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ABSTRACT

Based on AI technology, this study proposes a novel large-scale emergency medical supplies
scheduling (EMSS) algorithm to address the issues of low turnover efficiency of medical supplies
and unbalanced supply and demand point scheduling in public health emergencies. We construct a
fairness index using an improved Gini coefficient by considering the demand for emergency medi-
cal supplies (EMS), actual distribution, and the degree of emergency at disaster sites. We developed
a bi-objective optimisation model with a minimum Gini index and scheduling time. We employ a
heterogeneous ant colony algorithm to solve the Pareto boundary based on reinforcement learn-
ing. A reinforcement learning mechanism is introduced to update and exchange pheromones
among populations, with reward factors set to adjust pheromones and improve algorithm conver-
gence speed. The effectiveness of the algorithm for a large EMSS problem is verified by comparing
its comprehensive performance against a super-large capacity evaluation index. Results demon-
strate the algorithm’s effectiveness in reducing convergence time and facilitating escape from
local optima in EMSS problems. The algorithm addresses the issue of demand differences at each
disaster point affecting fair distribution. This study optimises early-stage EMSS schemes for pub-
lic health events to minimise losses and casualties while mitigating emotional distress among
disaster victims.
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1. Introduction

Public health emergencies innict severe damage on pub-

lic health and result in signiocant economic losses (Sodhi,

Tang, andWillenson 2023). Emergency medical supplies

scheduling (EMSS) plays a pivotal and decisive role in the

efective management of disasters (Chen, Guo, and Tsui

2020; Shirazi, Kia, and Ghasemi 2021; Zhan et al. 2021).

Artiocial intelligence (AI) ofers a novel technical solu-

tion for addressing public health emergencies (He et al.

2022; Li et al. 2021; Vishwakarma et al. 2023). Medical

supply scheduling poses a signiocant challenge during

public health emergencies. Efective allocation of medi-

cal resources is crucial in ensuring patient recovery and

preventing the spread of pandemics (Boutilier and Chan

2020; Gökalp, Cakir, and Kougkoulos 2022). With the

outbreak of the COVID-19 pandemic in early 2020, the

emergency response of public health emergencies has

become the focus of global attention (den Berg and van

CONTACT Muhammad Mustafa Kamal ad2802@coventry.ac.uk School of Strategy and Leadership, Coventry University, Coventry, UK

Essen 2019; Ding et al. 2019; Lu, Ying, and Chen 2016;

Mills, Argon, and Ziya 2018), and the EMSS is particu-

larly critical (Wang, Cui, and Fang 2023). Utilising AI in

addressing the supply scheduling problem has emerged

as a prominent area of research, with a particular empha-

sis on resolving the challenge of identifying the globally

optimal solution (Chang et al. 2023a; Shrivastav 2022; Yi

et al. 2022; Zhou et al. 2023).

After Wuhan announced the city9s closure, people9s

livelihood and protective equipment relied on the gov-

ernment and various platforms for dispatch and distri-

bution. How to send scarce emergency medical supplies

(EMS) to the most needed places to meet the emergency

needs of hospitals and citizens became the primary con-

cern (Boutilier and Chan 2020; Ekici, Keskinocak, and

Swann 2014; Jenkins, Robbins, and Lunday 2021). Emer-

gency logistics difer from general commercial logistics,

for it is a specialised activity aimed at maximising time
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beneots andminimising disaster losses caused by sudden

and unpredictable factors (Wang, Yang, and Yang 2023;

Wilson et al. 2016). The objective of EMSS is to accom-

plish prompt and eocient rescue with less emphasis on

the impact of cost (Cerna et al. 2021). However, most of

the disaster losses caused by the new outbreak are caused

by the lack of timely and reasonable EMSS. Emergencies

can lead to sudden changes in demand, insuocient stocks

of medical supplies, limited transportation capacity, and

shortages of rawmaterials (Adulyasak, Cordeau, and Jans

2014; van Lieshout, Bouman, and Huisman 2020). In

order to strengthen emergency logistics management,

it is necessary to optimise the rescue efect by con-

structing a rescue decision-making model and algorithm

to help decision-makers make reasonable plans (Fuka-

sawa et al. 2018; Nasrollahzadeh, Khademi, and May-

orga 2018). AI provides information for predictive anal-

ysis that supports complex decision-making processes

(Yüksel et al. 2023).

The optimisation objective of EMSS can generally fall

into the following considerations: fairness of distribution,

timeliness of rescue, and economy of scheduling. As the

social and economic losses in the pandemic far exceed the

cost of EMSS, the impact of scheduling costs should not

be emphasised. At the early stage of the pandemic, disas-

ter reliefmedical supplies cannotmeet the needs of all the

impacted areas; the fairness of medical supplies distribu-

tion is related to the development of the disaster situation.

With a focus on fairness and timeliness, we propose an

algorithm to solve the multi-objective EMSS problem,

where fairness is evaluated through the improved Gini

coeocient, and timeliness is assessed by scheduling time.

Given the varying demand for EMS in diferent disaster

areas, this study employs the medical supply satisfaction

rate to calculate the Gini index when measuring the dis-

tribution fairness of EMS (Alem, Caunhye, and Moreno

2022). The Gini coeocient is a relative index, which con-

forms to the principle of scale invariability and transfer,

and can generally renect the diferent degrees of the over-

all distribution. The algorithm solves the problem that

the demand diference of each disaster point afects the

fair distribution. The study optimises the EMSS scheme

in the early stage of public health events, which can

reduce the loss and casualties and appease the emotion

of disaster victims. Heterogeneous ant colony algorithm

(ACS-MMAS) that combines the ant colony algorithm

(ACS) and max and min ant algorithm (MMAS) is used

to solve the local optimal problem (Li, You, andLiu 2021).

Our key onding is to show that the ACS-MMAS based

on reinforcement learningmechanism is superior to ACS

and MMAS in convergence speed and search eociency

and can efectively jump out of local optimum. With the

increased iteration times, the HV index of ACS-MMAS

has obvious advantages comparedwithACS,MMAS, and

NSGA-II.

The research objective of this paper is to address

the optimal dispatching problem of emergency sup-

plies. Previous vehicle path planning problems have been

considered only under constrained conditions. Given

the unpredictability and suddenness of emergencies,

it becomes challenging to anticipate them in advance,

thereby emphasising the signiocance of eocient emer-

gency material dispatching. Consequently, this paper

aims to investigate the following research questions:

RQ1: How can AI technology be utilized to plan the
delivery vehicle route to achieve the intended goal, con-
sidering the increased complexity of medical supply
scheduling, including distribution and transportation
planning?

RQ2: How can AI technology be utilized to equitably
allocate emergency medical resources, in conjunction
with collaborative research on the distribution and rout-
ing of medical supplies, to design efective allocation
strategies that minimize disaster losses?

This study contributes signiocantly to the literature by

establishing a bi-objective optimisation model of min-

imum Gini coeocient and minimum scheduling time

from an AI perspective while adhering to fairness and

timeliness requirements. The proposed heterogeneous

ant colony algorithm (ACS-MMAS) is utilised to solve

the Pareto boundary. The new algorithm enhances the

diversity of comprehension. Additionally, ACS-MMAS

incorporates a reinforcement learning mechanism to

update and exchange pheromones among populations,

while reward factors are employed to adjust pheromones,

thereby improving the convergence speed and search

eociency of the algorithm. Finally, the paper pro-

poses a prioritisation-based emergency medical materi-

als scheduling model to solve the problem of fairness and

eociency in optimising logistics. From two stages, the

paper establishes amaterial distributionmodelwithmax-

imum fairness as the goal and a dual-model optimisation

model with minimum dispatching time and minimum

penalty cost. The two-stage model optimises EMSS pro-

tocols in the early stages of public health events, reducing

losses of life and reassuring victims.

The rest of the paper proceeds as follows. Section 2

reviews prior literature on EMSS problems in emergen-

cies. Section 3 presents our model deonition and formu-

lation. Section 4 demonstrates the proposed design of the

algorithm. Section 5 shows the experimental simulation

and analysis. The last section concludes the paper.
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2. Literature review

EMSS can be viewed as an extension of the vehicle rout-

ing problem (VRP) in the context of emergency manage-

ment. Some studies have focused on achieving a single

completion of EMSS following an emergency event (Ying

et al. 2023), but the demand for medical supplies is con-

tinuous for medical consumables. Lu, Ying, and Chen

(2016) proposed a disaster relief supplies distribution

framework based on the dynamic framework of the disas-

ter level. The allocation of EMS resources must adhere to

the principles of equity and justice while also considering

the urgency of rescue operations (Liu et al. 2022).

In the early stage of an emergency, the rapid response

ability and rescue efect of the emergency system mainly

depends on the length of rescue time. Some studies con-

sider the single objective optimisation of the shortest

rescue time. For instance, Wan, Ye, and Peng (2023) pro-

posed a two-pole EMS model for multi-commodity and

multi-vehicle transportation, which minimises the time

cost by integrating a genetic algorithm and analytic hier-

archy process. Chang et al. (2023b) studied the multi-

rescue point EMSmodel under a real-time dynamic road

and realised dynamic vehicle path adjustment through an

improved genetic algorithm to solve the shortest time.

Some scholars consider the shortest distance in the

rescue process to improve rescue eociency by the prin-

ciple of proximity. For instance, Deng et al. (2023) exam-

ined the EMS model of a single distribution centre and

multiple disaster points and proposed a concept of two-

way distribution to improve the transportation eociency

of EMSS. In the early stage of the disaster, the govern-

ment and the people not only care about the distribu-

tion eociency of medical supplies but also pay atten-

tion to the fairness of rescue. Therefore, there are stud-

ies on the scheduling of EMS from a fairness perspec-

tive. For instance, Wang, Zhao, and Wu (2023) inves-

tigated a distance-based service priority strategy, which

will reduce service wait times for customers farther away

by giving higher service priority.

Since EMSS is a nondeterministic polynomial (NP)

problem, most studies only focus on unilateral optimi-

sation (Rautenstrauss, Martin, and Minner 2023). How-

ever, given the massive impact of emergencies, there is

more than one objective to be optimised. Some studies

have devoted themselves to using multi-objective opti-

misation technology to solve this problem. For instance,

Kuo, Leung, and Yan (2023) explored three optimisa-

tion objectives: minimising driving distance, reducing

delay time, and optimising vehicle utilisation. Lopes

et al. (2022) combined Ant Colony Optimisation (ACO)

and genetic algorithm (GA) to form a hybrid heuristic

algorithm to solve a single-objective and multi-objective

travelling salesman problem. Fernández Gil et al. (2023)

studied the Cumulative Vehicle routing problem with

time Windows (CumVRP-TW) as a variant of the vehi-

cle routing problem that minimises the cumulative cost

function while respecting customer time window con-

straints. Combining a saving algorithm and a 2-opt

algorithm, Gao et al. (2021) developed an emergency

transportation plan to achieve fairness and efectiveness.

The emergency materials dispatching is summarised

below, as shown in Table 1.

Due to the limited EMS stored in the city during

public health emergencies, medical supplies need to be

quickly dispatched to disaster-stricken areas. The existing

emergency material scheduling supply chain structure is

generally a three-level supply chain network only suit-

able for regional material scheduling (Wang et al. 2022).

To deal with the excessive data requirements and high

computational complexity in the newpandemic, the 8Dis-

tribution Center-Disaster Point9 mode is more suitable

for large-scale EMSS, which can quickly form the emer-

gency supply chain network among cities and respond to

the unioed dispatching of the government.With the con-

tinuous development of AI, big data, and other technolo-

gies, new technical support has been proposed for supply

chain management (Alshurideh et al. 2022; Hasan et al.

2022). The supply chain covers the entire production

and distribution channel from suppliers, manufacturers,

and distributors to end customers (Helo and Hao 2022).

Existing research has been conducted on supply network

outages to analyse their causes and improve network

resilience from diferent AI perspectives and techniques

(Liu et al. 2016; Toorajipour et al. 2021). Therefore, it

is crucial to study the optimisation of medical supplies

distribution in the supply chain by using manpower.

Table 1. Emergency supplies dispatch table.

Optimisation
mode Target Method References

Whether to consider
fairness and justice

Single object
optimisation

Minimum rescue time Genetic algorithm and analytic hierarchy process Wan, Ye, and Peng (2023) No
Genetic algorithm Chang et al. (2023a) No

Shortest distance Particle swarm optimisation and a genetic algorithm Deng et al. (2023) No
Discrete artificial bee colony algorithms Wang, Zhao, and Wu (2023) No

Multi-objective
optimisation

minimising driving distance,
reducing delay time, and
optimising vehicle utilisation

Ant colony optimisation and genetic algorithm Lopes et al. (2022) No
The Greedy randomised adaptive search procedure Fernández Gil et al. (2023) No
An adaptive augmented ε-constraint method Gao et al. (2021) Yes
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The application of AI in medical supplies optimisa-

tion scheduling has achieved remarkable results (Kumar

and Dimitrakopoulos 2021; Noriega and Pourrahimian

2022; Yang et al. 2021). Using AI in multi-objective opti-

misation ofmedical supplies scheduling has become pos-

sible (Petrović et al. 2022). Reinforcement learning has

a good application to resource scheduling optimisation

problems. The scheduling problem can be expressed as a

reinforcement learning problem, and the optimal solu-

tion is found by the simulation of the reward function

(Hu et al. 2020; Lin, Chen, and Hsieh 2023). AI technol-

ogy in medical (Yang et al. 2021) and intelligent factories

(Hu et al. 2020; Lin, Chen, and Hsieh 2023) have made

excellent progress in scheduling optimisation. Overall,

on the positive side, it is agreed that the use of AI and

robots in logistics and production systems can speed up

operations and reduce errors (such as those caused by

humans), and the use of AI will also signiocantly improve

decision-making (Dolgui and Ivanov 2022). Against this

backdrop, our paper will strengthen the learning and

application to solve the problem of EMSS and improve

the rationality and time of medical supplies scheduling.

Based on a comparison of existing literature on

emergency management, we propose the ACS-MMAS

approach to address the challenge of multi-objective

EMSS. ACS-MMAS refers to the ACS-MMAS proposed

in this study, which is a mixture of two adaptive ACS

and MMAS. Fairness is measured by the improved Gini

coeocient, and timeliness is measured by the schedul-

ing time. ACS is responsible for the convergence speed of

the algorithm. MMAS, an adaptive ant colony algorithm,

is responsible for the diversity of the algorithm. The

reinforcement learning mechanism (Zhou et al. 2022)

has been introduced to update pheromone exchange

among populations. The experimental results show

that the algorithm can efectively reduce the conver-

gence time, help jump out of local optimum in EMSS

problems, and perform better than other heuristic

algorithms.

3. Model

3.1. Problem deonition

After the occurrence of public health emergencies, the

EMS stored in the city is limited, so it is necessary to

schedulemedical supplies for disaster-stricken areas. The

distribution of the afected areas is irregular. Accord-

ing to the territorial principle, medical supplies distri-

bution centres are set up in areas with less impact of

the epidemic to ensure the safety of medical supplies.

The localmanagement department selects logistics enter-

prises to provide medical supplies distribution services.

To clarify the scope of this paper, we put forward the

specioc assumptions of the model as follows.

Assumption (1) In the scheduling process of emer-

gency materials, the emergency materials are stored in

the distribution centre after arriving in the afected area

and then transported to each demand point by the distri-

bution centre. The capacity of the distribution centre is

large enough not to consider the situation of a warehouse

explosion.

Assumption (2) Each vehicle9s fuel eociency, driving

velocity, and load capacity shall remain constant and uni-

form, while the volume of goods transported must not

exceed the maximum carrying limit.

Assumption (3) Despite the priority division of

demand points, all demand points must be allocated a

certain amount of emergency materials to meet basic

living needs.

Assumption (4) Road transportation is only consid-

ered from the distribution centre to the demand point.

Vehicles depart from the distribution centre and return

to the original distribution centre after completing the

transportation task. The same vehicle only serves the

same demand point once, and the same demand point

can be served by diferent vehicles, and the distribution

centre has enough vehicles to complete the distribution

task.

Assumption (5) The road surface between each dis-

tribution centre and the demand point is smooth, and

the epidemic does not afect highway traoc. In distri-

bution, unexpected situations such as vehicle failure and

road congestion are not considered. All transport vehicles

have the same speed, and themaximumcarrying capacity

of vehicles of the same type is the same.

Assumption (6) There are many types of emergency

materials. According to the experience of previous pub-

lic health events, diferent types of emergency materials

are combined into similar materials in proportion to

maximise the distribution eociency, so this paper only

considers the distribution of single materials.

The decision variables of the model are xijr and ybi,

which are deoned as follows:

xijr =

§

¨

©

1, if the vehicle r moves from the

disaster site i to j,

0, otherwise.

(1)

ybi =

§

¨

©

1, if the disaster site i is assigned to

distribution center b,

0, otherwise.

(2)

The parameters list and their deonitions are sum-

marised in Table 2.
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Table 2. The parameter list.

Parameter type Parameter Define

Model parameter cijr The minimum distance of vehicle r from demand point i to j

Sr Fixed vehicle speed
si Quantity delivered at disaster site i
di Quantity demanded at disaster site i
Mr Maximum capacity of vehicle r
C Set of disaster sites, C = i| i = 1, 2, . . . , N
B Set of distribution centre, B = b| b = 1, 2, . . . ,M
V Emergency vehicle set, v = r | r = 1, 2, . . . , K
N All nodes in the transportation network, N = B∪ C
Qb Amount of medical supplies in distribution centre b
γi The priority of demand point i
θ The efficiency parameter of the vehicle, that is, the amount of material loaded per unit of time
C1 Penalty cost per unit time for arrivals beyond the latest tolerance time
T T = (s1 , s2 , . . . , sn) represents the emergency supplies allocation amount

Intermediate variable
parameters

T ir The point in time when vehicle r arrives at demand point i, T ir = 0 means the vehicle starting from the distribution centre

tijr The travelling time of vehicle r from demand point i to demand point j, tijr =
cijr

Vr

tir
′ Vehicle r demand point I service time, t′ir =

si

θ

wi The satisfaction rate of demand point i,wi =
si

diγi
zijr When vehicle r and distribution centre i transport supplies to distribution centre j, i, j ∈ B, then zijr = 1, otherwise zijr = 0

3.2. Priority evaluation index of EMS

The priority of the demand point is afected by many fac-

tors, and diferent factors have diferent efects on the

rescue priority of the demand point. According to the

characteristics of the disaster information of the demand

point, the innuencing factors can be divided into qualita-

tive and quantitative factors, and the determinate factors

mainly include the disaster degree of the demand point,

the disaster grade evaluated by the relevant departments,

and the time urgency of the demand point. The quan-

titative factors mainly include the population density of

the demand point, the shortage of supplies at the demand

point, and the number of patients at the demand point.

Therefore, when constructing the priority index of the

demand point, the innuence of each factor on the priority

should be comprehensively considered. Referring to the

existing research ondings, we determine the priority of

the demand point of EMS in public health events by two

parts.

(1) Level of expected time demand γ u
i

The demand points need an urgent degree, referring to

the incident that broke out, the requirements on demand

for all kinds of emergency supplies distribution time.

Each demand point has a corresponding soft time Win-

dows constraints [li, lli], where li represents demand i9s

expected service time at the latest. lli represents demand

point i9s stand point in time, and the latest llmin represents

all requirements on the minimum expected service time

at the latest.

(2) The time tolerance of the requirement γ t
i

According to the time requirement and tolerance degree

of the demand point for emergency materials, for the

demand point with a oxed time requirement and small

time tolerance, the urgency of the demand point should

be appropriately increased. This paper refers to prior lit-

erature (Khishe, Orouji, and Mosavi 2023) and uses the

above two accuracy indicators to measure the demand

urgency. Between them, the shortage of emergencymate-

rials is positively correlated with the urgency; that is, the

greater the shortage of emergency materials, the bigger

the urgency of the demand point. In contrast, the time

tolerance is negatively correlated with the urgency; the

greater the time tolerance, the less urgent the demand

point. In summary, this paper constructs linear functions

to deone the relationship among the three, as shown in

Formula 3,

�i = āγ u
i − b̄γ t

i , (3)

where ā and b̄ are coeocients, γ u
i represents the expected

level of emergency supplies demand time at demand

point i, and γ t
i represents the demand point i9s demand

time tolerance. In addition, we assume that 0 f ā f 1,

0 f b̄ f 1, γ u
i g 1, 0f γ t

i f 1, and γi g 1 to ensure that

the demand i9s urgent degree is determined by the degree

of the shortage of demand and time tolerance. The val-

ues of ā and b̄ do not change according to the demand

point outbreak, only on behalf of the shortage of emer-

gency supplies demand degree and time tolerance to the

innuence of the priority weights. When a demand point
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receives distribution vehicles beyond its tolerance time,

it will refuse to accept the service as its tolerance time

penalty cost is more than the latest tolerance time penalty

cost per unit of time C2. The total penalty cost of the

distribution network is shown in Formula 4,

C1

∑

r∈V

∑

i∈C

max[Ti
r − lli, 0]. (4)

3.3. Model of equitable distribution of emergency

supplies

3.3.1. Fair allocationmodel based on priority index

Some scholars have studied the EMSS problem from dif-

ferent angles. The optimisation objective can be divided

into one of the following categories by considering: (i)

the fairness of distribution to maximise the cumula-

tive satisfaction rate of disaster points (Luo, Wan, and

Wang 2022); (ii) the timeliness of rescue to minimise the

scheduling time (Liu et al. 2022); and (iii) the economy of

schedule to take the minimal scheduling cost as the goal

(Kundu, Sheu, and Kuo 2022).

According to the experience of the new pandemic, the

social and economic losses caused by public health events

far exceed the cost of EMSS, so our model does not con-

sider the impact of dispatch costs beyond the number of

vehicles. At the beginning of the emergency, the medical

supplies and rescue materials stored in the city can not

meet the needs of all disaster areas, and the fairness of

the distribution of medical supplies is related to the panic

psychology of themasses and the development of the dis-

aster situation. In this paper, the Gini coeocient (Gini)

is introduced, which is a relative index that conforms to

the principle of scale invariability and transfer, and can

generally renect the diferent degrees of the overall dis-

tribution (Gini 1912; Gini 1921). As the demand for EMS

in disaster areas varies greatly, the Gini coeocient of the

satisfaction rate of medical supplies is used to calculate

the fairness index of EMS when measuring the fairness

of EMS distribution (Zhang et al. 2023). In this paper, a

distributive equity index G based on the Gini coeocient

is constructed, and the calculation is shown in Formulas

(5) and (6).

G =
1

2n2w̄

∑

i∈C

∑

j∈C

|wi − wj|, (5)

s.t. wi =
si

diγi
, (6)

where γi is the emergency degree of a medical supplies

demand for the disaster site i, wi is the satisfaction rate

of each disaster point, and w̄ is the average level of satis-

faction rate of each disaster point. When the priority of a

demand point γi (γi g 1) is larger, the material distribu-

tion is more inclined to it to some extent. In summary, γi
is constrained to construct the fair distribution model of

materials, as shown in Formula 7,

min Z1 =
1

2n2w̄

∑

iεC

∑

j∈C

|wi − wj|, (7)

s.t. w̄ =

∑

i∈C wi

n
, (8)

si f di,∀i ∈ C, (9)

γi > 0,∀i ∈ C, (10)

si > 0,∀i ∈ C. (11)

Formula (7) is the fairness objective function, which

renects the fairness of material distribution by minimis-

ing the fairness index. The smaller the value, the smaller

the diference in demand point satisfaction rate and the

better the fairness. Formula (8) represents the average

satisfaction rate of all demand points in the distribution

network, and Formula (9) indicates that the actual distri-

bution quantity obtained by each demand point does not

exceed its actual demand. Formula (10) denotes that the

priority index of each demand point is greater than zero,

and Formula (11) symbolises that each demand point is

guaranteed to have emergency material distribution.

3.3.2. Emergency vehicle routing optimisationmodel

According to the problem description, the mathematical

model is established as follows. The emergency distribu-

tion network has m distribution centres as transit points

to distribute relief materials to each demand point, and

each distribution centre has enough vehicles to complete

the distribution task. There are n demand points, and the

distribution task is carried out according to the mate-

rial distribution scheme in the previous section. From

the start of the distribution centre to the completion of

the entire distribution network, the vehicle delivery time

mainly includes two parts: the travel time and the ser-

vice time of vehicles arriving at the demand point in the

process of vehicle distribution. According to Assumption

(5), the waiting time of vehicles in the process of distribu-

tion is not considered. For the eociency cost problem of

vehicle routing optimisation, the minimum penalty cost

in the process of distribution is taken as the objective,

and a dual-objective optimisation model is established as

follows:

minZ2 =
∑

iεN

∑

jεN

∑

rεV

tijr +
∑

iεC

∑

rεV

tir
′, (12)

minZ3 = C1

∑

r∈V

∑

i∈C

max[Ti
r − lli, 0], (13)
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s.t.
∑

iεC

siybi f Qb,∀bεB, (14)

∑

iεN

∑

jεN

sixijr f Mr,∀rεV , (15)

∑

iεN

xijr =
∑

iεN

xjir,∀jεN,∀rεV , (16)

∑

iεN

∑

jεN

xijr g 1,∀rεV , (17)

∑

bεB

ybi g 1,∀iεC, (18)

∑

iεB

∑

jεB

∑

rεV

zijr = 0, (19)

∑

iεC

xi0r = 1, (20)

∑

jεC

x0jr = 1. (21)

Formula (12) represents the minimum scheduling

time. Formula (13) denotes the minimum penalty cost.

Formula (14) indicates that the distribution volume of

the distribution centre does not exceed the total distri-

bution volume of the allocated demand point. Formula

(15) specioes that the total distribution volume of a vehi-

cle does not exceed the maximum carrying capacity.

Formula (16) characterises that the scheduling process

is continuous, and the path is not repeated. Formula

(17) symbolises the subcircuit elimination constraint,

and Formula (18) means that a demand point is served

by at least one vehicle. Formula (19) shows that there

are no vehicles between any two distribution centres.

Formulas (20) and (21) suggest that the vehicle returns

to the original distribution centre after completing the

transportation task.

4. Algorithm design

Next, we analyse the research methods in detail from the

perspective of AI, compare the advantages and disad-

vantages of other models and the ant colony algorithm

based on reinforcement learning proposed in this

paper, and introduce the basic principle of implement-

ing the ant colony algorithm based on reinforcement

learning.

4.1. ε-constraintmethod

There are four kinds of solving methods for multi-

objective optimisation problems: (1) evaluation func-

tion method, which transforms multi-objective into a

single objective by constructing an evaluation index

(Petchrompo et al. 2022); (2) interactive programming

method, in which decision-makers analyse the prior

information in the process of optimisation and gradu-

ally generate the onal solution (Tomczyk and Kadziński

2022); (3) layered solution, which is sorted according

to the importance of the objective function, and then

solves the single-objective optimisation problem (Deng

et al. 2022); and (4) generationmethod (Tian et al. 2021).

Decision-makers can ond a satisfactory solution for solv-

ing the Pareto solution set of multi-objective functions

according to the actual situation. In the bi-objective opti-

misation problem, the ε constraint method has a wide

range of functions. Similar to the hierarchical sequence

method, the optimal solution of the pre-order objec-

tive is obtained orst, and then the optimal solution of

the former objective is transformed into the constraint

condition of the latter one. The fairness of emergency

dispatch is more important in the early stage of an

emergency. Firstly, the optimal value of the Gini coef-

ocient is solved to determine the lower bound f1, sup-

posing the Gini coeocient of initial distribution be the

upper bound f1. For the objective function Z2 increas-

ing from the lower bound to the upper bound, a set of

optimal solutions of (Z3, ε) can be calculated for each

value of ε. Let ε = f1, such that ε decreases continu-

ously from the upper bound f1 to the lower bound f1.

According to the Pareto-dominated method, the non-

dominated solution is the Pareto fronts of the origi-

nal problem. The bi-objective model is transformed as

follows:

minZ2 =
∑

iεN

∑

jεN

∑

rεV

tijr +
∑

iεC

∑

rεV

t′ir, (22)

s.t. C1

∑

r∈V

∑

i∈C

max[Ti
r − lli, 0] < ε, (23)

∑

iεC

siybi f Qb,∀bεB, (24)

∑

iεN

∑

jεN

sixijr f Mr,∀rεV , (25)

∑

iεN

xijr =
∑

iεN

xjir,∀jεN,∀rεV , (26)

∑

iεN

∑

jεN

xijr g 1,∀rεV , (27)

∑

iεN

∑

jεN

∑

rεV

xijr f 1, (28)

∑

bεB

ybi g 1,∀iεC, (29)

∑

iεB

∑

jεB

∑

rεV

zijr = 0, (30)
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∑

iεC

xi0r = 1, (31)

∑

jεC

x0jr = 1, (32)

where ε takes all the values of the objective function

Z3. Firstly, in the range of ε restricted domain, Formula

(23) is taken as the constraint condition of the objective

function Z2, and the optimal solution of the objective

function Z2 is solved to obtain a set of Pareto optimal

solutions. Then ε is reduced from the upper bound to

the lower bound, and each ε value has a corresponding

optimal solution Z2, and so on to obtain many groups

of Pareto solutions. Finally, the Pareto solution set and

Pareto frontier are obtained.

The process of the algorithm is as follows.

Step 1: Initialisation parameters, according to the pro-

portion of demand to determine the initial value of the

distribution T0 = {s1, s2....sn}, and calculate the initial

Gini coeocientG0. As the upper bound f1, let ε = f1, and

current iterations iter = 1.

Step 2: Calculate the satisfaction rate of each disas-

ter site wi. Find out the maximum disaster point wmax
i

and the minimum disaster point wmin
i . Adjust the ζ%

of the distribution volume of the disaster-hit point with

the maximum satisfaction rate to the disaster point with

the minimum satisfaction rate; ζ is a constant and meets

the condition of si < di. Otherwise, adjust to the disaster

point with the secondary low satisfaction rate.

Step 3: If iter < itermax, iter = iter + 1, return to step

2; otherwise, the algorithm ends. When the Gini coef-

ocient is the minimum, output the optimal solution of

distribution quantityTbest andMinimumGini coeocient

as the lower bound of the objective function Z1 : f1.

Step 4: Let ε = f1, calculate the minimum path Lb of

the single objective functionZ2 under this constraint, and

substitute Lb into the objective function Z2 to determine

whether it is a Pareto solution.

Step 5: Determine the step size of upper and lower

bounds �ε = (f1 − f1)/n. If ε > f1, ε = ε − �ε, return

to Step 2; otherwise, end the algorithm, output Pareto

solution (ε, Lb).

4.2. ACS algorithm

4.2.1. Path choice

The ant colony systemwas proposed byDorigo andGam-

bardella (1997). Based on the ant colony algorithm, three

improvements have been made: (1) state transition with

pseudo-random probability; (2) updating pheromone

only on the optimal ant path; (3) adding local update

rules to adjust the amount of information in each path.

State transition rules of ants moving from i to j in ACS:

S =

§

¨

©

argmax
j∈ allowed

[τij(t) × ηij
β], q f q0

s, q > q0

, (33)

where S stands for the ant to choose the next point to

go, and q is a random number evenly distributed on

[0,1]. q0 is a certain value, and the parameter Q can

be changed q0 to adjust the ant9s ability to explore new

paths. s represents a roulette choice, and the formula is as

follows:

Pij(t) =

§

¨

©

[τij(t)]
α(ηij)

β

∑

u∈ allowed [τiu(t)]
α(ηiu)

β
, j ∈ allowed

0, j /∈ allowed

,

(34)

in which τij(t) is the pheromone concentration between

points i and j after t iterations, ηij is the reciprocal of the

distance between points i and j, α and β are the infor-

mation heuristic factor and the expected heuristic factor

respectively, and 8allowed9 is the current ant feasible point

set.

4.2.2. Pheromone update

In the ACS algorithm, when all ants complete a path

exploration, only the optimal ant is selected to release a

pheromone, which speeds up the convergence speed and

reduces the complexity of the algorithm. In the global

update of pheromone, ACS update rules are as follows :

τij(t + 1) = (1 − ρ)τij(t) + ρ�τij, (35)

�τij =

§

¨

©

1

Lb
, if (i, j) ∈ Bestpath

0, otherwise
, (36)

where ρ (0 f ρ f 1) is the Volatilisation Coeocient

of global pheromone, pheromone increment �τij is the

reciprocal ofLb, andLb is the current optimal path length.

After the ant cycle, ACS updates the pheromone of each

ant9s path to narrow the gap between the pheromone and

the optimal path pheromone. In the local updating of

pheromone, ACS update rules are as follows:

τij(t + 1) = (1 − ρ)τij(t) + ρτ0, (37)

in which τ0 is the initial pheromone concentration on

each path.

4.3. MMAS algorithm

MMAS algorithm was proposed by Stützle and Hoos

(1997) to solve Travelling Salesman Problem (TSP) and

QuadraticAssignment Problem (QAP) (Stützle andHoos

1997). The biggest improvement of the algorithm is to
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set a threshold to limit the maximum and minimum

pheromone to avoid falling into the local optimumdue to

the large diference in pheromone concentration. In the

initial stage, all pheromones are initially τmax to increase

the exploratory ability of the algorithm. After all, ants

have explored the path, and only pheromones on the opti-

mal solution path are updated; the pheromone of each

path is limited to [τmin, τmax]. MMAS also uses roulette

for the next selection of ants, such as Formula 34. The

pheromone update rule is as follows:

τij(t + 1) = (1 − ρ)τij(t) + �τ bestij , (38)

�τ bestij =
1

Lbest
, (39)

τij(t + 1) =

§

¨

©

τmax, if τij(t + 1) > τmax

τij(t + 1), if τij(t + 1) ∈ [τmin, τmax]

τmin, if τij(t + 1) < τmin

,

(40)

τmax =
1

1 − ρ
× Tbest, (41)

τmin =
τmax
n
2 − 1

, (42)

where Lbest is the current optimal or global optimal

length and Tbest is the globally optimal path length.

According to Stützle and Hoos (1997), the values of τmin

and τmax are set such thatτmin ensures the exploratory of

the ant colony and τmax ensures the heuristic of the ant

colony.

4.4. Heterogeneous ant colony under reinforcement

learning

4.4.1. Communicationmechanism

The multi-colony ant colony algorithm can be divided

into two types: isomorphic ant colony and heterogeneous

ant colony. Chen et al. (2022) demonstrate that heteroge-

neous performance outperforms isomorphism.However,

the optimal path of the two ant colonies is diferent before

communication. If the optimal solution is exchanged,

the pheromone gap may be too large and fall into the

local optimal solution. Therefore, this paper chooses to

exchange pheromones to exchange information between

populations A and B, as shown in Formula (43).

PheromoneA � PheromoneB. (43)

Because of the complementary relationship betweenACS

and MMAS, MMAS has a pheromone threshold limit,

so the pheromone gap of each path is not obvious.

ACS has a global and local pheromone update mech-

anism, which leads to the pheromone accumulation of

some paths in the early stage. When the two populations

exchange pheromone matrix, ACS obtains a more uni-

formpheromone ofMMAS, which increases the diversity

of solution in the process of ant search. MMAS uses the

pheromone with a larger diference in ACS with τmax

and τmin initialisation to avoid falling into local opti-

mumprematurely and causing algorithm stagnation. The

frequency of communication between the two popula-

tions is set according to diferent data sizes. Assuming

that the total number of iterations is 8iter9; the more data

points, the more total iterations, and the more commu-

nication times. If the pheromone communication is too

frequent, the diversity of search solutions will be reduced;

if the interval of pheromone interaction is too long, the

eociency of the learning mechanism between popula-

tions will be afected. Let E be the number of population

communication, where

E =

§

⎪

⎪

¨

⎪

⎪

©

⌈ n

20

⌉

, if t ∈

[

0,
iter

2

]

⌈n

8

⌉

, if t ∈

(

iter

2
, iter

]. (44)

In the orst half of the iteration process, the communi-

cation frequency between the two populations is reduced,

the search space in the early stage of the population is

expanded, and the diversity of solutions is improved. In

the second half of the iteration, due to the accumula-

tion of pheromones, the algorithm may fall into local

optimisation. At this time, increasing the communica-

tion frequency between populations can efectively avoid

algorithm stagnation.

4.4.2. Rewardmechanism

In the context of AI, the reward mechanism of reinforce-

ment learning can regulate the communication between

ant colonies. After the interaction between population

A and population B, the reinforcement learning reward

mechanism (Karimi, Dowlatshahi, and Hashemi 2023) is

introduced to promptly evaluate their communication.

Using the Q-learning reward mechanism for reference,

the pheromone concentration of the dominant popula-

tion is increased, and that of the inferior population is

reduced. By subtracting the optimal path searched by

population A (or B) before communication from the

optimal path found after communication, the evaluation

operator rA of population A is deoned as follows:

rA =
LAbest(t

′) − LAbest(t
′ + 1)

LAbest(t
′)

, (45)

where pheromone exchange occurs in the t′ iteration,

LAbest(t
′) is the optimal path length of the population

before communication, and LAbest(t
′ + 1) is the optimal

path length of the population after communication. If the
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Figure 1. Reinforcement learning mechanism.

evaluation operator rA is greater than 0, the pheromone

of the optimal ant in population A is rewarded. The

reward rules are as follows:

τij(t
′ + 1)

=

{

(1 − ρ)τij(t
′) + ρ�τij + �τr, rA > 0

(1 − ρ)τij(t
′) + ρ�τij, otherwise

,

(46)

�τr = rAe−t′ . (47)

The reinforcement learning mechanism is shown in

Figure 1. In the parallel iteration process of the double ant

colony, due to the positive feedback efect of pheromones,

more pheromones are rewarded, which speeds up the

convergence speed of the algorithm. As shown in For-

mula 47, the reward operator �τr decreases with the

increase of the number of iterations, and the innuence

on the pheromone gradually weakens in the later stage to

ensure the diversity of solutions in the later stage of the

algorithm.

5. Experimental simulation and analysis

5.1. Algorithm design paradigm

To validate the eocacy and feasibility of the equitable

distribution and multi-objective path optimisation mod-

els proposed in this study, two examples were con-

structed using selected data from Solomon datasets

R101 and C101. Each example comprises 24 supplies

demand points and 3 distribution centres, as illustrated

in Figure 2. Each distribution centre is equipped with

two distinct types of vehicles for task scheduling. This

model considers the priority of transportation demand

points and the penalty cost of emergency scheduling and

adjusts the traditional Solomon dataset to ot the research

problem addressed in this paper. Tables 3–8 lists the

information about the demand point, distribution centre,

and distribution vehicle for the R101 and C101 examples.

5.2. Numerical simulation and results

5.2.1. Analysis of optimal results of emergency

materials distribution

It can be seen from the above that the orst-stage model

of the emergency scheduling problem is solved in this

section, namely the fair distribution model of emergency

materials. Due to the great impact of the epidemic and the

shortage of the originally stored medical materials, the

medical materials are in short supply for a short period,

so they cannotmeet all the demands of all demandpoints.

Figure 2. Location distribution diagram of the example: (a) Example R101: (b) Example C101.
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Table 3. R101 example demand point information table.

Demand point
number

X coordinates
(km)

Y coordinates
(km)

Demand
quantity (units)

Latest service
time li (min)

Latest tolerance
time lli (min)

1 55 45 13 116 126
2 55 20 19 149 159
3 15 30 26 34 44
4 25 30 3 99 109
5 20 50 5 81 91
6 10 43 9 95 105
7 55 60 16 97 107
8 30 60 16 124 134
9 20 65 12 67 77
10 50 35 19 63 73
11 30 25 23 159 169
12 15 10 20 32 42
13 30 5 8 61 71
14 10 20 19 75 85
15 5 30 2 157 167
16 20 40 12 87 97
17 15 60 17 76 86
18 45 65 9 126 136
19 45 20 11 62 72
20 55 5 29 68 78
21 65 35 3 153 163
22 18 18 17 185 195
23 20 26 9 83 93
24 19 21 10 58 68

Table 4. R101 example distribution centre information table.

Distribution
centre number X coordinates Y coordinates Material total

1 23 43 60
2 32 73 80
3 52 31 110

Combined with the number of patients at the demand

points and the urgency of the demand for emergency

materials published by the local government, the priority

Table 5. R101 example distribution vehicle information table.

Type of
delivery vehicle

Maximum
capacity (units)

Ground speed
(km/min)

Vehicle efficiency
parameters (units/min)

1 50 1 8
2 30 1 5

calculation formula of the demand points in Formula (7)

was used to determine the priority of the demand points.

When the demand for emergency supplies exceeds the

supply in the early stage of an epidemic, it is assumed

Table 6. C101 example demand point information table.

Demand point
number

X coordinates
(km)

Y coordinates
(km)

Demand
quantity (units)

Latest service
time li (min)

Latest tolerance
time lli (min)

1 45 68 10 912 967
2 45 70 30 825 870
3 42 66 10 65 146
4 42 68 10 727 782
5 42 65 10 15 67
6 35 69 10 448 505
7 25 85 20 652 721
8 22 75 30 30 92
9 22 85 10 567 620
10 20 80 40 384 429
11 10 40 30 31 100
12 8 40 40 87 158
13 8 45 20 751 816
14 5 35 10 283 344
15 2 40 20 383 716
16 30 52 20 914 965
17 28 52 20 812 883
18 28 55 10 732 777
19 25 50 10 65 144
20 25 52 40 169 224
21 60 85 30 561 622
22 58 75 20 30 84
23 55 80 10 743 820
24 55 85 20 647 726
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Figure 3. Iteration diagram of fair index optimisation: (a) R101 iterative graph of fair index optimisation: (b) C101 iterative graph of fair
index optimisation.

Table 7. C101 example distribution centre information table.

Distribution
centre number X coordinates Y coordinates Material total

1 40 50 80
2 26 33 110
3 52 21 170

Table 8. C101 example distribution vehicle information table.

Type of
delivery vehicle

Maximum
capacity (units)

Ground speed
(km/min)

Vehicle efficiency
parameters (units/min)

1 60 1 15
2 50 1 10

that demand urgency at the point of need outweighs time

tolerance at said point, i.e. a > b, and satisoes the follow-

ing conditions: γ u
i g 1, 0f γ t

i f 1 and āγ u
i − b̄γ t

i g 1.

Let the parameters a = 0.8 and b = 0.2 be utilised to

calculate the priority of demand points, maximise life-

saving eforts, and enhance rescue eociency. The genetic

algorithm9s iteration number is set at 1000,with a popula-

tion size of 100 and a penalty factor C1 = 10 for vehicles

that exceed their tolerance time.

In this paper, Pycharm2020.1.1 is used for program-

ming solutions. First, R101 and C101 example data are

inputted, and then the fair distribution model of the

orst stage is solved. Second, we run 10 times to take

the average value as the objective function Z1; the iter-

ative process of the optimisation results is shown in

Figure 3. Finally, we obtain the optimal objective function

value Z1 = 0.083, for example, R101 and Z1 = 0.054, for

example, C101.

5.2.2. Analysis of emergency vehicle routing

optimisation results

In the orst phase of the material assigned based on

solving the second stage of the vehicle routing optimi-

sation problem, optimising the parameters of the ant

colony algorithm largely determines the algorithm9s con-

vergence. So, orst of all, through the control variable

method, we ond the optimal parameter of the ant colony

algorithm by running 10 times the optimal result; the run

results are shown in Figure 4.

Since both ACS and MMAS adopt adaptive parame-

ters in the process of dual population communication,

the parameters greatly innuence the experimental results.

The number of ants will afect the trend of the average

pheromone tends to average. The information heuris-

tic factor α and the expected elicitation factor β con-

trol the exploration and convergence of the population,

so it is necessary to adjust the parameters before the

experiment. Under the minimum Gini coeocient con-

straint, each group of parameters is substituted into the

algorithm and run 10 times to take the average value.

The experimental results are shown in Figure 4. For ACS,

information heuristic factor α = 1, expected heuristic

factor β = 8, pheromone volatilisation factor ρ = 0.2;

for MMAS, information heuristic factor α = 2, expected

heuristic factor β = 7, pheromone volatilisation factor

ρ = 0.8, and Ant = 24.

The material distribution scheme obtained in the pre-

vious section is substituted into the path optimisation

model for the solution. The specioc vehicle distribution

scheme is shown in Tables 9 and 10, and the obtained
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Figure 4. Ant colony parameter tuning: (a) ACS algorithm and parameter: (b) MMAS algorithm and parameter: (c) ACS algorithm
parameter selection: (d) MMAS algorithm parameter selection: (e) Ant Quantity.
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Figure 5. Roadmap of vehicle distribution: (a) R101 Vehicle distribution roadmap: (b) C101 Vehicle distribution roadmap.

Table 9. R101 is an example of a vehicle distribution route.

Distribution centre Vehicle number Distribution line

1 1,2 (15,14,22,24,23,3),(4,11)
2 3,4 (8,9,17,5,16,6,3),(18,7,1)
3 5,6,7 (13,12,3,11,19),(20,2,19,10),(10,1,21)

Table 10. C101 is an example of a vehicle distribution route.

Distribution centre Vehicle number Distribution line

1 1,2 (13,11,12),(20,19)
2 3,4 (16,17,19,18,6,4,3),(14,15,12,8)
3 5,6,7 (8,10,9,7,2),(24,21,23),(5,3,1,2,23,22)

optimal route diagram is shown in Figure 5, with each

colour line representing the distribution route of each

vehicle.

To verify the impact of the priority index on fair-

ness, a control group is set up in this subsection, the

priority of the demand point is not considered, and the

material quantity is allocated only according to the pro-

portion of demand point to demand point. The Pareto

solution set of minimum scheduling time is used for

comparison, and the penalty cost is calculated according

to the penalty factor set above. The comparison results

are shown in Table 11. The diference in scheduling

time between the distribution scheme without consider-

ing the priority and the distribution scheme considering

the priority is small, but the diference in scheduling

penalty cost is large. It can be found that the distribu-

tion scheme considering the priority of the demand point

is better in fairness, which ensures the balance between

fairness and eociency of emergency rescue to a certain

extent.

Table 11. Comparison of the results of two allocation schemes.

Solution result Priority is considered Priority is not considered

R101 Dispatch time 531 522
R101 Penalty costs 1020 1760
C101 Dispatch time 377 380
C101 Penalty costs 440 690

5.2.3. Algorithm performance analysis

(1) Algorithm convergence

Comparing the allocation algorithm in this paper with

the traditional binary coding genetic algorithm, as shown

in Tables 12 and 13, the population number of the tradi-

tional genetic algorithm is 100, the number of iterations is

1000, the mutation probability is 0.07, and the crossover

probability is 0.8. It can be seen from the tables that

the convergence of the algorithm in this paper is better

and has a faster convergence speed. In the optimisation

of an objective function Z1, the solution algorithm of

this model can ond the minimum value more accurately,

which indicates that real-valued coding is more suitable

for genetic algorithms with high accuracy requirements.

At the same time, it optimises the computational com-

plexity, improves the search speed of the algorithm, can

deal with complex multi-decision variable constraints,

obtains a fairer distribution scheme to ensure the fairness

principle of emergency rescue operations, and provides

a reasonable material distribution scheme for the subse-

quent emergency vehicle routing optimisation problem.

Then, the parameters of the ant colony algorithm opti-

mised in the previous subsection were put into themodel

and ran 10 times to obtain the optimal solution. The con-

vergence of the ACS-MMAS algorithm, ACS algorithm,

andMMAS algorithmwas compared, and ε was set equal
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Figure 6. Comparison of algorithm convergence: (a) Comparison of algorithm convergence in R101 example: (b) Comparison of
algorithm convergence in C101 example.

Table 12. R101 example algorithm comparison results.

Evaluation index
The algorithm
in this paper

Traditional genetic
algorithm

Objective function Z1 0.083 0.087
Convergent iteration number 300 456
Run time 218 s 240 s

Table 13. C101 example algorithm comparison results.

Evaluation index
The algorithm
in this paper

Traditional genetic
algorithm

Objective function Z1 0.054 0.063
Convergent iteration number 500 527
Run time 203 s 224 s

to its upper bound value for constraint, and the solution

with minimum scheduling time was compared and anal-

ysed. It can be seen from Figure 6 that the ACS-MMAS

algorithm can efectively jump out of the local opti-

mal solution, avoid the premature of the algorithm, and

have better convergence for the operations optimisation

problem.

(2) Pareto frontier

According to the aforementioned epsilon constraint

method will double objectives into a single target at the

beginning of the incident to rescue the wounded as soon

as possible. To reduce casualties, priority will be given

in this paper, double the target model of scheduling

time optimisation, the minimum penalty cost as con-

straint conditions Z3 < ε, the minimum penalty cost

constraint ε is continuously reduced from the upper

bound to the lower bound, and each value corresponds

to a set of optimal solutions to solve (Z2, ε), to obtain

the non-dominated solution of the original problem,

that is, the Pareto solution set, as shown in Figure 7.

TheACS-MMAS algorithmobtainsmore Pareto solution

sets in the Pareto front curve. Moreover, the control-

lable space of the ACS-MMAS algorithm is larger than

that of the ACS algorithm and MMAS algorithm, so the

ACS-MMAS algorithm has better convergence.

(3) Oervolume index

To comprehensively evaluate the algorithm9s perfor-

mance, the solution set9s advantages and disadvantages

are assessed based on the hypervolume (HV) index

(Khishe, Orouji, and Mosavi 2023). HV index is a com-

prehensive performance evaluation method of the solu-

tion set, which can simultaneously evaluate the conver-

gence, uniformity, and universality of the solution set

(Yang et al. 2019). The HV calculation formula of solu-

tion set s is as follows:

HV(S) = Leb(∪x∈S[f1(x),Z1]

× [f2(x),Z2] . . . × [fk(x),Zk]), (48)

where k is the dimension ofmulti-objective and Lebesgue

measurement method is Lebesgue, reference point Ref =

(Z1 . . .Zk), [f1(x),Z1] × [f2(x),Z2] . . . × [fk(x),Zk] rep-

resents a hypercube composed of a Pareto front and refer-

ence points (Raimundo, Ferreira, and Von Zuben 2020).
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Figure 7. Pareto frontier comparison of algorithms: (a) R101 example Pareto frontier: (b) C01 example Pareto frontier.

The hypervolume index is in line with Pareto dominance;

that is, the Pareto front is strictly equal to the maximised

HV. The larger the HV value corresponding to the solu-

tion set S, the larger the dominating space of the solution

set, and the quality is better.

This subsection further comprehensively verioes the

convergence, diversity, and universality of the pro-

posed algorithm from the hypervolume index. The

hypervolume values of the ACS-MMAS algorithm, ACS

algorithm, and MMAS algorithm are respectively cal-

culated by selecting appropriate reference points in the

dominant region of the Pareto front. Super volume value

is surrounded by several hypercube areas to make the

problem of two-dimensional target hypervolume value

calculation easier, assuming a non-dominated solution

set S′ = {a 1, a2, a3}, where a 1, a2, anda3 represent three

groups of Pareto solutions, and the super volume value

is the sum of several hypercube volumes. In a two-

dimensional space solution set S′, super value is equal to

the volume of the area of the shaded part, as shown in

Figure 89s non-dominated solution set of the area. The

greater the quality of the solution set, the better it is. The

average value of the optimal solution is taken by running

the diferent algorithms 10 times, and the value range of

the two objective functions is scaled down to [0,1] to cal-

culate the hypervolume value. Table 14 shows that the

hypervolume value of the ACS-MMAS algorithm pro-

posed in this paper is larger than that of other heuristic

algorithms, indicating that the solution set obtained by

the algorithm is closer to the real Pareto front. It is a better

non-dominant solution set.

Table 14. Algorithm HV value comparison.

Example/
Algorithm

ACS
algorithm

MMAS
algorithm

ACS-MMAS
algorithm

R101 0.698 0.712 0.731
C101 0.725 0.737 0.754

6. Discussion

This paper proposes a novel algorithm for optimis-

ing medical supplies scheduling, ACS-MMAS, based on

a reinforcement learning mechanism. The experimen-

tal results demonstrate that the convergence speed and

search efectiveness of ACS-MMAS are superior to those

of both ACS andMMAS algorithms, and they can escape

from local optima during the search process. As the

number of iterations increases, the HV index of ACS-

MMAS exhibits a signiocant advantage over that of

ACS, MMAS, and NSGA-II. The proposed ACS-MMAS

algorithm outperforms other heuristics in terms of per-

formance. Integrating AI algorithms and traditional

heuristic algorithms can enhance algorithmic eociency

and improve rationality and timeliness in medical supply

allocation.

Speciocally, We propose a bi-objective optimisation

model that prioritises fairness and timeliness in emer-

gency medical services (EMS) during the pre-disaster

period of major public health events. Our approach

utilises ACS-MMAS, a reinforcement learning mecha-

nism that balances EMS distribution and dispatching

eociency. The ε-constraint method is introduced in

this study to solve the Pareto solution of a connicting
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Figure 8. Shadow area is the HV value of the solution set S′.

bi-objective function, and an optimal vehicle dispatch-

ing route is obtained through simulation experiments.

The research on the emergency logistics scheduling prob-

lem of public health emergencies is insuocient. Many

studies discuss the theoretical management methods of

emergency logistics and explore emergency response at

a theoretical level, but there is a lack of specioc mate-

rial distribution schemes and path planning schemes that

are combined with practical applications. Most scholars

tend to examine the issues of emergency supplies9 distri-

bution and transportation in isolation. However, consid-

ering the practical scenario, when scheduling emergency

supplies, distribution and transportation problems are

closely intertwined and should be studied together to

ensure a comprehensive emergency plan.

From an AI perspective, advanced technologies are

utilised to optimise EMSS. The theoretical signiocance of

our research results lies in providing a superior research

methodology for addressing the problem of EMSS before

major public health events. In terms of practical signio-

cance, our study considers both timeliness and fairness,

efectively resolving issues related to unequal distribu-

tion due to varying demand at each disaster point and

minimising losses. For the assessment of equity in EMS,

most existing studies fail to fully consider the innuencing

factors and rely solely on a single index or factor to eval-

uate distribution equity. Additionally, current literature

only employs convergence or Pareto front as verioca-

tion indices when assessingmodel or algorithm efective-

ness and practicality, lacking comprehensive comparative

research. The paper incorporates the hypervolume index

to comprehensively evaluate algorithmic performance,

thereby ofering sound theoretical support for actual

disaster relief eforts through optimised scheduling

of MES.

7. Conclusion

7.1. Theoretical contribution

(1) The ACS-MMAS model of EMSS based on AI is

constructed

Against the backdrop of research intomajor public health

crises, this study devises a reinforcement learning hetero-

geneous ant colony algorithm based on AI to tackle the

two-objective optimisation problem of EMS. The issue is

resolved through ACS-MMAS utilising a reinforcement

learning mechanism that takes into account both equi-

table distribution and scheduling eociency of emergency

supplies. The study introduces the ε-constraint method

to solve the Pareto solution of a bi-objective function

connict and obtains an optimal vehicle scheduling route

through simulation experiments. This paper combines

reinforcement learning in AI technology with a tradi-

tional heuristic algorithm to design a reward mechanism

for communication between ant colonies, enabling local

optima to escape from the search process (Fernández

Gil et al. 2023; Kuo, Leung, and Yan 2023; Lopes et al.

2022). The model proposed in this paper enhances the

equity and promptness of medical materials scheduling,

achieves the optimisation objective of medical materi-

als scheduling, and opens up a new avenue for future

research on medical supplies scheduling.
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(2) A bi-objective optimisation model is formulated to

balance the fairness and timeliness of EMS

Given the initial shortage of emergency materials, this

paper examines the impact of demand point priori-

tisation, measures it by urgency and time tolerance,

and constructs an equity index based on the Gini

coeocient to ensure fair distribution of resources.

To address the dual-objective emergency vehicle rout-

ing optimisation problem, a constraint-based approach

was employed to transform the original problem into

a single-objective optimisation. Subsequently, we pro-

posed a heterogeneous ant colony algorithm that lever-

ages reinforcement learning mechanisms to tackle this

optimisation challenge. Through the mechanism of

reinforcement learning, the exchange of pheromones

between heterogeneous ant colonies was efectively con-

trolled. The Pareto frontier and hypervolume index was

utilised to verify the comprehensive performance of the

algorithm.

7.2. Practical contribution

The distribution of medical supplies during public health

events and the application scope of the accurate model

proposed in this research have signiocant implications

for practitioners in the oeld. The following will be

analysed from three dimensions of human, organisa-

tion, and technology. For decision-makers, the impact

of priority on scheduling schemes is analysed by com-

paring the models, and suggestions are provided for

decision-makers to balance the fairness and eociency

of scheduling schemes. For the afected people, the dis-

tribution of medical supplies according to this model

can reduce the mortality rate of the population, meet

the basic medical supplies and treatment, and enable

them to lead a happier and better new life as soon as

possible.

For management, it can reasonably manage medi-

cal materials in major public health events, efectively

control the impact of events, and contribute to the

prevention and emergency decision-making of public

health events. In response to a public health outbreak,

emergency medical rescue prevention and control mea-

sures have exposed the disordered, chaotic, and ineo-

cient logistics of medical supplies. Meanwhile, the dif-

ference between multiple demand points and supply

points of medical supplies is prominent, signiocantly

reducing the efect of medical treatment services and

the prevention and control eociency of major public

health emergencies. Therefore, suitable locations and

selection of material warehouses for suppliers of medical

supplies can meet the needs of medical supplies in dis-

aster areas with diferent priorities in the event of public

health events.

Advanced technologies can improve the ability to

deal with major public health emergencies. New tech-

nologies such as 5G, blockchain, the Internet of things,

AI, and big data should be fully utilised to moni-

tor and warn about public health events more accu-

rately and efectively, strengthen the monitoring mech-

anism for unexplained diseases and abnormal public

health events, and improve the sensitivity and accuracy

of assessment and monitoring. Moreover, a multi-point

trigger mechanism is established for intelligent early

warning.

7.3. Limitations and future research directions

To sumup, it is necessary to optimise the EMSS scheme in

the early stage of public health events, which can reduce

the loss and casualties and appease the emotion of dis-

aster victims. However, there are still several limitations

in this paper. First, the impact of public health events on

traoc roads is not considered. Second, we have not taken

into consideration the inventory problem of a distribu-

tion centre, vehicle transportation cost, and service time

of picking up and delivering goods. These factors also

afect the medical supplies scheduling problem. Future

models also need to take into account dynamic variables.

In the process of transportation of medical supplies, the

path optimisation problem of this paper does not con-

sider the changes in road capacity, and the transportation

modes and constraints of diferent kinds of EMS are

diferent. Such dynamic factors will also impact the trans-

portation process, and integrating more dynamic factors

into the scheduling model is the main goal of subsequent

research.

Disclosure statement

No potential connict of interest was reported by the author(s).

Funding

This research has been supported by the National Natural
Science Foundation of China (NSFC, 72171184, Grey Pri-
vate Knowledge model of security and trusted BI on the fed-
eral Learning Perspective); (NSFC, 71871172, Model of Risk
knowledge acquisition and Platform governance in FinTech
based on deep learning); We deeply appreciate the sugges-
tions from fellow members of Xia9s project team and Research
center of Enterprise Decision Support, Key Research Institute
of Humanities and Social Sciences in Universities of Hubei
Province (DSS2023).



646 H. XIA ET AL.

Notes on contributors

Dr. Huosong Xia is a professor in the
School of Management at Wuhan Textile
University. He graduated from Huazhong
University of Science and Technology of
China and was a visiting scholar at Eller
College of Management of the Univer-
sity of Arizona, USA, from 2006 to 2007.
His main research interests are knowledge

management, data mining, e-commerce and logistics informa-
tion systems, and Fintech. He has published over 100 papers
in refereed journals, book chapters, and conferences, such
as Journal of Knowledge Management, Decision Support Sys-
tems, International Journal of Knowledge Management, Knowl-
edge Management Research & Practice, Electronic Commerce
Research, Electronic Markets, Journal of Computer Information
Systems, Enterprise Information Systems, Production Planning&
Control, Annals of Operations Research, Socio-Economic Plan-
ning Sciences, Expert Systems With Applications, International
Journal of Ad Hoc and Ubiquitous Computing, International
Journal of Innovation Science, Information Discovery and Deliv-
ery, International Journal of Management, Journal of Systems
Science and Information, Technology Analysis & Strategic Man-
agement, Journal of Grey System, Financial Innovation, etc.
He has obtained research funding for ove projects, including
those from National Social Science Foundation of China and
National Science Foundation of China.

Zelin Sun is a graduate student in the
School of Management at Wuhan Textile
University. He holds a bachelor9s degree
in mathematics from Wuhan Textile Uni-
versity. His research interests include data
mining and e-commerce.

Yuan Wang is a graduate student in the
School of Management at Wuhan Tex-
tile University. She holds a bachelor9s
degree in Computer Science and Technol-
ogy. Her main research interests are Fin-
tech, knowledge management, data min-
ing, and e-commerce. She has published
multiple papers in journals, such as Inter-

national Journal of Production Research, Technological Fore-
casting & Social Change, Expert Systems with Applications,
etc.

Dr. Justin Zhang is a faculty member in
the Department of Management at the
University of North Florida. He received
his Ph.D. in Business Administration with
a concentration on Management Science
and Information Systems from Pennsylva-
nia State University, University Park. His
research interests include economics of

information systems, knowledge management, electronic busi-
ness, business process management, information security, and
social networking. He is the editor-in-chief of the Journal of
Global InformationManagement, an ABET programme evalu-
ator, and an IEEE senior member.

Muhammad Mustafa Kamal is an asso-
ciate professor in Supply Chain Manage-
ment, Curriculum Lead (Subject Head)
in Decision Making, Business Analytics
and Risk Management and Director of
the Structured PhD (Online) Programme
at the School of Strategy and Leader-
ship, Coventry University. Prior to joining

Coventry University, he was a Senior Lecturer in Operations
and Supply Chain Management, Director of UG Programmes
and Director of Alumni at the Brunel Business School, Brunel
University London. He earned his Doctorate in Information
Systems from Brunel University London. His areas of special-
ism are Digitisation/Digitalisation of Supply Chains and Oper-
ations Management. Other research interests include Circular
Economy, Industry 4.0, Disruptive Technologies, Information
Systems and Technology Management, Social Media, Big Data
and Business Analytics, and Supply Chain Integration. Cur-
rently, he is the Deputy Editor for the Journal of Enterprise
InformationManagement, Senior Editor for Information Tech-
nology and People and Information Systems Management and
on the Editorial Board for Government Information Quar-
terly and International Journal of Information Management.
He has published over 90 papers in refereed academic jour-
nals, conference proceedings, book chapters, and magazine
article. His research work has appeared in several leading ABS
ranked journals, such as IJPR, JBR, I&M, PPC, ESA, GIQ,
SCMIJ, TFSC, CIE, ISF, ITP, CHB, IMM, and JORS, JEIM, IJIM,
and ISM. He has also presented his research papers at glob-
ally esteemed conferences such as BAM, ECIS, AMCIS, and
HICSS. He has also chaired conferences and tracks at lead-
ing conferences including AMCIS, ECIS and HICSS. He has
worked on several internal and external research grant (includ-
ing EU Framework 7, Horizon 2020, Qatar National Research
Foundation and Erasmus+).

Sajjad M. Jasimuddin is a professor
(professor senior) at the Kedge Busi-
ness School, France. Previously, he was
faculty at Aberystwyth University (UK),
Southampton University (UK), King
Abdulaziz University (Saudi Arabia), and
University of Dhaka (Bangladesh). He
received MCom from Dhaka University,

MPhil from Judge Business School at Cambridge University
(Trinity College), and PhD from Southampton University. and
is visiting Professor at Renmin University of China, and Uni-
versity of Dubai. He is Associate Editor of the Journal of Global
Information Management. Sajjad has authored a textbook, 15
chapters, and 115 articles – appeared in European Journal of
Operational Research, International Business Review, Informa-
tion Systems Journal, Technological Forecasting& Social Change,
International Journal of Production Research, Annals of Opera-
tional Research, Production Planning&Control, ElectronicMar-
kets, Journal of Operational Research Society, European Man-
agement Journal, Journal of Innovation & Knowledge, Annals
of Regional Science, Thunderbird International Business Review,
Information Systems Management, Supply Chain Forum: An
International Journal,Management Decision, Journal of Global
InformationManagement, Journal of Business & IndustrialMar-
keting, International Journal of Organizational Analysis, Inter-
national Journal of InformationManagement, Journal of General



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 647

Management, Industrial Management & Data Systems, Journal
of Information&KnowledgeManagement, Journal of Knowledge
Management, Knowledge & Process Management, Knowledge
Management Research & Practice.

Nazrul Islam is Chair Professor of Busi-
ness & Director of Research Degrees, and
Associate Director for Centre of FinTech
at Royal Docks School of Business and
Law, University of East London, UK. He
holds a PhD in innovation management.
His research interest focuses on interdisci-
plinary oelds: themanagement of technol-

ogy; technological transformation; the emergence and growth
of disruptive and digital technology-based innovation; and
SMEs business sustainability. His research was published in the
leading international journals, and he has complemented his
peer reviewed journal eforts with three books. Prof Islam9s
research received awards including the 8Brad Hosler Award
for Outstanding Paper9 from USA; and the 8Pratt & Whitney
Canada Best Paper Award9 from Canada. Prof Islam serves
on the board of directors for Business and Applied Sciences
Academy of North America. He is an Associate Editor for
Technological Forecasting & Social Change, Department Edi-
tor for IEEE Transactions on Engineering Management, and
Editor-in-Chief of International Journal of Technology Intelli-
gence and Planning. He has acted as managing guest editor
for several special issues for Technovation, TFSC, IEEE TEM
among others.

Data availability statement

Data available on request from the authors.

ORCID

Justin Zuopeng Zhang http://orcid.org/0000-0002-4074-
9505
SajjadM. Jasimuddin http://orcid.org/0000-0003-2627-9241

References

Adulyasak, Y., J. F. Cordeau, and R. Jans. 2014. <Formulations
and Branch-and-cut Algorithms for Multi-Vehicle Produc-
tion and Inventory Routing Problems.= INFORMS Journal
on Computing 26 (1): 103–120. https://doi.org/10.1287/ijoc.
2013.0550

Alem, D., A. M. Caunhye, and A. Moreno. 2022. <Revisiting
Gini for Equitable Humanitarian Logistics.= Socio-Economic
Planning Sciences 82: 101312. https://doi.org/11.top/10.1016
j.seps.2022.101312.

Alshurideh, M. T., B. Al Kurdi, H. M. Alzoubi, T. M.
Ghazal, R. A. Said, A. Q. Al Hamad, A. Hamadneh, N.
Sahawneh, and A. H. Al-kassem. 2022. <Fuzzy Assisted
Human Resource Management for Supply Chain Man-
agement Issues.= Annals of Operations Research 39: 1–19.
https://doi.org/10.1007/s10479-021-04472-8.

Boutilier, J. J., and T. C. Chan. 2020. <Ambulance Emergency
Response Optimization in Developing Countries.= Opera-
tions Research 68 (5): 1315–1334. https://doi.org/10.1287/
opre.2019.1969

Cerna, S., H. H. Arcolezi, C. Guyeux, G. Royer-Fey, and C.
Chevallier. 2021. <Machine Learning-Based Forecasting of

Firemen Ambulances9 Turnaround Time in Hospitals, Con-
sidering the COVID-19 Impact.= Applied Soft Computing
109: 107561. https://doi.org/11.top/10.1016j.asoc.2021.10
7561.

Chang, K. H., T. L. Chen, F. H. Yang, and T. Y. Chang. 2023a.
<Simulation Optimization for Stochastic Casualty Collec-
tion Point Location and Resource Allocation Problem in a
Mass Casualty Incident.= European Journal of Operational
Research 309 (3): 1237–1262. https://doi.org/10.1016/j.ejor.
2023.01.065

Chang, V., Q. A. Xu, K. Hall, Y. A. Wang, and M. M. Kamal.
2023b. <Digitalization in Omnichannel Healthcare Supply
Chain Businesses: The Role of Smart Wearable Devices.=
Journal of Business Research 156: 113369. https://doi.
org/10.1016/j.jbusres.2022.113369

Chen, W., H. Guo, and K. L. Tsui. 2020. <A new Medical Staf
Allocation via Simulation Optimisation for an Emergency
Department inHongKong.= International Journal of Produc-
tion Research 58 (19): 6004–6023. https://doi.org/10.1080/
00207543.2019.1665201

Chen, J., F. Ling, Y. Zhang, T. You, Y. Liu, andX.Du. 2022. <Cov-
erage Path Planning of Heterogeneous Unmanned Aerial
Vehicles Based on ant Colony System.= Swarm and Evolu-
tionary Computation 69: 101005. https://doi.org/11.top/10.
1016j.swevo.2021.101005.

den Berg, P. V., and J. T. van Essen. 2019. <Scheduling non-
Urgent Patient Transportation While Maximizing Emer-
gency Coverage.= Transportation Science 53 (2): 492–509.
https://doi.org/10.1287/trsc.2018.0823

Deng, J., X. Chen, W. Wei, and J. Liang. 2023. <Resource Coor-
dination Scheduling Optimisation of Logistics Information
Sharing PlatformConsideringDecision Response and Com-
petition.= Computers & Industrial Engineering 176: 108892.
https://doi.org/11.top/10.1016j.cie.2022.108892.

Deng, W., X. Zhang, Y. Zhou, Y. Liu, X. Zhou, H. Chen, and
H. Zhao. 2022. <An Enhanced Fast non-Dominated Solution
Sorting Genetic Algorithm for Multi-Objective Problems.=
Information Sciences 585: 441–453. https://doi.org/10.1016/
j.ins.2021.11.052

Ding, Y., E. Park,M. Nagarajan, and E. Grafstein. 2019. <Patient
Prioritization in EmergencyDepartment Triage Systems: An
Empirical Study of the Canadian Triage and Acuity Scale
(CTAS).= Manufacturing & Service Operations Manage-
ment 21 (4): 723–741. https://doi.org/10.1287/msom.2018.
0719

Dolgui, A., and D. Ivanov. 2022. <5G in Digital Supply
Chain and Operations Management: Fostering Flexibility,
end-to-end Connectivity and Real-Time Visibility Through
Internet-of-Everything.= International Journal of Production
Research 60 (2): 442–451. https://doi.org/10.1080/00207543.
2021.2002969

Dorigo,M., and L.M. Gambardella. 1997. <Ant Colony System:
ACooperative LearningApproach to theTraveling Salesman
Problem.= IEEE Transactions on Evolutionary Computation 1
(1): 53–66.

Ekici, A., P. Keskinocak, and J. L. Swann. 2014. <Modeling
Innuenza Pandemic and Planning FoodDistribution.=Man-
ufacturing & Service Operations Management 16 (1): 11–27.
https://doi.org/10.1287/msom.2013.0460

Fernández Gil, A., E. Lalla-Ruiz, M. Gómez Sánchez, and C.
Castro. 2023. <The Cumulative Vehicle Routing Problem
with Time Windows: Models and Algorithm.= Annals of



648 H. XIA ET AL.

Operations Research 39: 1–29. https://doi.org/10.1007/s10479-
022-05102-7.

Fukasawa, R., Q. He, F. Santos, and Y. Song. 2018. <A
Joint Vehicle Routing and Speed Optimization Prob-
lem.= INFORMS Journal on Computing 30 (4): 694–709.
https://doi.org/10.1287/ijoc.2018.0810

Gao, X., X. Jin, P. Zheng, and C. Cui. 2021. <Multi-modal
Transportation Planning forMulti-Commodity Rebalancing
Under Uncertainty in Humanitarian Logistics.= Advanced
Engineering Informatics 47: 101223. https://doi.org/11.top/
10.1016j.aei.2020.101223.

Gini, C.. 1912. <Variabilità e mutabilità: contributo allo stu-
dio delle distribuzioni e delle relazioni statistiche.= Studi
Economico-Giuridici dell’ Universita di Cagliari 3: 1–158.

Gini, C. 1921. <Measurement of Inequality of Incomes.= The
Economic Journal 31 (121): 124–125. https://doi.org/10.2307/
2223319

Gökalp, E., M. S. Cakir, and I. Kougkoulos. 2022. <Capac-
ity Management of Migrant Accommodation Centers Using
ApproximateDynamic Programming.= Journal of the Opera-
tional Research Society 73 (6): 1198–1210. https://doi.org/10.
1080/01605682.2021.1907242

Hasan, R., M. M. Kamal, A. Daowd, T. Eldabi, I. Koliousis, and
T. Papadopoulos. 2022. <Critical Analysis of the Impact of
big Data Analytics on Supply ChainOperations.= Production
Planning & Control 33: 1–25. https://doi.org/10.1080/0953
7287.2022.2047237.

He, W., J. Z. Zhang, H. Wu, W. Li, and S. Shetty. 2022. <A Uni-
oed Health Information System Framework for Connect-
ing Data, People.= Devices, and Systems. Journal of Global
Information Management (JGIM) 30 (11): 1–19. https://doi.
org/10.4018/JGIM.305239.

Helo, P., and Y. Hao. 2022. <Artiocial Intelligence in Oper-
ations Management and Supply Chain Management: An
Exploratory Case Study.= Production Planning & Control
33 (16): 1573–1590. https://doi.org/10.1080/09537287.2021.
1882690

Hu, H., X. Jia, Q. He, S. Fu, and K. Liu. 2020. <Deep
Reinforcement Learning Based AGVs Real-Time Schedul-
ing with Mixed Rule for Flexible Shop Floor in Indus-
try 4.0.= Computers & Industrial Engineering 149: 106749.
https://doi.org/10.1016/j.cie.2020.106749.

Jenkins, P. R., M. J. Robbins, and B. J. Lunday. 2021. <Approx-
imate Dynamic Programming for Military Medical Evacua-
tion Dispatching Policies.= INFORMS Journal on Computing
33 (1): 2–26. https://doi.org/10.1287/ijoc.2019.0930

Karimi, F., M. B. Dowlatshahi, and A. Hashemi. 2023. <Semi-
ACO: A Semi-Supervised Feature Selection Based on ant
ColonyOptimization.=Expert SystemswithApplications 214:
119130. https://doi.org/11.top/10.1016j.eswa.2022.119130.

Khishe, M., N. Orouji, and M. R. Mosavi. 2023. <Multi-
objective Chimp Optimizer: An Innovative Algorithm for
Multi-Objective Problems.=Expert SystemswithApplications
211: 118734. https://doi.org/11.top/10.1016j.eswa.2022.11
8734.

Kumar, A., and R. Dimitrakopoulos. 2021. <Production
Scheduling in Industrial Mining Complexes with Incom-
ing new Information Using Tree Search and Deep Rein-
forcement Learning.= Applied Soft Computing 110: 107644.
https://doi.org/10.1016/j.resourpol.2022.102727.

Kundu, T., J. B. Sheu, and H. T. Kuo. 2022. <Emergency
LogisticsManagement—Review and Propositions for Future

Research.= Transportation Research Part E: Logistics and
Transportation Review 164: 102789. https://doi.org/10.1016/
j.tre.2022.102789.

Kuo, Y. H., J. M. Leung, and Y. Yan. 2023. <Public Trans-
port for Smart Cities: Recent Innovations and Future Chal-
lenges.= European Journal of Operational Research 306 (3):
1001–1026. https://doi.org/10.1016/j.ejor.2022.06.057

Li, M., D. Yin, H. Qiu, and B. Bai. 2021. <A Systematic
Review of AI Technology-Based Service Encounters: Impli-
cations for Hospitality and Tourism Operations.= Inter-
national Journal of Hospitality Management 95: 102930.
https://doi.org/10.1016/j.ijhm.2021.102930.

Li, S., X. You, and S. Liu. 2021. <Multiple ant Colony Opti-
mization Using Both Novel LSTM Network and Adaptive
Tanimoto Communication Strategy.= Applied Intelligence
51 (8): 5644–5664. https://doi.org/10.1007/s10489-020-
02099-z

Lin, C. C., K. Y. Chen, and L. T. Hsieh. 2023. <Real-TimeCharg-
ing Scheduling of Automated Guided Vehicles in Cyber-
Physical Smart Factories Using Feature-Based Reinforce-
ment Learning.= IEEETransactions on Intelligent Transporta-
tion Systems 24 (4): 4016–4026. https://doi.org/10.1109/
TITS.2023.3234010.

Liu, S., X. He, F. T. Chan, and Z. Wang. 2022. <An Extended
Multi-Criteria Group Decision-Making Method with Psy-
chological Factors and Bidirectional Innuence Relation for
EmergencyMedical Supplier Selection.= Expert Systems with
Applications 202: 117414. https://doi.org/10.1016/j.eswa.
2022.117414.

Liu,H., S.Wei,W.Ke, K.K.Wei, andZ.Hua. 2016. <TheConog-
uration Between Supply Chain Integration and Information
Technology Competency: A Resource Orchestration Per-
spective.= Journal of Operations Management 44 (1): 13–29.
https://doi.org/10.1016/j.jom.2016.03.009

Lopes, T. C., A. S. Michels, N. Brauner, and L. Maga-
tão. 2022. <Balancing-sequencing Paced Assembly Lines: A
Multi-Objective Mixed-Integer Linear Case Study.= Interna-
tional Journal of Production Research 61 (17): 5901–5917.
https://doi.org/10.
1080/00207543.2022.2118888.

Lu, C. C., K. C. Ying, and H. J. Chen. 2016. <Real-time Relief
Distribution in the Aftermath of Disasters–A Rolling Hori-
zonApproach.=Transportation Research Part E: Logistics and
Transportation Review 93: 1–20. https://doi.org/10.1016/j.
tre.2016.05.002

Luo, L., X. Wan, and Q. Wang. 2022. <A Multi-Period Loca-
tion–AllocationModel for IntegratedManagement of Emer-
gency Medical Supplies and Infected Patients During Epi-
demics.= Computers & Industrial Engineering 173: 108640.
https://doi.org/10.1016/j.cie.2022.108640.

Mills, A. F., N. T. Argon, and S. Ziya. 2018. <Dynamic Dis-
tribution of Patients to Medical Facilities in the After-
math of a Disaster.= Operations Research 66 (3): 716–732.
https://doi.org/10.1287/opre.2017.1695

Nasrollahzadeh, A. A., A. Khademi, and M. E. Mayorga. 2018.
<Real-time Ambulance Dispatching and Relocation.=Manu-
facturing & Service OperationsManagement 20 (3): 467–480.
https://doi.org/10.1287/msom.2017.0649

Noriega, R., and Y. Pourrahimian. 2022. <A Systematic Review
of Artiocial Intelligence and Data-Driven Approaches in
Strategic Open-pit Mine Planning.= Resources Policy 77:
102727. https://doi.org/10.1016/j.asoc.2021.107644.



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 649

Petchrompo, S., D. W. Coit, A. Brintrup, A. Wannakrairot, and
A. K. Parlikad. 2022. <A Review of Pareto Pruning Methods
for Multi-Objective Optimization.= Computers & Industrial
Engineering 108022. https://doi.org/10.1016/j.cie.2022.10
8022.

Petrović, M., A. Jokić, Z. Miljković, and Z. Kulesza. 2022.
<Multi-objective Scheduling of a Single Mobile Robot Based
on the Grey Wolf Optimization Algorithm.= Applied Soft
Computing 131: 109784. https://doi.org/10.1016/j.asoc.2022.
109784.

Raimundo, M. M., P. A. Ferreira, and F. J. Von Zuben. 2020.
<An Extension of theNon-Inferior set EstimationAlgorithm
for Many Objectives.= European Journal of Operational
Research 284 (1): 53–66. https://doi.org/10.1016/j.ejor.2019.
11.017

Rautenstrauss, M., L. Martin, and S. Minner. 2023. <Ambu-
lance Dispatching During a Pandemic: Tradeofs of Cat-
egorizing Patients and Allocating Ambulances.= European
Journal of Operational Research 304 (1): 239–254. https://doi.
org/10.1016/j.ejor.2021.11.051

Shirazi, H., R. Kia, and P. Ghasemi. 2021. <A Stochastic bi-
Objective Simulation–Optimization Model for Plasma Sup-
ply Chain in Case of COVID-19 Outbreak.= Applied Soft
Computing 112: 107725. https://doi.org/10.1016/j.asoc.2021.
107725.

Shrivastav, M. 2022. <Barriers Related to AI Implementation in
Supply Chain Management.= Journal of Global Information
Management (JGIM) 30 (8): 1–19. https://doi.org/10.4018/
JGIM.296725.

Sodhi, M. S., C. S. Tang, and E. T. Willenson. 2023. <Research
Opportunities in Preparing Supply Chains of Essential
Goods for Future Pandemics.= International Journal of Pro-
duction Research 61 (8): 2416–2431. https://doi.org/10.1080/
00207543.2021.1884310

Stutzle, T., and H. Hoos. 1997, April. <MAX-MIN ant System
and Local Search for the Traveling Salesman Problem.= In
Proc IEEE International Conference on Evolutionary Compu-
tation, 309–314. Indianapolis, IN, USA.

Tian, Y., L. Si, X. Zhang, R. Cheng, C. He, K. C. Tan,
and Y. Jin. 2021. <Evolutionary Large-Scale Multi-Objective
Optimization: A Survey.= ACM Computing Surveys 54 (8):
1–34.

Tomczyk, M. K., and M. Kadziński. 2022. <Interactive Co-
evolutionary Multiple Objective Optimization Algorithms
for Finding Consensus Solutions for a Group of Decision
Makers.= Information Sciences 616: 157–181. https://doi.org/
10.1016/j.ins.2022.10.064

Toorajipour, R., V. Sohrabpour, A. Nazarpour, P. Oghazi, and
M. Fischl. 2021. <Artiocial Intelligence in SupplyChainMan-
agement: A Systematic Literature Review.= Journal of Busi-
ness Research 122: 502–517. https://doi.org/10.1016/j.jbus
res.2020.09.009

van Lieshout, R. N., P. C. Bouman, and D. Huisman. 2020.
<Determining and Evaluating Alternative Line Plans in
Out-of-Control Situations.= Transportation Science 54 (3):
740–761. https://doi.org/10.1287/trsc.2019.0945

Vishwakarma, L. P., R. K. Singh, R. Mishra, and A. Kumari.
2023. <Application of Artiocial Intelligence for Resilient and
SustainableHealthcare System: Systematic Literature Review
and Future Research Directions.= International Journal of

Production Research 63: 1–23. https://doi.org/10.1080/0020
7543.2023.2188101.

Wan, M., C. Ye, and D. Peng. 2023. <Multi-period Dynamic
Multi-Objective Emergency Material Distribution Model
UnderUncertainDemand.=Engineering Applications of Arti-
ocial Intelligence 117: 105530. https://doi.org/11.top/10.1016
j.engappai.2022.105530.

Wang, Z., S. Cui, and L. Fang. 2023. <Distance-Based Ser-
vice Priority: An Innovative Mechanism to Increase Sys-
tem Throughput and Social Welfare.=Manufacturing & Ser-
vice Operations Management 25 (1): 353–369. https://doi.
org/10.1287/msom.2022.1157

Wang, H., S. C. Fang, M. Huang, Q. Zhang, and Z.
Deng. 2022. <A Joint Model of Location, Inventory and
Third-Party Logistics Provider in Supply Chain Network
Design.= Computers & Industrial Engineering 174: 108809.
https://doi.org/10.1016/j.cie.2022.108809.

Wang, D., K. Yang, and L. Yang. 2023. <Risk-averse Two-Stage
Distributionally Robust Optimisation for Logistics Plan-
ning in Disaster Relief Management.= International Jour-
nal of Production Research 61 (2): 668–691. https://doi.
org/10.1080/00207543.2021.2013559

Wang, L., X. Zhao, and P. Wu. 2023. <Large-scale Emergency
Medical Services Scheduling During the Outbreak of Epi-
demics.=Annals of Operations Research 39: 1–25. https://doi.
org/10.1007/s10479-023-05218-4.

Wilson, D. T., G. I. Hawe, G. Coates, and R. S. Crouch.
2016. <Online Optimization of Casualty Processing in
Major Incident Response: An Experimental Analysis.= Euro-
pean Journal of Operational Research 252 (1): 334–348.
https://doi.org/10.1016/j.ejor.2016.01.021

Yang, Y., L. Dong, H. Rong, and J. Wu. 2021. <Optimization on
Medical Material Distribution Management System Based
on Artiocial Intelligence Robot.= Journal of Healthcare Engi-
neering 2021: 1–12. https://doi.org/10.1155/2021/5511299.

Yang, K., M. Emmerich, A. Deutz, and T. Bäck. 2019. <Multi-
Objective Bayesian Global Optimization Using Expected
Hypervolume Improvement Gradient.= Swarm and Evolu-
tionary Computation 44: 945–956. https://doi.org/10.1016/
j.swevo.2018.10.007

Yi, J., H. Zhang, J. Mao, Y. Chen, H. Zhong, and Y. Wang. 2022.
<Review on the COVID-19 Pandemic Prevention and Con-
trol System Based on AI.= Engineering Applications of Arti-
ocial Intelligence 105184. https://doi.org/11.top/10.1016j.en
gappai.2022.105184.

Ying, K. C., P. Pourhejazy, C. Y. Cheng, and R. S. Syu. 2023.
<Supply Chain-Oriented Permutation Flowshop Scheduling
Considering Flexible Assembly and Setup Times.= Inter-
national Journal of Production Research 61 (1): 258–281.
https://doi.org/10.1080/00207543.2020.1842938

Yüksel, N., H. R. Börklü, H. K. Sezer, and O. E. Canyurt. 2023.
<Review of Artiocial Intelligence Applications in Engineer-
ing Design Perspective.= Engineering Applications of Artio-
cial Intelligence 118: 105697. https://doi.org/10.1016/j.engap
pai.2022.105697.

Zhan, S. L., S. Liu, J. Ignatius, D. Chen, and F. T. Chan. 2021.
<Disaster Relief Logistics Under Demand-Supply Incongru-
ence Environment: A Sequential Approach.= Applied Math-
ematical Modelling 89: 592–609. https://doi.org/10.1016/j.
apm.2020.07.002



650 H. XIA ET AL.

Zhang, C., J. Zhou, J. Wang, J. Fan, and Y. Shi. 2023. <Fairness-
Aware Competitive Bidding Innuence Maximization in
Social Networks.= IEEE Transactions on Computational
Social Systems 10: 1–13. https://doi.org/10.1109/TCSS.2023.
3285605.

Zhou, Y., W. Li, X. Wang, Y. Qiu, and W. Shen. 2022. <Adap-
tive Gradient Descent Enabled Ant Colony Optimization for
Routing Problems.= Swarm and Evolutionary Computation

70: 101046. https://doi.org/11.top/10.1016j.swevo.2022.10
1046.

Zhou, P., Z. Xu, X. Zhu, J. Zhao, C. Song, and Z. Shao. 2023.
<Safe Reinforcement Learning Method Integrating Process
Knowledge for Real-Time Scheduling of Gas Supply Net-
work.= Information Sciences 633: 280–304. https://doi.org/
11.top/10.1016j.ins.2023.02.084.


	1. Introduction
	2. Literature review
	3. Model
	3.1. Problem definition
	3.2. Priority evaluation index of EMS
	3.3. Model of equitable distribution of emergency supplies
	3.3.1. Fair allocation model based on priority index
	3.3.2. Emergency vehicle routing optimisation model

	4. Algorithm design
	4.1. -constraint method
	4.2. ACS algorithm
	4.2.1. Path choice
	4.2.2. Pheromone update

	4.3. MMAS algorithm
	4.4. Heterogeneous ant colony under reinforcement learning
	4.4.1. Communication mechanism
	4.4.2. Reward mechanism

	5. Experimental simulation and analysis
	5.1. Algorithm design paradigm
	5.2. Numerical simulation and results
	5.2.1. Analysis of optimal results of emergency materials distribution
	5.2.2. Analysis of emergency vehicle routing optimisation results
	5.2.3. Algorithm performance analysis

	6. Discussion
	7. Conclusion
	7.1. Theoretical contribution
	7.2. Practical contribution
	7.3. Limitations and future research directions

	Disclosure statement

	Funding
	Data availability statement
	ORCID

	References


