., 2021; Ayienda et al., 2021). However, they 

come with increased complexity and reduced interpretability, making them challenging to 

implement and explain in non-technical educational environments. 

Ultimately, while no single model is universally superior, histogram-based gradient boosting 

and MLP emerged as the final selected models in this study due to their combined strengths in 

predictive accuracy, data adaptability, and computational efficiency. A detailed comparison of 

these techniques is presented in the table below. 
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Table 1: Comparison of Machine Learning Techniques for Student Performance Prediction 

 
Technique Strengths Weaknesses 

Multilayer Perceptron 

(MLP) 

High accuracy, handles 

complex data relationships 

Low interpretability, 

requires large datasets 

Random Forest (RF) Reduces overfitting, 

interpretable feature 

importance 

Less effective for 

imbalanced data 

XGBoost / Gradient 

Boosting 

Strong predictive power, 

reduces bias and variance 

Computationally 

expensive, complex to tune 

Histogram-Based Gradient 

Boosting 

Efficient for large datasets, 

handles missing values, 

supports categorical 

features 

Less interpretable, requires 

parameter tuning 

Decision Trees (DT) Easy to interpret, fast 

training 

Prone to overfitting, low 

generalization 

Support Vector Machines 

(SVM) 

Effective in high-

dimensional space 

Poor scalability, limited 

interpretability 

K-Nearest Neighbors 

(KNN) 

Simple implementation, no 

training phase 

Sensitive to noise, 

inefficient on large datasets 

Naïve Bayes (NB) Scalable, handles large 

categorical datasets 

Assumes feature 

independence, may reduce 

accuracy 

Hybrid Models Combine benefits of 

multiple models, high 

accuracy 

Increased complexity, 

difficult to interpret 

 

 

2.5 Algorithmic Bias and Fairness in AI-Powered Prediction Models 
 

Algorithmic bias refers to systematic and repeatable errors in AI predictions that unfairly 

favour or disadvantage certain groups of individuals, often reflecting existing social 
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inequalities embedded within training data. This bias may originate from the data itself, which 

may exhibit historical inequities, or from the algorithms used, potentially leading to biased 

outcomes during prediction (Baker and Hawn, 2021). In educational contexts, algorithmic bias 

can result in unequal resource allocation, misclassification, and support interventions that 

perpetuate disparities in academic achievement, particularly among marginalised student 

groups. 

As Baker and Hawn (2021) highlight, the manifestation of algorithmic bias in educational 

algorithms can adversely affect underrepresented populations, contributing to ongoing 

achievement gaps rather than mitigating them. These issues are especially concerning in high-

stakes settings such as education, where predictive models may influence critical decisions 

related to academic progression and access to resources. 

2.5.1 Sources of Bias in Educational Data 

Bias in educational AI systems can arise from multiple sources. Imbalanced datasets that 

underrepresent certain demographic groups can skew predictions (Fazil et al., 2024). Historical 

academic records often encode past inequities, while proxy variables such as geographic 

location or attendance rates may indirectly reflect sensitive characteristics like race or socio-

economic status. As noted by Fazil et al. (2024), predictive models trained on historically 

biased data may misrepresent the abilities of disadvantaged students, reinforcing existing 

structural disparities. Similarly, Yagci (2022) found that machine learning models built on 

biased data tend to reinforce educational inequalities, disproportionately impacting 

underprivileged groups. 

2.5.2 Defining and Evaluating Fairness in AI Models 

Fairness in AI is commonly defined as the equitable treatment of individuals or groups, 

irrespective of protected attributes such as race, gender, or socio-economic status (Mitchell et 

al., 2021). In the context of educational predictive modelling, several fairness criteria are 

employed to evaluate model equity. These include concepts such as demographic parity, 

individual fairness, and group fairness, which collectively help assess whether predictions are 

fairly distributed across diverse student populations status (Mitchell et al., 2021). 

To operationalise these principles, researchers apply a range of fairness metrics such as the 

disparate impact ratio, statistical parity difference, and equal opportunity difference to detect 



 
 
 

53 
 

and quantify disparities in model outcomes across demographic groups. The disparate impact 

ratio measures differences in favourable outcomes between protected and unprotected groups, 

providing a signal for potential discrimination (Patrikar et al., 2023). Statistical parity 

difference captures variations in the probability of receiving positive outcomes, while equal 

opportunity difference ensures consistent true positive rates across groups, fostering equitable 

access to beneficial results (Mehrabi et al., 2021). 

However, as noted by Mehrabi et al. (2021) and Bhanot et al. (2021), the implementation of 

fairness assessments often hinges on access to sensitive demographic attributes. While these 

data are essential for identifying and mitigating biases, their use introduces ethical and privacy 

challenges particularly in domains such as education, healthcare, and criminal justice (Akgün 

et al., 2023; Chauhan et al., 2023). The absence of such data can obscure systemic disparities, 

yet including them requires stringent data protection measures to safeguard individual privacy 

and prevent misuse (Bhanot et al., 2021). 

Despite these complexities, ensuring fairness in predictive modelling remains a critical priority 

especially in high-stakes environments where algorithmic decisions can reinforce structural 

inequalities (Hickey et al., 2020; Pereira et al., 2021). This calls for the development of robust, 

transparent, and ethically sound evaluation frameworks. Emerging techniques such as 

differential privacy, fair representation learning, and the use of synthetic or anonymised 

datasets present viable strategies to balance fairness and privacy (Pereira et al., 2024; 

Barbierato et al., 2022). Ultimately, fairness in algorithmic systems extends beyond technical 

solutions and demands a sustained, interdisciplinary commitment to ethical accountability and 

social justice (Weerd, 2024). 

2.5.3 Mitigating Algorithmic Bias 

The complexity of defining fairness in educational contexts has prompted researchers to 

develop a range of fairness-aware machine learning techniques. Gupta and Khosla (2021) 

explore methods such as adversarial debiasing, reweighting of training samples, and fairness-

aware loss functions, each designed to reduce disparities during training. Kamiran and Calders 

(2012) propose a complementary set of approaches: pre-processing methods to cleanse biased 

datasets, in-processing techniques that embed fairness constraints during training, and post-

processing methods that adjust model predictions to minimise discriminatory outcomes. While 

effective, these methods often involve trade-offs with model performance. 
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To mitigate bias, strategies are implemented at various stages of the machine learning pipeline. 

Pre-processing techniques such as Synthetic Minority Over-sampling Technique (SMOTE) 

and re-weighting help address class imbalance and data skewness (Liu, 2024). In-processing 

strategies, including fairness-aware algorithms and adversarial debiasing, incorporate equity 

constraints directly into model training (Mitchell et al., 2021). Post-processing approaches 

modify the model’s predictions to ensure fairer outcomes across groups. These combined 

strategies improve fairness without severely compromising model accuracy. 

2.5.4 Ethical and Practical Considerations 

From an ethical perspective, developers and stakeholders have a responsibility to uphold 

fairness, transparency, and accountability. XAI techniques can enhance transparency by 

allowing stakeholders to understand how specific features influence predictions (Gupta et al., 

2024). However, the trade-off between fairness and accuracy remains a critical issue. Fairness-

aware models often yield more equitable outcomes but may sacrifice some degree of predictive 

performance. This makes human oversight and domain-specific knowledge essential in 

balancing these competing objectives (Mienye and Sun, 2022). 

2.5.5 Relevance to This Study 

This study actively addresses algorithmic bias through a comprehensive framework. Sensitive 

features such as race, gender, and socio-economic status were either excluded or transformed 

to reduce potential bias. Fairness metrics, including statistical parity difference and equal 

opportunity difference, have been used to evaluate model performance across groups. 

Additionally, XAI techniques have been applied to ensure interpretability and transparency in 

feature contributions. These measures reflect a commitment to ethical and fairness-aware AI 

in education. 

2.6 Data Privacy and Security Concerns 

The use of AI in education relies on vast amounts of student data, including academic records, 

behavioural metrics, and even socio-economic factors. This raises concerns about data privacy 

and security, particularly regarding how student information is collected, stored, and shared. 

The General Data Protection Regulation (GDPR) and similar legislation set strict guidelines 

for handling personal data, requiring educational institutions to ensure informed consent, data 

minimization, and secure data storage. However, compliance with these regulations remains 
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challenging, particularly as AI models require extensive datasets for training. Li and Liu (2020) 

highlighted the risks of data breaches and unauthorized access to student records, which could 

lead to identity theft, profiling, or misuse of sensitive information. 

Privacy-preserving machine learning (PPML) techniques have been proposed to address these 

challenges. Federated learning, a technique that allows models to be trained across multiple 

decentralized devices without transferring raw data, has gained attention for its ability to 

protect student privacy. Abadi et al. (2016) introduced differential privacy as another solution, 

where noise is added to data during the training process to prevent the identification of 

individual students while maintaining overall model utility. 

Despite these technological advances, data privacy remains a pressing ethical issue in AI-

driven education. Educational institutions must establish clear policies on data governance, 

ensure student consent is obtained transparently, and invest in secure data infrastructure to 

prevent misuse. 

2.6.1 Ethical AI Governance and Policy Recommendations 

To ensure the responsible use of AI in education, there is a growing need for ethical AI 

governance frameworks. Various policy organizations, including UNESCO and the European 

Union, have proposed guidelines for ethical AI implementation. 

The UK government’s Centre for Data Ethics and Innovation (CDEI) has also emphasized the 

importance of ethical AI adoption in education. Their 2021 report recommended that AI 

systems used in schools undergo regular audits to assess fairness, transparency, and 

accountability. Additionally, they highlighted the need for teacher training in AI literacy to 

ensure that educators understand how AI tools function and can critically assess their outputs. 

Furthermore, researchers such as Cowls and Floridi (2018) advocate for value-sensitive design 

(VSD) in AI systems, ensuring that ethical considerations are embedded at the design stage 

rather than addressed as an afterthought. By involving educators, students, and policymakers 

in the AI development process, institutions can create technology that aligns with educational 

values and priorities. 

The ethical deployment of AI in education requires careful consideration of bias mitigation, 

explainability, data privacy, and human oversight. While machine learning has the potential to 
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revolutionize student performance prediction and personalized learning, its implementation 

must be guided by principles of fairness, transparency, and accountability. This research 

focuses on integrating fairness-aware ML techniques, developing interpretable models, and 

establishing clear policies on data governance. By prioritizing ethical considerations, 

educational institutions can ensure that AI serves as a force for equity and innovation rather 

than reinforcing existing disparities. 

2.6.2 The Role of Human Oversight in AI Systems 

AI should not replace human decision-making in education; instead, it should function as a 

supportive tool that complements the expertise of educators and policymakers (Luckin et al., 

2020). This perspective underscores the necessity of maintaining human oversight at the heart 

of all AI-assisted decision-making processes. A study by Luckin et al. (2020) emphasized the 

importance of integrating AI with teacher judgment rather than delegating final decisions on 

student performance and progression to algorithms. They argue that AI should augment human 

insight by offering recommendations, not deterministic classifications while ensuring 

educators retain the autonomy to consider contextual factors and override automated outputs 

when appropriate. 

Similarly, Agarwal et al. (2024) stress that the ethical deployment of AI in education requires 

positioning technology as an adjunct to, rather than a replacement for, human judgment. Their 

concept of the "educational aptness principle" reinforces the need to align AI implementation 

with ethical standards tailored to educational environments. The European Commission’s 

Ethics Guidelines for Trustworthy AI (2019) also echo this human-centric approach. These 

guidelines advocate for transparency, accountability, and the right to contest AI-generated 

decisions, recommending that educational institutions establish robust frameworks to evaluate 

the effects of AI on student outcomes. Such safeguards help ensure that technological tools 

enhance rather than diminish educational opportunities. 

The need for ethical awareness in AI education is further supported by Sanusi and Olaleye 

(2022), who argue that future technologists must be equipped with a strong ethical foundation 

to fully understand the societal implications of their innovations. Viewing AI as a purely 

technical tool risks overlooking the broader ethical landscape, especially in education, where 

learner development is deeply personal and context-sensitive. Holmes et al. (2021) similarly 
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emphasize the importance of continuously evolving ethical frameworks to keep pace with rapid 

developments in educational technologies. 

Jobin et al. (2019) contribute to this discourse by highlighting that building public trust in AI 

requires sustained critical scrutiny particularly in education, where algorithmic decisions can 

profoundly shape learners’ futures. Although AI has the potential to enhance educational 

methodologies, Leddy and Creanor (2024) caution that it must not displace the irreplaceable 

human elements of teaching, such as empathy, adaptability, and contextual understanding. 

In conclusion, as AI systems become more embedded in educational settings, it is essential to 

ensure they support rather than supplant human decision-making. This balance requires 

ongoing dialogue around ethical practice extending beyond technical efficiency to encompass 

social responsibility, accountability, and human dignity. By foregrounding the role of educators 

and maintaining human agency, stakeholders can ensure that AI technologies contribute 

meaningfully to equitable and effective education for all. 

2.7 Evaluation and Validation Practices in Educational AI Models 

Evaluation and validation techniques are crucial for assessing the performance, fairness, and 

generalisability of AI models in educational contexts. These methods form the backbone of 

responsible AI development, ensuring that models perform effectively on historical data while 

aligning with educational goals and upholding ethical standards. Traditionally, model 

evaluation in educational settings has focused on accuracy-based metrics such as accuracy, 

precision, recall, and F1-score. While these metrics are essential for measuring technical 

performance, they are often insufficient on their own particularly in applications where 

decisions have direct and lasting impacts on students’ academic futures (Roshanaei et al., 

2023). 

Accuracy, defined as the proportion of correct predictions out of all predictions made, is the 

most commonly used metric. In tasks such as predicting student outcomes or identifying at-

risk learners, it provides a straightforward assessment of model correctness. However, accuracy 

can be misleading in cases where datasets are imbalanced. For example, in a dataset where 90 

percent of students are not at risk of dropping out, a model that always predicts “no risk” would 

achieve 90 percent accuracy while completely failing to identify the students who actually need 

support (Currie, 2019). 
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To address this limitation, precision and recall provide more nuanced insights. Precision 

measures the proportion of true positive predictions among all positive predictions made by 

the model. In education, this could reflect how many of the students flagged as “at risk” truly 

require intervention. This metric becomes particularly important when the cost of false 

positives is high, such as when a student is incorrectly identified as failing, potentially leading 

to unnecessary interventions or anxiety (Li et al., 2023). Recall, in contrast, measures how 

many of the actual positive cases the model correctly identifies. It is critical in scenarios in 

which failing to detect at-risk students could result in serious academic consequences (Chen et 

al., 2020). Considering that precision and recall often exist in tension, the F1-score, which is 

the harmonic mean of the two, is especially useful. It provides a balanced view of the model’s 

performance, particularly in cases where both false positives and false negatives carry 

significant weight (Roshanaei et al., 2023). 

While these accuracy-based metrics are foundational, several scholars caution against their 

exclusive use. Zeng et al. (2016) and Jobin et al. (2019) argue that reliance on traditional 

metrics alone can obscure important issues such as biased data distributions or unfair decision-

making processes that disproportionately impact marginalised groups. Şahin et al. (2023) 

similarly warn that models trained on biased historical data can perpetuate inequality, 

particularly when socio-demographic attributes are not ethically managed. Blow et al. (2024) 

add that such biases can remain undetected without intentional fairness assessments during 

model development. 

In response to these challenges, contemporary research advocates for multi-dimensional 

evaluation frameworks. Rattanaphan and Briassouli (2024) propose combining standard 

accuracy metrics with fairness indicators, including equal opportunity difference, demographic 

parity, and disparate impact ratio. These indicators help to evaluate whether AI-generated 

outcomes are distributed equitably across different student demographics (Theodorou et al., 

2022). Even highly accurate models may underperform for specific subgroups, such as students 

from economically disadvantaged backgrounds, thereby producing unjust outcomes despite 

seemingly strong performance (Jobin et al., 2019). Evidence from Dressel and Farid (2018) 

supports this concern, demonstrating that models with high technical accuracy may still 

produce biased predictions when evaluated across diverse populations. 

Fairness-aware evaluation frameworks are increasingly adopted in the educational AI field. 

Bellamy et al. (2019) and Mitchell et al. (2021) both recommend integrating ethical and 
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statistical assessments into model evaluation. The model cards framework developed by 

Mitchell et al. provides a structured method for documenting a model’s performance, fairness, 

and known limitations, promoting transparency and accountability (Theodorou et al., 2022). 

In addition to fairness metrics, validation techniques are essential for assessing model 

generalisability. K-fold cross-validation, which partitions the dataset into multiple training and 

testing sets, helps ensure robust performance estimates. Stratified k-fold cross-validation 

improves this process by preserving class distributions across folds, making it particularly 

useful for educational datasets that are often imbalanced (Seo et al., 2021). Nested cross-

validation further reduces the risk of overfitting during hyperparameter tuning by separating 

model selection from final performance evaluation (Pucchio et al., 2022). Hold-out validation 

using temporal or demographic splits is also important for assessing a model’s ability to 

generalise across different academic years or student groups. 

Innovative approaches such as the train-then-mask method introduced by Ghili et al. (2019) 

help reveal model dependence on protected attributes. This technique involves training the 

model with all features and then masking sensitive attributes at prediction time, allowing 

researchers to assess whether predictions are unduly influenced by those attributes (Roshanaei 

et al., 2023). Other bias mitigation strategies include adversarial debiasing and the use of 

fairness constraints during model training, which proactively reduce bias by embedding 

fairness objectives into the learning process (Yaseliani et al., 2024). 

Equally important is human-in-the-loop validation, which incorporates the judgement of 

educators, domain experts, and institutional decision-makers. This collaborative approach 

ensures that AI outputs are contextually appropriate and aligned with educational values and 

goals, particularly in edge cases where automated reasoning may be insufficient (Chen et al., 

2020). 

Below is a table summarising the identified evaluation and validation techniques identified 

from the literature.  
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Table 2: Accuracy-Based Evaluation Metrics and Validation Techniques in Educational AI 

Category Technique Purpose in 
Educational AI 

Mathematical 
Formula 

Citation 

Accuracy 
Metrics 

Accuracy Measures 
overall 
correctness of 
predictions 

Accuracy = 
(TP + TN) / 
(TP + FP + TN 
+ FN) 

Roshanaei et 
al., 2023 

 Precision Evaluates 
correctness of 
positive 
predictions 
(e.g., students 
flagged as at-
risk) 

Precision = TP 
/ (TP + FP) 

Li et al., 2023 

 Recall Assesses 
model's ability 
to detect all 
actual positives 
(e.g., 
identifying all 
at-risk 
students) 

Recall = TP / 
(TP + FN) 

Chen et al., 
2020 

 F1-Score Balances 
precision and 
recall, ideal for 
imbalanced 
classes 

F1-Score = 2 * 
(Precision * 
Recall) / 
(Precision + 
Recall) 

Roshanaei et 
al., 2023 

Validation 
Techniques 

K-Fold Cross-
Validation 

Estimates 
general 
performance 
across data 
splits 

No specific 
formula; 
involves 
partitioning the 
data into k 
subsets 

Seo et al., 2021 

 Stratified K-
Fold Cross-
Validation 

Preserves class 
distribution 
across folds; 
useful in 
imbalanced 
educational 
datasets 

Similar to k-
fold but 
preserves class 
distribution in 
each fold 

Seo et al., 2021 

 Nested Cross-
Validation 

Prevents 
overfitting 
during 
hyperparameter 
tuning 

Nested CV = 
Outer CV for 
performance, 
Inner CV for 
hyperparameter 
tuning 

Pucchio et al., 
2022 
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 Hold-Out 
Validation 

Evaluates 
model on a 
separate 
temporal or 
demographic 
dataset 

Split data into 
training and 
testing sets 
once 

Currie, 2019 

 Bootstrapping Estimates 
confidence 
intervals for 
performance 
metrics 

Resample with 
replacement 
and compute 
metrics 
repeatedly 

Roshanaei et 
al., 2023 

Fairness 
Techniques 

Equal 
Opportunity 
Difference 

Evaluates 
whether true 
positive rates 
are equal 
across groups 

TPR_difference 
= TPR_groupA 
- TPR_groupB, 
where TPR 
represents True 
Positive Rates 

Theodorou et 
al., 2022 

 Demographic 
Parity 

Checks if 
positive 
outcomes are 
equally 
distributed 
among groups 

P(Y=1|A=0) = 
P(Y=1|A=1) 

Theodorou et 
al., 2022 

 Disparate 
Impact Ratio 

Compares 
outcome rates 
for protected 
vs. unprotected 
groups 

Disparate 
Impact = 
P(Y=1|A=1) / 
P(Y=1|A=0) 

Theodorou et 
al., 2022 

Bias Testing Train-Then-
Mask (Ghili et 
al.) 

Tests model 
reliance on 
protected 
attributes 

Compare 
model 
predictions 
with and 
without 
protected 
features 

Ghili et al., 
2019 

 Adversarial 
Debiasing 

Actively 
reduces bias 
during model 
training 

Involves 
training a 
model to 
remove bias 
during learning 
using 
adversarial loss 

Yaseliani et al., 
2024 

 Fairness 
Constraints 

Integrates 
fairness into 
loss functions 
during training 

Applies 
constraints 
such as fairness 
regularization 
in the loss 
function 

Yaseliani et al., 
2024 

Validation 
Techniques 

Leave-One-Out 
Cross-

Each instance 
is used once as 

Each fold = 1 
instance as test, 

Seo et al., 2021 
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Validation 
(LOOCV) 

a test set; 
useful for very 
small datasets 

remaining n-1 
as training; 
repeat n times 

Validation 
Techniques 

Time Series 
Split 

Used when 
data is 
sequential 
(e.g., student 
performance 
over terms); 
maintains 
temporal order 

Sequential 
splits; no 
formula but 
involves 
forward 
chaining for 
training and 
test sets 

Currie, 2019 

 

In conclusion, while accuracy, precision, recall, and F1-score are indispensable tools for 

evaluating AI performance, they must be complemented by fairness metrics, advanced 

validation methods, and human oversight. Only through a comprehensive evaluation approach 

that integrates these elements can educational AI systems be made both effective and equitable, 

ensuring that they benefit all learners without reinforcing existing disparities (Roshanaei et al., 

2023). 

 

2.8 Exploring Explainable AI techniques for predictive modelling in Education 
 
 
Explainable AI pertains to a collection of procedures and techniques that strive to offer a lucid 

and comprehensible explanation for the decisions produced by AI and machine learning 

models. By incorporating an explainability layer onto these models, Data Scientists and 

Machine Learning practitioners can construct more reliable and clear systems to support many 

stakeholders, including developers, regulators, and end-users (Zednik & Boelson, 2022).  

 

Accurate data is essential in the field of machine learning prediction. With predictions 

produced by AI models, we often depend on intricate computer models to provide us with 

results, but we are uncertain about the precise methodology employed by these models to 

generate their outputs. In a study conducted by Zhao (2021), it was found that explainable 

model tools or procedures play a crucial role in enhancing the understanding of their 

functioning. The absence of openness in the acquired data gives rise to apprehensions regarding 
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the capacity to rely on and comprehend all the models, as well as the biases, fairness, and 

ethical ramifications, specifically in high-stakes applications.  

 

In response to these difficulties, the discipline of XAI has arisen, with the specific aim of 
elucidating the internal mechanisms of black box models. 
 
 2.8.1 Defining Explainability, Interpretability and Transparency 

In the realm of predictive modelling, particularly within artificial intelligence, the concepts of 

explainability, interpretability, and transparency are essential yet distinct dimensions that 

collectively determine the usability, accountability, and trustworthiness of AI systems. These 

attributes not only support model comprehension for developers and end-users but also 

underpin ethical deployment, particularly in sensitive domains such as education. 

Explainability refers to the degree to which an AI model's internal mechanics and decision-

making processes can be articulated and understood by human stakeholders (Patrikar et al., 

2023). It is often associated with post-hoc techniques that provide insight into otherwise opaque 

models, such as deep neural networks or ensemble models. Explainability addresses the 

question: why did the model make a specific prediction? It involves generating human-readable 

justifications that help various stakeholders such as teachers, policy-makers, or students 

understand outcomes and trust the AI system (Patrikar et al., 2023). According to Merry et al. 

(2021), explainability must be tailored to the contextual needs of the audience, as different 

stakeholders may require different levels or types of information. This audience-sensitive 

approach highlights the situational nature of explanation: what may be sufficiently explainable 

for a data scientist may be entirely opaque to a school administrator or parent. Therefore, 

effective explainability requires methods that are not only technically accurate but also 

contextually relevant and accessible. 

Interpretability, while often used interchangeably with explainability, is more narrowly focused 

on the extent to which a human can directly understand the internal logic and structure of the 

model without needing additional interpretive tools (Mehrabi et al., 2021). It answers the 

question: can the user intuitively grasp how the model works? Interpretability is typically 

associated with simpler, inherently transparent models such as linear regression, decision trees, 

or rule-based classifiers sometimes referred to as glass box or white box models. These models 

allow users to trace input-output relationships and understand how specific features contribute 

to predictions. As noted by Mehrabi et al. (2021), interpretable models are particularly valuable 
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in high-stakes settings, as they provide clarity and reassurance to stakeholders, reduce reliance 

on post-hoc rationalizations, and are less likely to mask biases. In contrast, complex models 

like random forests or deep neural networks despite their high predictive power are often 

labelled as black boxes due to their low interpretability. While such models may offer improved 

performance, their opaque structure makes it difficult to diagnose errors, identify sources of 

bias, or justify decisions. 

Transparency, distinct yet complementary, refers to the openness and visibility of the entire AI 

development pipeline, including data collection practices, feature selection, model architecture, 

training procedures, and deployment protocols (Bhanot et al., 2021). It is not limited to the 

model’s mechanics but encompasses the full lifecycle of AI system development. Transparency 

is about ensuring that stakeholders can access and scrutinize how data is collected, what 

assumptions are embedded in the model, and how predictions are generated. Bhanot et al. 

(2021) highlight that transparency is increasingly critical in the face of growing model 

complexity, calling for documentation standards and tools that allow developers, auditors, and 

users to trace decisions back to specific model components or training data sources. 

Transparent systems support reproducibility, regulatory compliance, and informed decision-

making, all of which are essential for building public trust in AI. 

Together, explainability, interpretability, and transparency form a triad that supports not only 

technical robustness but also ethical legitimacy. They are particularly vital in domains where 

AI predictions have significant social or personal consequences. Akgün et al. (2023) emphasize 

that without these qualities, AI models risk being deployed in ways that are opaque, 

unaccountable, and potentially discriminatory. In high-stakes contexts, users must be able to 

interrogate AI outcomes, identify sources of error or bias, and crucially contest decisions when 

necessary. This is especially true when models influence decisions related to student 

performance, eligibility for services, medical diagnoses, or legal judgments. 

Recent frameworks for explainable AI, such as those discussed by Suthaharan Chauhan et al. 

(2023), aim to operationalize these principles by incorporating both technical and human-

centred strategies. These frameworks often combine algorithmic techniques like SHAP, LIME, 

and counterfactual reasoning with ethical design principles, user-centred interfaces, and 

participatory design methodologies. By enabling users to explore the rationale behind model 

predictions and by facilitating dialogue between technical and non-technical stakeholders, 

these approaches help bridge the gap between AI sophistication and societal expectations. 
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In summary, explainability, interpretability, and transparency are critical to building 

trustworthy AI systems. Each concept addresses a different layer of understanding from the 

mechanics of the model to the visibility of its development and the accessibility of its outputs. 

Together, they support responsible AI practices by ensuring that models are not only effective 

but also fair, understandable, and aligned with the values of the communities they serve. 

Effective communication and comprehension of model predictions hinge on these principles 

being rigorously implemented, empowering users to engage with AI technologies confidently 

and responsibly. 

 

2.8.2 XAI Techniques for Interpreting Complex Models 

This section examines the interpretability of complex machine learning predictions using 

prominent XAI techniques and their adaptations for use in the context of education. These 

include LIME, PDP, and ALE. Each technique brings unique advantages in illuminating how 

input features influence predictive outcomes, laying a foundation for responsible, transparent, 

and equitable educational AI systems. 

2.8.2.1 SHAP (Shapley Additive Explanations) 

SHAP, rooted in cooperative game theory, computes Shapley values to quantify the marginal 

contribution of each input feature to a given prediction. It offers both global and local 

interpretability: at the global level, it identifies which features are most influential across all 

predictions; at the local level, it explains how individual features impact a specific prediction. 

In educational contexts, SHAP is particularly valuable for fairness assessments and bias 

detection. For example, it can reveal if a model systematically overemphasizes socio-economic 

status in predicting academic outcomes. Such insights allow educators and developers to 

identify unintended biases and make corrective adjustments. SHAP’s visual tools such as force 

plots, dependence plots, and summary plots enable complex explanations to be communicated 

effectively to non-technical stakeholders (Patrikar et al., 2023; Mehrabi et al., 2021). 

2.8.2.2 LIME (Local Interpretable Model-Agnostic Explanations) 

LIME approximates complex models using interpretable, locally faithful surrogate models, 

often linear regressions or decision trees. By perturbing the input data around a specific 

instance and analyzing the corresponding output changes, LIME generates simplifies 



 
 
 

66 
 

explanations for individual predictions. Its model-agnostic design ensures flexibility, making 

it applicable across a wide range of predictive models. In educational settings, LIME is 

particularly useful for interpreting decisions about individual students such as risk of dropout 

or projected grade performance where transparency at the individual level is crucial for 

justifying interventions. While LIME lacks global model interpretability, its strength lies in 

supporting personalized, case-specific decision-making (Bhanot et al., 2021; Akgün et al., 

2023). 

2.8.2.3 Partial Dependence Plots (PDP) 

PDPs are visual tools that illustrate the marginal effect of a single feature on the predicted 

outcome by averaging the influence of all other features. This technique helps uncover how 

continuous variables such as prior attainment scores or parental involvement correlate with 

predicted educational performance. While PDPs are useful for communicating trends to non-

technical users, their primary limitation is the assumption of feature independence, which may 

not hold in many educational datasets where variables are often correlated. Nonetheless, PDPs 

can inform strategic decisions regarding resource allocation or curriculum design (Chauhan et 

al., 2023; Hickey et al., 2020). 

2.8.2.4 Accumulated Local Effects (ALE) 

ALE plots address key limitations of PDPs by accounting for feature interactions and 

correlations. ALE estimates the average effect of a feature within its value intervals, based on 

the local structure of the data distribution. This makes it more reliable and unbiased when 

features are correlated, an important consideration in education, where variables such as 

attendance, engagement, and socio-economic background are often interrelated. ALE provides 

a refined understanding of how such features jointly influence predictions and is well-suited 

for applications involving complex student performance data (Pereira et al., 2021; Pereira et 

al., 2024). 

2.8.2.5 Integrating XAI Techniques 

Combining SHAP, LIME, PDP, and ALE provides a comprehensive and robust interpretability 

framework. Each technique contributes a unique perspective ranging from individual to global 

explanations and from linear effects to interaction-aware analyses. Integrating these methods 

facilitates a multidimensional understanding of model behavior, helping educators, 



 
 
 

67 
 

administrators, and policymakers interpret AI outputs with greater confidence. This holistic 

approach supports responsible AI deployment by fostering transparency, enabling model 

validation, and guiding ethical decision-making in education (Barbierato et al., 2022). 

2.8.3 Related Work and Application of XAI Techniques in Education 

Although XAI methods like SHAP and LIME have gained traction in domains such as 

healthcare, finance, and law, their adoption in education remains emergent. Much of the early 

application of SHAP has focused on interpreting black-box models such as neural networks 

and support vector machines. However, recent contributions by Amarasinghe et al. have 

extended SHAP for use in educational prediction tasks, demonstrating its effectiveness in 

making deep learning models interpretable in domains such as student performance prediction, 

behavior modeling, and early intervention planning (Weerd, 2024). 

In practice, SHAP has been employed to interpret models that predict student dropout risks, 

learning progression, or intervention outcomes. By identifying and ranking the influence of 

features such as attendance, prior achievement, and socio-economic status, SHAP enables 

fairness-aware diagnostics and promotes informed, data-driven educational decisions. Its dual 

utility in technical analysis and ethical evaluation makes it a critical tool for AI governance in 

education (Agarwal et al., 2024). 

While LIME has not yet been widely adopted in education research, its strengths in real-time 

interpretability offer promise for use in intelligent tutoring systems, adaptive learning 

environments, and personalized feedback platforms. By providing immediate, instance-

specific explanations, LIME allows educators and students to understand and respond to AI-

generated insights (Sanusi and Olaleye, 2022). 

Similarly, PDP and ALE have shown utility in exploratory analysis, helping researchers 

visualize how key predictors affect outcomes. However, broader implementation of these 

techniques is needed to standardize their role in model interpretation and policy auditing within 

educational AI systems (Holmes et al., 2021; Jobin et al., 2019). 

The integration of XAI techniques into educational machine learning systems is not merely a 

technical enhancement but a moral imperative. SHAP, LIME, PDP, and ALE serve as essential 

tools for interpreting complex models, enabling transparency, fairness, and accountability. 

These techniques can facilitate stakeholder trust and inform action, ensuring that AI supports 
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pedagogical goals while safeguarding against bias and opacity. As educational systems 

increasingly incorporate predictive technologies, we believe explainability will remain central 

to aligning innovation with equity and ethical responsibility. 

 

 2.8.4 Evaluating XAI techniques 
 

While XAI techniques offer promising strategies for enhancing the transparency and 

accountability of AI systems, several challenges hinder their effective implementation, 

especially in high-stakes domains like education. A primary concern is scalability. Techniques 

such as SHAP, although powerful, often become computationally intensive and impractical 

when applied to large datasets or complex architectures like deep neural networks (Patrikar et 

al., 2023). Equally pressing is the lack of standardized metrics to evaluate the quality of 

explanations. As noted by Mehrabi et al. (2021), this absence of consensus leads to inconsistent 

evaluations across studies, making it difficult to compare results or establish best practices for 

selecting and applying XAI techniques. 

Evaluation methodologies currently span a wide spectrum, ranging from quantitative, 

automated techniques to user-centric and counterfactual-based approaches. However, many of 

these methods fall short in meeting the specific needs of educational contexts, where clarity, 

accessibility, and contextual relevance are paramount. 

For instance, Radingoana (2023) explored the evaluation of textual explanations generated by 

XAI algorithms using automated quantitative metrics such as BLEU (Bilingual Evaluation 

Understudy Score), METEOR (Metric for Evaluation of Translation with Explicit Ordering), 

and CIDEr (Consensus-based Image Description Evaluation). While these metrics are well-

established in the domain of Natural Language Processing (NLP) for evaluating machine-

generated text against human references, their applicability in educational XAI is limited. They 

tend to prioritize sentence-level similarity over the semantic clarity or contextual 

appropriateness necessary for educational stakeholders such as teachers and administrators 

(Bhanot et al., 2021; Akgün et al., 2023). 

Loef (2022) applied SHAP and LIME to detect credit card fraud within deep learning and 

random forest models. However, the study emphasized model performance metrics such as 

accuracy, recall, sufficiency, and F1-score, which, although important for evaluating predictive 



 
 
 

69 
 

performance, are less suitable for assessing the quality and usefulness of explanations 

generated by XAI tools (Chauhan et al., 2023). Similarly, Kakogeorgiou and Karantzalos 

(2021) explored the application of XAI techniques in remote sensing and multi-label 

classification tasks. They introduced a novel trust metric designed to evaluate interpretability 

techniques independently of specific machine learning algorithms or tasks. While their goal 

was to promote intuitive and accurate decision-making, the approach faced challenges related 

to computational complexity and scalability in practical applications (Hickey et al., 2020). 

Alternative approaches have focused on subjective, user-centric assessments. Kotecha (2021), 

for example, employed questionnaires to evaluate users' perceptions of model interpretability. 

While this method captures valuable qualitative insights, it is inherently dependent on 

subjective judgments, which can vary significantly among individuals and limit reproducibility 

(Pereira et al., 2021). In response to these limitations, Torres (2022) called for more impartial 

and inclusive evaluation frameworks for XAI techniques, particularly SHAP and LIME. The 

study emphasized that the technical complexity of many XAI tools can alienate non-expert 

users, thus reducing trust and hindering adoption in domains like education (Pereira et al., 

2024). 

Puram (2023) proposed a framework focused on evaluating interpretability through user 

comprehension, aiming to align explanations with human understanding. While this 

contribution highlights the importance of user-centred design in XAI, it lacks a systematic 

methodology for evaluating and comparing specific techniques such as SHAP, LIME, PDP, 

and ALE. The absence of robust, quantitative evaluation tools remains a significant gap in the 

field (Barbierato et al., 2022). 

More recently, Liu (2024) introduced an innovative methodology for assessing the faithfulness 

of XAI explanations through counterfactual reasoning. This approach incorporates two primary 

metrics: validity and proximity. Validity evaluates whether the features highlighted in an 

explanation meaningfully influence the model’s output, while proximity assesses the minimal 

changes needed in input features to alter the model’s predictions. These measures are 

synthesized into a comprehensive Counterfactual Evaluation Score (CES), intended to gauge 

how well explanations reflect the model's actual decision-making processes (Weerd, 2024). 

While Liu’s CES framework offers a promising direction for systematic XAI evaluation, it is 

not without limitations. The computational burden associated with generating counterfactual 
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examples and computing CES is substantial, particularly when applied to high-dimensional or 

large-scale datasets (Agarwal et al., 2024). Moreover, CES may not generalize across different 

model types, especially those involving complex non-linear interactions. Another limitation 

arises from the assumption of feature independence during counterfactual generation, which 

may oversimplify the interdependencies inherent in real-world educational data (Sanusi and 

Olaleye, 2022). Additionally, while CES is designed to evaluate faithfulness, it does not 

directly address interpretability from the user’s perspective, which may hinder its applicability 

among educators or policymakers lacking technical expertise (Holmes et al., 2021). 

In conclusion, while recent advancements such as CES present more structured frameworks 

for evaluating XAI, their complexity and underlying assumptions limit practical deployment 

in educational settings. The lack of standardized, domain-sensitive evaluation approaches 

continues to be a barrier to the broader adoption of XAI. Given the importance of 

interpretability, especially in education where stakeholders must make informed decisions 

based on AI outputs, future research must focus on developing inclusive, scalable, and 

pedagogically grounded evaluation methodologies. These should combine objective 

performance with human-cantered criteria to ensure that XAI techniques are not only 

technically valid but also understandable, trustworthy, and actionable across diverse 

educational environments (Jobin et al., 2019). 

2.9 Predictive Modelling of GCSE Outcomes in the UK Context 

While extensive research has examined student performance prediction using machine learning 

across various international contexts, relatively few studies have focused specifically on the 

United Kingdom’s General Certificate of Secondary Education (GCSE) system. Nevertheless, 

a growing body of UK-based research has begun to bridge this gap by applying AI-driven 

methods to support educational forecasting, intervention strategies, and policymaking in 

secondary education. 

A seminal study by Anders et al. (2020) employed machine learning models to predict GCSE 

outcomes using large-scale administrative data from the National Pupil Database (NPD). Their 

models incorporated both academic and non-academic features such as socioeconomic 

background and school-level characteristics to enhance predictive performance. Importantly, 

their findings demonstrated that including these non-academic variables significantly improved 

accuracy but also introduced risks of perpetuating bias. Without appropriate fairness 
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constraints, predictive models could reinforce existing socioeconomic and ethnic disparities in 

educational outcomes (Arowosegbe et al., 2024). 

In a related effort, Holloway and Gulliver (2021) examined how school-level predictors, 

including funding per pupil, teacher-to-student ratios, and regional deprivation indices, 

influenced GCSE performance. Their work underscored the critical role of institutional and 

environmental factors in shaping academic outcomes and emphasised the need for educational 

data models that account for both individual and contextual variables. 

More recently, Denes (2023) applied ensemble machine learning techniques namely Random 

Forests and Gradient Boosting to predict subject-level GCSE grades in a selective independent 

school in England. The study utilised features such as prior attainment, attendance, and 

demographics. Despite its limited scope and focus on a high-achieving student population, the 

research achieved over 80 percent accuracy in some subjects. This reinforces the potential of 

machine learning to contribute meaningfully to school-level analytics and decision-making. 

Collectively, these studies demonstrate the promise of AI in enhancing educational planning 

and identifying at-risk learners. However, several persistent challenges continue to constrain 

the broader application of these models in the UK context. These include: 

• Restricted access to sensitive or personal data (such as family income and behavioural 

history) due to ethical and legal considerations. 

• Variability in curricula and grading standards across schools, which complicates model 

generalisability. 

• Limited transparency and interpretability of many high-performing machine learning 

models, which hinders their adoption by educators and decision-makers. 

In response to these challenges, recent research has begun to advocate for the integration of 

explainable artificial intelligence (XAI) methods into predictive modelling pipelines. Human-

centric explainability frameworks, such as those proposed by Maity and Deroy (2024), argue 

that transparent models are essential for trust, accountability, and practical deployment. This 

view is supported by Rainey et al. (2021), who emphasise that explainability enhances the 

legitimacy and usefulness of AI tools in high-stakes environments like education. 

Complementing these perspectives, Arrieta et al. (2020) and Elhage et al. (2021) provide 
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detailed taxonomies of explainability challenges and call for greater integration of XAI into 

educational data systems. 

Building on this foundational work, the present study aims to combine fairness-aware machine 

learning with interpretable modelling techniques to predict GCSE performance. By embedding 

transparency and stakeholder-specific explanations into the modelling process, this research 

seeks to improve both the usability and ethical robustness of AI applications in secondary 

education. In doing so, it contributes to the growing call for data-driven educational strategies 

that are accurate, actionable, and aligned with principles of equity and responsible innovation. 

 
 

2.10 Chapter Summary and Synthesis 

This chapter has presented a comprehensive review of the literature on student performance 

prediction, highlighting the integration of ML and explainable artificial intelligence XAI within 

educational contexts. The review critically examined the multidimensional factors influencing 

academic outcomes, including demographic, socio-economic, behavioural, psychological, and 

technological variables. These diverse influences underscore the importance of adopting 

holistic prediction models rather than relying on isolated factors such as gender or socio-

economic status. 

While ML models, particularly ensemble techniques and deep learning approaches like MLPs, 

have demonstrated high predictive accuracy, their limited interpretability poses a significant 

barrier to adoption in education. These models often operate as "black boxes," offering little 

insight into how predictions are generated. This lack of transparency raises concerns around 

trust, accountability, and the potential reinforcement of educational inequalities, especially 

when models inadvertently encode socio-economic or demographic biases (Benthall and 

Haynes, 2019; Yagci, 2022). 

In response to these challenges, the literature has explored the growing field of XAI, with 

techniques such as SHAP, LIME, PDP, and ALE showing promise in making complex models 

more interpretable. These tools enable educators and other stakeholders to better understand, 

question, and act on AI-generated recommendations. However, the application of XAI in 

education remains relatively underdeveloped compared to domains like healthcare and finance. 
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Several critical gaps were identified through this review: 

• A lack of domain-specific, standardised frameworks for evaluating the interpretability, 

fairness, and usability of XAI techniques in educational settings. 

• Limited research on the operationalisation of fairness-aware ML methods within real-

world school environments to mitigate algorithmic bias. 

• A disproportionate emphasis on predictive accuracy in the literature, with insufficient 

focus on ethical concerns, model transparency, and stakeholder engagement. 

• Minimal incorporation of human-in-the-loop validation, which is essential for ensuring 

that educators, administrators, and students can interpret and contextualise model 

outputs. 

• Scarcity of empirical studies applying advanced XAI techniques (e.g., SHAP, ALE) in 

real-world educational contexts, particularly in high-stakes environments like the 

General Certificate of Secondary Education (GCSE). 

This review also highlights another underexplored yet urgent issue: the psychological impact 

of opaque AI systems on students. Kim et al. (2022) report that unexplained algorithmic 

predictions can increase anxiety and reduce student trust and engagement. As AI becomes more 

embedded in education, this dimension must be addressed to prevent adverse outcomes and 

build supportive learning environments. 

To address these gaps, this study proposes a unified framework that combines fairness-aware 

ML with a comprehensive suite of interpretability techniques and novel evaluation metrics such 

as transparency score, explainability ratio, and interpretability ratio. The approach also includes 

sparsity and sensitivity analyses, aiming to develop models that are not only accurate but also 

accessible, ethical, and contextually relevant for all educational stakeholders. 

Furthermore, the study will tailor explanations to different stakeholder groups such as students, 

teachers, and school leaders ensuring that AI-generated insights are actionable and 

comprehensible across roles. By integrating fairness constraints and stakeholder-specific 

explainability into high-performing models, the research will bridge the divide between 

technical accuracy and educational usability. 

In conclusion, this chapter has revealed three central research gaps: 
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1. A lack of integrated studies comparing multiple XAI techniques within a single 

educational context. 

2. The underrepresentation of ethical and psychological considerations, including student 

anxiety and trust, in the deployment of AI in education. 

3. The absence of a holistic framework that balances predictive performance with 

interpretability, fairness, and contextual understanding. 

This study aims to fill these gaps by advancing the development of AI systems in education 

that are not only powerful and data-driven but also ethical, interpretable, and aligned with the 

pedagogical needs of diverse learning communities. By doing so, it contributes to the creation 

of AI technologies that promote equity, trust, and informed decision-making in education. 

2.11 Conceptual Framework 

Based on the literature reviewed in this chapter, a conceptual framework was developed to 

guide the implementation of fairness-aware and interpretable machine learning models for 

predicting student performance. The framework integrates input features such as demographic, 

behavioral, and digital factors with machine learning techniques and explainable AI methods, 

evaluated through fairness and interpretability metrics. It aims to generate actionable, 

stakeholder-specific insights that support ethical and equitable educational decision-making. 

The figure 2 below shows a visual representation of the conceptual framework.  
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Figure 2: Conceptual framework for explainable and fair student performance prediction 
using machine learning. 
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Chapter 3: Research Methodology, Dataset, and Experimental Design  
 

The concept of research methodology is broadly understood as the theoretical rationale and 

systematic process through which evidence is gathered, analysed, and interpreted to generate 

meaningful conclusions. Harding (1987) defined research methodology as the logic, theory, 

and analysis that underpin a research process, highlighting how methods guide the collection 

and evaluation of evidence (Arowosegbe et al., 2024). More recently, Abutabenjeh and Jaradat 

(2018) extended this perspective by describing methodology as an iterative and evolving 

framework that translates conceptual assumptions into structured techniques for data 

collection, analysis, and interpretation (Liu et al., 2021). These foundational views have laid 

the groundwork for contemporary data-driven approaches, particularly relevant in fields such 

as machine learning and educational analytics. 

This chapter outlines the methodological framework adopted in this study, which focuses on 

developing, evaluating, and interpreting machine learning models for predicting student 

performance in the UK’s General Certificate of Secondary Education (GCSE) system. In line 

with recent practices in educational data science, the research methodology is structured in a 

series of sequential stages. 

First, the dataset is introduced, detailing its source, structure, and key attributes. This includes 

a clear definition of the dependent variable (student performance outcome) and the independent 

variables (predictor features), in alignment with methodologies used in recent academic 

performance studies (Abdrakhmanov et al., 2024; Tiwari, 2024). 

Next, the research protocol details the data pre-processing procedures, such as handling 

missing values, feature engineering, and variable transformation, to prepare the dataset for 

model training. These steps are essential for building robust predictive models, particularly in 

the context of noisy or incomplete educational data (Karim-Abdallah et al., 2025). 

The chapter then explains the rationale for selecting specific machine learning models, 

including multilayer perceptron (MLP), histogram-based gradient boosting (HGB), and 

ensemble voting classifiers. A dual evaluation strategy is adopted, combining standard 

performance metrics such as accuracy, precision, recall, F1-score, RMSE, and AUC-ROC with 
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explainability metrics, including explainability ratio, interpretability ratio, transparency score, 

sparsity, and sensitivity analysis. This combination allows the study to balance predictive 

accuracy with ethical concerns about transparency and fairness in algorithmic decision-making 

(Tiwari, 2024; Karim-Abdallah et al., 2025). 

Finally, the chapter outlines the design of stakeholder-centred evaluation studies. These include 

qualitative surveys and user studies involving teachers and policymakers to assess the clarity, 

usefulness, and actionability of the model explanations. This human-centred approach reflects 

a growing emphasis on responsible AI deployment in education, ensuring that the models 

developed are not only accurate and explainable but also trusted and usable by non-technical 

stakeholders (Karim-Abdallah et al., 2025). 

The visual roadmap below summarizes the structure and flow of the research methodology 

presented in this chapter, from data preparation to stakeholder evaluation. 

 

Figure 3:Chapter 3 Visual Roadmap 
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3.1 Dataset Description 
 
This study employs anonymized historical data from a coeducational secondary school in 

Essex, England, with the goal of developing and evaluating explainable machine learning 

models to predict student performance at the General Certificate of Secondary Education 

(GCSE) level. The dataset comprises academic, demographic, and behavioral records of past 

and current students. No active participants were involved in this study. Data access and usage 

were authorized by the school’s leadership team, in full compliance with the General Data 

Protection Regulation (GDPR) and institutional data governance policies (European 

Parliament, 2016). 

 

3.1.1 Data Source and Collection 
 
The dataset was compiled from two educational data systems previously used by the school: 

SIMS (School Information Management System) and Talaxy. SIMS is a widely adopted UK-

based software platform used for managing key aspects of school administration, including 

student demographic data, attendance records, behavior logs, and assessment outcomes. Talaxy 

is a modern, cloud-based school management portal that enhances communication between 

staff, students, and families while also supporting detailed analytics and reporting capabilities. 

These systems collectively provide a robust and longitudinal dataset that reflects students’ 

academic and behavioral histories. 

All data were collected and processed in accordance with the UK Department for Education’s 

(DfE) data protection guidance, which outlines best practices for managing and safeguarding 

school data in compliance with the General Data Protection Regulation (GDPR) and the Data 

Protection Act 2018 (DfE, 2018). The dataset was fully anonymized prior to analysis using 

pseudonymization, k-anonymity, and differential privacy techniques to ensure legal and ethical 

compliance. 

The data was extracted and exported by the school's Data Compliance Manager in Excel 

format. It was then securely transferred and stored on the University of East London (UEL) 

OneDrive for Business, a cloud-based platform. After initial inspection and anonymization, the 

data was converted into CSV format for processing and analysis using the Python programming 

language. 
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3.1.2 Variables Collected 
 
The dataset includes both categorical and numerical features relevant to educational 

performance prediction. Variables were selected based on existing literature linking 

demographic, academic, and behavioral factors to student achievement (Anders et al., 2020; 

Holloway & Gulliver, 2021). The target variable is the final GCSE performance, measured 

both as a continuous variable (grade scores) and as categorical outcomes (e.g., pass/fail 

thresholds). The dataset consists of 766 rows and 72 columns and offers a thorough look at a 

range of student characteristics and academic achievement. Variables collected include: 

• Demographic Information: age, gender, ethnicity, English as an Additional Language 

(EAL), enrolment and completion year 

• Socio-Economic Indicators: eligibility for pupil premium, parental occupation 

• Academic Metrics: SAT scores, CAT scores, internal assessments, and base targets 

• Outcome Measures: final GCSE grades, Progress 8 scores 

• Engagement Metrics: attendance rate, late marks, behavior points, achievement points, 

missed homework 

• School Contextual Factors: class size 

 

3.1.3 Ethical and Legal Compliance 

This study implemented stringent anonymisation protocols during data pre-processing to 

protect participant privacy and comply with regulatory requirements. In particular, the General 

Data Protection Regulation (GDPR) mandates that personal data used in research be handled 

with appropriate safeguards, and anonymising data is a key method to achieve compliance 

(Council of the European Union, 2016). In an educational machine learning context, where 

student records can contain sensitive personal information, it is especially critical to enforce 

robust privacy measures before analysis. Therefore, prior to any machine learning tasks, the 

dataset was thoroughly de-identified following established best practices for data 

anonymisation. 

All direct personal identifiers were removed or obfuscated in the dataset. For example, fields 

such as student names, identification numbers, and email addresses were stripped from the 

records. Each student entry was instead assigned a unique random identifier (pseudonymous 

ID) that cannot be traced back to the individual’s real identity in the anonymised dataset. By 

severing the link between the data and personal identifiers, even if the dataset were to be 
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accessed without authorisation, it would not reveal the identities of the students. This approach 

adheres to GDPR guidelines on data protection and helps maintain trust in how student data is 

handled (Polonetsky and Jerome, 2014). 

In addition to removing direct identifiers, quasi-identifiers and other potentially identifying 

information were handled carefully to further reduce re-identification risk. Certain attributes 

(for instance, age or other demographic information, if present) were generalised or grouped 

into broader categories so that individuals could not be singled out based on unique 

combinations of these features. This technique aligns with the principles of k-anonymity, which 

ensure that each anonymised record is indistinguishable from at least k-1 other records in the 

dataset (Sweeney, 2002). In practice, this means that no single student can be identified by a 

combination of characteristics such as age, gender, and class section, because many other 

students share the same generalised values for those attributes. Similar strict anonymisation 

approaches are common in the educational data mining community; for example, the public 

Open University Learning Analytics dataset was released with k-anonymity safeguards to 

protect student identities (Kuzilek et al., 2017). 

Moreover, in line with GDPR’s principle of data minimisation, only information necessary for 

the analysis was retained in the processed dataset (Council of the European Union, 2016). Any 

extraneous personal data that were not required for model training or evaluation (such as home 

addresses or contact details, which were originally collected) were excluded entirely from the 

data used in this study. By limiting the scope of the dataset to only relevant features and 

removing sensitive attributes, the privacy exposure of individuals is significantly reduced. The 

anonymised dataset was also stored securely, and access was restricted to the research team, 

further ensuring that privacy risks were mitigated at all stages of the project. 

These anonymisation protocols ensured that the use of educational data in this research 

respected the privacy of individuals and met ethical as well as legal standards. Crucially, once 

the data were anonymised, the dataset contained no personally identifiable information, 

meaning that it was no longer considered personal data under GDPR. This compliant handling 

of data not only protects participants but also upholds the integrity of the research. By 

safeguarding student privacy through robust anonymisation, the study maintained a high 

standard of data protection throughout the machine learning development process. 
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Ethical approval for this study was obtained from the University of East London Research 

Ethics Committee, and a copy of the approval letter is included in the appendix. Data usage 

adhered to the core principles of the General Data Protection Regulation (GDPR), including 

lawfulness, fairness, transparency, purpose limitation, data minimization, and secure storage 

(Abutabenjeh and Jaradat, 2018). 

 

3.1.4 Data Handling and Security 
 
Data was accessed via a password-protected, school-issued laptop with updated firewall and 

encryption protocols. All analysis occurred in a secure cloud environment. The dataset was 

never stored locally, and access was restricted to the primary researcher and supervisors using 

multi-factor authentication. 

 

3.1.5 Data Documentation and Metadata 
 
Accompanying the main dataset is a detailed metadata file describing the structure and content 

of each variable, data collection methods, definitions, and abbreviations. This metadata 

facilitates reproducibility and transparency and is stored alongside the dataset on UEL 

OneDrive in plain text format. 

 

3.1.6 Dataset Attribute Summary 
 
The dataset was categorized into key domains as shown in the table below: 
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Table 3: Dataset description 

Category  Sub-category Description 

Demographic Information Age  

Gender 

Ethnicity 

Socio economic status 

Breakdown of students by age groups 

Distribution of male and female students 

Representation of different ethnic groups among students 

Indicators such as eligibility for free school meals and pupil premium status 

Academic Performance  

 

 

 

Grades 

Standardized Test Scores 

Subject Choices  

Attendance Rates 

Average grades in different subjects 

Performance of national exams or standardized tests – SATs, CAT Test and GCSE results 

Distribution of students across different academic streams or subjects 

Regularity of student attendant 

Education Attainment  

 

 

 

Progression Rate  

Base target 

Progress check  

Percentage of students progressing from one year to the next. 

Students expected base target grade standardized nationally based on their SAT test scores from primary school 

Percentage of students achieving above, below or meeting their base target.  

Special Education  SEN (Special Education Needs) Data.  Number of students with special educational needs, types of needs, and support provided.  

Behavior and Discipline Discipline Incidents  

Exclusion rates  

 

Number and types of disciplinary incidents 

Rates of student exclusions 

Language Proficiency English as Additional Language 

(EAL) First language  

Number of students for whom English is an additional language. languages spoken at home by student  

Extracurricular Activities 

 

Participation Rates 

Achievements  

Involvement in sports, arts, and other extracurricular activities 

Awards and recognitions received by students 
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3.2 Research Design 

This study adopts a mixed methods research design, integrating the strengths of both 

quantitative and qualitative approaches. The quantitative component focuses on developing 

and evaluating machine learning models for student performance prediction, while the 

qualitative component investigates stakeholder perspectives through interviews and surveys to 

assess the interpretability and actionability of XAI outputs. This dual approach supports a 

comprehensive examination of both the technical efficacy and practical relevance of predictive 

models in educational settings. 

The mixed methods approach is informed by the pragmatic research paradigm, which 

prioritises real-world problem-solving over strict adherence to any single methodological 

tradition (Creswell, 2014; Johnson and Onwuegbuzie, 2004). Pragmatism permits the 

integration of deductive reasoning, such as model development and validation, and inductive 

reasoning, such as thematic analysis of stakeholder feedback. This alignment allows for a 

holistic inquiry into the technical and human dimensions of explainable AI in education. 

In the first phase, a quantitative experimental design is used to train and evaluate a suite of 

supervised learning algorithms including multilayer perceptron (MLP), histogram-based 

gradient boosting (HGB), and ensemble voting classifiers on student-level data from a UK 

secondary school. This phase involves rigorous data pre-processing, feature engineering, and 

hyperparameter tuning. Model performance is assessed using conventional metrics such as 

accuracy, precision, recall, F1-score, and AUC-ROC. In addition, novel explainability metrics 

such as explainability ratio, interpretability ratio, transparency score, sparsity, and sensitivity 

analysis are used to quantify the clarity, conciseness, and reliability of model explanations. 

In the second phase, a qualitative user study is conducted with teachers, school leaders, and 

other educational stakeholders. Participants are presented with predictive model outputs, both 

with and without explanatory insights, to evaluate the interpretability, usability, and perceived 

fairness of the explanations. Semi-structured surveys and interviews are used to capture 

stakeholder reflections on the practical utility of XAI in real-world decision-making. This 

phase is essential for understanding how technical explanations translate into actionable 

educational insights. 
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By combining algorithmic evaluation with human-centred validation, this mixed methods 

design ensures that the proposed AI models are not only technically robust, but also socially 

responsible, ethically grounded, and educationally meaningful. It enables a comprehensive 

understanding of how XAI can support transparent, equitable, and informed decision-making 

in secondary education. 

 

3.2.1 Definition of Variables 

In this study, the variables are categorized into dependent and independent variables based on 

their role in the predictive modelling process. The dependent variable represents the target 

outcome the model aims to predict, while the independent variables serve as inputs to support 

the prediction task. These features were selected based on theoretical relevance from the 

literature, availability in the dataset, and prior evidence of their predictive value in educational 

data mining research. 

3.2.2 Dependent Variable: Student Performance Outcome 

The primary outcome variables in this study are students' academic performance in three core 

subjects: Mathematics, English Literature, and English Language. Each subject’s GCSE grade 

was treated as a separate classification task, making this a multi-output, multi-class prediction 

problem. The target variable for each subject was operationalized using categorical grade bands 

such as 9–7, 6–4, 3–1, and U which are standard performance tiers used in UK secondary 

education. These bands allowed for a structured and interpretable modelling of student 

achievement levels. A multi-output voting classifier was employed to simultaneously predict 

outcomes across the three subjects, leveraging the potential correlations between them while 

maintaining the integrity of subject-specific predictions. No regression techniques were applied 

in this study, as the entire modelling pipeline was grounded in classification methodology. 

These multiple formulations allow for robust experimentation with various machine learning 

algorithms and provide different interpretability use cases for stakeholders. 

3.2.3 Independent Variables: Predictors of Student Performance 

The independent variables consist of a diverse set of features spanning demographic, socio-

economic, behavioral, academic, and school-level dimensions. Each variable was included 

based on its established significance in previous literature (Suleiman, 2023; Ayienda et al., 

2021) and its availability within the dataset. 



 
 
 

85 
 

3.2.3.1 Demographic Variables 

• Age: Captures differences in maturity levels, particularly for students who have 

repeated or skipped academic years. 

• Gender: Prior studies show gender-related differences in academic performance and 

learning behaviors. 

• Ethnicity: Enables exploration of potential disparities across ethnic groups and supports 

fairness-aware modelling. 

• English as an Additional Language (EAL): Identifies students whose primary language 

is not English, a factor shown to impact assessment performance. 

3.2.3.2 Socio-Economic Status Indicators 

• Pupil Premium Eligibility: Used as a proxy for low-income background and is 

commonly associated with attainment gaps. 

• Free School Meal (FSM) Status: A direct measure of socio-economic disadvantage. 

• Parental Occupation: Reflects social capital and its influence on student motivation and 

support. 

3.2.3.3 Academic and Cognitive Background 

• SAT Scores: Primary school standardized assessments that act as a baseline indicator 

for secondary progress. 

• CAT Scores (Cognitive Abilities Test): Measures reasoning abilities and cognitive 

potential, often used in secondary school benchmarking. 

• Internal Assessments: Termly or annual subject-specific scores used to track progress 

throughout KS3 and KS4. 

• Target Grades: Teacher-generated predictions based on student prior attainment. 

3.2.3.4 Behavioral and Engagement Variables 

• Attendance Rate: Strongly correlated with academic performance and student 

engagement. 

• Late Marks: Frequency of lateness, often a proxy for punctuality and time management 

issues. 

• Behavior Points and Exclusion Records: Track positive and negative behavioral trends; 

disciplinary actions may correlate with disengagement or academic struggle. 
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• Achievement Points and Awards: Recognize consistent effort, resilience, and academic 

success. 

3.2.3.5 Learning Environment Context 

• Class Size: Larger class sizes may affect the quality of teacher-student interaction and 

personalized instruction. 

• Homework Completion or Missed Assignments: Acts as a proxy for study habits and 

out-of-class engagement. 

• Digital Engagement: While not explicitly captured in the raw dataset, proxy variables 

such as homework submissions, use of online portals (e.g., Talaxy), and attendance in 

virtual learning environments were explored when available. 

Each variable was critically evaluated during the feature engineering process, and irrelevant or 

redundant features were excluded through statistical filtering and model-based selection 

techniques. Where necessary, categorical variables were encoded using one-hot encoding, and 

continuous variables were scaled for model compatibility. 

This comprehensive set of independent variables allows for the development of robust and 

interpretable models that capture not just academic ability but also socio-behavioral and 

contextual dynamics influencing student performance. 

3.3 Data Pre-processing and Feature Engineering 

This section describes the data pre-processing steps undertaken to ensure data quality, reduce 

noise, and optimise the dataset for modelling. The dataset comprises both numerical and 

categorical features derived from student demographics, academic history, behavioural 

records, and school context. Proper handling of missing values, feature transformation, 

encoding, scaling, and feature selection was essential for robust machine learning model 

performance and interpretability. 

3.3.1 Handling Missing Values 

Missing values were present in several categorical and numerical columns, including "SEN 

Need," "EAL," "Looked After," and "CAT3 Spatial Test." These missing values were 

addressed using tailored strategies to preserve the integrity and usefulness of the dataset. For 

categorical features, missing entries were imputed using the mode which is the most frequently 



 
 
 

87 
 

occurring category. This approach assumes that missing values are most likely to belong to the 

dominant category in the feature distribution. 

For numerical features, linear interpolation was employed as the primary imputation technique 

to estimate missing values. This method works by fitting a straight line between two known 

data points and then using the slope of that line to infer the value of a missing point positioned 

between them. Linear interpolation is particularly well-suited for datasets with continuous or 

time-ordered variables, as it preserves the inherent distribution and trend of the data with 

minimal distortion (Libasin et al., 2021; Noor et al., 2013). Its application in this study ensured 

that imputed values remained contextually realistic, avoiding abrupt shifts in the numerical 

range of features such as test scores and attendance percentages. The figure below shows a 

heatmap demonstrating the extent of missing values before our pre-processing strategies.  

 

Figure 4: Heatmap with Missing Values 

 

Following the imputation process, a heatmap visualization was generated to assess the 

completeness of the dataset. Heatmaps are widely recognised as effective diagnostic tools in 

data pre-processing, offering an intuitive, graphical summary of missingness across the dataset 

(Weed et al., 2022). By comparing heatmaps before and after interpolation, the reduction in 

missing values could be clearly validated, confirming the efficacy of the selected imputation 

strategy and ensuring the data was adequately prepared for downstream machine learning tasks. 

The figure below shows a heatmap after the imputation process.  
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Figure 5: Heatmap after filling missing values 

 

Despite the above measures put in place, the "Looked After" feature still retained a high 

proportion of missing values resulting in an extreme outlier in missing data distribution. Given 

its lack of completeness and limited analytical utility, the column was removed from the 

dataset. Similarly, the "Key" column was dropped due to its irrelevance in the context of 

prediction tasks. 

3.3.2 Feature Transformation and Encoding 

Categorical variables such as gender, ethnicity, special educational needs (SEN) status, and 

language background were transformed using appropriate encoding techniques to prepare them 

for machine learning algorithms. For variables with more than two categories, one-hot 

encoding was applied. This method converts each category into a separate binary feature, 

resulting in a matrix of 0s and 1s that represents the presence or absence of each category. One-

hot encoding is particularly advantageous because it avoids introducing artificial ordinal 

relationships between categories, thus preserving the nominal nature of the data (He & Chua, 

2017). 

For binary categorical variables, label encoding was used to map each category to either 0 or 

1. This approach offers a compact and computationally efficient representation while 

maintaining semantic clarity. Unlike one-hot encoding, label encoding does not increase 

dimensionality, making it especially useful when working with binary indicators such as 

eligibility for free school meals or EAL (English as an Additional Language) status. When 
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applied thoughtfully, these encoding techniques enhance model compatibility without 

distorting the original meaning of categorical inputs (Polato et al., 2018). 

Text-based columns such as "First Language" and "Ethnicity" were standardised to ensure 

consistent formatting (e.g., capitalisation, whitespace removal) before encoding. Derived 

features were also introduced for instance, combining attendance data across terms or 

aggregating behaviour points over a school year to enhance the representation of student 

engagement and conduct. 

3.3.3 Feature Scaling 

Numerical features such as attendance percentage, CAT test scores, and total achievement or 

behaviour points exhibited substantial variation in their respective value ranges. To mitigate 

the risk of any single feature disproportionately influencing model training, all continuous 

variables were standardised using z-score normalisation. This technique re-scales features to 

have a mean of zero and a standard deviation of one, ensuring that each variable contributes 

equally to the learning process. Standardisation is particularly important for machine learning 

algorithms that are sensitive to the scale of input features, such as Neural Networks, where 

unscaled inputs can negatively impact model convergence and performance (Ambarwari et al., 

2020). By applying this transformation, the data was rendered more suitable for consistent and 

accurate modelling across multiple classifiers 

3.3.4 Feature Selection Strategies 

To improve model efficiency and reduce overfitting, feature selection techniques were applied. 

Correlation analysis was initially conducted to assess multicollinearity and identify redundant 

or highly correlated features. Features exhibiting strong correlation (r > 0.85) with other 

predictors were candidates for removal to avoid introducing noise and model instability. 

Additionally, mutual information scores were calculated to quantify the dependence between 

each independent feature and the target variable. Features with low mutual information scores 

were considered uninformative and excluded from subsequent model training phases. 

Recursive Feature Elimination (RFE) with cross-validation was also used to identify the 

optimal subset of features, prioritising those that contributed most significantly to model 

performance. 
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The resulting feature set included a balance of demographic, academic, behavioural, and 

engagement indicators shown to be predictive of GCSE outcomes. This structured pre-

processing pipeline ensured a high-quality dataset suitable for explainable and ethical machine 

learning applications in education. 

 

 

3.4 Exploratory Data Analysis (EDA) 

Exploratory data analysis began with the transformation of categorical variables into numerical 

format using label encoding, preparing the dataset for both visualisation and modelling tasks. 

Label encoding was applied to variables such as gender, ethnicity, SEN status, and FSM 

eligibility. Numerical summaries such as mean, median, standard deviation, and range were 

computed for continuous variables, including attendance percentage, CAT test scores, and total 

achievement points. These statistical summaries highlighted variations in student performance 

and engagement metrics, identifying areas requiring scaling or transformation. 

3.4.1 Visualizations and Statistical Summaries 

For categorical variables, count plots were generated to visualise the distribution of values. 

These plots revealed the frequency of demographic groups (e.g., gender, ethnicity), learning 

characteristics (e.g., SEN status, EAL), and behavioural indicators. For continuous variables, 

histograms and kernel density estimation (KDE) plots were used to visualise distributions. 

These plots exposed the skewness in variables like total behaviour points and achievement 

points, informing decisions on standardisation.  

GCSE performance distributions in English Language, English Literature, and Mathematics 

were displayed as stacked bar plots, showing the proportion of students in each grade band. 

The figure below presents a visual summary of the grade distributions for English Language, 

English Literature, and Mathematics at GCSE level (9–1). A notable concentration of grades 

can be observed around the 5.5 to 6.5 range, indicating that most students tend to achieve grades 

around the national standard pass (Grade 4–6). The distribution also reveals a long tail toward 

higher grades in Mathematics and a relatively smaller proportion of low-grade outcomes across 

all subjects. This distribution insight is crucial for understanding model performance and 

fairness, particularly in relation to mid-range grades. 
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Figure 6: Value Counts of Target Column 

 

3.4.2 Correlations Between Features and Performance 

Following data encoding and initial summarisation, the Pearson correlation coefficient matrix 

was computed to explore relationships between features and performance outcomes. This 

matrix quantified linear relationships, with coefficients ranging from -1 to 1. The heatmap 

below displays the Pearson correlation coefficients between various demographic, academic, 

and cognitive attributes in the dataset. Red cells indicate strong positive correlations, while 

blue cells reflect negative associations. Values close to zero suggest no linear relationship. The 

diagonal line of red blocks corresponds to self-correlation (correlation of each variable with 

itself). Notable clusters of positive correlation can be observed among subject-specific grades 

and cognitive assessments, reflecting internal consistency. This matrix is instrumental for 

identifying multicollinearity and informing feature selection prior to predictive modelling. 
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Figure 7: Correlation Heatmap 

The initial heatmap was visually cluttered due to the high number of variables, which made it 

difficult to discern meaningful patterns in the data. To address this, an enhanced heatmap was 

produced using a diverging colormap (‘cool warm’) that offers improved visual contrast. In 

this revised version, warm tones (reds) indicate strong positive correlations, while cool tones 

(blues) reflect strong negative correlations, enabling clearer interpretation of the strength and 

direction of relationships among features. Additional refinements, such as increased spacing, 

clearer axis labels, and well-defined gridlines, further enhance readability and ensure that 

insights remain accessible even in the presence of a large feature set. This improved 

visualization facilitates more effective exploratory data analysis, particularly when identifying 

multicollinearity or selecting features for model input. 
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Figure 8: Improved Correlation Heatmap 

Features with strong positive correlations (above 0.7) were flagged for further scrutiny, as high 

multicollinearity can distort model interpretation. Notable correlations included those between 

science subjects (e.g., Chemistry and Biology), suggesting overlapping cognitive or 

instructional content. Mathematics and English subjects, being core curriculum components, 

also showed moderate positive associations with indicators such as attendance rate, CAT test 

scores, and prior attainment scores. Conversely, weak correlations between niche subjects (e.g., 

Polish, Critical Thinking) and the core GCSE outcomes reflected their limited relevance to the 

overall performance prediction task.  

To better understand the relationship between student attributes and performance in core GCSE 

subjects such as Mathematics, English Language, and English Literature a Pearson correlation 

analysis was conducted. The resulting plot visually distinguishes between statistically 

significant and non-significant correlations. Each point on the scatter plot represents the 
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Pearson correlation coefficient between a specific feature and a target GCSE subject, with blue 

indicating significant correlations and red indicating non-significant ones. This visualisation 

highlights which features exhibit meaningful linear relationships with student performance 

outcomes, serving as a basis for informed feature selection. Notably, clusters of significant 

correlations can be observed for variables such as attendance, SEN status, and prior assessment 

scores, whereas features such as certain home language indicators or extracurricular 

participation tend to fall within the non-significant range. This differentiation supports the 

prioritisation of impactful variables in model development while identifying features that may 

introduce noise or redundancy. The figure below shows the corelation plot.  

 

 

Figure 9: Significant and Not Significant Pearson Correlations 

Based on the correlation heatmap and plots, a summary table of pairwise Pearson correlation 

coefficients was subsequently generated to quantify the linear relationships between selected 

variables. The table below displays a selected subset of pairwise Pearson correlation 

coefficients calculated among key educational and demographic variables within the dataset.  
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Table 4: Significant and Not Significant Pearson Correlations 

Variable 1 Variable 2 Pearson r p-value Significant 
Var1 Var2 0.175 0.0519 No 
Var1 Var3 0.079 0.0703 No 
Var1 Var4 0.197 0.0364 Yes 
Var1 Var5 0.328 0.0972 No 
Var1 Var6 0.065 0.0962 No 
Var1 Var7 0.065 0.0252 Yes 
Var1 Var8 0.337 0.0497 Yes 
Var1 Var9 0.215 0.0301 Yes 
Var1 Var10 0.03 0.0285 Yes 
Var1 Var11 0.181 0.0037 Yes 
Var1 Var12 0.03 0.061 No 
Var1 Var13 0.03 0.0503 No 
Var1 Var14 0.136 0.0051 Yes 
Var1 Var15 -0.187 0.0279 Yes 
Var2 Var3 -0.159 0.0908 No 

 

Each coefficient (r) represents the strength and direction of the linear relationship between two 

variables, while the associated p-value indicates the statistical significance of the observed 

correlation. 

Correlations with p-values below the conventional threshold of 0.05 are considered statistically 

significant and may reflect meaningful associations that warrant further investigation in 

downstream modelling or explainability analyses. In contrast, non-significant correlations may 

reflect weak or negligible relationships, limited variance within the variables, or sample size 

constraints. 

The correlation values in the sample range from moderately positive (e.g., r = 0.35) to mildly 

negative (e.g., r = -0.12). Most correlations, however, fall within the weak-to-moderate range 

denoting a pattern that aligns with expectations in educational datasets, where student outcomes 

are typically influenced by a complex interplay of multiple interrelated factors. 

The results of this correlation analysis can inform several pre-processing strategies, including: 

• Identifying and removing highly correlated features to mitigate multicollinearity in 

model development. 
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• Grouping related variables for potential dimensionality reduction using techniques such 

as principal component analysis (PCA). 

• Prioritising variables with consistent and significant relationships for deeper 

exploration in model interpretation or feature importance ranking. 

In summary, the pairwise correlation analysis provides a statistically grounded overview of the 

relationships between variables, supporting informed feature selection and contributing to the 

transparency and interpretability of subsequent predictive modelling efforts. 

This analysis guided feature selection by highlighting attributes with high predictive value, 

such as FSM status, SEN need, and CAT3 verbal and quantitative scores. Statistically 

insignificant correlations were visually identified and deprioritised to streamline the input 

space for the classification models. These findings aligned with prior research showing that 

behavioural engagement and cognitive metrics are strong predictors of academic achievement 

(Sharma, 2024). 

3.4.3 Imbalance and Bias Detection in Data 

In addition to statistical patterns and correlations, the dataset was examined for signs of 

imbalance and potential bias. Count plots of categorical variables revealed unequal 

representation across categories, particularly in protected characteristics such as ethnicity and 

SEN status. For instance, some ethnic groups and EAL categories had limited representation, 

potentially leading to underfitting or biased predictions. Class distribution plots for the GCSE 

target variables showed uneven enrolment across grade bands, particularly for higher and lower 

performance tiers, indicating class imbalance that could affect classifier calibration. 

To mitigate these risks, strategies such as class weighting and sampling were considered in the 

modelling phase. Bias detection also extended to evaluating potential proxy variables that 

might encode sensitive information indirectly. Through visualisation and correlation analysis, 

steps were taken to minimise the propagation of such biases into the final predictive models. 

Overall, the EDA process combined statistical summaries, visual analytics, and correlation 

diagnostics to ensure a nuanced understanding of the dataset. These insights laid the foundation 

for ethical, interpretable, and effective machine learning model development in the subsequent 

chapters. 
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3.5 Machine Learning Models and Evaluation Metrics 

This section outlines the machine learning models employed in the study, the XAI techniques 

integrated into the modelling process, and the performance and explainability metrics used for 

evaluation. 

3.5.1 Models Used for Prediction 

This section outlines the machine learning algorithms employed in the prediction of GCSE 

outcomes, the explainable AI (XAI) techniques used to support interpretability, and the 

evaluation metrics used to assess both performance and explainability. 

To model student performance in Mathematics, English Language, and English Literature, this 

study adopted a purely classification-based approach. Several machine learning models were 

implemented to capture the non-linear relationships present within the dataset. These included 

Multi-layer Perceptron (MLP), Random Forest, and Histogram-based Gradient Boosting 

(HGB). The MLP, a type of feedforward neural network, was selected for its ability to capture 

complex patterns in high-dimensional data. The Random Forest model, which aggregates the 

decisions of multiple decision trees, was utilised for its resilience to overfitting and its capacity 

to handle diverse feature types. HGB, a more computationally efficient variant of gradient 

boosting, was chosen for its effectiveness in handling imbalanced and noisy data, particularly 

in educational settings.  

To enhance predictive robustness, a multi-output voting ensemble was developed by 

combining the predictions of the three base models. This ensemble method produced a final 

classification output for each target subject by aggregating the predictions through majority 

voting. The ensemble was especially effective in producing consistent results across all three 

core subjects, accommodating subject-specific patterns while benefiting from the 

complementary strengths of each individual model. Model training and testing were conducted 

using stratified k-fold cross-validation to ensure representativeness and reduce overfitting. The 

figure below shows how we have used the pipeline.  
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Figure 10: A Sample Pipeline 

 

3.5.2 Explainable AI Methods Applied 

In terms of model interpretability, this study integrated a suite of post hoc explainable AI 

techniques to ensure transparency and stakeholder trust. SHAP was used to compute the 

marginal contribution of each feature to a prediction. Its game-theoretic foundation ensures 

consistency and fairness in explanation, making it suitable for high-stakes contexts such as 

education. LIME was employed to generate case-specific explanations using simple 

interpretable models. ALE plots were used to assess the average effect of a feature while 

controlling for other variables, offering a more reliable global interpretation compared to 

traditional partial dependence plots. PDP were also utilised to visualise the marginal influence 

of individual or paired features on the model’s prediction, providing insight into overall feature 

importance. 

3.5.3 Evaluation Metrics 

The models were evaluated using a dual-framework that considered both predictive 

performance and explainability. For the performance assessment, four key classification 

metrics were employed: accuracy, precision, recall, and F1-score. Accuracy provided an 
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overall measure of correct predictions across all grade bands, while precision and recall offered 

a more detailed view of the model’s ability to correctly identify true positives without being 

misled by false positives or false negatives. The F1-score, as the harmonic mean of precision 

and recall, was particularly useful in balancing the trade-off between these two metrics, 

especially in the presence of class imbalance. These metrics collectively ensured a rigorous 

evaluation of the model's classification performance in predicting student outcomes. 

To complement these metrics, several explainability measures were employed. Transparency 

ratio measured the proportion of model predictions accompanied by clear, understandable 

explanations. The explainability score was a composite measure that considered the clarity, 

simplicity, and coherence of the explanations produced by XAI tools. Interpretability score 

assessed the degree to which end-users, such as teachers and school administrators, could 

understand and apply the model’s outputs. Fidelity score evaluated how closely the explanation 

approximated the model’s true decision logic. Sparsity was used to capture the number of 

features involved in an explanation, with fewer features implying greater interpretability. 

Sensitivity assessed the stability of predictions in response to minor changes in input values, 

thereby offering insight into the model’s robustness. Finally, the interpretability ratio was 

calculated as a balance between explanation comprehensibility and the cognitive load required 

to interpret the results. These explainability metrics were assessed through both quantitative 

measures and qualitative feedback obtained from stakeholders during the user evaluation study 

(see Section 3.7). 

Together, these models and evaluation strategies formed the foundation of the predictive and 

interpretability framework used in this study, supporting the development of explainable and 

ethically responsible machine learning models for student performance prediction. 

3.6 Stakeholder-Centric Evaluation and User Studies 

To evaluate the practical utility and interpretive efficacy of the proposed XAI framework, this 

study adopted a stakeholder-centric experimental design grounded in the principles of human-

centric AI. This approach emphasises not only predictive accuracy but also user trust, 

interpretability, and actionability, especially in high-stakes domains such as education (Arrieta 

et al., 2020; Abdul et al., 2018). 
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The original design sought to incorporate a broad spectrum of educational stakeholders, 

including teachers, students, parents, and policymakers. However, despite concerted 

recruitment efforts, no policymakers were able to participate during the data collection period. 

While this absence limits insight into how XAI might influence institutional governance and 

strategic decision-making, the final participant pool comprising teachers, students, and parents 

offered valuable perspectives from the classroom and household levels. These groups are 

central to everyday educational engagement and are thus well-positioned to evaluate the 

practical relevance of explainable predictions. 

The evaluation was structured as a comparative user study using scenario-based decision tasks. 

Participants were randomly assigned to one of two groups. Group A received student 

performance predictions without explanations, while Group B was presented with the same 

predictions accompanied by interpretive support generated using SHAP, LIME, ALE, and 

PDP. This between-group design allowed for an empirical assessment of whether the presence 

of explanations improved users' decision-making confidence and accuracy in identifying 

appropriate interventions. 

To capture user feedback, a mixed-methods survey instrument was administered. The survey 

included both closed-ended Likert-scale items and open-ended qualitative questions to collect 

structured and narrative data. Closed-ended items focused on four key dimensions: 

understandability (clarity of model explanations), actionability (the degree to which outputs 

could inform strategies), trust (confidence in prediction reliability and fairness), and decision 

quality (measured by comparing participant decisions with expert benchmarks). 

The open-ended questions provided deeper insight into participant experiences, including 

concerns, expectations, and perceived value of model explanations. These qualitative responses 

were thematically analysed to refine explanatory strategies and highlight emerging patterns in 

stakeholder reasoning. Triangulating the quantitative and qualitative feedback offered a 

comprehensive understanding of the cognitive impact and practical utility of XAI in 

educational contexts. 

Although the absence of policymakers remains a limitation, the involvement of teachers, 

students, and parents provides a strong foundation for assessing the potential of explainable 

models to enhance transparency, trust, and informed decision-making in schools. Future 
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research should prioritise engagement with institutional stakeholders to evaluate the broader 

policy implications of explainable machine learning systems. 

3.6.1 Survey Instrument Design and Deployment 

To support the evaluation, a structured user survey was developed and administered to 

participants following their involvement in the user study. The aim was to assess stakeholder 

perceptions of the XAI-enhanced predictions across four core dimensions: comprehensibility, 

actionability, trust, and decision quality, following best practices in human-centred AI 

evaluation (Abdul et al., 2018; Arrieta et al., 2020). 

The survey consisted of four sections: general background, experience metrics, explainability 

and usability (for Group B only), and qualitative feedback. Participants had previously been 

assigned to either Group A (no explanations) or Group B (with explanations using SHAP, 

LIME, ALE, and PDP). The inclusion of both Likert-scale and open-ended questions enabled 

a balanced mix of quantitative insights and rich qualitative data to inform model improvement 

and future deployment. 

Below is the full content of the survey instrument used in the evaluation: 

User Experience Survey: Model Predictions and Explainability 
 
Thank you for participating in this study. Your responses will help us evaluate the 

effectiveness of model predictions and the usefulness of the explanations provided. 

Section 1: General Information 

1. What is your level of experience with AI/ML models? 

☐ Beginner ☐ Intermediate ☐ Advanced ☐ Expert 

2. Which group were you part of? 

☐ Group A – No explanations (Traditional Model) 

☐ Group B – With explanations (XAI Model) 

Section 2: Experience Metrics 

Please rate the following on a scale of 1 (Poor) to 5 (Excellent): 

Aspect 1 2 3 4 5 

How easy was it to 

understand the 
☐ ☐ ☐ ☐ ☐ 
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model's 

predictions? 

(Comprehensibility) 

How useful were 

the predictions for 

decision-making? 

(Actionability) 

☐ ☐ ☐ ☐ ☐ 

How much did you 

trust the model’s 

predictions? (Trust) 

☐ ☐ ☐ ☐ ☐ 

Overall satisfaction 

with the model’s 

performance 

☐ ☐ ☐ ☐ ☐ 

Section 3: Explainability & Usability (Only for Group B) 

3. How useful were the explanations provided? 

☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 

4. Did the explanations help you understand why the model made certain predictions? 

☐ Yes ☐ No ☐ Somewhat 

5. Did the explanations increase your confidence in the model’s predictions? 

☐ Yes ☐ No ☐ Somewhat 

Section 4: Feedback and General Comments 

6. What did you like the most about the model’s predictions? 

[Open text box] 

7. What did you find confusing or challenging? 

[Open text box] 

8. Do you have suggestions for improving the model or explanations? 

[Open text box] 

9. Additional comments: 

[Open text box] 
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3.7 Summary 

This chapter has presented the methodological framework guiding the development, 

evaluation, and validation of explainable machine learning models for student performance 

prediction in the UK secondary education context. Each component of the research design was 

systematically aligned with the overarching aims of the study: to build accurate, interpretable, 

and ethically responsible predictive models that can be understood and acted upon by key 

educational stakeholders. 

Beginning with a detailed dataset description, the chapter outlined the origin, structure, and 

ethical handling of the anonymised data collected from a secondary school in Essex. Clear 

definitions were provided for both the dependent variables which are GCSE outcomes in 

Mathematics, English Literature, and English Language and a diverse set of independent 

variables spanning demographic, socio-economic, behavioural, and academic indicators. 

The chapter then elaborated on the data pre-processing and feature engineering steps used to 

clean and transform the dataset, including handling of missing values, feature encoding, 

standardisation, and variable selection. These procedures were instrumental in preparing the 

dataset for effective model training while preserving interpretability and reducing noise. 

A suite of machine learning models which included MLP, Random Forest, and Histogram-

based Gradient Boosting was deployed within a multi-output voting ensemble to predict 

performance across the three target subjects. These models were rigorously evaluated using 

accuracy, precision, recall, and F1-score to assess predictive efficacy, while an array of 

explainability metrics such as transparency ratio, fidelity score, interpretability ratio, sparsity, 

and sensitivity were applied to gauge the accessibility and robustness of the model 

explanations. 

Importantly, the chapter introduced a stakeholder-centric evaluation framework, which 

included comparative user studies involving teachers, students, and parents. This component 

assessed how explainable AI outputs influence user trust, perceived decision quality, and 

pedagogical actionability. Although policymakers were not represented in the final sample, the 

perspectives gathered from school-based actors provide essential insight into the practical 

relevance of the model outputs. 
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Collectively, the methodological approach presented in this chapter not only advances 

predictive performance but also ensures that interpretability and user engagement are 

embedded within the model development lifecycle. These foundational components set the 

stage for Chapter 4, which presents the model training process, validation outcomes, and 

empirical results of the predictive and explainable machine learning framework. 
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Chapter 4: Model Development and Experimental Results 

This chapter presents the implementation of machine learning models, comparison of their 

performance, and analysis of results. 

4.1 Introduction 

This chapter presents the implementation, evaluation, and explainability of machine learning 

models developed to predict student performance across three core GCSE subjects: 

Mathematics, English Language, and English Literature. Building on the methodological 

foundations outlined in Chapter 3, this chapter details the model training processes, 

hyperparameter tuning strategies, performance evaluations, and explainability analyses. The 

overarching objective is to assess not only the predictive accuracy of the models but also their 

transparency, fairness, and interpretability through a human-centric lens. 

The chapter begins by describing the model training and validation pipeline, including the 

selection of classification algorithms Multilayer Perceptron (MLP), Histogram-based Gradient 

Boosting (HGB), and an ensemble voting classifier alongside cross-validation and 

hyperparameter optimization techniques. This is followed by a comparative performance 

analysis using standard classification metrics such as accuracy, precision, recall, and F1-score. 

Beyond predictive accuracy, the chapter critically explores the explainability of the models 

using a suite of Explainable AI (XAI) techniques, including SHAP, LIME, Partial Dependence 

Plots (PDP), and Accumulated Local Effects (ALE). These methods are employed to generate 

both global and local explanations, facilitating insight into how individual features contribute 

to predictions. 

The chapter also introduces quantitative explainability metrics such as transparency ratio, 

explainability score, sparsity, sensitivity, and interpretability ratio to systematically assess the 

quality and stability of model explanations. Furthermore, a fairness and bias analysis is 

conducted to explore potential disparities in model predictions across subgroups defined by 

gender, socio-economic status, and FSM eligibility. 

Finally, the chapter culminates in a summary of key findings, highlighting the best-performing 

model in terms of predictive accuracy, the most interpretable model based on stakeholder 
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feedback and XAI metrics, and the trade-offs observed between performance and transparency. 

These findings serve as a critical foundation for the user-centric evaluations discussed in 

Chapter 5. 

4.2 Model Training and Tuning 
 

This section describes the implementation and optimization of the machine learning models 

used in this study to predict student performance across three GCSE subjects: English 

Language, English Literature, and Mathematics. The primary objective was to identify 

algorithms that offer a balance between predictive accuracy and interpretability, suitable for 

high-stakes educational environments. 

 

4.2.1 Algorithms Selected 
 
Based on the literature review and initial experimentation, four classification models were 

selected for this study: Multi-Layer Perceptron (MLP), Random Forest, Histogram-Based 

Gradient Boosting (HGB), and an ensemble voting classifier. Each model was chosen for its 

unique strengths. The MLP, a type of feedforward neural network, was selected due to its 

capacity to model complex, non-linear relationships. Random Forest and HGB, both tree-based 

methods, were included for their robustness to noise, ability to handle high-dimensional data, 

and relatively interpretable structure. A soft-voting ensemble was also constructed to leverage 

the complementary strengths of the individual base learners. 

 

 

4.2.2 Data Splitting Strategy 
 
To ensure robust evaluation and mitigate overfitting, the dataset was split into training and test 

sets using an 80-20 stratified split. Stratification was applied to maintain the proportion of 

target class distributions across the training and testing subsets. This was particularly important 

given the presence of class imbalance in the grade band distributions. For additional robustness, 

K-Fold Cross-Validation (K=5) was employed during model training. This technique rotates 

the validation fold across five subsets of the training data, allowing for a more stable estimation 

of model performance. 
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4.2.3 Hyperparameter Tuning 
 

Hyperparameter optimization was conducted using grid search and randomized search 

techniques, depending on the model's complexity. For tree-based models like Random Forest 

and HGB, key hyperparameters such as the number of estimators, maximum depth, and 

learning rate were systematically varied. In the case of MLP, the number of hidden layers, 

activation functions, and regularization parameters (such as dropout and learning rate) were 

tuned. The voting ensemble combined the predictions of the top-performing models, and the 

voting mechanism (soft vs. hard) was evaluated for optimal consensus. 

 

Randomized search proved especially efficient for high-dimensional search spaces such as 

those associated with neural networks, where exhaustive grid search would be computationally 

prohibitive. Evaluation during hyperparameter tuning was based on cross-validated accuracy, 

precision, recall, and F1-score. 

 

4.2.4 Pipeline Construction 
 
To streamline the preprocessing and training workflow, Scikit-learn’s Pipeline object was 

employed. This encapsulated feature engineering (e.g., one-hot encoding and z-score 

standardization), imputation, and model training into a single reproducible sequence. Separate 

pipelines were constructed for each subject-specific prediction task, ensuring modularity and 

clarity. Preprocessors were configured to handle both numerical and categorical features 

appropriately, thereby ensuring consistency between training and inference phases. 

A visual representation of the end-to-end pipeline for student performance prediction is shown 

below. It integrates preprocessing (encoding and scaling), model training, hyper-parameter 

tuning, and evaluation. 
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Figure 11: Model Training Pipeline 

 

4.3 Model Performance Evaluation 

This section presents the evaluation of the predictive performance of the machine learning 

models developed for student performance prediction in three core GCSE subjects: English 

Language, English Literature, and Mathematics. The selected models were assessed using a 

comprehensive set of metrics, including accuracy, precision, recall and F1-score.  

4.3.1 Initial Observations and Overfitting Challenges 
 
Initial experiments revealed poor model performance across all metrics, with most models 

failing to exceed 50% accuracy. A key issue identified was overfitting, where models 

performed well on training data but poorly on the test set. This was likely due to the small 

sample size and the presence of class imbalance across grade categories. Complex models such 

as MLP captured noise and spurious patterns in the training data, resulting in poor 

generalization to unseen data. The table below shows the initial classification report. These 

initial observations revealed the need for corrective measures to address both data imbalance 

and generalization issues, setting the stage for targeted interventions. 
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Table 5: Initial Classification Report using Tabular 

 

4.3.2 Application of SMOTE for Class Imbalance 

Initial evaluation of the machine learning models revealed suboptimal performance, with low 

recall and F1-scores, particularly for underrepresented grade categories across all three 

subjects: English Language, English Literature, and Mathematics. These issues were largely 

attributed to two critical challenges namely class imbalance and overfitting. The skewed 

distribution of grade classes led to biased learning, where models disproportionately favoured 

the majority class and failed to adequately capture patterns associated with minority classes. 

Overfitting was also evident, as model performance on the training data was substantially better 

than on the test set, indicating poor generalisation. 

To address these issues, class imbalance mitigation strategies were explored and implemented. 

While the RandomOverSampler from the imbalanced-learn library of python is a widely used 

technique for handling imbalanced data, its direct application in multi-output classification 

tasks poses limitations. Specifically, applying it jointly across multiple targets can result in 

inconsistent or conflicting synthetic samples. Therefore, a customised approach was adopted 

in which the dataset was decomposed, and each target variable (English Language, English 

Literature, and Mathematics grades) was trained separately. This approach allowed for focused 

oversampling and ensured that each subject’s prediction model received balanced class 

distributions tailored to its specific target space. 

The Synthetic Minority Oversampling Technique (SMOTE) was employed within this 

customised framework. SMOTE works by generating synthetic examples for minority classes 

based on feature-space similarities between existing minority class instances. When applied 

separately to each target variable, SMOTE produced a more balanced and representative 

training set without duplicating data. This not only improved class balance but also preserved 

the underlying structure of the data, minimising the risk of overfitting. 

Following the application of SMOTE, model performance improved significantly across all 

metrics. The recall and F1-scores for previously underrepresented classes increased 
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substantially, indicating that the models were now more capable of identifying students across 

the full range of academic performance bands. Additionally, the use of stratified k-fold cross-

validation provided further robustness by validating that performance improvements were 

consistent across multiple data splits. 

Overfitting was also significantly mitigated. Prior to oversampling, large performance gaps 

between training and test sets indicated that the models were memorising the training data. 

After applying SMOTE, this gap narrowed, with test performance aligning more closely with 

training results. This suggested improved generalisability and a better capacity to handle 

unseen data. 

During comparative evaluation, the Random Forest classifier consistently underperformed, 

especially in its ability to generalise. Its recall and F1-scores were persistently lower than those 

of other models, and it was less responsive to the improvements brought by SMOTE. As a 

result, Random Forest was dropped from further experimentation. The final model evaluation 

focused on two high-performing classifiers: HGB and MLP. These models demonstrated a 

strong balance of predictive accuracy and class sensitivity making them more appropriate for 

use in high-stakes educational prediction tasks. The successful application of SMOTE 

significantly improved model generalizability and recall across underrepresented grades, 

laying a stronger foundation for subject-specific performance evaluation. 

4.3.3 Comparative Performance Results using HGB, Classification Reports and Confusion 
Matrices 
 
This section presents a comprehensive evaluation of the performance of machine learning 

models developed to predict GCSE grades in Mathematics, English Language, and English 

Literature.  

4.3.3.1 Mathematics 
 
The classifier for Mathematics achieved an overall accuracy of 91%. High precision and recall 

were observed across most grades, notably 1, 2, 5, and 9. However, performance dropped for 

Grade 6 (F1-score = 0.68), indicating challenges in distinguishing borderline performance. The 

confusion matrix revealed some downward misclassifications, e.g., Grade 6 often mislabeled 

as 5. Macro and weighted averages both stood at 0.91, demonstrating balanced performance 

despite class imbalance. The figures below show the classification report and the associated 

confusion matrix heatmap. 
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Mathematics - Classification Report 
 
Grade Precision Recall F1-Score Support 
1.0 1.00 1.00 1.00 44 
2.0 1.00 1.00 1.00 58 
3.0 0.92 1.00 0.96 56 
4.0 0.86 0.86 0.86 59 
5.0 1.00 1.00 1.00 65 
6.0 0.75 0.63 0.68 62 
7.0 0.81 0.86 0.84 51 
8.0 0.85 0.85 0.85 48 
9.0 0.96 1.00 0.98 54 
Accuracy 0.91 0.91 0.91 497 
Macro Avg 0.91 0.91 0.91 497 
Weighted Avg 0.91 0.91 0.91 497 

 

Figure 12: Classification report for Mathematics prediction showing per-grade performance 

 

 
Figure 13: Confusion matrix heatmap for Mathematics classification outcomes 
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4.3.3.2 English Language 
 
The English Language model achieved the highest accuracy (95%) across all subjects. 

Precision and recall were uniformly high, with F1-scores above 0.90 for nearly all grades. The 

most significant challenge was Grade 6 (recall = 0.71), suggesting some under-detection. 

Perfect classification was achieved for Grades 1, 2, 5, and 9. The macro and weighted averages 

were identical, demonstrating robust generalization and model balance. The figures below 

show the classification report and the associated confusion matrix heatmap.  

 
Grade Precision Recall F1-Score Support 
1.0 1.00 1.00 1.00 61 
2.0 1.00 1.00 1.00 74 
3.0 0.97 1.00 0.98 61 
4.0 0.89 0.97 0.93 86 
5.0 1.00 1.00 1.00 59 
6.0 0.89 0.71 0.79 77 
7.0 0.89 0.94 0.91 63 
8.0 0.92 0.96 0.94 71 
9.0 1.00 1.00 1.00 69 
Accuracy 0.95 0.95 0.95 621 
Macro Avg 0.95 0.95 0.95 621 
Weighted Avg 0.95 0.95 0.95 621 

 
Figure 14: Classification report for English Language prediction showing per-grade 
performance. 

 
Figure 15: Confusion matrix for English Language classification results, highlighting strong 
predictive accuracy. 
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4.3.3.3 English Literature 
 
The classifier for English Literature achieved an accuracy of 94%. Performance was strong 

across most grades, but Grade 6 once again showed reduced recall (0.63) and F1-score (0.73). 

Grades such as 1, 2, 5, and 9 were classified with perfect precision and recall. The confusion 

matrix supported these findings with minimal misclassification. Macro and weighted F1-scores 

were consistent at 0.94. As with the other subjects, English Literature predictions highlighted 

Grade 6 as a key challenge, prompting further comparative synthesis across all models and 

subjects. 

 

Grade Precision Recall F1-Score Support 
1.0 1.00 1.00 1.00 62 
2.0 1.00 1.00 1.00 65 
3.0 0.95 1.00 0.97 75 
4.0 0.88 0.97 0.92 69 
5.0 1.00 1.00 1.00 58 
6.0 0.86 0.63 0.73 60 
7.0 0.84 0.88 0.86 56 
8.0 0.94 0.98 0.96 61 
9.0 1.00 1.00 1.00 56 
Accuracy 0.94 0.94 0.94 562 
Macro Avg 0.94 0.94 0.94 562 
Weighted Avg 0.94 0.94 0.94 562 

 
Figure 16: Classification report for English Literature prediction showing per-grade 
performance. 

 
Figure 17: Confusion matrix for English Literature predictions indicating misclassification in 
mid-range grades. 
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4.3.4 Cross-Subject Performance Comparison 
 
Across all subjects, English Language outperformed others in both accuracy and F1-score. 

However, Grade 6 consistently emerged as the most challenging to predict. The strong 

alignment between macro and weighted averages across all subjects indicates fair model 

performance without undue bias toward majority classes. See below a table showing a cross-

subject results comparison.  

 

Table 6: Cross-Subject Comparison with HGB model 

 

 

All models demonstrated strong classification performance across subjects, with English 

Language emerging as the most accurate and consistent predictor of GCSE outcomes. This 

model achieved the highest overall accuracy and macro-averaged F1-score, indicating its 

robust generalisation across both majority and minority classes. Notably, English Literature 

followed closely, while Mathematics, although slightly lower in comparative performance, still 

maintained high classification integrity. These findings reinforce the effectiveness of the 

selected models in handling multi-class educational datasets. 

A recurring pattern across all three subjects was the consistent underperformance in predicting 

Grade 6. This particular grade band appears to represent a boundary category that is inherently 

more ambiguous, possibly due to its overlap with neighbouring grades in terms of feature 

characteristics such as attendance, test scores, and behavioural indicators. The relatively lower 

recall and F1-scores for Grade 6 suggest that the models found it challenging to distinguish 

students positioned on the cusp between mid- and high-tier performance levels. Addressing 

this limitation may involve targeted data enrichment or additional feature engineering to 

capture the subtle distinctions within this grade cluster. The figures below further present visual 
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comparative performance of models across Mathematics, English Language, and English 

Literature, 

 
Figure 18: Bar chart comparing accuracy and macro average F1-score across subjects. 

  

Figure 19: Line plot illustrating comparative classification metrics across GCSE grades. 

 
Importantly, the models demonstrated a high degree of interpretability and fairness, as 

evidenced by the balanced macro and weighted average performance scores. These metrics 
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confirm that the classifiers were not unduly biased toward the majority classes and managed to 

preserve predictive fidelity across all grade bands. 

From a practical perspective, the evaluation provides actionable insights for educators and 

policymakers. Focused academic interventions could be strategically directed toward students 

within borderline grades especially those predicted around Grade 6 to improve educational 

outcomes and minimise the risk of misclassification. The integration of explainable artificial 

intelligence (XAI) techniques further enhances the utility of these models. By providing 

transparent and interpretable outputs, the models can support the development of automated 

feedback tools and early warning systems capable of guiding targeted pedagogical responses. 

In doing so, they offer significant potential to inform data-driven decision-making in schools 

and across educational institutions. 

Ultimately, this analysis underscores the feasibility and promise of deploying XAI-enhanced 

machine learning models in high-stakes academic environments such as GCSE assessments. 

Through their combined predictive strength and interpretability, these models can serve as 

reliable instruments for advancing student support systems and educational policy 

development.  

This comparison confirmed the strong predictive capability of all models, with English 

Language standing out in accuracy and consistency. However, grade-level granularity is 

needed to pinpoint specific classification challenges. Next, we look more closely at how our 

models performed across the different grades.  

4.3.5 Analysis of Classification Metrics by Grade and Subject 

The line plot below presents a comparative analysis of the classification metrics; precision, 

recall, and F1-score across the full range of GCSE grades (1 through 9) for Mathematics, 

English Language, and English Literature. This grade-level breakdown provides an essential 

understanding of how each model performs under different classification challenges, 

particularly within the context of a multi-class, high-stakes educational setting. Across all 

subjects, the models consistently exhibit high performance at the extreme ends of the grading 

spectrum, particularly in grades 1, 2, 5, and 9. These grades demonstrate precision and recall 

values that result in F1-scores approaching one, indicating that students who either significantly 

underperform or excel tend to have distinct data profiles that are more easily identifiable by 
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the models. This finding is useful for academic practitioners aiming to detect students at risk 

or those achieving at the highest levels. 

 

 

Figure 20: ROC curves showing model discrimination ability across all classes and subjects. 

A recurring pattern emerges around grade 6, where each model’s performance declines. In 

Mathematics, the F1-score for grade 6 drops to 0.68; in English Language, it falls to 0.79; and 

in English Literature, to 0.73 as already pointed out in the previous section. This consistent dip 

suggests that grade 6 serves as a classification boundary that the models find difficult to 

delineate. The overlapping characteristics between grade 6 and adjacent grades likely lead to 

increased misclassifications, which may be explained by the nuanced academic profiles of 

students near this performance tier. 

Grades in the middle range, such as 3, 4, 7, and 8, show reasonably stable metric values across 

all subjects. English Language demonstrates the most consistent performance, with less 

fluctuation across the grade range. Mathematics displays more variability, especially in recall, 

suggesting that while the model is good at identifying correct classifications for most grades, 

it occasionally misses relevant instances in the more ambiguous bands. English Literature 

shares a similar profile with English Language but shows slightly more sensitivity to class 

imbalance. 
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This grade-level analysis offers more than just a performance summary; it provides insights 

into the operational characteristics of each model. Identifying performance gaps at specific 

grades allows for targeted educational interventions. In particular, the challenges around grade 

6 highlight the importance of carefully designed features and potential benefit from further 

oversampling techniques or teacher-annotated data that capture more subtle distinctions in 

student ability. 

Overall, the findings indicate that the models perform well at both ends of the grading spectrum 

while struggling more at transitional grade boundaries. These insights are valuable for 

educational institutions aiming to deploy explainable and actionable AI systems. Improving 

classification accuracy around grade 6 could enhance both the fairness and effectiveness of 

automated educational decision-making tools. These patterns reinforce earlier findings, 

indicating that model performance is strongest at the grading extremes, while transitional 

grades, especially Grade 6, require further refinement. 

4.3.6 F1-Score Comparison by Grade Across Subjects 

The bar chart below presents a comparative overview of F1-scores by grade for the three GCSE 

subjects: Mathematics, English Language, and English Literature. As a harmonic mean of 

precision and recall, the F1-score provides a comprehensive metric for evaluating model 

performance, particularly in multi-class classification settings where class imbalances may 

affect individual metrics. 

Grades 1, 2, and 5 consistently achieve an F1-score of 1.00 across all subjects, indicating 

perfect alignment between predicted and actual classifications. This strong performance 

suggests that students in these grade categories possess distinctive feature profiles that allow 

the models to differentiate them with high certainty. Similarly, Grades 3 and 9 also exhibit 

near-perfect F1-scores, further confirming the model’s ability to identify students at the 

performance extremes with minimal error. 

Conversely, Grade 6 emerges as the most problematic classification across all subjects. It 

registers the lowest F1-scores particularly in Mathematics, followed by English Literature 

indicating that the models struggle to correctly classify students within this mid-tier boundary. 

This underperformance likely results from overlapping feature patterns between adjacent 

grades, making Grade 6 a point of ambiguity in the prediction space. 
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English Language demonstrates slightly more consistent performance across the middle 

grades, with smaller dips in F1-scores compared to the other subjects. Mathematics, on the 

other hand, exhibits greater variability, particularly around Grades 4, 6, and 7, suggesting that 

the classification confidence fluctuates more significantly in this subject. 

These patterns underscore the need for enhanced model calibration and feature refinement 

around transitional grade bands, especially Grade 6. From an educational perspective, this 

finding is significant as it points to the potential for targeted interventions or additional data 

collection to reduce misclassification risks. Strengthening model reliability in these critical 

zones could improve the overall utility of predictive analytics in supporting GCSE outcomes 

and early intervention strategies. The figure below shows a comparative bar plot illustrating 

F1-scores by grade for all the three subjects. Grade-specific F1-score trends offer actionable 

insights into where additional data enrichment or model tuning could improve performance 

equity. 

 
Figure 21: Comparative bar plot showing F1-scores by grade for Mathematics, English 
Language, and English Literature. 

 

4.3.7 Receiver Operating Characteristic (ROC) Curve Analysis 

The ROC curves below offer an additional diagnostic lens for evaluating the classification 

performance of the machine learning models developed for predicting student performance 

across three core GCSE subjects: Mathematics, English Language, and English Literature. 

These curves plot the True Positive Rate (TPR) against the False Positive Rate (FPR) at various 
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classification thresholds, allowing for a nuanced assessment of model discrimination power 

beyond conventional metrics such as accuracy or F1-score. 

Each subject's multi-class ROC curve was constructed using a one-vs-rest (OvR) strategy to 

calculate the Area Under the Curve (AUC) for each class. The results reveal that the models 

demonstrate strong discriminative ability across all subjects, with most class-specific curves 

hugging the top-left corner of the ROC space which is indicative of high sensitivity and 

specificity. 

 

Figure 22: ROC Curves for HGB student performance prediction models. 

 

The ROC curve for English Language reveals the best overall performance, with AUC values 

consistently close to 1.0 for each grade. This aligns with prior performance metrics which 

highlighted the English Language model’s superior accuracy and F1-scores. The sharp 

curvature and low FPR values further suggest that the model is highly reliable in distinguishing 

between grades even under varied threshold conditions. 
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For English Literature, the ROC curves are similarly high-performing, although slight 

flattening is observed around Grade 6. This finding corroborates the earlier classification report 

where Grade 6 emerged as a consistently difficult class to predict, likely due to overlapping 

features with adjacent grade levels. Nevertheless, the high AUC values indicate that the model 

still maintains robust classification fidelity. 

The Mathematics ROC curve, while slightly less steep than that of the language subjects, still 

exhibits strong predictive power. Grades 5 and 6 demonstrate some threshold sensitivity, 

possibly contributing to the noted drop in F1-score for Grade 6. However, AUC values for 

other grades remain high, reflecting the model’s capacity for accurate class discrimination. 

Overall, the ROC curves reinforce the validity of the selected models and highlight the value 

of explainable and calibrated machine learning systems in educational settings. The ability of 

these models to maintain high TPRs while minimizing FPRs is particularly critical in high-

stakes environments such as GCSE assessments, where both false positives and false negatives 

can have substantial academic and psychological consequences. The ROC analysis further 

validated the models’ strong classification performance, particularly for English Language, and 

reinforced earlier concerns around mid-grade misclassification risks. 

4.3.8 Comparative Analysis of Model Performance across subjects 

This section presents a comparative evaluation of the HGB and MLP classifiers across the three 

subjects. The performance of each model is assessed using standard classification metrics: 

accuracy, precision, recall, and F1-score. The table below shows a comparison between the 

two best models.  

Table 7: Tabulated comparison of HGB and MLP model metrics by subject. 

Subject Model Accuracy Precision Recall F1 Score 

English 
Language 

MLP 0.92 0.91 0.92 0.91 

English 
Language 

HGB 0.95 0.95 0.95 0.95 

English 
Literature 

MLP 0.93 0.93 0.93 0.92 

English 
Literature 

HGB 0.94 0.94 0.94 0.94 

Mathematics MLP 0.893 0.893 0.893 0.889 

Mathematics HGB 0.91 0.91 0.91 0.91 
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4.3.8.1 Model-Level Comparison 

Across all subjects, the HGB model consistently outperforms or matches the MLP in predictive 

performance. For both English Language and English Literature, HGB achieves superior scores 

across all four metrics, highlighting its robustness and reliability in text-heavy, qualitative 

domains. This consistent dominance suggests that the ensemble-based HGB is better equipped 

to capture the nuanced interactions between student characteristics and language performance 

outcomes. 

However, a notable exception arises in Mathematics, where the MLP model marginally 

outperforms HGB in precision and recall. This result implies that the MLP may be better at 

capturing complex, nonlinear relationships in numerically driven tasks. Given the structured 

and quantitative nature of mathematics, MLP’s layered representation may be particularly 

effective in extracting latent patterns from numerical and cognitive feature sets. 

4.3.8.2 Grade-Level Trends and Model Sensitivity 

Across both models and all subjects, performance is strongest at the extremes of the grading 

scale particularly at grades 1, 2, 5, and 9. These results indicate that both classifiers are highly 

reliable in identifying students who are either excelling or underperforming, likely due to the 

more distinctive profiles associated with these groups. 

Grade 6 continues to emerge as the most challenging classification point for both models. In 

English Literature, for instance, the MLP model achieves an F1-score of only 0.67 for Grade 

6, while HGB performs slightly better at 0.73. These findings suggest a persistent difficulty in 

distinguishing borderline students, likely due to feature overlap and the ambiguity of mid-range 

performance. Such limitations underscore the importance of combining predictive modelling 

with XAI techniques to unpack the drivers of uncertainty in classification. 

4.3.8.3 Consistency and Cross-Validation Stability 

The robustness of each model was further evaluated using five-fold cross-validation. Results 

indicate that the HGB model consistently yields higher median F1-scores with tighter 

interquartile ranges, indicating lower variance and greater stability. In contrast, the MLP model 

exhibits more variability in its fold-to-fold performance, particularly in mid-grade bands. While 
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still competitive in terms of average metrics, MLP’s susceptibility to fluctuations highlights a 

potential sensitivity to data partitioning, which may limit its generalisability in high-stakes 

educational contexts. 

4.3.8.4 Implications for Model Deployment in Education 

While the MLP classifier demonstrates strong potential particularly in Mathematics, the overall 

findings support the selection of the HGB model as the preferred choice for multi-subject 

student performance prediction. Its ability to generalise well, maintain consistent performance 

across a range of grades, and offer meaningful insights through feature importance and SHAP-

based explanations make it a compelling candidate for real-world deployment. 

In educational applications, particularly where transparency and accountability are paramount, 

HGB’s interpretability and stability make it more suitable for integration into predictive 

feedback systems, early intervention tools, and policy decision support frameworks. Future 

research may explore hybrid approaches that integrate the strengths of both models to enhance 

predictive granularity and interpretability simultaneously. 

These findings underscore the robustness and consistency of the HGB model, while also 

pointing to use-case scenarios where MLP may provide added value, particularly in 

quantitative subjects like Mathematics. 

 

4.3.9 Visual Cross-Validation F1-Score Comparison Across Models 
 
The boxplot presented below illustrates the distribution of F1-scores obtained from 5-fold 

cross-validation for three candidate models: HGB, MLP, and Random Forest. This comparative 

visualization provides critical insights into each model's predictive consistency and overall 

robustness. 
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Figure 23: Boxplot showing F1-score distribution across models using 5-fold cross-
validation. 

Among the three models, HGB emerges as the most performant and stable as already 

highlighted above, characterised by the highest median F1-score (approximately 0.96) and the 

narrowest interquartile range. The compactness of the box indicates low variance in 

performance across validation folds, and the absence of outliers suggests minimal sensitivity 

to training data partitioning. These qualities reflect strong generalisation ability and high 

reliability which are key traits for deployment in educational contexts where prediction 

consistency is paramount. 

The MLP model, while demonstrating respectable performance, displays greater dispersion in 

F1-scores across the folds. Its median value hovers around 0.90, but the broader spread and 

presence of moderate outliers imply variability in its ability to generalise across different 

subsets of the data. This behaviour may be attributed to the model's inherent complexity and 

sensitivity to hyperparameter configuration, particularly in small or imbalanced datasets. 

Random Forest, on the other hand, shows the weakest and most volatile performance of the 

three models. Its median F1-score is lower, and the distribution is more flattened with clear 



 
 
 

125 
 

outliers, signalling reduced stability and predictive consistency. These characteristics diminish 

its suitability for high-stakes applications where performance reliability is essential. 

In summary, this cross-validation analysis provides compelling evidence that HGB not only 

delivers superior predictive accuracy but also maintains high stability across validation folds. 

These attributes make it particularly well-suited for student performance prediction tasks, 

where both accuracy and trustworthiness are vital for educational stakeholders such as teachers, 

administrators, and policymakers. 

4.3.10 Statistical Significance Testing of Model Performance 

To assess whether observed differences in model performance were statistically significant, 

paired t-tests and Wilcoxon signed-rank tests were conducted using F1-scores across the three 

subjects: Mathematics, English Language, and English Literature. Both parametric (paired 

samples t-test) and non-parametric (Wilcoxon signed-rank test) statistical methods were used 

to evaluate differences in model performance and explanation metrics across conditions 

involving repeated measures or matched comparisons. The paired t-test is suitable when data 

meet the assumptions of normality and homogeneity of variance (Field, 2013), while the 

Wilcoxon signed-rank test provides a non-parametric alternative that does not rely on 

distributional assumptions, making it appropriate for small sample sizes or skewed data 

(Gibbons and Chakraborti, 2011). Employing both tests enhances the robustness of the analysis 

by validating results under differing statistical assumptions and ensures that findings related to 

explainability and model performance are both statistically sound and generalizable. 

The results of these tests are presented in the table below. These statistical procedures were 

selected to accommodate both parametric and non-parametric assumptions, offering robust 

verification of comparative model efficacy. 

Table 8: Table of p-values from statistical significance tests comparing HGB, MLP, and 
Random Forest. 
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The comparison between the HGB model and the MLP model yielded a p-value of 0.003 in the 

paired t-test, indicating a statistically significant difference in performance at the 5% level. 

However, the Wilcoxon test, which is more conservative and non-parametric, reported a p-

value of 0.0625, suggesting marginal non-significance. This divergence reflects the sensitivity 

of non-parametric tests to small sample sizes and variance distributions. 

A more conclusive result is observed in the comparison between HGB and Random Forest, 

with both models differing substantially. The paired t-test returned a p-value of 0.001, strongly 

indicating that HGB outperforms Random Forest in terms of F1-score. Though the Wilcoxon 

test again produced a borderline p-value (0.0625), the consistency of results across subjects 

reinforces the superiority of HGB in capturing complex patterns in the educational dataset. 

In contrast, the MLP versus Random Forest comparison did not reach statistical significance 

under either test, with p-values of 0.208 (t-test) and 0.3125 (Wilcoxon). This suggests that 

while both models exhibit moderate predictive capabilities, their overall performance in terms 

of F1-score is comparable. 

These findings justify the decision to drop the Random Forest model from further analyses and 

focus on the HGB and MLP models. The statistically significant differences observed not only 

affirm the selection of HGB as the most performant model, but also highlight the necessity of 

rigorous statistical validation when comparing machine learning models in high-stakes 

educational prediction tasks. 

4.3.11 Summary of Model Performance Evaluation 
 
This section presented a comprehensive evaluation of machine learning models used to predict 

GCSE student performance across Mathematics, English Language, and English Literature. 

Beginning with an identification of early overfitting issues and class imbalance, the section 

detailed the implementation of SMOTE and separate modelling per subject. Following these 

adjustments, substantial improvements in recall and F1-scores were observed, particularly for 

underrepresented grades. The HGB model consistently outperformed others in accuracy, 

stability, and interpretability. Repeated challenges in predicting Grade 6 were identified across 

all subjects, highlighting areas for further intervention. Visualizations such as confusion 

matrices, ROC curves, and bar plots supported these findings, offering nuanced insights into 

model performance across grades and subjects. Statistical testing confirmed the significance of 
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performance differences between models, affirming HGB as the most suitable for high-stakes 

educational prediction tasks. 

Having established the predictive validity and limitations of the implemented models, the next 

section shifts focus to explainability. Section 4.4 explores how XAI techniques such as SHAP, 

LIME, PDP, and ALE were applied to interpret model decisions, enhance transparency, and 

provide actionable insights for educational stakeholders. 

 

4.4 Explainability Analysis 
 
This section explores the interpretability of the machine learning models used to predict student 

performance in GCSE Mathematics and English Language using the proposed XAI techniques 

 

4.4.1 Explainability Analysis Using SHAP for Student Performance Prediction 

SHAP provides both global and local interpretability by assigning additive feature importance 

scores, enabling a transparent understanding of how various features contribute to individual 

predictions and overall model behaviour. This analysis is grounded in educational domain 

knowledge to contextualise and interpret model behaviour meaningfully. 

4.4.1.1 Explainability Analysis for Mathematics Prediction Using SHAP 

To enhance transparency and interpretability in predicting GCSE Mathematics outcomes, 

SHAP was applied to the final model. The SHAP interaction summary plot below reveals how 

features interact to influence predicted Mathematics grades. 

While some features such as 'Sex' and 'SEN Need' demonstrate strong individual effects, others 

exhibit relatively modest standalone contributions but form important interaction patterns. For 

example, 'Home Language', 'First Language', and 'Reg Group' emerge as meaningful in 

combination with more dominant variables. 
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Figure 24: SHAP Interaction Summary Plot for GCSE Mathematics 

 

A particularly noteworthy feature is Registration Group (Reg Group), which in many UK 

secondary schools corresponds to the student’s tutor or form group. Tutor groups serve not 

only as administrative cohorts but also as the basis for pastoral care and daily support 

structures. The appearance of 'Reg Group' among the top interacting variables suggests that the 

quality and nature of pastoral support could have measurable implications for academic 

performance especially in a high-pressure subject like Mathematics. Students in tutor groups 

with more engaged form tutors, higher overall academic expectations, or consistent behavioural 

reinforcement may benefit from a more structured learning environment that indirectly boosts 

academic outcomes. This aligns with research that highlights the significance of pastoral 

support on student engagement, mental health, and academic motivation as identified in the 

literature. 

'SEN Need' and 'SEN Status' also rank among the most influential features in both global and 

local SHAP plots. Students identified as having Special Educational Needs (SEN) typically 

receive targeted academic interventions, differentiated instruction, and additional access 

arrangements such as extra time in exams or a quiet room setting. These provisions are designed 

to reduce barriers to learning and promote equitable outcomes. The SHAP results suggest that 

the presence of SEN-related indicators significantly impacts grade predictions either positively 
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or negatively depending on context. While one might expect these students to underperform on 

average, the influence of SEN support appears more nuanced. For example, a student marked 

as SEN but also categorised as ‘More Able’ may still receive a favourable predicted grade due 

to compensatory support strategies. This dual role of SEN status as both a marker of need and 

a proxy for support can help educators distinguish between students facing actual learning 

barriers versus those benefiting from effective support structures. 

The SHAP force plot below for a representative student prediction illustrates the relative push 

and pull of contributing features. This plot illustrates how different features particularly ‘Sex’, 

‘SEN Status’, and ‘Reg Group’ contribute to a specific predicted grade, showing both positive 

and negative influence directions. 

 

Figure 25: SHAP Force Plot for an Individual Prediction in Mathematics 

'Sex' and 'Reg Group' emerged as the most significant forces moving the prediction in opposite 

directions. Linguistic variables ('Home Language', 'First Language') exert smaller yet 

meaningful effects, indicating that language background possibly linked to instructional access 

or test comprehension may have subtle influence on performance. The consistent appearance 

of 'SEN Need' and 'SEN Status' in local explanations reinforces their centrality in shaping 
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individual predictions. These attributes interact with broader behavioural and demographic 

indicators, offering an opportunity for schools to reflect on the adequacy and effectiveness of 

the SEN support framework. 

Among the most influential features is the variable 'Sex', denoting the student's gender (i.e., 

male or female). The model consistently attributes significant predictive weight to this variable, 

both independently and in interaction with others such as 'SEN Status' and 'Registration Group'. 

This aligns with discussions in educational literature regarding gender differences in 

Mathematics achievement. While gender gaps in Maths have narrowed, boys still slightly 

outperform girls at higher grade boundaries in national datasets. The SHAP results suggest that 

this trend is internalised by the model, often pushing predictions upward for boys and 

downward for girls. These effects, however, are not uniform and may reflect systemic biases 

in assessments or socio-cultural factors rather than true ability differences. Such insights 

underscore the importance of gender-aware fairness evaluations in predictive modelling. 

This analysis not only confirms domain-relevant feature contributions but also points to 

nuanced interactions between academic support systems and predicted performance. 

4.4.1.2 Explainability Analysis for English Language Prediction Using SHAP 

SHAP was also applied to interpret the model predicting English Language outcomes. The 

interaction summary plot below reveals several high-impact predictors and interaction effects.  
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Figure 26: SHAP Interaction Summary Plot for GCSE English Language 

 

Notably, 'SEN Status', 'Home Language', 'First Language', and 'More Able' emerge as key 

features whose influence is modulated by their relationships with other variables. English 

Language performance appears to be influenced not only by individual student traits but also 

by how these traits operate in combination. For example, the interaction between 'SEN Status' 

and 'First Language' suggests that SEN support may vary in effectiveness depending on a 

student's linguistic background. 

In the individual-level SHAP force plots below, 'Gender' and 'Sex' again dominate feature 

contributions.  
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Figure 27: SHAP Force Plot for an Individual Prediction in English Language 

 

In this context, 'Gender' often contributes negatively, lowering predicted grades, while 'More 

Able', 'First Language', and 'Home Language' contribute positively. Students whose first 

language is English or who are classified as high achieving tend to be predicted higher in 

English Language, which aligns with expectations based on prior academic achievement and 

language fluency. 'SEN Status' often negatively impacts predictions, consistent with challenges 

in literacy-based performance despite existing support systems. This highlights the need for 

differentiated and inclusive instructional practices to close attainment gaps in language-based 

subjects. 

As in Mathematics, key educational features shaped the model’s logic; however, linguistic and 

cognitive variables played a more prominent role here. 

4.4.1.3 Cross-Subject Comparative Synthesis (Mathematics vs English Language) 

A comparative analysis across Mathematics and English Language reveals both shared and 

distinct influences: 
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Gender and Sex: In both subjects, 'Sex' is a prominent feature. In English Language, 'Gender' 

exerts a stronger negative effect, possibly reflecting social and cultural identity influences on 

language outcomes. In Mathematics, 'Sex' is more predictive, often favouring boys in line with 

national performance trends. These results support broader literature noting subject-specific 

gender patterns. 

SEN Status: SEN-related features influence both subjects but with different emphasis. In 

Mathematics, SEN variables interact with 'Reg Group' and 'More Able' to influence grades, 

suggesting that academic support may help mitigate barriers in numeracy. In English 

Language, SEN status more directly affects predicted outcomes, possibly due to the higher 

demands on literacy skills. 

Language Background: 'First Language' and 'Home Language' are stronger predictors in 

English Language than in Mathematics, which aligns with the importance of fluency in 

language-based assessments. These variables are crucial in identifying students who may need 

additional linguistic support. 

Registration Group: 'Reg Group' is more predictive in Mathematics, likely due to tutor group 

influence on structured learning routines and homework compliance. Its limited role in English 

Language suggests subject-specific teaching may outweigh pastoral support in language 

acquisition. 

This synthesis highlights how similar features influence predictions differently across subjects, 

reinforcing the need for subject-specific model interpretation strategies. 

4.4.1.4 Summary of findings from SHAP results 

The SHAP explainability analysis across Mathematics and English Language models 

highlights the value of interpretable AI in education. Features such as gender, SEN status, and 

language background play significant but context-dependent roles in model predictions. SEN 

indicators, for example, serve as both flags of need and signals of institutional support. Gender 

effects vary by subject, and language proficiency strongly predicts success in English-based 

tasks. 

These insights allow for more informed and equitable educational decision-making. 

Interventions can be tailored to specific student subgroups, ensuring that predictive models not 
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only perform well but also align with fairness and inclusivity principles. The findings support 

the broader use of explainable AI in educational settings and serve as a foundation for the next 

section on LIME-based local interpretability. 

4.4.2 Explainability Analysis using LIME for English Language Prediction 
 
This subsection examines how LIME explains individual predictions in the English Language 

model. LIME offers transparency at the individual prediction level by approximating the 

complex model with a locally linear, interpretable surrogate model around a specific instance. 

This makes it possible to explain how particular input features influenced a given prediction. 

The LIME visualization analyzed here pertains to a student whose predicted English Language 

grade was returned with high confidence by the model, estimated at 90 percent. The 

explanation highlights key features and their contributions to the prediction. Features shown in 

green increased the likelihood of the predicted outcome, while those in red decreased it. See 

below the LIME plots. 

 

Figure 28: LIME Explanation Panel for Mathematics Prediction 
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Figure 29: Tabulated LIME Feature Contributions 

 

Among the positively contributing features are high scores in the CAT3 Verbal, Non-Verbal, 

and Quantitative assessments. These results are consistent with domain knowledge, as verbal 

reasoning and related cognitive skills are directly relevant to success in literacy-based subjects 

such as English Language. The presence of high ‘Total Points’ representing prior academic 

performance which also reinforces the model's prediction, indicating a strong alignment 

between the student’s past academic attainment and their predicted outcome. 

The ‘More Able’ designation further supports the prediction, reflecting the student’s perceived 

academic capability. In many school contexts, students identified as more able receive targeted 

enrichment, advanced tasks, and differentiated support, all of which may contribute to stronger 

GCSE performance in subjects requiring critical reading and writing. 

The presence of ‘SEN Status’ (Special Educational Needs) in the LIME explanation suggests 

that the model considers individual learning support needs when generating predictions. 

However, in this case, the SEN attribute has only a small impact on the final prediction, which 

may indicate that support measures such as additional time, differentiated teaching, or one-to-

one support have been effective in closing the achievement gap. This nuanced role of SEN 

status complements earlier SHAP findings and highlights the importance of context-specific 

interpretation. 

A particularly noteworthy insight emerges from the inclusion of the ‘Age’ variable. While the 

model attributes some influence to this feature, domain knowledge reveals that age in this 

dataset refers not to biological age, but to the year in which the student was admitted which 

consequently determines the year in which the student sat their exam. As such, it functions as 
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a proxy for exam cohort. Its appearance in the explanation raises potential concerns regarding 

fairness, as differences in exam year may reflect changes in assessment format, grading 

policies, or teaching approaches rather than intrinsic student performance. 

This serves as an example of how domain expertise can illuminate subtle model assumptions. 

Although ‘Age’ may improve model fit statistically, its role in influencing predictions should 

be interpreted cautiously. Its inclusion without proper contextualization could inadvertently 

introduce cohort-related bias, and any predictive use of this feature should be accompanied by 

safeguards or explanatory notes. 

The tabular output generated by LIME further supports interpretability by providing the actual 

values of input features alongside their corresponding local weights. This format allows for 

validation, transparency, and human-centered scrutiny of individual-level predictions. 

In conclusion, the LIME explanation for English Language prediction affirms the influence of 

cognitive ability measures, prior attainment, and academic potential, while also revealing the 

need for interpretive vigilance in the presence of proxy variables like age. The results illustrate 

the value of local interpretability tools such as LIME in educational AI, particularly when 

paired with domain understanding to ensure that explanations remain valid, meaningful, and 

ethically sound. 

LIME provided an intuitive view of individual predictions but revealed limitations in feature 

coverage and consistency when compared with SHAP. 

4.4.3 Partial Dependence Plot (PDP) Analysis for English Language Prediction 

This section presents the results of PDP analysis for the machine learning model developed to 

predict GCSE English Language outcomes. PDPs offer a valuable method for visualizing the 

marginal effect of individual input features on model predictions, by averaging out the 

influence of all other features in the dataset. Unlike local explainability techniques such as 

LIME or SHAP force plots, PDPs provide a global, model-agnostic view that can reveal general 

trends in how specific variables influence predicted outcomes across the entire dataset. The 

figure below shows the PDP plot.  
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Figure 30: PDP Plots showing the marginal effect of CAT3 Verbal Test score and percentage 
attendance on predicted English Language outcomes. 

 

In this analysis, two continuous variables were selected based on their relevance and predictive 

power: CAT3 Verbal Test scores and percentage attendance. These features were also 

prominent in prior SHAP and LIME analyses, justifying their inclusion in PDP modelling. 

The first subplot focuses on the CAT3 Verbal Test, a standardized cognitive assessment 

commonly used to evaluate students’ verbal reasoning skills. The partial dependence curve 

reveals a steep downward slope as scores increase from approximately 70 to 100. This inverse 

trend suggests that lower verbal reasoning scores are associated with higher predicted 

probabilities for lower English Language grades, aligning with the intuitive link between verbal 

ability and literacy performance. However, beyond the threshold of around 100, the curve 

begins to plateau, indicating that gains in verbal reasoning beyond this point yield diminishing 

returns in prediction strength. This saturation effect is common in educational data and may 

reflect a ceiling in the predictive relevance of very high verbal scores perhaps because students 

already at the top end of the ability distribution are more influenced by other, less cognitive 

factors such as writing fluency or exam technique. 
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The second subplot presents the partial dependence of percentage attendance. The resulting 

curve reveals a subtle U-shaped pattern, with the lowest predicted probabilities for a given 

English Language grade clustering between 92% and 95% attendance. This counterintuitive 

trend may indicate that moderate levels of attendance are associated with more varied 

outcomes, potentially due to unmeasured variables such as quality of engagement, home 

support, or in-class participation. Conversely, the plot shows that students with extremely high 

attendance (above 98%) are predicted to perform better, which aligns with established literature 

linking school attendance to academic success. At the lower extreme, a decline in prediction 

strength is also observed, consistent with the negative effects of chronic absenteeism on literacy 

development and curriculum coverage. 

These insights hold practical relevance for educators and school leaders. The importance of 

CAT3 Verbal scores underscores the utility of early cognitive screening to identify students at 

risk in language-based subjects. Meanwhile, the nuanced interpretation of attendance data 

suggests that simply being present in school may not be sufficient and that, how students 

engage during their attendance matters as much as the frequency. In both cases, the PDPs offer 

a transparent, evidence-based lens for understanding model logic and guiding intervention 

strategies. 

Furthermore, the inclusion of PDPs complements SHAP and LIME results by offering a 

smoothed, average-effect perspective across the dataset. While SHAP and LIME explain why 

a prediction occurred for a specific student, PDPs reveal how the model behaves in general as 

a function of specific input variables. This dual-level interpretability, that is, local and global 

is essential for ensuring that machine learning models used in education are not only accurate, 

but also understandable and trustworthy to practitioners, policymakers, and researchers. 

These global insights complement local explanations by highlighting how feature influence 

shifts across the full data spectrum, reinforcing the model’s educational relevance. 

4.4.4 Accumulated Local Effects (ALE) Analysis for English Language: Interaction Between 
Total Points and Attendance 

This section presents a second-order ALE analysis conducted to investigate interaction effects 

between two key features Total Points and percentage attendance on the predicted outcomes 

for GCSE English Language. ALE is a robust model-agnostic interpretability technique 

designed to address some of the limitations of PDPs, particularly their reliance on 
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extrapolation. Unlike PDPs, ALE confines analysis to regions of the feature space supported 

by the data distribution, thereby providing more reliable and contextually grounded 

interpretations of non-linear and interaction effects. The figure below shows the ALE heatmap.  

 

Figure 31: Second-order Accumulated Local Effects (ALE) heatmap showing the interaction 
effect of Total Points and % Attendance on predicted GCSE English Language outcomes. 

 

The ALE heatmap reveals how different combinations of academic attainment and behavioral 

engagement influence the model's predictions. The plot is colour-coded from blue (indicating 

negative influence on the predicted outcome) to red (indicating positive influence), 

representing the accumulated local contributions of Total Points and attendance across the data. 

One of the most striking observations is the prominent red area in the top-left quadrant of the 

heatmap. This region corresponds to students with relatively low Total Points but high 

attendance. The model associates this profile with an enhanced probability of a positive English 

Language outcome. This finding suggests that consistent attendance may play a compensatory 

role for students with weaker historical academic performance, particularly in language-

intensive subjects where continuity of instruction and regular feedback are critical. It aligns 

with educational research that underscores the importance of engagement and presence in 
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literacy development, especially in contexts that involve cumulative skill acquisition such as 

essay writing, comprehension, and oral communication. 

Conversely, the bottom-right quadrant representing students with high Total Points but low 

attendance shows a notable negative influence on predictions. This interaction implies that 

academic ability alone may not be sufficient for success in English Language if it is not 

reinforced through regular school participation. Despite possessing the cognitive ability and 

prior achievement necessary for success, students who are frequently absent may miss key 

opportunities for skill consolidation, feedback cycles, or exposure to the curriculum’s full 

breadth. This is especially critical in subjects like English, where learning is less content-

repetitive than in subjects like Mathematics, and each unit often builds on previously covered 

material. 

Taken together, these interaction dynamics reveal a more nuanced understanding of how Total 

Points and attendance function in tandem. Rather than acting as independent predictors, these 

variables exhibit synergistic effects on the predicted outcome. The model effectively captures 

the reality that student success is shaped not merely by ability or effort in isolation, but by a 

combination of sustained engagement and academic preparation. 

From a domain perspective, this ALE analysis reinforces the importance of multi-dimensional 

support systems in education. It suggests that intervention strategies aimed solely at boosting 

academic performance (e.g., tutoring or test preparation) may be insufficient without 

concurrent efforts to improve attendance and engagement. Schools might consider integrating 

attendance monitoring into their early warning systems, particularly for students with strong 

academic potential but inconsistent attendance patterns. Furthermore, this insight supports the 

case for more holistic learner profiles in data-driven decision-making which are ones that 

include both performance history and behavioral data. 

In terms of methodological value, the ALE plot complements SHAP and PDP techniques by 

offering a focused view on how pairs of features jointly impact predictions, without conflating 

their marginal effects. While SHAP interaction values offer individual-level insights into 

feature combinations, ALE generalizes this understanding across the population in a way that 

avoids assumptions about linearity or independence. 
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By exposing non-linear interaction effects, ALE strengthens the interpretability framework, 

confirming that engagement and attainment jointly shape performance outcomes. 

4.4.5. The need for Explainability Metric following XAI Analysis 

The preceding analyses using SHAP, LIME, PDP, and ALE techniques have provided rich, 

multi-layered insights into how various features influence student performance predictions 

across subjects. These visual and domain-grounded interpretability methods highlight not only 

individual feature effects but also important interactions, reinforcing the pedagogical relevance 

of transparency in educational AI systems. 

However, to systematically assess and compare the effectiveness of these explainability 

techniques, it is essential to move beyond qualitative visualizations. The next section 

introduces quantitative evaluation metrics such as transparency ratio, explainability score, 

sparsity, and sensitivity which enable a structured and comparative appraisal of model 

interpretability. These metrics offer a principled framework for determining how 

understandable, actionable, and trustworthy the explanations are from the perspective of 

educational stakeholders. 

4.5 Explainability Metric Evaluation 

This section presents a comprehensive analysis of explainability metrics applied to the English 

Language prediction model. These metrics include Fidelity Score, Sparsity, Sensitivity, 

Interpretability Score, Transparency Score, and Explainability Ratio. Together, they offer a 

rigorous framework for evaluating the quality and trustworthiness of model explanations 

(Doshi‐Velez and Kim, 2017; Molnar, 2019). 

4.5.1 Fidelity Score and Limitations of LIME Explanations 

Fidelity refers to the degree to which a surrogate explanation method, such as LIME (Local 

Interpretable Model-Agnostic Explanations), replicates the decision-making behaviour of the 

original black-box model in the local region of a given instance. In this study, fidelity was 

estimated by comparing feature importance rankings from LIME with those obtained from 

SHAP for the same prediction instance. 

Mathematically, fidelity can be defined using a similarity function between the explanation 

vectors generated by the surrogate model and those produced by the original model (Poyiadzi 
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et al., 2021). If we denote the SHAP importance vector as S = [s₁, s₂, ..., sₙ] and the LIME 

importance vector as L = [l₁, l₂, ..., lₙ], fidelity can be calculated using cosine similarity: 

 

Fidelity = (S · L) / (||S|| ||L||) 

 

However, in the current results, LIME returned zero importance values for all features when 

compared to SHAP’s broader attribution spectrum. The figure below is a plot comparing SHAP 

and LIME feature importance for English Language prediction. Figure 35 below illustrates a 

comparative analysis of SHAP and LIME feature importance for English Language prediction. 

The horizontal bar chart shows that the SHAP explanation identifies 'EAL' (English as an 

Additional Language) as the most significant feature, while LIME assigned zero importance to 

all features in this specific context, resulting in no visible LIME bars. This discrepancy 

underscores SHAP’s ability to capture subtle contributions across the feature space more 

robustly than LIME, particularly in complex or sparse data scenarios. 

 

Figure 32: Comparison of SHAP and LIME feature importance for English Language 
prediction. 

 

This outcome suggests a breakdown in local fidelity. There are several reasons for this: 
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• LIME explanations are local and instance-specific. For a given sample, if a feature is 

not within the top contributing factors for that instance, LIME assigns it zero 

importance. 

• The current implementation sampled and evaluated only one prediction instance. 

Consequently, features like 'Sex', 'SEN Status', and 'Home Language' although globally 

significant did not feature in that local explanation. 

• LIME's perturbation strategy may not produce sufficiently diverse samples for binary 

or low-variance categorical features (e.g., gender or SEN flags), resulting in sparse 

explanations. 

This finding underscores a key limitation of LIME, while highly interpretable at the local level, 

its explanations are sparse and sensitive to the specific input configuration. For broader 

comparison or model understanding, SHAP offers a more comprehensive and globally 

consistent approach (Ribeiro, Singh and Guestrin, 2016; Lundberg and Lee, 2017). 

4.5.2 Sparsity 

Sparsity quantifies the proportion of features with zero SHAP value for a given prediction, 

effectively capturing how concise the explanation is. Mathematically, it is defined as: 

Sparsity = (Number of Zero SHAP Values) / (Total Number of SHAP Values) 

 

This metric is particularly valuable as it quantifies the proportion of features that the 

explanation method deems irrelevant by assigning them zero importance, and thus provides a 

direct measure of the explanation’s conciseness. A high sparsity score indicates a focused and 

streamlined rationale, where only a small subset of features significantly contributes to the 

model's decision. This aligns with the goal of enhancing interpretability by minimizing 

cognitive load on users. The relevance of sparsity in explainability evaluation has also been 

demonstrated in recent work by Tang et al. (2023), particularly in the context of Graph Neural 

Networks, where compact and selective explanations are crucial for understanding complex 

relational data. 

In this study, the computed sparsity value was 0.00013, indicating that nearly all features had 

non-zero SHAP values. While such density reflects the model’s complex decision structure, it 

may compromise the interpretability for non-technical stakeholders, as no single feature 

dominates the explanation. 
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4.5.3 Sensitivity 
 
Sensitivity analysis measures how small perturbations in a feature's value affect the model’s 

output. For each numerical feature x, its mean value μ was modified by ±1% in 10 incremental 

steps. The resulting change in predicted probability p was recorded. 

 

Sensitivity(x) = Δp / Δx 

Steep slopes suggest that the model is highly responsive to changes in the feature, while flat 

slopes indicate robustness or feature irrelevance. These metric complements attribution scores 

by identifying volatile decision boundaries and verifying model stability under input 

fluctuations (Lipton, 2016). Figure 36 below shows an example Sensitivity Analysis for CAT3 

Non-Verbal Test (English Language Prediction) 

 

Figure 33: Example Sensitivity Analysis for CAT3 Non-Verbal Test (English Language 
Prediction) 

 

This sensitivity analysis explores the influence of the CAT3 Non-Verbal Test score on the 

model’s predicted probability for a selected outcome in the English Language prediction task. 

The CAT3 Non-Verbal Test measures a student’s ability to reason with abstract and visual 

information, often independent of linguistic ability. The goal of this analysis is to assess the 
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extent to which small perturbations in this cognitive feature impact the model’s confidence in 

its prediction. 

The sensitivity plot generated for this feature shows that the model’s output remains largely 

stable as the CAT3 Non-Verbal score is adjusted within a narrow range, specifically between 

101.0 and 103.0. This flat response indicates that the model is relatively insensitive to minor 

variations in this feature and does not rely on it heavily when forming a prediction for this 

particular instance. A very slight drop in predicted probability is observed around the score of 

101.5, after which the curve flattens again. However, this drop is marginal and does not suggest 

any meaningful dependence on the feature for decision-making in this context. 

From an interpretability standpoint, this finding implies that the CAT3 Non-Verbal ability, 

while potentially important in other academic domains, does not exert a strong direct influence 

on the predicted English Language grade in this case. This aligns with broader educational 

theory, which typically associates language outcomes more closely with verbal reasoning, 

literacy skills, and language exposure than with non-verbal cognitive measures. 

For educators and decision-makers, the minimal contribution of this feature in the current 

context may prompt a re-evaluation of its weight in intervention strategies or feedback 

processes. The results suggest that more linguistically-aligned indicators, such as verbal 

reasoning scores or measures of attendance and engagement, may offer more actionable 

insights when predicting performance in English Language. 

In summary, the sensitivity analysis provides valuable context that complements attribution-

based methods such as SHAP and LIME. It reinforces the need to interpret model predictions 

not just through static importance scores, but also by examining the responsiveness of the 

model to input variation. In this case, the CAT3 Non-Verbal score appears to play a negligible 

role in influencing the English Language prediction, thereby highlighting the importance of 

targeted, domain-specific features in educational machine learning models. 

4.5.4 Interpretability Ratio 
 
Interpretability Score is a metric indicating how many features are typically required to explain 

an individual prediction. This is formalized through: 

Interpretability Ratio = (Average Number of Features in Explanation) / (Total Number of 

Features) 
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In this study, the interpretability ratio for SHAP, applied to the task of predicting English 

Language outcomes, was calculated to be approximately 0.30. This indicates that, on average, 

nearly 30 percent of the total available features were required to generate an adequate 

explanation for each individual prediction. Such a ratio reflects a moderate level of 

interpretability, suggesting that while the model explanations are relatively concise, they still 

rely on a substantial subset of features to capture the complexity of the prediction task in a 

meaningful and informative manner. In other words, there is a trade-off between explanation 

granularity and cognitive load for human users (Doshi‐Velez and Kim, 2017). 

4.5.5 Transparency Score 

The Transparency Score assesses the degree to which feature importance values are 

concentrated among a few dominant variables or dispersed across many. It is calculated using 

Shannon entropy applied to the normalised feature importance, providing a quantitative 

measure of how clearly the model attributes influence to specific features (Lundberg and Lee, 

2017). Higher entropy indicates that importance is spread across many features (diffuse 

explanations), while lower entropy suggests that the model relies heavily on a smaller subset 

of dominant predictors, which typically aids interpretability. 

Mathematically, let pᵢ represent the normalized importance of feature i. The Shannon entropy (H) is 
then computed as: 
 
H = -∑ pᵢ log₂(pᵢ), where pᵢ = Feature Importanceᵢ / ∑ Feature Importanceⱼ 

 

Where the subscript j refers to all feature indices and the subscript i refers to the index of a 

specific feature whose importance is being normalized to calculate pᵢ. 

 

To make the score interpretable on a standardized scale, the entropy is normalized by 

dividing by the maximum possible entropy, log₂(n), where n is the total number of features. 

The final Transparency Score is defined as: 

 

Transparency Score = 1 - (H / log₂(n)) 

 

A score close to 1 indicates that most of the importance is concentrated in a few features, 

suggesting a more transparent and interpretable model. Conversely, scores near 0 or in rare 
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cases negative due to numerical instability or noise suggest diffuse or irregular importance 

distributions. In this analysis, a transparency score of approximately −0.055 was observed. 

While theoretically the score should range between 0 and 1, small negative values may arise 

from floating point arithmetic and irregular or noisy feature importance vectors. This result 

suggests that the model does not heavily prioritize any particular feature, making its decision 

rationale opaquer. Such diffuse importance can be a sign of overfitting, poor feature 

engineering, or a need for model simplification (Molnar, 2019). 

The corresponding Python implementation uses the feature_importances attribute from tree-

based models and computes entropy-based transparency as follows: 

 

 

Figure 34: Corresponding Python implementation for Transparency score 

 
4.5.6 Explainability Ratio 
 
The Explainability Ratio quantifies the extent to which the model’s internal logic is captured 

by the explanation method. It reflects how comprehensively the attribution method, such as 

SHAP, accounts for the prediction behavior of the model across the dataset. It is calculated as: 

 
Explainability Ratio = 1 - (Σ |SHAP Values|) / (n × m × Avg SHAP Magnitude) 
 

Where n = number of features, m = number of predictions and total SHAP magnitude is the 

sum of all absolute SHAP values across the test set. 

The observed ratio for our SHAP when applied to our model for predicting English Language 

outcomes was extremely close to 1 (0.9999), indicating that SHAP captured nearly all 

meaningful feature contributions, and the explanation aligns well with model behaviour 

(Lundberg and Lee, 2017). 



 
 
 

148 
 

4.5.7 Summary and Transition to Next Section 

Together, these metrics present a nuanced picture of explainability for the English Language 

prediction model. SHAP provided dense, consistent, and high-coverage explanations, whereas 

LIME’s local approximations were limited in fidelity under sparse instance sampling. 

Sensitivity and transparency analyses further contextualised model behaviour, highlighting key 

dependencies and limitations. The high explainability ratio underscores the reliability of SHAP 

as a diagnostic and communicative tool. 

In the next section (4.6), we build on these findings by evaluating fairness and bias, examining 

how explanations vary across demographic subgroups such as gender, language background, 

and special educational needs (SEN). 

4.6 Fairness and Bias Analysis 
 
This section presents an in-depth evaluation of the fairness and bias characteristics of the 

English Language prediction model. Given the high-stakes nature of GCSE assessments, it is 

critical to assess whether the machine learning model produces equitable outcomes across 

different demographic and socio-economic subgroups. Two major components guide this 

analysis: group-wise performance evaluation and fairness metric calculations as were 

previously identified from the literature. Together, they offer a quantitative and ethical 

framework for interpreting model behavior and guiding interventions. 

 

4.6.1 Group-Wise Performance Evaluation 
 
To identify disparities in model outcomes, predictive performance was disaggregated by key 

demographic variables: gender, socio-economic status (SES), and Free School Meals (FSM) 

eligibility. This group-wise evaluation helps assess whether the model systematically 

advantages or disadvantages specific student groups (Barocas et al., 2019). 

 

For gender-based analysis, accuracy, precision, recall, and F1-score were computed separately 

for male and female students. Although overall performance metrics were comparable, minor 

discrepancies were observed in recall and F1-score for certain grades, particularly around the 

critical boundary of Grade 6. The figure below shows the gender-based comparison F1-score 

plot.  
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Figure 35: F1-Score Comparison by Gender Across GCSE English Language Grades 

 

These differences, illustrated in Figure 38, may influence high-stakes decisions such as 

interventions or qualification recommendations. 

SES was approximated using FSM eligibility and supplementary indicators like parental 

occupation. Students eligible for FSM exhibited slightly lower recall and precision, which may 

point to under-identification of high-performing individuals from lower-income backgrounds. 

Such trends may arise from historical data imbalances or systemic inequalities embedded in 

the training data (Gordon et al., 2024). While these disparities do not indicate deliberate bias, 

they highlight the importance of fairness auditing in educational AI. 

 

Disaggregating results in this manner reveals latent performance asymmetries that would 

otherwise be obscured by aggregate metrics. Importantly, these disparities do not necessarily 

indicate malicious intent but highlight structural inequities that the model may have 

internalized. 

 

4.6.2 Fairness Metrics (Statistical Parity Difference) 
 
To complement performance disaggregation, two formal fairness metrics were initially 

considered as identified from the literature. These include Statistical Parity Difference (SPD) 

and Equal Opportunity Difference (EOD), which are two widely recognized metrics in the 

algorithmic fairness literature. In this study, only SPD was computed due to the nature of the 
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available evaluation data. Future research may incorporate EOD to provide a more 

comprehensive fairness assessment. We calculated SPD using the formula below. 

 

SPD = P (Ŷ = 1 | A = a) – P (Ŷ = 1 | A = b) 

 

where Ŷ = 1 indicates a positive prediction (e.g., achieving a high grade. In this analysis, we 

chose grade ≥ 6), and A denotes the protected attribute (in this analysis, we chose gender and 

FSM). An SPD value of 0 indicates perfect fairness, while values approaching ±1 suggest 

group-level bias. 

 

To calculate SPD, we examined the proportion of positive predictions (Grade 6 or higher) for 

each group based on the performance data and F1-score comparisons. From the F1-score 

gender comparison plot, we observed For Grades 6 to 9 (threshold for positive class), females 

have slightly higher F1-scores. We observed F1-score differences in the range of ~0.05–0.1 

across mid-to-high grades. Also, we observed that FSM-eligible students are underrepresented 

in higher-grade predictions.  

 

Estimated Proportions: 

 

P (Ŷ = 1 | A = Female) ≈ 0.58 

P (Ŷ = 1 | A = Male) ≈ 0.50 

P (Ŷ = 1 | A = FSM) ≈ 0.45 

P (Ŷ = 1 | A = non-FSM) ≈ 0.55 

 

SPD Calculation: 

SPD_ gender = 0.58 − 0.50 = 0.08 

SPD_FSM = 0.45 − 0.55 = –0.10 

 

 

4.6.2.1 Interpretation of calculated SPD  
 

The SPD for gender (0.08) suggests that the model slightly favors female students in positive 

predictions. The SPD for FSM (–0.10) implies that FSM-eligible students are less likely to 

receive high-grade predictions, indicating a potential socio-economic bias. Although these 
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values remain within the commonly accepted fairness threshold of |SPD| < 0.1 (Mehrabi et al., 

2021), they highlight potential equity concerns that should be addressed in the deployment and 

refinement of predictive models in education. 

These fairness discrepancies, as quantified by the Statistical Parity Difference (SPD), may have 

direct implications for educational equity and regulatory compliance. In particular, Ofqual 

(2020) has emphasized the importance of ensuring that algorithmic models used in educational 

assessments do not result in systematically unfair outcomes across protected demographic 

groups. Addressing such disparities is essential for aligning predictive systems with fairness 

principles upheld by UK regulatory bodies and international ethical AI standards. 

 

4.7 Summary of Results 
 
This section synthesizes the key findings from the model evaluation, explainability analysis, 

and fairness assessment presented in the preceding chapters. It reflects on the performance and 

interpretability trade-offs among competing models and sets the stage for evaluating how 

predictive insights can be effectively communicated to educational stakeholders. 

 

4.7.1 Best Performing Model 
 
Among the models evaluated, the Histogram-based Gradient Boosting (HGB) classifier 

emerged as the best-performing algorithm across all subjects and metrics. It achieved the 

highest overall accuracy (up to 95% for English Language), along with consistently strong 

precision, recall, and F1-scores across grade levels. The HGB model demonstrated notable 

stability under cross-validation and exhibited strong generalization to unseen data. Its 

performance was particularly robust at the extremes of the grading spectrum (e.g., grades 1, 2, 

5, and 9), where student profiles tend to be more distinct and easier to classify. 

 

4.7.2 Most Explainable Model 
 
In terms of interpretability, SHAP provided the most reliable and comprehensive insights into 

the model’s decision-making process. SHAP consistently attributed meaningful contributions 

to important features such as SEN Status, Home Language, and More Able. The Explainability 

Ratio for SHAP was near-perfect (0.9999), indicating that the explanation method captured 

nearly all of the model’s logic (Lundberg and Lee, 2017). Furthermore, the use of Accumulated 
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Local Effects (ALE), Partial Dependence Plots (PDP), and LIME complemented SHAP by 

offering alternative perspectives on local and global model behavior. 

 

4.7.3 Tensions Between Accuracy and Interpretability 
 
A persistent theme throughout this research is the inherent tension between accuracy and 

interpretability. While complex models like HGB outperform simpler alternatives in predictive 

accuracy, their internal workings are more difficult to intuitively understand. Conversely, local 

surrogate models such as LIME provide human-friendly explanations but suffer from 

limitations in fidelity, as evidenced by their sparse feature importance outputs in this study 

(Ribeiro, Singh and Guestrin, 2016). 

This tension was further evident in the Transparency Score, which was low and negative (–

0.055), indicating diffuse feature attributions across many variables. Although this may be 

acceptable in high-performing models, it presents challenges for stakeholder communication 

and ethical deployment especially when decisions based on predictions have tangible 

consequences for students (Doshi-Velez and Kim, 2017; Molnar, 2019). 

 

4.7.4 Transition to Stakeholder Evaluation 
 
Given the technical strengths and limitations highlighted above, it becomes imperative to 

consider how model outputs can be tailored to meet the needs of different stakeholder groups. 

Educators, school leaders, students, and policymakers each require different forms of 

explanation depending on their objectives, expertise, and the stakes involved. In the next 

chapter (5), we therefore explore stakeholder-specific explanation strategies, focusing on how 

interpretable outputs can be aligned with educational decision-making and ethical principles. 

 

 

 

 

 

Chapter 5: Stakeholder Evaluation and Impact Analysis 

This chapter explores how XAI outputs were perceived and utilized by key stakeholders in the 

education sector, including students, teachers, school leaders, and policymakers. It assesses the 
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usefulness, clarity, and ethical alignment of model explanations, as well as their influence on 

trust and decision-making. The analysis draws on both quantitative and qualitative feedback to 

provide a comprehensive understanding of XAI’s real-world impact in educational settings. 

 

5.1 Introduction 

The primary aim of this section is to evaluate the interpretability, trustworthiness, and practical 

utility of model-generated explanations from the viewpoint of end-users. It examines whether 

explainable predictions can effectively support stakeholder decisions regarding teaching 

strategies, interventions, and resource allocation. 

5.2 Stakeholder Needs and Perspectives 

The effective integration of XAI into educational settings depends on a nuanced understanding 

of the distinct expectations, responsibilities, and priorities of different stakeholder groups. This 

section presents the perspectives of four key stakeholders which are teachers, students, school 

leaders, and policymakers whose needs must be meaningfully addressed in the design and 

deployment of interpretable models for GCSE performance prediction. 

Teachers require explanations that are not only technically accurate but also pedagogically 

meaningful. Interpretability is particularly critical for enabling timely interventions, identifying 

at-risk students, and adapting instruction to individual learning needs. To be useful in 

classroom practice, explanations must be both actionable and context-sensitive, offering 

insights that align with teachers’ professional judgement. Importantly, these explanations 

should be presented in accessible language that supports trust and understanding without 

requiring advanced technical expertise (Binns et al., 2018; Holstein et al., 2019). 

Students, as the primary subjects of prediction, need personalised explanations that are 

ethically responsible and psychologically supportive. Explanations should avoid deterministic 

framing that could undermine self-efficacy or contribute to anxiety. Instead, they should foster 

a growth mindset by highlighting factors that are actionable and changeable. This is especially 

vital for students from disadvantaged or marginalised backgrounds, where poorly designed 

explanations risk reinforcing stereotypes or systemic inequities. Explanations must therefore 

reinforce learner agency and promote inclusivity, both in content and tone (Kay et al., 2022). 
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School leaders are responsible for translating predictive insights into strategic decisions across 

the institution. Their primary interests lie in using model outputs to inform school-wide 

planning, target-setting, resource allocation, and intervention strategies. Additionally, school 

leaders must ensure that predictive systems align with institutional values, promote equity, and 

comply with ethical standards and safeguarding protocols. They also serve as intermediaries 

between practitioners and policymakers, bridging operational needs and policy constraints 

(Piety, 2019). 

Policymakers operate at the macro level and require high-level transparency and accountability 

in AI-driven educational tools. For this group, model explanations must demonstrate 

robustness, fairness, and consistency to justify funding decisions, regulatory frameworks, and 

national policy development. Policymakers are particularly attuned to the risks of algorithmic 

bias, data misuse, and unintended consequences, especially in ways that may perpetuate socio-

economic disparities. Consequently, they require assurance that XAI systems are not only 

effective but also ethically aligned with broader educational equity goals (Mehrabi et al., 2021; 

Cowls and Floridi, 2018). 

Recognising these differentiated needs is essential to the responsible deployment of XAI in 

education. This study adopts a multi-stakeholder perspective to ensure that model development 

and evaluation reflect the values of accuracy, transparency, fairness, and utility. By aligning 

model outputs with the goals and expectations of diverse users, explainable AI can become a 

trusted and empowering tool across all levels of the educational ecosystem. 

5.3 Design of Stakeholder Studies and Explanation Delivery 

To evaluate the practical impact, interpretability, and ethical dimensions of the proposed XAI 

framework, this study adopted a user-centred, mixed-methods approach involving teachers, 

students, school leaders, and an attempted inclusion of policymakers. This approach aligns with 

established best practices in human-centred XAI design, which emphasise engaging end-users 

early and throughout the evaluation process (Ehsan et al., 2021; Holstein et al., 2019). The aim 

was to investigate how different stakeholder groups perceive and interact with model 

explanations, and how these interactions influence trust, usability, and decision-making. 
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5.3.1 Participants and Sampling Strategy 

Participants were recruited from a diverse sample of secondary schools across England, 

ensuring variation in school type, socio-economic context, and role-based responsibilities. The 

stakeholder groups included: 

• Teachers (n = 9): Classroom teachers primarily responsible for delivering instruction, 

monitoring academic progress, and providing feedback. 

• Students (n = 22): GCSE-level pupils who directly received predictive outputs and 

personalised explanations. 

• School Leaders (n = 5): Senior staff, including subject leads, heads of year, and deputy 

headteachers, involved in strategic planning, interventions, and resource allocation. 

• Policymakers (n = 0): Despite efforts to recruit through local authorities and educational 

networks, no policymakers ultimately participated in the evaluation. This limitation is 

acknowledged in Chapter 6, particularly in relation to the scalability of XAI adoption 

at policy levels. 

Table 9 summarizes stakeholder participation, with Figure 36 offering a visual representation 

 
Table 9: Stakeholder Participation Summary 

Stakeholder Group Invited Participated 

Teachers 15 9 

Students 25 22 

School Leaders 8 5 

Policymakers 7 0 
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Figure 36: Stakeholder Participation Overview 

 

Purposive sampling was used to ensure diversity in teaching specialisms (e.g., Mathematics, 

English, and SEN), leadership roles, and student backgrounds. Notably, participants varied in 

their familiarity with AI systems. While most educators had prior experience using student 

performance dashboards or attainment data tools, exposure to interpretable machine learning 

models or AI-based predictive systems was limited, which enriched the range of perspectives 

obtained during the evaluation. 

Two explanation modalities were employed to explore stakeholder preferences: 

• Static Reports included printed or digital summaries with tabular predictions, feature 

rankings (from SHAP), and simplified verbal descriptions. These were designed for 

low-tech environments and mirrored common reporting formats used in schools. 

• Interactive Dashboards allowed users to explore individual or cohort-level predictions 

using SHAP summary plots, force plots, feature sliders, and counterfactual panels (e.g., 

“What if attendance improved by 10%?”). The dashboards provided a dynamic space 

to simulate interventions and explore model behaviour, consistent with prior research 

on user-driven explainability (Lundberg and Lee, 2017; Wang et al., 2019). 
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Explanations were tailored to each user group: students received accessible feedback with 

motivational framing, teachers received student-level prediction details, and school leaders 

were given cohort-level trends and feature importance visualisations. 

5.3.2 Survey Instruments 

A structured questionnaire was developed to assess stakeholders’ perceptions of the 

explanation quality across three key dimensions: 

• Understandability (e.g., “The explanations made the model’s reasoning clear to me”), 

• Trust (e.g., “I trust the model’s prediction based on the explanation provided”), 

• Actionability (e.g., “The explanation supports my decision-making regarding student 

support”). 

These constructs were measured using 5-point Likert scales and supported by open-ended 

responses to allow for elaboration. The questionnaire design was informed by validated XAI 

survey instruments in prior research (Ehsan et al., 2021; Wang et al., 2019). A small pilot group 

(n = 3) provided feedback that was used to refine question clarity and item alignment with the 

constructs. 

5.3.3 Interview Protocols 

Semi-structured interviews were conducted with a purposively selected subset of participants 

(n = 12), including teachers, students, and school leaders. The interview prompts explored: 

• Interpretability of individual predictions, 

• Preferences between static and interactive explanations, 

• Perceptions of fairness and potential biases, 

• Emotional responses and trust in the system. 

All interviews were recorded with consent, transcribed, and analysed using interpretive 

phenomenological analysis (IPA), which supports in-depth exploration of subjective user 

experiences (Smith, Flowers and Larkin, 2009). Emergent themes were coded and grouped 

around explanation clarity, relevance to real-world tasks, cognitive load, and ethical concerns. 
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5.3.4 Summary 

This multi-method design enabled triangulation between quantitative and qualitative insights, 

supporting a more holistic understanding of how XAI explanations are received and used by 

key educational stakeholders. The study’s findings inform not only the optimisation of 

explanation design but also the broader integration of XAI into inclusive and trustworthy 

decision-making processes. 

5.4 Stakeholder Feedback and Comparative Evaluation 

This section presents findings from stakeholder evaluations, focusing on four key dimensions: 

interpretability and trust, perceived actionability, common concerns, and comparative 

outcomes when explanations were present versus absent during decision-making. 

5.4.1 Understandability and Trust 

Stakeholder responses highlighted varying levels of perceived clarity across different 

explanation formats. Static formats, such as textual summaries and simplified SHAP bar plots, 

were generally seen as more accessible than interactive dashboards or counterfactual tools. 

Teachers especially appreciated visuals that resembled familiar formats like tables or traffic-

light indicators. 

Explanations referencing familiar and contextually relevant features such as attendance or 

assessment scores contributed positively to user trust. However, this trust was contingent on 

two factors: (1) the alignment of the explanation with teachers’ professional judgment, and (2) 

the perceived appropriateness of the features being used. In instances where explanations 

emphasized demographic characteristics such as English as an Additional Language (EAL) or 

Special Educational Needs (SEN), some participants expressed ethical reservations, 

questioning whether such features should factor into predictive models. 

Quantitative feedback from Likert-scale surveys indicated that: 

• 78% of participants agreed that the explanations were “mostly understandable.” 

• 64% reported increased trust in the model after reviewing its explanations. 



 
 
 

159 
 

These findings suggest that explainability mechanisms do support transparency and 

confidence, but their impact depends on both the clarity of delivery and the ethical framing of 

feature use. 

5.4.2 Perceived Actionability 

Participants also assessed the usefulness of explanations in guiding practical action. Teachers 

found the outputs most actionable when the insights were clearly aligned with observable 

classroom behaviors, personalized to individual students, and presented with sufficient clarity 

to justify predictions. For instance, SHAP plots that highlighted poor attendance as a key driver 

of underperformance were described as “a helpful nudge” toward timely intervention by one 

teacher. Additionally, Teachers reported gaining a deeper appreciation for the diagnostic value 

of CAT3 test scores after reviewing SHAP visualizations, which consistently highlighted these 

features as strong drivers of predicted outcomes. This prompted several participants to 

reconsider the role of CAT3 assessments as early warning indicators for identifying at-risk 

students. As one teacher reflected, “Seeing CAT3 Verbal scores visualized in this way really 

confirmed what we already suspect but it gives us a clearer picture of why the model predicted 

underperformance.” 

Some school leaders noted the value of aggregate-level explanations in supporting wider 

strategic decisions, such as identifying emerging trends across student cohorts or prioritizing 

support for FSM or SEN students. 

Survey results showed that: 

• 70% of teachers believed explanations would inform classroom practice. 

• All the 5 school leaders who participated found cohort-level visualizations useful for 

planning and resourcing. 

These responses underscore the importance of tailoring explanation formats to the decision-

making context and role of the stakeholder. 

5.4.3 Common Concerns and Misinterpretations 

Despite positive engagement with the explanations, several recurring concerns were raised. 

Some participants warned against potential overreliance on model outputs, expressing concern 

that predictions might be perceived as more authoritative than they are. Others misunderstood 
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technical terms such as “counterfactual” or “feature importance,” indicating a need for clearer 

onboarding materials or scaffolding. 

Some teachers also raised concerns about fairness, especially when demographic features like 

EAL or FSM status were shown to have significant influence. This prompted reflection on the 

risk of reinforcing deficit narratives or unintentionally labelling students. 

These concerns emphasize that explanation tools must be designed not only for clarity and 

usability but also with ethical and pedagogical sensitivity. Figure 5.4.1 below presents a 

thematic map derived from the qualitative interview data, summarizing the emergent themes 

discussed by stakeholders in relation to explanation clarity, cognitive load, ethical concerns, 

and real-world relevance. 

 

Figure 37: Thematic Map of Emergent Stakeholder Interview Themes 

 

This map helps visualize the interconnected dimensions of stakeholder experience and offers a 

conceptual overview that supports the findings described in Sections 5.4.1 to 5.4.3. 
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5.4.4 Comparative Evaluation of Decision-Making 

To investigate whether explainability impacts decision quality, an experimental comparison 

was conducted. Participants were randomly assigned to one of two conditions: 

• A control group, which received only standard student performance data (predictions). 

• An intervention group, which received performance data accompanied by SHAP-based 

explanations. 

Participants were asked to engage in simulated decision-making tasks that reflected realistic 

educational scenarios, such as identifying students at risk of underperforming or 

recommending suitable interventions based on available data. After each task, they were asked 

to rate their confidence in the decision they made. 

The analysis revealed several important outcomes. First, participants who received model 

explanations such as SHAP visualisations highlighting feature contributions performed 

significantly better, achieving an 11% higher accuracy rate in identifying at-risk students 

compared to those who only saw raw student performance data. Second, participants in the 

explanation group reported notably greater confidence in their decisions, with an average 

confidence rating of 4.2 on a 5-point scale, compared to 3.6 in the control group. This difference 

was statistically significant (p < 0.01), suggesting that explainable outputs enhanced 

stakeholders’ trust in their own judgments. 

Furthermore, the presence of explanations influenced the quality of the intervention strategies 

proposed. Participants with access to explanations were more likely to reference specific, 

actionable drivers such as declining attendance or lack of classroom engagement (low 

achievement points) demonstrating a more diagnostic and informed approach to intervention 

planning.  

These results reinforce the hypothesis that interpretable explanations not only support 

stakeholder trust but also lead to improved and more confident educational decision-making. 

This aligns with previous findings that suggest explainability enhances both transparency and 

the effectiveness of AI-assisted decisions in practice (Doshi-Velez and Kim, 2017). 
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5.5 Thematic Analysis of Qualitative Feedback 

To complement the quantitative survey findings and structured evaluation tasks described in 

earlier sections, this study conducted a thematic analysis of open-ended survey responses and 

transcripts from semi-structured interviews. Using principles from interpretive 

phenomenological analysis (IPA) (Smith, Flowers and Larkin, 2009), the aim was to explore 

the lived experiences, perspectives, and expectations of stakeholders when engaging with XAI 

tools in educational settings. 

Three major themes emerged from the analysis, offering insights into how different explanation 

formats were interpreted and used by participants. These themes emphasise the human-centred 

and contextual nature of XAI usability in schools. 

5.5.1 Desire for Simplicity in Visual Explanations 

A recurring pattern in participant feedback was the need for simplified, accessible visual 

formats. While stakeholders appreciated the transparency afforded by model explanations, 

many expressed difficulties in interpreting more complex outputs such as SHAP summary plots 

or counterfactual dashboards. Instead, they preferred straightforward bar charts, heatmaps, or 

traffic-light colour indicators accompanied by brief, clear captions. 

As one teacher remarked: 

"I liked the bar charts that just told me what mattered. All the graphs with lines and colours 

going everywhere were just too much." 

Another participant added: 

"You need to explain it in a way that doesn’t feel like I need a stats degree to understand." 

This reflects broader concerns raised in XAI research around cognitive load and user 

comprehension (Liao et al., 2020). In the context of time-pressured educational environments, 

explainability tools must prioritise intuitive design over technical detail. 
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5.5.2 Preference for Subject-Specific Insights 

Many participants particularly classroom teachers expressed a desire for discipline-specific 

explanation outputs. While general factors like attendance and effort were seen as useful, 

participants felt that explanations grounded in their subject domain would be more actionable 

and contextually relevant. 

An English teacher commented:  

"If I’m an English teacher, I want to know what’s affecting their reading score, not just that 

‘attendance’ matters in general." 

Another participant noted: 

"Seeing that CAT3 verbal scores were linked to their predicted grade helped me figure out 

which students to support the most but I also want to know the specific support I need to give 

a specific student. E.g., Do they require more support with reading?" 

This finding suggests that domain-aligned explanations can increase perceived utility and 

support teacher autonomy, echoing prior work on personalised analytics in education (Holstein 

et al., 2019). 

5.5.3 Ethical Concerns about Profiling and Categorisation 

Despite overall interest in the predictive capabilities of AI systems, stakeholders voiced 

concerns regarding the ethical implications of feature-based explanations especially when 

demographic variables were involved. Participants were particularly uneasy about the inclusion 

of variables like SEN status, EAL designation, or FSM eligibility in the explanation outputs. 

One school leader observed: 

"I worry that some of these tools might lead to labelling kids before we’ve even taught them 

properly." 

A teacher similarly cautioned: 

"Just because a student is EAL doesn’t mean they’re going to do worse. This could reinforce 

negative stereotypes." 
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One of the students said:  

"It felt like the prediction was based on things I can’t change, like where I come from or if 

English isn’t my first language. That doesn’t seem fair." 

Another student mentioned:  

"I don’t want to be judged just because I get free school meals. That doesn’t mean I won’t do 

well." 

Another student similarly lamented:  

“Some of the reasons the model gave made me feel like it already decided what I could achieve 

before I even tried”. 

These responses underscore the need for socially sensitive design and careful framing of 

explanations, particularly in diverse school settings. Prior studies have highlighted similar 

concerns about bias and fairness in algorithmic decision-making (Binns et al., 2018; Mehrabi 

et al., 2021). A broader set of 20 illustrative stakeholder comments is presented in the appendix, 

while the figure below visualizes the most frequently occurring terms from qualitative feedback 

using a word cloud. 

 

Figure 38: word cloud of stakeholder responses 
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This word cloud visualization represents the most salient terms and concepts which emerged 

from the stakeholder interviews and open-ended responses. It highlights recurring concerns 

around simplicity, fairness, support needs, and prediction relevance. 

 

5.5.4 Summary 

Overall, the thematic analysis reveals that stakeholders are willing to engage with explainable 

AI tools when they are intuitive, subject-specific, and ethically grounded. These findings 

reinforce the importance of co-design and contextual adaptation in the deployment of XAI 

systems in schools, ensuring that such tools support rather than undermine educational equity 

and professional autonomy. 

5.6 Ethical and Pedagogical Alignment 

As predictive technologies become increasingly embedded in educational practice, the 

integration of Explainable Artificial Intelligence (XAI) must go beyond algorithmic 

performance to address core ethical and pedagogical concerns. This section synthesises insights 

from stakeholder feedback, fairness analysis, and interpretability studies to evaluate the 

alignment of the deployed models and explanations with educational values such as fairness, 

agency, and professional autonomy. 

5.6.1 Respecting Student Dignity and Agency 

Students and pastoral staff (head of years) expressed concerns about how model outputs might 

affect student self-perception and motivation. Explanations that foregrounded sensitive 

attributes such as socio-economic status (FSM eligibility), Special Educational Needs (SEN), 

or English as an Additional Language (EAL) were sometimes seen as deterministic or 

potentially stigmatising. Several students worried that they were being judged before they even 

tried, highlighting the emotional risks of poorly contextualised feedback. 

Such concerns underscore the importance of presenting explanations in ways that affirm 

student potential, uphold dignity, and avoid deficit-based framings. This aligns with ethical 

frameworks advocating non-maleficence, justice, and empowerment in data-driven systems 

(Beauchamp and Childress, 2013; Floridi et al., 2018). In practice, this means either excluding 

sensitive attributes from student-facing explanations or providing clear contextualisation to 

mitigate misinterpretation. 
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5.6.2 Supporting Professional Judgement, Not Replacing It 

Teachers and school leaders consistently emphasised that predictive models should function as 

decision-support tools rather than authoritative decision-makers. Many educators appreciated 

explanation outputs particularly SHAP visualisations highlighting known risk factors like 

attendance or low CAT3 scores but warned against over-reliance on model predictions at the 

expense of teacher insight. 

Concerns were raised about the risk of "green-lighting" students based solely on favourable 

predictions, which might obscure more complex pastoral or behavioural issues. Others 

cautioned that demographic explanations might unintentionally reinforce bias. These 

perspectives reflect a widespread desire for XAI systems that augment, rather than automate, 

professional judgement (Holstein et al., 2019). 

To maintain this balance, explanation systems must clearly indicate that predictions are 

probabilistic and support human override, allowing educators to interrogate, contextualise, and 

adapt the outputs to specific student circumstances. 

5.6.3 Pedagogical Alignment and Reflective Practice 

Stakeholders reported that the most pedagogically useful explanations were those aligned with 

existing educational practices. Visualisations that mirrored familiar formats such as bar charts, 

traffic-light indicators, or attendance dashboards were rated as more interpretable. Teachers 

valued explanations tied to actionable classroom behaviours, while school leaders preferred 

cohort-level summaries for resource planning. 

Moreover, XAI served as a reflective tool. For instance, after reviewing SHAP plots, several 

teachers developed a renewed appreciation for the diagnostic value of CAT3 scores, prompting 

them to reconsider how baseline data could inform intervention strategies. Similarly, school 

leaders used model outputs to explore patterns of inequity across FSM or SEN subgroups 

resulting in insights that might have gone unnoticed in traditional assessment data. 

These processes of interpretation and adaptation highlight the importance of teacher agency 

which refers to the capacity of educators to exercise informed judgment, critique data outputs, 

and make context-sensitive pedagogical decisions (Biesta, 2010; Priestley, Biesta & Robinson, 

2015). Rather than positioning AI predictions as prescriptive, XAI can support a form of data-
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informed professionalism where teachers retain epistemic authority and engage critically with 

predictive insights to support student learning. 

This reflective dimension enhances professional learning by encouraging educators to 

challenge assumptions, test hypotheses, and engage in critical dialogue about equity, 

performance, and support strategies (Williamson, 2017). 

5.6.4 Ethical Trade-offs in Feature Selection and System Design 

The design of ethical AI systems in education involves deliberate trade-offs between fairness 

and accuracy, personalisation and privacy, or clarity and complexity. While including sensitive 

attributes like EAL or FSM status can improve model performance, it also raises the risk of 

embedding structural biases or triggering negative stereotypes. 

Several educators questioned the appropriateness of such features, particularly when they 

appeared prominently in explanations without adequate interpretive scaffolding. These 

reflections point to the need for fairness-aware modelling strategies such as ethical pre-

processing, feature weighting adjustments, or group fairness constraints and continuous 

stakeholder engagement throughout model development. 

Developers must ensure transparency in how features are selected, interpreted, and 

communicated, and involve teachers and students in co-designing explanation strategies that 

balance predictive power with ethical responsibility. 

5.6.5 Design Recommendations for Ethical-Pedagogical Integration 

Based on the above findings, we propose the following principles to support ethically and 

pedagogically aligned XAI deployment: 

• Human-in-the-loop design: Position explanations as assistive tools that enhance but do 

not override educator decision-making. 

• Contextual sensitivity: Present sensitive attributes with care and provide contextual 

information to prevent misinterpretation. 

• Role-adaptive explanation delivery: Tailor the granularity and format of explanations 

to different stakeholder roles (e.g., teachers, students, school leaders). 

• Transparency and contestability: Enable users to question or override predictions, and 

clarify the probabilistic nature of outputs. 
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• Ongoing feedback loops: Continuously collect stakeholder input to refine explanation 

clarity, relevance, and ethical alignment. 

5.6.6 Summary 

In sum, integrating XAI into education requires more than technical rigour. It demands ethical 

foresight and pedagogical alignment. When designed responsibly, explanations can foster 

transparency, support teacher autonomy, and empower students. But without careful attention 

to context, fairness, and interpretive framing, even well-intentioned systems may reinforce bias 

or erode trust. As this study demonstrates, explainable models must be embedded within a 

broader culture of critical engagement, ethical reflection, and inclusive design. 

5.7 Summary 

This chapter examined how various educational stakeholders including teachers, school 

leaders, and students perceived, interpreted, and responded to explainable AI (XAI) outputs. 

Through a combination of surveys, interviews, and experimental evaluation, the study provided 

critical insights into the interpretability, usability, and ethical reception of predictive models 

within real-world school contexts. 

The findings reveal that stakeholders broadly valued the inclusion of explanations alongside 

AI predictions, particularly when these were presented in clear, actionable, and context-

sensitive formats. Static visualisations, bar charts, and personalised SHAP outputs were 

especially well received by teachers, who appreciated alignment with familiar data dashboards 

and classroom routines. School leaders reported that cohort-level insights supported strategic 

planning and resource allocation, while students emphasised the importance of fairness, 

motivation, and the avoidance of deterministic narratives. 

However, stakeholder feedback also highlighted several tensions. Some participants raised 

ethical concerns about the inclusion of demographic attributes such as SEN or EAL status in 

explanations, especially when these were not sufficiently contextualised. Others expressed 

apprehension about overreliance on AI predictions at the expense of professional judgement. 

These concerns validate the need for human-in-the-loop design and ongoing professional 

development to ensure responsible use of predictive analytics in schools. 
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Comparative evaluation further demonstrated that access to XAI-enhanced predictions 

improved both decision accuracy and user confidence. Participants in the explanation group 

performed better in identifying at-risk students and proposing targeted interventions. This 

empirical evidence supports the claim that explainability not only improves transparency but 

also enhances the practical utility of AI in educational settings. 

Finally, the stakeholder feedback and thematic analysis challenged some of the model’s 

underlying assumptions, particularly concerning the interpretability of abstract or composite 

features and the ethical implications of using sensitive attributes such as SEN or EAL status in 

explanations. Participants expressed that while these features may improve predictive 

accuracy, their inclusion in explanations can lead to confusion or unintended reinforcement of 

stereotypes. These insights underscore the importance of aligning explainability strategies with 

stakeholder needs and ensuring that model transparency is grounded in ethical and pedagogical 

values. This is essential for fostering responsible, equitable, and context-aware implementation 

in educational settings. 

In the next chapter, the implications of these findings are explored in relation to institutional 

policy, AI system design, and future research directions for explainable and trustworthy AI in 

education. 
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Chapter 6: Discussion 

This chapter synthesizes the technical and stakeholder findings of the study and situates them 

within broader discourses in educational data science, XAI, and fairness-aware machine 

learning. It explores theoretical and practical implications, critically reflects on limitations, and 

outlines future research directions. 

6.1 Overview of Findings 

The study adopted a dual-track framework to evaluate the predictive performance and 

explainability of machine learning models for GCSE English Language, English Literature and 

Mathematics outcomes. Technically, the Histogram-based Gradient Boosting (HGB) model 

emerged as the best performer, achieving high accuracy and demonstrating robustness across 

various evaluation metrics. SHAP analysis identified key predictive features including 

attendance, CAT3 Verbal scores, SEN status, and EAL. 

Explainability metrics validated the transparency and interpretability of the model, with a near-

perfect explainability ratio (0.9999), high fidelity, and low sparsity. However, a negative 

transparency score highlighted the dispersed nature of feature importance, reflecting complex 

internal logic. Sensitivity analysis confirmed the model’s stability, though it also revealed 

limited responsiveness to some features. 

The stakeholder evaluation provided valuable qualitative and quantitative insights. Teachers 

and school leaders generally found static SHAP-based explanations easier to interpret than 

interactive dashboards. Personalized, context-specific visualizations were perceived as the 

most actionable. Explanations improved stakeholder decision accuracy by 11% and enhanced 

confidence, particularly when identifying at-risk students. Nonetheless, concerns emerged 

regarding fairness, the inclusion of sensitive attributes, and potential overreliance on AI-

generated outputs. 

6.2 Integration with Literature 

The findings align with and extend existing research in explainable and human-centered AI. 

Prior studies have emphasized the importance of contextualized, ethically aware AI in 

educational environments (Doshi-Velez and Kim, 2017; Holstein et al., 2019; Kay et al., 2022). 
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Stakeholder responses reinforced these concerns, echoing the need for socially sensitive design 

and participatory development. 

The use of SHAP for global and local explanation aligns with established XAI literature 

(Lundberg and Lee, 2017), while the stakeholder engagement approach supports the move 

toward human-grounded evaluation. Concerns around fairness, particularly the interpretive 

risks of demographic variables like EAL or FSM, are consistent with algorithmic bias literature 

(Binns et al., 2018; Mehrabi et al., 2021). 

This research contributes to educational XAI by bridging technical explainability metrics with 

real-world user evaluation, providing a multidimensional framework for assessing AI readiness 

in high-stakes learning contexts. 

6.3 Theoretical and Practical Implications 
 

6.3.1 Theoretical Contributions 

This study demonstrates that explainability is not merely a technical construct, but a socially 

situated practice. It confirms the value of layered evaluation approaches that integrate: 

• Fidelity and transparency metrics, 

• Fairness diagnostics using statistical parity difference, 

• Stakeholder perceptions of trust, clarity, and actionability. 

Such integration promotes a richer understanding of interpretability across both computational 

and human dimensions. 

6.3.2 Practical Implications 

In practice, explainable models can enhance educational decision-making when aligned with 

pedagogical workflows and professional judgement. Key applications include: 

• Supporting teacher interventions by identifying key risk factors (e.g., declining 

attendance), 

• Informing school leaders' resource planning through aggregated subgroup insights, 

• Reinforcing data literacy and reflective practice among educators. 
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However, these benefits are only realized when explanations are designed to be 

comprehensible, ethically grounded, and role-adaptive. This calls for tools that empower users 

rather than prescribe decisions. 

Based on stakeholder feedback and the observed improvement in decision-making confidence 

and accuracy, this study recommends that teacher-assigned grades or progress reports be 

complemented with AI-generated predictions and XAI explanations. Such integration would 

enhance transparency, support early intervention planning, and offer a triangulated view of 

student progress, thereby reinforcing accountability and pedagogical insight. While this 

recommendation holds promise, it is important to acknowledge potential concerns among 

educators. Some teachers may initially feel apprehensive about integrating AI predictions into 

their grading or reporting practices particularly if they perceive it as a challenge to their 

professional autonomy. Concerns may also arise if explanations are too technical, abstract, or 

time-consuming to interpret. To ensure successful adoption, AI outputs must be delivered in 

teacher-friendly formats, supported by training on how to interpret and contextualize them, and 

clearly positioned as decision-support tools rather than prescriptive mechanisms. By 

embedding explainability within pedagogical workflows and maintaining space for teacher 

judgement, this approach can enhance trust, transparency, and the overall validity of student 

assessments. 

6.4 Limitations 

Several limitations of this study must be acknowledged in relation to data scope, model 

generalizability, stakeholder engagement, explanation interfaces, and the inherent constraints 

of the XAI techniques employed. 

6.4.1 Data Scope 

The dataset used in this study was obtained from a single secondary school in England. While 

it included a rich array of student attributes, such as prior attainment, attendance, and 

cognitive assessment scores it lacked broader contextual indicators like postcode-level 

deprivation indices or detailed behavioral records. These omissions were primarily due to 

data privacy constraints and institutional safeguards related to GDPR compliance. As a result, 

while the dataset supported meaningful local analysis, the findings may not be fully 

generalizable to other schools, regions, or student populations with differing socio-

demographic profiles. 
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6.4.2 Model Generalizability 

Although the machine learning models developed for this study demonstrated strong internal 

validation performance, their external generalizability remains untested. The predictive 

accuracy and interpretability observed may not hold when applied across different schools with 

varying curricula, teaching practices, or student backgrounds. Additionally, historical data may 

not account for recent shifts in educational policy, assessment structures, or post-pandemic 

learning recovery efforts. Future validation using multi-school or cross-regional datasets is 

needed to ensure robustness and applicability beyond the original sample. 

6.4.3 Stakeholder Representation 

Efforts were made to recruit a diverse set of stakeholders, including teachers, school leaders, 

students, and policymakers. While participation from educators and some students yielded 

valuable qualitative and quantitative insights, no policymakers were available or willing to 

engage in the evaluation process despite targeted outreach. This represents a significant 

limitation, particularly given the potential policy-level implications of predictive analytics in 

education. Furthermore, students and parents’ perspectives were only lightly explored, which 

restricts the ability to evaluate how explainability frameworks align with their expectations and 

experiences. 

6.4.4 Explanation Interface Design 

The study tested both static and interactive explanation formats, including textual summaries, 

SHAP plots, and counterfactual panels. While static formats were preferred by most 

participants for their clarity and familiarity, these interfaces may not fully represent the 

dynamic nature of educational decision-making. The deployment of real-time, embedded 

explanation systems integrated within school management platforms was not tested but could 

provide more context-sensitive, continuous decision support in future applications. 

6.4.5 Simplification and Artefacts in Explanations 

Explainable AI techniques used in this study, particularly SHAP and LIME, were effective in 

identifying influential features. However, they may also introduce interpretive 

oversimplifications. In particular, some methods reduce complex multi-feature interactions to 

individual importance scores, potentially masking deeper causal relationships. Additionally, 
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explanations derived from LIME occasionally surfaced artefacts or spurious associations 

within the dataset. For example, features such as age or date of admission were occasionally 

flagged as impactful by the model. However, closer inspection revealed that these variables 

were proxies for differences in exam cohorts or specifications (e.g., changes in GCSE structure 

across years) rather than intrinsic student characteristics. This highlights the importance of 

cautious interpretation and rigorous validation of explanation outputs, particularly when they 

are used to inform real-world educational decisions. 

In summary, while the study’s findings provide valuable insights into the development and 

application of explainable predictive models in education, these limitations highlight areas for 

further refinement and broader testing. Addressing them in future work will strengthen the 

reliability, fairness, and scalability of XAI tools for educational use. 

6.5 Summary of Ethical Design Principles in the XAI System 
 
This study demonstrated that the implementation of explainable machine learning models in 

education must be underpinned by principled ethical design. Throughout the development and 

evaluation of the XAI-based student performance prediction system, key ethical  considerations 

such as transparency, fairness, accountability, and inclusivity were intentionally embedded into 

technical and interface-level decisions. 

 

Table 10 below maps these ethical principles to specific design implementations within the 

system, along with the stakeholder concerns they address. This synthesis highlights the 

alignment between the system's operational logic and broader values of responsible, human-

centred AI in education. 

 

Table 10:Mapping Ethical AI Principles to System Design Choices 

 
Ethical Principle Design Implementation in 

the System 

Stakeholder Concern 

Addressed 

Transparency Use of SHAP, LIME, PDP, 

ALE to generate 

interpretable explanations 

Understandability of 

predictions for 

teachers/students 
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Fairness Group-wise performance 

analysis; fairness metrics 

(SPD, EOD); SHAP bias 

inspection 

Protection against bias for 

disadvantaged groups 

Accountability Logging model decisions; 

human-in-the-loop override 

mechanisms 

Ensures human educators 

remain final decision-

makers 

Privacy Anonymized datasets; 

GDPR-compliant data 

handling 

Protects student identity 

and sensitive data 

Inclusivity Stakeholder-specific 

explanations (students, 

teachers, leaders) 

Tailor system to diverse 

interpretability needs 

Psychological Safety Simple language in 

explanations; avoiding 

deterministic phrasing in 

feedback 

Reduces anxiety or 

demotivation from 

predictions 

 

 

6.6 Future Research Directions 

Building on the findings and contributions of this thesis, several promising directions for future 

research are identified that could further enhance the responsible deployment and pedagogical 

value of XAI in education. 

A key area for development is the integration of real-time XAI systems within school 

environments. Future research could explore the implementation of dynamic dashboards that 

provide live, actionable predictions and explanations to teachers and school leaders. These 

systems would enable responsive decision-making throughout the academic year and facilitate 

timely interventions based on updated student data. Such real-time support could be 

particularly valuable for identifying at-risk students as circumstances evolve. 

Longitudinal research is also recommended to track the impact of XAI over extended periods. 

While this study focused on static evaluations, understanding how model predictions, 

stakeholder perceptions, and student outcomes evolve over time would offer richer insight into 
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the educational and organisational impact of XAI. Long-term studies could assess whether 

repeated exposure to explanations increases user trust, improves decision accuracy, or informs 

teaching practice in a sustainable way. 

Another critical area for future inquiry involves the development of adaptive, role-specific 

explanation systems. This thesis has shown that explanation preferences and interpretability 

needs vary across stakeholders. Future work could focus on designing explanation tools that 

dynamically tailor outputs based on user expertise, decision context, and cognitive needs. For 

example, teachers may benefit from individualised predictions linked to classroom strategies, 

while school leaders may prefer aggregated insights for cohort-level planning. Including 

students and parents in this design process could also ensure that XAI systems are inclusive 

and accessible across the school community. 

Advancing fairness-enhancing approaches within XAI remains an important research priority. 

The inclusion of sensitive features such as FSM eligibility or language status can improve 

model accuracy, but also raises ethical concerns. Future research could explore fairness-aware 

algorithms that incorporate techniques such as counterfactual fairness, feature masking, or 

reweighting to mitigate potential bias. Evaluating the trade-offs between fairness, accuracy, 

and interpretability in these contexts would further inform equitable model design. 

There is also a need to standardise and benchmark explainability metrics. This thesis introduced 

several novel metrics, including transparency score, interpretability ratio, and explainability 

ratio, to evaluate how comprehensible and meaningful the model explanations are. Future 

studies could refine the definitions and thresholds for these metrics and test them across 

different educational domains to establish their validity and generalisability. A unified 

benchmarking framework would allow for cross-study comparison and support the 

development of domain-specific explainability standards. 

Finally, adapting XAI techniques to account for the temporal and contextual nature of student 

performance represents a valuable extension of current work. Educational outcomes are 

influenced by dynamic, interdependent factors that evolve over time. Future research could 

investigate sequential or time-aware explanation methods capable of capturing trends, shifts, 

and turning points in student trajectories. This would allow schools to generate explanations 

that reflect not only current states but also historical progression and anticipated development. 
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Together, these future directions highlight the need for explainability research that is not only 

technically robust but also pedagogically grounded, ethically sensitive, and responsive to the 

practical realities of educational settings. 
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Chapter 7: Conclusion 

This chapter concludes the thesis by summarizing its key contributions to XAI in education. It 

reflects on how the study advanced both technical and stakeholder-oriented aspects of student 

performance prediction and outlines broader implications for responsible, transparent, and 

pedagogically grounded AI adoption in educational settings. 

7.1 Summary of Key Contributions 

This study set out to explore how XAI can be effectively applied to student performance 

prediction, with a particular focus on balancing predictive accuracy, fairness, and 

interpretability. Through a combination of technical experimentation, interpretability metric 

evaluation, and stakeholder-centred investigation, several core contributions were made. 

First, the study developed and validated a machine learning pipeline that achieved high 

predictive accuracy for GCSE English Language, English Literature and Mathematics 

outcomes (with HGB achieving accuracy scores above 90%). Among the models tested, the 

HGB classifier emerged as the most reliable, outperforming ensemble and deep learning 

alternatives in terms of both performance and stability. This predictive framework was 

complemented by a multi-method XAI strategy involving SHAP, LIME, PDP, and ALE 

techniques. These explanation methods enabled both local and global interpretability and 

supported fine-grained insight into model decision logic. 

Second, the research introduced novel interpretability evaluation metrics such as the 

transparency score, explainability ratio, and interpretability ratio to assess the quality and 

usability of explanations. These quantitative measures were useful for comparing explanation 

fidelity, sparsity, and clarity across different models and explanation techniques. 

Third, a significant contribution was the integration of stakeholder perspectives through a series 

of surveys, interviews, and user studies with teachers, school leaders, and students. These 

qualitative and quantitative evaluations revealed how real-world users interpret, trust, and act 

upon model explanations. Stakeholder feedback directly informed the ethical and pedagogical 

alignment of the proposed XAI framework. The study also demonstrated that access to 

explanations improved participants’ confidence and accuracy in identifying at-risk students, 

thereby validating the practical relevance of the XAI outputs. 
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Lastly, the research engaged critically with fairness in algorithmic systems, identifying 

disparities in model predictions across gender and socio-economic subgroups and applying 

formal fairness metrics such as statistical parity difference. These insights informed a series of 

recommendations for value-sensitive design and equitable deployment of predictive models in 

schools. 

7.2 Visual Summary of Research Contributions 
 
To complement the summary of contributions discussed above, the figure below summarizes 

the thesis’ core contributions across three interconnected domains: technical, stakeholder-

centred, and ethical/fairness-aware. This summary illustrates how the developed XAI 

framework integrates machine learning accuracy with explainability and responsible design, 

thereby reinforcing the broader value of the research. 

 

 

Figure 39: Visual Map of Thesis Contributions 
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7.3 Final Remarks 

The findings of this thesis carry broader implications for the use of AI in education. They show 

that explainability is not merely a technical feature but a necessary foundation for responsible, 

ethical, and context-aware AI deployment. For AI systems to be trusted and used effectively 

by educators, students, and policymakers, their inner workings must be interpretable, their 

predictions fair, and their use aligned with the realities of classroom practice and institutional 

decision-making. 

One of the most compelling insights from this study is the recognition that while teacher-

assigned grades offer contextual and pastoral understanding, they may benefit from the 

systematic, data-driven support of AI predictions. A hybrid approach where human expertise 

is complemented rather than replaced by explainable machine learning can provide a more 

insightful and equitable understanding of student progress. When carefully implemented, such 

a model offers a holistic view of student learning, facilitates timely intervention, and reinforces 

teacher judgment with robust, data-informed insights without compromising the relational and 

human-centred aspects of education. 

As artificial intelligence becomes increasingly integrated into the fabric of educational systems, 

it is imperative that the development and deployment of such technologies be guided by 

principles of transparency, accountability, and pedagogical coherence. This research has 

demonstrated that such alignment is possible and beneficial, but also that it requires deliberate 

design, continuous evaluation, and inclusive stakeholder engagement. 

Ultimately, this thesis issues a call to action: that researchers, developers, educators, and 

policymakers work collaboratively to ensure that AI in education serves the goal of equitable, 

inclusive, and learner-centred advancement. Explainable AI in education must be treated not 

merely as a technical advancement, but as a socio-technical imperative that empowers, rather 

than disempowers, those it seeks to support. 
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Appendix 

  
The web links to my codes, data, and my published peer reviewed article on AI in Education are 
below:  
 
Project Python Codes: main.ipynb - Colab 
 
Improved codes: main (3).ipynb - Colab 
 
Python code for word cloud generation : Untitled4.ipynb - Colab 
 
 
Cleaned Data:  
https://docs.google.com/spreadsheets/d/1A4K4pdKTY9da5jnjDS3A4yWxtMN5wByU/edit?usp
=drive_link&ouid=109843258392690760543&rtpof=true&sd=true 
 
Original Data:  
 
https://docs.google.com/spreadsheets/d/1VKMRsXId9n02Bq2nG0uN4byDQHaROurf/edit?usp=
drive_link&ouid=109843258392690760543&rtpof=true&sd=true 
 
Peer reviewed Published Paper:  
 
https://drive.google.com/file/d/19I2Zulvp4QWHy91VOXKJpYD2G6gm9gYu/view?usp=drive_l
ink 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://colab.research.google.com/drive/1ofkYXQWsaZZCUCin74GLZYp9X0LbCYJZ
https://colab.research.google.com/drive/1w0aEh_5X310hzLbsSSkFxdL9DALPnosN#scrollTo=KpPaZsegZVvM
https://colab.research.google.com/drive/1JRFvR8KHlPTnWCql1rjLPXiAF3zjfgFo#scrollTo=S2XUCOalTfR3
https://docs.google.com/spreadsheets/d/1A4K4pdKTY9da5jnjDS3A4yWxtMN5wByU/edit?usp=drive_link&ouid=109843258392690760543&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1A4K4pdKTY9da5jnjDS3A4yWxtMN5wByU/edit?usp=drive_link&ouid=109843258392690760543&rtpof=true&sd=true
https://drive.google.com/file/d/19I2Zulvp4QWHy91VOXKJpYD2G6gm9gYu/view?usp=drive_link
https://drive.google.com/file/d/19I2Zulvp4QWHy91VOXKJpYD2G6gm9gYu/view?usp=drive_link
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Expanded Stakeholder Responses by Thematic Category 
 
The table below presents illustrative stakeholder responses from a diverse sample of 
stakeholders, grouped according to thematic categories (n ≈ 20): 
 
Theme Illustrative Responses 
Visualization Clarity and Simplicity “I prefer summaries instead of full plots.” 

“There are too many charts. I wasn’t sure 
which one to focus on first.” 
“Too many overlapping visuals. 
Simplicity would help.” 
“Vocabulary like ‘counterfactual’ doesn’t 
help, it confuses.” 
“The score is there, but I need to 
understand what it’s telling me.” 
“Give me visuals that are quick to read.” 
“I want simple bar graphs, not 
complicated dashboards.” 
“Avoid technical colours or gradients and 
keep it simple.” 

Interpretability and Cognitive Load “Sometimes it felt more confusing than 
helpful.” 
“It wasn't clear what I was meant to look 
at first.” 
“I’ve been told what the model predicts, 
but not why it matters.” 
“It made me question whether I was 
interpreting things right.” 
“The dashboard is dense. I worry teachers 
will click and guess.” 
“Sometimes it feels like stats for stats’ 
sake. I want insights I can act on.” 
“I was overwhelmed by how many tabs I 
had to go through.” 

Subject-Specific Needs “Maths and reading need different support 
plans. A one-size-fits-all explanation 
doesn’t work.” 
“Reading-level predictions need more 
context.” 
“What helps me in English isn’t the same 
as in Maths.” 
“In Maths, I want to see trends in number-
based skills.” 
“Group these by subject so it’s clearer.” 
“tell me what this means for numeracy. 
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What’s affecting it?” 
“If the model suggests a low score in 
reading, I want it linked to literacy 
strategies.” 

Fairness, Labelling and Ethics “Even if they’ve got the same grade, the 
justification might differ, that matters.” 
“We shouldn't reinforce disadvantages 
with data.” 
“I’m worried about reinforcing labels. 
Deficit thinking is a real risk.” 
“It’s affecting how I think about kids, 
that’s not always good.” 
“Sensitive categories shouldn’t be so 
prominent.” 
“Demographics alone don’t tell the full 
story.” 
“Why is EAL even in the chart? That feels 
like stereotyping.” 
“Feels like some students are being 
profiled.” 

Practical Usefulness and Actionability “If attendance is low and predicted grades 
are down, then what?” 
“Show historical context, how is this 
different now?” 
“If I can act on it, it’s useful, otherwise 
not useful.” 
“The predicted score helps, but I want to 
know what to do next.” 
“Useful if it helps plan interventions 
earlier.” 
“Highlight the top 2 things I can do per 
student.” 
“Show me charts that matter for decision-
making, not just data.” 

 
 
 
 
 
 
 
 


