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Abstract 
Developing an accurate and reliable time-averaged beach profile evolution model under 
normal and storm conditions is a challenging task. Over the last few decades, a number of 
beach deformation models have been developed under limited experimental conditions and 
uncertainties, and sometimes they required a long computation time. It is quite evident that a 
large amount of wave, current, sediment and beach profile data is available today. The 
present study leads to the development of a simple two-dimensional beach profile evolution 
model with on-offshore sand bar formation under non-storm and storm conditions based on 
the time-averaged suspended sediment concentration models of Jayaratne & Shibayama 
[2007] and Jayaratne et al. [2011]. These models were formulated for computing sediment 
concentration in and outside the surf zone under three different mechanisms: 1) suspension 
due to turbulent motion over sand ripples, 2) suspension from sheet flow layer and, 3) 
suspension due to turbulent motion under breaking waves. The suspended load is calculated 
by the product of time-averaged sediment concentration and undertow velocity from edge of 
the wave boundary layer to wave trough, and mass transport velocity from wave trough to 
crest (bore-like wave region). Sediment transport in wave boundary layer is computed from 
the modified Watanabe [1982] model. Rattanapitikon and Shibayama [1998] wave model is 
used to calculate the average rate of energy dissipation due to wave breaking. The beach 
deformation is calculated from the conservation of sediment mass while the avalanching 
concept of Larson and Kraus [1989] is used to re-distribute the sediment mass in 
neighbouring grids for a steady solution. Published field-scale experimental and natural beach 
profiles from 5 high-quality data sources from 1983-2009 [Kajima et al., 1983; Kraus and 
Larson, 1988; Port and Airport Research Institute, Japan, 2005, 2009; Hasan & Takewaka, 
2007, 2009; Ruessink et al., 2007] are used to verify the performance of the proposed 
numerical model. The key feature in this process-based model is that it takes about a couple 
of minutes to simulate beach profiles of a 2-3 days storm qualitatively at a fairly satisfactory 
level using a standard personal computer. It is found that the present numerical predictions 
are not better than the null hypothesis as the model is in a stage of ongoing development. 
Therefore, it is believed that the final model is often more value to a practical coastal 
engineer than a very detailed study of hydrodynamics and sediment transport study, however 
an incorporation of swash dynamics, more precise evaluation of offshore sand bar formation 
and continuation to a longer time scale with precise beach deformation is recommended as 
the next stage of the model.  
 
Key words: Two-dimensional beach profile evolution model; time-averaged suspended sediment 
concentration; on-offshore sand bar formation; average rate of energy dissipation; conservation of 
sediment mass; avalanching concept; field-scale experimental and natural beach profile data; process-
based model; standard personal computer; practical coastal engineer. 
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1 Introduction 

1.1 General 

In recent years, the utilisation of coastal areas has steadily been increasing for human 

activities such as habitation, transportation and tourism. Protection of the coastal environment 

from wind-induced high waves and extreme events exacerbated by global warming has 

become a task of paramount importance. Coastal zone management requires a quantitative 

predictive capability that represents beach profile changes due to such events. To tackle this 

problem, numerical tools have gradually evolved as a powerful methodology to predict cross-

shore sediment transport rates and beach profile evolution.  But due to the complexity of the 

sediment transport problem, a full description of these mechanisms has not reached a 

satisfactory level. Even at the current stage of research, the research is still far from complete 

and there is no thorough understanding of all phenomena induced by the ocean waves and 

tides on the coastlines or on the coastal structures. The following section covers a summary 

of sediment transport formulae, measurements of field-scale beach profile changes and the 

development of key process-based beach profile models over the last three decades. 

 

1.2 Summary of previous process-based profile models and field-scale measurements 

Watanabe et al. [1980] studied net on-offshore sediment transport from the measured beach 

profile changes. Further, it was proposed that the dimensionless net transport rate was 

proportional to Shields parameter. The importance of the critical shear stress and of 

asymmetrical to-and-fro water particle motion near the bottom was also pointed out. 

Watanabe [1982] developed a two-dimensional depth-averaged model for simulating wave, 

current and beach profile changes. Wave transformation was computed from conservation of 

energy flux. Nearshore currents were computed from depth-averaged momentum and 

continuity equations. The empirical formula of Komar [1977] was modified to compute local 

longshore sediment transport. Based on the laboratory results of Watanabe et al. [1980], the 
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formula for computing cross-shore sediment transport was developed. Reasonably good 

nearshore current field and beach deformation were expounded by the proposed model.  

Kajima et al. [1983] performed prototype scale experiments at the Central Research 

Institute of Electrical Power Industry (CRIEPI) in Japan to investigate the mechanism of 

cross-shore sediment transport and beach profile changes. The experimental programme 

consisted of 24 cases with various wave and sediment conditions and initial beach profiles. 

All cases were run under regular waves with fixed water depth. Wave height, suspended 

sediment concentration, fluid velocity and beach profiles were measured during this study.  

Dally and Dean [1984] developed a two-layer sediment transport model based on the 

time-averaged sediment flux concept. The layers were separated by the falling distance of 

sediment particles within a wave period. The sediment velocity in the lower layer was 

assumed to be composed of orbital velocity and time-averaged velocity. Only time-averaged 

velocity contributed to the upper part. The concentration profile was assumed to be an 

exponential shape both in offshore zone and surf zone. The concentration and velocity 

profiles were not compared with any experimental data. A sudden change of direction and 

magnitude of transport rate around the breaking point was given by the transport model. A 

special treatment was employed to smooth the computed transport rate around the breaking 

point. 

Stive and Battjes [1984] developed a numerical model for cross-shore sediment 

transport and beach deformation under irregular waves. They assumed that the suspended 

load was the dominant factor of sediment transport. The sediment transport rate was 

described as the product of time-averaged velocity and suspended sediment concentration. 

The model was limited to compute only offshore-directed sediment transport. To compute 

time-averaged velocity under irregular wave action, the model of Stive and Wind [1982] was 

modified. A suspended sediment concentration model was derived based on the works of 

Nielsen et al. [1978] for non-breaking waves and Bosman [1982] for breaking waves. The 
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wave model of Battjes and Janssen [1978] was used to compute wave height transformation. 

Three cases of laboratory experiments were used to verify the model results. Realistic, first 

order predictions of beach profile changes were obtained. 

Shibayama and Horikawa [1985] developed a numerical model for computing cross-

shore beach transformation. Calculated wave height transformation was based on energy flux 

conservation by using non-linear wave theory (1st order Cnoidal or Stokes waves) in the 

offshore zone and by using the energy dissipation model of Mizuguchi [1980] inside the surf 

zone. The model of Shibayama and Horikawa [1982], which included suspended load caused 

by ripple vortex, computed sediment transport rates. Experiments of beach profile change in a 

small-scale wave flume were performed to verify the model results and found that the model 

presented a reasonable estimation. 

Kraus and Larson [1988] described and collected beach profile change data in a large 

wave tank in which experiments were performed by the US Army Corps of Engineers during 

1956–1957 and 1962 (Saville, 1957; Caldwell, 1959) at Dalecarlia Reservation, Washington, 

DC. The experiment program consisted of 18 cases with various wave and sediment 

conditions performed under regular waves. Larson et al. [1988] developed an empirical based 

numerical model to simulate beach profile change in the surf zone produced by wave-induced 

cross-shore sand transport. This model simulated the dynamics of macro-scale growth and 

movement of berms and bars at wave breaking point. Two field-scale data sets (18 cases from 

the US Army Corps of Engineers Water Experiment Station and 24 cases from the Central 

Research Institute of Electrical Power Industry, Japan) were used for the development and 

verification of the model.  

The SBEACH (Storm-induced BEAch CHange) model was developed based on 

physical principles to calculate beach and dune erosion under storm water levels and wave 

action by Larson and Kraus [1988] at the US Army Corps of Engineers Waterways 

Experiment Station. SBEACH is applicable primarily to the dune, beach face and surf zone 
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and could not predict sediment movement in offshore under the non-breaking waves. 

Calculations can be performed for an arbitrary initial beach profile shape with given sand 

grain diameter, hydraulic, and monochromatic and random wave conditions. 

Hedegaard et al. [1991] developed a beach deformation model. The sediment transport 

was computed from time-varied sediment flux added with time-averaged Lagrangian 

sediment flux. Wave height transformation was computed from an empirical formula of 

Andersen and Fredsøe [1983]. A velocity profile model was developed based on the works of 

Longuet-Higgins [1953], Fredsøe [1984], Svendsen [1984b], Deigaard et al. [1986], Deigaard 

and Fredsøe [1989]. The model of Deigaard et al. [1986] was used to compute concentration 

profiles. The computed sediment transport rate could not be used to compute beach profile 

change directly. The smoothing technique was employed to obtain the computed transport 

rates. 

Southgate and Nairn [1993] developed a quasi-3DH morphodynamic model to compute 

beach deformation (COSMOS Model). Wave height was computed from energy flux 

conservation using the energy dissipation formula of Battjes and Janssen [1978]. Breaking 

position was computed from the formula of Southgate [1989]. The model of De Vriend and 

Stive [1987] was applied to compute the cross-shore velocity profile. A sediment transport 

formula was developed based on the energetic approach of Bagnold [1963]. The beach profile 

evolution phase of the model is capable of considering a fixed boundary such as a seawall or 

an erodible as in the case of a sandy beach overlying a cohesive till substratum. It was 

reported that for the situations with materials coarser than sand the model required some 

modifications to ensure accurate predictions. Also, this numerical model was not always a 

dependable tool in predicting onshore sand transport, particularly for accretion conditions, 

and undulating profile shape due to the absence of the standing long wave structure. Further, 

it is reported that their model may only be applied under conditions where bed form features 

(e.g. sheet flow and ripples) do not exist. 
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Rattanapitikon and Shibayama [1996] developed a numerical model for computing 

beach profiles under regular wave condition. The proposed model was composed of 

suspended load and bed load separately. The suspended load was given as the product of the 

time-averaged suspended sediment concentration and the time-averaged velocity from bottom 

to wave trough while the bed load used in the model was similar to the model of Watanabe 

[1983]. The model of Dally et al. [1985] was modified and used to calculate wave height 

transformation. The beach profile change was computed from the conservation of sediment 

mass. It was stated that reasonably good agreement was obtained between measured and 

computed beach profiles. 

Larson and Wise [1998] presented simple theoretical models based on descriptions of 

wave and sediment transport processes to calculate equilibrium beach profile shape under 

non-breaking and breaking wave conditions. For the case of computing equilibrium beach 

profile shape under breaking waves, a power relationship was obtained between water depth 

and sediment flux. For the case of computing equilibrium beach profile shape under non-

breaking waves, three different sub models were derived: one for wave energy dissipation; 

another for the integration of small-scale sediment transport over a wave period and a third 

for the mechanisms of onshore and offshore sediment transport. 

Grasmeijer [2002] developed a cross-shore process-based model to simulate the 

sediment transport rates near Egmond aan Zee in the Netherlands. The wave related transport 

rates were on average of factor 4 smaller than the current related components. The model was 

used to simulate calm weather waves with onshore bar mitigation and storm waves with 

offshore bar mitigation near DUCK in North Carolina, USA. The morphological changes in 

the nearshore were mainly driven by the cross-shore gradients in the current related transport 

rate. 

Kobayashi et al. [2000] analysed cross-shore sediment transport on beaches using time-

dependant, depth-integrated sediment continuity equation including sediment suspension, 
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deposition, advection and settling. The time-averaged model together with the simplified 

assumptions of Dean [1977] yielded a uniform suspension rate for the standard equilibrium 

profile. The simplified time-averaged model with boundary conditions at the shoreline and 

breaker point was shown to predict both erosion and accretion type beach profile evolutions 

under regular waves in a large wave tank.  

Jayaratne [2004] developed a practical numerical model for cross-shore beach profile 

evolution with on-offshore sand bar formation, considering his time-averaged suspended 

sediment concentration models. His model was also based on the energetic approach and the 

efficiency factors in theoretical models were calibrated using large amount of small-scale and 

field-scale published data from regular wave experiments. Jayaratne and Shibayama [2011] 

further extended beach deformation model of Jayaratne [2004] with the suspended sediment 

concentration models of Jayaratne and Shibayama [2007] and Jayaratne et al. [2011] with 

limited field-scale beach profile data. The predicted results were shown to be in good 

agreement with measured data.  

Ruessink et al. [2007] presented a coupled, wave-averaged, cross-shore waves-

currents-bathymetric evolution model using data gathered at the barred beaches of DUCK 

(USA), Hasaki (Kashima Coast, Japan) and Egmond (Netherlands). Good match between 

observed onshore and offshore bar migration and associated changes in the cross-shore bar 

shape and simulated results were obtained by fine-tuning four free parameters in undertow 

and sediment transport models.  

Kobayashi et al. [2008] developed simple formulae to predict time-averaged cross-

shore suspended load and bed load transport rates. The suspended sand transport was 

expressed in terms of the depth averaged-current and the suspended sediment volume per unit 

bottom area while the net bed load transport rate was expressed as the standard deviation of 

the horizontal velocity. These formulae were incorporated into a time-averaged wave model 

and the continuity equation of bottom sediment to predict profile changes for an arbitrary 
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initial beach profile (CSHORE model). It was reported that the beach profile evolution model 

was verified with small-scale and large-scale test data and confirmed that it did not always 

predict the fairly subtle profile changes including bar migration accurately. Johnson et al. 

[2009] applied CSHORE model for two storm response data sets of east and west coasts of 

United States and confirmed that it performed reasonably well without site-specific 

calibration, but some improvement was required by increasing the effect for the dissipation 

due to breaking waves on the west coast of USA.   

Suzuki and Kuriyama [2008] developed a simple cross-shore sediment transport model 

for berm formation and erosion with two and half years of beach profile data at the Hazaki 

Oceanographic Research Station (HORS), Hazaki, Japan. The special distribution of the 

cross-shore sediment transport rate for berm formation was modelled with the offshore wave 

energy flux and the distribution for berm erosion was modelled with the berm height. It was 

reported that numerical results and observed data match well in a qualitative sense. Kuriyama 

[2009] developed a one-dimensional beach profile change model to predict longshore bar 

migration. In his model, cross-shore sediment transport rate was determined by the suspended 

load due to wave breaking and bed load due to velocity skewness and beach slope. The model 

results were compared with measured beach profiles at Hazaki from 1989 to 1990 and 

reported that the model reasonably predicted the repeated seaward bar migration for about 2 

years.  

Sasaoka et al. [2009] developed a numerical model, capable of reproducing fairly 

complicated beach profile changes under three sediment transport processes: asymmetrical 

on-offshore sheet flow, mean flow, and bore-induced vortex and turbulence in the surf zone. 

The sediment suspension due to bore-induced vortex and turbulence in the surf zone was 

modelled using Jayaratne and Shibayama [2004] models. The predicted results were 

compared with the large-scale wave flume experiments conducted by Shimizu et al. [1985] 
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and confirmed that whether a beach is accreted or eroded would be determined by the balance 

of the above three transport mechanisms and the gravitational effect.  

Roelvink et al. [2010] reported a nearshore processes model (XBeach) as a numerical 

tool to compute the natural coastal response during time-varying storm and hurricane 

conditions, including dune erosion, overwash and breaching. The motivation to develop this 

model came after the devastating effects of hurricanes on low-lying sandy coasts during the 

2004 and 2005 and urgent need of assessing the vulnerability of coastal areas and re-

designing of coastal protection for future events. The model consists of formulations for short 

wave envelope propagation, non-stationary shallow water equations, sediment transport and 

bed update. The model has been validated with a series of analytical, laboratory and field test 

cases. It is further reported that this model performed well in different coastal situations 

including dune erosion, overwash and breaching with a standard set of parameter settings. 

Baldock et al. [2011] conducted large-scale beach profile experiments at CIEM wave 

flume at UPC, Barcelona as a part of the SUSCO experiment in the European Hydralab III 

Program. These experiments were designed to compare variation in beach profile evolution 

between monochromatic and unsteady waves with the same mean energy flux and used both 

erosive and accretive conditions.  

The above process-based simulation models based on either empirical or semi-

empirical formulae derived with the help of experimental investigations. The performances of 

these models depend on the comparison between measured and computed results of sediment 

transport rates. The applicability of such models for various hydraulic, sediment and bed 

conditions are rather difficult to establish and hence this opens the doors to develop a time-

averaged beach profile evolution model, which can be utilised for practical purposes by the 

decision and policy makers, and coastal engineers. The model described in this paper is 

originally established with the conventional application of an energetic sediment transport 

approach by Jayaratne [2004] at Yokohama National University, Japan and further extended 
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with field-scale and natural beach profile data collected in USA, Europe and Asia in the 

period of 1983-2009. 

 

2. Model Description 

2.1 Wave model  

2.1.1 Characteristics of wave model 

Wave height at each location is essential in order to compute sediment transport rate and 

change of beach profile. Numerous wave models have been proposed by previous researchers 

to account for wave height transformation including wave propagation, decay and wave 

breaking. By comparing existing wave models, a more suitable model is chosen for this 

study. The selection of the wave model depends on the components and the computation time 

it takes. If the model can be kept as simple as possible, it can be used for more practical 

purposes. To avoid such situations, wave height transformation in the cross-shore direction is 

computed from energy flux conservation [Eq. (1)]. 

B
g D

x
Ec





           (1) 

where E is the wave energy density (=gH2/8), cg is the group velocity, x is the distance in 

cross-shore direction, DB is the energy dissipation rate,  is the fluid density, g is the 

gravitational acceleration and H is the wave height.   

Shuto [1974] and Isobe [1985] showed that at locations of high Ursell number, linear 

wave theory gave an under-estimation of predicted wave height while Shibayama [1984] and 

Larson and Kraus [1989] showed that non-linear wave theory gave an over-estimation. In the 

offshore zone, energy flux can be computed using the analytical solution based on linear 

wave theory while the other is based on non-linear wave theory (finite amplitude wave 

theory). Moreover, Shibayama [1984] and Watanabe et al. [1986] showed that estimating 

bottom orbital velocity and radiation stresses from linear wave theory gave better results than 
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from non-linear wave theory. The present study is limited to cross-shore direction under 

monochromatic waves however the representative wave parameters of irregular waves 

(significant wave height and peak period) are used to simulate random wave cases. 

Computing DB inside the surf zone is very important, if the energy flux conservation 

approach is employed. Since the wave breaking phenomena is complicated, computing DB 

depends on empirical relationships. The next section discusses the different analytical 

solutions of energy dissipation due to wave breaking.  

 

2.1.2 Energy dissipation models 

Le Mehaute [1962], Svendsen et al. [1978], Thornton and Guza [1983], Dally et al. [1985], 

Okayasu et al. [1988] and Rattanapitikon and Shibayama [1998] are to name a few 

researchers, who proposed different explicit formulas for computing the energy dissipation 

rate inside the surf zone. Equations (2)-(7) show most widely used dissipation models. 

Le Mehaute [1962] suggested using a bore model, based on the similarities between a 

broken wave and a hydraulic jump. 

Q
h

BHgDB 2

3)(
4


                        (2) 

where B is the breaker coefficient accounting for any differences in various breaker types, h  

is the water depth and Q is the volumetric discharge per unit area of water across the bore. 

Following Thornton and Guza [1983], the bore model can be expressed in the form 

given below. 

h
BH

T
gDB

3)(
4


                     (3) 

where T is the wave period.  

Assuming energy dissipation rate is proportional to the difference between the local 

energy flux and the stable energy flux, Dally et al. [1985] developed the following 

relationship. 
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 sgg
d

B EcEc
h

K
D )(                        (4) 

where Kd is a constant (=0.15), subscript s refers to variables at stable wave (e.g. 

),8/2
ss gHE   Hs is the stable wave height (=h) and =0.4. 

After calculating variables from the linear wave theory, Eq. (4) can be re-written as 

follows. 

       22 )(
8

15.0
hH

h
gc

D g
B 


                        (5) 

The main advantage of this model is that it is capable of reproducing the pause in the 

wave breaking process at a finite wave height on a horizontal bed or in the recovery zone.  

Following the work of Goda and Kweon [1994], Rattanapitikon and Shibayama [1998] 

proposed an empirical formula for parameter, . 

     







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LH
h25.136.0exp                         (6) 

where L is the wavelength.  

Following the modified formula of Dally et al. [1985] and Eq. (6), Rattanapitikon and 

Shibayama [1998] proposed an explicit form of an equation for computing energy dissipation 

rate in terms of hydraulic parameters under regular waves. 
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15.0
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hhH

h
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
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where c is the wave celerity. 

It is seen in the model of Rattanapitikon and Shibayama [1998], the average root mean 

square (rms) relative error for 490 test cases of 11 data sources of small-scale, large-scale 

laboratory and field experiments is 2% less than that produced by the modified model of 

Dally et al. [1985]. Since the form of the equation is similar to the modified model of Dally 

et al. [1985], this model also reproduces the pause for breaking process in the simulation 

model. Therefore, for the present beach profile evolution model, the model of Rattanapitikon 
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and Shibayama [1998] is employed to compute the average rate of energy dissipation due to 

wave breaking [Eq. (7)]. 

 

2.1.3 Breaking location 

When water waves approach the shoreline, waves become steeper and start to break inducing 

a strong turbulence. The knowledge of breaking waves and its process is very limited and due 

to the complexity of the problem empirical methods are generally applied to predict the 

location of wave breaking and compute wave height transformation after breaking.  

Goda [1970] proposed an empirical breaking index diagram of breaking wave height to 

depth ratio as a function of relative water depth for various bottom slopes. If this diagram is 

used together with linear wave theory, the location of wave breaking is shifted shoreward 

from the measured values, producing under-estimation of wave heights. In order to eliminate 

such a problem, Watanabe et al. [1984] proposed a relationship to convert the breaker depth 

index of Goda [1970] to a diagram of particle velocity to celerity ratio. For the usage of 

numerical models, Isobe [1987] approximated the diagram of Watanabe et al. [1984] as 

follows. 
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where û is the amplitude of a horizontal water particle at the mean water level, L0 is the 

deepwater wavelength, mb is the bottom slope and subscript b corresponds to the values at the 

wave breaking location.  

After simplifying Eq. (8), a more general form for a numerical study can be written in 

terms of wave height at the breaking point. 
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where kb is wave number at breaking point.  



 15

Since Eq. (9) is derived using the breaking depth diagram of Goda [1970] it is referred 

as the Goda breaking index. 

Rattanapitikon et al. [2003] made a proposal of an empirical relationship for computing 

breaking wave height by relating breaking wave steepness to deepwater wave steepness. The 

bottom slope effect was included explicitly into the proposed formula as a parabolic function. 

     
35.0

0

02 )23.057.040.1( 









L
HLmmH bb              (10) 

where m is the bottom slope of the beach and subscripts b and 0 denote breaking and 

deepwater wave characteristics respectively. 

Selection of a suitable analytical model depends on the individual researcher. The 

performance of Eq. (9) in numerical models was widely recognised by many coastal 

researchers, hence for the present numerical simulation model, Eq. (9) is used to compute 

breaking wave height, Hb. 

 

2.2 Sediment concentration models 

2.2.1 Background 

A significant portion of the sediment transport in the coastal environment is due to the 

suspension mechanism. Sediment suspension usually occurs in and outside the surf zone due 

to turbulent motion generated by sand ripples, moving of the bottom layer with high bed 

shear stresses and turbulence motion generated by wave breaking.  

Sand ripples are generated at the sea bottom when the coastal waves propagate into the 

shallow water region. Vortex ripples increase the flow separation and turbulence, which 

induce a considerable amount of energy dissipation and sand agitation (Sato, 1987). 

Therefore, sediment suspension over vortex ripples plays a dominant role in various coastal 

processes such as sediment transport, wave attenuation and mass transport due to wave-

current coexistent field. The characteristics of movement of sediment particles in the sheet 
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flow regime are completely different over the ripple-formed bed. The rippled seabed gives 

way to the sheet flow region in the breaker zone under extreme wave conditions (e.g. storms 

and typhoons). Under these conditions, large wave heights cause large near-bed velocities 

thus the sand is suspended over the thin layer close to the bed. The concentration profile itself 

is not exactly similar in the case of rippled bed. Sand movement in the surf zone is influenced 

by the turbulence and the organised motion of vortices and eddies generated by the breaking 

waves and the asymmetric oscillatory motion under shallow-water waves. Sato et al. [1990] 

pointed out that the sediment suspension mechanism at the breaking point is particularly 

important, where the turbulence and large-scale vortices agitate a large amount of sediment to 

form a sand cloud with extremely high concentrations.  

Developing a complete set of time-averaged suspended sediment concentration model is 

a challenging task due to the complexity of the suspension mechanism and uncertainties 

involved in the modelling procedure. Concentration models of Sleath [1982], Nielsen [1986, 

1988] and Rattanapitikon and Shibayama [1994] are widely used however these models did 

not cover all three suspension mechanisms.  

Jayaratne and Shibayama [2007] derived a set of explicit empirical formulae to predict 

sediment concentration under a) suspension on the bottom boundary layer due to turbulent 

motion over sand ripples, b) suspension from sheet flow layer, and c) suspension due to 

turbulent motion under breaking waves. Reference concentrations and diffusion coefficients 

were derived separately for small-scale and large-scale studies using dimensional analysis 

and a best-fit technique. Time-averaged concentration profiles were developed based on the 

steady diffusion equation. A good correlation was found between measured and computed 

concentrations. Published small-scale and large-scale experimental data from 19 sources from 

1977 to 1996 were used in the calibration of numerical constants in the theoretical models 

and comparison of model results. It is common in nearshore region that one or two 

suspension mechanisms such as ripples and breaking agitation or sheet flow and breaking 
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agitation to occur simultaneously. Therefore, predominance of each suspension mechanism is 

verified with a newly developed explicit formula. Finally, the applicability of concentration 

models for irregular waves is also confirmed by the measured data sets. 

Jayaratne et al. [2011] discuss an overview of their previous concentration models on 

large-scale rippled beds and sheet flow regimes with respect to the SANTOSS (Sand 

Transport in Oscillatory flows in the Sheet-flow regime) database (Van der Werf et al. 

[2009]). Similar to the previous models, dimensional analysis and best-fit technique were the 

main driving techniques for the formulation of bed reference concentrations and vertical 

distribution of diffusion coefficients. Model parameters were calibrated with the help of 

large-scale measured data. Time-averaged concentration profiles were derived from the 

steady diffusion equation. Two distinct suspension layers (i.e. lower and upper) were 

identified within the suspension over rippled bed therefore predictive models were given 

separately for each layer. In the case of sheet-flow regime, predictive models were given for 

suspension and upper-sheet flow layers.  Seventy-five rippled bed and eighty sheet flow 

experiments from 1994 to 2007 [Van der Werf et al., 2009] are better explained by the 

proposed formulae with an appropriate selection of energy coefficients in each data set. The 

reason for this was identified primarily due to the presence of different flow types and nature 

of the experimental facility.  

By considering the previous concentration models of Jayaratne and Shibayama [2007] 

and Jayaratne et al. [2011] the following sets of explicit empirical formulae were used to 

compute suspended sediment transport rate in the present study. The appropriate free 

parameters (k1-k8) in rippled bed and sheet flow formulae were determined using trial and 

error method with compliance to the ranges specified in Jayaratne et al. [2011]. On the other 

hand, free parameters in breaking agitation formulae (k9-k12) remained unchanged as in 

Jayaratne and Shibayama [2007].  
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2.2.2 Sediment suspension over rippled bed 

One of the key features identified in the full-scale rippled bed model of Jayaratne et al. 

[2011] from Jayaratne and Shibayama [2007] is that the distribution profile consists of two 

layers. Figure 1 shows the distinct suspension layers (lower and upper layers) classified over 

rippled bed. Equations (11), (12), (14) and (15) present the corresponding bed reference 

concentration and diffusion coefficients.  

(a) Lower suspension layer (z≤2η) 

 (11) 

where cr is bed reference concentration, k1=80 is a numerical constant which depends on the 

flow type and nature of experiments, Θ is the mobility number, ν is the kinematic viscosity, s 

is the specific gravity of sand, d is the average grain diameter, η is the rippled height and z is 

the water depth. 

 (12) 

where r is the diffusion coefficient, k2=0.3 is a numerical constant which depends on the 

flow type and nature of experiments, u*wc is the maximum combined wave-current bed shear 

velocity, Ab is the orbital amplitude of fluid just above the boundary layer, ws is the settling 

velocity of sand particle, d is the average grain diameter, λ is the ripple wavelength and 

3/12 )/( sgdd   [Van Rijn, 1984]. 

The concentration profile in lower layer [c(z), Eq. (13)] is defined with the help of 

known cr [Eq. (11)] and εr [Eq. (12)]. Bed reference concentration level (r) is set at η/2 where 

this level is measurable without disturbing the formation of ripples (Skafel & Krishnappan, 

1984). 

 (13) 
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(b) Upper suspension layer (z>2η): 

  (14) 

where k3=75 is a numerical constant which depends on the flow type and nature of 

experiments. 

           (15) 

where k4=5.0 is a numerical constant which depends on the flow type and nature of 

experiments. 

Equation (16) gives the concentration distribution profile in upper layer in terms of 

known cr [Eq. (14)] and Mr [Eq. (15)].  

 (16) 

where z0=10d is the reference level in the upper suspension layer. 

Figure 2 illustrates some examples of measured and computed results from the 

combined lower (exponential) and upper (power) suspension models. The comparison plots 

shown in Jayaratne et al. [2011] are reproduced with the new numerical constants proposed 

in the present study.  

 

2.2.3 Sediment suspension over sheet flow 

The distribution pattern of sediment concentration described in Jayaratne and Shibayama 

[2007] consists of two different trends from the initial bed level to the top of water surface. 

The most recent study of Jayaratne et al. [2011] also shows the same patterns such as an 

exponential form for the upper-sheet flow layer and a power law for the suspension layer. 

Figure 3 shows the distinct layers (upper sheet flow and suspension layer) identified over 

full-scale sheet flow regime. Equations (17) and (20) show the bed reference concentration 

models while Eqs. (18) and (21) show the diffusion coefficients over sheet flow. 
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(a) Upper sheet flow layer: 

           (17) 

where cs is the bed reference concentration, k5=2500 is a numerical constant which depends 

on the magnitude of net-current, amplitude of wave, grain size and distribution, ψ is the 

Shields  parameter. 

  (18) 

where εs is the diffusion coefficient, k6=0.1 is a numerical constant which depends on the 

experimental conditions such as flow type, grain size and distribution. 

  (19) 

Concentration distribution profile [Eq. (19)] over upper sheet flow layer is derived using 

Eqs. (17) and (18). Bed reference level is taken at z=d.  

(b) Suspension layer: 

 (20) 

Bed reference concentration was taken at a depth of k7d where k7 is equal to 14.0. 

 

 (21) 

where k8=0.6 is a numerical constant which depends on the flow type.  

Present model of suspended sediment concentration [Eq. (22)] within suspension layer 

follows a power-law as initially found by Ribberink and Al-Salem [1992]. Predicted 

concentrations show a good agreement with the measured data. Hence Eq. (22) becomes 

exactly the same as the previous model of Jayaratne and Shibayama [2007]. 
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Non-dimensional parameter Ms in Eq. (22) is defined as the diffusion coefficient over 

suspension layer. Ribberink and Al-Salem [1994] defined it as the decay parameter and 

specified to be a constant which was approximately equal to 2.1 for a large number of waves 

with uniform sand diameter of 0.21mm.  

Figure 4 illustrates some examples of measured and computed results from the 

combined upper sheet flow (exponential) and suspension (power) models. The comparison 

plots shown in Jayaratne et al. [2011] are reproduced with the new numerical constants 

proposed in the present study.  

 

2.2.4 Sediment suspension under breaking waves  

It is a clear fact that most present models do not elucidate the terms of sediment suspension 

by wave breaking phenomenon. Some models try to estimate the sediment pick-up rate as a 

function of Shields parameter or the relative strength of shear stress acting on the seabed. 

However, it is doubtful if the shear stress exercises any effect on the generation of large 

vortices by agitation of breaking waves (Goda, 2000).   

The suspended sediment concentration outside the boundary layer is likely to be 

determined by the entrainment and mixing due to sources such as agitation of breaking 

waves. Waves that plunge heavily on shallow bars or on the step of steep beaches can form 

very strong jets that penetrate directly to the bed and hence introduce very strong external 

turbulence into the boundary layer itself. These jets are also able to inject large amounts of 

entrained air into the boundary layer, and when this air rises, it generates large localised, 

upward water velocities that act as very efficient elevators for suspended sediments 

(Jayaratne and Shibayama, 2007). Jayaratne and Shibayama [2007] introduced the local wave 

orbital velocity to the bed reference equation [Eq. 23] at the location to be considered in the 

surf zone. Bed reference level was taken at a level of 100d from the bed (z=100d).  

Figure 4 
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where û is the local wave orbital velocity at the location to be considered, ûb was selected as a 

parameter to represent the intensity of near-bottom flow at the wave breaking point (Sato et 

al., 1990) and k9 is a numerical constant depends on T. 

Using the trial and error method, the following constants are recommended for 9k  in 

such a way that when 6.0sT10.0s the value of 9k  is 75% from the value when T6.0s and 

when T10.0s the value of 9k  is 75% from the value when 6.0sT 10.0s. As T increases, 

wave breaking occurs at the surf zone boundary close to the offshore region and hence the 

magnitude of suspended sediment concentration becomes comparatively small. In other 

words, the value of 9k  has to be decreased as X increases from the offshore boundary of the 

surf zone. 
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Jayaratne and Shibayama [2007] proposed diffusion coefficient (b) by incorporating 

the effect of shearing force exerted on the sea bed to the eddy viscosity concept of Okayasu 

[1989].  
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where ,08.010 k  11k  varies from 0.0675 at wave breaking point to 0.225 at transition point 

(Rattanapitikon and Shibayama, 1996) as the energy dissipation takes place throughout the 

width of the surf zone [Eq. 25],  //
*wcu  is the shear velocity under wave-current coexistent 

field and DB is calculated from Eq. (7). 
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where 225.012 k  is a constant which was assigned for spilling wave breaking condition of 

small-scale studies described in Jayaratne and Shibayama [2007], where x is the position in 

cross-shore direction and subscripts b and t denote the distances from wave breaking and 

transition points respectively.  

The solution of concentration profile with reference level z=100d is given in the 

following form by Jayaratne and Shibayama [2007]. 

     
M

b z
dczc 
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100)(                                      (26) 

where parameter M is given by Eq. (27).   

           
b

s zwM


                                                (27) 

Figure 5 illustrates the measured and computed concentration distributions at 

different locations in cross-shore direction (x) with a particular time (t) from data sources of 

Kajima et al. [1983] and Dette and Uliczka [1986].  

 

2.3 Mass transport velocity model 

2.3.1. Vertically averaged velocity 

Concentration and velocity profiles throughout the water column should be predicted 

precisely in order to compute the on-offshore sediment transport rates. From the laboratory 

and field observations, it is well known that a steady drift of fluid particles is induced by the 

water waves in addition to the oscillatory motion both for non-breaking and breaking waves. 

Due to additional mass flux caused by the surface roller, the mass transport velocity induced 

by breaking waves generally referred to as undertow, is larger than that induced by non-

breaking waves (Hansen and Svendsen, 1984). 

The magnitudes of time-averaged components are usually smaller than those of 

oscillatory components and it has a significant effect on sediment transport. Quite a number 

of undertow models have been established by previous researchers, e.g. Hansen and 

Figure 5
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Offshore Zone

Inner Zone 

Transition Zone 

Svendsen [1984], Okayasu et al. [1988], Rattanapitikon and Shibayama [1996, 2000] and 

those models produced satisfactory results.  

The main advantage of selecting the undertow model of Rattanapitikon and 

Shibayama [1996] for the present study is that it is capable of accurately predicting time-

averaged velocity from the edge of the boundary layer to wave trough under a wide range of 

hydraulic parameters, as well as being applicable for various regimes in the surf zone. The 

vertically averaged velocity model of Rattanapitikon and Shibayama [1996] is given as 

follows.  
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where Um is the vertically averaged velocity from the bed to wave trough caused by breaking 

waves, σ is the angular frequency, B0 is a parameter depends on hydraulic conditions and 

beach slope and expressed by Rattanapitikon and Shibayama [1996] as follows.  

h
HmB b 089.060.0125.00                  (29) 

where mb is the bottom slope. 

The constant, b1 is expressed based on the different zones in the coastal environment.  
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where subscript b indicates the value at the breaking point and subscript t indicates the value 

at the transition point. 

 

2.3.2 Width of transition zone  

The inclusion of a transition zone in to the beach profile has an important effect on the 

predicted profiles particularly near bar features (Nairn et al., 1990). The distance from 

breaking point to the point where rather stable bore-like waves are formed is called the width 
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of the transition zone (Svendsen et al., 1978). The behaviour of the variation of wave height 

and mean water level inside the transition zone is quite different from the inner surf zone. 

Wave height decays rapidly and if mean water level is relatively constant then there is an 

abrupt change in slope at the transition point (Svendsen, 1984a; Basco and Yamashita, 1986). 

Nairn et al. [1990] used the mean water level to define the transition point. According to 

experiments of Okayasu et al. [1986], the abrupt change in slope could not be found. 

Therefore, change of wave height was a parameter to define the transition point. Basco and 

Yamashita [1986] defined the transition point as the point just after the rapid decay of wave 

height while Okayasu [1989] defined it as the point where the fully developed bore-like wave 

was found. From the experimental results of Okayasu et al. [1988] and Nadaoka et al. [1982], 

it was found that the maximum in time-averaged velocity occurs at the transition point.  

By considering the above facts, Rattanapitikon and Shibayama [1996] derived the 

following relationship in terms of hydraulic parameters. 
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where hot is the still water depth at transition point, hob is the still water depth at breaking 

point and bbbb LHm  is the surf similarity parameter at the breaking point and Lb is 

the wavelength at the breaking point.  

 

2.3.3 Vertical distribution of undertow up to wave trough 

In order to analyse vertical distribution of undertow induced by breaking waves, time-

averaged vertical distribution of shear stresses and eddy viscosity must be determined. Based 

on the dimensional analysis, Okayasu [1989] proposed a formula for computing the shear 

stress distribution (τ) and eddy viscosity coefficient (νt). 
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where k13 and k14 are numerical constants.  

The eddy viscosity coefficient can be calculated from the following formula. 
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where k15 is also a numerical constant. 

Since the measured values of  and t were not available, Eqs. (31) and (32) were represented 

in terms of undertow velocity. Using eddy viscosity model, the undertow can be written as,   
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By substituting Eqs. (31) and (32) in Eq. (33), and integrating and combining with Um 

[Eq. (28)], finally complete undertow distribution in transition and inner zones [U(z)] is 

written as follows. 
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where b2 and b3 are constants and expressed as, 
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In the transition zone, energy dissipation is assumed to be increased linearly from 

breaking point to the transition point. 

 

2.3.4 Vertical distribution of velocity from wave trough to crest 

Total sediment flux from the edge of wave boundary layer to wave trough per unit width (qsl) 

can be given as, 
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where c(z) is the time-averaged concentration profile, U(z) is the time-averaged velocity 

profile,  is the edge of the wave boundary layer and dt is the depth at wave trough. 

Using the concept of mass conservation, Eq. (36) is derived to calculate mass 

transport velocity, UTC from wave trough to crest. Assuming that the concentration is constant 

throughout the wave regime and is equal to the value at the trough level given by the 

predictive model of suspended sediment concentration under breaking agitation, Eq. (37) is 

proposed to compute total sediment flux from wave trough to crest per unit width, qsu. Figure 

6 illustrates definition sketch of different sediment flux layers.   
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where U(z) is given by Eq. (34). 

 Table 1 and 2 show the sediment flux at different layers such as wave crest (qsu), wave 

trough (qsm) and the edge of the boundary layer (qsl) from Case 4.3 of Kajima et al. [1983] 

and Case 500 of Kraus and Larson [1988] respectively. According to simulation results, it is 

found that a portion of sediment mass is directed in the offshore direction due to plunging 

vortexes, especially close to the breaker line, while another portion is directed in the onshore 

direction. The mass flux at the crest level is sometimes greater than that at the level of the 

edge of boundary layer (Table 2). It is identified that as H (high waves) increases the mass 

flux also increases proportionately. From the results of Kajima et al. [1983] and Kraus and 

Larson [1988], it is revealed that mass flux from wave trough to wave crest has a secondary 

effect compared to the values at the edge of the boundary layer and wave trough. Generally, 

the sediment flux in this region gives a secondary effect compared to the values in the lower 

part of the water column. 

 

 

Figure 6

Table 1

Table 2
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2.4 Sediment transport rate formulae 

2.4.1 Suspended and bed load formulae 

The formulas for predicting sediment concentration and mass transport velocity described in 

Sections 2.3 and 2.4 are used to compute the sediment transport rate. Figure 7 illustrates the 

definition sketch of three-layer sediment transport model. The temporal evolution of vertical 

distribution of sediment concentration, c(z, t) and vertical distribution of flow velocity, us(z, t) 

over a wave period requires a large computation time therefore it is worthwhile to adopt more 

simplified forms of c(z) and us(z). 

Then, the total suspended sediment transport rate from bottom to wave crest can be 

written as, 
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              (38) 

where –s is the elevation below the bottom surface where there is no effective movement of 

sand particles, dt is the depth at wave trough.  

Due to the difficulty in measuring the concentration and velocity accurately at the 

region close to and inside the moveable bed, the experimental results in those regions are 

very limited. Therefore, reliable formulas for predicting sediment concentration and velocity 

distribution have not yet been developed. In the present study, the sediment transport above 

the edge of the boundary layer is treated according to the time-averaged approach of sediment 

transport and it is referred to as suspended load. The sand transport in the lower portion is 

generally referred to as bed load and for the present study it is incorporated in the modified 

bed load formula of Watanabe [1982].  

The modified bed load transport formula of Watanabe [1982] can be written in the 

following form. 

      dwKq scbb  )(      (39) 

Figure 7
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where bq  is the bed load transport, 0.2bK  (Rattanapitikon and Shibayama, 1996) and 

05.0c  is the critical Shields parameter. 

Therefore, total net sediment transport rate from bottom to wave crest can be re-

written as, 
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                         (40) 

The thickness of the boundary layer (s) is computed from the formula of Jonsson 

[1966] and the roughness is computed from the formula of Nielsen [1992]. The formula of 

Jonsson [1966] is given as, 
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where kn is the equivalent Nikuradse roughness.  

Nielsen [1992] used the measured data of Carstens et al. [1969] and Lofquist [1986] 

to calibrate the relationship and found the following equation for kn. 
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where 2.5 is the grain Shields parameter using roughness equal to 2.5d. 

Rattanapitikon and Shibayama [1996] proposed an explicit formula for boundary 

layer thickness, s, by considering Eqs. (41) and (42) using regression analysis. 
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2.4.2 Modification to total transport rate formulae 

It is found that the selected wave model and the proposed sediment transport models can not 

exactly predict the same value as the measured results. This resulted in accumulating some 

error in every computation time step, since wave height transformation will produce beach 
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profile change and beach profile change will feedback into the wave height transformation. 

Finally, the model becomes unstable and instability will be caused for long run predictions 

due to the high fluctuations of sediment transport rates between adjacent computation grids. 

Therefore, it is necessary to employ an artificial treatment or a modification to the sediment 

transport formula in order to control the stability of the beach deformation model.  

A three-point weighted filter is applied to smooth the fluctuations of computed bed 

load from the modified formula of Watanabe [1982]. 

   1,,1,, 3.04.03.0   ibibibibs qqqq               (44) 

where qbs is the smoothed bed load, qb is the bed load and subscript i is the cell number. 

The sediment in a steep slope is expected to move in the downward direction due to 

gravity. Therefore, the effect of local slope is treated with the work of Watanabe et al. [1986] 

and Larson and Kraus [1989] by introducing an additional term, qa, to improve predictive 

transport rate. 
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where C1 is the coefficient that depends on the sand diameter.  

From the experience of previous researchers (e.g. Watanabe et al., 1986; Larson and 

Kraus, 1989; Rattanapitikon and Shibayama, 1996), C1 is selected as 10.0 for the median 

sand diameter (d50) less than or equal to 0.47 mm to make the model more stable. Since most 

natural beaches are covered with the median sand diameter of 0.20 mm, the most cases are 

limited to a maximum median sand diameter of 0.47 mm, which is assumed to be a good 

representation of most natural sandy beaches around the world.  

After smoothing bed load and adding the bottom slope term into Eq. (40), the total 

sediment transport rate from bottom to wave crest can be expressed as, 
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2.5 Beach profile evolution model 

2.5.1 Conservation of sediment mass 

The numerical simulation model described in this section is composed of a selected wave 

model and sets of predictive models described in Sections 2.1-2.4. The coefficients in wave 

and sediment transport models are kept constant for all test cases. The beach profile change is 

computed from the conservation of sediment mass. 
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where n is the sediment porosity, assumed to be constant along the profile.  

Equation (47) is solved numerically using the Finite Difference Method (FDM). The 

finite difference form of Eq. (47) can be expressed as, 
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By simplifying Eq. (48), we have, 
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where i is the grid number and k is the time step number. 

The bottom elevations at most seaward and shoreward boundaries should be specified 

in order to compute the bottom elevation from Eq. (49). The seaward boundary is taken as the 

line where there is no change in the bottom elevation and sediment can pass through the 

boundary. The shoreward boundary is defined at the wave run-up height and assumed to have 

zero change in bottom elevation. The characteristics of the swash zone are not included in the 

present study and the model is valid up to the end of surf zone, defined as a finite water depth 

close to the shoreline. 

Run-up limit, ZR, is computed from the formula of Larson and Kraus [1989], by 

analysing experimental data of Kajima et al. [1983] and Kraus and Larson [1988]. 

79.0
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where 000 LHmb  is the surf similarity parameter. 

To verify computed cross-shore sediment transport rates obtained by the simulation 

model, the rate of change of measured beach profiles can be considered. In mathematical 

point of view, by integrating the mass conservation equation, Eq. (47), the spatial distribution 

of cross-shore transport, qt(x), can be expressed as follows. 
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where x is the location in cross-shore direction, x0 is the location of no profile change, ti and 

ti+1 are the time to measure profiles and h is the still water depth. 

Figure 8 illustrates the definition sketch of numerical cell for computing wave height, 

water depth and sediment transport rate used in this study. Those three parameters are 

computed at the middle of the cell. 

The suspended load is the dominant term describing both erosion and accretion types 

of beaches in the present study. The ability to predict sediment concentration formulas is 

limited for sand of diameter up to about 0.47 mm due to the lack of concentration 

measurements of coarse sand (see Table 3). Further, this resulted in using the sediment 

transport formula in the same range of sand diameter. For the present numerical model, cases 

with sand diameters up to 0.47 mm (0.18-0.47 mm) are considered including 0.20 mm case as 

it is the common sand diameter found in many natural beaches. Watanabe et al. [1980] 

reported that ripple formation and sediment suspension occurred rarely in the case of 0.7 mm 

sand. Therefore, for the present study, sand diameter greater than 0.69 mm is taken as zero 

suspended load. Due to the availability of measurements of sediment concentration for sand 

with diameter greater than the above-specified value (0.69 mm), the existing conditions are 

replaced accordingly. 

 

 

Figure 8

Table 3



 33

2.5.2 Avalanching concept of Larson and Kraus [1989] 

Larson and Kraus [1989] modified the avalanching concept of Allen [1970] by analysing the 

large wave flume data of Kajima et al. [1983] and Kraus and Larson [1988]. It was found that 

the repose angle (Φrp) and residual angle (Φrs) obtained by Larson and Kraus [1989] were 

significantly lower than that of those reported by Allen [1970]. Therefore, it was suggested to 

use Φrp as 280 and Φrs as 180. Further, it was also suggested to re-distribute the sediment mass 

in the neighbouring grids in downward direction in such a way that the local slope was less 

than or equal to the residual angle, provided that local beach slope exceeded the repose angle. 

Initially it is assumed in the present study that avalanching takes place between cell 1 and cell 

2 as shown in Fig10. In order to obtain Φrs, sand is moved between the cells. The new slope 

angle between cell 2 and cell 3 is checked to find out whether it exceeds Φrp. If the local slope 

exceeds Φrp, the computation is repeated from cell 1 to cell 3 to obtain Φrs. This procedure is 

continued until the local slope angle between cell N and cell N+1 is less than or equal to Φrs. 

Therefore, the iteration technique is employed to find out the avalanching number of cells (N) 

in the computation domain (Fig. 9). 

Quasi-steady condition for wave field computation is used. Wave height is assumed to 

be unchanged during a simulating time interval, ti (ti<Δt). A simulation time interval of thirty 

minutes (e.g. ti=30, 60, 90, 120 min intervals due to observed field and laboratory 

measurements) is used in the present study. The wave height is kept unchanged during 

specified time interval (ti) but the sediment transport rate at each grid point is changed due to 

the change of the bottom slope at every time step (Δt). Since the present model requires a 

small computation time, i.e. 2 to 3 min to simulate 30 days beach deformation, setting up of a 

small time step, Δt compared to simulating time interval, ti does not cause a significant effect 

on the computation time. In other words, Δt remains 30 mins in most tested cases. However, 

if the model becomes unstable for a particular test case or dataset, the time-step, Δt (e.g. Case 

Figure 9
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K42, Δt=10 min) is further reduced in order to ensure the stability of the model and reduce 

the large bed deformations. 

 

2.5.3 Model structure  

The overall structure of the present beach profile evolution model is shown as a flow chart in 

Fig. 10. The incident wave conditions (H, T), initial bottom topography (h) and initial bottom 

slope (mb) are the main input parameters of the model. 

 

3. Comparison of Simulated Results with Large-Scale and Natural Beach Data 

The robustness and applicability of the beach profile model is examined by comparing initial 

profile (t=0 hr) and measured beach profiles at different time periods from 5 high-quality data 

sources of large-scale wave flume experiments and natural beaches in Japan and the 

Netherlands. The experimental beach profiles feature particularly offshore and onshore bars 

and berms, defined with respect to the initial beach profile. The beach profiles were measured 

at each wave run. It was reported that waves were run until beach profiles achieved to a state 

of equilibrium which means the particles move but there is no net sediment transport along 

the profile. All numerical coefficients (free parameters) in the sub models are kept constant 

for all test cases used in the computation. Table 4 shows the summary of data sources used in 

the study. Sections 3.1 and 3.2 discuss each data sources separately and model comparison 

results.  

 

3.1 Large-scale laboratory experiments 

3.1.1 Kajima et al. [1983] 

Kajima et al. [1983] measured beach profiles in a large-scale wave flume (205.0×3.4×6.0 m) 

at the Central Research Institute of Electrical Power Industry (CRIEPI) of Japan in 1981. The 

total number of test cases performed by Kajima et al. [1983] is 19 and all cases started with a 

Figure 10

Table 4
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uniform initial beach slope, ranging from 1/50 to 1/10. The highest measured storm duration 

is t=60 hr (2.5 days). Most numerical results (e.g. Test Case 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 

3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3, 4.4, 5.1 and 6.1) show good agreement with the general trend 

of the measured beach profile from offshore to onshore, illustrating main morphological 

features such as sand bars and berm formation. This means that evolution of bars and berms 

were found to be regular under steady wave and gradually varying water depth. Some test 

cases such as Case 3.3, 3.4, 4.2, 4.3 and 6.1 illustrate shifting of the large sand bar towards 

onshore and this could result in shifting of the predicted breaker line. Predicted results of 

Case 4.4 and 5.2 show greater beach deformation as the storm duration increases (e.g. Case 

4.4 at t=10 hr and Case 5.2 at t=60 hr). One of the reasons for this discrepancy may be the 

non-conserved sediment mass in the cross-shore profile and perhaps it was not captured by 

the 2D model. Figures 11-20 represent the measured and computed beach profiles at 

equilibrium state. Table 5 shows the details of each test case used in the study. 

  

3.1.2 Kraus and Larson [1988] 

Kraus and Larson [1988] reported beach profile changes in a large wave flume 

(193.5×4.6×6.1 m) at the Coastal Engineering Research Centre (CERC) of the US Army 

Corps of Engineers Waterways Experiment Station, which were measured in 1956-1957 and 

1962. The total number of test cases carried out by Kraus and Larson [1988] is 12 and two 

tests were performed with an irregular initial beach slope. The highest storm duration 

considered under these tests were t=40.5 hr. Generally, the computed profiles show the same 

tendency as the measured profile at equilibrium state (e.g. KL101, KL200, KL400, KL510, 

KL600, KL610, KL700). Cases with extreme wave conditions such as Case KL100, KL300, 

KL500 and KL700 show some undulating nature at crest and trough of sand bar and erosion 

in the onshore and the reason might be the sudden deposition of sediment by gravity before 

suspension occurs. A sharp-crested offshore dune and an onshore sand bar are formed in Case 

Table 5

Figures 11-20
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KL510 and this can be due to the presence of irregular initial beach slope. The computed 

results of Case KL100, KL200, KL500 and KL700 illustrate shifting of the sand bar towards 

onshore region compared to the measured shape. The main cause is identified as the shifting 

of the predicted beaker line. Further, it is observed from Case KL100, KL101, KL300 and 

KL700 that they were performed under long period and high waves. Similar to Kajima et al. 

[1983] , it is found from the computed results that the longer the simulation time the larger 

the instability of the model results due to the greater deformation of beach topography (e.g. 

KL300 t=20 hr, KL700 t=15 hr). In other words, smaller the wave climate (both smaller H 

and T and either smaller H or smaller T) better the comparisons results are (e.g. KL510, 

KL600 and KL610). Figures 21-25 show the measured and computed beach profiles at 

equilibrium state. Table 6 shows the details of test cases used in the study. 

 

3.2 Field measurements 

3.2.1 PARI data [2005, 2009] 

The Port and Airport Research Institute (PARI) of Japan owns the Hazaki Oceanographic 

Research Station (HORS). HORS operates a research pier of 427 m long on the sandy beach 

facing to the Pacific Ocean. This pier captures the waves in the surf zone, between wave 

breaking point and the limit of wave up-rush on the beach, where a large amount of sediment 

is transported by wave action and wave-induced nearshore currents. Beach profiles from the 

tip of the pier to the backshore are measured with intervals of 5.0 m daily. Table 7 shows the 

details of both non-storm and storm test cases used in the present study.   

 

a) Non-storm conditions [2005]: 

Under non-storm conditions, the predicted and measured beach profiles including inner and 

offshore bar migration and trough deepening (x<450 m) at Hazaki coast match very well at 

t=24 hr (1 day) to t=240 hr (10 days). Since the swash dynamics are not included in the 

Table 7
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present model, the predicted profiles in the upper part of the swash zone (x≤75.0 m) show an 

average beach slope. It was observed from the predicted results that the bar migration and 

trough deepening at t=720 hr (30 days) has shifted towards onshore due to the change of 

breaker line and weakening of wave attack in that area (less energetic conditions).  

There are several possible factors affecting the estimation of topography (water 

depths). As the water depth becomes shallower towards the beach, the effect of non-linearity 

in wave behaviour become more significant, causing higher wave celerity than the linear 

theory predicts and hence causing an over estimate of water depths [Bell, 1999]. The 

influence of currents, both tidal and wave induced, are also a potential source of variability in 

topography estimation. Such currents make the derived water depths larger if the current is in 

the direction of wave motion or smaller if the current is in opposition to the waves [Bell et 

al., 2004]. In general, the present model shows very good agreement with the measured beach 

profiles up to t=240 hr (10 days) and some discrepancies when t>240 hr (e.g. t=720 hr), but 

simulated results are reasonably acceptable which may be due to a coincidental cancelling of 

probable effects from different factors. Figure 26 shows the measured and computed beach 

profiles at t=24-720 hr. 

 

b) Storm conditions [2009]: 

The measured beach profiles at Hazaki coastal under storm conditions in 2009 illustrate that a 

bar located fairly close to the shore may contain crescentic structures (see e.g. Case 1, 4 and 

5) that are diminished during storms while a bar located further offshore is generally 

alongshore uniform (see e.g. Case 4, 5, 6). Cases 1, 2 and 4 were recorded with high wave 

action. In Case 1, the predicted profile at t=24 hr shows two nearshore peaks (around x=250, 

300 m) and large deformation in the offshore region after x=375 m. When t=72 hr and t=96 

hr, simulated profiles show more deposition than measured offshore bars (x=275-350 m) and 

in some point (x=350-375 m) both profiles match each other before deposition takes place 

Figure 26 
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again. In Case 2, when t=24 hr and t=48 hr some mis-match between observed and predicted 

profiles can be seen and when t=72 hr and t=144 hr close match between two profiles are 

noticed. The reason was identified as it was initially subjected to a large wave attack 

(significant wave height=1.29 m) and weakening of this action as time increases. In Case 4, 

moderate trough deepening is observed compared to measured trough at x=275-375 m 

however, the offshore profiles are matched remarkably well up to t=72 hr. In general, 

predicted results of low wave height cases (wave height≤0.9 m), Case 3, 5 and 6, show 

reasonably well agreement with measured profile evolution in nearshore and surf zone except 

in swash zone. Case 5 illustrates a deep, broad trench with steep side slopes in nearshore and 

offshore boundaries between about x=300 m and x=425 m and this feature is well simulated 

by the present numerical model. It is believed that this behaviour is primarily due to the 

presence of a long wave period (13.0 s) in the sea state. Figures 27-29 show the measured and 

computed beach profiles from six different wave conditions. 

 

3.2.2 Hasan & Takewaka [2007, 2009] 

Hasan and Takewaka [2007, 2009] discussed an examination of wave field and wave run-up 

using an X-band nautical radar system during a storm event around HORS research pier in 

Hazaki, Japan. The typhoon BANYAN (Typhoon #7, T7, 2005) travelled through the west of 

the Pacific Ocean in July 2005. The bathymetric survey data (water depths) used in their 

study based on the measurements around HORS on 26th and 27th of July 2005. Water surface 

elevations were measured with several wave gauges mounted on the pier, and the bottom 

profile along the pier was surveyed. In the present numerical model, beach profile on 26th 

July 2005 was taken as the initial condition to simulate the profile on 26th July, which was 

subjected to storm condition. It was reported that foreshore beach profile along the pier 

remained mostly unchanged during the storm. Significant erosion took place at about x=150 

m and this is reasonably well predicted by the present numerical model, apart from relatively 

Table 8
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small under-prediction. It is evident from the results that the gravitational effect is more 

dominant due to the steepness of the initial beach profile. The beach profile in the swash zone 

does not match with the measured profile as the model does not include the swash dynamics 

at this level.  Figure 30 depicts the measured and computed beach profiles from swash zone 

to offshore at equilibrium state. Table 8 shows the details of test case used in the study. 

 

3.2.3 Ruessink et al. [2007] 

The data reported in this section measured at Egmond beach in the Netherlands in October to 

November in 1998. The hourly offshore water levels were computed by averaging two tidal 

gauges located about 15.0 km north and south of Egmond. The measurements show two clear 

offshore-directed sand bars. Both sand bars migrated about 30 m offshore during a 22-day 

period of high-wave events. In most cases, onshore bar migration resulted in a bar-trough 

relief reduction while the bar often became more pronounced when it moved offshore due to 

deepening of the trough. The inner Egmond bar was crescent shaped in plan throughout 22-

day span with an alongshore length scale of about 600 m and a cross-shore amplitude less 

than 20 m, while the outer bar was alongshore uniform (Ruessink et al., 2000).   

According to the predicted results, when t=24 hr to t=168 hr the model gives almost 

the same beach profile as measured while t=216 hr and t=264 hr, some deposition of sand in 

offshore bar can be seen. When t=284 hr and t=308 hr wave breaker line moves towards the 

nearshore by about 30.0-40.0 m therefore some deviation in height of offshore bar is noticed, 

however both predicted and measured onshore and offshore bar shapes look very similar. In 

general, the present model shows a remarkable agreement with the Egmond beach data. Table 

9 shows the details of wave conditions at Egmond beach used in the present study while Fig. 

31 shows the measured and computed beach profiles at t=24-308 hr. 

 

 

Table 9

Figure 31 
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3.3 Quantitative Assessment of Model Performance 

The Root Mean Square Error (RMSE) is a frequently used measure of the difference between 

values predicted by a model and the values actually observed from the environment that is 

being modelled rather than an error for the measured versus initial profile. The RMSE of a 

model prediction with respect to the estimated variable Zmodel is defined as the square root of 

the mean squared error [Eq. (52)]. 
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where Zobs is the observed water depths, Zmodel is the modelled water depths at different cross-

shore distance i and n is the number of measurements.  

 Tables 10-16 show the difference between predictions and measurements against the 

initial bathymetry and its measurements in order to assess the model performance in a 

quantitative aspect. It is noted that some test cases, e.g. Kajima et al. [1983] and Kraus and 

Larson [1988] do not show smaller difference between predictions and measurements than 

the difference between initial bathymetry and measurements. This is primarily due to the 

predicted results of change in location of onshore-offshore sand bar and large deformation in 

the beach profile for longer time durations. Further, Figs. 32-34 illustrate the highest 

measured and predicted erosion depths and deposition heights in each test case for 3 data 

sources used in the study. For the cases 1.1, 1.2, 1.3, 1.5, 3.1, 3.4, 4.3 and 4.4 of Kajima et al. 

[1983] show large deposition heights (predicted) whereas the cases 1.2, 3.4, 4.3, 4.4 , 5.2 and 

5.3 show large erosion depths (predicted) compared to the measured values. In the case of 

Kraus and Larson [1988], the large deposition heights (predicted) are shown by the test cases 

of KL200 and KL901 while large erosion depths (predicted) are indicated by tests cases of 

KL100 and KL200. The deposition heights and erosion depths of most test cases of PARI 

[2009] are shown to be compliance with the measured values except the test case 1. 

Therefore, the worst scenario test cases of PARI [2009] show a reasonable agreement for 

Tables 10-16 
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maximum values of erosion depths and deposition heights. It is believed that large 

deformation in beach profile is expected due to presence of large number of free parameters 

(model coefficients) in wave, hydrodynamic and sediment transport modules of the present 

numerical model. Due to the lack of data in test cases of Hasan and Takawaka [2007, 2009] 

and Ruessink et al. [2007] no scatter plots are generated to represent the highest deposition 

heights and erosion depths.  

 According to the sensitivity study, it is suggested further improving the model 

performance particularly in quantitative point of view to use as a practical model in future. 

Therefore, the present study is regarded as the initial attempt of developing a process-based 

numerical model in a qualitative manner. The model limitations and recommendations are 

discussed in Section 5.  

 

4. Concluding Remarks 

The first stage of two-dimensional beach profile evolution model is developed with the help 

of the time-averaged suspended sediment concentration models of Jayaratne and Shibayama 

[2007] and Jayaratne et al. [2011]. Suspension under sheet flow and wave breaking are the 

sole driving forces causing sand transport under storm conditions while suspension under 

ripples and wave breaking influences the sand transport under non-storm conditions. The 

model is designed to be used as an engineering tool for the prediction of short-term beach 

profile evolution (up to 30 days) and is capable of analysing a large amount of wave, 

hydrodynamic and sediment data. One of the distinguishing features of the numerical model 

is that it takes only a few minutes to simulate a 2 to 3-day storm using a standard personal 

computer.  

 Simulations of observed onshore-offshore bar migration and undulating crescent 

shaped of beach profiles are obtained by fine-tuning 12 free parameters in the concentration 

models. The present model is applied to 5 high-quality data sets that are considered to be 

Figures 32-34 
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representative of natural sandy beaches subjected to storm and non-storm conditions. It can 

be seen that the present numerical model needs further development to predict both erosive- 

and accretive-type beaches with on-offshore sand bar and berm formation in a qualitative and 

quantitative manner, as the model results are generally no closer to the final measured values 

than are the initial conditions.  If the latter is taken as the null hypothesis, then it has not yet 

been shown that the model produces better predictions than this null hypothesis, and the 

focus of the further development will be to improve this. 

Using the concept of mass conservation in the water column below the wave trough 

and the bore-like wave region in the surf zone, a simple formula is derived to compute mass 

transport velocity above the wave trough. The numerical results confirm that values in the 

wave region are sometimes significant, especially for the combination of long period waves 

with moderate wave heights or large wave heights with short period waves, compared to the 

values at the edge of the boundary layer. But generally, the values of sediment flux in this 

region are small compared to the values at the edge of boundary layer to wave trough and 

therefore it can be regarded as a secondary factor for the precise sediment flux evaluation 

from the bottom of the sea to the crest of the wave. 

 

5. Model Limitation and Further Study 

The present stage of numerical model computes wave heights, hydrodynamics and associated 

sediment transport rates locally across the beach profile in a time-averaged manner and 

eventually the beach level change is given by the continuity of sediment mass. In such 

development of a deterministic model, there are number of potential problems and limitations 

associated with, for predicting extreme beach erosion and deposition under storm conditions. 

One of the major drawbacks of the present model is inadequately simulating extreme erosion 

events where there is considerable amount of wave energy dissipation occurred in the surf 

zone due to direct wave impact. Even though the erosion and deposition volumes due to wave 
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impact on sheet flow, rippled beds and under breaking agitation are explicitly incorporated in 

the numerical model by the time-averaged sediment concentration models of Jayaratne and 

Shibayama [2007] and Jayarane et al. [2011], the very localised deposition and erosion which 

does occur at a position just offshore of the sand bar is not very well modelled. One of the 

other disadvantages of time-averaged approach primarily relate to the inability to simulate 

sediment flux coupling between velocity and concentration levels (Nairn and Southgate, 

1993).  

 Further, the bedload transport rate of present numerical model is calculated using the 

Watanabe [1982] model and it is suggested incorporating a transport direction function 

(limiting parameter, Πc) proposed by Watanabe et al. [1986] in order to smooth an unrealistic 

discontinuities and abrupt undulations of beach profiles, as seen in some tested cases. 

Further, it is noted that the location of the offshore sand bar is shifted from the measured 

profile in some cases.  The wave breaking phenomenon is quite complex and not yet fully 

understood by the current researches. The wave breaking index of Goda [1970], further 

modified by Isobe [1987] was used in the present model, therefore it is recommended to 

carry out a sensitivity study of wave breaking index models to choose the best predictive 

model.   

It is noted that for medium and longer time durations, calibration is required to defeat 

the accumulation of small errors in the modelling procedure. It also provides a framework for 

future development of a model to overcome the existing deficiencies. Therefore, the present 

level of model could be considered providing a link between theoretical understanding and 

visual observations.  

The present model is valid up to the end of surf zone, defined as a finite water depth 

close to the shoreline and calculated using Eq. [50]. Hence, in most test cases, the beach 

profile after shoreline is appeared as a flat bed, without transporting the beach material 

further onshore to build up a coastal dune. In other words, the present model did not include 
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the swash zone physics therefore the following treatment is employed in to the model to 

cover this region as the next stage of model development. The swash zone sediment transport 

model of Larson et al. [2004] will be used to quantify the net transport rate over many swash 

cycles. Larson et al. [2004] integrated a shear stress based bed-load transport formula over a 

swash cycle to yield the net transport during the cycle. Sediment transport rate produced by 

this shear stress depends on the local swash velocity. The local swash velocity and duration 

needed to calculate the transport rate is obtained by employing a ballistic model, which have 

been shown to yield satisfactory results in many previous studies. The foreshore is kept plane 

sloping at all times from the finite water depth (run-up limit) to the still water level, which 

forms the seaward boundary of the swash zone. Transport through wet-dry bed boundary 

yields an instantaneous response in the foreshore, resulted in a uniform adjustment of the 

slope. 

The current stage of the model is developed considering dominant coastal processes 

and for small grain diameter cases (d50≤0.47 mm) therefore more detailed evaluation of long 

wave processes including swash zone dynamics is recommended in the next stage of study.  
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Fig. 1. Two-layer suspension model over full-scale rippled bed 
proposed by Jayaratne et al. [2011]. 
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Fig. 2. Measured and computed suspended sediment concentration profiles over field-
scale rippled bed from Jayaratne et al. [2011] models, produced with new free 
parameters (k1, k2, k3 and k4).  
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Fig. 3. Two-layer suspension model over full-scale sheet flow 
proposed by Jayaratne et al. [2011]. 
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Fig. 4. Measured and computed suspended sediment concentration profiles over field-scale 
sheet flow from Jayaratne et al. [2011] models, produced with new free parameters (k5, k6, 
k7 and k8).  
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Fig. 5. Measured and computed suspended sediment concentration profiles under field-
scale breaking agitation from Jayaratne & Shibayama [2007]. 
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Fig. 13. Measured and computed beach profiles from Kajima et al. [1983], Case 1.4 & 1.5. 
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Fig. 14. Measured and computed beach profiles from Kajima et al. [1983], Case 1.6 & 1.7. 
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Fig. 15. Measured and computed beach profiles from Kajima et al. [1983], Case 3.1 & 3.2. 
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Fig. 16. Measured and computed beach profiles from Kajima et al. [1983], Case 3.3 & 3.4. 
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Fig. 17. Measured and computed beach profiles from Kajima et al. [1983], Case 4.1 & 4.2. 
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Fig. 18. Measured and computed beach profiles from Kajima et al. [1983], Case 4.3 & 4.4. 
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Fig. 19. Measured and computed beach profiles from Kajima et al. [1983], Case 5.1 & 5.2. 
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Fig. 20. Measured and computed beach profiles from Kajima et al. [1983], Case 6.1. 
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Fig. 21. Measured and computed beach profiles from Larson & Kraus [1989], Case KL100 & 101. 
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Fig. 22. Measured and computed beach profiles from Larson & Kraus [1989], Case KL200 & 300. 
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Fig. 23. Measured and computed beach profiles from Larson & Kraus [1989], Case KL400 & 500. 
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Fig. 24. Measured and computed beach profiles from Larson & Kraus [1989], Case KL510, 600 & 610. 
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Fig. 25. Measured and computed beach profiles from Larson & Kraus [1989], Case KL700 & 901. 
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Fig. 26. Measured and computed beach profiles at Hazaki under non-storm conditions [PARI, 2005]. 
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Fig. 27. Measured and computed beach profiles at Hazaki under storm conditions [PARI, 2009], Case 1 & 2. 
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Fig. 28. Measured and computed beach profiles at Hazaki under storm conditions [PARI, 2009], Case 3 & 4. 
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Fig. 29. Measured and computed beach profiles at Hazaki under storm conditions [PARI, 2009], Case 5 & 6. 

-650

-400

-150

100

350

50 175 300 425

h 
(c

m
)

X (m)

Measured

Predicted

Initial (t=0 hr)

Case 5, t=24 hr



A Cross-Shore Beach Profile Evolution Model by Jayaratne, Rahman & Shibayama  
__________________________________________________________________________________________ 
 

28 
 

-500

-250

0

250

500

-125 0 125 250 375

h 
(c

m
)

X (m)

Measured
Predicted
Initial (t=0 hr)

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 1, t=24 hr

Fig. 30. Measured and computed beach profiles at Hazaki under storm conditions [Hasan & Takewaka, 
2007 & 2009]. 
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Fig. 31. Measured and computed beach profiles at Egmond beach, Netherlands [Ruessink et al., 2007]. 
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Fig. 32. Highest measured and predicted erosion depths and deposition heights for test cases of 
Kajima et al. [1983], (Case Nos 1-19 indicate Case 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.2, 3.1, 3.2, 

3.3, 3.4, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2 & 5.3 respectively). 

Fig. 33. Highest measured and predicted erosion depths and deposition heights for test cases of 
Kraus & Larson [1988] (Case nos 1-11 indicate Case KL100, 101, 200, 300, 400, 500, 510, 600, 

610, 700 & 901 respectively). 
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Fig. 34. Highest measured and predicted erosion depths and deposition heights for test cases of 
PARI [2009]. 
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Distance from  
Offshore  

(m) 

Sediment Flux at 
Wave Crest Level  

(g/cm.s) 

Sediment Flux at 
Wave Trough Level  

(g/cm.s) 

Sediment Flux at 
Boundary Layer Edge 

(g/cm.s) 
53.0 
55.0 
57.0 
59.0 
61.0 
63.0 
65.0 
67.0 
69.0 
71.0 
73.0 
75.0 
77.0 
79.0 
81.0 
83.0 
85.0 
87.0 
89.0 
91.0 
93.0 
95.0 
97.0 
99.0 

101.0 
103.0 
105.0 
107.0 
109.0 
111.0 
113.0 

 

-0.0021 
-0.0023 
-0.0021 
-0.0018 
-0.0013 
-0.0009 
-0.0005 
-0.0001 
 0.0002 
 0.0004 
 0.0006 
 0.0005 
 0.0004 
 0.0003 
 0.0002 
 0.0002 
 0.0001 
 0.0001 
 0.0001 
 0.0000 
 0.0000 
 0.0000 
 0.0007 
 0.0014 
 0.0011 
 0.0007 
 0.0005 
 0.0003 
 0.0002 
 0.0001 
 0.0001 

 

-0.6722 
-0.6619 
-0.6323 
-0.6073 
-0.5674 
-0.5293 
-0.4859 
-0.4427 
-0.4037 
-0.3653 
-0.3282 
-0.2588 
-0.1931 
-0.1398 
-0.1009 
-0.0717 
-0.0499 
-0.0338 
-0.0217 
-0.0131 
-0.0072 
-0.0025 
-0.5099 
-0.4657 
-0.3372 
-0.2288 
-0.1457 
-0.0932 
-0.0564 
-0.0294 
-0.0110 

-0.0556 
-0.0183 
 0.0019 
 0.0123 
 0.0174 
 0.0193 
 0.0194 
 0.0184 
 0.0168 
 0.0149 
 0.0129 
 0.0115 
 0.0103 
 0.0093 
 0.0084 
 0.0076 
 0.0070 
 0.0064 
 0.0060 
 0.0058 
 0.0058 
 0.0061 
 0.0177 
 0.0127 
 0.0118 
 0.0115 
 0.0114 
 0.0110 
 0.0108 
 0.0111 
 0.0123 

 

Table 1. Magnitudes of sediment flux at different levels across the water depth (Case 4.3, 
Kajima et al., 1983), Negative sign indicates flux towards the offshore direction. 
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Distance from  
Offshore  

(m) 

Sediment Flux at 
Wave Crest Level  

(g/cm.s) 

Sediment Flux at 
Wave Trough Level  

(g/cm.s) 

Sediment Flux at 
Boundary Layer Edge 

(g/cm.s) 
45.0 
46.0 
47.0 
48.0 
49.0 
50.0 
51.0 
52.0 
53.0 
54.0 
55.0 
56.0 
57.0 
58.0 
59.0 
60.0 
61.0 
62.0 
63.0 
64.0 
65.0 
66.0 
67.0 
68.0 
69.0 
70.0 
71.0 
72.0 
73.0 
74.0 
75.0 
76.0 
77.0 
78.0 
79.0 
80.0 
81.0 
82.0 
83.0 
84.0 
85.0 

-0.0073 
-0.0089 
-0.0100 
-0.0105 
-0.0102 
-0.0096 
-0.0086 
-0.0071 
-0.0055 
-0.0037 
-0.0017 
 0.0003 
 0.0024 
 0.0046 
 0.0068 
 0.0089 
 0.0081 
 0.0074 
 0.0067 
 0.0056 
 0.0050 
 0.0045 
 0.0038 
 0.0032 
 0.0028 
 0.0022 
 0.0019 
 0.0016 
 0.0014 
 0.0010 
 0.0008 
 0.0007 
 0.0005 
 0.0003 
 0.0002 
 0.0001 
 0.0001 
 0.0001 
 0.0001 
 0.0001 
 0.0001 

 

-1.9935 
-2.1800 
-2.3475 
-2.4877 
-2.5779 
-2.6540 
-2.7191 
-2.7334 
-2.7728 
-2.7931 
-2.7672 
-2.7270 
-2.6997 
-2.6572 
-2.6002 
-2.5298 
-2.2343 
-1.9628 
-1.7106 
-1.4454 
-1.2435 
-1.0664 
-0.8938 
-0.7323 
-0.6127 
-0.4855 
-0.3927 
-0.3168 
-0.2459 
-0.1788 
-0.1360 
-0.0995 
-0.0689 
-0.0404 
-0.0181 
-0.0392 
-0.0360 
-0.0322 
-0.0258 
-0.0182 
-0.0118 

-0.2105 
-0.1463 
-0.1007 
-0.0669 
-0.0400 
-0.0208 
-0.0078 
 0.0028 
 0.0076 
 0.0097 
 0.0112 
 0.0111 
 0.0081 
 0.0041 
-0.0006 
-0.0059 
-0.0056 
-0.0054 
-0.0049 
-0.0017 
-0.0014 
-0.0016 
-0.0010 
 0.0001 
-0.0006 
 0.0005 
 0.0002 
-0.0005 
-0.0005 
 0.0006 
 0.0002 
0.0000 
0.0001 
0.0017 
0.0048 
0.0076 
0.0067 
0.0060 
0.0056 
0.0056 
0.0058 

Table 2. Magnitudes of sediment flux at different levels across water depth (Case 500, 
Kraus and Larson, 1988), Negative sign indicates flux towards the offshore direction. 
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Table 3. Data sources used for formulation of suspended sediment concentration models (taken from 
Jayaratne & Shibayama, 2007; Jayaratne et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

Full-Scale Rippled Bed (Laboratory Measurements) 

No Data Source Cases 
Average 

Grain Size 
(mm) 

Velocity 
Amplitude 

(m/s) 

Wave 
Period  

(s) 

Type of 
Waves 

Experimental 
Facility 

1 Ribberink & Al-Salem 
[1994] 

14(A) 
6(B) 

0.21 
0.21 

0.3-1.5 
0.2-0.33 

2.0-10.0 
5.0-9.1 

Regular 
Irregular 

LOWT 
LOWT 

2 Clubb [2001] 4 0.34 0.53-0.84 5.0-10.0 Sine/Asym AOFT 
3 Thorne et al. [2002] 10 

4 
0.33 
0.33 

- 
- 

4.0-6.0 
4.92-5.10 

Regular 
Irregular 

Deltaflume 
Deltaflume 

4 Thorne et al. [2003] 1 0.33 - 5.0 Regular 
Asym 

Deltaflume 

5 Van der Werf et al. 
[2006] 

22 0.35 
0.22, 0.44 

0.5-1.0 
- 

5.0-10.0 
3.5-12.5 

Regular 
Irregular 

LOWT 
LOWT 

6 Van der Werf et al. 
[2007] 

14 0.44 0.22-0.47 5.0-7.4 Regular AOFT 

Total Cases 75  
Full-Scale Sheet Flow (Laboratory Measurements) 

1 Ribberink & Al-Salem 
[1994] 

2 0.21 - 6.5-9.1 Regular LOWT 

2 Katopodi et al. [1994] 4 0.21 - 7.2 Regular LOWT 
3 Hamm et al. [1998] 3 0.20 6.76-8.52 1.25-1.75 Regular LOWT 
4 Dohmen-Janssen [1999] 3 0.41 - 3.0-3.6 Regular LOWT 

Total Cases 12  
Full-Scale Breaking Agitation (Laboratory Measurements) 

1 Kajima et al. [1983] 137 0.27-0.47 23.0-180.0 3.0-12.0 Regular Large wave 
flume 

2 Dette and Uliczka 
[1986] 

11 0.33 150.0 6.0 Regular/ 
Irregular 

Large wave 
flume 

Total Cases 148  
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Table 4. Complete data sources used for comparison of simulated beach profiles [1983-2009]. 

 

Table 5. Test cases of Kajima et al. [1983] used for model comparison. 
 

 
 
 

Large-Scale Laboratory Studies 

No Data Source Cases 
Average 

Grain Size 
(mm) 

Wave 
Height 
(cm) 

Wave 
Period  

(s) 

Initial Beach 
Condition 

Experimental 
Facility/ 
Location 

1 Kajima et al. [1983] 19 0.27-0.47 23.0-166.0 3.0-12.0 Uniform Wave 
flume/CRIEPI 

2 Kraus & Larson [1988] 12 0.22-0.40 55.0-168.0 3.75-16.0 Uniform, Non-
uniform 

Wave 
flume/CERC 

Total Cases 31  
Field Measurements 

3 PARI, Japan  
Non-storm condition [2005] 
Storm condition [2009] 

 
1 
6 

 
0.18 
0.18 

 
165 

56.0-220.0 

 
11.8 

3.5-13.7 

 
Uniform 

Uniform, Non-
uniform 

 
HORS/Hazaki, 

Japan 
 

4 Hasan & Takewaka  
[2007, 2009] 

1 0.23 369.0 12.1 Non-uniform HORS/Hazaki, 
Japan 

5 Ruessink et al. [2007] 1 0.265 200.0 8.0 Uniform Egmond/ 
Netherlands 

Total Cases 9  

Case No 
Average 

Grain Size 
(mm) 

Wave Height 
(cm) 

Wave Period 
(s) 

Initial Water 
Depth 
(cm) 

Bottom 
Slope 

(-) 

Initial Beach 
Condition 

1.1 0.47 44.0 6.0 450.0 0.05 Uniform 
1.2 0.47 92.0 6.0 450.0 0.05 Uniform 
1.3 0.47 105.0 9.0 450.0 0.05 Uniform 
1.4 0.47 53.0 3.0 450.0 0.05 Uniform 
1.5 0.47 23.0 4.5 450.0 0.05 Uniform 
1.6 0.47 51.0 6.0 450.0 0.05 Uniform 
1.7 0.47 30.0 4.5 450.0 0.05 Uniform 
2.2 0.47 86.0 9.0 350.0 0.03 Uniform 
3.1 0.27 107.0 9.1 450.0 0.05 Uniform 
3.2 0.27 105.0 6.0 450.0 0.05 Uniform 
3.3 0.27 81.0 12.0 450.0 0.05 Uniform 
3.4 0.27 154.0 3.1 450.0 0.05 Uniform 
4.1 0.27 31.0 3.5 350.0 0.03 Uniform 
4.2 0.27 97.0 4.5 400.0 0.03 Uniform 
4.3 0.27 151.0 3.1 400.0 0.03 Uniform 
4.4 0.27 100.0 9.0 400.0 0.03 Uniform 
5.1 0.27 29.0 5.8 350.0 0.02 Uniform 
5.2 0.27 74.0 3.1 350.0 0.02 Uniform 
6.1 0.27 166.0 5.0 400.0 0.10 Uniform 
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Table 6. Test cases of Kraus and Larson [1988] used for model comparison. 
 

 

 

Table 7. Non-storm and storm test cases of PARI [2005, 2009] used for model comparison. 

 

 

Table 8. Test cases of Hasan & Takewaka [2007, 2009] used for model comparison. 

 

 

Case No 
Average 

Grain Size 
(mm) 

Wave Height 
(cm) 

Wave Period  
(s) 

Initial Water 
Depth 
(cm) 

Bottom 
Slope 

(-) 

Initial Beach 
Condition 

100 0.22 128.0 11.33 457.0 0.067 Uniform 
101 0.40 128.0 11.33 457.0 0.067 Uniform 
200 0.22 55.0 11.33 457.0 0.067 Uniform 
300 0.22 168.0 11.33 427.0 0.067 Uniform 
400 0.22 162.0 5.60 442.0 0.067 Uniform 
500 0.22 152.0 3.75 457.0 0.067 Uniform 
510 0.22 152.0 3.75 457.0 0.067 Non-uniform 
600 0.22 61.0 16.0 457.0 0.067 Uniform 
610 0.22 152.0 3.75 457.0 0.067 Non-uniform 
700 0.22 162.0 16.0 411.0 0.067 Uniform 
901 0.40 134.0 7.87 396.0 0.067 Uniform 
911 0.40 134.0 7.87 396.0 0.067 Uniform 

Case No 
Average 

Grain Size 
(mm) 

Wave Height 
(cm) 

Wave Period  
(s) 

Initial Water 
Depth 
(cm) 

Bottom 
Slope 

(-) 

Initial Beach 
Condition 

 Non-Storm Conditions [2005] 
1 0.18 165 11.8 400.0 0.025 Uniform 

 Storm Conditions [2009] 
1 0.18 210.0 4.50 500.0 0.018 Uniform 
2 0.18 129.0 3.75 500.0 0.018 Uniform 
3 0.18 90.0 3.50 500.0 0.018 Non-uniform 
4 0.18 220.0 3.65 500.0 0.018 Uniform 
5 0.18 56.0 13.0 500.0 0.018 Non-uniform 
6 0.18 85.0 13.7 500.0 0.018 Uniform 

Case No 
Average 

Grain Size 
(mm) 

Wave Height 
(cm) 

Wave Period  
(s) 

Initial Water 
Depth 
(cm) 

Bottom 
Slope 

(-) 

Initial Beach 
Condition 

1 0.23 369.0 12.1 2400.0 0.019 Non-uniform 
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Table 9. Test cases of Ruessink et al. [2007] used for model comparison.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case No 
Average 

Grain Size 
(mm) 

Wave Height 
(cm) 

Wave Period  
(s) 

Initial Water 
Depth 
(cm) 

Bottom 
Slope 

(-) 

Initial Beach 
Condition 

1 0.265 200.0 8.0 470.0 0.02 Uniform 
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Table 10. Difference between predictions & measurements, and measurements & initial 

bathymetry for test cases of Kajima et al. [1983] Part 1. 
 

 

   

 

Case No 
 

Duration 
(hr) 

Difference between 
Predictions & 
Measurements 

(cm) 

Difference between 
Measurements & 

Initial Bathymetry 
(cm) 

1.1 
6 11.23 6.92 
10 6.32 5.12 
20 12.33 11.98 

1.2 1 6.75 7.18 
13 18.93 17.74 

1.4 

2 4.84 3.92 
3 4.65 0.69 

5.5 9.11 5.27 
7.5 11.54 6.01 

1.5 

6 10.98 8.15 
18 14.01 11.39 
30 14.51 14.11 
48 14.91 14.83 

1.6 

0.5 4.14 1.44 
3 8.64 6.40 
6 10.67 10.48 
12 9.06 13.85 

1.7 

1 2.99 2.99 
5 6.08 5.59 
16 9.01 8.96 
48 11.47 12.83 

3.1 

0.5 10.16 3.45 
3 17.07 18.33 
7 18.37 21.94 
15 22.31 25.73 

3.2 

1 10.60 6.17 
3 9.77 10.62 
7 11.00 14.96 
15 23.16 18.69 

3.3 

1 10.64 3.98 
7.5 18.50 15.58 
15 21.98 19.21 
30 25.34 19.26 

3.4 

7 12.55 12.68 
15 33.84 31.67 
30 50.05 49.63 
60 70.80 66.31 

4.1 

1 1.503 1.32 
6.5 3.24 2.98 
15 5.54 4.92 
30 4.78 5.42 
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Table 11. Difference between predictions & measurements and measurements & initial 
bathymetry for test cases of Kajima et al. [1983] Part 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case No 
 

Duration 
(hr) 

Difference between 
Predictions & 
Measurements 

(cm) 

Difference between 
Measurements & 

Initial Bathymetry 
(cm) 

4.2 

1.5 31.20 2.50 
5.5 14.83 9.94 
9.5 16.47 12.28 
16 19.01 13.62 

4.3 

8 28.99 0.97 
15 19.91 11.51 

37.5 41.46 31.66 
60 54.33 44.50 

4.4 10 35.21 4.05 

5.1 

3 2.32 1.64 
7 2.41 2.78 

17 3.33 3.66 
31 5.18 5.81 

5.2 

1 2.308 1.44 
15 10.71 8.79 
32 14.41 11.82 
60 30.64 15.59 

6.1 1 31.87 6.08 
5 63.21 49.75 
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Table 12. Difference between predictions & measurements and measurements & initial 
bathymetry for test cases of Kraus and Larson [1988]. 

 

Case No 
 

Duration 
(hr) 

Difference between 
Predictions & 
Measurements 

(cm) 

Difference between 
Measurements & 

Initial Bathymetry 
(cm) 

KL100 

1 17.49 4.95 
5 13.97 12.62 

12 26.53 25.25 
19 26.33 25.78 

KL101 5 22.52 21.84 
10 27.20 24.04 

KL200 
6 12.08 12.64 

19.5 19.47 17.54 
34.5 16.27 16.85 

KL300 

1 19.52 19.10 
5 26.32 30.42 

10 32.38 30.57 
15 34.92 31.58 

KL400 1 104.56 19.35 
15 24.38 25.02 

KL500 

1 12.56 1.47 
5 28.48 25.24 

10 34.44 22.88 
15 85.32 20.14 

KL510 1 6.18 6.04 
15 11.89 11.22 

KL600 

1 8.93 8.48 
5 11.92 10.42 

10 16.14 13.17 
15 17.62 13.13 

KL610 1 14.12 13.90 

KL700 

1 4.96 5.26 
5 7.11 5.98 

10 12.97 19.31 
15 19.46 24.89 

KL901 1 24.55 44.00 

KL911 

6 26.52 24.83 
15.5 46.04 31.79 
31 51.73 33.12 

40.5 59.81 37.27 
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Table 13. Difference between predictions & measurements and measurements & initial 
bathymetry for non-storm test case of PARI [2005]. 

 

Case No 
 

Duration 
(hr) 

Difference between 
Predictions & 
Measurements 

(cm) 

Difference between 
Measurements & 

Initial Bathymetry 
(cm) 

1 

24 11.24 8.20 
48 14.13 13.43 
72 13.15 10.45 

168 15.87 13.75 
240 16.21 13.63 
720 45.42 45.09 

 

 

 

Table 14. Difference between predictions & measurements and measurements & initial 
bathymetry for storm test cases of PARI [2009]. 

 

Case No 
 

Duration 
(hr) 

Difference between 
Predictions & 
Measurements 

(cm) 

Difference between 
Measurements & 

Initial Bathymetry 
(cm) 

1 
24 25.94 26.00 
72 46.01 46.08 
96 42.68 42.75 

2 

24 53.52 62.05 
48 36.17 42.72 
72 27.64 33.35 

144 25.75 32.97 

3 24 23.47 46.32 
96 16.15 46.28 

4 
24 37.20 2.32 
48 39.01 17.32 
72 41.30 21.00 

 

 

 

 

 

 

 



A Cross-Shore Beach Profile Evolution Model by Jayaratne, Rahman and Shibayama  
__________________________________________________________________________________________ 
 

11 
 

Table 15. Difference between predictions & measurements and measurements & initial bathymetry 
for test case of Hasan and Takewaka [2007, 2009]. 

 
 

 

 

 

 

 
Table 16. Difference between predictions & measurements and measurements & initial bathymetry 

for test case of Ruessink et al. [2007]. 

 

 

 

Case No 
 

Duration 
(hr) 

Difference between 
Predictions & 
Measurements 

(cm) 

Difference between 
Measurements & 

Initial Bathymetry 
(cm) 

1 
 

24 
 

32.82 
 

29.04 
 

Case No 
 

Duration 
(hr) 

Difference between 
Predictions & 
Measurements 

(cm) 

Difference between 
Measurements & 

Initial Bathymetry 
(cm) 

1 

 

24 
72 
96 

168 
216 
264 
284 
308 

 

1.470 
0.495 
1.470 
1.536 
2.404 
2.351 
6.867 
6.739 

 

1.470 
0.496 
1.467 
1.537 
2.405 
2.351 
6.867 
6.738 

 


