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Abstract 

CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms are amongst the most 

robustly associated with schizophrenia (SCZ) and bipolar disorder (BD), and recently with 

brain phenotypes. As these patients show abnormal verbal fluency (VF) and related brain 

activation, we asked whether the latter was affected by these polymorphisms (alone and in 

interaction) – to better understand how they might induce risk. We recently reported effects 

on functional VF-related (for ZNF804A-rs1344706) and structural (for both) connectivity. 

We genotyped and fMRI-scanned 54 SCZ, 40 BD and 80 controls during VF. With SPM, we 

assessed the main effect of CACNA1C-rs1006737, and its interaction with ZNF804A-

rs1344706, and their interaction with diagnosis, on regional brain activation and functional 

connectivity (psychophysiological interactions - PPI). Using public data, we reported effects 

of CACNA1C-rs1006737 and diagnosis on brain expression. 

The CACNA1C-rs1006737 risk allele was associated with increased activation, particularly in 

the bilateral prefronto-temporal cortex and thalamus; decreased PPI, especially in the left 

temporal cortex; and gene expression in white matter and the cerebellum. We also found 

unprecedented evidence for epistasis (interaction between genetic polymorphisms) in the 

caudate nucleus, thalamus, and cingulate and temporal cortical activation; and CACNA1C 

up-regulation in SCZ and BD parietal cortices. Some effects were dependent on BD/SCZ 

diagnosis. All imaging results were whole-brain, voxel-wise, and familywise-error corrected.  
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Our results support evidence implicating CACNA1C and ZNF804A in BD and SCZ, adding 

novel imaging evidence in clinical populations, and of epistasis – which needs further 

replication. Further scrutiny of the inherent neurobiological mechanisms may disclose their 

potential as putative drug targets. 

 

1. Introduction 

Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric diseases with a strong 

genetic component (a heritability of up to 80% in SCZ (Cardno et al. 1999) and 93% in BD 

(Kieseppä et al. 2004)). Recently, genome-wide association studies (GWAS) have identified 

CACNA1C and ZNF804A as significant risk genes for both SCZ and BD susceptibility 

(Gurung & Prata 2015). Nevertheless, how they induce risk for psychiatric illness remains 

relatively unknown.  

CACNA1C encodes an alpha-1 subunit of the voltage dependent L-type calcium channel 

CaV1.2. This type of channels is widely expressed in the brain and involved in, for example, 

regulation of signalling pathways, neurotransmitter release, synaptic plasticity, neuron 

excitability and specifically modulates the effects of synaptic activity on cell survival 

(Uemura et al. 2015). The rs1006737 single nucleotide polymorphism (SNP) of the 

CACNA1C gene was identified through GWAS to be associated with risk for both BD 

(Ferreira et al. 2008) and SCZ (Green et al. 2010; Nyegaard et al. 2010). This risk allele 

adenine (A) of this SNP was also associated independently with: 1) increased CACNA1C 

mRNA expression (which might affect the receptor’s activity (Bigos et al. 2010)) in induced 

human neurons; 2) increased density of CaV1.2-mediated currents (Yoshimizu et al. 2015); 

and 3) decreased expression in the human cerebellum (Gershon et al. 2014). This may 
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suggest that either an increase or decrease of calcium influx in excitable cells might be 

associated with SCZ or BD, as both could lead to changes in monoamine neurotransmitter 

synthesis and release (Gershon et al. 2014) - which has, indeed, been associated with other 

psychiatric disorders (Booij et al. 2003). 

In terms of anatomy, the same CACNA1C rs1006737 risk allele, has been associated with 

increased total and fronto-limbic white matter volume (Frazier et al. 2014), albeit only after a 

few earlier negative findings (Kempton et al. 2009; Franke et al. 2010). Regarding white 

matter, after a reported association with reduced microstructural integrity in the right 

hippocampal formation in healthy Caucasians (Dietsche et al. 2014), we have published, for 

the first time using whole-brain tract-based spatial statistics, an association with reduced 

microstructural integrity. This effect was found within SCZ subjects (but not controls or BD), 

in portions of the left middle occipital and para-hippocampal gyri, right cerebellum, left optic 

radiation and left inferior and superior temporal gyri (Mallas et al. 2016a) - consistent with 

previous voxel-based findings (Woon et al. 2014). We also found the first evidence of an 

additive interaction of the CACNA1C and ZNF804A genotype on white matter microstructure 

(Mallas et al. 2016a). Both risk alleles’ concomitant presence in BD was associated with 

decreased integrity in the body of the corpus callosum, the right superior and left anterior 

corona radiata, comparatively more than in healthy controls. This finding is consistent with 

the hypothesis that both these polymorphisms increase risk for psychosis.  

In terms of brain function, healthy risk allele (A) carriers have shown: 1) a trend for increased 

left precuneus and left inferior frontal activation in healthy volunteers during semantic verbal 

fluency (Krug et al. 2010) and, 2) a trend for increased prefrontal activation during working 

memory (Bigos et al. 2010). Both frontal effects, given that performance level was controlled 
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for, could be interpreted as lower efficiency – which is also found in SCZ relatively to 

controls (Gurung & Prata 2015). However, the latter was contested by another study that 

surprisingly found the reverse effect in healthy subjects: the risk allele homozygous showing 

less activity vs. G-allele carriers in the right dorsolateral prefrontal cortex (Paulus et al.

2014). Increased functional connectivity between that region and the bilateral hippocampal 

formations (dose-dependently) was also found, which, interestingly, mimics some ZNF804A 

rs1344706 risk allele’s findings, suggesting a common downstream pathway for both risk 

variants (Gurung & Prata 2015). As replication is key to clarify cause-effect assumptions in 

correlational approaches, we asked whether we could re-produce the above pattern of 

findings for CACNA1C’s role on brain function – and help clarify inconsistencies.  

Regarding the impact of ZNF804A rs1344706 genotype, the risk allele A has been 

extensively associated with alterations in connectivity, and, to a lesser extent, in brain 

activation (Gurung & Prata 2015). The risk allele A was recently associated in verbal fluency 

with decreased functional coupling between the left precentral gyrus/inferior frontal gyrus 

and both the left inferior frontal gyrus and the left posterior cingulate gyrus, encompassing 

the precuneus (Tecelão et al. 2018). This converges with findings showing intra- and inter- 

hemispheric prefrontal connectivity decrease (albeit not always) in other tasks (Gurung & 

Prata 2015), abnormal white matter microstructure (Mallas et al. 2016b), and with the 

disconnection hypothesis of SCZ (Gurung & Prata 2015). Finally, the risk allele A was also 

associated during verbal fluency with higher regional activation in BD, but the reverse in 

healthy controls, in the left inferior frontal gyrus, pars opercularis/triangularis (Tecelão et al. 

2018), supporting a previous finding in healthy subjects during theory-of-mind (Gurung & 

Prata 2015). 
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Thus, in addition, in this study we assessed, for the first time, interaction between these 

polymorphisms (i.e. epistasis) in clinical samples of BD and SCZ. We inferred the main 

effect of CACNA1C rs1006737 genotype (or, rather, the linkage disequilibrium block it tags) 

and its interaction with ZNF804A rs1344706 genotype, on regional brain activations and 

functional connectivity, including that under psychophysiological interaction (PPI), during 

verbal fluency – across healthy volunteers, and SCZ and BD patients. We also tested for 

genotype associations that would be dependent on diagnosis. We used verbal fluency as we, 

using an overlapping sample to the present one (Prata et al. 2009a), and others, have shown 

that it is (Curtis et al. 1998, 1999, 2001; Fu et al. 2005) – as are its neural correlates 

(Krabbendam et al. 2005; Daban et al. 2006) - impaired in psychosis, especially in SCZ. 

CACNA1C risk allele A was expected to be associated with less efficient regional activation 

and with functional connectivity disruptions during verbal fluency. This is given previous 

evidence of its effect on regional activation (Bigos et al. 2010; Krug et al. 2010), and 

functional (Paulus et al. 2014) and structural (Dietsche et al. 2014; Woon et al. 2014; Mallas 

et al. 2016a) connectivity. We also expected that these individual effects of the risk allele 

might be augmented by the presence of the risk allele A of ZNF804A rs1344706 which we 

have recently found to have a putatively detrimental effect during the same task and sample 

as the present ones – i.e. of decreased left ipsilateral prefrontal functional connectivity across 

diagnoses (Tecelão et al. 2018).  In other words, we predicted that the presence of both risk 

alleles would be associated with the most inefficient activation and/or disrupted functional 

connectivity – mimicking our abovementioned findings in white matter (Mallas et al. 2016a).  

To lend possible converging evidence to our neuroimaging findings, we further enquired, 

using an online public brain gene expression database, whether these SNPs affected gene 
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expression (i.e. were expression quantitative trait loci; eQTLs) in each of 10 post-mortem 

human brain areas. With a second database, we tested diagnosis-wise differences in these 

genes’ expression in several brain areas (comparing SCZ, BP and healthy subjects). 

2. Materials and Methods 

2.1. Sample 

Our sample consisted of 174 English native speakers, the majority (93%) Caucasian, 

including a control group comprised of 80 healthy volunteers (34 males, 39±13 y.o.) with no 

history, or first degree family history, of a psychotic spectrum disorder, 54 patients with 

established SCZ (42 males, 37±11 y.o.) and 40 with BD (16 males, 40±12 y.o., 75% of which 

with a history of psychosis). Patients were recruited from the South London and Maudsley 

(SLaM) NHS Trust. Diagnosis, according to the criteria of the Diagnostic and Statistical 

Manual of Mental Disorders (DSM) 4th Edition (American Psychiatric Association 1994), was 

ascertained by an experienced psychiatrist using a structured diagnostic interview with 

instruments detailed elsewhere (Prata et al. 2009b). All SCZ and BD patients were in a stable 

clinical state. Exclusion criteria applied to all participants were a history of significant head 

injury and current (last 12 months) substance dependency according to DSM-IV diagnostic 

criteria. The study was approved by the National Health Service (NHS) South East London 

Research Ethics Committee, UK (Project “Genetics and Psychosis (GAP)” reference number 

047/04). All subjects gave written informed consent.  

Genotyping for the CACNA1C rs1006737 and the ZNF804A rs1344706 SNPs was 

performed using standard genotyping techniques we previously described (Mallas et al. 

2016a, 2016b). Possible genotype outcomes for CACNA1C were A homozygous (AA, 
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adenine-adenine), heterozygous (AG, adenine-guanine) and G homozygous (GG, guanine-

guanine), and for ZNF804A were A homozygous (AA, adenine-adenine), heterozygous (AC, 

adenine-cytosine) or C homozygous (CC, cytosine-cytosine). Given the unbalanced 

frequency of allele counts in the Caucasian population (very low frequency of the allele A for 

the CACNA1C genotype and the allele C for the ZNF804A genotype), we grouped the 

CACNA1C risk allele A homozygotes with the CACNA1C heterozygotes (AA+AG) and the 

ZNF804A non-risk allele C homozygotes with the ZNF804A heterozygotes (AC+CC). 

Quality control-wise, the distribution of Caucasian genotype frequencies for the CACNA1C 

(0.18 AA, 0.42 AG, 0.40 GG) and the ZNF804A (0.46 AA, 0.39 AC, 0.15 CC) was 

consistent with Hardy-Weinberg Equilibrium, in patients (Ç2 

(ZNF804A/CACNA1C)=1.60/1.69, df=1, p-value=0.21/0.19 and controls (Ç2 

(ZNF804A/CACNA1C)=1.07/0.84, df=1, p-value=0.30/0.36). Sample size, in each 

diagnostic group, and for a ZNF804A and CACNA1C genotype-genotype combination were, 

respectively: 1) in healthy controls: 26 AA-[AA+AG], 14 AA-GG, 23 [AC+CC]-[AA+AG], 

and 17 [AC+CC]-GG; 2) in BD patients: 11 AA-[AA+AG], 6 AA-GG, 14 [AC+CC]-

[AA+AG], and 9 [AC+CC]-GG; and 3) in SCZ patients: 16 AA-[AA+AG], 11 AA-GG, 16 

[AC+CC]-[AA+AG], and 11 [AC+CC]-GG. The sample’s demographics are described in 

detail in Supplementary Table 1. 

 

Demographic differences between diagnostic and/or genotype groups were analysed using the 

R software (R Core Team 2016) using Ç-square tests for categorical variables and 

independent t-tests and analysis of variance (ANOVA) for continuous variables. There were 

no significant differences in age, years of education, ethnicity or handedness between the 
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groups of diagnosis, genotypes or genotypes in each diagnosis. As expected, IQ significantly 

differed (p<0.001) between diagnoses, being significantly lower in SCZ compared to controls 

(or BD) – but there were no significant differences in IQ between genotype groups (of either 

gene). Diagnoses also significantly (p<0.001) differed in gender with more males in SCZ 

than in BD and more females in controls than in SCZ. The patient groups differed in 

chlorpromazine (CPZ) equivalents in medication (p<0.001) with SCZ having a higher load 

than BD, as expected given current treatment strategies. 

2.2.Verbal Fluency Task and Image Acquisition 

The verbal fluency task and image acquisition was performed as previously described 

elsewhere (Fu et al. 2002) (see Supplement 2 for details). Briefly, subjects were required to 

overtly generate a word starting with a visually displayed letter; or overtly read the word 

“rest” (control or “repetition” condition). Task difficulty, although not factored in the group 

analysis, was manipulated by presenting separate, and counterbalanced, sets of “easy” and 

“hard” letters (Fu et al. 2002). 

2.3. Neuroimaging Analysis 

Data preprocessing was performed using SPM software (University College London, UK) 

running under Matlab 8.3 (The Mathworks, Inc., USA). All volumes from each subject were 

realigned and unwarped (using the first slice as reference), with a separation of 4mm between 

the points sampled in the reference image, a 5 mm full width at half maximum (FWHM) 

isotropic Gaussian kernel applied to the images before estimating the realignment parameters, 

and 2nd degree B-spline interpolation. Normalization to the functional MNI template (EPI) 
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was then performed using a voxel size of 2x2x2mm and trilinear interpolation. Spatial 

smoothing was carried out with an 8 mm FWHM isotropic Gaussian kernel. The remaining 

realignment, unwarping, normalization and smoothing parameters corresponded to the default 

choices.

After the pre-processing steps, statistical analysis of regional responses in a subject-specific 

fashion was performed using SPM, by convolving each onset time with a synthetic 

haemodynamic response function (HRF) (Mechelli et al. 2008). The ensuing event-related 

(general linear) model comprised five experimental regressors: 1) easy; 2) repetition-easy; 3) 

hard; 4) repetition-hard; 5) incorrect responses. The latter was excluded from the group 

analysis so we could control for differences in task performance (and, as such, restrict our 

inferences to scans corresponding to correct responses). Data were high-passed filtered with a 

cut-off period of 128s using a set of discrete cosine basis function. Parameter estimates were 

calculated for all brain voxels using a general linear model,and contrast images for ‘verbal 

fluency (easy plus hard) > repetition (easy plus hard)’ were computed for each subject to test 

for a main effect of task. The second (between-subject or group) level inferences were made 

using the standard summary statistic approach. This involved entering the subject-specific 

contrast images for “verbal fluency (easy plus hard)>repetition (easy plus hard)” into a 3x2x2 

full-factorial ANOVA (‘Diagnosis’x‘ZNF804A-genotype’x‘CACNA1C-genotype’). [A 

complementary analysis was performed where the levels of ‘Diagnosis’ were ‘healthy 

volunteers’ and ‘patients with psychosis’ (i.e. all SCZ plus 75% of the BD patients)]. Since 

the superior region of the prefrontal cortex was not scanned in a sub-group of subjects, it was 

automatically excluded from the group analyses. We tested the main effect of CACNA1C 

genotype and of its interaction with ZNF804A genotype and/or with diagnosis. The main 
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effect of ZNF804A genotype is not reported herein, as it has already been reported in a 

previous study using the same sample (Tecelão et al. 2018), and the effect of task has also 

been described in a highly overlapping sample (Prata et al. 2009a). The main effect of 

diagnosis is reported as supplementary material, as it has been discussed using a subset of the 

present sample earlier (Prata et al. 2009a).  

 

For functional connectivity, we used the same subject and group-level models as above, this 

time using (instead of activation) coupling (i.e. time-correlated activation) between each 

subject-specific seed region and the remaining brain. Those seeds were defined, per subject, 

as the coordinates where the main effect of task was the highest, within a 6-mm radius sphere 

ROI centred on the group maximum (i.e. left precentral gyrus/inferior frontal gyrus, pars 

opercularis, tagged by its peak coordinates: -44 4 34). To test for condition-specific changes 

in connectivity we used a PPI analysis, using the same previous subject and group level 

models and the seed approach as above. By including an interaction between the 

physiological and the psychological (verbal fluency) regressors, we tested for the ensuing 

psychophysiological interaction. Effectively, this reflects the change in directed (effective) 

connectivity mediated by the task – as evaluated under a simple linear model of coupling 

between the seed region and the remaining brain. The PPI regressor was formed by 

multiplying the seed time-series with the HRF convolved task (using “verbal fluency (easy 

plus hard)>repetition (easy plus hard)” contrast). The resulting PPI vector was then used as a 

regressor in the subject-level analysis, with both the seed time-series and the HRF convolved 

task as covariates of no interest.  
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In addition to a whole-brain approach, we ran one additional analysis with selected regions-

of-interest (ROIs) reported in two previous studies finding an effect of CACNA1C rs1006737 

in semantic verbal fluency (Krug et al. 2010) and working memory (Bigos et al. 2010). These 

ROIs were derived from the automated anatomical atlas (AAL) (Tzourio-Mazoyer et al.

2002) and the Talairach Daemon database in Wake Forest University PickAtlas (Lancaster et 

al. 1997, 2000; Maldjian et al. 2003) (version 3.0.5). From the former (Krug et al. 2010) we 

derived a mask formed by the left precuneus and inferior frontal gyrus, and from the latter 

(Bigos et al. 2010), one comprising the Brodmann areas 9, 10 and 46. Additionally, the 

selected ROI masks were also defined using 10 mm spheres centred in their respective peak 

coordinates (obtained from the given studies). These post-hoc analyses allowed us to further 

clarify inconsistences in the published literature.  

 

Significant findings are reported as so, if they survive voxel-wise familywise rate error 

(FWE) correction for multiple comparisons at p<0.05 across the whole brain (or within the 

ROI, for the ROI analyses), and at a cluster size e5. All other results are considered ‘trends’. 

In order to assess how much of the inter-individual (+ error) variance in blood oxygen level-

dependent activation on the voxel of peak effect of each reported effect was explained by 

genotype, we calculated the p

2 (partial eta squared) measure of effect size using R software 

(R Core Team 2016). Brain regions are labelled using an automatic-labelling atlas (Tzourio-

Mazoyer et al. 2002)  and confirmatory visual inspection of a manual book atlas (K. Mai et 

al. 2008). Post-hoc analysis exploring the driving force of the significant interaction effects 

between genotypes and/or diagnosis are contained as supplementary material. Finally, in 

order to ascertain that none of our extraneous variables confounded, or added significant 
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noise to our imaging results, extra analyses were performed as described in supplementary 

material 2. 

 

2.4. Gene expression analyses  

To test whether the CACNA1C rs1006737 risk variant (or other variants tagged by it in the 

same linkage disequilibrium block) affected any genes’ mRNA expression level (i.e. was an 

eQTL), we used the publicly available Braineac database - which includes genotypic and 

microarray profiling of 10 brain regions of 134 neuropathologically normal individuals with 

European descent (Ramasamy et al. 2014) (cerebellar cortex, frontal cortex, hippocampus, 

medulla oblongata, occipital cortex, putamen, substantia nigra, temporal cortex, thalamus, 

and intralobular white matter). Expression levels from exon-specific probes and total 

transcripts (Winsorised mean over exon-specific levels) were used to determine the 

association between this SNP and the expression of mRNA of all genes distant less than 1MB 

(cis-eQTL analysis), considering its transcription initiation site. We focused on cis-eQTL 

associations as these are more likely to truly reflect direct effects of a genomic variant on 

gene expression (Bryois et al. 2014). More detailed information is described in the Braineac 

database (Ramasamy et al. 2014). The same approach was followed for ZNF804A rs1344706 

in our recent paper regarding that gene (Tecelão et al. 2018). 

For completeness, we also analysed Allen Brain Atlas data to define maps of CACNA1C 

expression in the human brain. Normalized log2 expression data relative to 3 probes targeting 

CACNA1C mRNA were downloaded. The probe presenting higher variance was selected 

based on the fact that it may more accurately represent gene distribution across the brain 

This article is protected by copyright. All rights reserved.



 

structures available. Mean-normalized z-scores were then calculated. Enriched areas were 

defined for a threshold of Z-score >1.    

3. Results 

3.1. Regional activation  

 Effect of genotype 

 

3.1.1.  Main effect of CACNA1C 

Irrespective of diagnosis, the CACNA1C rs1006737 risk allele A was significantly associated 

(voxel-level FWE p<0.05) with greater activation in the right (R) thalamus (Z=4.44, 

· p

2=2.95%), and the left (L) middle frontal gyrus (Z=4.32; Figure 1; Table 1). At a trend level 

(i.e. with a cluster less than 5 voxels, k<5), the same effect was found in the L thalamus 

(Z=4.27, · p

2=3.02%). 

When inspecting each diagnostic group separately, we found that in the BD group alone, the 

above effect was also significant (whole-brain voxel-level FWE p<0.05) in some of the above 

areas, plus others: the R thalamus (Z=4.89, · p

2=17.7%), the L middle (Z=4.71 and Z=4.21) 

and superior (Z=4.56) frontal gyrus, the R superior (Z=4.53) and middle (Z=4.47 and 

Z=4.25) temporal gyri and, as a trend, in the L calcarine sulcus (occipital gyrus; Z=4.28 and 

Z=4.22). The same genotype had an effect in another region of the R middle temporal gyrus 

(Z=4.25) but associated with decreased deactivation. No other diagnostic group alone showed 

significant effects of CACNA1C genotype. 

When inspecting only patients with a history of psychosis, we found that the risk allele A was 

associated as a trend with decreased deactivation in the R precuneus (Z=4.24, · p

2=9.61%). 
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3.1.2. CACNA1C by diagnosis interaction  

The effect of increased activation associated with risk allele A was significantly (voxel-level 

FWE p<0.05) higher in BD than in healthy volunteers in the superior temporal gyrus 

bilaterally (Z=4.72, · p

2=7.35% and Z=4.29, · p

2=6.52%; Figure 2) and R middle temporal gyrus 

(Z=4.53). The same effect was found in the L occipital gyrus (Z=4.67), the L calcarine sulcus 

(occipital gyrus; Z=4.34 and Z=4.30) and L lingual gyrus (Z=4.21). Furthermore, this effect 

was found as a trend in the R angular gyrus (Z=4.36; in which it signified lower 

deactivation), and in the L middle frontal gyrus (Z=4.24). The same genotype effect was also 

higher as a trend in SCZ patients than in controls in the R inferior frontal gyrus, pars 

opercularis (Z=4.31, · p

2=7.41%). No significant interaction effects were found when 

contrasting BD and SCZ. 

 

The effect of increased activation associated with the risk allele A mentioned above in the L 

calcarine sulcus (occipital gyrus; Z=4.69, · p

2=7.32%) and in the L middle frontal gyrus 

(Z=4.30), but not in the other regions, was significantly higher in psychotic patients as a 

whole than in healthy volunteers (voxel-level FWE p<0.05). 

 

3.1.3. CACNA1C by ZNF804A genotype epistasis 

Irrespective of diagnostic group, there was no significant interaction between genotypes 

anywhere in brain. 
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When inspecting the healthy volunteers group alone, a significant 2-way genotype (at whole-

brain voxel-level FWE p<0.05) interaction was found (Table 1): CACNA1C risk allele 

carriers activated less than non-risk allele homozygotes, within the ZNF804A risk allele 

homozygotes group, but the reverse was seen for ZNF804A non-risk allele carriers. This 

effect was found bilaterally in the precuneus (Z=5.05, · p

2=15.39% and Z=4.73), posterior 

cingulate gyrus (Z=5.05 and Z=4.42), calcarine sulcus (occipital gyrus; Z=4.42 and Z=4.31) 

and thalamus (Z=4.75, 4.64 and Z=4.40). This same effect was found as a trend (k<5) in the 

L lingual gyrus (Z=4.26), R middle cingulate gyrus (Z=4.24) and R superior temporal gyrus 

(Z=4.21). (Note that, bilaterally in the precuneus and posterior cingulate gyrus and in the R 

calcarine sulcus (occipital gyrus) and superior temporal gyrus, the effect signified increased 

deactivation). 

No other significant interactions between the ZNF804A and CACNA1C genotypes were found 

when inspecting the BD, SCZ alone or all patients with a history of psychosis groups as a 

whole. 

3.1.4. ZNF804A by CACNA1C by diagnosis interaction 

There were significant 3-way interactions between the ZNF804A genotype, CACNA1C 

genotype and diagnosis (at voxel-level FWE p<0.05; Table 1). The above genotype 

interaction effect significant in healthy subjects, was reversed in BD in the anterior 

cerebellum (vermis; Z=4.56, · p

2=13.90%), the R thalamus (Z=4.55 and Z=4.37; Figure 3) and 

both hemisphere caudate nucleus (Z=4.52 and Z=4.46); and in SCZ in the L superior 

(Z=4.65, · p

2=8.82%; Figure 3) and middle (Z=4.55) temporal gyri. This means that, in their 

respective areas, in each patient group, the CACNA1C risk allele carriers activated more 

(which in the anterior cerebellum, for this task, signifies decreased deactivation) than non-
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risk allele homozygotes, in the ZNF804A risk allele homozygotes group, but the reverse was 

seen for ZNF804A non-risk allele carriers. 

 

When comparing both patient groups, this genotype interaction effect was found, as trend 

(k<5), to be more pronounced in BD than in SCZ in the R medial caudate nucleus (Z=4.20, 

· p

2=10.24%).  

The previous genotype interaction was also found, at trend level, to be more pronounced in 

patients with a history of psychosis than in controls in the R anterior thalamus (Z=4.20, 

· p

2=8.87%).  

3.2. Psycho-physiological interaction connectivity 

For the CACNA1C SNP, there was a significant (voxel-level FWE p<0.05) genotype by 

diagnosis interaction in condition-specific connectivity between the seed region (L precentral 

gyrus/inferior frontal gyrus) and the L superior temporal gyrus (Z=5.07; Figure 1), L middle 

temporal gyrus (Z=4.80), whereby the risk allele carriers showed decreased connectivity 

versus non-risk allele homozygotes in SCZ, but not in controls (Table 1). In addition, this 

same interaction effect was found, as trend, in the L supramarginal gyrus (Z=4.29), and, in 

the SCZ alone, in the L superior temporal gyrus (Z=4.36). Inspecting the control group alone, 

we found increased connectivity between the seed region and the R precuneus (Z=4.51).  

No significant epistatic effects, or of diagnosis, were found.  

 

3.3. Region-of-interest analysis 
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No significant genotype effects were found at voxel-level FWE p<0.05 when using either a 

mask using the pre-selected Brodmann areas or spheres to restrict the analysis to previously 

implicated brain areas in the published literature. 

3.4. Potentially confounding factors 

We found no variable to have an effect (at p<0.01, uncorrected) on brain activation in areas 

that we report as being under a genotype effect. We also found no relevant change in effect 

size or foci of activation of genotype effects when these variables were introduced in the 

SPM ANOVA. Thirdly, no variable correlated with the peak activations values retrieved from 

our genotype effect analyses. 

 

3.5. Gene expression  

Using the Allen Brain Atlas, we found CACNA1C rs1006737 risk allele A to be associated 

with reduced mRNA levels of CACNA1C in total transcript levels (p>0.05, FDR-corrected) 

in the cerebellum and trends for exon-specific probes in the cerebellum and white matter 

(Supplementary Table 6). CACNA1C enriched areas were identified in the thalamic nuclei, 

denteate gyrus, frontal and occipital poles. Detailed information is presented in 

supplementary material 6. 

 

4. Discussion

In summary, we assessed the main effect of CACNA1C rs1006737 genotype and, 

unprecedentedly, its epistatic interplay with ZNF804A rs1344706 - and whether these effects 
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were altered in SCZ and BD groups - in regional brain activation and functional connectivity 

during verbal fluency – a task which engages brain regions and cognitive processes impaired 

in the two disorders. We found the CACNA1C genotype to modulate both brain activation 

and task-dependent effective connectivity – as assessed with PPI. We also found some of the 

genotype effect in some brain areas to be particularly pronounced in SCZ, BD or compared to 

health. In addition, we found an interaction effect of CACNA1C and ZNF804A genotypes on 

regional brain activation.  

We found CACNA1C rs1006737 SNP to be associated with inefficient activation (i.e. 

increased activation when only correct trials were analysed, as we did) in prefrontal regions, 

which are typically implicated in SZ and BD. The superior temporal gyri bilaterally, the R 

middle temporal gyrus, the L occipital gyrus (whether or not within the calcarine sulcus area), 

and the L lingual gyrus were under a significant genotype x diagnosis interaction, whereby 

the presence of the risk allele increased inefficient activation in BD patients much more than 

in controls. Furthermore, this same effect was present, as trend, in the L middle frontal gyrus 

and R angular gyrus. In fact, in most of these areas, the genotype effect was significant in BD 

alone. The same interaction effect was also found as trend when considering SCZ versus 

controls, in the adjacent R inferior frontal gyrus, pars opercularis. When all psychotic patients 

were grouped together against controls, the interaction effects survived in the L middle 

frontal gyrus and in the L occipital gyrus within the calcarine sulcus area.  

Our above findings support previous studies implicating the same polymorphism in semantic 

verbal fluency (Krug et al. 2010) and working memory (Bigos et al. 2010) neural correlates 

(even though not consistently (Paulus et al. 2014)). However, while these studies showed this 

in healthy volunteers - not having tested a clinical population - we show it to be significantly 
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stronger in BD and SCZ, for the first time. As mentioned, given that task performance has 

been controlled for, increased activation in the risk genotype group could be interpreted as 

lower neuronal efficiency. This is compatible with the same observation of inefficiency, in an 

ill group, being found (as well as lower performance), for verbal fluency, in SCZ and, albeit 

less severely, of BD (Curtis et al. 2001, 2007; Costafreda et al. 2011; Gurung & Prata 2015). 

The rationale is that once there is impaired prefrontal capacity (provided by a risk genotype 

or illness), additional activation of local neuronal resources may be needed in order to 

maintain a good-enough task performance. No areas showed the opposite effect, i.e., over-

activation in the protective genotype group. 

Sub-cortically, the thalamus showed greater activation, bilaterally (albeit as a trend in the L 

thalamus), in risk allele carriers, irrespective of diagnosis (with the effect in the R thalamus 

also being significant in BD patients on their own). The thalamus plays a critical role in the 

coordination of information as it passes between several brain regions (Kruger 1986). A 

disruption of that information flow may give rise to some of the cardinal symptoms of SCZ 

and BD (Cronenwett & Csernansky 2010), as suggested by previous studies showing: 1) 

altered thalamic volumes in BD and SCZ patients (Radenbach et al. 2010; Smith et al. 2011); 

2) reduced neuronal density in post-mortem thalamic samples of SCZ patients (Blennow et 

al. 1996); 3) altered thalamic glutamate receptor expression and elevated dopamine in 

thalamic sub-regions (Meador-Woodruff et al. 2003); 4) emergence of SCZ-like syndromes 

when illnesses, such as stroke, selectively damage the thalamus while sparing the rest of the 

brain (Crail-Melendez et al. 2013).  

We also report, for the first time, CACNA1C and ZNF804A epistases on brain activation. We 

predicted, and found, that their respective GWAs-implicated SNPs would interact in an 
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additive manner, with the most inefficient activation occurring when both risk alleles were 

present (compared to just one or the other being present). This interaction effect was also 

significantly stronger in the SCZ and BD groups when contrasted individually against the 

control group. In SCZ, this was seen in the L superior and middle temporal gyrus and in BD, 

in the anterior cerebellum (vermis), the R thalamus and the caudate nucleus (an area 

specifically implicated in psychosis (Hannan et al. 2010)). When the psychotic patients were 

contrasted against controls, the epistatic effect was stronger, at trend level, in the R anterior 

thalamus. 

 

The abnormal thalamic responses above are quite consistent with thalamus-based 

explanations for the ‘cognitive dysmetria’ of SCZ that has been proposed to underlie 

cognitive and fluency effects in the illness (Andreasen et al. 1998); cognitive dysmetria being 

a special case of functional dysconnection. On a more general note, our results speak to the 

disconnection hypothesis of SCZ (Friston et al. 2016) at a number of levels. First, the 

polymorphisms we have shown to affect condition-specific connectivity affect the regulation 

of synaptic efficacy (and plasticity) thought to underlie the dysfunctional integration in 

syndromes like SCZ. In brief, these aberrant (usually inefficient, disinhibited) responses to 

(cognitive) task-induced processes are thought to reflect a failure of gain control, synaptic 

excitation inhibition balance or, in the context of predictive coding, precision control in 

hierarchical message passing in the brain. 

In line with the caudate nucleus being especially implicated in positive symptoms of 

psychosis, we found this area to show an additive effect of the risk alleles, which was 

stronger in SCZ than BD in the R caudate nucleus at trend level. This region belongs to the 
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striatum, which has been repeatedly implicated in the positive (i.e. psychotic) symptoms of 

SCZ (Laruelle & Abi-Dargham 1999; Kirschner et al. 2018) and with abnormal dopamine 

levels (Laruelle & Abi-Dargham 1999; Breier et al. 1997; Abi-Dargham et al. 1998; Laruelle 

et al. 1999). These findings are consistent with the hypothesis that both these polymorphisms 

increase risk for psychosis. The two-SNP additive interaction was not seen independently of 

diagnosis, nor was the opposite direction of effect seen anywhere in the brain. The former 

suggests that the existence of other factors specific to SCZ, BD or psychosis make subjects 

more susceptible to the potential detrimental effects on brain function of the simultaneous 

presence of both the risk variants of these genome-wide associated polymorphisms.  

In terms of task-specific effects on connectivity, we have also found a significant genotype 

by diagnosis interaction: the risk allele was associated with an intra-hemispheric connectivity 

decrease between the L precentral gyrus/inferior frontal gyrus, pars opercularis and the 

ipsilateral superior temporal gyrus, middle temporal gyrus and supramarginal (as trend) gyrus 

in SCZ but not in controls. In the first area, the decrease was indeed found as a trend in SCZ 

alone. These cortical effects are particularly consistent with our recent results showing this 

risk variant to be associated with decreased microstructural white matter integrity also in the 

L inferior and superior temporal gyri, and also found in SCZ only (Mallas et al. 2016a). 

Further support comes as well from reduced white matter integrity findings from others, also 

specifically in SCZ patients and in the same hemisphere and cortical areas: L temporal lobe 

(Woon et al. 2014) (more precisely in the L inferior and superior temporal gyrus (Mallas et 

al. 2016a)) and L parietal lobe (Woon et al. 2014). Our results are also consistent with 

previous independent findings in emotional face processing whereby the risk allele is 
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associated with amygdalar functional connectivity with the L fronto-temporal areas (Wang et 

al. 2011).  

Importantly, the above effects on functional and structural connectivity are further consistent 

with our gene expression findings: a novel association of the CACNA1C rs1006737 risk allele 

with reduced mRNA levels of CACNA1C in white matter. This has also been independently 

found in the superior temporal gyrus (Eckart et al. 2016), an area typically affected in BD and 

SCZ (Ratnanather et al. 2013). Nevertheless, other studies with the dorsolateral prefrontal 

cortex (Bigos et al. 2010) and human induced-neurons (Yoshimizu et al. 2015), suggest the 

risk allele may also increase CACNA1C transcription at least in other areas - which may 

reflect a very finely tuned regulation of this gene in the brain.  

The risk allele association with reduced gene expression was also found in the cerebellum – 

which is a direct replication of a previous independent work (Gershon et al. 2014). Indeed, 

we found this area to be recruited in ‘verbal fluency’ compared to ‘repetition’ (control) trials 

(Tecelão et al. 2018), as has been implicated by others using this task  (Peterburs et al. 2010). 

Further studies using specific cerebellum-recruiting paradigms (i.e. sensorimotor tasks) will 

allow a clearer examination of this polymorphism’s impact on cerebellar function.   

Finally, we provide a brain region- and structure-based map of CACNA1C mRNA 

distribution in the human brain. We identified the thalamic nuclei, the dentate gyrus, and the 

frontal and occipital poles as areas enriched in CACNA1C mRNA expression. Although 

limited by the possible discordance between mRNA and protein levels, this is the most 

detailed map so far published of the putative distribution of CACNA1C in the human brain. 

The data gathered may improve the interpretation of both future pharmaco-imaging and 

imaging genetics endeavours exploring the role of this channel in the human brain, based on 
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the fact that if positive findings could be achieved it is more likely that they appear in areas 

where the channel is most expressed and presumably more important from a functional point 

of view.  

As a limitation of our ANOVA interaction tests, we note that the size in each of the smallest 

homogeneous groups (or “cells” in the parametric design matrix) which combine the 

diagnostic group, the ZNF804A rs1344706 and the CACNA1C rs1006737 genotype, is 

modest, albeit the vast majority (10 in 12 groups) is over 10 subjects and up to 26 subjects 

(see Materials and Methods). Although the sample size we used herein compares well with 

that of contemporary functional imaging genetic studies of these and other SCZ- and BD-risk 

polymorphisms (Gurung & Prata 2015), we recommend future independent and meta-

analytical evidence is gathered to confirm these genes’ role, and their interplay, at the 

systems brain level. 

 

5. Conclusions 

We have shown an effect of CACNA1C rs1006737 on brain activation, task-dependent 

functional connectivity and gene expression. We have also found unprecedented evidence of 

epistasis of CACNA1C and ZNF804A genotypes on brain activation during verbal fluency. 

Several of these effects were highly dependent on both BD or SCZ diagnosis. Taken together, 

our results support genetic and neuroimaging genetics evidence implicating CACNA1C and 

ZNF804A polymorphisms in BD and SCZ.  Although current evidence on the clinical 

efficacy of calcium channels blockers in the treatment of psychosis (i.e. BD mania) is 

insufficient to support its use in the clinical practice (Levy & Janicak 2000), further studies 

scrutinizing the neurobiological mechanisms by which dysregulation of CACNA1C may 
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affect neuronal function and, as such, increase the risk for psychosis should be encouraged. 

These studies will be critical for our understanding of the pathophysiological mechanisms of 

these disorders and, from there, putatively derive new drug targets to improve their clinical 

management.  
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Figure legends

Figure 1 – Effects on “verbal fluency > repetition” brain activation (Part A) and on 

psychophysiological interaction (PPI, i.e. task-dependent effective connectivity) with the seed 

L precentral gyrus/inferior frontal gyrus, pars opercularis (Part B) (the area most recruited for 

verbal fluency) at whole-brain voxel-level FWE p<0.05. Part A: Main effect of CACNA1C 

rs1006737 genotype in the L Middle frontal gyrus (plotted), where risk allele (A) carriers 
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activated more than G homozygotes, particularly so in BD patients. Part B: Interaction of 

CACNA1C rs1006737 genotype and SCZ diagnosis on PPI, where the risk allele A carriers 

show decreased connectivity between the seed and L superior and middle temporal gyrus 

(plotted) in SCZ patients but the opposite in healthy controls. 

 

 
Figure 2 – Interaction of CACNA1C rs1006737 genotype with diagnosis on “verbal fluency > 

repetition” brain activation, where the risk allele (A) was associated, at whole-brain voxel-

level FWE p<0.05, with increased activation in BD patients but the opposite in healthy 

controls, in the L superior temporal gyrus (plotted) as well as in its R homologue. 

 
Figure 3 – Three-way interactions between the ZNF804A rs1344706, CACNA1C rs1006737 

genotype and diagnosis on “verbal fluency > repetition” activation. Among the CACNA1C 

risk allele (A) carriers, ZNF804A risk allele A homozygotes activated more than their 

counterparts, whereas the opposite applied in CACNA1C non-risk allele (G) homozygotes, at 

whole-brain voxel-wise FWE p<0.05. Part A: Interaction, where BD and controls were 

contrasted, in the R thalamus (plotted) and caudate nucleus bilaterally. Part B: Interaction, 

where SCZ and controls were contrasted, in the L superior and middle temporal gyrus 

(plotted). 
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Table 1 – Regions under an effect of CACNA1C rs1006737, the risk allele being allele 

A. All inferences correspond to results corrected for whole-brain voxel-wise FWE 

multiple comparisons correction at p<0.05. Cluster size (k) is given only for the peak of 

each cluster. 

1. Regional activations 

1.1. Effect of CACNA1C genotype 

Contrasts Regions 

Coordinates 

(x y z) 

Z-score (Z), voxel-wise 

FWE corrected p-value 

(p), cluster size (k) 

AA + AG > GG 

R Thalamus 24 -16 0 Z=4.44, p=0.019, k=8 

L Middle frontal gyrus -22 32 28 
a 

Z=4.32, p=0.031, k=5 

L Thalamus
 * 

-14 -8 -6 
a 

Z=4.27, p=0.038, k=1 

AA + AG > GG 

in BD 

R Thalamus 24 -16 2 Z=4.89, p=0.003, k=50 

L Middle frontal gyrus 

 

-26 26 30 
a
 Z=4.71, p=0.007, k=25 

-28 40 22 
*,a

 Z=4.21, p=0.047, k=3 

L Superior frontal gyrus -18 32 28 
a
 Z=4.56, p=0.012 

R Superior temporal gyrus 52 -28 -2 Z=4.53, p=0.014, k=28 

R Middle temporal gyrus 

52 -30 -2 Z=4.47, p=0.017 

42 -48 20 
a, b

 Z=4.25, p=0.041, k=7 

L Calcarine sulcus 

(occipital gyrus) 
*
 

2 -78 -6 Z=4.28, p=0.037, k=2 

-2 -96 10 Z=4.22, p=0.046, k=2 

(AA + AG > 

GG) & (BD > 

R Superior temporal gyrus  50 -26 -2 
a 

Z=4.72, p=0.006, k=49 

R Middle temporal gyrus 52 -28 -4 Z=4.53  
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CON) L Superior temporal gyrus -52 -22 8 Z=4.29, p=0.036, k=6 

L Occipital gyrus -2 -96 8 Z=4.67, p=0.008, k=12 

L Calcarine sulcus 

(occipital gyrus) 

-20 -68 8 Z=4.34, p=0.029, k=45 

-6 -72 10 Z=4.30, p=0.034 

L Lingual gyrus 0 -72 8 Z=4.21, p=0.047 

R Angular gyrus 
*,b 

42 -66 38 
a 

Z=4.36, p=0.027, k=1 

L Middle frontal gyrus 
* 

-32 48 20 
a 

Z=4.24, p=0.043, k=2 

(AA + AG > 

GG) & (SCZ > 

CON) 

R Inferior frontal gyrus, 

pars opercularis 
* 

60 16 14 Z=4.31, p=0.032, k=3 

AA + AG > GG 

in PSYCH 

R Precuneus
 *,b

 14 -50 14 
a 

Z=4.24, p=0.042, k=1 

(AA + AG > 

GG) & (PSYCH 

> CON) 

L Calcarine sulcus 

(occipital gyrus) 

-20 -66 10 Z=4.69, p=0.007, k= 53 

L Middle frontal gyrus -32 48 18 
a
 Z=4.30, p=0.033, k=10 

1.2. Effect of CACNA1C x ZNF804A genotype interaction 

(AA + AG < 

GG) & (AA > 

AC + CC) in 

CON 

L Precuneus 
c 

-2 -52 20 Z=5.05, p=0.001, k=223 

R Precuneus 
c
 2 -52 20 Z=4.73, p=0.006 

L Posterior cingulate gyrus 
c
 -2 -50 20 Z=5.05, p=0.001 

R Posterior cingulate gyrus 
c
 2 -44 16 

a 
Z=4.42, p=0.021 

L Calcarine sulcus (occipital 

gyrus) 

-2 -58 12 Z=4.42, p=0.021 

R Calcarine sulcus 

(occipital gyrus) 
c
 

2 -58 14 Z=4.31, p=0.033 

R Thalamus 8 -8 10 Z=4.75, p=0.005, k=237 
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2 -20 2 Z=4.64, p=0.009 

L Thalamus -2 -20 4 
a
 Z=4.40 

L Lingual gyrus 
* 

-8 -36 2
 a
 Z=4.26, p=0.040, k=3 

R Middle cingulate gyrus 
* 

-2 -28 26 
a
 Z=4.24, p=0.043, k=2 

R Superior temporal gyrus 

*,c
 

64 -22 16 Z=4.21, p=0.048, k=1 

(AA + AG > 

GG) & (AA > 

AC + CC) & 

(BD > CON) 

Anterior Cerebellum 

(Vermis) 
b 

2 -50 10 Z=4.56, p=0.012, k=24 

R Thalamus 

8 -4 14 Z=4.55, p=0.013, k=63 

4 -14 18 
a, d

 Z=4.37, p=0.026 

L Caudate nucleus -14 -4 16 
a
 Z=4.52, p=0.015, k=26 

R Caudate nucleus 12 -2 14 
a
 Z=4.46, p=0.018 

(AA + AG > 

GG) & (AA > 

AC + CC) & 

(SCZ > CON) 

L Superior temporal gyrus -52 -44 12 
a 

Z=4.65, p=0.008, k=45 

L Middle temporal gyrus -54 -44 10 
a 

Z=4.55, p=0.012 

(AA + AG > 

GG) & (AA > 

AC + CC) & 

(BD > SCZ) 

R Caudate nucleus 
* 

12 –2 16 
e
 Z=4.20, p=0.049, k=1 

(AA + AG > 

GG) & (AA > 

AC + CC) & 

(PSYCH > 

CON) 

R Thalamus 
* 

6 -14 14 
a, d

 Z=4.20, p=0.050, k=1 
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2. Psychophysiological interaction with L Precentral gyrus/inferior frontal gyrus, 

pars opercularis (seed corresponding to peak of main effect of task) 

2.1. Effect of CACNA1C genotype 

(AA + AG > 

GG) & (SCZ < 

CON) 

L Superior temporal gyrus -52 -44 14 
a
 Z=5.07, p=0.002, k=60 

L Middle temporal gyrus -52 -46 14 
a 

Z=4.80, p=0.006 

L Supramarginal gyrus 
* 

46 -40 32 
a 

Z=4.29, p=0.044, k=2 

AA + AG < 

GG in SCZ 

L Superior temporal gyrus 
* 

-52 -44 14 
a
 Z=4.36, p=0.034, k=3 

AA + AG > 

GG in CON
 f
 

R Precuneus 14 -62 34 
a 

Z=4.51, p=0.018, k=15 

* 
Trend results: clusters with less than 5 clusters. 

a
 Peak localized in the nearby white matter. 

b
 Region associated with decreased deactivation. 

c
 Regions associated with increased deactivation. 

d
 Anterior part of the thalamus. 

e
 Medial part of the caudate nucleus. 

f
 Only present in the ANOVA comprising controls and patients experiencing psychosis. 

AA, adenine-adenine; AG, adenine-guanine, GG, guanine-guanine; BD, bipolar 

disorder; SCZ, schizophrenia; PSYCH, patients with a history of psychosis; R, right; L, 

left. 
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