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Abstract 

Recent developments in ubiquitous and pervasive 
technologies have made it easier to capture activities 
through sensors. The “bag-of-word” topic models have 
been applied to discover latent topics in corpus of words.  
In this paper, we propose the Probabilistic Latent 
Semantic Analysis to discover activity routines. The 
framework we propose set latent topics as corresponding 
class labels and use the Expectation Maximization (EM) 
algorithm for posterior inference. The experimental 
results we present are based on the Kasteren dataset 
which validates our framework and shows that it is 
comparable to existing activity discovery approaches. 

1 Introduction 

Activity discovery from sensor sequences recently has 
provided great and viable means of support to the elderly and 
people with dementia. They are being used to provide 
assistance using Smart Home (SH) technologies by the 
recognition of the task being undertaken by the inhabitant [1]. 
Human activity recognition follows the process of data 
acquisition, segmentation, classification and recognition. In a 
typical SH system equipped with sensors, the activation and 
observation of sensors could mean that an activity has 
occurred. Therefore, the representation of the observed sensor 
sequences defines the activity. To classify these sensor 
observations to activity topics, we have adopted the 
Probabilistic Latent Semantic Analysis (PLSA) – a “bag-of-
words” topic model. The “bag-of-words” PLSA topic model 
was developed with an aim of discovering words association 
with topic labels in a corpus of document in natural language 
and text processing [2]. Its assumption is that the words 
contained in a document have association with the hidden or 
latent topics. This mixture of the words relative to the topic is 
described by a probabilistic distribution. We conversely 
assume that activity labels would have probabilistic 
distribution relative to sensor observations. With this 
assumption relative to activity discovery, a sequence of 
sensor observations corresponds to the word segment in the 
documents and the underlying topics correspond to the 
activities.  

Sensor observations typically are retrieved as a sequence of 
continuous data stream which when partitioned in segments 
of various sizes using temporal parameters yields a 
classification through which activity labels are discovered. 
Recent efforts have seen a selection of predefined number of 
topics or activity labels as obtained in parametric models [3] 
and the use of fixed sensor segment sizes of 60sec [4, 1] 
which otherwise restricts learning process and the discovery 
of new activities. Setting sensor segments to fixed and static 
sizes for activity classification process could affect activity 
transition and impact on the performance of the framework. 
Therefore, we propose through this paper a framework which 
would partition continuous sensor data into optimal segments 
and then discover the underlying activities through a 
classification process. This proposed framework, clusters 
sensor observations before the segmentation process. The 
contributions of this paper are of three folds. First, we present 
the dynamic and variable window sensor data segmentation. 
This segmentation model is designed to provide real time data 
acquisition and segmentation. Secondly, we propose “bag-of-
words” Probabilistic Latent Semantic Analysis (PLSA) to 
discover activities over observed sensor data. Thirdly, we 
present experimental results which demonstrate the ability of 
the proposed framework to discover activity topics. 

2 Related Work 
Several attempts have been made in field of activity 
recognition to discover and recognise human activities like 
[5]. These efforts has seen researchers following probabilistic 
[6] logic [7] and Ontology [8] in the process of classification. 
The probabilistic Hidden Markov Model (HMM) is the most 
popular classification approach used. The HMM approach 
involves latent states generating observations through a 
stochastic process. Yamato et al [9] one of the earliest work 
used the HMM to recognise human actions from image 
sequences. Oliver et al [10] used Layered HMM framework 
to recognise office activities like conversations, making 
phone call and presentations. In [5]  another extension of the 
HMM, the authors used Radio Frequency Identification 
(RFID) tags to recognise activities like doing laundry, 
preparing food, washing dishes etc. Another extension of the 
HMM is the Coupled HMM [11] used to recognise 
simultaneous human actions. Kasteren et al [4] used the 
HMM and the Conditional Random Field (CRF) to recognise 
leaving the house, Shower, Use Toilet etc. Whilst these 
models have recorded some positive achievements and 
popularity they also have some drawbacks. The reliance on 



Fig 1. Sensor observations as inputs are clustered. They are partitioned into segments following their cluster 
composition. The PLSA through EM algorithm computes the posterior inference of the sensor segments as activity 
topics 
 
 
the independence assumptions made by the 1st order HMM 
makes it unable to capture long range dependencies of the 
observations. Another popular approach in the human activity 
recognition is the machine learning discriminative technique 
Support Vector Machine (SVM). The approach relies on data 
points known as “support Vectors” for classification with 
reference to points closest to the boundary of interest. 
Brdiczka et al [12] model using SVM to learn activity labels 
by first learning the roles of the various entities. Laptev and 
Linderberg [13] in their work proposed space time interest 
point operator. Whilst we acknowledge the efforts made 
through the approaches proposed, researchers have been 
considering alternative methods for discovering and 
recognising human activities. Probabilistic topic models 
inspired by the text and natural language processing 
community have been applied to discover and recognise 
human activity routines. Topic model was applied by [14] to 
discover routines from mobile phone data. Zheng et al [15]  
proposed the topic model to learn users latent behavioural 
pattern to discover activities like being at work, going home 
etc. Huynh et al [3] applied the “bag of words” model of the 
Latent Dirichlet Allocation (LDA) to discover activities like 
dinner, commuting, office work etc. This model used the 
LDA to discover activity labels for proportions of each time 
window. The major issue with these topic models is that static 
data proportions have been applied to segments of sensor 
windows. This means that optimal window sizing has not 
been considered adequately to discovering certain activities 
since all activities do not have same duration of occurrence. 
As an extension of this approach we propose a continuous and 
dynamic variable segmentation which utilises optimal sensor 
segments and next most likely activity for continuous activity 
discovery. 

3 Our Proposed Method of Discovering 
Activities from Sensor Data Observations. 
We propose a semi supervised method for discovering 
activities from continuous sensor data stream as illustrated in 
Fig 1. The framework we propose through this paper uses 
partitioned features of sensor data from objects fitted with 
sensors [4] and then classified using the “bag of word” model 
of the Probabilistic Latent Semantic Analysis (PLSA). 

 
 
 3.1 Sensors for Activity Recognition in a Home setting. 
Objects tagged with state sensors can be used for gathering 
information about activities undertaken in a home setting.  
These type of sensors as used by [16] [4] primarily can be in 
either of the two states of “Open “ and “Close”, “ON” and 
“OFF” or “0” and “1”. Human activity interactions with 
objects to which they are attached triggers sensor firings 
which results to sequence of sensor data made of the 
described states above depending of the type used. Details of 
how sequence of sensor data are collected and stored are fully 
discussed in [17]. A typical sequence of sensor data in this 
case is a result of sensor firings from activities being 
performed. Discovering the underlying activities in these 
sensor events involves partitioning the sequences into 
segments and then classification of the resulting segments. 
The challenge therefore is to partition the sequence into the 
appropriate sizes whist considering its temporal information 
for specific activities. We propose a 2 step process to 
partitioning continuous stream of sensor data – Clustering and 
then Segmentation.  
 
3.1.1 Clustering Sensor Data Stream. 
For an unsupervised clustering, we propose the use of K-
means algorithm. Finding the optimal number of clusters is a 
critical issue in this process. The “Elbow Method” as 
discussed in [18] can be used to determine the optimal 
number of clusters which suggests the “number of Topics” or 
classes. This clustering process assigns to each data point an 
index which is a measure of its closeness to a cluster of 
reference. N data points contained in the sensor data stream 
are clustered such that each sensor data denoted by j is stored 
to have distances 1 ....N to the centroid of each cluster. We 
first set K=N and varied the values to K = 1 to determine 
optimal number of clusters. High values of distances from 
respective centroids invariably meant weak weights. We 
further used the cluster groupings together with their temporal 
information as they occur to form segments of sensor 
sequences. 
 
 3.1.2 Segmentation of Sensor Data Stream. 
We propose the use of the sensor features from the respective 
clusters in the section above to build segments of sensor data. 
We also propose building these segments with considerations 



of their temporal information to form time windows for 
continuous data stream. We have adapted the Variable Sliding 
Window model (VSW) for the sensor sequence segmentation 
[19]. To achieve this, we used the sensor features in each 
cluster as the make up for each segment. We also took 
consideration of the durations of these segments and the 
length of their occurrence. With regards to this, the 
composition of the sensor segments corresponds to the 
clusters from which they were made but with different lengths 
in term of their durations. We further calculated the mean 
duration of each of these segments as given in the equation 
(1). Let us consider a home fitted with N sensors which are  
denoted as 1 ... n, occurring in time slices of 1 ... n. The 
sensor segments are given as 1 ... k with respect to the total 
time. If  occurs in the time window 1 ... n for m times then, 
mean duration of  would be: 
 

            (1) 
 
For a continuous segmentation process applicable to real time 
which we propose through this paper, we further considered 
the next mostly likely segment . The next most likely 
segment takes into consideration segments co – occurrence 
and their transitions. A sliding factor  determines the next 
segment whilst considering a particular segment . The 
sliding factor is a function of time which allows a shift from a 
segment being considered to the next with or without overlap 
considerations. We must state however, that the sliding factor 
is a parameter which we propose to use for defining sensor 
segment. If a sensor segment  from the sensor data 
considerations has a very high chance of preceding  and  
precedes , then we slide to next segment from   using the 
mean duration off  ( )   and from  we slide to the next 
segment using the mean duration of  ( ). The estimation 
of the next most likely segment could be determined by: 
 

 =   where 
   P( ,  ) =                         (2)
  
Then the sliding factor  could be calculated as: 
   =                                                                (3)   
                       
3.2 Topic Modelling with the Probabilistic Latent 
Semantic Analysis (PLSA).  
The approach we propose follows the “bag of word” 
framework which was developed from the generative model 
of the Probabilistic Latent Semantic Analysis (PLSA) 
introduced by T. Hoffman [2]. The PLSA supposes that there 
are underlying topics from a document D of words. If D is 
composed of word sequences 1 ... D, a sequence i would be 
made of words X represented as 1 ... n. The PLSA assumes 
that a latent topic z from topic 1 ... k can be classified from 

1 ... D  as contained in D i.e for a word i contained 1 ... n. 
In principle, there is a joint probability over D x X as depicted 
in Fig. 2 such that a conditional independence assumption that 

d and x are independently conditioned on the state of the 
associated latent topic. This joint probability of i, i  and i  is 
given by   P( i, i , i   P( i|zi) P(zi|di)P( i,     (4) 

                                                            

 
Fig 2. Graphical Model of the Probabilistic Latent 
Semantic Analysis (PLSA). 
 
The framework makes posterior inference of topic 
probabilities by the iterative Expectation-Maximisation 
algorithm. The first step, Expectation (E step) computes the 
posterior probabilities of the latent variables P(zi | di) from the 
topic probabilities P(zi) and the conditional probabilities of 
the words given the topics P( i | zi). The Maximisation (M 
step) updates the parameters from the E step by computing 
the new values for P(zi) and P( i | zi). 
 
E step: Given P( i | zi) and P( zi), 
P(zi | di, i)  P( i | zi) P(di | zi),           (5) 
M step: Given P(zi | di, i) in the E step above, 
P( i | zi)  ,          (6) 
P(zi |di )   ,              (7) 
 
In the context of our activity discovery, the observed word i 
and document i of the “bag of word” PLSA corresponds to 
sensor data observed and sensor segment respectively. 
Inferred topic i then corresponds to activity topic. Intuitively, 
an activity topic is represented by a probabilistic distribution 
over observed sensor data events. If we observe 1 ... n of N 
sensors in segments 1 ... k activity topic inference of i from 
this could be computed from P(zi|di) following the EM 
algorithm given by equation (8). 
 
 i  i P(zi|di)               (8) 

4 Experiments.     

To validate our framework we carried 2 some experiments on 
the Kasteren dataset [4]. The Kasteren dataset was collected 
using 14 state change sensors over 28 days period. 7 ground 
truth activities were annotated from the dataset as “Leave 
House”, “Use Toilet”, “Go to Bed”, “Prepare Breakfast”, 
“Take Shower”, “Prepare Dinner” and “Get Drink”. The first 
experiment was carried out using 30minutes Fixed Overlap 
Static Windows FOSW with 3 minutes overlap between 
segments [20]. For the second experiment, we used K-means 
explained above to cluster this dataset. We obtained 7 distinct 
clusters and then further segmented the dataset as explained 
above. We allowed a 10% overlap of the previously 



considered window length.  We discovered the activity topics 
applying the EM algorithm of the PLSA. The activity 
discovery process was carried out in the MATLAB 
environment. 
  
4.1 Results 
To fully evaluate the performance of our framework we 
compared our results with the ground truth annotations. A 
summary of the activities discovered based on our 
segmentation process are provided in Fig 1. We also 
calculated the accuracies, precision and F1 from the true 
positive (TP), false positive (FP), true negative (TN) and false 
negative of the discovered activities. The accuracy is the 
measure of how correct our discovered activities are and is 
calculated by: 
 

            (9) 

The precision is the measure of the relevance of any randomly 
discovered activity and we calculated this using the equation: 
 
                                                                (10) 

The F1 is the harmonic mean of the precision and is 
calculated from: 
 
                                     (11) 

With regards to the first experiment conducted using FOSW 
of 30 minutes static segments and 10% overlap. The outcome 
of the posterior inference for activity topic estimation was 
misclassification of the posterior probabilities of the 
activities. This was due to number of observed sensor data in 
a window segment under consideration. A closer look at the 
results from the posterior inference, the misclassification was 
as a result of the lack of consideration of activity duration and 
the starting times which does not reflect the reality of how the 
activities took place. For the second experiment, we chose 7 
topics as had been estimated by the K means clustering.  Our 
results are reported in Tables 1 and 2 below. 

 

 

 
4.2 Discussion 
The results so far presented in the previous sections are 
indicative of the performance and how robust our proposed 
framework is for activity discovery. The results from the first 
experiment resulted in the miscalculation of the posterior 
inference. We obtained 197 instances of activities discovered 
(see Table 1) which are close to the groundtruth annotations 
for the second experiment. For the baseline evaluation and 
comparisons, we used the groundtruth provided by [4]. The 
difference are as a result of the varying length of the sensor 
segments. We also through this process discovered 79 
instances of   “Use Toilet”  and 6 instances were “Rejected”.  
The activity discovery results were very high for “Leave 
House”, “Go To Bed”, “Take Shower” and “Use Toilet”. On 
the other hand, we recorded comparable accuracy and 
precision results for “Get Drink” and “Prepare Dinner”. The 
accuracy for “Prepare Breakfast” was 46.2% largely because 
it was confused with “Prepare Dinner” and both activities 
shared similar object interactions. The “Rejected” activity 
discoveries also accounted for the result we obtained for 
“Prepare Breakfast” and   “Prepare Dinner” . We believe the 
overall accuracy we achieved through our proposed 
framework as 80.2% is significant and appealing.  

 



The Precision and F1 results for the activities are given in Fig 
3. The Precision for activity discovery overall was 83.8% 
indicative of how precise an activity can be discovered 
through this framework. We discovered through our 
framework that times covered by as “idle” in the dataset were 
associated with the other 7 activities. These “idle” times 
involved object interactions meaning that activities were 
potentially being carried out. Given these results, we would 
like to state that the framework we propose is capable of 
handling realtime activity recognition. 
 
4 Conclusion. 

 
In this paper, we presented activity discovery  of sensor data 
using EM algorithm of the Probabilistic Latent Semantic 
Analysis (PLSA). This was possible after clustering and 
partitioning the Kasteren dataset. We turned the this dataset to 
a “bag of sensor data” documents which corresponded to 
sensor segments of variable window lengths. The underlying 
activities were then discovered classified appropriately . 
Through the framework we propose in this paper, 7 activities 
given as “Leave House”, “Use Toilet”, “Go to Bed”, “Prepare 
Breakfast”, “Take Shower”, “Prepare Dinner” and “Get 
Drink” were discovered. We believe that this approach is 
appealing given the results achieved. Whilst we have 
followed this generative approach inspired by the text and 
natural language processing community, we think it can be 
exploited to further discover abnormal activities. This could 
be addressed through the introduction of a layer to 
discriminate rarely occurring patterns. 
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