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Abstract. The aim of this paper is to show that option prices in jump-
diffusion models can be computed using meshless methods based on
Radial Basis Function (RBF) interpolation instead of traditional mesh-
based methods like Finite Differences (FDM) or Finite Elements (FEM).
The RBF technique is demonstrated by solving the partial integro-differential
equation for American and European options on non-dividend-paying
stocks in the Merton jump-diffusion model, using the Inverse Multi-
quadric Radial Basis Function (IMQ). The method can in principle be
extended to Lévy-models. Moreover, an adaptive method is proposed to
tackle the accuracy problem caused by a singularity in the initial condi-
tion so that the accuracy in option pricing in particular for small time
to maturity can be improved.
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1 introduction

In this paper we show how to compute European and American option prices
in the Merton jump-diffusion model using Radial Basis Function (RBF) inter-
polation techniques. RBF methods have recently been proposed for numerically
solving initial value and free boundary problems for the classical Black and Sc-
holes equation, both in the one and in the multiple asset case [12, 14, 16]. The
new feature of the present paper is that in the Merton model (and comparable
jump-diffusion models, as in general Lévy type models), the Black and Scholes
PDE is replaced by a Partial Integro-Differential Operator or PIDE, involving
a non-local term in the form of an integral operator. Our main contribution is
to show how to numerically solve these in an efficient way using RBFs, both for
initial value and free boundary problems (as for American options), and includ-
ing when singularities in the initial value (identified with the option’s pay-off)
are present. We have chosen the Merton jump-diffusion model as a typical case
on which to test the present RBF methodology. Comparing with our previous
studies [6] and [5], we mainly focus on improving the interpolation accuracy of
the option pay-off in order to achieve a higher accuracy of option prices. To
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acheive this goal, we adopt an adaptive scheme proposed by Driscoll et al. [11]
and Inverse Multiquadric Radial Basis Function (IMQ).

Currently, PIDEs such as the Merton one have mostly been treated by a
traditional Finite Difference Method (FDM), or by a Finite Element Method
(FEM).The idea is to simply fully discretize the PIDE on an equidistant grid, af-
ter having (artificially) localized the equations to some bounded interval/domain
in R. The non-local integral term can be computed by numerical quadrature or
by using the Fast Fourier Transform (FFT). In general, there are a number of
problems which arise with these current approaches:

– The option price behaviour outside the solution domain must be assumed;
see e.g. [7, 9, 10].

– Some of the literature, e.g. [1, 2, 7, 24], has played down the importance of
pricing American and European vanilla option values when time to maturity
is less than six months. The reason is that for short times-to-maturity the
numerical methods used price the option incorrectly around the strike price
where a singularity (kink) exists. A singularity is defined as a point at which
the function, or its derivative, is discontinuous. The payoff functions of vanilla
call and put options have such a singularity. As a result, standard numerical
methods like FDM and FEM cannot give accurate precision and suffer a
reduced rate of convergence when one uses them to price options at a very
short time to maturity. Foysth et al. shed light on addressing this kind of
problem [9] by suggesting Rannacher’s time stepping method [28]. This is
a mixture of implicit and Crank-Nicolson methods. They demonstrate this
technique by approximating an option price whose maturity is a quarter of
a year. This method gives second order rates of convergence when pricing
European options but not for American ones. By using the same idea and
combining it with a penalty method and a modified form of a timestep
selector suggested in [18], Forysth et al. in their other paper [10] show how
to achieve second order convergence for pricing American options. Although
their methods can yield second order convergence, the necessary calculations
can be quite complex.

– In [1, 2, 9, 10], etc, the Fast Fourier Transform is applied to calculate the
non-local jump integral term in the PIDE, and the diffusion and integral
terms are treated separately. This therefore requires that function values are
interpolated and extrapolated between the diffusion and integral grids so as
to approximate the convolution term.

– Andersen and Andreasen’s approach of combining an operator splitting ap-
proach with the Fast Fourier Transform (FFT) approximation of a convolu-
tion integral to price European options with jump diffusion [1] cannot deal
easily with American options.

– The papers [2, 7, 9, 10] implement an implicit-explicit numerical scheme to
price European or American options under the Merton jump-diffusion model.
These papers treat the convection (hyperbolic) term of the PIDE explicitly
by implementing the upwind scheme and the diffusion (elliptic) term of the
PIDE implicitly. As a result, restrictive stability conditions are necessary for
the convection term when the upwind scheme is implemented.
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– A final but fundamental problem with both FDM and FEM is that these
are, in practice, restricted to problems of two or three space dimensions;
however, most applications easily need many more, e.g. when pricing basket
options.

Our RBF-method will circumvent many of these disadvantages. In particular,
differential and integral terms will be treated on an equal footing, and the use
of an adaptive RBF-scheme will allow us to deal with the singularity in the op-
tion pay-off. This paper is divided into five sections, including this introduction.
Section 2 is a brief review of Metron’s jump-diffusion model. In section 3 we
first explain adaptive residual subsampling method and then define our RBF
algorithm for solving PIDEs, which we implement the Merton PIDE. Section
4 contains our numerical results for interpolation of an initial put payoff func-
tion and for both European and American put options, including an analysis
of the max error, the root-mean-square error and the relative error. Section 5
concludes.

2 European and American options in a Merton
jump-diffusion Market

In this paper we focus our attention on the classical Merton jump-diffusion
model with Gaussian jumps [25]. This model can be considered as a particular
example of a Lévy model for describing the price dynamics of the underlying
risky asset, (St)t≥0, in a financial market. The evolution of (St)t≥0 is driven
by a diffusion process, punctuated by jumps which describe rare events such
as crashes and drawdowns at random intervals. As a market model, it is an
example of an incomplete market. We will skirt around the hedging issue by
working directly in the risk-neutral probability measure Q, as is customary. The
stock price process,(St)t≥0, is then given by

St = S0e
rt+Xt (1)

where S0 is the stock price at time zero, r is the risk-free interest rate and Xt is
defined by:

Xt := (−λη − σ2

2
)t+ σWt +

Nt∑
i=1

Yi, (2)

Wt is a Brownian motion, Nt is a Possion process with intensity λ, Yi is an iid
sequence of normally distributed N(µj , σ

2
j ) variables, and η := E(eXt − 1) :=

eµj+σ
2
j/2−1, the expected relative price change due to a jump. The drift-term in

(1) assumes that e−rtSt is a martingale with respect to the natural filtration. We
let τ = T−t, the time-to-maturity, where T is the maturity of the financial option
under consideration and we introduce x = logSt, the underlying asset’s log-price.
If u(x, τ) denotes the values of some (American and European) contingent claim
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on St when logSt = x and τ = T − t, then it is well-known, see for example, [8]
that u satisfies the following PIDE in the non-exercise region:

∂u(τ, x)

∂τ
− Lu(x, τ) + ru(x, τ) = 0, in (0, T )× R (3)

where L is the infinitesimal generator of the transition semigroup of the driving
Lévy process. Explicitly, L is given by:

Lu(x, τ) =
σ2

2
uxx+

(
r − σ2

2
+ λη

)
ux − λu+ λ

∫ ∞
−∞

u(x+ y, τ)f(y)dy,

A European option can be exercised only at the expiry date (maturity) of
the option, i.e. at a single pre-defined point in time. Consider a European put
on the underlying non-dividend-paying S(t) = ext , with maturity T , and strike
K. In terms of logarithm price x = logSt, the pay-off at t = T or τ = 0 is:

u(x, 0) = H(ex) = max{K − ex, 0} (4)

and one can price this put option by solving (3) with initial condition (4).

For an American put, we have to take into account the possibility of early
exercise, e.g. [8, 17, 26]. As a result, the highest value of American option can be
achieved by maximizing over all allowed exercise strategies:

u(x, τ) = ess supτ∗∈Γ(t,T)E
Q
t

[
e−r(τ∗−t)H

(
exτ∗

)]
(5)

where Γ (t, T ) denotes the set of non-anticipating exercise times τ∗, satisfying
t ≤ τ∗ ≤ T . To actually compute the u(x, τ) of the American put, one can solve
the following linear complementarity problem [8, 30]:

∂u(τ, x)

∂τ
− Lu(x, τ) + ru(x, τ) ≥ 0, in (0, T )× R (6)

u(x, τ)−H(ex) ≥ 0, a.e. in (0,T)× R (7)(
u(x, τ)−H(ex)

)(∂u(x, τ)

∂τ
− Lu(x, τ) + ru(x, τ)

)
= 0, in (0, T )× R (8)

u(x, 0) = H(ex), (9)

Since we only deal with a jump-diffusion model with σ > 0 and finite jump
intensity in this paper, we know that by Pham [26], the smooth pasting condition,

∂u(xτ∗ , τ
∗)

∂x
= −1

is valid at time of exercise τ∗. Therefore the value of an American put option
is continuously differentiable with respect to the underlying on (0, T ) × R; in
particular the derivative is continuous across the exercise boundary.
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3 Meshfree Numerical Approximation Method

Meshfree radial basis function (RBF) interpolation is a well-known technique
for reconstructing an unknown function from scattered data. It has numerous
applications in different fields, such as terrain modeling in geology, surface recon-
struction in imaging, and the numerical solution of partial differential equations
in applied mathematics. In particular, RBFs have recently been used to solve
the PDEs of quantitative finance. A number of authors, including Fausshauer
et al. [12, 14] and Hon and Mao [16], have suggested RBFs as a tool for solving
Black-Scholes equations for European as well as American options. However, be-
cause of the non-smoothness of the payoffs of financial derivatives like calls and
puts, the RBF methodology when naively implemented on an equidistant grid
may not yield correct option prices for small times-to-maturity. In particular,
numerically computed call and put prices may become negative near the strike,
when close to maturity. To address this problem, we will use an adaptive RBF
method. Recently, Sarra [29] and Driscoll and Heryudono [11] have suggested
using adaptive RBF to solve a PDE whose solution curve has singularities. They
have illustrated their techniques by solving a time dependent Burgers’ equation.
In brief, their idea is to refine the solution by putting more interpolation points
of RBFs around or at the singularities so as to reduce the error of the RBF-
approximation. We will use a similar method in section 3.1 below. The aim here
is to obtain a very good RBF approximation of the initial value or pay-off of
the option. Once we dispose of such a good-quality RBF-interpolant, we imple-
ment an RBF-scheme to solve the PIDE with this RBF-interpolant as initial
value. The general idea of the proposed numerical scheme is to approximate the
unknown function u(x, τ) by a RBF-interpolant using the interpolation points
found for the initial value using the adaptive RBF-scheme, and derive a system
of linear constant coefficient ODE by requiring that the PIDE (3) be satisfied in
the chosen RBF-interpolation points.

A typical RBF in dimension n is a rotation-invariant function on Rn, usually
written as φ(||x||) with ||x|| the Euclidean norm, and φ a suitable univariate
function, such that for any set of N points x1, . . . , xN ∈ Rn the matrix

(
φ(||xi−

xj ||)
)

1≤i,j≤N is non-singular. Such functions φ exist (see below), and the RBF-

interpolant of a given function f on a given set of interpolation points, x1, . . . , xn,
is defined as

∑N
j=1 ρjφ(||x− xj ||), where the coefficients ρj are determined by

f(xi) =
N∑
j=1

ρjφ(||xi − xj ||).

The non-singularity condition on φ implies the unique solvability of this system
in (ρ1, . . . , ρN ). In applications, the data points x1, . . . , xN can be arbitrarily
scattered in space and do not have to belong to some pre-existing mesh. Com-
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monly used RBFs are :

φ(r) =



√
(cr)2 + 1 for Multiquadric (MQ),

1√
(cr)2+1

for Inverse Multiquadric (IMQ),

exp(−c2r2) for Gaussian,

r2 log(r) for Thin Plate Spline (TPS).

where c is called a shape parameter, a user defined parameter which can be
fine-tuned to improve the accuracy of the RBF-approximation. In this paper we
will use the IMQ. Also, since we only deal with the one dimensional case, we can
simplify φ(||x− xj ||2) to φ(|x− xj |).

After picking interpolation points xj ∈ R, we approximate, for any fixed
time-to-maturity τ , the solution u(x, τ) in (3) by its RBF-interpolant:

u(x, τ) '
N∑
j=1

ρj(τ)φ(||x− xj ||2) =: û(x, τ), (10)

Since the radial basis function does not depend on time, the time derivative of
û(x, τ) in equation (10) is simply:

∂û(x, τ)

∂τ
=

N∑
j=1

dρj(τ)

dτ
φ(|x− xj |), (11)

Moreover, the first and second partial derivatives of û(x, τ) with respect to x are

∂û(x, τ)

∂x
=

N∑
j=1

ρj(τ)
∂φ(|x− xj |)

∂x
, (12)

∂2û(x, τ)

∂x2
=

N∑
j=1

ρj(τ)
∂2φ(|x− xj |)

∂x2
, (13)

where for the particular case when φ is an IMQ,

∂φ(|x− xj |)
∂x

= − c2(x− xj)((
c(x− xj)

)2
+ 1

)3/2
,

∂2φ(|x− xj |)
∂x2

= c2
2
(
c(x− xj)

)2 − 1((
c(x− xj)

)2
+ 1

)5/2
,

(14)
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3.1 Adaptive Residual Subsampling Method v.s. Equally Spacing
Method

In this section, we describe two methods for choosing the interpolation points
x1, . . . , xn ∈ R: the straightforward Equally Spacing Method (ESM) used in
[12, 14, 16] and the more sophisticated adaptive residual subsampling method
(ARSM) from [11].

In the ESM, we determine an interval [xmin, xmax] outside of which we can
neglect the contribution of u(x, τ) to the non-local integral term of an PIDE (3),
and for given N = 1, 2, . . . , simply put

xj := x∆xj = xmin + j∆x, j = 1, 2, . . . , N (15)

where ∆x = (xmax − xmin)/N ,
For the ARSM, we start first to generate an initial N points of xj using

ESM and determine the RBF approximand of the initial function (4). We then
compute the interpolation error at evaluation points halfway between initial
interpolation points. Points at which the error exceeds a threshold of refinement,
θr, become new interpolation points, and points that lie between two points
whose error is below a threshold of coarseness, θc, are removed. We will specify
θr and θc in the next section. The two end points are always left intact. The
shape parameter, c, of each center is chosen based on the distance to the nearest
neighbours (we will explain the choice of c in the next paragraph), and the RBF
approximation of function (4) is recalculated using the new set of interpolation
points after which the procedure is repeated. In brief, the adaptation process
follows the familiar paradigm of solve-estimate-refine/coarsen until a stopping
criterion is reached. For more details of this algorithm and matlab code, we refer
the reader to [11].

In both methods, we choose an appropriate shape parameter in our IMQ so
as to achieve a high degree of accuracy for our approximation of u(x, τ). There
exits a substantial literature on choosing optimal shape parameters in IMQ or
other types of RBFs, e.g. [13], [15] and [19]. Here we choose a shape parameter
of 1/(4∆x), as proposed by Frasshauer et al. [12] and Hon et al. [16], where
∆x is the distance between two neighboring nodes of interpolation points. For
the ESM, ∆x is of course constant but for the ARSM, it isn’t. This may cause
potential problems for the invertibility of the RBF-interpolation matrix. In the
case of the ESM we have that with the interpolation points chosen according to

(15), our RBF is φ∆x(|x|)=φ∆x(x)=
(
( x

4∆x )2 + 1
)− 1

2 , and consequently:

(
φ∆x(x∆xj − x∆xk )

)
j,k

=

 1√
( j−k4 )2 + 1


1≤j,k≤N

.

Positive definitness of this matrix is guaranteed by general RBF-theory, e.g.

by the positivity of the Fourier transform of
(
( x

4∆x )2 + 1
)− 1

2 , cf. Buhmann [4],
Powell [27] or Wendland [32] . For the ARSM however, the matrix to be inverted
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is of the form (
φck(xj − xk)

)
j,k

, where ck =
1

4∆xk
, (16)

with ∆xk, the nearest-neighbour distance to xk, and in general is not symmet-
ric. Invertibility is not guaranteed by general theory anymore, but has to be
numerically checked at each stage, as part of the algorithm. This has not led
to any problems in the implementation. The idea of using adaptive methods to
gain high orders of accuracy in interpolation and numerical solution of PDEs
has exploited in a number of papers by Kansa et al., cf. [19, ?,?,?]. They use
Multiquadric or MQ, and implement an adaptive shape parameter ck of the
form:

ck =
1

cmin

(
cmin

cmax

) k−1
N−1

, k = 1, 2, . . . , N,

where cmin and cmax are two input constant parameters. In [19], Kansa and
Carlson compare the accuracy of interpolation of univariate and bivariate test
functions using this adaptive shape parameter with that of using a constant
shape parameter. They conclude that there is a dramatic improvement in the
interpolation errors by using variable shape parameters. In [20, 21, ?], they also
show the effectiveness of using variable shape parameters to improve the accuracy
of solving time-dependent PDEs in one and three dimensions by comparing the
results with those obtained by using Finite Difference Methods.

3.2 Transforming PIDE to a system of ODEs by RBF

Given a set of interpolation points x1, . . . , xj , . . . , xN , and a RBF φ, we can
construct N × N matrices AAA, AAAx and AAAxx defined by

(
φ(|xi − xj |)

)
1≤i,j≤N ,(

φ
′
(|xi − xj |)

)
1≤i,j≤N and

(
φ
′′
(|xi − xj |)

)
1≤i,j≤N respectively. Note in case the

xj ’s are chosen according to the ESM (15), φ(x) actually depends itself on N
(or ∆x). We also define a matrix-valued function y → AAA(y) by

(
φ(|xi + y −

xj |)
)

1≤i,j≤N . If we substitute û(x, τ) for u(x, τ) in (3) and require the PIDE to

be satisfied in the interpolation points xj , we arrive at the following system of
ODEs for the vector ρρρ(τ) :=

(
ρ1(τ), . . . , ρN (τ)

)
AAAρρρτ =

σ2

2
AAAxxρρρ+

(
r − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+ λ

(∫ ∞
−∞

AAA(y)f(y) dy

)
ρρρ,

(17)

where ρτ := ∂ρ
∂τ , and where we recall that f(y) is the probability density of the

jump Yi ∼ N(µJ , σ
2
J) : f(y) = (σJ

√
2π)−1 exp

(
− (y − µJ)2/2σ2

J

)
.

Before applying a suitable numerical integration algorithm to the integral
terms in (17), we truncate the integrals from an infinite computational range into
a finite one. Briani et al. [2], Cont and Voltchkova [7] and Forysth et al. [9, ?] have
provided different numerical techniques to find out a finite computational range
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so as to reduce the numerical approximation errors when doing this truncation.
Numerical experimentation has shown that for the model parameters considered
in this paper we get good results by simply cutting off the integral at 5σJ + µj .
We therefore transform equation (17) into

AAAρρρτ =
σ2

2
AAAxxρρρ+

(
r − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+ λ

(∫ b

−b
AAA(y)f(y) dy

)
ρρρ.

(18)

where b = 5σJ + µj . We use matlab’s vectorized quadrature to evaluate the
matrix of the integrals in (18): this amounts to approximating∫ b

−b
φ(|xi + y − xj |)f(y) dy ≈

m∑
k=1

wkφ(|xi + yk − xj |)f(yk), (19)

where wk and yk are suitable quadrature weights and quadrature points; cf. [31]
for details. To simplify notations, we set

F (xi − xj) =
m∑
k=1

wkφ(|xi + yk − xj |)f(yk).

Then the integrals in equation (18) will be approximated by

∫ b

−b
AAA(y)f(y) dy ≈


F (x1 − x1) F (x1 − x2) . . . F (x1 − xN )
F (x2 − x1) F (x2 − x2) . . . F (x2 − xN )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F (xN − x1) F (xN − x2) . . . F (xN − xN )


= CCC(y). (20)

Substituting (20) into equation (18), we arrive at the new approximate equation:

AAAρτρτρτ =
σ2

2
AAAxxρρρ+

(
r − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+ λCCC(y)ρρρ. (21)

The invertibility of AAA is assumed by general RBF theory; cf. for example, Buh-
mann [4], Powell [27] or Wendland [32]. We can therefore multiply both sides
of (21) by AAA−1, which can be determined by Gaussian elimination with partial
pivoting. As a result, we obtain the following homogeneous system of ODEs with
constant coefficients:

ρρρτ = AAA−1

(
σ2

2
AAAxx +

(
r − σ2

2
− λη

)
AAAx + (r + λ)AAA+ λCCC(y)

)
ρρρ

≡ ΘΘΘρρρ (22)

where ΘΘΘ is defined by the left hand side. After some numerical experimentation,
we found that the matrix ΘΘΘ is very stiff and we therefore have to solve the
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ODEs by an implicit method, e.g. a modified Rosenbrock formula of order 2,
the trapezoidal rule or TR-BDF2, an implicit Runge-Kutta formula with a first
stage that is a trapezoidal rule step and a second stage that is a backward
differentiation formula of order two. In this paper we use latter.

If we use the adaptive methodology, the matrix AAA becomes non-symmetrical:
AAA =

(
φcj (|xi − xj |)

)
1≤i,j≤N and similarly for AAAx =

(
φ
′

cj (|xi − xj |)
)

1≤i,j≤N ,

AAAxx =
(
φ
′′

cj (|xi − xj |)
)

1≤i,j≤N and the integral term. Invertibility of AAA can no

longer be assumed but will have to be checked numerically.
We observe that no theoretical convergence analysis of the algorithm pre-

sented was attempted, as in most of the existing literature on numerical RBF
schemes-we hope to deal with this issue in a further paper. To assess the accu-
racy of our RBF-algorithm, we will simply compare our numerical results with
the exact solution of the Merton model in the European case, and with numer-
ical results by other methods from the literature in the American case. This
paper should be seen as an exploratory study for applying RBF methods to
jump-diffusion models. Moreover, as far as the another is aware, no theoretical
convergence and stability analysis of RBF-schemes exists as yet even for the
Black and Scholes or for the heat equation.

4 Numerical Results

4.1 Non-smooth put payoff function

We first compare the approximation errors of the RBF-interpolation of the
(non-smooth) put pay-off (4) using ESM with those using ARSM. To measure
the accuracy of our RBF-approximation, we use a set of evaluation points x̂∆xi ,
for which we will simply take the grid points

x̂i := x̂∆xi = x̂min + j∆x̂, j = 1, 2, . . . , G. (23)

Here ∆x̂ = (x̂max − x̂max)/G with xmin ≤ x̂min ≤ x̂max ≤ xmax and G is the
number of the evaluation points chosen. We will use the following two norms for
the errors, the max error:

E∞(x̂i, T ) = C(1/N)R∞ (24)

for the maximum error and

E2(x̂i, T ) = C(1/N)R2 (25)

for the rms error, where N is the number of interpolation points, C is a con-
stant and R2 is the rate of convergence, which is linear when it equals one and
quadratic when it equals two.

In table 1, we compare both types of errors, E∞, in (24) and, E2, in (25) of
ARSM and ESM. As seen in this table, ARSM shows both a lower E∞ and E2

than ESM.
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N = 521,  Interpolation by EMS
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Fig. 1. Graphical representation of RBF approximation of an initial put function in
(4) by implementing ARSM and ESM around the strike, K=1, where a kink exists. N,
the number of interpolation points, is 521. G, the number of evaluation points, is 3000.
The approximate values of the RBF-interpolants outside of the interpolation points are
represented by the red star line. The blue line represents graph of (4) and the black
circles represent the values of the RBF-interpolant in the interpolation points.
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Table 1. E∞ and E2 of the RBF approximation from an initial put function in (4)
using ARSM and those using ESM. G is the number of evaluation points.

ARSM ESM ARSM ESM
G E∞ of Put E2 of Put

3000 8.8381e-006 0.0022 1.1919e-006 1.1200e-004

4.2 European Option

In this section we present the numerical results of ARSM and ESM, and
compare these with both Merton’s analytical option price formula for puts, and
with the results of Briani’s finite difference algorithm in Briani et al. [2]. We use
the same formula, (23), to define our evaluation points. We set x̂min = K−10 and
x̂max = K + 10 where K is a strike price. Apart from using two error measures,
both (24) and (25), we define two other error measures, the absolute error:

Eabs.(x, t) = |V (ex, t)− û(x, t)|, (26)

and the relative error:

Erel.(x, t) =
|V (ex, t)− û(x, t)|

V (ex, t)
. (27)

where V (ex, t) and û(x, t) are the exact value and approximate value at the point
(x, t).

It is known [25] that the analytical price of a European put option in the
Merton Jump-diffusion model is given by

V (S, t) =
∞∑
m=0

e−λ(1+η)τ ((λ(1 + η)τ)m

m!
VBS(S, τ,K, rm, σm). (28)

where τ = T − t is the time to maturity, η = eµJ+
σ2J
2 −1 represents the expected

percentage change in the stock price originating from a jump, σ2
m = σ2 +

mσ2
J

τ
the observed volatility, rm = r−λη+m log(1 + η)/τ and VBS the Black-Scholes
price of a put, computed as

VBS(S, τ,K, r, σ) = Ke−rτΦ(−d2)− SΦ(−d1) (29)

where Φ(·) is the cumulative normal distribution and

d1 =
log( SK ) + (r + 1

2σ
2)τ

σ
√
τ

, d2 = d1 − σ
√

(τ).

Our RBF-algorithm for numerically solving (3) with initial condition (4) runs
as follows:

1. Find the RBF-approximation to the initial value u(x, 0) either using ESM
or ARSM. This will provide us with a set of interpolation (or collocation)
points x1, . . . , xn, together with an initial vector ρρρ(0) =

(
ρ1(0), . . . , ρN (0)

)
.
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2. Then use ρρρ(0) as initial value for the system (22). By using any stiff ODE
solver, we find out the ρρρ(T ) at time T .

3. Finally, substitute ρρρ(T ) back into
∑N
j=1 ρj(T )φ(|x− xj |) to get an approxi-

mate value of u(x, T ).

In our numerical experiment we implement the algorithm in MATHLAB
R2007b. We select our maximum and minimum logarithm price xmin

(
log(Smin)

)
and xmax

(
log(Smax)

)
, as before, equal to −6 and 6 respectively. By experimen-

tation, we do not need as many interpolation points if we restrict the strike price
around an interval x ∈ [−1, 1]; therefore, in table 2, we scale down K to K/100.
Moreover, we use function quadv which implements recursive adaptive Simp-
son quadrature for computing equation (19) as well as function ode23tb which
implements TR-BDF2 for the calculation of equation (22).

In order to illustrate that ARSM is better than ESM, a comparison of E∞
and E2 between both methods at increasing time intervals is shown in table 3.
Table 3 shows that the errors in the approximate solution computed using the
adaptive ARSM-scheme stay small, even when T is close to zero, in contrast to
the output of the ESM-scheme. Both for ARSM and ESM, the errors increase
slowly, if at all, with increasing T , although the errors from using ARSM are
much smaller.

In Table 4, we compare the results of the FDM used in Briani et al.’s paper
[2] with those using ARSM and ESM. The ARSM-scheme can achieve lower
Eabs(logS) than ARS-233 scheme, Explicit scheme and the ESM-scheme.

Table 5 highlights the accuracy of pricing put values of ARSM and ESM by
analysing their Erel.(logS, T ) at different times T and for different S. Three par-
ticular put prices are examined individually, representing three different cases.
Firstly, S = 90 represents the in-the-money case in put. The second, S = 100, is
the at-the-money case for a put option, and in the last, S = 110 represents the
out-of-the-money case for put options. As before, we choose the first column of
the input parameter of table 2 for this experiment.

Figure 2 demonstrates that ARSM gives a smaller Eabs(logS, T ), around
6.5 × 10−4 or below, than ESM does. The vertical axis labels ”Abs. Error”
represents Eabs(logS, T ), and the latter is plotted against S and T ; S ranges
from 90 to 110 and T from 0 to 1. In our numerical calculations we let S increase
by ∆S = 0.1 and T by time-steps of 10e−12. From top to bottom, the first graph
represents Eabs(logS) of ARSM and the next one that of ESM. As illustrated in
figure 2, with ESM there is a substantial amount of oscillation along the S for
small T . Also, the absolute error is highest around or at the strike and can reach
almost 0.2 with the ESM-scheme. This is in line with what we found in section
4.1. The pronounced oscillation around the strike in figure 1 reduces the precision
of the calculated put prices. It not only affects the quality of the approximation
in the vicinity of the strike, but also in some regions further away.
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Fig. 2. Graphical representation of absolute error of a European put between ARSM-
RBF (the top graph) and ESM-RBF (the bottom graph) approximate values and the
analytical values in (28). Abs.Err. is Eabs(logS, T ). T is the time-to-Maturity . S is
the underlying stock price. The input parameters are provided in the first column of
Table 2.
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Table 2. Column 1 input parameters (except T = 1e − 06, 1 and 5) are copied from
[9] which d’Halluin, Forsyth and Vetzal used to approximate American put options
and European call options in 2004. Originally these parameters come from [?] with
which Andersen and Andreasen used to calculate European call options on the S&P
500 stock indies in April of 1999. Column 2, input parameters used to value European
call and put options under the Merton Jump-diffusion Model. These parameters are
copied from [2] which Briani, Natalini and Russo used to price European put and call
options in 2007.

Parameter Values

σ 0.15 0.2
r 0.05 0.05
σJ 0.45 0.8
µJ -0.9 0
λ 0.1 0.1
T 1e-06/0.25/1/5 1
K 100 100

Table 3. E∞ and E2 of a European put option are presented by using input parameters
provided in the first column of Table 2. G is the number of evaluation points. T is time-
to-maturity.

ARSM ESM ARSM ESM
T G E∞ of Put E2 of Put

1e-06 201 7.955929e-05 2.184118e-01 9.862619e-06 8.434566e-02
0.25 201 4.029000e-04 2.277197e-02 2.614984e-04 1.769887e-02

1 201 6.423055e-04 1.047691e-02 4.422346e-04 8.169592e-03
5 201 9.843645e-04 7.308420e-01 6.116825e-04 6.854095e-01

Table 4. Comparative values of a European put option using ARSM and ESM versus
those using FDM in Briani’s methods in [2]. Erel.(logS, T ) is relative error. S is the
stock price. N is the number of interpolation points. Mesh is the number of mesh points.
Time-to-maturity, T, is 1. û(logS, T ) is the approximate value of a European put by
using ARSM or ESM. Value is approximate value of a European put by using Explicit
Scheme or ARS-233 scheme. The parameters are provided in the second column of
Table 2.

Explicit scheme ([2]) ARS − 233 scheme ([2])

S Mesh V alue Erel.(logS, T ) Mesh V alue Erel.(logS, T ) Exact
100 1024 8.319940 2.577970e-03 1024 8.326102 1.839249e-03 8.341436

ARSM ESM

S N û(logS, T ) Erel.(logS, T ) N û(logS, T ) Erel.(logS, T ) Exact
100 521 8.341670 2.804294e-05 1024 8.330652 1.293062e-03 8.341436

4.3 American Put Options

In this section we adapt our RBF-algorithm to compute American put-option
prices. We then compare the option prices obtained from our RBF-algorithm,
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Table 5. Comparison between analytical values of a European put option with its
approximate values by using ARSM and ESM. T is the time-to-maturity. û(logS, T ) is
the approximate value. Erel.(logS, T ) is relative error. Exact is the analytical value of a
European put option in (28). N is the number of interpolation points. The parameters
are provided in the first column of Table 2.

N=521
ARSM ESM

T S û(logS, T ) Erel.(logS, T ) û(logS, T ) Erel.(logS, T ) Exact
1e-06 99.9 1.000009e-01 5.885266e-05 5.280614e-02 4.719125e-01 9.999504e-02
1e-06 100.0 5.904871e-03 1.329438e-02 6.849907e-05 9.885538e-01 5.984431e-03
1e-06 100.1 1.138495e-05 1.0543530 -4.661364e-02 8.412183e+03 5.541865e-06

0.25 90.0 9.285133 3.072185e-05 9.272727 1.366755e-03 9.285418
0.25 99.9 3.185076 7.507332e-05 3.185076 6.815555e-03 3.184837
0.25 100.0 3.149258 7.372928e-05 3.127410 6.864284e-03 3.149026
0.25 100.1 3.113936 7.472784e-05 3.092181 6.911995e-03 3.113703
0.25 110.0 1.400927 1.844433e-04 1.394685 4.639699e-03 1.401186

1 90.0 10.303322 6.218437e-05 10.293486 1.016785e-03 10.303963
1 95.0 8.188955 5.814502e-05 8.179676 1.191192e-03 8.189431
1 100.0 6.684307 2.016808e-05 6.676282 1.220705e-03 6.684441
1 105.0 5.653948 7.896656e-05 5.648129 1.108153e-03 5.654395
1 110.0 4.961079 7.478172e-05 4.956963 9.042944e-04 4.961450

5 90.0 15.136039 6.503026e-05 14.566859 3.766688e-02 15.137023
5 95.0 14.200279 5.289616e-05 13.548645 4.593930e-02 14.201030
5 100.0 13.370351 3.583254e-05 12.670378 5.238657e-02 13.370830
5 105.0 12.626235 3.278034e-05 11.902553 5.734664e-02 12.626649
5 110.0 11.952952 2.315001e-05 11.222387 6.114181e-02 11.953229

ARSM and ESM with those of Forysth et al.’s FDM in [9]. As mentioned in
section 2, an American put option problem is a free boundary problem because
of the possibility of early exercise at any point during its life, leading to the free
boundary condition:

u(x, τ) = max
(
K − ex, u(x, τ)

)
.

Together with the smooth pasting condition mentioned in section 2, this uniquely
determines the exercise boundary.

As before, we use both ARSM and ESM to approximate u(x, 0) = max(K −
ex, 0) and then continue to work with the interpolation points found at τ = 0.
The algorithm now reads as follows:

1. Divide time-to-maturity T by total numbers of time-steps M to obtain
time interval ∆t and create a list of equally spaced time-points m∆t, m ∈
{0, 1, 2, . . . ,M − 1}.
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2. Find the RBF-approximation to the initial value u(x, 0) either using ESM or
ARSM. This will provide us with a set of collocation or interpolation points
x1, . . . , xn, together with an initial vector ρρρ(0) =

(
ρ1(0), . . . , ρN (0)

)
.

3. Assume we have already determined ρρρ(m∆t) (if m = 0, we have ρρρ(0)) in
equation (22). Solve the system of (stiff) ODEs to find ρρρ

(
(m+ 1)∆t

)
at the

next successive time-step, (m+ 1)∆t.
4. Then at time (m+ 1)∆t, for each interpolation point xi, define

u
(
xi, (m+ 1)∆t

)
= max

(
(K − exi),

N∑
j=1

ρj
(
(m+ 1)∆t

)
φ(|xi − xj |)

)
.

5. Find a new vector ρρρ
(
(m+1)∆t

)
such that u

(
xi, (m+1)∆t

)
=
∑N
j=1 ρj

(
(m+

1)∆t
)
φ(|xi − xj |) for all i.

6. Repeat Step 3.) to 5.) until m = M − 1.
7. Finally, substitute ρρρ(T ) back into

∑N
j=1 ρj(T )φ(|x− xj |) to get an approxi-

mate value of u(x, T ).

The settings of our numerical experiment are the same as those in section
4.2. In table 6, ∆û designates the difference between the values obtained for
û(logS, T ) for two successive values of the number of time-steps, M (listed in
the first column of table 6); ∆û decreases with increasing number of time-steps.
This indicates numerically, at least, that our method converges. In table 7, we
use Forsyth et al.’s FDM in [9] as an indicator of the accuracy of our American
option prices. Forysth et al. obtain their best results using a scenario involving
4065 mesh points and 940 time-steps. Taking their results as a benchmark for
the prices computed using our ESM and ARSM schemes, but with only 521
interpolation points, we see that for the three values of S considered, ARSM
gives a much smaller absolute error, Eabs.(logS, T ), especially in the at-the-
money and out-of-the-money cases.

Table 6. Value of an American put option by using ARSM. Number of interpolation
points is 521. M is the number of time-steps. û(logS, T ) is the approximate value of an
American option by using ARSM. ∆û is the change from one level of refinement to the
next. Time-to-maturity, T, is 0.25. The parameters are provided in the first column of
Table 2.

S = 90 S = 100 S = 110

M û(logS, T ) ∆û û(logS, T ) ∆û û(logS, T ) ∆û

25 9.999991 N.A. 3.236244 N.A. 1.418371 N.A.
50 10.000703 7.120572e-06 3.238813 2.569763e-05 1.418952 5.814587e-06
100 10.000968 2.648464e-06 3.240127 1.313583e-05 1.419255 3.030001e-06
200 10.001030 6.265351e-07 3.240788 6.608718e-06 1.419411 1.552927e-06
400 10.001597 5.666263e-06 3.241118 3.306593e-06 1.419489 7.876438e-07
800 10.002106 5.093106e-06 3.241283 1.647557e-06 1.419529 3.963116e-07
1600 10.002388 2.813500e-06 3.241365 8.190645e-07 1.419549 1.983668e-07
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Table 7. Comparison of values of an American put option using ARSM and ESM
against those in Forysth et al. [9]. N is the number of interpolation points. M is the
number of time-steps. Mesh is the number of mesh points. V alue is the approximate
value of an American option by using Rannacher timestepping with variable timestep
sizes. û(logS, T ) is the approximate value of an American option by using ARSM or
ESM. Eabs.(logS, T ) is the absolute value of the difference in the point S of our RBF-
solution with that of Forysth et al. [9]. Time-to-maturity, T, is 0.25. The parameters
are provided in the first column of Table 2.

S = 90 S = 100 S = 110
ARSM

N M û(logS, T ) Eabs.(logS, T ) û(logS, T ) Eabs.(logS, T ) û(logS, T ) Eabs.(logS, T )

521 940 10.002189 0.001633 3.241308 5.679744e-05 1.419535 2.679948e-04

ESM

N M û(logS, T ) Eabs.(logS, T ) û(logS, T ) Eabs.(logS, T ) û(logS, T ) Eabs.(logS, T )
521 940 10.00000 0.003822 3.225347 0.015904 1.417204 0.002599

Rannacher timestepping with variable timestep sizes

Mesh M Value Eabs.(logS, T ) Value Eabs.(logS, T ) Value Eabs.(logS, T )
4065 940 10.003822 N.A. 3.241251 N.A. 1.419803 N.A.

5 Conclusions

We have implemented a RBF method to solve the PIDE boundary value
problem for pricing American and European put options on a non-dividend-
paying stock in a Merton jump-diffusion market [25]. We also compared ARSM
and ESM for determining RBF-interpolation points. Our results suggest that one
can achieve a high accuracy by implementing ARSM which involves a limited
number of interpolation points. Moreover, several drawbacks associated with
grid-based methods like the FDM have been avoided: we do not have to make
assumptions on the behavior of the solutions outside of the solution domain, we
seem to avoid the stability problems associated with explicit or implicit finite
difference schemes. Moreover, we dramatically improve the accuracy of pricing
put options in particular for small times to maturity, by implementing ARSM.
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