

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Yu, Jian; Sheng, Quan Z.; Falcarin, Paolo; Morisio, Maurizio
Title: Weaving Business Processes and Rules: A Petri Net Approach
Year of publication: 2009
Citation: Yu, J., Sheng, Q.Z., Falcarin, P. and Morisio, M. (2009) ‘Weaving
Business Processes and Rules: A Petri Net Approach’ 8th International Conference
on Information Systems Technology and its Applications (ISTA 09), April 2009
Sydney: Springer
Link to published version: http://dx.doi.org/10.1007/978-3-642-01112-2_13

http://roar.uel.ac.uk/
http://dx.doi.org/10.1007/978-3-642-01112-2_13

Weaving Business Processes and Rules:

A Petri Net Approach

Jian Yu1, Quan Z. Sheng1, Paolo Falcarin2, and Maurizio Morisio2

1 School of Computer Science, The University of Adelaide,
Adelaide, SA 5005, Australia

jian.yu01@adelaide.edu.au, qsheng@cs.adelaide.edu.au
2 Dipartimento Automatica e Informatica, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino
{paolo.falcarin,maurizio.morisio}@polito.it

Abstract. The emerging service-oriented computing paradigm advo-
cates building distributed information systems by chaining reusable ser-
vices instead of by programming from scratch. To do so, not only busi-
ness processes, but also business rules, policies and constraints need to
be encoded in a process language such as Web Services Business Pro-
cess Execution Language (WS-BPEL). Unfortunately, the intermixing
of business processes and rules in a single process weakens the modular-
ity and adaptability of the systems. In this paper, we propose a formal
approach to model the weaving of business processes and rules, following
the aspect-oriented principle. In particular, we use Predicate/Transition
(PrT) nets to model business processes and business rules, and then
weave them into a coherent PrT net. The resulting woven nets are ready
for analysing system properties and simulating system behaviour.

Key words: Business process modelling, business rules, aspect-orientation,
Petri nets

1 Introduction

Service-oriented computing (SOC) builds on the software engineering trends of
greater encapsulation and composing rather than programming [?]. It’s why
business processes play a central role in SOC: using distributed, platform-
independent, and well-encapsulated services as basic building blocks, business
processes organize and coordinate the behaviour of services to achieve business
goals in a loosely coupled and flexible manner. In the case of Web services, Web
Services Business Process Execution Language (WS-BPEL, BPEL for short)
has been considered as a de facto industry standard to create composite service
applications.

However, the flow logic encoded in processes cannot represent the complete
features of a business: there are also rules, policies and constraints manifesting
the decision aspect of the business. In fact, business rules are used extensively in
some decision-intensive domains such as finance and insurance sectors to model
and document business requirements. A serious problem appears if we implement

jian.yu01@adelaide.edu.au
qsheng@cs.adelaide.edu.au

2 Jian Yu et al.

business rules using a process-oriented paradigm where business rules are mixed
and coded in the process logic as a whole monolithic block. As a result, the
original modularity of business rules is lost and it becomes hard for business
rules to change without affecting the core composition logic [?].

In this paper, we use Predicate/Transition nets (PrT nets) [?], a kind of
widely used high-level Petri nets, to model both business processes and business
rules, and then use an aspect-oriented mechanism to weave them into a coherent
PrT net. Our approach not only keeps the modularity of business rules, but also
supports formal verification thanks to the well-established theoretical foundation
of Petri nets.

The rest of this paper is organized as follows: Section 2 briefly overviews some
fundamental concepts and definitions that underpin the discussion throughout
the paper. Section 3 explains how to model business rules with PrT nets. Section
4 explains the PrT net-based aspect and the weaving mechanism, and Section 5
concludes the paper.

2 Business Rules and Aspect-Orientation

In this section, we briefly review the concepts of business rule and aspect-
orientation. Some example rules and aspects used throughout the paper are
also discussed.

According to the Business Rules Group [?], a business rule is a statement that
defines or constrains some aspect of a business. It is intended to assert business
structure or to control the behaviour of the business. In [?], business rules are
classified into four types: constraint rule, action-enabler rule, computation rule,
and inference rule.

For instance, a travel-package-requesting scenario could have the following
business rules [?]:

R1(constraint rule): a vacation request must have a departure airport and a
destination airport.

R2(action-enabler rule): if no flight is found, do not look for accommodation.
R3(computation rule): if more than 2 persons travel together, give 10% discount

to the total price.
R4(inference rule): if a customer is frequent customer, he gets a discount of 5%.

The reason why R4 is an inference rule is that to resolve what is a frequent
customer, we need another two rules:

R5(constraint rule): if a customer has bought more than 5 travel packages, he
is a frequent customer.

R6(constraint rule): if a customer has bought products for a sum exceeding
4000 euros, he is a frequent customer.

Aspect-orientation is a strand of software development paradigm that models
scattered crosscutting system concerns as first-class elements, and then weaves
them together into a coherent model or program.

Weaving Business Processes and Rules: A Petri Net Approach 3

Referring to Aspect4J [?], an aspect-oriented program usually consists of base
modules and a number of aspects that modularizes crosscutting concerns. An
aspect wraps up pointcuts and advices. A pointcut picks out certain join points,
which are well-defined points (e.g., method calls) in the program flow. An advice
is a piece of code that is executed when a join point is reached. There are three
types of advices:

– A before advice runs just before the join points picked out by the pointcut.
– An after advice runs just after each join point picked out by the pointcut.
– An around advice runs instead of the picked join point.

Following gives an example to illustrate the idea of aspect-orientation. Sup-
posing we have a simple business process containing three sequentially execut-
ing services, say getFlight, getAccommodation, and calculatePrice, to apply all
the business rules ranging from R1 to R4 on this process, we first define the
three services as pointcuts so that whenever a service is called, a join point is
reached where advices can take effect. Then we define four advices: R1 before
getFlight, R2 around getAccommodation, R3 after calculatePrice, and R4 after
calculatePrice. The above pointcuts and advices can be grouped as an aspect.
This aspect means: R1 should be satisfied before executing getFlight; and if the
condition of R2 is true, getAccommodation will not be executed; and R3 and R4

should be executed after calculatePrice.

3 Modeling Business Rules with PrT nets

In this section, we show our idea of how to use PrT nets to model the above-
mentioned four types of business rules. Specifically, we use the terms constraint
nets, action-enabler nets, computation nets and inference nets to call the nets
representing corresponding business rules, and call them rule nets in general.

Syntactically, we classify the transitions in a rule net with three stereotypes:

– An action transition TA represents a business activity, e.g., get flight.
– A computation transition TC represents the specific action of assigning vari-

ables with arithmetic expressions, e.g., assigning price × 90% to the variable
price.

– And a dummy transition TD does nothing.

Transition stereotypes provide additional information to a net at the business
level; they do not change the behavioural semantics of rule nets.

To model a constraint rule, we use a dummy transition with its inscription
representing the constraints. For example, R1 can be modelled as the constraint
net in Fig. ??.

To model an action-enabler rule, we use an action transition to represent the
business activity, and the inscription of this transition representing the enabling
condition.

To model a computation rule, we use a computation transition with its name
representing the computation expression. Note that the computation expression

4 Jian Yu et al.

<req> req.
&& req.

<req>

tD_CheckRequest

Fig. 1. Constraint net R1.

is only reflected in the name of the transition since just like the execution of
a business action, the interpretation of expressions is outside the scope of PrT
nets.

An inference rule is created by composing two rule nets with AND-JOIN,
OR-JOIN, or SEQ-JOIN operators. Intuitively, if we connect two rule nets with
AND-JOIN, then the composed rule net means the conjunction of the two rules;
if we connect two rule nets with OR-JOIN, then the composed rule net means
the disjunction of the two rules. Note that AND-JOIN and OR-JOIN are also
two workflow patterns defined in [?]. The sequential join of of two rule nets
means that the resolve of one rule net depends on the consequents of the other
rule net. The SEQ − JOIN operation fuses the source place of the dependent
net with the sink place of the independent rule net. Usually, an inference net
can be built first by introducing the net representing the final goal, and then
introducing the rules backwards with the SEQ-JOIN operation based on the
cause-effect relations until all the newly introduced rules are resolvable.

Taking R4 as an example, to resolve the meaning of frequent, we need another
two rules: R5 and R6. Fig. ??.a, b and c are the rule nets for R4, R5 and
R6 respectively. Because R4 depends on the consequent of R5 or R6, we use
OR-JOIN to compose them and then use SEQ-JOIN to connect the combined
consequent to the rule net of R4 to form a complete inference rule net as depicted
in Fig. ??.d.

4 Weaving Rule Nets into Process Nets

Corresponding to rule nets, we use the term process nets to call the PrT nets
representing business processes. For example, Fig. ?? is the process net N for
the travel package request process described in Section 2.

Just like aspect-oriented programming, we use pointcut to select a transition
as join point. Without losing generality, every pointcut can only select one tran-
sition to simplify the definition of weaving. The advices are represented by rule
nets. A rule net can be weaved into a process net either before, after, or around
a pointcut/transition. Another important concept is context net, for exposing
context of the process net to the rule net. It is interesting to note that the process
net and its rule nets could be authored independently, which reflects the modu-
lar feature of aspect-orientation. To weave them smoothly, we use context net to
put them in the same context and mediate possible parameter inconsistencies.
For example, the input parameters for the transition N.getF light is a struc-
ture < Customer, Request >, but its constraint net R1 accepts < Request >

Weaving Business Processes and Rules: A Petri Net Approach 5

<cust>

customer
<cust> cust.pkgBought

>5

<cust>
frequent customer

<cust> cust.sumBought

>4000

<cust>
frequent

R4

R5 R6

(a)

(b) (c)

<cust> cust.pkgBought

>5

<cust>

cust.sumBought

>4000

<cust> <cust>

<cust>

<cust>

<cust>

Tc_cust.price*=(1-5%) discount

OR-join

(d) The inference rule net

<cust>

<cust>

<cust>
<cust>

<cust>

<cust>

Tc_cust.price*=(1-5%)

customer discount

customer

Fig. 2. The inference rule derived from R4, R5, and R6.

getFlight getAccommodation
<cust, req, flt> <cust, req, flt>

<cust, req,
flt, room>

ResultcalcPrice<cust, req,
flt, room>

<cust, req,
flt, room, price><cust, req>

Request

Fig. 3. Travel package request process net N.

as input. Finally, we can wrap up pointcuts, advices, and context net into an
aspect.

To demonstrate our idea, we give an example on how to weave the con-
straint net R1 before N.getF light. Fig. ?? presents an aspect asp rule1. The
context net is built first by introducing the pre-set of the pointcut, i.e. transi-
tion N.getF light, as the initial context, and then splitting the request to match
the input of the advice net, finally merging the results and transferring them
back to the cutting point. Note that we use an round rectangle to represent the
net R1 for simplicity.

Fig. ?? is the resulting net after we weave asp rule1 into N. This net is
built simply by putting the context net and the process net together, and then
deleting the arcs between the cutting point and its preset because it is a before
cut. Note that elements with the same names are merged to reflect the expansion
of context.

5 Conclusion

In this paper, we present a PrT net-based approach to weaving business processes
and rules. The woven net not only keeps the modularity of rules, but also is ready
for analysis and simulation by various PrT techniques and tools. We view our

6 Jian Yu et al.

<req> req.
&& req.

<req>

checkRequestPa1 Pa2

<cust, req>

N.Request

<req>

<cust>

R1
<req>

<cust> N.getFlight
<cust, req>

Aspect asp_rule1{
pointcut N.getFlight;
advice a_checkRequest before N.getFlight: R1;
R1:

context(a_checkRequest): Nc1;
Nc1:

Fig. 4. Aspect asp rule1.

getFlight getAccommodation
<cust, req, flt> <cust, req, flt>

<cust, req,
flt, room>

ResultcalcPrice<cust, req,
flt, room>

<cust, req,
flt, room, price>

Request

<cust, req>

<req>

<cust>

R1
<req>

<cust>
<cust, req>

<req>

Fig. 5. Resulting net of weaving N and asp rule1.

work presented in this paper as a first step towards a formalized model-driven
approach of developing service-oriented information systems.

References

1. Yu, Q., Bouguettaya, A., and Medjahed, B.: Deploying and Managing Web Services:
Issues, Solutions, and Directions. The VLDB Journal, vol. 17, no. 3, pp. 537–572
(2008)

2. Charfi, A., Mezini, M.: Hybrid Web Service Composition: Business Processes Meet
Business Rules. In: 1st International Conference on Service Oriented Computing
ICSOC, pp. 30–38 (2004)

3. Genrich, H.J.: Predicate/Transition Nets. Advances in Petri nets 1986, pp. 207–247.
Springer, London (1987)

4. The Business Rules Group: Defining Business Rules, What Are They Really?
http://www.businessrulesgroup.org

5. von Halle, B.: Business Rules Applied: Building Better Systems Using the Business
Rules Approach. Wiley (2001)

6. Gradecki, J.D., Lesiecki, N.:Mastering AspectJ: Aspect-Oriented Programming in
Java. Wiley (2003)

7. van der Aalst, W. and van Hee, K..: Workflow Management: Models, Methods, and
Systems. MIT Press, Cambridge, MA (2002)

	ISTA 2009 cs
	ISTA09
	Weaving Business Processes and Rules: A Petri Net Approach
	Jian Yu, Quan Z. Sheng, Paolo Falcarin, Maurizio Morisio
	Introduction
	Business Rules and Aspect-Orientation

