
MODELLING AND REASONING ABOUT TRUST
RELATIONSHIPS IN THE DEVELOPMENT OF

TRUSTWORTHY INFORMATION SYSTEMS

Michail Pavlidis

Ph.D.

2014

MODELLING AND REASONING ABOUT TRUST

RELATIONSHIPS IN THE DEVELOPMENT OF

TRUSTWORTHY INFORMATION SYSTEMS

Michail Pavlidis

A thesis submitted in partial fulfilment of the requirements of the School of

Architecture, Computing, and Engineering, University of East London for

the degree of Doctor of Philosophy

October 2014

Abstract

Trustworthy information systems are information systems that fulfil all the func-

tional and non-functional requirements. To this end, all the components of an in-

formation system, either human or technical, need to collaborate in order to meet its

requirements and achieve its goals. This entails that system components will show

the desired or expected behaviour once the system is put in operation. However,

modern information systems include a great number of components that can behave

in a very unpredictable way. This unpredictability of the behaviour of the system

components is a major challenge to the development of trustworthy information sys-

tems and more particularly during the modelling stage. When a system component

is modelled as part of a requirements engineering model it creates an uncertainty

about its future behaviour, thus undermining the accuracy of the system model and

eventually the system trustworthiness. Therefore, the addition of system components

inevitably is based on assumptions of their future behaviour. Such assumptions are

underlying the development of a system and usually are assumptions of trust by the

system developer about her trust relationships with the system components, which

are instantly formed when a component is inserted into a requirements engineering

model of a system. However, despite the importance of such issues, a requirements

engineering methodology that explicitly captures such trust relationships along with

the entailing trust assumptions and trustworthiness requirements is still missing.

For tackling the preceding problems, the thesis proposes a requirements engineer-

ing methodology, namely JTrust (Justifying Trust) for developing trustworthy infor-

mation systems. The methodology is founded upon the notions of trust and control

as the means of confidence achievement. In order to develop an information system

the developer needs to consider her trust relationships with the system components

that are formed with their addition in a system model, reason about them, and pro-

ceed to a justified decision about the design of the system. If the system component

cannot be trusted to behave in a desired or expected way then the question of what

are the alternatives in order to build confidence in the future behaviour of the system

component raises. To answer this question we define a new class of requirements,

namely trustworthiness requirements. Trustworthiness requirements prescribe the

functionality of the software included in the information system that compels the

rest of the information system components to behave in a desired or expected way.

The proposed methodology consists of: (i) a modelling language which contains trust

i

and control abstractions; (ii) and a methodological process for capturing and reason-

ing about trust relationships, modelling and analysing trustworthiness requirements,

and assessing the system trustworthiness at a requirements stage. The methodology

is accompanied by a CASE tool to support it.

To evaluate our proposal, we have applied our methodology to a case study, and

we carried out a survey to get feedback from experts. The topic of the case study was

the e-health care system of the National Health Service in England, which was used to

reason about trust relationships with system components and identify trustworthiness

requirements. Researchers from three academic institutions across Europe and from

one industrial company, British Telecom, have participated in the survey in order to

provide valuable feedback about the effectiveness and efficiency of the methodology.

The results conclude that JTrust is useful and easy to use in modelling and reasoning

about trust relationships, modelling and analysing trustworthiness requirements and

assessing the system trustworthiness at a requirements level.

ii

Dedication

To my parents Ioannis and Anastasia Pavlidis

For your unconditional love and support throughout my life

I thank you

Στους γονείς μου Ιωάννη και Αναστασία Παυλίδη

Σας ευχαριστώ

iii

Acknowledgements

I am extremely grateful to my supervisor Haris Mouratidis, whose vision and

enthusiasm have guided and encouraged my research over the past years. I thank

him for opening up for me a new world, new perspectives, and new expectations. It

was a privilege to have such outstanding supervisor.

I would like to give special thanks to my second supervisor Shareef Islam for his

timeless and continuous guidance, advice, and encouragement while carrying out

this research. I owe special thanks to my external advisor Paul Kearney for his

exceptional support and for sharing his wealth of knowledge. Our discussions gave

me many insights, invaluable advice, and suggestions for my research.

I would like also to thank all the researchers from University of East London,

British Telecom, University of the Aegean, and University of Castile-La Mancha that

took part in the evaluation survey and for their feedback and very useful discussions

for improving my thesis. I would like also to give special thanks to Piotr Cofta.

I would also like to express my thankfulness to the staff at School of Architecture,

Computing and Engineering (ACE) and Graduate School at University of East

London (UEL) for their support in my research. My thankfulness goes also to staff

at British Telecom for providing me time for discussion on my research.

Gratitude is shown to British Telecom (BT) and Engineering and Physical Sci-

ences Research Council (EPSRC) for their funding with regards to this research.

Last but not least, I would like to thank my beloved parents Ioannis and Anas-

tasia, and my sister Magdalini, for being patient, encouraging, understanding, and

extremely supportive and for their unconditional love not only throughout my PhD

but also throughout my life.

v

Contents

1 Introduction 1

1.1 Motivation and problem statement 3

1.2 Research questions . 6

1.3 Research aims and objectives . 6

1.4 Research contributions . 7

1.5 Research approach . 9

1.6 Publications . 11

1.7 Structure of the thesis . 13

I State of the Art 16

2 Literature review 17

2.1 Trust and trustworthiness . 18

2.2 Information System trust and trustworthiness 24

2.3 Trust and Information System trustworthiness in the context of the

thesis . 28

2.4 Information Systems development methodologies 29

2.4.1 Modelling language . 30

2.4.2 CASE tools for Information System methodology 32

2.5 Evaluation methods for software engineering methodologies 34

2.6 State of the art in trust engineering 35

2.6.1 Trust modelling . 36

2.6.2 Security engineering considering trust 43

2.6.3 Goal satisfaction reasoning . 50

2.6.4 Trust management . 53

2.6.5 Human Computer Interaction in the context of trust 57

2.6.6 Trusted Computing . 58

2.6.7 Computational trust . 59

vi

2.7 Chapter summary . 59

II JTrust: A Trustworthy Information System Development Method-

ology 63

3 JTrust modelling language 64

3.1 Methodology requirements . 65

3.2 Methodology structure . 66

3.3 Running example . 66

3.4 Confidence as the key to modelling uncertainty 68

3.5 JTrust modelling language concepts 75

3.6 Trustworthiness requirements . 82

3.7 Meta-model of the JTrust modelling language 83

3.8 Trustworthiness assessment model . 90

3.9 Chapter summary . 92

4 JTrust process 93

4.1 Activity 1: Goal and dependency modelling 94

4.2 Activity 2: Resolution modelling . 96

4.3 Activity 3: Entailment modelling . 98

4.4 Activity 4: Trustworthiness requirement analysis 100

4.5 Activity 5: System trustworthiness assessment 101

4.6 Chapter summary . 102

5 JTrust tool 104

5.1 Tool architecture . 104

5.2 Concepts graphical notation . 107

5.3 Trust tool functionality . 111

5.4 Chapter summary . 113

III Evaluation and Conclusions 114

6 Evaluation 115

6.1 Study 1: Evaluation of JTrust by case study research in the health

care domain . 117

6.1.1 Case study design . 119

6.1.2 Data collection - Applying the JTrust methodology 125

6.1.3 Data analysis - Evaluation results and discussion 140

vii

6.2 Study 2: Evaluation of JTrust methodology by survey research 144

6.2.1 Survey design . 145

6.2.2 Data collection . 151

6.2.3 Data analysis - Evaluation results and discussion 152

6.3 Chapter summary . 156

7 Conclusions and future work 157

7.1 Thesis summary . 158

7.2 Research questions . 159

7.3 Contributions to the state of the art and impact 161

7.4 Limitations of the approach . 163

7.5 Future work . 164

Bibliography 167

viii

List of Tables

2.1 Trust engineering approaches . 36

2.2 Comparison table of state of the art in trust engineering 61

7.1 Summary of research questions and answers 160

ix

List of Figures

1.1 Research approach . 10

1.2 Thesis claim and supporting propositions 15

2.1 Optimum trust level . 23

2.2 Modelling methods components . 31

2.3 Monitoring example . 38

2.4 Bimrah meta-modell . 40

2.5 Methods for bridging trusted domains 41

2.6 Holistic trust analysis process . 42

2.7 Trust case conceptual model . 45

2.8 CORAS’ steps . 49

2.9 Trust reference model . 56

2.10 Application areas of state of the art in trust engineering 62

3.1 JTrust methodology structure . 66

3.2 Model of confidence . 72

3.3 JTrust modelling language meta-model 84

3.4 Goal model example . 85

3.5 Dependency model example . 87

3.6 Resolution model example . 88

3.7 Entailment model example . 89

3.8 Trustworthiness requirement model example 90

4.1 JTrust process . 94

4.2 Goal and depedency modelling activity 96

4.3 Resolution modelling activity . 98

4.4 Entailment modelling activity . 99

4.5 Trustworthiness requirement analysis activityl 100

4.6 System trustworthiness assessment activity 102

5.1 Implemenation meta-model . 105

x

5.2 Model driven architecture . 106

5.3 JTrust tool visual layout . 106

5.4 Concepts notation . 107

5.5 Actor properties . 108

5.6 Goal Properties . 109

5.7 Decomposition Properties . 109

5.8 Trust resolution Properties . 110

5.9 Control Resolution Properties . 110

5.10 Entailment Properties . 111

5.11 Dependency Properties . 111

6.1 Evaluation approach . 117

6.2 e-Health scenario . 122

6.3 Case study collection methods . 123

6.4 Summary care record of a patient . 129

6.5 NHS System goal diagram . 130

6.6 Modifying the capability property of a goal 131

6.7 Correspondences links between NHS System and GP and Pharmacist 132

6.8 NHS System dependencies . 133

6.9 First iteration of resolution analysis 135

6.10 Second iteration of resolution analysis 137

6.11 Entailments analysis . 139

6.12 Entailments validation . 140

6.13 Trustworthiness requirement analysis 141

6.14 Trustworthiness level before and after the trust analysis 141

6.15 Survey approach . 145

6.16 Survey data collection methods . 150

6.17 Results related to JTrust modelling language 152

6.18 Results related to JTrust tool . 153

6.19 Results related to JTrust methodology 154

xi

Chapter 1

Introduction

...trust is a social good to be protected just as much as the air we

breath or the water that we drink. When it is damaged, the

community as a whole suffers; and when it is destroyed, societies

falter and collapse

Sissela Bok

Information Systems (ISs) exist in every aspect of our life and our society depends

on them enormously. In particular, organisations need to process a rapidly growing

amount of information and individuals rely on information systems for almost ev-

erything from health care and banking to the weekly shop at the supermarket. ISs

have the ability to collect and store large volumes of information that can easily be

accessed by anyone and from anywhere. Also, software, which is part of information

systems, controls a vast number of systems such as e-health, e-government, and sys-

tems that exist in factories and systems that control air-traffic. Nevertheless, in the

light of ambient, pervasive, and ubiquitous computing, the impact of information

systems is still increasing significantly.

An information system is a collection of software, hardware, humans, and proce-

dures, which aims to support the operations of an organisation. The combination of

software and hardware provides a number of humans with information on specified

topics of interest in a certain organisational context (Iivari and Hirschheim, 1996).

So, an information system collects, stores, analyses, and extracts data information.

Presently, information systems that were monolithic, isolated and independent have

given their place to distributed information systems that operate on a worldwide

scale, across open networks, and across different organisations.

Therefore, because of the importance and the complexity of information sys-

tems and the high demands placed on them, better software engineering approaches

are required. Software engineering designs, implements, and deploys software for

Chapter 1. Introduction

information systems and on the other hand information systems and informing pro-

cesses are used in software engineering, for example in requirements engineering

and project management, in order to successfully embed software in socio-technical

contexts. According to the definition given by IEEE (IEEE, 1990), ”Software engi-

neering is the application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of en-

gineering to software”. Software engineering has a number of phases (IEEE, 1990);

first, the problem to be solved is analysed and the requirements are described in a

very precise way. Secondly, a design is made based on these requirements. Finally,

the construction process, i.e. the actual programming of the solution, is started.

The study of this thesis belongs to the first phase of software engineering, i.e.

requirements engineering, because it addresses the challenges of developing trustwor-

thy information systems that arise during the requirements definition. According

to (Ross and Schoman, 1977), ”Requirements definition is a careful assessment of

the needs that a system is to fulfil. It must say why a system is needed, based

on current or foreseen conditions, which may be internal operations or an exter-

nal market. It must say what system features will serve and satisfy this context.

And it must say how the system is to be constructed”. The discipline that is con-

cerned with requirements definition is called requirements engineering. According

to (Zave, 1997) ”Requirements engineering is the branch of software engineering

concerned with the real-world goals for, functions of, and constraints on software

systems. It is also concerned with the relationship of these factors to precise speci-

fications of software behaviour, and to their evolution over time and across software

families”. The more careful we are during the requirements engineering phase, the

larger is the chance that the ultimate system will meet expectations. However,

requirements engineering involves modelling of the information system under devel-

opment, which includes active components that have the choice of behaviour. So,

by nature, there is uncertainty about whether the actual behaviour of components

will match the expected behaviour, which is reflected in the requirement engineer-

ing models. This uncertainty requires the developer to decide whether or not she

can trust active information system components to behave in an expected way, as

described in her model, and build the system on such decisions that will determine

its success. There is also uncertainty about the behaviour of the environment that

has to be considered by the developer and reflected in the requirements engineering

models, but this is outside of the scope of this thesis. The main contribution of this

thesis therefore, is the methodology named JTrust. JTrust stands for Justifying

Trust and the methodology aims to assist the developer in modelling and reasoning

about trust relationships, model and analyse trustworthiness requirements, and as-

2

Chapter 1. Introduction

sess the trustworthiness of the system-to-be at a requirements stage, to eventually

develop a trustworthy information system.

1.1 Motivation and problem statement

Despite the reliance on information systems and the emergence of software engineer-

ing, these systems are often unreliable, prone to errors, and possess vulnerabilities

that could be exploited in security attacks (Fortune and Peters, 2005). We are often

faced with a choice between using a valuable (or even an essential) system, which

is not fully trustworthy, or else forgoing the services it provides (Islam, Mouratidis,

and Wagner, 2010). There is vast number of reported incidents about security and

privacy breaches (Fortune and Peters, 2005) resulting in an especially big concern

regarding security and privacy issues that prevent the full extent of their utilisation.

Also, a lot of times the developed systems do not meet their functional requirements

(Fortune and Peters, 2005). This leads to greater customer dissatisfaction and dis-

appointment resulting in an abandoned system. The consequences of such failures

can be devastating. They can be financial loses or loss of time or even loss of human

lives.

Trust, therefore, is becoming an increasingly important issue for information

systems that process and manage sensitive user and organisational information. As

a result, there is an increasing interest in the development of trustworthy information

systems. Systems that will be worthy of users’ and other stakeholders’ trust, that

there is strong confidence that they will meet all their functional and non-functional

requirements. To this end, new methods and tools for developers are required that

will provide the know-how and guidance on developing trustworthy information

systems.

The development of systems that are trustworthy will have many benefits. First

of all, the successful adoption of information systems in society depends on whether

these systems can be justifiably trusted by the users (Hasselbring and Reussner,

2006). So, trustworthy systems are more likely to be adopted by users. Also, by

being trustworthy they will meet their functional and non-functional requirements,

thus assuring customer satisfaction, which will lead to greater financial profits. Also,

systems will be secure and protect human privacy, which is a major user concern.

In addition, being able to trust a software system is a prerequisite for its social

acceptance (Cofta, 2007) and when there is trust in a software product it will increase

its sales and the willingness of the users to pay even more for that product (Masthoff,

2007). Otherwise, the software system will be rejected and the development of that

software system will result in a failure.

3

Chapter 1. Introduction

During the design developers know how to make a system that satisfies non-

functional requirements, such as security and usability (Mouratidis and Cofta, 2010).

Developers have also the knowledge and the tools to carry out the necessary tasks

or they can even hire professionals who have expertise in a specific field. On the

other hand though, they do not have adequate knowledge about trust, since trust is

an interdisciplinary issue and requires knowledge from other sciences such as soci-

ology, psychology, and social psychology and not adequate methods and tools have

been developed yet. Alternatives for developers are trusted computing, trustworthy

computing, and social trust. ”Trusted Computing” entails that certain hardware

components need to be trusted in order to provide security, while trustworthy com-

puting promises security, privacy and reliability and hopes to gain trust of users.

Social trust uses trust that is external to the system (Mouratidis and Cofta, 2010).

Also, there is not a common understanding of trust among developers. Developing

teams might consist of developers from different cultural backgrounds that each one

of them possesses a different perception about trust (Mouratidis and Cofta, 2010).

Trust is a complex notion and depends upon technical and non-technical issues of

the social and organisational setting. Therefore, developers require trust related

abstractions that can be used uniformly by all of them and across different projects.

In the past it was easier for a system be developed trustworthy, as it was very

simple, isolated, and only depending on itself. Modern information systems though

include not only technical components but also human components that exist in

the environment of technical components. There is a distinction between the tech-

nical component, which is one or more computers that behave in a way to satisfy

the requirements with the help of the software, and the environment, which is the

part of the world with which the machine will interact and in which the effects of

the machine will be observed. When the machine is put into its environment, it

can influence that environment and be influenced by that environment only because

they have some shared phenomena in common (Jackson, 1997). Nowadays technical

components are very big in size and complex and interact with other components

of the environment. Thus, the trustworthiness of the system depends also on other

external technical and human components. Furthermore, modern information sys-

tems comprise socio-technical infrastructures that include large numbers of actors,

including humans. Due to the need for constant interaction and communication

with other systems and humans, which do not belong to their infrastructure, tech-

nical components need to interact with systems and humans that they might not

have interacted before. In fact, they might depend on other systems and/or humans

to accomplish tasks and operations that directly affect their operation. Consider

for example the scenario where an information system depends on another system

4

Chapter 1. Introduction

for information that is crucial for completing some of its operations. In such sce-

nario, trust, to both humans and other systems, is an important issue for modern

information systems as they depend on entities (humans and systems), over which

they do not have direct control, for resources to achieve their goals. It is therefore

important, in order to understand the risks involved in such dependencies, to un-

derstand the various trust relationships that an information system might be part

of (Pavlidis, Mouratidis, and Islam, 2012; Pavlidis et al., 2012; Zarrabi et al., 2012;

Pavlidis et al., 2014).

The developer’s perspective needs to be considered in the analysis of the system

under development. It is the developer who is assigning new goals and tasks to the

components of the information system and her view of the system is important to

the whole trustworthiness of the system.

In addition, to establish systems trustworthiness, it is important that trust re-

lationships between the system and other entities and trust assumptions, which are

usually made during the development process, are properly identified and analysed.

Therefore, it is important in order to understand the consequences that trust rela-

tionships might have on the operation of an information system to be able to analyse,

in a systematic and structured way, the various trust assumptions that are usually

made during the development process of information systems (Cofta, Lacohée, and

Hodgson, 2010; Cofta, 2007). By trust assumptions, we refer to assumptions that are

made by developers and/or stakeholders related to the various trust relationships

that a system is part of. The assumptions are underlying the analysis of the system

and can undermine its trustworthiness.

The main measure of success of a software system is the degree to which it meets

its purpose. Thus developers have to make sure that the software-to-be will meet

its purpose. Currently, there is a lack of techniques that attempt to measure the

trustworthiness of the system under development at an early stage.

The introduction of an information system causes not only technical changes but

also social changes. When introduced inside a social environment the social agents

need or are required to change their behaviour accordingly. Sometimes humans

resist and do not accept the changes. By overlooking whether the humans will

accept the changes and behave in an expected way, it results in systems that are

not trustworthy and not socially accepted.

Employing control mechanisms to solve problems increases the complexity and

cost of a system. On the other hand though, employing trust leads to systems that

are less costly and less complex. However, there is a trade-off between trust and

control. Relying on trust entails the acceptance of risk in order to get the benefits

and relying on control you spend more resources in order to increase the assurance.

5

Chapter 1. Introduction

Although the literature provides a large body of work related to engineering of

trust in information systems, it fails to provide evidence of a systematic and struc-

tured way to model and reason about trust relationships during the early stages of

the development process and identify trustworthiness requirements. It is important

for such analysis to be made during the early stages since at that stage of the process

is when the trust relationships are formed and therefore it is where changes need to

take place if the relevant assumptions about trust relationships do not hold.

1.2 Research questions

We summarise the following research questions that, as usual in software engineer-

ing (Wieringa and Heerkens, 2006), are a mix of knowledge, design, and empirical

questions:

• RQ1: What are the required trust abstractions and their relationships in order

to reason about trust relationships at a requirements stage?

• RQ2: What are the required abstractions and their relationships that can

ensure the development of trustworthy information systems at a requirements

stage?

• RQ3: How can we assess trustworthiness of the system under development at

a requirements stage?

• RQ4: How well does the methodology support modelling and reasoning about

trust relationships?

• RQ5: How well does the methodology support trustworthiness requirement

modelling and analysis?

• RQ6: How well does the methodology assess the system trustworthiness at a

requirements level?

1.3 Research aims and objectives

The aim is to develop a novel methodology to allow modelling of, and reasoning

about, trust relationships in a structured and coherent way. By trust relationship

we mean the relationship between the developer and the components of the informa-

tion system that are modelled in her requirements model. The trust relationships

of the developer are eventually becoming trust relationships of the system-to-be

6

Chapter 1. Introduction

once the system is put in operation. In addition, the goal is also a methodology

to allow modelling and reasoning of trustworthiness requirements that ensure the

trustworthiness of the system-to-be. Furthermore, we aim to develop a methodology

to allow the assessment of the trustworthiness of the system under development at

a requirements stage.

To achieve this aim the following objectives have been defined:

• Develop a modelling language for capturing and modelling relationships of

trust at a requirements stage.

• Develop methods and techniques to analyse and reason about trust relation-

ships and identify trustworthiness requirements from the early stages of the

development, and integrate such methods and techniques to form a methodol-

ogy.

• Provide techniques to assist the automatic evaluation of the system trustwor-

thiness.

• Assess the developed methodology by applying it to a concrete and complex

real world case study and receive experts’ views through questionnaires.

1.4 Research contributions

Besides successfully addressing the research problem, this research has a number of

novel contributions to the state of the art and knowledge. These four novel contri-

butions along with the development of a CASE tool are introduced subsequently:

1. The first contribution of the thesis is the analysis of the problem

of establishing information systems trustworthiness. This included

the identification of problems, limitations, and challenges of the state of the

art with respect to trustworthy information system development, and more

particularly reasoning about trust relationships and identifying trustworthiness

requirements.

2. Definition of trust abstractions for describing, understanding, and

analysing the complex notion of trust. The definition of the trust ab-

stractions along with their relationships with existing Goal Oriented Require-

ments Engineering (GORE) abstractions and control abstractions is a part the

modelling language of the proposed methodology. It establishes a common un-

derstanding of trust among developers within a technical setting of a project

that might have a different cultural background and possess different views

7

Chapter 1. Introduction

about trust. They enable the reasoning about the trust relationships that ex-

ist with the system environment. By using the trust-based concepts such as

resolution, developers can show explicitly why there is trust in a dependency.

The use of the concept of reported trust and control create new dependencies

that reveal the indirect trust relationships. Through this way direct and, in

particular, indirect trust relationships become explicit. The trust abstractions

enable the identification and reasoning of trust relationships that leads to the

natural surface of trust assumptions that need to be examined in terms of their

validity.

3. Definition of control abstractions for describing, understanding, and

analysing the complex notion of control. The definition of control ab-

stractions along with their relationships with the trust abstractions and ex-

isting GORE abstractions is part of the proposed modelling language. The

control abstractions enable the modelling and analysis of trustworthiness re-

quirements. Control abstraction such as observation allows the specification of

the functionality that is required in order to monitor a specific resource in order

to verify if a system component is behaving in the expected way. Moreover,

control abstraction such as deterrence allows the specification of functionality

that prevents the achievement of a system component’s own goal in order to

compel to behave in a specific way.

4. Development of a methodological process that employs the mod-

elling language for the development of trustworthy information sys-

tems. The proposed process is systematic and structured with defined ac-

tivities and tasks that the developers can easily follow and will guide them

towards the development of trustworthy information systems. It allows the in-

cremental development of a trust model of the system under development. It

starts with the identification and reasoning of trust relationships and the early

consideration of trust relationships enables to identify potential vulnerabilities

to the system trustworthiness. In particular potential vulnerabilities to the

system trustworthiness are identified and they are resolved through trust or

control means. Then it includes the modelling and analysis of trustworthiness

requirements. The control means represent the trustworthiness requirements

that fill in the gaps in the chain of trust relationships. In addition, in this

manner the trade-off between trust and control is becoming more explicit for

the developer and assist him to take better decisions by knowing what exactly

is the situation and potential implications. Therefore, the developer can avoid

unnecessary control functions, which can increase cost, complexity and time to

8

Chapter 1. Introduction

delivery. Also, the methodology can be used not only for constituting a tech-

nical system trustworthy, but also on making the whole socio-technical system

trustworthy. By applying the methodology not only from the perspective of

the technical system but also from the perspective of all entities in the system

environment then the information system trustworthiness can be established.

Moreover, there is contribution towards the assessment of the trustworthiness

of the system. The process includes algorithms that enable the evaluation of

whether the system will achieve its goals by considering the goals that are as-

signed to it and also goals that are assigned to components of the information

system and are expected to be accomplished. Thus, trustworthiness is exam-

ined from a holistic perspective in order to capture all the properties that are

important in developing trust and not only a subset.

5. Development of a CASE tool for supporting the methodology. The

tool enables the construction of the trust model and the automatic assessment

of the system trustworthiness by executing the proposed algorithms.

1.5 Research approach

The study started with the identification of the research problem, which was to

investigate the issues involved in developing trustworthy information systems and

networks and develop a novel methodology to allow modelling and reasoning of

trust issues in a structured and coherent way. An extensive literature review was

carried out which included a comparison framework for the evaluation of related

work in a consistent way and not in an ad-hoc way. Then the research questions

were identified that drove the rest of the process and in particular the identification

of the research aims and objectives. Figure 1.1 depicts the research approach of this

thesis.

After the research questions have been identified a research method has to be

selected. The main research methods for software engineering are the deductive and

inductive approaches (Partridge, 1997). The deductive method is reasoning from the

general to the specific, while the inductive method is reasoning from the specific to

the general (Partridge, 1997). Also, in the deductive method we have an abstract

generalisation for the specification of the problem, while in inductive method the

problem is satisfied in terms of behaviours, because you know more about specific

behaviours than about the problem abstraction (Partridge, 1997).

Deductive reasoning moves from the general to the particular. It takes a gen-

eral premise and deduces particular conclusions. A valid deductive argument is one

9

Chapter 1. Introduction

Literature Review

Formulative Research

Conceptual Analysis /

Concepts Implementation

Evaluative Research

Research Questions

Research Aim

and Contributions

JTrust

Methodology

Case Study

Questionnaires

JTrust Revision

Figure 1.1: Research approach

10

Chapter 1. Introduction

in which the conclusion necessarily follows from the premise. On the other hand

inductive reasoning moves from the particular to the general. It gathers together

particular observations in the form of premises, and then it reasons from these par-

ticular premises to a general conclusion. In our case, since we have some initial

goals and objectives, the deductive is more preferable because the inductive method

cannot guarantee correct results in the sense that they meet the requirements spec-

ification (Michie, 1982), in our case the initial goals and objectives. On the other

hand, the deductive approach provides adequate guarantees. However, for the in-

dividual components and requisites of the methodology the inductive approach will

be followed. In contrast with the deductive approach, which limits the scope of the

results, the inductive approach does not limit the scope of the results. In addition,

humans have difficulty in expressing in systematic terms the rules of their expertise,

but they are good at taking decisions on specific cases (Michie, 1982).

A hypothesis in software engineering science is a description of the new object to

be constructed, which in our case was the new development methodology. Therefore,

the hypothesis was a specification of requisites of the new object to be constructed

(Marcos, 2005), which was the proposed methodology. For the solution an analysis

of similar cases and a process of imagination and creativity was carried out and

for the verification the application of the methodology on a prototype case study

(Marcos, 2005).

Various validation techniques exist and the most common are (Shaw, 2003):

• Analysis. The results are analysed and have been found satisfactory.

• Evaluation. Given the stated criteria the results meet the criteria.

• Experience/Case study. The results have been used on real examples and there

is evidence of their correctness or usefulness or effectiveness.

• Example. A demonstration of the findings.

• Persuasion. Validation by persuasion is rarely sufficient. It is sufficient only in

some cases of feasibility research questions.

For this research project a combination of analysis, evaluation and experience/case

study were used as validation techniques.

1.6 Publications

Parts of the presented research have been published in journals, conferences, and

workshops.

11

Chapter 1. Introduction

• Michalis Pavlidis, Shareeful Islam, Haralambos Mouratidis, Paul Kearney. :

Modelling Trust Relationships for Developing Trustworthy Information Sys-

tems. International Journal of Information Systems Modelling and Design

(IJISMD) 5(1), (2014).

• Michalis Pavlidis, Haralambos Mouratidis, Shareeful Islam. : Modelling Se-

curity Using Trust Based Concepts. International Journal of Secure Software

Engineering (IJSSE), Volume 3, Issue 2, (2012).

• Michalis Pavlidis, Evangelia Kavakli, Philemon Bantimaroudis, Haralambos

Mouratidis, Christos Kalloniatis, Stefanos Gritzalis. : The Role of Trust

for the Development of Cultural Internet-Based Systems. 10th European,

Mediterranean and Middle Eastern Conference on Information Systems (EM-

CIS), Windsor, United Kingdom, October (2013). [Best Theoretical Paper

Award]

• Michalis Pavlidis, Haralambos Mouratidis, Christos Kalloniatis, Shareeful Is-

lam, Stefanos Gritzalis. : Trustworthy Selection of Cloud Providers Based

on Security and Privacy Requirements: Justifying Trust Assumptions. 10th

International Conference on Trust, Privacy and Security in Digital Business

(TrustBus), Prague, Czech Republic, August (2013).

• Fatemeh Zarrabi, Michalis Pavlidis, Haralambos Mouratidis, Shareeful Islam,

David Preston. : A Meta-model for Legal Compliance and Trustworthiness of

Information Systems. Advanced Information Systems Engineering Workshops,

Lecture Notes in Business Information Processing, Springer, Volume 112, 46-

60, (2012).

• Michalis Pavlidis, Haralambos Mouratidis, Shareeful Islam, Paul Kearney. :

Dealing with Trust and Control: A Meta-Model for Trustworthy Information

Systems Development. International Conference on Research Challenges in

Information Science (RCIS), IEEE, (2012).

• Michalis Pavlidis, Shareeful Islam, Haralambos Mouratidis. : A CASE Tool to

Support Automated Modelling and Analysis of Security Requirements, Based

on Secure Tropos. Lecture Notes in Business Information Processing, Springer,

Volume 107, 95-109, (2012).

• Michalis Pavlidis. : Designing for Trust. CAiSE Doctoral Consortium, Lon-

don, United Kingdom, June (2011).

12

Chapter 1. Introduction

• Michalis Pavlidis, Shareeful Islam. : SecTro: A CASE Tool for Modelling

Security in Requirements Engineering using Secure Tropos. CAiSE Forum

London, United Kingdom, June, (2011).

1.7 Structure of the thesis

The structure of the rest of the thesis is as follows. Part I describes the state of the

art and consists of Chapter 2, which provides background information about trust

and trustworthiness. It is explained how trust changes over time, and how important

is the context for the decision to trust or not to trust. Also, it defines the meaning

of system trustworthiness in the context of the current work. This chapter also de-

fines a set of requirements that are essential for software engineering methodologies

and Computer Aided Software Engineering (CASE) tools. Moreover, it presents

the related work in the field of trust engineering. It offers a classification of the

existing related work into trust modelling, trust management, security engineering,

goal satisfaction reasoning, human computer interaction, trusted computing and

computational trust.

Part II is the main contribution of the thesis, which presents the JTrust method-

ology and consists of three chapters. Chapter 3 describes the requirements of the

methodology and its structure. Also, it introduces a running example that is used

throughout the thesis. In addition, it describes the JTrust modelling language pro-

posed by this research. The concepts of the language are presented along with the

meta-model of the language, which shows the relationships between the concepts.

Also, the trustworthiness requirements are described in this chapter and the formu-

las for calculating the system trustworthiness are presented. Moreover, The content

of this section was published at the IEEE Conference of Research Challenges in In-

formation Science and at the International Journal of Secure Software Engineering.

Chapter 4 describes the process of the proposed methodology. In particular, the

activities included in the process are described. These are, the identification of the

actors and their dependencies, the identification of resolutions, the identification of

entailments, and the identification of the trustworthiness requirements. In addition,

the activity of the assessment of system trustworthiness is presented towards the

end of the chapter. The content of this chapter was published at the International

Journal of Information Systems Modelling and Design.

Chapter 5 describes the JTrust CASE tool that was developed to support the

activities of the methodology. Particularly, it explains how the tool supports the

developer and what are the benefits and the automations that it is offering.

The third and last part of the thesis presents the evaluation of the research and

13

Chapter 1. Introduction

conclusions. In particular, Chapter 6 demonstrates the validity of this research. This

is demonstrated in two ways. First, through the application of the methodology in

real case study. And secondly, by getting feedback from experts through the use of

questionnaires.

Chapter 7 provides a critical discussion regarding the proposed trust engineering

methodology and it concludes the thesis. It discusses the contributions and the

significance of this research and it describes directions for future work.

Figure 1.2 provides a diagrammatic model of the thesis’ main claim, and the

propositions upon which this is based. For the thesis to hold we claim that each of

these concepts or statements are valid. The arrows between the boxes indicate that

the tail concept acts as ground for the head.

The validation of the thesis is based on the validity of the case study and the

survey. The validity of the case study and the survey is contingent on the soundness

of the modelling language, the methodological process, the case study methodology

used to design the case study, the survey methodology used to design the survey,

and the tool used to support the proposed methodology. The figure illustrates how

the motivation for developing trustworthy information systems also motivated the

design of the literature review. Given the broadness of the notion of trust and how

it was dealt from different perspectives was used to drive this review. Based on this

review limitations were identified in Chapter 2. These were the lack of appropriate

abstractions and constructive techniques that were required to reason about trust

and its complementary notion of control. Also, the review helped to devise the

methodology for developing the proposed approach and validate it. Guided by the

research methodology, in Chapter 3 the JTrust meta-model was developed, which

provided the foundation of the modelling language. In Chapter 4 a methodological

process was developed based on modelling language. The modelling language and

the process suggested design principles that the tool support should include and

specific characteristics were derived. These characteristics informed the architecture

and the functionality of the JTrust tool prototype presented in Chapter 5. The

JTrust methodology was validated using the case study and the survey described in

Chapter 6.

14

Chapter 1. Introduction

Figure 1.2: Thesis claim and supporting propositions

15

Part I

State of the Art

Chapter 2

Literature review

In this chapter, we review the current state of the art in the area of trustworthy

information systems development, which is broad, multidisciplinary, and includes

diverse approaches belonging to different research sub-areas. A core element in this

area is trust. This chapter is divided in two parts. Sections 2.1, 2.2, 2.3, 2.4, and 2.5

belong in the first part where we provide background information about trust and

we discuss definitions of trust, In addition, in this part we review the literature that

is relevant and defines our research baseline, covering trust and trustworthiness

in the context of information systems in general and in the context of this thesis

more specifically, development methods and CASE tools for information systems,

and evaluation methods for software engineering research. The second part of this

chapter is the section 2.6, which provides a comprehensive survey on approaches to

trustworthy information systems development, including their main contributions

and criticism. A core element in these works is trust, so we look into how these

approaches are dealing with trust. The areas that are relevant to our proposal

are trust modelling during requirements analysis which deals with capturing the

rationale of trust decisions, trust management, security engineering that considers

trust in order to make the system more secure and in effect more trustworthy,

goal satisfaction reasoning techniques that can provide confidence that the system

can achieve the goals that has been assigned, Human Computer Interaction that

deals with methods of gaining user’s trust but focusing mostly at a user interface

level, Trusted Computing that ensures the trustworthiness by using a hardware

component as a controller for the rest for the components, and computational trust

that develops models that can be used by artificial agents when required to make a

trust decision.

Chapter 2. Literature review

2.1 Trust and trustworthiness

Trust has been the object of research for many years. Here we outline several defi-

nitions of trust and then we make an observation about the common characteristics

of trust:

• According to Oxford Dictionary , ”trust is the firm belief in the reliability or

truth or strength of an entity”. While, the Webster dictionary defines trust

as ”a confidence dependence on the character, ability, strength, or truth of

someone or something”. However, both of these definitions give a very general

view of trust and enable many interpretations.

• A definition given by Deutsch (1962) is ”a) an individual is confronted with an

ambiguous path, a path that can lead to an event perceived to be beneficial

or to an event perceived to be harmful; b) he perceives that the occurrence

of these events is contingent on the behaviour of another person; and c) he

perceives the strength of a harmful event to be greater than the strength of a

beneficial event. If he chooses to take an ambiguous path with such properties,

he makes a trusting choice; else he makes a distrustful choice”.

• Luhmann (1979) defined trust as ”a means for reducing the complexity of so-

ciety; complexity created by interacting individuals with different perceptions

and goals”.

• Barber (1983) defined trust as the subjective expectation of future perfor-

mance.

• In addition, Gambetta (1988) has defined trust as ”a particular level of the

subjective probability with which an agent assesses that another agent or group

of agents will perform a particular action, both before he can monitor such

action (or independently of his capacity ever to be able to monitor it) and in

a context in which it affects his own action”.

• Mayer, Davis, and Schoorman (1995) defined trust as ”the willingness of a

party to be vulnerable to the actions of another party based on the expectation

that the other party will perform a particular action important to the trustor,

irrespective of the ability to monitor or control that other party”.

• Rousseau et al. (1998) defined trust as ”a psychological state comprising the

intention to accept vulnerability based upon positive expectations of the in-

tentions or behaviour of another”.

18

Chapter 2. Literature review

The meaning of trust given by researchers usually reflected their science. In

psychology trust represents a personal attribute (McKnight and Chervany, 1996),

which is developed through the early psychological development of an individual

and is conceptualised as a belief, expectancy, or feeling that is deeply rooted in the

personality of the individual (Lewicki and Bunker, 1996). Therefore any attempt to

investigate the development, maintenance and stability of trust should consider the

individual differences, which are a result of different past experiences.

In social psychology trust is a phenomenon that occurs in a social relationship

(McKnight and Chervany, 1996) and is based on the expectation of the other party

in the relationship (Kini and Choobineh, 1998). Trust is also expectancy in the

occurrence of future events and is strongly related to the subjective probability

that the individual assigns to the occurrence of these events (Rempel, Holmes, and

Zanna, 1985). With respect to the decision to trust it involves the importance of the

issue to the individual (Kini and Choobineh, 1998) and, according to McKnight and

Chervany (1996), the attributes of the individual upon which another individual will

base his decision to trust or not are different from situation to situation and from

relationship to relationship.

In sociology trust is viewed as something normal in nature (McKnight and Cher-

vany, 1996) and as a social reality that is functionally necessary for the continuance

of harmonious social relationships (Lewis and Weigert, 1985). The existence of trust

is that it increases engagements and activities in a society. While on the other

hand, lack of confidence will lead to no participation and lack of trust will lead

to no activities (Luhmann, 1988). For example, citizens show trust in their govern-

ments, patients in their doctors, clients in the lawyers and students in their teachers.

When trust is absent in such cases, then crises and riots emerge. Furthermore, (Luh-

mann, 1988) states that trust exist in order to represent a connection between the

familiar and unfamiliar of our world.

In economics trust is seen as a cause that reduces opportunism in a transaction

and as a consequence it can lead to lower transaction cost for the participants

(Rousseau et al., 1998). If there is trust, negotiations are easier and shorter and

there is less need to monitor and enforce the agreement. In other words, lack of

trust is an obstacle to personal relationships and conducting businesses. In addition,

trust allows the reduction of complexity (Luhmann, 1988) by decreasing the control

mechanisms, and as a result there are savings in valuable resources such as time and

money. Also, during crisis and uncertainty trust becomes more important and proves

to be a valuable asset (McKnight and Chervany, 1996). When used properly, trust

is enabler of building collaborations among the participating actors, a necessary

antecedent for cooperation (Axelrod, 1984). However, when abused, trust can act

19

Chapter 2. Literature review

as a stopping block for successfully achieving a goal. Moreover, trust in economics

is considered to be a rational choice mechanism (McKnight and Chervany, 1996)

but, nevertheless, the decision to trust or not can be affected both by cognitive and

emotional elements (McAllister, 1995). The cognitive element refers to a rational

assessment of risk, the other party’s reliability and competence, and is therefore

more task-oriented. On the other hand, the emotional element refers to attraction,

in the short term, and loyalty, in the long term. Its orientation is therefore more

inter-personal (Egger, 2003).

Although, there is variety of definitions of trust, there are some common char-

acteristics identified in most of the definitions, such as:

• Interaction: Trust entails the existing or potential interaction between two

parties. We can say that the two parties are engaged in a trust relationship.

• Expectation: When there is trust it means that there is an expectancy of

one party from the other party, or that both parties have expectations from

the other party. When a party has an expectation he is the trustor and the

other party is the trustee. Therefore, in a trust relationship a party can be

simultaneously a trustor and a trustee.

• Uncertainty: Trust acts as a means to remove the uncertainty about the out-

come of an interaction between the trustor and the trustee. In other words,

we consider trust as a means of creating confidence in the outcome of an in-

teraction. In society the problems of confidence are often solved by control

mechanisms such as the law and politics (Luhmann88). For example, an in-

dividual has confidence that his right to express himself will not be taken by

another individual because of the law. On the other hand, the case of trust is

different.

• Vulnerability: When one party trusts another party then it becomes vulnerable

to a potential negative outcome. The implications of the negative outcome are

the risk that the trustor is willing to take. Trust therefore includes a decision

or action and consequently risk. Risk is like a mechanism to represent the

difference of the controllable and the uncontrollable (Luhmann, 1988). Nobody

can predict the future and even if something is planned to bring certain result,

it might lead to a different result, as there will always be parameters that

cannot be fully controlled. Therefore, the possibility of different results than

the ones planed is named risk, which is a term that represents that unwanted

results might be the consequences of our actions (Luhmann, 1988).

20

Chapter 2. Literature review

• Decision: Trust entails a decision about choosing to take or not take an action.

It can lead to disappointment, if you take the action and neglect the possible

bad outcome. The reaction to a bad outcome is internal in the case of trust

since you can blame yourself and regret for taking the action (Luhmann, 1988).

• Trustor subjectivity: There is always subjectivity in case of trust. The decision

to trust or not trust depends on the perspective of the trustor and his personal

characteristics and past experience.

• Trustee attributes: The decision to trust or not trust depends on the attributes

of the trustee as well. Therefore, an individual may trust another individual

who has the desired attributes even though the trustor individual is inclined

not to trust due to his personal characteristics or past experience.

• Context: The same level of trust is not always developed between certain

parties. The conditions of the outside world affect the development of trust

(Luhmann, 1988), so different level of trust, or no trust at all, will be developed

between two parties if they happen to be in different environment conditions.

If we trust a doctor for suggesting a medicine, it does not mean that we have to

trust her when she is suggesting a specific meal at a restaurant. The reputation

as a good doctor it does not help if we are looking for a plumber.

Based on the aforementioned observations, we have adopted the following defi-

nition for use throughout this thesis. This definition considers the aforementioned

characteristics as it is not too narrow to leave important concepts outside and it is

broad enough to capture the richness of the concept of trust.

Trust is positive expectations of the behaviour of another party from whom he

might be positively or negatively affected (Möllering, 2005).

Having defined trust in the context of this research, we need to understand

the process of trusting. Trust is not static, but dynamic, which means that it

is not stable during a time period but it changes over time. When two parties

engage into a relationship there are two categories of factors that have an impact

on the trust process, the extrinsic and intrinsic trust factors (Jøsang, Keser, and

Dimitrakos, 2005). The extrinsic trust factors are all the information about the

trustee that is collected by the trustor without any direct experience, such as the

trustee’s reputation. On the contrary, the intrinsic trust factors are the information

that the trustor collects about the trustee while having a direct experience. In

the early stages of the trust relationship the extrinsic trust factors have a greater

21

Chapter 2. Literature review

impact in the trustor’s trust decision. Almost every relationship begins with an

initial phase where the extrinsic factors are more important (McKnight, Cummings,

and Chervany, 1998), however, as time goes by the intrinsic trust factors become

more important since the trustor can make his decision on information that has been

collected from direct experience. Of course, it has to be mentioned that this process

does not consider how the trustor due to his personal subjectivity interprets the

intrinsic and extrinsic factors. In other words two different individuals can take a

different trust decision, even though the intrinsic and extrinsic factors are the same.

The optimum condition though in the trust relationship between individuals that

will benefit the society is reached not when they show unlimited and un conditional

trust but when there is justified trust (Braynov, 2002). Trust that is justified is

the key. Justified trust is when trust of the trustor matches the trustworthiness

of the trustee, and as a result the maximum benefit occurs (Figure 2.1). Trusting

less is a loss of opportunities, while on the contrary trusting too much makes you

vulnerable (Cofta, 2007; Cofta, 2008). For example, let us consider the case of a

software company, where its software developers can develop a software application

in one year. When a client asks for a software application the management of the

company has to make a decision and agree with the client on delivery date. If the

company management under-trusts its software developers and offers a time more

than a year, then it risks losing the contract to a competitor. On the other hand, if

the company management over-trusts its software developers and commits to a time

of less than year, then it becomes vulnerable as the product may not be ready in time

and there may be financial consequences. The key is for the company management

to assess the trustworthiness of its software developers with respect to their ability

of developing the software application and based on this assessment show justified

trust.

Trustworthiness is a characteristic of an individual or thing that is the object of

that individual’s trust. If the object of our trust is worthy of that trust, then it will

fulfil our expectations and our trust will be rewarded, not betrayed.

In (Cofta, 2007) the characteristics that express the trustworthiness of an actor

can relate to continuity, competence, or motivation. Continuity means that the cur-

rent relationship between the two actors will continue in the future and it will not

be only temporary. Competence refers to the capability of the trustee to support

the trustor. An example of competence evidence in a student teacher relationship is

if the teacher has a teaching certificate. Motivation is whatever drives the trustee to

support the needs of the trustor and an obvious example is if the trustor’s interest

matches with the trustee’s interest. In addition, McKnight and Chervany (2000) de-

fine the concepts of competence, benevolence, integrity, and predictability regarding

22

Chapter 2. Literature review

Figure 2.1: Optimum trust level

trustworthiness. Competence means that the trustee has the power or the ability

to do what it is needed by the trustor, while benevolence means that the trustee

also cares about the trustor and is motivated to act in his interest. Integrity means

that the trustee is honest and he will keep his promise to the trustor and he will

fulfil the agreement, while predictability means that the trustee’s behaviour is con-

sistent enough so that the trustor can forecast his future behaviour. Furthermore, in

(Riegelsberger, Sasse, and McCarthy, 2005) the properties regarding trustworthiness

are called intrinsic properties that consist of ability, internalized norms, and benev-

olence. Ability is all the skills, competences, and characteristics that are required

by the trustee in order to deliver in his relationship with the trustror. Internalized

norms are all the principles that are considered acceptable by trustee and he behaves

according to them. Finally, benevolence is when the trustee is in a relationship with

a trustor as part of his own gratification and in such a relationship the trustee does

not expect any return from the trustor.

Our conclusion is that the competence or ability of the trustee to do what is

expected from the trustor is the basic characteristic of trustworthiness as it appears

in all the definitions given by the researchers. Other characteristics such as benev-

olence and motivation may be important as well but our focus will be concentrated

on the competence characteristic once we transfer to the context of information

systems. Competence depends on the specific trust relationships and its context.

There is therefore trust between the trustor and the trustee when the trustee pos-

sesses enough evidence of competence that are considered signs of trustworthiness

23

Chapter 2. Literature review

within the trustor’s social context. The more such characteristics the trustee pos-

sesses the greater the trust of the trustor in the trustee will be.

2.2 Information System trust and trustworthiness

Having defined trust and trustworthiness in general, can we trust specifically tech-

nical entities, such as computers, mobile devices, or information systems for our

day-to-day activities? Do we actually trust the system, the humans who have devel-

oped the system or the humans who operate the system? The attribution of trust is

still an on-going discussion. On one hand we have researchers (Friedman, Khan Jr,

and Howe, 2000; Shneiderman, 2000) who argue that trust is attributed only to

humans as they possess an intentional behaviour and free will and they can behave

in unpredictable ways. And on the other hand, there are researchers who claim that

trust can be attributed to technical systems as well. Kini and Choobineh (1998)

consider trust in the Internet as a form of social trust that is required, since users are

not technically capable of understanding the technology of the Internet, but they

are willing to use it. Miller and Voas (2009) discuss about what is trust in software

systems. They claim that trust is a relationship between people or between people

and a thing and to trust someone or something is to act as if the object of trust

will perform as promised or as required. As software artefacts become increasingly

sophisticated, trust in them becomes increasingly similar to trust in humans. That

is, when software artefacts exhibit behaviours similar to humans, the relationship of

trust to such artefacts will resemble the trust humans establish with other humans.

We subscribe here to the latter stance with respect to information systems. In-

formation systems consist not only of technical components but also human compo-

nents that have intentional behaviour and collaborate with the technical components

for the fulfilment of goals. A natural consequence is that information systems in-

herit their human component’s intentional behaviour and can be characterised as

intentional entities. Moreover, today’s information systems have become so great in

size and complexity that it is difficult for users to predict their behaviour. Out of

this difficulty arises the need of trust because trust is about future expectations. In

that sense we argue that trust can be attributed to information systems as well.

In the literature there are a lot of definitions given for trustworthy information

systems. Miller and Voas (2009) define trustworthiness as a characteristic of a per-

son or a thing that is the object of someone’s trust. It will fulfil our expectations

and our trust will be rewarded. If a person is trustworthy, it is considered a virtue,

so if a software artefact is trustworthy, then it is considered a mark of high qual-

ity. Berzins (2004) argues that in an ideal world, trustworthy systems would carry

24

Chapter 2. Literature review

absolute guarantees that the software will perform its required functions under all

possible circumstances, will do so on time and will never perform any actions that

have hazardous consequences. According to Jayaswal and Patton (2006), a trust-

worthy system is a system that has the capability of meeting customer trust and

developing the capability to meet their stated, unstated, and even unanticipated

needs. Moreover, Avižienis, Laprie, and Randell (2004) claims that trustworthiness

of a software system is the assurance that the system will perform as expected.

Based on the previous definitions we observed that trustworthiness of an infor-

mation system is a concern for the parties involved in the development and operation

of the system. In addition, the involved parties expect from a trustworthy system

nothing less than meeting their expectations. Therefore, throughout this thesis we

have given the following definition for a trustworthy information system:

Trustworthy information system is an information system that meets all the

positive expectations of the stakeholders.

In the literature there has been extensive research to define the components

of system trustworthiness. According to Schneider, Bellovin, and Inouye (1999)

trustworthiness is a holistic property, encompassing security, correctness, reliability,

privacy, safety, and survivability and it is not sufficient to address only some of

these diverse dimensions. Hoffman, Lawson-Jenkins, and Blum (2006) proposed

and extended a trust model, which considers privacy, security, reliability, usability,

safety, availability, and user expectations as subcomponents of trust.

All these issues are components of system trustworthiness as they are stakeholder

expectations that are widely considered signs of trustworthiness and trustworthy

systems must do what stakeholders expect and not something else, despite environ-

mental disruption, human user and operator errors, attacks by hostile parties, and

system design and implementation errors. Also, trustworthy systems must be able

to produce reliable and authentic information. More particularly:

• Privacy of personal information plays a very important role in building trust

in an information system. Today, information systems have the ability to

collect and store personal information very easily and providing wider access.

So, there is an increased risk for the personal information to be intentionally

or unintentionally disclosed and will result in decreasing users’ trust in the

information system (Rohm and Milne, 2004). There are multiple examples

in e-commerce and e-banking where the trustee is required to maintain the

privacy of the customer’s name, address and credit card details.

25

Chapter 2. Literature review

• Regarding security, if we do not consider trust in the design, then we might end

up with a system that has security measures that are not needed and that they

just make the collaboration of the users through the software system and with

the system more difficult. On the other hand, security measures might not be

taken in cases where it is assumed there is trust among the users or the system

when it actually there in no such trust (Giorgini et al., 2004). Rasmusson

and Jansson (1996) define two types of security, hard and soft security. Hard

security is all the security mechanisms that protect the systems against any

potential attack. However, there are cases that we do not only want to prevent

an attack to a system resource but to protect ourselves from a provider of a

harmful or low quality resource and the approach of protection in these cases

is called soft security. Therefore, the receiver of the resource needs to show

trust only to those resource providers that are trustworthy.

Security is the concurrent existence of availability, confidentiality, and integrity

(Avižienis, Laprie, and Randell, 2004).

– Availability when the service of the software system is always ready for

the user to use.

– Confidentiality means that there is no disclosure of information to unau-

thorized users.

– Integrity is when the information is not improperly altered.

• Reliability of a system can be defined as ”the probability that a system will

perform a specified function within prescribed limits, under given environmen-

tal conditions, for a specified time” (Stapelberg, 2009). Also, Avižienis, Laprie,

and Randell (2004) define system reliability as the continuity of providing the

correct service. The attribute of reliability of a system as a trustee contributes

significantly to its trustworthiness. When a trustor assigns a subjective prob-

ability to the behaviour of the trustee this is called reliability trust and it

excludes situational parameters (Jøsang, Ismail, and Boyd, 2007).

• Another additional attribute of trustworthiness is usability. According to

Nielsen (1994) and Shackel (1991) usability is:

– How easily the users learn the interface (learnability).

– The efficiency of the interface (task performance).

– How easily the users can memorize.

– The reduction of errors.

– The general satisfaction with the interface.

26

Chapter 2. Literature review

Research so far has shown that the usability factors have an impact on trust-

worthiness, especially of the websites, as they increase the perceived ability of

them (Roy, Dewit, and Aubert, 2001). Moreover, usability is a prerequisite to

trust, as users need to trust themselves and their ability that they can use a

software system correctly (Sasse, 2005).

• Safety is when there will not be any catastrophic consequences to the users

or the environment by the use of the software system (Avižienis, Laprie, and

Randell, 2004).

• Maintainability is the ability of the software system to be modified or repaired

(Avižienis, Laprie, and Randell, 2004).

All the aforementioned attributes contribute towards system trustworthiness.

Some more, some less, depending on the context of the system under development.

For example, a user of a system might be more in interested in the safety of a software

system while another user in the availability. Also, the availability of the system

might be more critical for systems controlling financial transactions, while for other

systems safety is the major concern. Thus, the context plays an important role in

the trust process and as a result it should be considered when trust in analysed and

reasoned.

However, the above system trustworthiness definitions are implicitly referring

to the characteristics of the software component of an information system, neglect-

ing the human components of an information system or other external software

components. Some years ago a system could be trustworthy if for example the soft-

ware component was secure and usable as the information system basically only de-

pended on that software component. Nowadays information systems are more socio-

technical systems and interact with other components, human or system. Thus, the

trustworthiness of the system depends also on other human components and external

systems.

This is what we believe distinguishes a dependable system from a trustworthy

system. In an information system context, dependability refers to the technical com-

petence of the software and hardware components of an information system, such

that reliance can justifiably be placed on them. Trustworthiness of an information

system however, is not only the dependability of the software and hardware com-

ponents (Shneiderman, 2000). So, we argue that trustworthiness of an information

system is the dependability of the software and hardware components, in terms of

security, privacy, etc., plus the consideration of the outcome of the interactions of

the software components with other components that are required for the fulfilment

27

Chapter 2. Literature review

of the information system’s goals. For example, even if a software that is part of an

information system is dependable in terms of security, the information system will

not be trustworthy if one of its users does not keep her username and password safe.

A stakeholder will consider an information system trustworthy if the information

system meets his expectations that are considered signs of trustworthiness inside the

social setting. Therefore, the stakeholder expectations are translated to functional

and non-functional requirements as the above. Therefore, this research refines the

definition of system trustworthiness as:

A trustworthy information system is an information system that fulfils all the

functional and non-functional stakeholder requirements. The more trustworthy a

system is, the more likely it is that it will fulfil the stakeholder requirements.

Trustworthiness is the necessary but not sufficient foundation for users to trust

systems with justification. It is not enough for the system to be trustworthy, it must

also show itself to be trustworthy, i.e. provide evidence of trustworthiness. So, the

goal is for the system to be trustworthy so that it will increase the likelihood that

users will reciprocate and trust the system.

2.3 Trust and Information System trustworthiness in the

context of the thesis

In this thesis the focus is not on the trust relationship between the user of a sys-

tem and the system. Also, the focus is not on the trust relationships among the

components of the system. The focus of this thesis is on the trust relationships be-

tween the developer of an information system and the components of an information

system. The system-to-be acts as a proxy for the developer once put in operation

having the same trust relationships. During requirements modelling the developer

is including such components in the requirements model that reflect the behaviour

that is expected from them. The further development of the system is based on such

expectations and eventually its success in meeting all stakeholder requirements. To

this end, in the context of this thesis we define trust as:

Trust is the positive expectations of the developer about the behaviour of the

modelled actors of an information system, from which the technical system-to-be

and the whole information system might be positively or negatively affected.

It is crucial for the success of the system that the developer shows optimum

trust to the components of an information system. Trusting less the developer

28

Chapter 2. Literature review

is losing opportunities to make the system less complex and costly. In contrast,

trusting more the developer is setting herself exposed to the information system

components’ uncertain behaviour. Thus, the developer is becoming vulnerable and

eventually the system under development is becoming vulnerable in terms of not

meeting its goals. Therefore, the system trustworthiness is dependent upon the

satisfaction of the goals of the system assigned to achieve by itself and the outgoing

dependencies of the system on the rest of the components of the information system.

As a result, in the context of this thesis we define then system trustworthiness as:

System trustworthiness is a characteristic of the system-to-be that shows to which

degree the system-to-be can achieve the goals that have been assigned and to which

degree its outgoing dependencies are resolved through trust and control.

In section 3.4, we describe how we justify the resolution of dependencies through

trust and control. In brief, trust and control are the means for the developer to feel

confident that the modelled components will behave as expected once the system is

put in operation.

2.4 Information Systems development methodologies

The British Computer Society Information Systems Analysis and Design Working

Group defines a software methodology as ”recommended collection of philosophies,

phases, procedures, rules, techniques, tools, documentation, management, and train-

ing for developers of information systems” (BCS - The Chartered Institute for IT).

Development of trustworthy software systems is a complex procedure though, where

developers do not have adequate knowledge of reasoning about trust and lack the

aforementioned collection. However, a methodology copes with the complexity and

reduces risks and uncertainties by rendering the development tasks more transparent

and visible (Klopper, Gruner, and Kourie, 2007), thus with the creation of a software

development methodology for trustworthy software systems developers will be able

to model and reason about trust. In general, a software development methodology

includes the following steps:

• Requirements elicitation.

• Analysis.

• Design.

• Implementation

29

Chapter 2. Literature review

• Testing.

This research will focus mainly on the requirements, analysis and design stages, and

how the developed designs can be verified as meeting the trustworthiness require-

ments. Nevertheless, it will also investigate what outputs from the former stages

are best suited for the next stages. In addition, the methodology should follow a

traditional methodology pattern for software development and not having and ad-

hoc approach that will be difficult for developers to adopt it (Presti et al., 2006).

Moreover, for a methodology to be characterised as a good methodology (Berard,

1995) requires that it:

• Can be described quantitatively and qualitatively at the same time.

• Can be used repeatedly and achieving the same results every time.

• Can be taught to others easily and in a reasonable time frame.

• Can be applied by others with a reasonable level of success.

• Can be applicable in a relatively large percentage of case studies.

• Can achieve significantly and consistently better results than either other tech-

niques or ad hoc approaches.

In the development of a methodology some characteristics have to be considered.

First of all, the methodology should consider all aspects that affect trust and not

only a subset (Presti et al., 2006). For example, until now only subsets of trust

properties are considered, while neglecting the holistic nature of trust.

Finally, trust should be considered from the early stages of the development

process (Yu and Liu, 2001) in order not to create any conflict with security and the

other functional requirements of the system (Mouratidis and Giorgini, 2007).

2.4.1 Modelling language

A system under development can be modelled at different levels of abstraction or

from different perspectives. A modelling language contains the elements with which

the model can be described. The grammar of the modelling language describes its

semantics, syntax, and notation (Karagiannis and Kühn, 2002). A modelling proce-

dure describes the steps applying the modelling language in order to create models,

which essentially are the results of the procedure. Mechanisms are algorithms that

can be applied to the models. In Figure 2.2 the components of modelling methods

are depicted and it is used as a reference model in order to develop the modelling

language proposed in this thesis.

30

Chapter 2. Literature review

Figure 2.2: Modelling methods components

For modelling languages two major approaches exist to describe their grammar,

graph grammars and meta-models. Often, UML class diagrams are used to describe

the meta-model of the grammar. For grammatical rules that cannot be fully ex-

pressed by class diagrams, additional constraint languages are employed such as

OCL. In our thesis, we use UML class diagram to describe the meta-model of our

modelling language. The semantics describes the meaning of a modelling language

and consists of a semantic domain and the semantic mapping. The semantic do-

main describes the meaning while the semantic mapping connects the syntactical

concepts with their meaning defined in the semantic domain. In this thesis infor-

mal textual descriptions are used to define the semantics of the proposed modelling

language. The notation describes the visualisation of a modelling language. In this

thesis we define symbols for visualising the syntactical concepts of the modelling

language. The modelling language mechanisms provide the functionality to use and

evaluate the models built using the modelling language. In this thesis mechanisms

are proposed to evaluate the trustworthiness level of the technical system under

development.

31

Chapter 2. Literature review

2.4.2 CASE tools for Information System methodology

In software engineering there was always the problem of lack of common under-

standing between the developers of the system and the stakeholders. As a result,

graphical modelling has been arisen in order to promote a better communication

between the developers and the stakeholders that will eventually establish a com-

mon understanding of the domain under inspection. Therefore, graphical models

are commonly used to describe and capture functional properties of the environment

and the system, as well as to design the system.

However, graphical modelling most of the time is informal and does not contain

any logic. Hence, formal frameworks have been developed that combine graphical

notations with logic. These tools, called Computer Aided Software Engineering

(CASE) tools support the process of software development and they are highly

interactive and graphic-intensive (Phillips et al., 1998).

The graphical user interface (GUI) of a CASE tool is usually based around a

working canvas. In this area the user produces graphical structures that consist

of predefined symbols that usually appear in a toolbox (Phillips et al., 1998). The

structures are used to model the system under development and, particularly in the

case of this dissertation, the environment in which the system will operate as well.

The elements that can be drawn on the canvas are usually divided into two

categories. The entities that represent units of information and the relationships

that link the elements. For each CASE tool there are certain well defined rules

concerning the appearance of each element. Moreover, the relationships might have

attributes on their bodies and on their ends and there is usually a restriction of the

way elements can be connected (Garćıa-Magariño and Gómez-Sanz, 2008). In detail

the functional requirements of a CASE tool are the following (Phillips et al., 1998):

• Insert elements in the working canvas. Once an element is selected from the

tool box it should be possible to be inserted in the working canvas and also to

enter its properties.

• Edit existing elements. The element or a group of elements should be selectable

so as the user to be able to take a variety of actions, such as copy or cut and

paste them, edit their properties or delete the elements.

• Create links between the elements. The links will describe the relationship

between the elements.

• Edit existing links. The user should have the ability to select links and edit

their properties or delete them.

32

Chapter 2. Literature review

• Edit diagrams. The user should be able to re-arrange the diagrams or part of

them, and sometimes place annotations.

• Passive browsing of diagrams. The user should be provided with the ability

to move, zoom or rotate diagrams and hide parts of the displayed information

according to his will.

On the other hand, the non-functional requirements of CASE tools are:

• Ease of actions. The user should be able to carry all his possible actions easily

(Phillips et al., 1998).

• Flexibility of actions. The CASE tool should assist the developers to cre-

ate quality designs without being too restrictive to a point that will alienate

the developers. Therefore, there should be an optimisation of the constraint

environment (Brooks and Scott, 2001).

• Prevention of errors and ease of recovery with the inclusion of multilevel ”undo”

and ”redo” actions (Phillips et al., 1998).

• Aesthetically pleasing screens that comply with usability rules (Phillips et al.,

1998).

• Effective help system, by speaking the developer’s language. The help should

be in words that the developer is familiar with (Seffah and Rilling, 2001).

• Quality feedback at each stage or even in some actions, again by speaking the

developer’s language as mentioned above (Seffah and Rilling, 2001).

CASE tools usually follow the approach of a separated logical model from the

views of that model. This approached is based on the fact that an element might

appear in two diagrams, but actually is one single element. Otherwise, an element

that appears in two different models would be difficult to be processed. Conse-

quently, CASE tools should keep separately the logical model and the views (Garćıa-

Magariño and Gómez-Sanz, 2008).

The ultimate goal of a CASE tool is to place, join and manipulate the elements

of the methodology quickly and easily. Also, the tool should fully support all the

aspects of the methodology and must enforce its rules, for example by not allowing

the user to apply illegal relationships between the entities (Phillips et al., 1998).

Finally, the CASE tool should provide developers the ability to automate many of

their actions (Finnigan, Kemp, and Mehandjiska, 2000), so as to reduce the amount

of time and money spent on projects and improve the quality of the finished product

and its documentation (Finnigan, Kemp, and Mehandjiska, 2000).

33

Chapter 2. Literature review

2.5 Evaluation methods for software engineering method-

ologies

An essential part of method development is the evaluation of the method, which

includes also an investigation of its validity. The validity of a method is more an

empirical than a theoretical question, since a lot of methods that sound reasonable

in theory; do not work in practice (Moody et al., 2003). To this end we have chosen

an empirical approach to evaluate the main contributions of this research. The

demand of empirical studies and their contribution to increasing knowledge in the

software engineering domain (Runeson and Höst, 2009; Sjoeberg et al., 2005) is

continually increasing. In the software engineering domain, it is difficult to select

an appropriate empirical method, which is suitable for a specific research context.

Generally, the tools for evaluation of a method are experiment, case study, and

survey, which include data collection and analysis (Kitchenham, Linkman, and Law,

1997; Zelkowitz and Wallace, 1997). However, evaluations are expensive and there

are no mandatory requirements on methods or tools in order researchers to validate

their methods or tools (Kitchenham, Linkman, and Law, 1997). Another challenge

is the availability of resources such as budget, time, and personnel, in order to relax

the idealised assumptions, which are made during the development of a method in

order to enhance the insight and the ability to reason (Wieringa and Morali, 2012;

Easterbrook et al., 2008), much as possible until the method is tested in a real

environment.

There is no one evaluation method that is always the best, but there are many

methods each of which is appropriate in different situations (Kitchenham, Linkman,

and Law, 1997). The DESMET project (Kitchenham, Linkman, and Law, 1997;

Kitchenham, 1996) identified nine evaluation methods:

1. Quantitative experiment. This is an evaluation that includes many subjects

who are asked to perform a task using different methods or tools under inves-

tigation and is aimed at establishing measurable effects of using a method or

tool.

2. Qualitative experiment. This is an evaluation that includes many subjects who

are asked to perform a task using different methods or tools under investigation

and aimed at establishing that a method or tool is appropriate for specific

needs. In this case, the appropriateness of the method or tool is assessed in

terms of the required features provided by the method or tool.

3. Quantitative case study. This is an evaluation where the method or tool un-

34

Chapter 2. Literature review

der investigation is tried out on a real project and is aimed at establishing

measurable effects of using a method or tool.

4. Qualitative case study. This is an evaluation where the method or tool under

investigation is tried out on a real project aimed at establishing that a method

or tool is appropriate for specific needs.

5. Quantitative survey. This is an evaluation where humans that have used a

specific method or tool are asked to provide information about the method or

tool and is aimed at establishing measurable effects of using a method or tool.

6. Qualitative survey. This is an evaluation where humans that have used a

specific method or tool are asked to provide information about the method

or tool and is aimed at establishing that a method or tool is appropriate for

specific needs.

7. Qualitative effect analysis. This is a subjective assessment of the quantitative

effect of a method or a tool based on expert opinion.

8. Benchmarking experiment. This is an evaluation based on a number of stan-

dard tests using alternative tools and assessing the relative performance of the

methods or tools.

In this thesis, we have chosen to evaluate our proposed methodology using a

qualitative case study from the e-health care domain in England in order to ob-

serve the effects of our proposed methodology. Additionally, to further validate our

work we have chosen to carry out a quantitative and qualitative survey by asking

academics, industry researchers, and postgraduate students to use our proposed

methodology and support tool and provide us with feedback about the effectiveness

of the methodology.

2.6 State of the art in trust engineering

The state of the art in the area of trustworthy information system development is

very broad and looked from different angles and at different levels. Sutcliffe (2006)

argues that information system design and trust intersect in two ways. Firstly, if the

design of a system is not thought-out prior to the development stage, then there is

a possibility that the system will not be built as per the user’s requirements. When

the user actually utilises the system, she will be made aware that her requirements

have not been fulfilled, hence possibly causing distrust of the system and the pos-

sible rejection of it. The second way that design and trust intersect is by having

35

Chapter 2. Literature review

technology acting as a mediator of trust between people, organisations or between

artificial agents who represent humans or organisations. Technology in our days

allows us to communicate and collaborate with people around the world. But also,

it prevents people from interacting face to face, where they are more able to deter-

mine the trustworthiness of the other party. So, there is a need for systems that will

enable the collaborating parties to assess the trustworthiness of each other using

technology as a mediator (Jøsang, Keser, and Dimitrakos, 2005). Trust is therefore

embedded in information systems in multiple ways (Table 2.1). There are lines of

research that are focusing on trust modelling during the requirements analysis stage,

trust management analysis, and consideration of trust during security requirements

analysis. In addition, a branch of human computer interaction research aims to

transmit the appropriate trust signals to the users and improve the trust decision

process or to increase the trust perceptions. Furthermore, there is a line of research

named Trusted Computing, which is focusing on developing trustworthy hardware

components that ensure the trustworthy behaviour of other components. Finally,

computational trust deals with the development of trust models that can be used

by artificial agents to reason about trust.

Table 2.1: Trust engineering approaches

Category Section Description

Trust modelling 2.6.1 Provides trust awareness to systems

Trust management 2.6.4 Enables the assessment of trustwor-
thiness

Security engineering 2.6.2 Considers trust during security
analysis

Goal satisfaction reasoning 2.6.3 Reasons about the satisfaction of
system goals

Human computer interaction 2.6.5 To send appropriate trust signals or
manipulate user trust perception

Trusted computing 2.6.6 To enforce trustworthy system be-
haviour

Computational trust 2.6.7 Trust models used by artificial
agents

2.6.1 Trust modelling

One line of work on trust adopts the approach of embedding trust in an information

system by treating trust as a non-functional requirement, for example such as secu-

rity or usability. Through this approach developers are guided to capture customer

36

Chapter 2. Literature review

needs and requirements regarding trust and to reflect them in the functionality of

the system. Then it can be argued that users will trust the system once it will be

put in operation as it possesses the desired trust requirements from the perspective

of the user. Such approaches extend existing software engineering approaches, by

enhancing them with notations and processes to represent and reason about trust

as a non-functional requirement.

A first approach is by Yu and Liu (2001) that addresses the issues of trust at the

requirements level of the system development process. Trustworthiness is modelled

as a softgoal, which does not have clear criteria for satisfaction. i* concepts, such

as actor, goal, softgoal, dependency, are used in order to model the relationships

between the components of an information system. The strategic dependency model

describes the network of dependencies, while a strategic rationale model describes

the reasoning of each actor about her goals. The trustworthiness of the dependee

is modelled as a softgoal for the depender and is refined from her viewpoint. So,

trustworthiness is modelled as an objective of stakeholders, which influences their

dependencies and goals satisfaction. The refinement of the trustworthiness goal

represents the rationale for trust and leads to specific requirements for the system-

to-be. Therefore, trust is considered as a non-functional requirement, where trust

is a combination of all or some quality attributes of the system under development.

Furthermore, control mechanisms can be added to relieve the need for trust, which

contribute to the viability of the dependency. We adopt the principle from Yu that

dependencies introduce vulnerability for the depender, if the dependee does not

fulfil the dependency, and that the developer is led to question the viability of the

dependencies when considering a network of dependencies as a basis upon which the

system-to-be will be developed. Therefore, we add on top of that, that a dependency

is also a potential vulnerability for the developer as well.

Secure Tropos (Giorgini et al., 2005) extends Tropos methodology (Bresciani

et al., 2004) with the concepts of ownership, trust, delegation, permission, and

monitoring. Ownership between an actor and a service exists if the actor is the

legitimate owner of the service. Trust between two actors exists when one actor

trusts another actor for a certain goal. Delegation between two actors exists when

one actor delegates to another actor the execution of a task or access to a resource.

Moreover, the authors define two types of delegation, delegation of permission and

delegation of execution. In the first type of delegation the dependee is authorised

to achieve a goal but she does not have to, while in the second case the dependee

has to achieve the goal. The concept of trust is introduced in order to capture the

existence or non-existence of trust in the cases of delegation, since sometimes actors

delegate goals to actors that they do not trust as long as there are ways to hold

37

Chapter 2. Literature review

such dependees accountable. Similarly to delegation, there is trust of permission and

trust of execution. In the first case the depender trusts that the dependee will not

go beyond the achievement of the goal, while in the second case the depender trusts

that the dependee will at least achieve the goal for her. Furthermore, in cases where

there is no trust, the concept of monitoring is introduced. The act of monitoring can

be done by the delegator himself or by another actor who plays the role of monitor

in order to check for the violation of trust. For example, in Figure 2.3 Bob owns his

personal information and while providing that information to Sam there is a trust

of permission that Sam will not misuse his private information. Alice wants from

Sam personal information for statistical reason and there is trust of execution that

Sam will at least fulfil this goal. If Alice does not trust Sam to fulfil the goal then

she can delegate the goal to monitor Sam to Carol. Carol then will monitor if Sam

is fulfilling the goal to provide personal information to Alice. Through this way,

the developer can capture trust relationships in a normal functional requirements

model, and with the introduction of the mentioned concepts security and trust

requirements are deriving. We agree with the authors that sometimes there may be

dependencies on other components that are not trusted, as long as there are ways

to hold those dependencies accountable. To this end, monitor is a solution to check

if dependencies are being fulfilled.

Figure 2.3: Monitoring example

Bimrah (2009) extends the Secure Tropos (Mouratidis and Giorgini, 2007) method-

ology with the concepts of request, action, trust relationship, trusting intention,

38

Chapter 2. Literature review

reputative knowledge, recommendation and consequence in order to model trust

(Figure 2.4). Request is the act when an actor is asking for something to be done

or given by another actor, while the activity of the second actor, as a response to

the request of the first actor, is the action. A trust relationship indicates that one

actor expects another actor to behave in a certain way. Trusting intention is defined

as the intent of the trustor on how far she actually trusts the trustee to carry out

the action to her request. Reputative knowledge is the knowledge that the trustor

has about the trustee. Recommendation is the representation in favour of another

actor while consequence is the effect of a trust relationship. The developer is guided

through a series of models, using the aforementioned concepts, in order to analyse

and reason about trust relationships. The first model is the Request/Action Model

(R/AM), which models the action and the request, along with the resources and

security constraints that are put upon the actions and request. The next model

is the consequence model, which models the possible consequences of a request,

which can be positive or negative. The model that follows is the recommendation

model, which shows the recommendation for an actor. The consequences model, the

trusting intention and the reputative knowledge of the trustor towards the trustee

influence the recommendation of the trustee. The final model is the Trust Relation-

ship Model, which shows whether an actor trusts another actor, what is the trust

level, and whether other actors should trust the trustee, which ultimately help the

developer make design decisions. The author’s proposal captures in detail why one

actor trusts another actor.

In (Yan and Cofta, 2003) the system analysis and design considers different

domains in mobile communications. A trusted domain is a set of domain elements

such that all domain elements share certain defining statements regarding their trust

definition, which must be fulfilled in order an element to be trusted. Even though

the trust definition is common among the elements of a domain, however, there are

trust gaps between trusted domains because of the subjectivity of trust definitions.

To address this, certain elements bridge the gap and are responsible for ensuring

trust at a higher level than the one of the domains. The component that is trusted

by more than one domain and is acting as a bridge between them is named trusted

bridge. The methodology contains four steps: model the mobile communication

system and identify the different trusted domains and their entities, analyse each

domain to identify the trust statements, identify bridging solution for domains that

do not share any trusted component, and form the trusted bridge. To form the

trusted bridge the developer can use an existing component, create a new one, or

create a new separate domain that will bridge the two original domains as shown

in Figure 2.5. The methodology can be applied to any system analysis and we

39

Chapter 2. Literature review

Figure 2.4: Bimrah meta-modell

40

Chapter 2. Literature review

agree here with the authors that it is vital for the system analysis not to contain

any gap in the chain of trust relationships especially between the developer and the

components of the system.

Figure 2.5: Methods for bridging trusted domains

Presti et al. (2006) describe a holistic methodology to analyse trust during the

development of the system that focuses on the user of the system. The methodology

contains five steps as shown in Figure 2.6. The first step is the identification of

scenarios, which are short narratives that describe the user’s behaviour focusing on

the use of services provided by the system under development. Individuals external

to the trust analysis and the system design then validate the scenarios. The second

step is the trust analysis using the Trust Analysis Grid. The rows of the grid

represent aspects of the system described by one or several sentences of the scenarios,

while the columns represent categories of trust issues, subjective; system; and data;

that the authors have derived by studying the of the art in trust. The developer then

checks the ones that are satisfied in those aspects of the system. The completion of

the cells is done with a number of X or Y marks, the name of a more precise issue, or

a signed number, that indicate the importance of the trust issue to the specific aspect

of the system, the more precise issue, or the scale of trust issue respectively. The

third step involves examination of the previous trust issue by peers of the developer

41

Chapter 2. Literature review

and from the perspective of another potential user. The fourth step contains the

refinement of the scenarios based on the previous peer review, and the last step is

the construction of guidelines for identifying trust requirements based on the Trust

Analysis Grid constructed previously. The guidelines are derived from the insight

that was achieved during the previous four steps.

Figure 2.6: Holistic trust analysis process

This direction of research investigates trust from the perspective of the users or

other stakeholders attempting to capture their trust related needs and requirements.

However, trust requirements are not a subset of requirements but all possible re-

quirements. There cannot be a requirement that it is not a trust requirement.

Furthermore, we investigate the trust relationships, which come into existence be-

cause of the dependencies, not from the perspective of the depender but from the

perspective of the developer. These are equally important for the developer, as the

system-to-be will be built according to that configuration of network of dependen-

cies. If the developers models dependencies and trust relationships that are not

valid then the system will not be built on solid foundations and there might be po-

tential vulnerabilities, which will constitute the system untrustworthy. Regarding

this aspect, the approaches mentioned in this section fail to provide support to the

developer. Moreover, there is limited support in providing required abstractions

that will enable the developer to enforce the fulfilment of dependencies in cases

where there is not trust. Furthermore, the previous approaches they do not look

into whether the system will be able to do what it is supposed to do in order to

be trustworthy because they do not reason about the system interactions that are

necessary for the satisfaction of the system goals. Therefore, trust in the system is

partially blind, as it has not been fully justified. So, the focus is on trust modelling

42

Chapter 2. Literature review

but without supporting the developer in reasoning about trust relationships inside

an information system that are important to the system trustworthiness. The devel-

oper is left without guidance and as a result trust relationships from the perspective

of the developer are not investigated.

More particularly in (Yu and Liu, 2001), there are no constructive techniques

that can guide the developer in the refinement of the trustworthiness softgoal, for

example what are the aspects of trustworthiness. In addition, there are no control

related concepts and techniques available to guide the developer in identifying and

analysing the appropriate control mechanisms for the system-to-be. Giorgini et al.

(2005) fail to provide method for the developers to reason why there is trust in a

specific relationship. Also, even if monitoring mechanisms are in place still they are

not enough to enforce the fulfilment of a dependency. Furthermore, indirect trust

relationships are omitted from investigation, for instance, in case of monitoring de-

pendency, which is actually an indirect trust relationship, it is left unexamined and

there is not analysis on whether there is trust. If it proves that there is no trust

then the system will not achieve its designed functionality. Therefore, indirect trust

relationships stay hidden without proper justification and assessment and becom-

ing a serious threat for the proper operation of the developed information system.

In (Bimrah, 2009), although it provides a mechanism for reasoning about trust re-

lationships, it fails to capture indirect relationships as well. For example, should

an actor trust the recommendation provided from other actors. In addition, there

are no constructive techniques to guide the design of the system in case of luck of

trust in a dependency. In (Yan and Cofta, 2003) there are no constructive tech-

niques available on how the developer will identify the components that will act

as a trusted bridge or how she will create one or create another domain that will

bridge the two original components. Finally, Presti et al. (2006) identify what the

system must do in order the user to trust it. However, a trust requirement is not a

subset of the system requirements, but it is the system requirements and even more.

Moreover, even though the approach forces the developer to identify trust issues,

this approach does not provide concepts and techniques in terms of supporting the

developers in reasoning about trust.

2.6.2 Security engineering considering trust

This line of research includes contributions that even though some of them do not

claim that their goal is to achieve system trustworthiness, nevertheless, they sig-

nificantly improve system trustworthiness in terms of security, which is considered

widely as one very important aspect of trustworthiness. Also, in this category fall

43

Chapter 2. Literature review

approaches that deal with domain knowledge and trust in order to achieve security.

Trust is an enabler of security because all security services rely to a great extend

on some notion of trust (Viega, Kohno, and Potter, 2001; Ray and Chakraborty,

2004; Haley et al., 2006). Secure systems have been built under the premise that

concepts like trustworthiness or trusted are well understood, unfortunately without

even agreeing on what trust means. Therefore, such works have investigated the

concept of trust in order to build secure systems.

In (Górski et al., 2005) a trust case represents a complete and explicit argu-

ment that influences trust in the system under development in terms of security

and safety. The trust case is decomposed into claims, using the Claim Definition

Language (CDL), that posit trust related properties and then follows the collection

and production of supporting evidence and development of a structured argument

that the evidence is supporting the claims. The evidence can be a fact, which is a

statement of verified information about something, an assumption, which is a state-

ment assumed to be true for which there is no supporting material, or another claim

for which the same procedure needs to be followed. The trust cases can be modelled

using UML stereotypes that influence the trust level of the trustor in the system.

Also, a UML based graphical language is used to represent the context in which

a specific claim is interpreted. Figure 2.7 depicts the conceptual model of a trust

case. We agree with the authors that security and safety are two important proper-

ties of system trustworthiness, and especially that it of paramount importance that

trust in the system under development needs to be justified by considering the trust

assumptions that underlie the system development.

Haley et al. (2006); Haley et al. (2008) investigate trust assumptions in the con-

text of analysis of security requirements. This framework consists of four activities:

identification of functional requirements; identification of security goals; identifica-

tion of security requirements; and construction of satisfaction arguments; In the last

activity the developer constructs two satisfaction arguments, named outer and inner

arguments, that enable her to identify incorrect assumptions about security related

system components. The outer arguments are claims for the system environment

expressed in formal logic, in particular that the system environment is correctly de-

fined and that the system will not introduce any undesired behaviour by the system

components. The inner arguments are informal arguments that support the claims

in the outer arguments and are based on trust assumptions. Trust assumption is

defined as ”a statement about the behaviour or properties of the world the system

lives within, made in order to satisfy a security requirement and assumed to be

true”. The process includes the annotation of the system environment with the

relevant phenomena between the system component and the specification of the de-

44

Chapter 2. Literature review

Figure 2.7: Trust case conceptual model

sired behaviour from the components along with their justification. We agree with

the authors and we recognise as well that to say there will not be any undesired

behaviour by a system component is a very strong assumption and that we cannot

totally ensure the trust of the assumptions, still though it enables the system to be

built on strong foundations in order to be as trustworthy as possible not only in

terms of security though but in terms of its full functionality.

Elahi and Yu (2009) propose a method for discovering trade-offs that trust re-

lationships bring between trust and control. The method contains seven steps:

identification of actors and their dependencies; modelling and reasoning of actors’

goals; modelling trust relationships; recording trust rationale; replacement of the

trustee party with a malicious party; analysis of vulnerabilities; and analysis of the

trade offs. In this approach the trust modelling techniques from i* (Yu, 1995) and

(Giorgini et al., 2005) are adopted and the trust rationale is captured as a belief

from the viewpoint of the depender in order to reveal implicit trust assumptions.

Then the dependee entity is replaced with a potential malicious entity that has the

same access and capabilities as the legitimate entity. As a result the developer can

then model and analyse the vulnerabilities and their impact that the potential ma-

licious entity may bring. The analysis is a cost/benefits analysis where the cost is

the risks that the malicious entity is bringing. The aim of the trade off analysis is to

45

Chapter 2. Literature review

evaluate if the potential vulnerabilities because of lack of trust in the entities that

have been assigned with goals outweigh the benefits of the dependency relationship.

If the potential vulnerabilities outweigh the benefits then the developer can choose

an alternative dependee that offers better ratio of benefits and vulnerabilities. The

costs and benefits of each alternative dependee are evaluated in terms of satisfaction

or denial of top goals of the depender.

The following security engineering methods aim towards the development of

secure systems. Security is a main aspect of trustworthiness and has a unique role

in the establishment of trust in the information systems. For example, a user might

use and trust a system even though it does not have certain functionality but it is

most probable that he will use and trust a system that it is not secure.

Trustworthy Computing (Lipner, 2004; Charney, 2012) is an initiative by Mi-

crosoft, which uses the Security Development Lifecycle (SDL) for the development

of their software that must withstand attacks. The initiative is concentrated on

planning activities in the areas of security, privacy, reliability, and business integrity.

Security objectives should be identified along with security feature requirements that

are based on customer demand and compliance with standards. Then additional se-

curity features are identified as part of threat modelling. More specifically, threat

modelling includes four steps: identification of use scenarios; identification of assets;

identification of threats; and identification of countermeasures. Threat modelling is

carried out component by component followed by the identification of the assets the

system-to-be will manage along with the interface used to access them. Then the

threats for these assets are identified followed by the countermeasures that mitigate

the risk and protect the assets. The countermeasures can be in the form of security

features, such as encryption or access control, or in the form of proper function of

the system.

Secure Tropos (Mouratidis and Giorgini, 2007) is an extension of Tropos method-

ology (Bresciani et al., 2004) and is based on the concept of security constraint to

analyse the security requirements. With Secure Tropos, the security requirements

can be modelled, reasoned, and transformed into a design that satisfies them. New

concepts, such as security constraint, secure dependency, and secure entity, are in-

troduced in order to enable the developer to analyse the security of the system

under development. Security requirements are captured as security constraints that

represent a security related restriction in terms of confidentiality, integrity, and avail-

ability. Secure dependency is a dependency with security constraints that restrict

its fulfilment unless the security constraints have been satisfied by the depender or

the dependee. Secure entity is a secure goal, plan, or resource. First, the developer

models the system-to-be and the actors of system environment and the she models

46

Chapter 2. Literature review

the security constraints imposed to the actors. Then, secure entities are modelled

by identifying the secure goals, plans, and resources that are satisfying the secu-

rity constraints. Secure Tropos was extended in (Pavlidis, Mouratidis, and Islam,

2012) in order to consider domain knowledge and reason about trust relationships

with components of the environment of the system. In particular, trust and control

resolution of dependencies on actors with secure goals are identified in order the

developer to build confidence that such a component of an information system will

fulfil its secure goals once the system in put in operation to ensure its security.

KAOS (Van Lamsweerde et al., 2007) is a goal-oriented requirements engineering

methodology that supports developers in understanding what are the requirements

of the system under development. Its conceptual model, the associated language and

its techniques enable the developer to identify functional and non-functional require-

ments, including security requirements. The elaboration of security requirements is

performed using anti-models, where anti-goals are used to capture the behaviour

of the potential attackers and they represent a threat to the security goals of the

system. The anti-models are constructed once the goals of the system under de-

velopment have been defined. Then the developer derives new security goals as

countermeasures to counter the anti-goals of potential attackers. The security goals

assigned to components of the system-to-be environment are expectations, which

are essentially assumptions.

In (Hatebur, Heisel, and Schmidt, 2007), authors defined patterns for structuring,

characterising, and analysing problems that occur frequently in security engineering,

which are named security problem frames and they are served to analyse security

related requirements. Security problem frames are special types of problem frames

(Jackson, 2001), which refer to the problems concerning security and consider se-

curity requirements. The transformation of security requirements into concretised

security requirements is achieved by selecting security mechanisms, which is essen-

tially the security solution. Every security problem frame is constructed based on a

security problem frame template that consists of the following fields: name, which

specifies the kind of security problem frame; frame diagram, which shows the do-

mains, their interfaces, and the security requirements; security requirement, which

states the security requirement informally; declarations, which are necessary enti-

ties for stating the preconditions and postconditions; preconditions, which need to

be met by the environment in order the frame to be applicable; postconditions,

which are formal representation of the security requirement; and related, which are

related security problem frames; The preconditions are essentially the assumptions

that need to be true in order the security requirements to be met. In order the de-

veloper to guarantee that the preconditions hold there are two alternatives. Either

47

Chapter 2. Literature review

to be assumed true or they have to be established, or in other words enforced, by

using another security problem frame whose postconditions match the preconditions

of the initial frame.

CORAS (Lund, Solhaug, and Stølen, 2010) is a method for model driven security

risk analysis of a system. It consists of a specialised language for communication,

documentation, and analysis of security threats and risk scenarios. In the beginning

it was defined as a UML profile but it was later refined and customised. The

CORAS method includes seven steps (Figure 2.8). In the first step, which is an

introductory step the target, scope, and the size of the analysis are specified in order

the necessary preparations to be made. The second step includes the specification

of the targets that need to be protected and a common terminology to be used by

the developers and the customers. The third step establishes a more correct and

refined understanding of the target and the objectives of the customer in order to

eliminate any misunderstandings. Moreover, assets are identified and a high-level

risk analysis is carried out. Step four includes the agreement between the developer

and the customer on the target to be analysed, including the scope, focus, and all

assumptions. The fifth step is the risk identification, followed by the sixth step

the estimation of risk level of risks. The seventh step is the risk evaluation, while

the last step is the risk treatment identification and analysis. In step four is when

assumption are being made, and the authors define assumptions of a risk analysis

what we take for granted or accept as true, although it may actually not be so.

They also state that an assumption is something for which there is strong evidence

or high confidence in. The language used for documenting and reasoning about

assumption is named dependent CORAS since it is used to document dependencies

on assumptions being made. Assumptions in CORAS are used as a means to choose

the desired or appropriate focus and scope of the analysis, by assigning a likelihood

level to the likelihood of an assumption to occur.

Moreover, UMLsec (Jürjens, 2005) is an extension of Unified Modelling Language

(UML). It is a UML profile that enables the developer to express security properties

on design models. Standard UML extension mechanisms in the form of labels are

used such as stereotypes together with tags to formulate the security requirements

and assumptions on the system-to-be environment. More specifically stereotypes

and tags represent a set of desired properties. The developer can use the labels to

give a specific meaning, with respect to security, to elements of a design model.

The approaches presented in this section mostly focus on the security of the sys-

tem and in that context consider assumptions and trust. However, despite the fact

that most of the approaches acknowledge the importance of trust in the achieve-

ment of security, they do not offer a trust assumption reasoning method for the

48

Chapter 2. Literature review

Figure 2.8: CORAS’ steps

developers.

More particularly, (Górski et al., 2005) trust cases were only focusing on the

security and safety of the system, excluding important other trust properties such

as privacy and usability. Even though the development of the context model en-

ables the identification of the components that are involved in trust assumptions,

there is no systematic and structured method for identifying specific assumptions.

Thus, the developer has to identify the specific trust assumptions in an ad-hoc

way, possibly omitting important ones. Furthermore, this approach was limited in

identifying only the assumptions for components with whom there are direct trust

relationships, omitting assumptions about indirect trust relationships. Also, there

were no constructive techniques for alternative solutions in case the assumptions

are not valid. Haley et al. (2008) approach has been developed for the purpose of

ensuring the satisfaction of only security requirements and not for the rest of the

requirements. Furthermore, this approach does not provide a systematic process

for annotating the context with phenomena from which the desired behaviour of

components is derived. Thus, some trust assumptions might be omitted by the de-

veloper. Moreover, there is no support in case of lack of trust, such as requirement

abstractions and techniques that will enable the developer to identify system func-

tionality in case of rebuttal that will ensure the desired behaviour of an untrusted

49

Chapter 2. Literature review

component. Elahi and Yu (2009) approach although it deals with dependencies on

other entities and the corresponding trust relationships, it is inadequate in its trust

reasoning techniques. It offers modelling concepts to capture trust rationale, but it

does not offer a systematic process that can guide the developer in identifying that

trust rationale. Furthermore, the developer might not always find an alternative

dependee with an adequate ratio of benefits and vulnerabilities. Trustworthy Com-

puting . For Secure Tropos there was no support for the developer to reason about

why a component of the information system will fulfil a secure goal. Even though

the extension addressed this limitation, it offered limited constructive guidance and

alternative solutions. KAOS enables the partial identification of assumptions and

even though it provides support for the developer to reason about the ability of a

component to achieve a goal it fails to provide support for reasoning about whether

the component will achieve a goal. Hatebur, Heisel, and Schmidt (2007) approach

lead to partial identification of assumptions as the process does not ensure that

the developer will identify all assumptions. Moreover, there is no support in rea-

soning about such assumptions. However, the assumptions in CORAS are more

assumptions about the condition of the physical environment of the system under

development and moreover the focus is to use the assumptions in order to choose the

desired or appropriate focus and scope of the analysis rather than reasoning about

the assumptions. UMLsec (Jürjens, 2005) supports the developer in documenting

assumptions on design models. However, there is no systematic process for the de-

veloper to identify the assumptions and most importantly the analysis of whether

the assumptions hold should be carried out at the requirements stage where it is

more cost effective. Finally, the approach related with the extensions of use cases

and UML does not support the modelling and analysis of security requirements at a

social level, but they treat security as technical solutions (Mouratidis and Giorgini,

2007). Security though is a multidimensional issue that has social characteristics,

since the software system will operate in a human social environment and the human

factor plays a very important role in security (Mouratidis and Giorgini, 2007).

2.6.3 Goal satisfaction reasoning

At the heart of requirements engineering is the investigation of alternative options

and the impact of such options on the system, which generally have different contri-

bution to the degree of satisfaction of top-level goals. To this end various qualitative

and quantitative frameworks have been proposed to assist in the assessment of al-

ternatives for decision-making. Also, there has been work on exceptional behaviour

of entities upon which goals have been assigned and obstacles are used to repre-

50

Chapter 2. Literature review

sent such exceptional behaviour. Finally, the state of the art includes approaches

that enable the developer to reason about the realisability of a goal that has been

assigned to a component.

The NFR framework (Chung et al., 2000; Chung and Prado Leite, 2009) con-

centrates on modelling and analysis of non-functional requirements. The authors

emphasise the need that non-functional requirements need to be identified from the

early stages of information system development in order to assist the developer in

making design decisions, and also that non-functional requirements should be con-

sidered along with the functional requirement throughout the development process.

Non-functional requirements are represented as softgoals, which are goals that don’t

have clear-cut criteria of satisfaction. The non-functional goals are satisfied through

the collaboration of the software system behaviour and environment phenomena

caused by the rest of the components of the information system. It supports the

developers in specifying positive or negative influences of different alternatives on

non-functional goals. Softgoals interdependencies are captured with positive (”+”)

or negative (”-”) contributions. NFR is used to evaluate and compare the contribu-

tion of alternatives to the softgoals qualitatively. By analysing these alternatives,

the developer can select the one that best meets top-level quality requirements of

the system under development.

A quantitative approach to goal satisfaction reasoning is given by Giorgini et al.

(2003), where the authors offer a precise semantics for the relationships between

goals which comes in qualitative and numerical form. that is based on a probabilis-

tic model. For every goal there can be full evidence that the goal is satisfied or

denied or there can be partial evidence that the goal is satisfied or denied. To this

end, two variables are introduced for each goal, which represent the current evidence

of satisfiability and deniability of that goal and two constants are introduced that

represent full evidence and different level of partial evidence. A probabilistic model

has been adopted where the probability that a goal is satisfied or denied represents

the evidence of satisfiability or deniability respectively. The starting point of the

process is the externally provided assertions as initial conditions. Then the satisfia-

bility and deniability evidence and numeric values are propagated through the goal

model according to propagation rules in order to deduct satisfiability and deniability

values for the top-level goals. To support the developer the authors propose a label

and numeric value propagation algorithm. The authors acknowledge the issue of

considering the reliability and competence of the initial source of evidence as the

whole process is based on the assumption that the initial evidence is valid.

In (Letier and Lamsweerde, 2004) the authors propose techniques for specifying

partial degrees of goal satisfaction and for quantifying the impact of alternative

51

Chapter 2. Literature review

decisions on the degree of satisfaction on goals. The partial degree of satisfaction

of a goal is defined by annotating the goal with quality attributes and objective

functions, which are goal related variables and functions that define quantities to be

maximised or minimised. Then the authors provide propagation rules that enable

the developer to estimate the degree of satisfaction of a higher-goal based on the

degrees of satisfaction of its subgoals. To this end the authors provide a catalogue

of quantitative goal refinement patterns to assist the developer in specifying goal

refinements equations. A bottom-up propagation of quality variables of the low level

goals is used to evaluate the alternative system designs, while a top-bottom prop-

agation of quantitative requirements of high level goals is used to specify concrete

quantitative requirements of low level goals. The estimations on goal satisfaction

assigned to the system under development are quantitative requirements while esti-

mations of goal satisfaction assigned to entities of the environment are quantitative

assumptions.

KAOS (Van Lamsweerde and Letier, 2000) has embraced obstacles and provides

well-developed methods for detecting and mitigating the obstacles. An obstacle to

a goal is defined as an assertion that is consistent with the domain information, but

the negation of the goal is the logical consequence of the combination of the asser-

tion and the domain information. In other words, obstacles represent the potential

ways in which a system might fail to meet its requirements. Once identified, obsta-

cles are refined similarly as goals in order to identify subobstacles. The goal of the

obstacle analysis is to anticipate exceptional behaviour of entities upon which goals

have been assigned and to derive more complete requirements and realistic require-

ments, by specifying alternative ways of resolving such problems early during the

development of the system to be. Examples of techniques for obstacle resolution are

obstacle prevention, goal substitution, agent substitution, and obstacle tolerance.

The process stops when the developer has identified goals that prevent an obstacle

or substitute goal and there are no more obstacles or the remaining obstacles are

acceptable without resolution.

In (Letier and Lamsweerde, 2002) the authors propose a method to refine goals

until they are assignable to single entities and to assign a goal to entity only if

the entity can realise a goal. Their proposal also includes a complete taxonomy

of realisability problems. In particular a goal is not realisable if there is: lack of

monitorability; lack of controllability; reference to future; external unachievability;

unbounded achievement; In case there is unrealisability then the developer is guided

to address the problems with the help of a catalogue agent based refinement tactics

that refine the unrealisable goals and make the realisable.

To mitigate the vulnerability that a dependency is introducing the viability of

52

Chapter 2. Literature review

the dependency is analysed in (Yu, 1995) by identifying patterns of dependencies

that may serve to enforce commitment, assure success, or insure against failure.

There if there is a way for the depender to make a goal of the dependee to fail then

the commitment is enforceable.

The NFR framework (Chung et al., 2000; Chung and Prado Leite, 2009) does not

provide any reasoning technique in the case where a goal that contributes of a top-

level softgoal cannot be accomplished by the system and the system is depending

on another component of the information system to fulfil it.

In (Giorgini et al., 2003) there not techniques to reason about the trustworthiness

of the source of evidence, which means that the analysis is based on unjustified

assumptions. Furthermore, even though this approach can be applied to goals that

are dependent upon other entities for fulfilment, the issue of trust on the other entity

for goal fulfilment is not considered in the goal reasoning process. Reasoning that

an entity can achieve a goal does not imply that it will actually show the desired

behaviour and achieve it.

In (Letier and Lamsweerde, 2004) the specification of partial degrees of goal

satisfaction is based on real data to determine the level of satisfiability, such as

statistical analysis of the current system or reliability figures about standard devices,

while often it is the case that the developer is required to make decisions that include

a lot of uncertainty about the developed system.

In (Van Lamsweerde and Letier, 2000), the developer still faces the problem

of reasoning about his trust relationship with the entity upon which a goal, that

prevents an obstacle or substitutes a goal, has been assigned.

The main drawback with this approach is that addresses the issue of whether an

entity that has been assigned with a goal can realise it, but the problem of whether

that entity can be trusted to realise the goal, even thought it can realise it, is not

addressed.

However, this only applies in the cases of reciprocal dependencies. If there is

evidence that the dependee will fulfil the dependency then there is assurance. For

example, there is evidence that the depender and the dependee have common inter-

ests related to the dependum. There is an insurance against the non-fulfilment of a

dependency if there are alternatives dependees that can fulfil the dependency.

2.6.4 Trust management

The PolicyMaker approach (Blaze, Feigenbaum, and Lacy, 1996) is proposed for

trust management of Internet applications and builds trust relationships between

entities. Every entity has a public key and is bind to some credential, where a cre-

53

Chapter 2. Literature review

dential allows an entity to a specific system environment. Essentially, PolicyMaker

is a query engine, which evaluates whether a proposed action is consistent with the

trust policy. Also, a next version of Policy Maker is KeyNote (Blaze, Feigenbaum,

and Keromytis, 1999), is enhanced in the verification of such polices.

REFEREE (Chu et al., 1997) is a trust management system for web applications,

which specifies a language for defining trust polices and provides a general policy

evaluation mechanism for web clients and servers. It evaluates requests and returns

a tri-value and a statement list, which is the justification of the answer. A tri-value is

true, false or unknown. There are two phases, where the first phase, which is called

bootstrap, the host application gives the unconditionally trusted assertions and a

module database. In the second phase, called the query phase, the host application

provides the actions and other arguments such as credentials. Then the interpreter

with the policy and the list of arguments is run and then it returns an answer to

the host application.

TPL (Herzberg et al., 2000) is similar to PolicyMaker, but permits negative

rules preventing access. Every entity may get a certificate from a trusted third

party. Then the decisions will be taken based on the evaluation of those certificates

that the entities are holding. The trust establishment module validates the client’s

certificate and then maps the certificate owner to a role. Then the information is

sent to another module, which stipulates the access rights that are bound to the

particular role.

The Simple Universal Logic oriented Trust Analysis notation (SULTAN) is a pro-

posed trust management solution that allows the developer to perform management

of trust relationships. Trust management is defined as ”the activity of collecting, en-

coding, analysing and presenting evidence relating to competence, honesty, security

or dependability with the purpose of making assessments and decisions regarding

trust relationships for Internet applications” (Grandison, 2003).

Trust management in the previous line of work is mostly focused on access con-

trol for resources and especially with authentication and authorisation capabilities.

Therefore, the goal of the developer is on defining the trust rules and the ways ac-

cess control will be implemented and consequently the focus is at a very low level.

However, the aforementioned approaches lack guidance on how to write the predi-

cates in policy and certificate assertions that reflect the trust policy and they are

designed for servers that are managed by an administrator.

Tan (2003) proposes a matrix model, which can enable trading partners in elec-

tronic commerce to analyse trust building services. An e-service is represented in the

form of a grid and the grid rows represent a theoretical decomposition of the notion

of trust into four reasons namely social signs, personal experience, understanding

54

Chapter 2. Literature review

and communality. Each reason is split into two sources, according to whether they

correspond to trust created by the other party of the transaction, named party

trust, or by a control mechanism, named control trust. This analysis is carried out

at three different layers: communication with the other party; trade documents and

regulation of the transaction; business relationship, which is considered the most

important as it can compensate for problem in the previous layers.

TrustCoM is a framework (Wilson et al., 2007) for trust security and contract

management for dynamic virtual organisations. In contains a set of semantically

well-founded concepts and relationships for describing and reasoning about trust

and security in dynamic virtual organisations. In addition it contains an abstract

architecture reflecting the previous concepts and providing a flexible structure and

organising principles for systems based on the framework. And the third component

is profiles extending existing open specifications of services and protocols to imple-

ment the TrustCom framework. The framework models trust relationships based on

electronic contracts, policies, and reputation systems. Thus it will allow companies

to integrate services, processes and resources and form virtual organisations.

Uddin and Zulkernine (2008) present the UMLtrust framework, which considers

trust from the early stages of the development process and it is a scenario based

analysis of trust. It uses UML, which is well accepted among software developers,

and extends it with specialised notation in the domain of trust. A framework is

also described that enables the developers to specify the trust scenarios and de-

rive trust rules based on such scenarios. Since the framework is incorporated in

the software development lifecycle the developers are able to identify the relevant

system requirements for monitoring and trust decision making during the run-time.

For example, a server would be able to decide whether a user that requests access

should be authorised based on the derived trust rules. However, the framework is

inadequate in providing guidance in identifying the trust cases and ultimately the

trust relationships.

In (Pourshahid and Tran, 2007) the proposed method makes use of the Goal

Requirement Language (GRL) and Use Case Map (UCM) which both of them belong

to the User Requirement Notation (URN). Specifically, trust is captured as a soft

goal of the trustor because of its uncertainty of whether is satisfied or not and

because of its fuzzy nature. First, the UCM is used in order the developer to

visually define the trust making process of the trustor and the trust and distrust

paths that she can take. Then, the GRL is used in order to model that contribute

to the establishment of trust, along with the their threshold values. The threshold

values are the points where the trustor will decide between trust and distrust. After

the soft goals of the trustor have been investigated, then it is the turn to investigate

55

Chapter 2. Literature review

how the trustee can increase trust in her. A trust model is provided as a reference

(Figure 2.9), which includes three layers. The first layer shows the decomposition of

trust into a cognitive and affective type of trust. The second layer shows the further

refinement of cognitive and affective types of trust, while the third layer shows some

indicative tasks that the trustee can carry out that contribute to the establishment

of trust. Further analysis of trust as a soft goal eventually leads to well-defined tasks

for the trustee in order to gain the trust of the trustor. The two GRL models of

the trustor and the trustee can be combined by the developer in order to show the

importance of the trustee’s attributes to the trustor and identify the requirements

for the system-to-be.

Figure 2.9: Trust reference model

Similarly, the trust analysis is carried out from the viewpoints of the users and

not from the perspective of the developer. Also, even though this approach contains

information regarding the specific properties of trustworthiness, such as competence,

motivation, and prediction, it fails to provide constructive techniques on how to

identify requirements for the system to enable it to express the trustworthiness of

the trustee.

This line of research although is referred as trust management, however little

56

Chapter 2. Literature review

relation has with the actual management of trust but more with the management

of access control (Cofta, 2007). As trust management we consider the area that

aims to provide the means to one entity of a system to assess the trustworthiness

of another entity of the system and be able to make a trust justified trust decision.

In other words, trust management should aim at systems the enable trust to be

communicated among users in order to determine the trustworthiness of a remote

user through computer mediated communication and collaboration. At the same

time, trustworthy users need the means to enable them to reliably report their true

trustworthiness and be recognised as such (Jøsang, Keser, and Dimitrakos, 2005;

Cofta, 2007).

2.6.5 Human Computer Interaction in the context of trust

There are two lines of research in this area. On one hand is the research that tries to

gain users trust for a system that may or may not be trustworthy by making changes

at a human computer interaction level. We believe this approach eventually will fail,

as the user sooner or later will recognise if the system cannot be trusted and will

create great disappointment to the users. On the other hand, there is research at a

Human Computer Interaction level, which aims to identify the technological means

to signal signs of trustworthiness to the users. We believe that this category of

research adheres to the vision of creating systems that provide the means so that

users can assess the trustworthiness of a remote user and proceed to a correct trust

decision.

To this end, there has been initial research from Riegelsberger, Sasse, and Mc-

Carthy (2005) and Cofta (2007). Riegelsberger, Sasse, and McCarthy (2005) argue

that contextual properties will be of higher importance in first interactions and

one off encounters, while intrinsic properties of the trustee, such as ability, norm-

compliance, and benevolence, are more important in continued exchanges and be-

come increasingly important as trust matures. They also identified two types of

signals, symbols and symptoms. Symptoms are signals of trustworthiness that are

given as by-product of behaviour and they are preferable to symbols, which may be

costly to emit and less reliable.

Similarly, Cofta (2007) identifies three types of evidence that need to be expressed

in digital terms in order to enable the assessment of a user’s trustworthiness. The

first two are competence and motivation, which are considered as easier to be trans-

lated into the digital domain, while the third evidence which is competence and it is

the hardest one to be translated into the digital domain. More specifically, for com-

petence the technical protocols that can deliver evidence of trust are performance

57

Chapter 2. Literature review

indicators, for motivation inter-dependent processing and for continuity standards

and norms.

This area although it is important for a trustworthy system to be able to signal

that trustworthiness to they users, it is outside of the scope of this thesis. We are

interested in developing a system that is trustworthy. The case that a system should

be able to express such trustworthiness is not considered. Trust is very subjective

and it may be impossible to gain every users’ trust. However, by making the system

trustworthy we hope that the user when she will interact with it she will recognise

it and built trust to the system.

2.6.6 Trusted Computing

Trusted computing (Pearson and Balacheff, 2003) is an initiative that was started

by the Trusted Computing Group (TCG) (TCG14). TCG consists of AMD, Cisco,

Fujitsu, Hewlett-Packard, IBM, Infineon, Intel, Juniper, Lenovo, Microsoft, and

Wave. They have proposed a trusted computing platform solution based on tamper-

resistant hardware physically located inside the platform. This tamper-resistant

hardware provides the computer platform with a root of trust, and it supports an

important feature, called integrity challenge of the platform. The integrity challenge

feature helps to build a chain of trust, which allows local and remote users to

verify whether selected functions and resources of the computing platform have

been installed and are operating in a way that satisfies them.

However, trusted computing entails blind trust in the hardware component that

acts as the root of trust. This implies that the piece of hardware is being trusted

independently of whether it is trustworthy. Apart from technical issues, there are

also a lot of concerns about the privacy and freedom of actions of the users who are

using trusted computing platforms. Finally, there is a concern from Anderson that

whoever controls Trusted Computing infrastructure will acquire a huge amount of

power, as a company could have the encryption keys of your word documents.

Despite the limitations and the concerns, this line of research can contribute

towards more secure and dependable, and eventually more trustworthy software.

However, the achievement of goals of an information system is not only a matter of

the software-to-be component of an information system, but the goals are achieved

through the collaboration of the software-to-be component and the rest of the com-

ponents in the information system environment, human or technical. Thus Trusted

Computing directly related with the research of this thesis and not discussed further.

58

Chapter 2. Literature review

2.6.7 Computational trust

Another direction of related work is in the area of multi-agent systems. In such

systems artificial agents have to make decisions about several issues in various sce-

narios. Such decisions might be to share information with another agent or not, to

accept help or not and from whom to accept, from whom to buy a product and at

which price, and so on. As in any decision that contains risk, trust plays an impor-

tant role in such decisions and is part of the decision making process. Therefore,

computational models of trust have been developed that can be used by artificial

agents in order to reason about trust. Introducing a way for the artificial agents to

reason about trust gives them more solid footing in the human societies into which

they are introduced.

One of the earliest computational models is by Marsh (1994), who takes into

direct interaction and defines three types of trust, basic trust, general trust, and

situational trust. These three values enable the agent to decide whether she will

trust another agent. Another approach is by Schillo, Funk, and Rovatsos (2000)

where an agent will trust another agent depending on the probability that the

second agent is honest in the next interaction. The value is derived from direct

interaction information and from information gathered from third party agents that

have interacted with the second agent in the past. A cognitive computational trust

model was proposed by Castelfranchi and Falcone (1998), where an agent’s decision

to trust or not is based on competence, dependence, and disposition beliefs about

the trustee agent.

However, as Marsh and Briggs (2009) points out ”In much the same way that

Artificial Intelligence is not real intelligence, the computational concept of trust

isn’t really trust at all”. Although, the thesis and this line of work share the similar

principles regarding the trust decision process, this line of work on trust is outside

of the scope of this thesis, but the interested reader can see a detailed survey on

computational trust in (Sabater and Sierra, 2005).

2.7 Chapter summary

This chapter aimed to establish a common language for the understanding of the

next chapters as the concept of trust and trustworthiness is overloaded with multiple

meanings. To this end, we have reviewed and discussed several definitions of trust

and trustworthiness in the human context and we clarified the definitions that we

adopt in this thesis (section 2.1). We also discussed trust and trustworthiness in

the context of information systems and we clarified the definition of trustworthy

59

Chapter 2. Literature review

information system (sections 2.2, 2.3). We then discussed high level requirements

of methodologies (section 2.4) and evaluation methods (section 2.5).

Moreover, we have reviewed the state of the art of several areas related to this

thesis, such as trust modelling (section 2.6.1), trust management (section 2.6.4),

security engineering (section 2.6.2), goal satisfaction reasoning (section 2.6.3), Hu-

man Computer Interaction (section 2.6.5), Trusted Computing (section 2.6.6), and

computational models of trust (section 2.6.7). The main contribution of this chapter

is to investigate existing approaches to determine if they can be used or adapted in

our approach and show how existing approaches are inadequate to build trustworthy

information systems. Most of the approaches ignore the behaviour of the human

components, and focus on technical components only. Also, they do not contain

the required trust and control software engineering abstractions that can enable

developers to reason about trust relationships in a structured way and identify

trustworthiness requirements. Table 2.2 depicts the various approaches that were

examined in this section along with the issues that they are dealing with. Most

of the approaches enable the identification of assumptions, and trust relationships

and their reasoning. However, only Secure Tropos (Trento) enables the developer to

identify observation functionalities. The state of the art lacks techniques that enable

the developer to identify indirect trust relationships, trustworthiness requirements

including both observation and deterrence functionalities and the assessment of the

system trustworthiness. These limitations are addressed by this work. In the next

sections we describe the trust and control constructs of our modelling language and

a systematic process to reason about trust relationships and identify and analyse

trustworthiness requirements.

Figure 2.10 depicts the area of application of the state of the art in trust en-

gineering and the area of application of JTrust. Trust management deals with the

management of trust in the relationship between components of an information sys-

tem, while trust modelling and HCI approaches are focusing on the relationship

between the human and technical components of an information system with the

technical system under development. Trusted Computing and goal satisfaction ap-

proaches focus on the technical system-to-be and particularly how to make it more

trustworthy while neglecting the other components of the system. Computational

trust provides mechanisms for a technical component to reason about trust. JTrust

though is focusing on the relationships of the developer with the human and techni-

cal components of the system and also on the technical system-to-be by identifying

trustworthiness requirements.

60

Chapter 2. Literature review

Table 2.2: Comparison table of state of the art in trust engineering

A
ss

u
m

p
ti

o
n

s

T
ru

st
re

la
ti

on
sh

ip
s

In
d

ir
ec

t
tr

u
st

re
la

ti
on

sh
ip

s

T
ru

st
re

la
ti

on
sh

ip
re

a
so

n
in

g

T
ru

st
w

or
th

in
es

s
re

q
u

ir
em

en
t

G
o
al

re
a
so

n
in

g

T
ru

st
w

o
rt

h
in

es
s

a
ss

es
sm

en
t

Obsrv Deter

Authors

i*-trust 4 4 4

Secure Tropos
Trento

4 4

Bimrah 4 4

Yan 4 4 4

Presti 4

Gorski 4 4

Haley 4

Elahi 4 4

Trustworthy
Computing

Secure Tropos-
trust

4 4 4 4

KAOS 4 4

Security problem
frames

4

CORAS 4

UMLsec 4

NFR 4

Giorgini 4

Letier 4

Yu 4

Lamsweerde 4

61

Chapter 2. Literature review

Figure 2.10: Application areas of state of the art in trust engineering

62

Part II

JTrust: A Trustworthy

Information System Development

Methodology

Chapter 3

JTrust modelling language

Without recognizing all the entities and their trust relationships

in a software system during the requirements phase of a project,

that project is doomed from the start

(Viega, Kohno, and Potter, 2001)

In the previous chapter we carried out a literature review of the areas we believe

are relevant to this research. In this chapter, we first describe the requirements for

our proposed methodology. These requirements were derived from the literature re-

view and the limitations of the state of the art in trust engineering. In section 3.2 we

describe the structure of the methodology. In particular, we explain the components

of the methodology, how are related, who are the users, and so on. In section 3.3, we

describe a running example, which is used throughout the thesis to better explain

the methodology and the benefits that it offers.

Secondly, in this chapter, we propose a trust modelling language to capture the

trust relationships between the developer of a system and the entities with which

the system is interacting, and also a trustworthiness model to assess the system

trustworthiness at a requirements level. As we have introduced in Chapter 1, such

trust relationships are critical for the ability of the system to be trustworthy, and

may require extra functionality from the system in order to meet its requirements.

Such trust relationships need to become explicit and be reasoned about by the

developer. We explain the principles our modelling language is based on, give an

overview of the Goal Oriented Requirements Engineering (GORE) approach, define

the basic terms used throughout the thesis, and we propose a modelling language:

• We describe the constructs related to trust and control that are required by

developers to reason about trust relationships and analyse trustworthiness re-

quirements across different projects.

Chapter 3. JTrust modelling language

• We propose a meta-model of our trust modelling language, which shows the

relationships between our defined constructs.

In other words, in this chapter we attempt to answer research questions 1 and 2,

stated in chapter 1: What are the required concepts and their relationships regarding

trust that will allow the development of trustworthy information systems at an early

stage? In the last section of this chapter we propose a trustworthiness model.

3.1 Methodology requirements

Based on the literature review on development methodologies and the identification

of limitations of the state of the art in trust engineering certain requirements for

the JTrust methodology were derived and are the following:

• Modelling of trust relationships. The methodology must enable the developer

to identify and model trust relationships between her and the components of

an information system. It should be a system way in order to consider all trust

relationships and avoiding omitting trust relationships that are not so obvious,

especially the indirect trust relationships.

• Reasoning about trust relationships. The methodology must provide the means

to the developer to reason about trust relationships and describe the trust

rationale in a uniform and consistent way.

• Identification of trust assumptions. The methodology must enable the devel-

oper to identify assumptions that underlie the system development and can

harm the trustworthiness of the system if they are not valid once the system

is implemented.

• Modelling of trustworthiness requirements. The methodology must enable the

developer to model and analyse trustworthiness requirements. These are re-

quirements that will constitute the system trustworthy and have to be fully

satisfied by the system.

• Assessment of system trustworthiness. The methodology must enable the de-

veloper to evaluate the trustworthiness of the system under development by

considering if the system can achieve goals assign to it and the achievement of

the system goals assigned to components of the information system.

65

Chapter 3. JTrust modelling language

3.2 Methodology structure

The structure of the methodology is depicted in Figure 3.1. The methodology con-

tains a modelling language, a process, and a supporting tool. In turn, the modelling

language includes trust and control abstractions and a meta-model that describes

the relationships between those abstractions. The JTrust process has a number of

activities that the developer can follow in order to use the trust and control ab-

stractions to model and reason about trust relationships, model and analyse trust-

worthiness requirements, and assess the trustworthiness of the system under devel-

opment. In addition, it includes algorithms for the calculation of resolution level,

confidence level, and system trustworthiness. The last component of the methodol-

ogy is the supporting tool that enables the developer to construct the trust model

of the system-to-be and it automatically calculates the resolution level, confidence

level, and system trustworthiness using the respective algorithms.

Figure 3.1: JTrust methodology structure

3.3 Running example

In this section, we briefly explain an example of an information system and we use

it to explain our proposed methodology. We consider a virtual learning environment

(VLE) for supporting the education of students at a university. Using such a system

the students can download learning material, such as lecture handbooks and slides,

communicate, and collaborate with other students. They can be accessed both

on and off-campus, meaning that they can support students’ learning outside the

lecture hall 24 hours a day, seven days a week. In such a scenario one of the goals of

the system is to provide lecture slides to the students three days in advance of the

lecture. So, students will have the opportunity to go online to view the slides and

66

Chapter 3. JTrust modelling language

be prepared for the lecture. To accomplish this goal the technical system-to-be has

another goal to receive the slides from the lecturer. Another goal of the system is

to provide the students with access to any relevant administration forms and their

student record. Similarly, the administration staff of the university has to upload

the administration forms to the system.

Out of this scenario a number of issues arise regarding the trustworthiness of the

system. For example, if the lecturer does not upload the lecture slides in advance

of the lecture then the system will not be trustworthy because it will not have the

lecture slides available for the students. Similarly, if the administration staff do

not show the expected behaviour, which is to upload the administration forms to

the system, then the system will not be trustworthy, as it does not have the forms

required by the students and as a result the students will probably not trust such

a system. Whatever method is used by the developer to model the requirements

of such a system, it will contain the modelling of the expected behaviour of the

lecturer and the administration staff, which are to upload the lecture slides and the

administration document. Therefore, there are implied trust relationships formed

between the developer and the lecturer and between the developer and the adminis-

tration staff. If the lecturer and the administrator staff can be trusted to behave as

expected then the system will be trustworthy, otherwise if they cannot be trusted

it will not be trustworthy. Therefore, the questions that arise from such a scenario

are the following:

• How can the developer explicitly capture her trust relationships with the lec-

turer and the administration staff?

• How can the developer capture any possible indirect trust relationships? For

example, there may be a trust relationship between the developer and the

administration staff because the administration staff is controlling the lecturer

to upload lecture slides in advance of the lecture.

• How can the developer reason about her trust relationships with the lecturer

and the administration staff? For example, why is she trusting or not trusting

the lecturer or the administration staff.

• How can the developer systematically identify the assumptions that are deriv-

ing from her trust relationships? For instance, in case the administration staff

controls the lecturer this contains the assumption that the administration staff

is trusted to do so.

• If the developer does not trust the lecturer or the administration staff and no

67

Chapter 3. JTrust modelling language

other entity can control them, how can the developer feel confident that they

will behave as expected in order to build a trustworthy system?

• How can the developer assess the overall system trustworthiness at a require-

ments stage in order to decide if she is satisfied with the current level of system

trustworthiness and proceed to the next stages of system development?

These are questions from the running example that the JTrust methodology pro-

posed in this thesis envisages to address. Requirements engineering is all about

decision making and JTrust envisages to support the developer in making such de-

cisions that will lead to an information system that is as trustworthy as possible.

3.4 Confidence as the key to modelling uncertainty

Modelling is a core process in requirements engineering upon which the implementa-

tion of the system is based and to a great extent it will define its success once is put

in operation. In requirements modelling the existing system/organisation as well as

the possible alternative configurations for the system-to-be are modelled in order

to understand complex, real world systems and their behaviour. More particularly,

modelling enables the requirements engineer to look at the domain systematically

and helps him look beyond less important details and focus on more important

parts of the system and reveal key problems in a timely manner. Requirements en-

gineering models serve as basic common interfaces among developers to the various

activities of requirements engineering (Van Lamsweerde, 2000). Besides, models help

communicate requirements to customers, and other possible stakeholders. Models,

also provide a basis for requirements documentation and evolution, and allow for

requirements reuse within the domain. An additional benefit of modelling is also

to support heuristic, qualitative or formal reasoning schemes during requirements

engineering (Lamsweerde, 2001). While informal models are analysed by humans,

formal models of system requirements allow for precise analysis by both software

tools and humans. The analysis can reveal the presence of inconsistencies in the

models, which is indicative of conflicting and/or infeasible requirements.

An information system contains active components, such as humans, devices,

and software. Active components have choice of behaviour opposed to passive ones

that do not have (Lamsweerde, 2001). Especially humans who are entities with con-

sciousness and make their own decisions. Moreover, economics dictates the use of

commercial off the shelf components wherever possible, so developers have neither

control nor detailed information about many of their systems’ components (Schnei-

der, Bellovin, and Inouye, 1999), which create an uncertainty about their future

68

Chapter 3. JTrust modelling language

behaviour. This situation is well described in (Iivari and Hirschheim, 1996) who

contrast design optimism with design pessimism. Design optimism assumes that

only existing resource constraints limit the development and acquisition of desired

information systems, and that the systems can be implemented without difficulty.

Design pessimism, in contrast, assumes no such ease. People are assumed not to

behave rationally and the social nature of information systems development makes

any design exercise difficult.

As a result modelling includes modelling of active components that their be-

haviour can be unpredictable and different from the one in the model. Consequently

this will have negative implications for the operation of the system to be. More

particularly, Goals have long been recognised to be essential elements involved in

requirements modelling. Unlike requirements, a goal may in general require the co-

operation of a number of multiple components to be achieved (Lamsweerde, 2001).

A goal under responsibility of a single component in the software-to-be becomes a

requirement whereas a goal under responsibility of a single component in the envi-

ronment of the software-to-be becomes an assumption (Van Lamsweerde, Darimont,

and Letier, 1998; Van Lamsweerde and Willemet, 1998). A goal assigned to especially

an active component is an assumption that the active component will behave ac-

cording to the model. Important distinction must be made about requirements and

environment assumptions (sometimes called expectations). Even though they are

both optative, requirements are to be enforced by the software, while assumptions

are to be enforced by active components in the environment. Unlike requirements,

assumptions cannot be enforced by the software-to-be, but they will hopefully be

satisfied thanks to organisational norms, and regulations, physical laws, etc. (Lam-

sweerde, 2001). The assumptions specify what the system expects of its environment

(Jackson, 1997; Parnas and Madey, 1995) and consequently incorrect assumptions

about the environment of a software system are known to be responsible for many

errors in requirements specifications (Lamsweerde and Letier, 2004).

Behind the approaches that are used to develop information systems, lie a num-

ber of implicit and explicit assumptions and views. Although, alternative assump-

tions and views guide the information systems developer in the choice of various

analysis, design and implementation options and hence have important consequences

for the development of successful system, only rarely they appear to be critically

reflected upon or challenged (Iivari and Hirschheim, 1996). First-sketch specifica-

tions of requirements, goals, and assumptions in requirements modelling are often

too ideal and they are likely to be violated from time to time in the running system

due to unexpected behaviour those active components. A survey showed only 10%

of these failures are due to technical issues, with 90% attributed to social and organ-

69

Chapter 3. JTrust modelling language

isational factors (Doherty and King, 1998). The lack of anticipation of exceptional

behaviours may result in unrealistic, unachievable and/or incomplete requirements

(Lamsweerde, 2001). Also, developers face uncertainty in prediction of the impact of

their interventions due to complex interactions between the elements in the design

and the change context (Lyytinen and Newman, 2008).

This situation requires information systems to be viewed from a different per-

spective. An information system at the organisational level may be considered a

technical artefact or tool, just as a hammer, for example, which is socially pro-

duced and used, but which does not embody any deeper social meaning. Such a

view is technical. Alternatively, an information system may be considered an arte-

fact, which entails inherent social and organisational aspects. This we characterise

as a social view. An intermediate position between these two extremes, termed

the socio-technical view, emphasises that an information system comprises both a

technical subsystem and a social subsystem that should be designed jointly (Iivari

and Hirschheim, 1996; Bostrom and Heinen, 1977). Nevertheless, the prominent

tendency in software modelling until some years ago was to abstract programming

constructs up to requirements level rather than propagate requirements abstractions

down to programming level (Mylopoulos, Chung, and Yu, 1999). In others words

the social aspects regarding the behaviour of the active components are not taken

into account sufficiently who are endangering the fulfilment of the goals of an infor-

mation system. Even though a sociotechnical view of information systems has been

adopted recently, the state of the art still fails to provide abstract constructs, which

are applicable over time and space, and enable the developer to feel confident in the

assumptions that are underlying the system development.

In our approach, we adopt a sociotechnical view of an information system, a

system that combines a technical system and its environment. The environment

can be human components or other existing technical components that will interact

with technical system-to-be. Moreover, Information technology has the potential

to change social and organisational structures and simultaneously be affected by

these structures in its design, implementation, and use (Luna-Reyes et al., 2005).

Therefore, it is not sufficient simply to assemble components that are themselves

trustworthy. Integrating the components and understanding how the trustworthi-

ness dimensions interact is a central challenge in building a trustworthy information

system (Schneider, Bellovin, and Inouye, 1999).

The assumptions underlying the modelling of an information system originate

because of the dependencies of the developers on the system components. When

a developer is modelling an information system, she depends on the active compo-

nents of that system to behave as modelled in order the system fulfil its goals. The

70

Chapter 3. JTrust modelling language

dependencies of the developers are eventually becoming dependencies of the tech-

nical system-to-be once put in operation and potential vulnerabilities if the active

components do not behave as modelled. Thus, the focus should be shifted on how

remove the potential vulnerability and uncertainty a dependency is bringing. The

developer by some means should be confident that when modelling the behaviour

of an active component, this component will behave as modelled once the system is

put in operation.

The developer when modelling an information system that contains active com-

ponents requires confidence. Confidence in her decisions during requirements mod-

elling, i.e., confidence in the dependencies on the active components that they will

behave as modelled and confidence that her assumptions are valid, confidence in

order to remove any uncertainty about the future behaviour of the active compo-

nents and the potential vulnerabilities they may introduce to the system. In this

thesis we view confidence as an optimisation of the decision making process during

requirements engineering as it provides the reassurance about the behaviour of the

active components.

To this end, adopt we adopt the model of confidence (Figure 3.2 from (Cofta,

2007)). The consciousness of confidence originates from two separate sources: trust

and control (Das and Teng, 1998; Cofta, 2007). If individuals are going to depend on

something and they want to feel confident in that, there are two ways to achieve that

confidence, either by trust or control (Cofta, 2007; Lewicki and Bunker, 1996; Das

and Teng, 1998). The confidence of an individual in another individual depends upon

her trustworthy behaviour. The cause of that behaviour can be her trustworthiness,

which enables the first individual to trust her. However, if the trustworthiness is

low then control can be applied in order to change the behaviour of that individual

and cause her to behave in a trustworthy manner. The first individual cannot trust

her but she can still feel confident in her behaviour because of control. Therefore,

control means that there is a way by which a component of a system will behave in a

predictable way and no unpleasant surprises will occur. Effective control generates

a sense of confidence (Cofta, 2007; Lewicki and Bunker, 1996; Das and Teng, 1998).

On the other hand there is trust which means, as we defined it in the previous

chapter, the positive expectations about the behaviour of an active component by

which there can be positive or negative affection. Trust generates confidence since

the trustor has a positive stance towards the active component’s behaviour even in

the absence of control. Particularly, trust is required when there is lack of control

(Dasgupta, 2000) in order to gain confidence. In contrast, when it is fully possible

to trust an active component then there is no need to control its behaviour (Das

and Teng, 1998). Therefore, during requirements engineering the developers needs

71

Chapter 3. JTrust modelling language

to use means of trust or control in order to feel confident in her dependencies on

active components and her assumptions about their behaviour.

Figure 3.2: Model of confidence

However, there is a duality of trust and control and not dualism (Möllering,

2005). These concepts are not opposite and cannot be investigated independently.

Control is presupposed in case of trust and trust is presupposed in case of control.

When there is trust in the behaviour there is the assumption that this behaviour

has a meaning and a connection in the environment. When there is control of

the behaviour by the environment there is the assumption that the environment is

trusted to do so. Also, trust refers to control and vice versa. Whether there is trust

or not, there is also an assessment of how much trust is needed because of possible

existence of control. Whether to control or not, there is also an assessment of how

much trust there is already. In addition trust creates control, and control creates

trust. Controls force components to behave in a specific way and this can create trust

in their behaviour. Also, inside a particular environment trust can be generalised

according to an environment norm and this trust creates control on components.

For example, when components know that their trustworthiness is assumed in a

particular environment then this will make them feel obligated to behave in a specific

way. Components refer to their environment in order to understand which behaviour

is expected and which behaviour is not expected. The developer should consider all

these issues when reasoning about his trust relationships with the active components

of the system-to-be and evaluate whether control is required on top of trust or vice

versa. In such cases there is also a trade off between the extra confidence and the

less complexity added to the system because of control.

The ultimate goal of a trust analysis is to support the developer in considering

72

Chapter 3. JTrust modelling language

the aforementioned issues. To this end appropriate software engineering abstractions

related to trust and control should be developed and accompanied constructive tech-

niques that can guide the developer in using the abstractions. Also, it is necessary

the developer to understand the relationships among the entities within the socio-

technical system; in particular, to know the dependencies among the entities and

how they are resolved, i.e., dependencies that will be fulfilled once the system is put

in operation and the assumptions that are made are valid. Dependencies thus need

to be identified and resolved at a requirements stage in order to produce robust

requirements and hence more trustworthy system.

Traditional system modelling approaches though treat requirements as consist-

ing only of processes and data and do not capture the rationale for the software

systems, thus making it difficult to understand requirements with respect to some

high-level concerns in the problem domain. Also, most techniques focus on mod-

elling and specification of the software alone. Therefore, they lack support for

reasoning about the composite system comprise of the system-to-be and its envi-

ronment (Lamsweerde and Letier, 2004). Non- functional requirements are also in

general left outside of requirements specifications. Additionally, traditional mod-

elling and analysis techniques do not allow alternative system configurations where

more or less functionality is automated or different assignments of responsibility are

explored, etc. to be represented and compared. The prominent tendency in soft-

ware modelling has been to abstract programming constructs up to requirements

level rather than propagate requirements abstractions down to programming level

(Mylopoulos, Chung, and Yu, 1999). This explains why the stakeholders with their

needs and the rest of the social context for the system could not be adequately

captured by requirements models.

As mentioned in Chapter 1 the first two objectives of this thesis is to define

a requirements based modelling language and methods for developing trustworthy

information systems. In the foundations of our methodology is the Goal Oriented

Requirements Engineering (GORE) approach, which is concerned with the use of

goals for eliciting, elaborating, structuring, specifying, analysing, negotiating, doc-

umenting, and modifying requirements (Lamsweerde, 2001). GORE has emerged as

a prominent approach within RE and the main concept in GORE is goals. Goals

can be formulated at different levels of abstraction ranging from high-level, strate-

gic concerns to low-level, technical concerns (Lamsweerde, 2001). Goals also cover

different types of concerns, such as functional concerns associated with the service

to be provided, and non-functional concerns associated with quality of services, i.e.,

safety, security, accuracy, performance, and so forth (Lamsweerde, 2001). Goals are

important to requirements engineering for many reasons:

73

Chapter 3. JTrust modelling language

• Goals enable the achievement of requirements completeness. They provide

the criterion for sufficient completeness of requirements specification. The

requirements specification is complete if all goals can be achieved (Yue, 1987).

• The use of goal enables to avoid the inclusion of irrelevant goals. A requirement

is pertinent with respect to a set of goals if its specification is used in the proof

of one goal at least (Yue, 1987). Therefore, a system functionality is relevant is

it is part of reaching a goal of the stakeholders, otherwise its implementation

is not justified.

• Explaining requirements to stakeholders is another important issue. In partic-

ular a goal refinement tree provides traceability links from high level strategic

objectives to low level technical requirements, so goals may be used to relate

the software-to-be to organisational and business contexts (Yu, 1993). Through

this way the stakeholders can get answers to questions such as ”why do we need

to do this”, and ”how to we reach this” and so on.

• Goal refinement provides a natural mechanism for structuring complex require-

ments documents for increased readability (Lamsweerde, 2001). This refine-

ment is occurring by asking how, and how else, and how good each alternative

is.

• Requirements engineers are faced with many alternatives to be considered dur-

ing the requirements elaboration process. Goal refinements provide the right

level of abstraction at which decision makers can be involved for validating

choices being made or suggesting alternatives overlooked so far (Lamsweerde,

2001).

• Managing conflicts among multiple viewpoints is another problem. Stakehold-

ers are different in their interests and priorities of these interests. This may

lead to conflicts about what requirements to fulfil and how, and how well to

fulfil them. Goals enable to detect conflicts among requirements and to resolve

them eventually (Van Lamsweerde, Darimont, and Letier, 1998). For example

achieving, a goal may deny the achievement of another.

• Separating stable from volatile information is another important concern for

managing requirements evolution. Requirements are more likely to evolve

rather than goals. The higher a goal the more stable it will be. Different

system versions often share a common set of high-level goals. The current

system and the system-to-be correspond to alternative refinements of common

74

Chapter 3. JTrust modelling language

goals in the goal refinement graph and can therefore be integrated into one

single goal model (Lamsweerde, 2001).

• Goals drive the identification of requirements to support them; they have been

shown to be among the basic driving forces, together with scenarios, for a sys-

tematic requirements elaboration process (Dardenne, Lamsweerde, and Fickas,

1993).

• Dependencies among components of the domain of interest (Yu, 1995).

In (Lamsweerde, 2001) there is an overview of the GORE field and a report by

(Lapouchnian, 2005) provides an overview of some of the approaches that follow the

principles of GORE.

3.5 JTrust modelling language concepts

The GORE approach is adopted because it already has useful concepts such as

actor, goal, and dependency. These concepts are used to describe the system and its

environment. We adopt these concepts and we enrich it with trust related concepts

including experiential trust, reported trust, normative trust, and external trust,

and control related concepts including observation and deterrence. These concepts

allow the developer to capture trust relationships and to reason about them in a

systematic way. Also, the concepts enable the developer to make a justified decision

about the future behaviour of the active components of the information system-to-

be at a requirements stage. Moreover, the developer is able to model and analyse

trustworthiness requirements and assess the trustworthiness level of the system-to-

be. Here we illustrate the main concepts of GORE that will be used in the rest of

the thesis.

Goal represents a component’s strategic interest and is a condition that system

components want to achieve (Yu, 1995). Goals capture the reasons why a system

is required (Antón and Potts, 1998), thus becoming objectives that the information

system should achieve through the cooperation of the components of the system

(Van Lamsweerde, 2000). Of course, this can be done in more than one way so al-

ternatives of achieving a goal can be considered. There can be different types of goal

(Lamsweerde, 2001). Functional goals underlie services that the system is expected

to deliver whereas non-functional goals refer to expected system qualities such as

security, safety, performance, usability, flexibility, customisability, interoperability,

and so forth. More particularly, there can be satisfaction goals, which are functional

goals concerned with satisfying request from system components, information goals

75

Chapter 3. JTrust modelling language

are functional goals concerned with keeping such components informed about ob-

ject states. Non-functional goals can be specialised in a similar way. For example,

accuracy goals are non-functional goals requiring the state of software object to

accurately reflect the state of the corresponding monitored/controlled objects in

the environment. Such goals are often overlooked in the requirements engineer-

ing process and their violation may be responsible for major failures. Performance

goals are specialised into time and space performance goals, the former being spe-

cialised into response time and throughput goals. Security goals are specialised into

confidentiality, integrity, and availability goals. Also, there are privacy goals that

are specialised into authentication, authorisation, identification, data protection,

anonymity, pseudonymity, unlinkability, and unobservability (Kalloniatis, Kavakli,

and Gritzalis, 2008).

In GORE there are two categories of goals; Hard goals or simply goals that have

clear-cut definition and clear-cut criteria to judge whether it are satisfied; And goals

that are called softgoals and their satisfaction cannot be established in a clear-cut

sense. Thus there cannot be trust based reasoning about these goals if we do not

have clear criteria. But, these goals can be refined further into goals that have clear

criteria and contribute to the satisfaction of softgoals. These goals then can be used

for trust analysis.

The identification of goals is not an easy activity, as a lot of goals are implicit.

Thus the goal elicitation process should analyse the current system environment and

elicit goals from sources such as documents, interviews, scenarios, use cases, policies,

and so on. Scenarios help for identifying goals and the different ways through which

they may be implemented and fulfilled. An informal technique for finding out more

abstract, parent goals is to keep asking ”why” questions about operational descrip-

tions already available (Van Lamsweerde, 2000). The usefulness of identifying more

abstract goals is that once a more abstract goal is identified, it may be possible to

refine it and identify subgoals that were initially not identified. Thus, the identifi-

cation and refinement of more abstract goals leads to a more complete requirements

specification.

Once some goals have been identified the next step is to refine them into pro-

gressively simpler goals until these goals can be easily implemented. The refinement

of goals is captured by goal models. Goal models serve as means of communication

among developers and stakeholders, but also as an abstraction specification of the

system-to-be. An informal technique for finding out subgoals and requirements is to

keep asking ”how” questions about the goals already identified (Van Lamsweerde,

2000), but formal goal refinement patterns may also prove effective when goal spec-

ifications are formalised. They help finding out subgoals that were overlooked but

76

Chapter 3. JTrust modelling language

are needed to establish the parent goal (Van Lamsweerde, 2000).

Decomposition is the relationship link that that represents the goal refinement

and essentially defines the goal structure. The refinement of goals occurs through

AND/OR refinements. So, when a goal is refined through and AND-Decomposition,

it means that fulfilling all subgoals is mandatory for the fulfilment of the goal that

is being refined. When a goal is refined through an OR-Decomposition it means

that fulfilling one of these goals is enough for the fulfilment of the goal that is being

refined. In other words, the OR-Decomposition represents the alternatives ways to

fulfil a goal.

Actor is an entity of the domain of interest that possesses strategic goals and

intentionality by carrying out actions that will fulfil those goals (Yu, 1995). It is

a unit that encapsulates intentionality, rationality, and autonomy. Actors want to

achieve goals either using their own capability or depending on another actor. An

actor can be a human entity playing a certain role, an organisation, or a technical

entity, such as software or device. For example, a lecturer represents a human actor

and a university virtual learning environment (VLE) represents a technical actor.

Dependency is the relationship link that indicates that one actor depends on

another actor to fulfil a goal (Yu, 1995; Yu et al., 2011). The goal around which the

dependency centres is named dependum. By depending on another actor for a goal,

an actor is able to achieve goals that otherwise he would not be able to achieve alone,

or not as easily or as well. Nevertheless, there is no guarantee that the dependee

will fulfil the goal and also the dependee is given the freedom to choose how to do

it, as the depender is only concerned about the outcome.

A Corresponds link represents the relationship between the goal of the depen-

der and the goal of the dependee that satisfies the depender’s goal, which is the

dependum. The tail element of the link is the depender’s goal, while the head ele-

ment is the goal that the dependee is achieving in order to achieve the goal of the

depender.

A natural drawback of a dependency is that the depender becomes vulnerable. If

the dependee fails to fulfil the dependency then this will have negative consequences

for the depender to achieve his goals. Therefore, the depender is exposed to the

behaviour of the dependee, which is not always predictable. Such dependencies

need somehow to be resolved in order to be confident that the dependee will fulfil

the dependency.

Trust relationship is any dependency relationship between the actors of an

information system because in dependencies the depender has expectations from the

dependee to fulfil the dependency by achieving the goal instead of him. Moreover,

the outcome of the dependency can have positive or negative effect on the dependee.

77

Chapter 3. JTrust modelling language

Similarly, the trustor is the depender and the trustee is the dependee. However, in

a trust relationship the level of trust might be high or low. For this reason the

concept of dependency is used to capture trust relationships. Furthermore, trust

relationships can be divided into two categories:

• Direct trust relationship, which is a trust relationship that exists for its

own reasons.

• Indirect trust relationship, which exists only to support other trust rela-

tionships.

For such trust relationships, not only is the trustor/depender concerned, but

also the developer of an information system. The developer’s goal is to build and

information system that satisfies the goals of the stakeholders who are modelled as

actors in her model along with their dependencies.

Resolution is the means to offset the potential vulnerability that a dependency

introduces. In order to find resolutions the developer needs to ask the question of

why does he feel confident that the dependee will achieve the goal and hence fulfil

the dependency. The resolutions essentially reveal the assumptions that must be

valid for the system to be built on strong foundations. In the running example, the

system has a goal to receive the lectures slides, which cannot accomplish on its own.

Therefore, the system depends on the lecturer for uploading the lecture slides. For

this dependency and its accompanying potential vulnerability a resolution is required

to be identified by the developer in order to build confidence in the fulfilment of the

dependency.

A Resolves link represents the relationship of the resolution with the depen-

dency that it is resolving. The tail element is the resolution and the head element is

the resolved dependency. Based on the confidence model presented in the previous

section that states that confidence can be achieved through trust and control, we

define two types of resolutions, trust resolution and control resolution. So, in our

running example the developer can feel confident that the lecture will upload the

slides three days in advance either because she trusts him or she controls him to do

so.

A Trust Resolution indicates that the developer trusts that the dependee will

fulfil the dependency by achieving the goal once the information system-to-be is

put in operation. For example, the developer of the VLE can choose to resolve the

dependency on the lecturer to upload the lecture slides three days in advance of

the lecture with a trust resolution because she trusts the lecturer for doing so. We

propose four different types of trust resolution:

78

Chapter 3. JTrust modelling language

• Experiential Trust is trust that originates from previous direct experience

with the trustee. The parties have verifiable information by first hand interac-

tional or transactional experience with each other (McKnight and Chervany,

2006; Sabater and Sierra, 2005). This information concerns the trustee’s in-

trinsic properties, including ability and motivation, which affect trust more in

a relationship that has been established for some time (Riegelsberger, Sasse,

and McCarthy, 2005). In the running example, if there is an experiential trust

resolution of the dependency on the lecturer to upload the slides then this

means that the developer trusts the lecturer to do so on the basis of previous

direct experience that she had with the lecturer.

• Reported Trust is trust that originates from a third party (the reporter)

who reports that the trustee is trustworthy (Sabater and Sierra, 2005; Bigley

and Pearce, 1998). This is valuable when the trustor does not have first-hand

information of the trustee. In effect a new dependency is introduced; the

trustor depends also on the third party for the accuracy of the information that

she is providing to her. This is an indirect trust relationship because it only

exists to support the original trust relationship. For, example the developer

of the VLE may feel confident in the fulfilment of the dependency with the

lecturer because of reported trust resolution. This means, for example, that

the university administration, which is another actor inside the VLE system

environment, reports that the lecturer can be trusted to do so. In effect, then

the developer is depending of the university administration for the accuracy

of the information. This trust relationship on the university administration

is an indirect trust relationship because it supports the original direct trust

relationship with the lecturer.

• Normative Trust is trust that originates from the system environment norms.

Trustees are motivated to behave in a specific way by their desire to act in ac-

cordance with internalised norms (Riegelsberger, Sasse, and McCarthy, 2005;

Sabater and Sierra, 2005). As mentioned in the previous section trust assumes

the existence of control and also it creates control (Möllering, 2005). Environ-

ment norms constitute actors obliged to behave in a certain way. Therefore,

in a way, actors of a system environment are embossed by the environment

norms to show specific behaviour. By system environment we mean the tech-

nical system-to-be, the stakeholders, and the humans and other technical sys-

tems that interact with the system-to-be. It is the developer’s task to set

the boundaries of the system environment. Back to our example, the devel-

oper may decide to resolve the dependency on the lecturer by using normative

79

Chapter 3. JTrust modelling language

trust resolution. This means that the developer decides to trust the lecturer

to behave as modelled, i.e., upload the lectures slides three days in advance

of the lecture, because it is an environment norm in the specific university

environment for the lecturers to do so.

• External Trust is trust that originates from sources outside of the system

environment. Such sources can be laws and external policies. In our running

example, the developer may decide to resolve the dependency on the lecturer

using an external trust resolution. This means the developers trusts the lec-

turer to fulfil the dependency because there is government policy that says that

it is the lecturer’s responsibility to upload the slides three days in advance of

the lecture.

Trust resolution is one way to resolve the uncertainty that a dependency is intro-

ducing. Confidence though in the fulfilment of a dependency can also be achieved

through control.

Control resolution: Control is a key source of confidence (Das and Teng, 1998;

Cofta, 2007). Control is the power that one actor has over another actor to influence

her behaviour (Marsh and Briggs, 2009). In essence, when a developer uses a control

resolution as a resolution of a dependency this means that she is confident that the

dependee will fulfil the dependency by achieving the goal once the system is put in

operation, because either the depender or another actor is controlling the dependee

and forcing her to do so. However, if the controller is a third party, such as another

actor, then this situation implies that there is a new dependency, and eventually

a trust relationship, on the third party to control the original dependee. This new

dependency is required to be resolved as well. This new trust relationship is an

indirect trust relationship. In our example, the developer of the VLE may decide

to resolve the dependency on the lecturer and feel confident in the fulfilment of the

dependency once the system is put in operation, with a control resolution because

the university administration is controlling the lecturer and forcing him to do so.

Therefore, there is a new dependency on the university administration to control

the lecturer for uploading the lecture slides.

An Introduces link represents the relationship between a reported trust resolu-

tion or a control resolution and the new dependency they are introducing. The tail

element is a reported trust resolution or a control resolution and the head element

is the new dependency. The new dependency in case of reported trust resolution or

control resolution is on the reporter or on the controller respectively.

Control requires knowledge and influence from the depender’s side. Knowledge

specifies the ability of an actor to gather information about another actor’s be-

80

Chapter 3. JTrust modelling language

haviour in order to decide whether to execute an action that will directly influence

her behaviour. In addition, control specifies the action that is required for the de-

pendee to behave in an expected way. In other words, control is in place in order to

punish the depender in case of deceitful behaviour (Mayer, Davis, and Schoorman,

1995). We define two concepts that represent the above notions, observation and

deterrence:

• Observation is the continuous examination of whether that dependee actor is

behaving as expected and she is fulfilling a dependency. It is required as part of

an effective control mechanism in order to alert that a dependency is not being

fulfilled and possibly to trigger further actions. Back in the running example,

the observation capability apparently may be the university administration

to check three days in advance of a lecture, if the lecture slides have been

uploaded by the lecturer.

• Deterrence is the prevention of a dependee’s goal in case she fails to fulfil a

dependency, so that it can influence her behaviour. Only through observation

a control mechanism cannot be effective. It requires also an action that can

be taken against a dependee who fails to achieve a goal of a dependency.

This action should prevent the dependee from accomplishing one of his own

goals, so eventually it will influence her behaviour. The more important is the

dependency for the depender the more important the goal that is prevented

should be. Deterrence acts both as a threat and as a punishment for the

dependee. In the running example, the deterrence may be that the lecturer

will be given a fine and it will be deducted from her salary if she does not

upload the slides three days in advance.

A Prevents link shows the relationship between the deterrence and the goal

of the dependee that it is being prevented. The tail element is the deterrence,

while the head element is the prevented goal.

A Contributes link represents the relationship between the observation and

the control resolution and between the deterrence and control resolution. The tail

element is observation or deterrence and the head element is control resolution.

By modelling the resolutions of the dependencies of the information system, the

developer is reasoning about the trust relationships that exist inside the information

system-to-be. This leads to the explicit exposure of the trust assumptions that are

underlying the development of an information system and which we define them as

entailments.

Entailment is a condition of trust that is required to be valid for having con-

81

Chapter 3. JTrust modelling language

fidence in the dependency from which it is originally generated. Entailments are

created because of the resolutions that have been defined by the developer. In our

running example, if there is a control resolution of the dependency on the lecturer

because the university administration is controlling the lecturer to upload the lecture

slides, then this resolution requires an entailment that the university is trusted to

control the lecturer. Similarly, if there is a normative trust resolution of the depen-

dency on the lecturer because it is a university environment norm for the lecturers

to do so, then this resolution requires an entailment that the university environ-

ment norm is trusted for the lecturer to upload the slides three days in advance. An

entailment has to be validated against the reality.

A Requires link represents the relationship between the resolution and the re-

quired entailment. The tail element is the resolution and the head element is the

entailment. We define this relationship as ”Requires” because the entailments are

required to be valid in order the development of the system-to-be to be based on

sound trust assumptions. Such assumptions of trust conditions need evidence in

order to be justified and considered valid so as the development of the information

system to be based on strong foundations and the system to be trustworthy once

put in operation. For example, if there is an entailment that the university envi-

ronment norm is trusted, is there any evidence that supports this assumption? If

such assumptions are left unquestioned then they may introduce vulnerabilities to

the system and the system will not be trustworthy.

The assessment of the entailments is a complex task. The developer needs to

seek any kind of evidence that will enable him to decide whether the entailment is

valid or not. Sources of evidence for the developer to look into are historical data,

surveys, interviews and so on. If there is evidence that supports the validity of the

trust assumption then the developer can be confident that the dependency will be

fulfilled once the system is put in operation. In contrast, if there is no evidence that

supports the validity of the entailment then this dependency might be a potential

vulnerability that will affect the ability of the system to meet its goals.

3.6 Trustworthiness requirements

The goals of an information system are accomplished with the collaboration of

the actors that are part of that information system. In order for the goals to be

achieved every actor should do its part. The technical system-to-be has to meet its

requirements and the other technical components and human actors need to behave

in the way they were modelled during the requirements modelling stage of system

development. We have proposed a number of concepts that enable the developer

82

Chapter 3. JTrust modelling language

to reason about the trust relationships with the human actors or other technical

actors. Nevertheless, there will be cases where human or other technical actors

are not trusted or cannot be controlled by another human actor to behave in the

way that it is desired. This can lead to potential vulnerabilities and to a system

that will not be able to achieve its goals. For this reason, we recognise the need of

requirements that will influence the actors to behave in a specific way. We call such

requirements trustworthiness requirements.

This must be a requirement of the technical system-to-be, since the developer has

direct control over the software that she is developing. The software-to-be can act

as an extension of the developer and compel the other actors to behave in a desired

way once is put in operation. We therefore define trustworthiness requirement as

follows:

Trustworthiness requirement is the functionality of the technical system-to-be that

influences the behaviour of a dependee actor, with respect to the fulfilment of a

dependency inside an information system.

This functionality must provide the system with the ability to control other

actors. As discussed in the previous section control consists of observation and

deterrence capabilities. Consequently, the system requires having at least one ob-

servation and at least one deterrence capability, in order the control to be effective

in influencing a dependee actor to fulfil a dependency inside the information system.

The observation capability is in place to check whether a dependee actor fulfils a

dependency. The deterrence capability is in place in order to prevent the dependee

actor to achieve one of his own goals. The more important to the system trustwor-

thiness is a dependency, the more important the goal of the dependee the developer

can choose to prevent through the deterrence.

3.7 Meta-model of the JTrust modelling language

In section 3.5 the trust and control abstractions of our modelling language were

defined and motivated. In this section we present and describe the meta-model of

our modelling language (Figure 3.3) and we justify the relationships between the

concepts. The meta-model was developed using standard UML notation. Therefore,

the rectangles represent classes while the arrows represent associations and gener-

alisations. We illustrate each aspect of the meta-model using the running example

describe in section 3.3

In the meta-model the actor is the main concept and has zero to many goals that

she wants to achieve. There is a hierarchy of the goals and the high level goals are

83

Chapter 3. JTrust modelling language

Figure 3.3: JTrust modelling language meta-model

84

Chapter 3. JTrust modelling language

decomposed into smaller goals through AND/OR decomposition links. Figure 3.4

shows the goal structure of the VLE technical system and how the goals are linked

together. The high level goal of the VLE system is to provide services, which is

decomposed into smaller and more concrete goals. Two subgoals of the system-to-

be are to provide administrative services and academic services. These are further

decomposed. A subgoal of the academic services is to manage the lecture slides,

which is further AND-decomposed to obtain lecture slides from the lecturer and

provide the lecture slides to the student. In addition, the goal to manage timetable

is AND-decomposed to obtain time and provide timetable

Figure 3.4: Goal model example

For some of these goals the actor is able to achieve them by herself. However,

there are goals that cannot achieve by her and she therefore needs to depend on other

85

Chapter 3. JTrust modelling language

actors to achieve them for her. There is a one to one correspondence relationships

between the goal that cannot be achieved by the actor herself and the corresponding

goal of the dependee actor. As a result she forms dependency relationships with zero

to many actors where she is the depender. At the same time, other actors might

depend on her in order to achieve goals for them. So the initial actor can also be a

dependee in zero to many dependencies. Figure 3.5 illustrates how these concepts

come together. In the VLE scenario there are a number of actors involved, such as

the VLE technical system-to-be, the lecturer, the university administration, and the

student, that for the goals that cannot achieve by themselves they depend on other

actors to do so. For example, the system has a goal to obtain the timetable so there

is a correspondence link between the obtain timetable goal and the upload timetable

goal of the university administration. Similarly, the student has a goal to submit

assignments so there is a correspondence link between the submit assignment goal

and receive assignment goal of the VLE System. The VLE system has a goal to

obtain the lecture slides, so there is a correspondence link between the obtain slides

goal and the upload slides goal of the lecturer. The correspondences links result

into dependencies between the actors.

In order to have confidence in the fulfilment of a dependency, by the dependee,

the dependency needs to be resolved by trust or control. In case of trust there

are four different types of trust. A dependency can have zero to many reported

or external trust resolutions, depending on how many are the reporters or the ex-

ternal sources of trust. Also, a dependency can have zero to one experiential or

normative trust resolutions, as there can be only one norm and the depender is one

individual. Furthermore, a dependency can have zero to many control resolutions,

depending on how many are the controllers. A reported trust resolution introduces

one dependency, on the reporter, while a control resolution introduces zero to one

dependency depending on whether the controller is the depender herself or a third

party. If the controller is the depender then there is no new dependency, otherwise

if the controller is a third party then there is new dependency on the third party.

Dependencies that are introduced because of reported trust or control resolutions

need to be resolved again in the same way. Figure 3.6 illustrates how these con-

cepts come together. The dependency on the lecturer to upload the lecture slides

is resolved with control, where the university administration is the controller. This

means that there is the initial belief after discussion with the stakeholders that the

administration is controlling the lecturer in order to upload the lecture slides. As

a result, this introduces a new dependency on the university administration to con-

trol the lecturer because if it does not do so then the lecturer will not upload the

lecture slides. The new dependency on the administration is resolved with expe-

86

Chapter 3. JTrust modelling language

Figure 3.5: Dependency model example

87

Chapter 3. JTrust modelling language

riential trust, because there is previous direct experience with the administration

that suggests that it will control the lecturer. The dependency on the university

administration to upload the timetable is resolved with experiential trust as well,

because there is previous direct experience with the administration that suggests

that it will upload the timetable.

Figure 3.6: Resolution model example

Resolutions require entailments that are valid in order to have confidence in the

fulfilment of the dependencies that will be reflected in the system trustworthiness.

Each resolution has exactly one entailment, which can be true or false with respect

to their validity. These concepts are illustrated in Figure 3.7 using the running

example. The control resolution requires an entailment that the university admin-

istration is trusted to control the lecturer. The experiential trust resolution of the

dependency introduced by the control resolution, requires an entailment that the

developer trusts herself on whether the university administration will control the

88

Chapter 3. JTrust modelling language

lecturer or not. The other experiential trust resolution requires an entailment that

the developer trusts herself on whether the developer will upload the timetable to

the VLE system.

Figure 3.7: Entailment model example

If an entailment is not valid then the developer should investigate alternative so-

lutions. As an alternative we have proposed in the previous section the identification

and analysis of trustworthiness requirement. Dependencies that are not resolved by

trust or control by a system environment actor can be resolved by control where

the system-to-be is the controller. Such kind or control resolution will ensure the

trustworthiness of the system-to-be. The analysis includes the identification of ob-

servation and deterrence capabilities for the system. As shown in the meta-model

one system control resolution can have zero to many observations and zero to many

deterrence. Of course, in order to be effective needs to have at least one observation

capability and at least one deterrence capability. For each deterrence capability

there are one to many goals of the dependee that are being prevented. Figure 3.8

illustrates how these concepts come together. The entailment that the developer

trusts herself on whether the university administration will control the lecturer was

not valid, and therefore a trustworthiness requirement is identified. The analysis

of the trustworthiness requirement results in an additional system functionality to

89

Chapter 3. JTrust modelling language

check for every lecture if the lecture slides have been uploaded three days in advance

as an observation capability. Also, the analysis results in an additional system func-

tionality to prevent the lecturer from accessing his email account unless he has

uploaded the lecture slides. The trustworthiness requirement acts as a threat and

as a punishment in order to enforce the lecturer to behave in a specific way.

Figure 3.8: Trustworthiness requirement model example

3.8 Trustworthiness assessment model

Information system trustworthiness has two dimensions. The first dimension is if

actors can achieve goals and the second dimension is if they will achieve them. A

distinction has to be made between the technical system under development and

the rest of the actors of the information system, which may include human or other

technical actors.

Let us consider the case of the technical system under development. Its goals

exist because they are needed by the system stakeholders. Some of these goals are

accomplished by the system itself, but for others it needs to interact with other

90

Chapter 3. JTrust modelling language

system environment actors. To reason that the technical system-to-be can achieve

its goals appropriate implementation mechanisms have to be modelled that show

how the system will achieve the goals. There are multiple methods in the literature

to deal with this task. On the other hand, for the goals that the technical system-

to-be depends on other actors, first the capability of the actor achieving that goal

has to decided, again following available methods in the literature, and then to

trust if the actor will actually achieve the goal once the system is put in operation.

Back in the running example, the system trustworthiness of the VLE system in

Figure 3.4 depends on the extent to which the high level goal, provide services, will

be accomplished. As this high level goal is decomposed into smaller goals, the extend

of accomplishment of the high level goal depends on the extend of accomplishment

of the lower level goals, i.e., obtain timetable, provide timetable, obtain lecture

slides, provide lecture slides, receive assignments. For the goals provide timetable

and provide lecture slides, the developer can specify appropriate implementations

and provide the system with the capability of achieving the respective goals. For

the rest of the goals though a resolution of the dependency needs to be found.

Consequently, any attempt to measure the trustworthiness of an information system

needs to consider these two dimensions of trustworthiness.

In our proposed trustworthiness assessment model, any goal has a confidence

level. If the goal is a lowest level goal then its confidence level C is:

• one(”1”) if the actor can achieve the goal by herself.

• zero(”0”) if the actor cannot achieve the goal by herself and there is no other

actor to depend upon for this goal.

• the resolution level of the dependency if the actor cannot achieve the goal by

herself and depends upon another actor for this goal.

The resolution level of a dependency, which shows the degree of confidence in the

fulfilment of a dependency, is calculated as:

R =

(
V alidEntailments

TotalEntailments

)
× ConfidenceLevel (3.1)

ConfidenceLevel is the confidence level of the corresponding goal of the dependee

actor.

Once the confidence levels of the lowest level goals are calculated then there is a

bottom-up propagation of these values to the higher level goals until the highest level

goals have a confidence level value. The propagation algorithm takes into account

the decomposition share of subgoal to its parent goal.

91

Chapter 3. JTrust modelling language

ST is the system trustworthiness level, which shows how trustworthy the system

is, i.e., how confident we are that the system will meet its requirements.

I is the importance of the high level goal to the overall system trustworthiness,

and it is defined by the developer.

If n is a set of direct system dependencies then the system trustworthiness is

calculated using the following formula:

ST =

(∑n
x=1 Ix × Cx∑n

x=1 Ix

)
× 100 (3.2)

3.9 Chapter summary

This chapter has introduced the trust related concepts and a meta-model as the basis

of a modelling language for trustworthy information systems development. During

the development of systems the social architectures of trust need to be considered

and reflected in the technical architectures of trust. Therefore, our goal is to capture

trust relationships and to ensure that the design of the system conforms to them.

As a result, the developer’s trust assumptions during the analysis of the system

need be identified, validated and if not validated then revised in order to lead to a

system that is trustworthy for fulfilling its requirements. The proposed meta-model

allows identifying both the direct and indirect trust relationships and reasoning

about them in a structured and systematic way. Also, in cases where assumed trust

relationships are not valid, control mechanisms are enforced in order to fill in the

gaps in the chain of trust relationships.

92

Chapter 4

JTrust process

In this chapter, we describe a methodological process for modelling and reasoning

about trust relationships, modelling and analysing trustworthiness requirements and

assessing the system trustworthiness at a requirements level. The trust and control

abstractions and the meta-model presented in Chapter 3 facilitate the development

of trustworthy information systems by stipulating concepts that need to be taken

into account. However, the meta-model alone is not adequate without the proper

constructive techniques on how these concepts should be elicited. The JTrust process

describes five activities as well as the artefacts produced. In particular, for each

activity the steps and the relevant artefacts are specified. These activities are placed

after the requirements elicitation and before the requirements specification. The

Software and Systems Process Engineering Metamodel (SPEM) specification (SPEM

2.0) is used to specify the process, the activities, the steps, the artefacts and the

roles involved. Figure reffig-process depicts an overview of the JTrust process with

the following five activities:

• Goal and dependency modelling: to identify the stakeholders of the system-

to-be along with their goals and their dependencies.

• Resolution modelling: to identify the resolutions of the dependencies along

with possible introduced dependencies.

• Entailment modelling: to identify the trust assumptions that underlie the

system under development and examine their validity.

• Trustworthiness requirement analysis: to identify the observation and de-

terrence functionalities that are required from the system in order to influence

the fulfilment of dependencies.

Chapter 4. JTrust process

• System trustworthiness assessment: to measure the system trustworthi-

ness at a requirements stage.

Figure 4.1: JTrust process

4.1 Activity 1: Goal and dependency modelling

The trust analysis of the information system begins with the modelling of actors’

goals and dependencies. The main focus of this activity is to understand the or-

ganisational context and the system requirements. It contains three steps: actor

identification; goal identification and refinement; and correspondences and depen-

dencies identification. Figure 4.2 depicts the goal and dependency modelling activity

with its steps and relevant artefacts.

In the first step, the actors of the information system need to be identified and

modelled. This includes the technical system-to-be, human actors of the system

environment and also other technical actors of the system environment. Human

94

Chapter 4. JTrust process

actors are usually the stakeholders of the system, while the other technical actors are

technical systems that the technical system under development is going to interact

with. The developer can identify such information in organisational documents

and interviews with the stakeholders. Every actor has a trustworthiness attribute,

which influences the trustworthiness of the whole information system through the

collaboration with other actors for the achievement of the information system goals.

In the second step the actors’ goals are identified and refined in order to construct

a goal structure for each actor. Goal identification is not an easy task. Sometimes

they are explicitly stated by stakeholders or in preliminary material available to re-

quirements engineers. Most often they are implicit so that goal elicitation has to be

undertaken. Goals can also be identified systematically by searching for intentional

keywords in the preliminary documents provided, interview transcripts, and so on

(Van Lamsweerde, 2000). The preliminary analysis of current system, if it exists,

is an important source for goal identification. Such analysis usually results in a

list of problems and deficiencies that can be formulated precisely. Negating those

formulations yields a first list of goals to be achieved by the system-to-be. Once

a preliminary set of goals and requirements is obtained and validated with stake-

holders, many other goals can be identified by refinement and by abstraction, just

by asking how and why questions about the goals and requirements already avail-

able (Van Lamsweerde, 2000). The benefit of goal modelling is to support heuristic,

qualitative or formal reasoning schemes during requirements engineering. Goals are

generally modelled by intrinsic features such are their type and attributes, and by

their links to other goals and to other elements of requirements model. In our pro-

posed method goal refinement is done through AND/OR decompositions and every

decomposition link has a share attribute. Also, every goal has a confidence level

attribute. Additionally, the top level goals have an importance attribute. Therefore,

once the goal model is constructed the developer has to specify the importance of

the high level goals. Also, she needs to specify the share of every subgoal to his

parentgoal. The share property denotes how much the parent goals is achieved with

the achievement of the subgoal. For OR decompositions the share is ”1”. At the end

the confidence levels of the lowest level goals need to be specified. The confidence

level is ”1” if the actor can achieve the goal by herself and ”0” if she cannot achieve

it by herself.

In the third step the correspondences and the dependencies need to be modelled.

Goals cannot always be achieved by the actors themselves and such goals would have

been specified with zero confidence level at the previous step by the developer. For

these goals the developer has to seek for actors that can achieve them and specify the

correspondence between the goal that cannot be achieved by the depender and the

95

Chapter 4. JTrust process

corresponding goal of the dependee. Based on the correspondences between goals

the dependencies are then specified. Therefore if the actor depends on another actor

for a goal, then the confidence level is equal to the resolution level of the dependency.

Figure 4.2: Goal and depedency modelling activity

� �
1 Activity {kind: phase }: Goal and Dependency Modelling
2 ProcessPerformer {Kind: primary}
3 RoleUse: Requirements Analyst
4 WorkDefinitionParameter {Kind: in}
5 WorkProductUse: Oganization Processes
6 Work DefinitionParameter {Kind: out}
7 WorkProductUse: List of Actors
8 WorkProductUse: Lists of High Level Goals
9 WorkProductUse: Goal Diagrams

10 Steps
11 Step: Study organization setting documents
12 Step: Identify actors
13 Step: Identify high level actor goals
14 Step: Model actors
15 Step: Model high level goals
16 Step: Refine actors ’ goals
17 ProcessPerformer {Kind: primary}
18 RoleUse: Requirements Analyst
19 WorkDefinitionParameter {Kind: in}
20 WorkProductUse: List of High Level Goals
21 WorkProductUse: Goal Model Diagrams
22 WorkDefinitionParameter {Kind: in}
23 WorkProductUse: List of dependencies
24 WorkProductUse: Actor Diagram
25 WorkProductUse: System Goal Diagram
26 Steps
27 Step: Model system and environment actors in the actor diagram
28 Step: Refine goals
29 Step: Identify goals that cannot achieved by their owners
30 Step: Identify correspondences among actors
31 Step: Model dependencies in the actor diagram� �

4.2 Activity 2: Resolution modelling

Once the dependencies among the actors of the information system have been mod-

elled, the next activity is to identify and model the resolutions of the dependencies.

This activity identifies the means of offsetting the uncertainty and potential vul-

96

Chapter 4. JTrust process

nerabilities that dependencies introduce to the information system. The activity

consists of two steps: model the resolutions and model the dependencies that the

resolutions may introduce and resolve them as well until no further dependencies

are introduced (Figure 4.3).

In the first step, each dependency is examined carefully in order to identify

resolutions. To complete this task the developer has to consider the four types

of trust resolution, i.e., experiential, reported, normative, and external, and the

control resolution, and has to ask questions such as ”is there confidence in the

fulfilment of the dependency because of experiential trust?”, ”is there confidence in

the fulfilment of the dependency because of reported trust?”, ”is there confidence in

the fulfilment of the dependency because of control?”, and so on. Such questions

will enable the developer to decide if there is confidence and what is the reason

behind this confidence by modelling the appropriate trust and/or control resolutions.

Then the respective resolutions are modelled in the trust model along with the

dependencies that they resolve.

The next step of this activity is to model the dependences that reported trust

and control resolutions are introducing. Reported trust resolution introduces a new

dependency on the reporter, while control resolution creates a new dependency on

the controller, if the controller is not the depender herself. Such dependencies need

to be resolved in the same way following the first step of this activity. This is an

iterative activity, which ends when there no dependencies left without resolution or

if there are any unresolved dependencies then for these no resolution could be found.

In the former case the developer can move on to the next activity to identify and

validate the resolution entailments. In the latter case however, the trustworthiness

requirement modelling activity should be followed.

� �
1 Activity {kind: phase }: Resolution modelling
2 ProcessPerformer {Kind: primary}
3 RoleUse: Requirements Analyst
4 WorkDefinitionParameter {Kind: in}
5 WorkProductUse: List of Dependencies
6 WorkProductUse: Actor Diagram
7 WorkProductUse: System Goal Diagram
8 Work DefinitionParameter {Kind: out}
9 WorkProductUse: List of Resolutions

10 WorkProductUse: Resolutions diagram
11 Steps
12 Step: Identify outgoing system dependencies
13 Step: Identify type of resolution
14 Step: Model resolution
15 Step: Identify possible new outgoing system dependency
16 Step: Model possible new outgoing system dependency� �

97

Chapter 4. JTrust process

Figure 4.3: Resolution modelling activity

4.3 Activity 3: Entailment modelling

In the third activity the entailments are specified and validated. The entailments

represent the trust assumptions that underlie the system under development. This

activity contains two steps: the specification of the entailment according to specific

guidelines, and the collection of evidence in order to examine the validity of the

entailments (Figure 4.4).

In the first step of the activity the specification of the entailments is carried

out based on the type of resolution. For each resolution identified in the previous

activity an entailment is specified according to the following rules:

• Experiential trust requires an entailment that the trustor trusts himself.

• Reported trust requires an entailment that the reporter is trusted.

• Normative trust requires an entailment that the system environment norm is

trusted.

• External trust requires an entailment that the external source of trust is

trusted.

• Control based resolution requires an entailment that the controller is trusted.

98

Chapter 4. JTrust process

In the second step the validity of the entailments has to be examined because

if the entailments are not valid then there will be a potential vulnerability to the

system that will affect its trustworthiness. The examination needs to be based

on evidence. The developer can seek evidence in historical documents, carry out

surveys and interviews. The entailment has a validity property that takes Boolean

values true or false. If the entailment is valid then the validity property is set to

true, otherwise it is set to false.

Based on the results of the entailments validation the resolution level of the

dependency is calculated. Ideally it should be 100%, but it is up to the developer to

decide what is the level upon which he considers that the dependency is resolved.

If the dependency is resolved then there is confidence that the dependee will indeed

behave as expected, otherwise there is no confidence that the dependee will behave

as expected and additional functionality is required by the system to enforce the

desired behaviour.

Figure 4.4: Entailment modelling activity

� �
1 Activity {kind: phase }: Entailment Modelling
2 ProcessPerformer {Kind: primary}
3 RoleUse: Requirements Analyst
4 WorkDefinitionParameter {Kind: in}
5 WorkProductUse: List of Resolutions
6 WorkProductUse: Resolutions Diagram
7 Work DefinitionParameter {Kind: out}
8 WorkProductUse: Entailments diagram
9 WorkProductUse: List of valid entailments

10 WorkProductUse: List of invalid entailments
11 Steps
12 Step: Identify entailments based on resolutions
13 Step: Collect evidence regarding entailments
14 Step: Check validation of entailments� �

99

Chapter 4. JTrust process

4.4 Activity 4: Trustworthiness requirement analysis

The fourth activity of the JTrust process concerns the modelling and analysis of

trustworthiness requirements. During the previous activity the validity of the en-

tailments was examined. If the entailments are not valid the dependency is not

actually resolved and alternative solutions need to be considered. An alternative

solution is to add such functionality to the system-to-be that will act as a controller

and enforce the fulfilment of an unresolved dependency. In essence, this is a control

resolution of the dependency where the system-to-be is the controller. Therefore,

this activity contains three steps: the identification of the control resolution, the

specification of the observation functionality, and the specification of the deterrence

functionality (Figure 4.5).

In the first step, every dependency is examined and if it has not been adequately

resolved then a control resolution is modelled that resolves the dependency. In such

a resolution the system under developer acts as the controller that will compel the

dependee to behave as expected, i.e., fulfil a specific goal.

In the second step observation functionality for the system is modelled. This

functionality enables the system to monitor if a specific actor is fulfilling a specific

goal. To this end, a resource that enables the system to proceed to such a judgement

has to be modelled as well. The developer in cooperation with the stakeholders

identifies the relevant resource for that purpose.

The third and last step includes the modelling of the deterrence functionality for

the system. This functionality will enable the system to compel actors to behave

in a specific way. In particular the developer in cooperation with the stakeholders

has to identify a goal of the dependee that should be denied if the dependee is not

behaving in an expected way. The deterrence functionality along with the goal that

is preventing are modelled.

Figure 4.5: Trustworthiness requirement analysis activityl

100

Chapter 4. JTrust process

� �
1 Activity {kind: phase }: Trustworthiness Requirements Modelling
2 ProcessPerformer {Kind: primary}
3 RoleUse: Requirements Analyst
4 WorkDefinitionParameter {Kind: in}
5 WorkProductUse: List of invalid entailments
6 WorkProductUse: Entailments diagram
7 Work DefinitionParameter {Kind: out}
8 WorkProductUse: List of trust requirements
9 WorkProductUse: Revised system goal diagram

10 WorkProductUse: Revised actor diagram
11 WorkProductUse: Revised actors ’ goal diagrams
12 Steps
13 Step: Trace back unresolved dependencies based on invalid entailments
14 Step: Assign control goal to system
15 Step: Decompose control goal to observation and deterrence goal� �

4.5 Activity 5: System trustworthiness assessment

This is the final activity of the JTrust Process, which measures the trustworthi-

ness of the system-to-be. The measurement can be applied for all the actors of the

information system but we believe the most useful approach is to measure the trust-

worthiness of the technical system-to-be. Assessing the system under development

at the requirements stage is beneficial in order to identify potential vulnerabilities

and address them as early as possible. Otherwise, any possible fix at late stage will

cost more resources, such as time and money. Moreover, if potential vulnerabilities

left unidentified and the system is put in operation then it may fail to meet its goals

and users will not accept it. This activity contains four steps: assignment of impor-

tance level to the top level goals, assignment of confidence levels to the bottom level

goals, calculation of the resolution levels, calculation of the system trustworthiness

(Figure 4.6).

In the first step of this activity the top level goals of the system-to-be are assigned

an importance value. The stakeholders are responsible for providing the importance

values to the top level goals of the system-to-be. The range of importance is from

zero to one.

During the second step the lowest level goals are assigned with confidence levels.

The confidence level is one if the system can achieve the goal by itself, zero is the

system cannot achieve the goal by itself, and if the system cannot achieve the goal

by itself but depends on another actor to do so then the confidence level is the

resolution level of the dependency. The confidence values will be propagated to the

higher level goals until the top level goals.

The next step is the calculation of the resolution level of a dependency of the

system-to-be with other actors. The resolution level is calculated according to the

formula described in Section 3.8 (3.1).

The last step of this activity is the calculation of the technical system-to-be

101

Chapter 4. JTrust process

trustworthiness level. It is calculated based on the formula described in Section 3.8

(3.2).

Figure 4.6: System trustworthiness assessment activity

4.6 Chapter summary

In this chapter, we have proposed a process for reasoning about trust relation-

ships, analysing trustworthiness requirements and assessing the trustworthiness of

the system-to-be. Section 4.1 presented the initial activity, which is focused on

modelling the organisation context of the system-to-be and especially to capture

the trust relationships as dependencies. In Section 4.2 the resolution modelling ac-

tivity was described. It concerns with the identification of experiential, reported,

normative, and external trust resolutions and control resolutions of dependencies in

order to offset the uncertainty that the dependencies introduce. In addition, in this

activity the dependencies introduced by reported and control resolutions are iden-

tified along with their resolutions. The next Section, 4.3 described the activity of

entailment modelling. In particular, specific constructive techniques were described

according to which an entailment is derived from each resolution. In addition, it is

pointed out that the validity of the entailments needs to be examined by collecting

relevant evidence. The trustworthiness requirement analysis was described in the

following Section 4.4. The analysis consisted of modelling the trustworthiness re-

quirement and specifying the observation and deterrence functionality required by

the system-to-be in order to enforce the fulfilment of dependencies. Section 4.6 pre-

sented the formulas for measuring the trustworthiness of the technical system-to-be.

The JTrust process is part of the requirements engineering phase of system develop-

102

Chapter 4. JTrust process

ment. It can be applied along with the elicitation and analysis of other functional

and non-functional requirements. It leads to the identification of trustworthiness re-

quirements that will be added in the requirements specification of the system under

development.

103

Chapter 5

JTrust tool

If you cannot measure it, you cannot improve it

Lord Kevin

In this chapter, we describe JTrust, a Computer Aided Software Engineering

(CASE) tool to support developers in modelling and reasoning about trust relation-

ships and analysing trustworthiness requirements. Also, it automatically assesses the

trustworthiness of the system under development. It has a graphical user interface

and the formulas for the system trustworthiness assessment are fully implemented.

However, the tool is still a prototype and it can certainly be improved and optimised.

First, we describe its architecture and the visual layout of the tool in Section 5.1,

and then we describe the graphical notation of the JTrust concepts along with their

properties in Section 5.2, followed by a description of the functionality of the tool

in Section 5.3.

5.1 Tool architecture

For the implementation of the JTrust tool we used the Eclipse Integrated Envi-

ronment (IDE) . Eclipse is a mature and extensible IDE framework that offers a

powerful and flexible customisation framework. In particular, the implementation

meta-model of our modelling language was defined as an Ecore model using the

Eclipse Modelling Framework (EMF) . EMF is a modelling framework and code

generation facility for building tools and other applications base on a structured

meta-model. The meta-model is an independent artefact. Being defined using EMF

means that it is decoupled from the code. Our implementation meta-model is shown

in Figure 5.1.

In addition, the Eclipse Graphical Modelling Framework (GMF) was used to

create our graphical editor. GMF builds on top of EMF and the Graphical Editing

Chapter 5. JTrust tool

Figure 5.1: Implemenation meta-model

Framework (GEF), to provide a generative component and runtime infrastructure.

GMF build on the principles of Model-Driven Development (MDD), which advocate

the use of design time models as the basis for code generation (Figure 5.2). It offers

a layer of abstraction above the code level to define core properties of editors and the

automatic generation of model editing code. This code is customised and expanded

to support features specific to our proposed methodology. A visual layout of the

JTrust tool is depicted in Figure 5.3.

The main graphical user interface (GUI) consists of the drawing canvas, the

menu bar, the toolbar, and the properties panel. The drawing canvas is the area

where the developer is incrementally constructing her JTrust model, while the menu

bar has the standard functions, such as create new model, open model, save, and

so on. The toolbar contains elements and links that correspond to concepts in the

JTrust meta-model. The tool bar elements are laid out according to when these

concepts might be used in a typical JTrust process.

The JTrust tool was developed in an iterative way. In the first phase, the tool

was used only to model dependency resolutions in order to reflect the initial meta-

model. During later stages, additional concepts, such as types of trust resolutions

and observation and deterrence, were added to the meta-model and the tool was

further developed to support these concepts. As the meta-model became more

elaborate, additional functionality was incorporated into the tool. Further feedback

105

Chapter 5. JTrust tool

Figure 5.2: Model driven architecture

Figure 5.3: JTrust tool visual layout

106

Chapter 5. JTrust tool

about the methodology and the tool was obtained during the evaluation stage.

5.2 Concepts graphical notation

Given the difficulty associated with grasping new concepts and learning new nota-

tions, the tool and its artefacts need to be familiar. Adopting a tool should require

no more cognitive overhead than learning how to use the techniques associated with

JTrust methodology. When new notations are introduced, these need to be parsi-

monious in terms of visual complexity. Therefore, the new graphical notation was

created in order to resemble the existing graphical notations of the actor and goal.

The notations of the concepts used in the JTrust methodology are shown in Fig-

ure 5.4. In the next sections we present the properties of the main concepts of our

proposed methodology.

Figure 5.4: Concepts notation

ACTOR

The actor has two properties (i) the name; (ii) and the trustworthiness (Figure reffig-

actor). The name is the name of the actor specified by the developer, while the tool

computes the trustworthiness of the actor automatically. Its value can range from

107

Chapter 5. JTrust tool

0% to 100%. The tool considers if the actor can achieve his goals and the resolution

levels of the outgoing dependencies on other actors. If this actor represents the

technical system under development then this property shows the trustworthiness

of the system.

Figure 5.5: Actor properties

GOAL

The goal has a number of properties (Figure 5.6). The capability property denotes

whether the actor can achieve the goal or not. The confidence level is automatically

set to 1.0 if the actor can achieve it and to 0.0 if the actor cannot achieve it. In

the latter case if there is also a dependency on another actor then the confidence

level becomes the resolution level of the dependency. If the goal is decomposed

then the confidence level is calculated based on the subgoals confidence levels and

decomposition shares. Additionally, in the case of dependency the correspondence

property shows the corresponding goal of the dependee actor. The decompositions

property shows the decompositions of the goal, while the dependency property shows

the dependency that the goal is part of. The importance property specifies how

important is the goal for the system trustworthiness. The name property shows the

name of the goal, while the super link property shows the decompositions that the

goal is part of.

DECOMPOSITION

The decomposition link has a property AND, which is Boolean, and denotes whether

the decomposition is an AND or OR decomposition (Figure 5.7). The confidence

contribution denotes how much confidence in the achievement of the parent the

subgoal contributes. The value is automatically computed by the tool taking into

account the decomposition share and the confidence level of the subgoal. The decom-

poses property shows the goal that is being decomposed, while the name property

denotes the name of the decomposition. The share property is specified by the de-

veloper and represents the contribution of the subgoal in the achievement of the

parent goal. Finally, the sub property shows the subgoal of the parent goal.

TRUST RESOLUTION

108

Chapter 5. JTrust tool

Figure 5.6: Goal Properties

Figure 5.7: Decomposition Properties

109

Chapter 5. JTrust tool

The trust resolution concept has a name property as usual that denotes the name of

the trust resolution (Figure 5.8). Also, it has a requires property that shows which

entailment is required from the resolution, while the resolves property shows which

dependency is resolved. The last property trustee show who or what is trusted for

the resolution.

Figure 5.8: Trust resolution Properties

CONTROL RESOLUTION

The control resolution concept has a controlee and a controller property to denote

the actor who is being under control and the controller actor respectively (Fig-

ure 5.9). Also, it has a name property to denote the name of the control resolution.

The last two properties are the requires and resolves, which show which entailment

is required by the control resolution and which dependency is resolved by the control

resolution respectively.

Figure 5.9: Control Resolution Properties

ENTAILMENT

The entailment concept has two properties, the name and the valid (Figure 5.10).

The name property denotes the name of the entailment. The valid property is

a Boolean property that is specified by the developer after she has examined its

validity by collecting evidence and denotes whether the entailment is valid or not.

DEPENDENCY LINK

110

Chapter 5. JTrust tool

Figure 5.10: Entailment Properties

The concept of dependency has two properties depender and dependee, which show

the dependee actor and the depender actor of the dependency respectively (Fig-

ure 5.11). Also, it has a dependum property that show goal of the dependency and

a name property that denotes the name of the dependency. The resolution level is

automatically computed by the tool taking into account the confidence level of the

goal of the dependee and the validity of the resolution entailments of the depen-

dency. The last property is the resolutions property, which shows the specified by

the developer resolutions.

Figure 5.11: Dependency Properties

5.3 Trust tool functionality

JTrust tool is a tool for the construction and analysis of JTrust models as part of

the trust analysis of the system under development. The main functionalities of

the CASE tool are to support the modelling activities of the trust process. There-

fore, the tool enables the developer to perform goal and dependency, resolution,

entailment, and trustworthiness requirement modelling. The tool allows developers

to draw JTrust graphical models using a pallete of shapes. Standard features such

a saving, zoom, cut, copy, and paste are provided as well. The tool also checks

the syntactical correctness of a model during its development. For example, if the

developer attempts to connect two concepts, that cannot be connected, with a link,

111

Chapter 5. JTrust tool

then the tool will prevent such action. In addition, the meta-model we presented

contains OCL constraints. The meta-model provides the structure of the JTrust

models, while the OCL constraints restrict the allowed syntax. These constraints

enable to check if the model is well formed.

Furthermore, OCL was used to implement the formulas presented in this thesis.

1. Once the dependencies inside the socio-technical system have been specified

and the entailments of the dependency resolutions have been defined as valid

or invalid by the developer, then there is an algorithm that automatically

calculates the resolution level of the dependency, from which the entailments

originate. The OCL code that implements the formula 3.1 is as follows:� �
1 if self.dependum ->isEmpty ()
2 or self.resolutions ->isEmpty ()
3 or self.resolutions ->collect(requires)->isEmpty ()
4 or dependum.ConfidenceLevel =0.0
5 then 0.0
6 else resolutions ->collect(requires)->collect(Valid)->
7 count(true) / resolutions ->size() * dependum.ConfidenceLevel
8 endif� �
2. Once the confidence levels of the lowest level goals of an actor have specified

by the actor or automatically by the tool in case of existence of dependencies

during the previous calcluation, then the tool automatically computes the con-

fidence levels of the parent goals until the top level goals. In other words there

is a bottom-up propagation of the confidence levels in the goal structure. The

OCL code that implements the formula is as follows:� �
1 if self.decompositions ->notEmpty ()
2 then if decompositions ->collect(AND)->count(false) = 0 then

decompositions ->collect(ConfidenceContribution)->sum()
3 else self.decompositions ->
4 sortedBy(ConfidenceContribution)->last().

ConfidenceContribution
5 endif
6 else if self.Capability
7 then 1.0
8 else if self.correspondence ->isEmpty ()
9 then 0.0

10 else if self.correspondence.dependency.dependum ->
11 isEmpty ()
12 or self.correspondence.

dependency.resolutions ->
13 isEmpty ()
14 or self.correspondence.

dependency.resolutions ->
15 collect(requires)->isEmpty ()
16 or self.correspondence.

ConfidenceLevel =0.0
17 then 0.0
18 else self.correspondence.dependency

.resolutions ->
19 collect(requires)->collect(

Valid)->count(true) /
20 self.correspondence.dependency.

resolutions ->size() *
21 self.correspondence.

ConfidenceLevel

112

Chapter 5. JTrust tool

22 endif
23 endif
24 endif
25 endif� �
3. Once the importance levels of the top level goals of an actor have be speci-

fied by the developer, the tool automatically computes the trustworthiness of

the actor. If the actor is the system under development then the trustwor-

thiness value is the trustworthiness of the system-to-be. The OCL code that

implements the formula 3.2 is as follows:� �
1 if wants ->notEmpty ()
2 then
3 if self.wants ->select(superLink ->isEmpty ())->
4 collect(Importance)->sum() > 0
5 then (self.wants ->select(superLink ->isEmpty ())->
6 collect(ConfidenceLevel*Importance)->sum()/self.

wants ->
7 select(superLink ->isEmpty ())->collect(Importance)->
8 sum())*100
9 else 1.0

10 endif
11 else 1.0
12 endif� �

5.4 Chapter summary

In this chapter the JTrust CASE tool that assists the developer in using the JTrust

methodology was presented. We have described the tool development and the visual

layout of the tool, the graphical notation of the JTrust concepts and their properties,

and the functionality of the tool that enables the developer to construct all the

required models of the methodology and provides automatic computation of the

trustworthiness level of the system under development.

113

Part III

Evaluation and Conclusions

Chapter 6

Evaluation

This chapter focuses on the evaluation of the proposed JTrust methodology, in

particular, assessing the strengths and the weaknesses and demonstrating the ad-

vantages. This part of the research is empirical research that includes research

questions that are focused on the way that the world is and are the last three

research questions of this research:

• RQ4: How well does the methodology support modelling and reasoning about

trust relationships?

• RQ5: How well does the methodology support trustworthiness requirement

modelling and analysis?

• RQ6: How well does the methodology assess the system trustworthiness at a

requirements level?

Therefore this study aims to provide strong support for the validity of the

methodology. We adopted two methods of evaluation for the methodology of this

thesis that are depicted in figure 6.1. The first evaluation method was a confirmatory

qualitative case study to test the developed theory, i.e. the JTrust methodology.

Confirmatory because a case study can be used for both generating and testing

hypotheses (Flyvbjerg, 2006; Seaman, 1999) and the aim was to build a convinc-

ing body of evidence to support the propositions of this thesis. And qualitative

because the assessment was based on the required features that the JTrust method-

ology provided. Furthermore, it included observational and historical data collection

techniques, because relevant data were collected as the project developed and also

from projects that had already been completed.

The case study that was selected was the e-health care services of the National

Health Service (NHS) in England (NHS, 2013a). The NHS e-health services are

Chapter 6. Evaluation

centred on the Summary Care Record (SCR), which envisages improving the safety

and quality of patient care. As of 26/04/2013 almost 27 million records had been

created across England. Having a SCR gives authorised healthcare staff a quicker

way to get important information about the patient, in an emergency or out-of-

hours situation. The SCR is an electronic record which contains information about

the medicines the patient takes, allergies the patient suffers from, and any bad

reactions to medicine the patient the patient had. The case study is appealing for

a number of reasons; they are real, safety critical concerns and involving important

trustworthiness requirements both in terms of security and privacy. Information

might be concerning an abortion, a psychiatric care, or sexual transmitted diseases,

which in case of disclosure can cause social embarrassment, prevent us from getting

a job or influence our medical insurance. Therefore, the case is an appropriate one as

it is a typical and critical case for testing a well-formulated theory because if theory

holds for this case, it is likely to be true for many others. In terms of the validity

of the study, data and method triangulation techniques were used to mitigate any

threats and feel confident in the evaluation.

The evaluation method were chosen according to the selection criteria identified

by the DESMET project (Kitchenham, Linkman, and Law, 1997). So, the confir-

matory case study was selected because the benefits could be observed on a single

project. Moreover, software engineering is a multidisciplinary field involving areas

where case studies normally are conducted, such as psychology, sociology, and po-

litical science. This means that many research objectives in software engineering

research are suitable for case study research (Runeson and Höst, 2009), and that

there was the need to investigate not only methods and tools but also the social and

cognitive processes surrounding them (Easterbrook et al., 2008). In these areas the

objectives are to increase knowledge about personal, social, and political phenomena

in their context, which is similar with our objectives to increase knowledge regarding

the practitioner’s ability, knowledge, understanding, to capture trust relationships

during information systems development. Case study research is appropriate for

situations where the context is expected to play a role in the phenomena.

The second evaluation method was according to Zelkowitz and Wallace (1998)

a quantitative survey. The subjects were academics, researchers, and postgraduate

students that used the methodology and the tool and were asked to provide infor-

mation about the methodology and the tool in order to investigate the quantitative

impact. It included controlled data collection methods, in particular a question-

naire based survey, that provided multiple instances of an observation for statistical

validity of the results. The collected information was then analysed using standard

statistical techniques. The analysis focuses on the methodology’s perceived useful-

116

Chapter 6. Evaluation

ness and ease of use. The results will be evaluated by a combination of quantitative

and qualitative analysis. The survey was also used for qualitative evaluation, which

was a feature-based evaluation.

Also, the quantitative and qualitative survey methods were selected because

there was availability of participants with experience of using methodologies and

tools and also participants were prepared to learn about new methodologies and

tools. They can confirm that an effect generalises to many projects. Also, this

is a more satisfactory means of evaluation of the benefits than a simple review of

the methodology by the participants. It is also very useful for identifying practical

problems with the methodology, such as ambiguities or missing conditions to name

a few.

Figure 6.1: Evaluation approach

6.1 Study 1: Evaluation of JTrust by case study research

in the health care domain

This chapter reports the experience of conducting a case study on the application

of JTrust methodology in the health care domain in the UK. The goals of this chap-

ter are to evaluate the JTrust methodology and to show that it efficiently enables

practitioners to model and reason about trust relationships and assess the trust-

worthiness of the system under development at a requirements stage. We wanted

to demonstrate JTrust in action, so our preferred evaluation method was a con-

firmatory qualitative case study. A project was selected and monitored, and data

was collected over time. It is used to demonstrate the applicability and the advan-

tages of the methodology and serves as a first test before a more formal validation.

117

Chapter 6. Evaluation

Therefore, this chapter illustrates and assesses the various techniques described in

the preceding chapters on a real case study of a significant size and complexity.

According to Zelkowitz and Wallace (1998) taxonomy for validating new method-

ologies, this study is using historical data collection methods and as a result it can

also be characterised as literature search based method of validation, as there was

also collection of data from projects that have already been completed and analysis

of papers and other documents that are publicly available. In particular, some con-

clusions were drawn based upon surveys available in the literature and documents

related to the selected case study.

In addition, based on the Zelkowitz and Wallace (1998) taxonomy the study can

also be characterised as an assertion type of case study because the researcher was

both the experimenter and the subject of the study. This was the case because of

time and cost constraints. But, it served as a first step towards a future more formal

evaluation.

The process steps that our case study included were the following (Verner et al.,

2009; Runeson and Höst, 2009; Kitchenham et al., 2002; Wohlin et al., 2012):

• Research initiation. This phase included the defining of the research objectives,

i.e. what to achieve, performing a deep literature review, and decision on the

appropriateness of the case study. The appropriateness was decided based on

the findings form the research objectives and the literature review.

• Case study administration, which dealt with legal, publishing, and schedul-

ing issues. It was an ”ad hoc” phase that was done in parallel with all the

other phases. It included the review of legal agreement, the identification of

publishing criteria, and dealing with partners and their schedules.

• Case study focus, which included activities such as the identification of the

boundaries of the case study. Also, the identification and selection of feasible

cases. The case was expected to be ”typical”, ”critical”, and ”revelatory”.

Also, what documents should be accessed were selected.

• Design case study plan, which includes ensuring strategy for data validity, the

minimisation of the confounding factors, defining the data collection strategy,

process and methods, procedure and protocols, how the results will be analysed

and designing the case study plan step by step.

• Data collection, which basically included observational methods where data

was collected during the development of the project. Furthermore, it included

the collection of data from multiple sources, such as literature search to exam-

ine previously published studies, legacy data to examine to examine data from

118

Chapter 6. Evaluation

completed projects, static analysis to examine the structure of the developed

product, and lessons learned that examined qualitative data from completed

projects.

• Data analysis. This phase included the evaluation and the conclusion with

respect to the case study. However, as case study methodology is a flexible

design strategy, there is a significant amount of iteration over the steps, and the

data collection and analysis were conducted incrementally. During the whole

process there was constant updating of research notes, and the structure of the

case study report was in the form of a single case study narrative report.

6.1.1 Case study design

CASE STUDY OBJECTIVES

The objectives of the case study were defined in a way to provide answers to the

research questions of the evaluation research and are confirmatory and/or improving.

Therefore the objectives of the case study were to:

O1: Apply the JTrust methodology in the health care domain.

O2: Evaluate the applicability of JTrust methodology for modelling and reasoning

of trust relationships and requirements in health care domain.

O3: Evaluate the applicability of JTrust methodology for assessing the trustwor-

thiness of the system under development at a requirements stage.

O4: Evaluate the efficiency of JTrust methodology.

O5: Improve our understanding about the issues relating to the JTrust methodol-

ogy with the intention of improving it.

CASE SELECTION/CONTEXT - E-HEALTH CARE SERVICE IN

ENGLAND

The case study that was selected was the e-health care services of the National

Health Service (NHS) in England (NHS, 2013a). The project was launched in 2002

and its aim was ”to reform the way that the NHS in England uses information, and

hence to improve services and quality of patient care” (Office, 2011). Central to the

programme was the creation of fully integrated electronic care records system that

is designed to reduce reliance on paper files, make accurate patient records available

at all times, and enable the transmission of information between different parts of

the NHS. The system was intended to comprise a health care record for each NHS

patient that will contain full details of the patient’s medical record and treatment,

119

Chapter 6. Evaluation

that will be accessible to a patient’s GP and local community and hospital care

settings. Such health care systems will cost less and will be more effective with

the use of healthcare networks (Bangemann et al., 1994). Also, health care services

can significantly be enhanced with the use of the Internet. The program envisages

providing such advance services to patients and the NHS employees and ultimately

to improve the quality of patient care. As the delivery of patient care is now often

shared across a number of NHS clinical or business areas and suppliers, so the

effective linking up and flow of information related to a patient has become even

more important.

The NHS e-health services are centred on the Summary Care Record (SCR).

The SCR envisages improving the safety and quality of patient care. It will give

healthcare staff faster, easier access to reliable information about the patient to

help with his treatment. The patient information was shared by letter, e-mail, fax,

or phone. At times, this could be slow and sometimes things got lost on the way.

As of 26/04/2013 almost 27 million records had been created across England. The

SCR is held nationally, while the Detailed Care Record is held locally at places

that treat the patient regularly, like the GP or the local hospital. Having a SCR

gives authorised healthcare staff a quicker way to get important information about

the patient, in an emergency or out-of-hours situation. The SCR is an electronic

record which contains information about the medicines the patient takes, allergies

the patient suffers from, and any bad reactions to medicine the patient the patient

had. This information could make a difference to how a doctor decides to care

for you, for example which medicines they choose to prescribe for you. It is very

helpful for pharmacists as well to understand the core essential information about

the patient. It is optional for patients to add extra information to their SCR, such

as current illness or care plan. Only health care staff involved in the patient’s care

can see the patient’s SCR. Healthcare staff will only see the information they need

to do their job, and they will ask your permission every time they need to look at

the patient’s SCR. If they cannot ask the patient, for example if he is unconscious,

they may look at the patient’s SCR without his permission. If they do this, they

will make a note on the patient’s record to say why they have done this.

By law, everyone in, or on behalf of, the NHS must respect the patient’s privacy

and keep all the patient’s information safe (NHS, 2011b). If someone accesses the

patient’s record unexpectedly, for example if someone who does not usually treat

the patient looks at his record, an alert will be sent to a member of staff. They

will investigate and, if it is found that this was unreasonable, they will let you

know. To keep the patients information secure and confidential the NHS is employs

several measures. Any member of staff being given access to national systems, which

120

Chapter 6. Evaluation

hold health information, has a smartcard along with a username and password.

Besides smartcards other measures used are the recording permission to access,

access control, and audit trails.

For the delivery of care record systems the department of health awarded five

10-year contracts to four suppliers: BT in London; Accenture in the East and in the

North East; Computer Sciences Corporation in the North West, and West Midlands;

and Fujitsu in the South. The aim was for care records systems to be delivered

to all NHS trusts and GP practices. Currently, the program, which was called

”National Program for IT” has been dismantled into its separate components parts,

and the revised completion date is 2018 because of difficulties in implementation,

ethical issues that cause delays, and contractual issues. However, the vision remains

for a paperless NHS in UK, under the supervision of a newly set up organisation

called ”Health and Social Care Information Centre”, but with a balance between

standardisation across the NHS and the desire for local ownership and flexibility

(Public Accounts, 2013).

The main purpose of the e-health care services is to make the patients’ data

accessible from anywhere. For this purpose, the patients’ data is going to be stored

nationally. Employees of the NHS, such as GPs, can have access to the patients’ data

in order to provide effective health care. After the patient has been examined the GP

must update the Summary Care Record (SCR), which contains the patients’ data,

and electronically sign the prescription that will enable the patient to collect the

medicine from a pharmacy (Figure 6.2). The GP is allowed to cancel the prescription

at any time until it is dispensed, but when doing so he must inform the patient for the

reason of the cancelation. In addition, the pharmacy needs to electronically confirm

what has been dispensed and to electronically submit endorsement messages to the

reimbursement agency for dispensed prescriptions to support the reimbursement

process.

The case study concerns the patients’ health care record in the health care do-

main, and specifically the former National Program for Information Technology

(NPfIT) in United Kingdom. The case study is appealing for a number of rea-

sons; they are real, safety critical concerns and involving important trustworthiness

requirements both in terms of security and privacy. Information might be concern-

ing an abortion, a psychiatric care, or sexual transmitted diseases, which in case

of disclosure can cause social embarrassment, prevent us from getting a job or in-

fluence our medical insurance. Moreover, there is a lot of history medical privacy

issues such as drug stores providing medical information to marketing companies,

employers taking employment decisions based on medical information, employees

or individuals selling medical information (Rohm and Milne, 2004). This is not the

121

Chapter 6. Evaluation

Figure 6.2: e-Health scenario

case only in Britain, but also in the U.S.A. where the majority of the patients are

concerned with issues varying from use of their medical information for marketing

purposes to identity theft or fraud (McGraw et al., 2009). Therefore, privacy for the

programme is very important and we have to provide assurance for privacy that will

ensure trustworthiness and enable the development of trust by the users. There-

fore, the case is an appropriate one as it is a typical and critical case for testing a

well-formulated theory because if theory holds for this case, it is likely to be true

for many others.

UNIT OF ANALYSIS - A TYPICAL SCENARIO

To assess the effectiveness of the trust process we apply the trust based concepts

and the process in the case of e-health care services of the National Health Service

(NHS) in England. Then the trust relationships will be identified and examined

if the trust assumptions are justified. If not, then additional functionality will be

proposed to make the system trustworthy. Also, towards the end, there was an

assessment of the system trustworthiness with the intention the system to be as

trustworthy as possible.

The technical system under development for the NHS will be interacting with

other components of that whole information system, either human or technical.

These interactions constitute dependencies between the system and the other com-

ponents and vice versa. The unit of analysis is the dependency between the technical

system and other components of the information system. As there were multiple

dependencies there were multiple instances of this unit of analysis. Another unit

of analysis will the identification of trustworthiness requirements. Similarly, there

were multiple instances of this unit of analysis. The last unit of analysis was the

122

Chapter 6. Evaluation

assessment of trustworthiness of the system under development.

DATA COLLECTION METHODS

Several methods of data collection were used in the case study (Figure 6.3).

The developed diagrams using the JTrust methodology were collected, along with

qualitative notes that were taken on those diagrams. Also, documents related with

the existing development of the NHS system were collected. Also, information

was gathered by discussing with staff from BT. Finally, documents related to past

surveys were collected.

Figure 6.3: Case study collection methods

DATA ANALYSIS METHODS

The existing functionalities of the NHS system were compared with the identified

functionalities using the JTrust methodology. Then, there was an evaluation of

the non-quantifiable benefits of the JTrust methodology by gathering qualitative

information from the comparison.

CASE STUDY VALIDITY

The validity of the study is discussed in this section, since it could not be finally

evaluated until the analysis step. There are four aspects of validity (Runeson and

Höst, 2009; Wohlin et al., 2012; Easterbrook et al., 2008).

Construct validity was focused on whether the operational measures for the

concepts being studied were correct. Therefore, to improve construct validity the

operational measures with regards to the confidence in the fulfilment of a system

dependency were developed by using multiple sources of evidence, such as literature

and expert opinion.

Our case study was by nature comparative. We tried to reduce the expectation

bias on the case study results by identifying a valid basis for assessing the results.

123

Chapter 6. Evaluation

To this end, we compared the actual implementation of the NHS e-health system

developed with another method and the potential implementation of the NHS e-

health system developed with our proposed method. Therefore, we improved the

internal validity as we compared our proposed method while using the same infor-

mation system. Furthermore, the comparison was on the basis of identifying the

system dependencies and contrasting whether there has been any reasoning about

their fulfilment.

External validity focuses on whether our claims for the generality of the results

are justified. To ensure external validity we used data triangulation to limit the

effects of one interpretation of one single data source, data were collected from mul-

tiple sources. So, in terms of gathering information about the NHS System various

data were collected from documents from BT, NHS England, UK Department of

Health, and research publications about the NHS e-health system. Based on this

data the JTrust models were constructed and used as a data source. This way the

conclusions reached are stronger than conclusions based on a single source. Data

triangulation ensured the external validity of our case study, which justified the

generalisation of our results.

Another validity concern is the representativeness of the selected case study,

which ensured the external validity of our case study. An e-health information sys-

tem was selected, as it is a typical information system, which his trustworthiness

depends a lot on other interacting entities such as a doctor. Also, its trustworthi-

ness is of paramount importance because it has serious consequences on citizens’

health. Furthermore, when we chose the system dependencies of our case study we

applied theoretical sampling in order to capture all possible variations of a depen-

dency resolution and gain a deeper understanding. Therefore, among the selected

dependencies there were dependencies resolved by control, dependencies resolved

by trust, and dependencies that were not resolved and we identified and analysed

trustworthiness requirements. Theoretical sampling of the system dependencies was

also a way to ensure data triangulation of our case study and ensured its external

validity.

Reliability focuses on whether the case study yields the same results if another

developer replicates it. Triangulation, developing and maintaining a detailed case

study protocol, spending sufficient time with the case ensured a certain level of

similarity of results and improved the validity of the study. However, due to the fact

that the trust analysis is carried out from the perspective of the developer it is very

natural that the results can differ in certain aspects. In particular, when reaching

the stage to decide the type of resolution of a dependency, another developer can

identify the same control, normative trust, or external trust resolutions as these

124

Chapter 6. Evaluation

resolutions are related with the system environment and they are not related to the

developer. On the hand resolutions, such as experiential trust and reported trust are

strongly related with the individual developer. As a result, another developer might

not resolve a dependency with an experiential trust or reported trust resolution

because he might not have a direct experience with the trustee or not know the

reporter respectively. This can also occur vice versa, for example another developer

might identify an experiential trust resolution for a dependency while we didn’t

because we didn’t have any direct experience with the trustee.

In addition, method triangulation was used to improve the external validity.

The first data collection method was observation, a direct kind of method, where

there was direct contact and real time data collection. Observation was conducted

in order to investigate how a certain task is conducted by a practitioner. The

advantage of the observation data collection technique was that it provided a deep

understanding of the phenomenon that was studied. The second data collection

method was a documentation analysis of archival data. It included the analysis of

work artefacts which were already available. One disadvantage of such kind of data

collection technique was that the documents were created for another purpose that

that of the research study, so it is not certain if the requirements on data validity

and completeness were the same.

6.1.2 Data collection - Applying the JTrust methodology

We apply the JTrust methodology. This entails that there is already a scenario

and requirements from the stakeholders. There have already been discussions with

domain experts. Therefore, at this stage of the system development the JTrust

methodology can be applied to model the NHS system requirements to model and

reason about the trust relationships and assess the trustworthiness of the NHS sys-

tem. We performed the role of the requirements analyst to carry out the following

steps of the methodology. The identified trust relationships are between the require-

ments analyst and the various entities with which the system is interacting.

ACTIVITY 1: DEPENDENCY ANALYSIS

From the scenario, we identify the following main actors, Patient, GP, Pharma-

cist, NHS England, Health and Social Care Information Centre and NHS System.

We carried out discussions with domain experts and studied organisation documents

that were publicly available. These documents were describing the structure of the

NHS in England and its policies.

• Patient: The patient is a person who wants to receive health care service in

England (NHS, 2013b). This includes access to local services such as the GP,

125

Chapter 6. Evaluation

hospital or clinic, or health improvement services provided by the patient’s

local community . In addition, the patient wants his information to be kept

confidential and his privacy to be respected. This does not mean that his

information will not be shared but it does mean that it will only be shared

with his agreement (consent) or if there is another legal basis. Also, the patient

can choose the GP practice that he would like to register. The patient can

also nominate a pharmacy from where he wants to collect his medicines. The

patient has an NHS number that is the only National Unique Patient Identifier,

used to help healthcare staff and service providers match the patient with his

health record. Everyone registered with the NHS in England and Wales has his

own NHS number. The NHS number acts as the key to unlocking services such

as Choose and Book and the Electronic Prescription Service. A patient should

know his NHS number as this can help those treating him to find his records

more quickly and share them more safely with other health care professionals.

• NHS England: The NHS England is an independent body, at arm’s length

to the UK government (NHS England). The main aim of the NHS England

is to improve the health outcomes for people in England by commissioning

primary care and specialist services and to oversee the operation of clinical

commissioning groups, which include GP practices and NHS hospitals.

• Health and Social Care Information Centre: HSCIC is the UK national

provider of information, data and IT systems for health and social care (NHS,

2013a). It supports the delivery of IT infrastructure, information systems, and

standards to ensure that information flows efficiently and securely across the

health and social care system, in order to improve patient outcomes. It can be

directed by the secretary of state or NHS England.

• NHS System: It is a group of systems that offer health care services. Some

of them are the following (NHS, 2013a):

– Automatic Identification and data capture (AIDC), which is the use of

machine readable codes such as barcodes and Radio Frequency ID tags.

It intends to improve patient identification, medical record tracking, phar-

macy services, and asset management.

– Choose and Book, which is a national electronic referral service which

gives patients a choice of place, date and time for their first outpatient

appointment in a hospital or clinic.

– Electronic Prescription Service (EPS), which enables prescribers, such as

GP’s and practice nurses, to send prescriptions electronically to a dis-

126

Chapter 6. Evaluation

penser, such as a pharmacy, of the patient’s choice. This makes the pre-

scribing and dispensing process more efficient and convenient for patients

and staff.

– GP2GP, which enables patient’s electronic health records to be transferred

directly and securely between GP practices.

– NHS e-Referral Service, which improves the quality of the referral experi-

ence for patients and better support business processes for clinicians and

administrative staff.

– NHSmail, which is a secure email service and its purpose is for sharing

patient identifiable and other sensitive information.

– Picture Archiving and Communications System (PACS), which enables

x-ray and scan images to be stored electronically and viewed on screens,

helping to improve diagnosis methods.

– Registration Authorities and Smartcards, which are used by health pro-

fessionals for secure access to confidential information, as governed by

registration authorities.

– Summary Care Record (SCR) (NHS, 2011a; NHS, 2012b). A patient’s

SCR contains essential health information about any medicines, allergies,

and adverse reactions derived from their GP record. Where a patient and

their doctor wish to add additional information to the patient’s SCR, this

should only be added with the explicit consent of the patient. Once SCRs

are created, authorised NHS healthcare staff in urgent and emergency

care settings that need access to the information will view these records

when delivering clinical care. Figure 6.4 shows how the SCR looks (NHS,

2012a).

– Spine, which provides the infrastructure that enables increased patient

safety, improved quality of healthcare, greater clinical effectiveness, and

better administrative efficiency. Its role is to support all the previous

services, by providing a central repository of SCRs that can be shared with

NHS staff, a national repository of NHS organisations and all registered

users, authentication of staff access, and supports a single NHS number as

a unique identifier facilitating the safe, efficient, and accurate sharing of

patient information across organisational and system boundaries within

the NHS.

• General Practitioner (GP): The General Practitioner is a doctor who works

in primary care (NHS Careers). They are the first point of contact for most

127

Chapter 6. Evaluation

patients. The bulk of the work is carried out during consultations in the surgery

and during home visits. GPs provide a complete spectrum of care within the

local community, such as dealing with problems that often combine physical,

psychological, and social components. GPs call on an extensive knowledge of

medical conditions to be able to assess a problem and decide on the appropriate

course of action. They know how and when to intervene, through treatment,

prevention and education, to promote the health of their patients and families.

Most GPs are independent contractors to the NHS. This independence means

that in most cases, they are responsible for providing adequate premises from

which to practise and for employing their own staff.

• Pharmacist: A pharmacist is an expert in medicines and their use (NHS Ca-

reers). The majority of pharmacists practice in hospital pharmacy, community

pharmacy, or in primary care pharmacy, working to ensure that patients get

the maximum benefit from their medicines. They advise medical and nursing

staff on the selection and appropriate use of medicines. They are responsi-

ble for dispensing medicines, and clarify with GPs and other prescribers that

dosages are correct. In addition, provide information to patients on how to

manage their medicines to ensure optimal treatment, for example, making sure

that patients are aware of potential side effects. Finally, Pharmacists can also

give advice to members of the public on how to improve their health and

well-being.

Once we had gathered as much information as we could from the domain, we

constructed the system under development goal model. By system, we mean the

information system for NHS that includes the aforementioned services that establish

a paperless national health service. We do this in order to model the goals of the

system under development and to identify which of them can be accomplished by

the system itself and for which ones the system is depending on other entities. It

was vital to examine this, as these dependencies are a potential threat to the system

trustworthiness. The NHS system goal diagram was constructed using the JTrust

tool and is depicted in Figure 6.5.

The high level goal of the NHS system is to provide e-Health Services

to patients and health care professionals. This high level goal was decomposed

into smaller and more specific subgoals, which in turn they were decomposed into

smaller subgoals. Therefore, the high level goal of the system under development is

to provide e-health care services. This goal has a number of subgoals as depicted

in Figure 6.5. The most important goal is Update SCR as it is essential that the

SCRs have up-to-date and accurate information about the patient. All the subgoals

128

Chapter 6. Evaluation

Figure 6.4: Summary care record of a patient

of the high level goal e-Health Services have an equal share of contribution 0.1,

apart from the most important subgoal SCR which has 0.2. Hence, the ”share”

property of the decomposition links is set accordingly. The Referral subgoal has in

turn two subgoals, the Choose and Book and the e-Referral. Both of the goals

have an equal share of contribution to their parent goal, so the ”share” property of

their decomposition link is 0.5. Also, the SCR goal has subgoals as well. These

are the Create SCR, View SCR, Update SCR, and Additional Information,

which have an equal amount of share to their parent goal so their ”share” property

is 0.25. The Additional Information goal has two further subgoals Get Consent

and Add Information with an equal amount of contribution so the ”share” prop-

erty of their decomposition link is 0.5. The EPS has EPS Prescriber and EPS

Dispenser as subgoals with and equal amount of contribution 0.5. The EPS Pre-

scriber has four subgoals, the Prescription Tracker, Dispenser Nomination,

Sign Prescription, and Cancel Prescription with an equal amount of contribu-

tion 0.25. The EPS Dispenser has two subgoals, the Download Prescription

and Confirm Medicine with an equal amount of contribution 0.5. In other words

the system goal diagram is a hierarchy of goals of the NHS system along with their

relative importance in the hierarchy. Constructing the system goal diagram is vital

129

Chapter 6. Evaluation

in order to identify the goals that can be achieved solely by the system itself and

the ones that cannot.

Figure 6.5: NHS System goal diagram

The next step is to examine each goal and decide whether the goals can be

achieved by the system itself or it requires interacting with other actors of the system

domain. Our focus is on three goals, the Update SCR, Sign Prescription, and

Confirm Dispense, which cannot be fulfilled by the system itself unless it interacts

with other entities of the system domain. The rest of the goals are considered as

goals that can be fulfilled by the system. Thus, using the tool we change the

capability property of the goals to false where needed(Figure 6.6). This represents

130

Chapter 6. Evaluation

that the system cannot fulfil the aforementioned goals and the confidence level in the

fulfilment of the goals is 0. For example, in order the patient’s summary care record

to be updated and accurate it requires the contribution from the GP. After a GP

has examined a patient then he needs to update the patient’s SCR. Only then, the

NHS system can be trustworthy by maintaining updated and accurate SCRs. Up

to this stage, by consulting the JTrust tool the trustworthiness of the system to be

is 97.5%. Thus, for the non-achievable goals the interacting actors that contribute

to the goal’s fulfilment need to be identified.

Figure 6.6: Modifying the capability property of a goal

In the system domain there are other actors that can fulfil the goals that the

system is incapable of fulfilling by itself, so the appropriate correspondences need

to be modelled. To this end, the goal diagrams of the candidate actors need to

be constructed. For the goals Update SCR and Sign Prescription the can-

didate actor is the GP, who can update the SCR and also sign the prescription

after he has examined a patient. For the goal Confirm Dispense the candidate

actor is the Pharmacist. Thus, the goal diagrams for the aforementioned actors

are constructed and the appropriate correspondence links are added between the

corresponding goals of the NHS System and the GP and the Pharmacist as

show in Figure 6.7. Once added, the JTrust tool automatically added the respective

dependency links of the NHS System on the GP and the Pharmacist.

The NHS system’s goals that cannot be accomplished by the system itself,

were modelled as dependencies on other interacting actors. Figure 6.8 depicts the

modelled dependences by the JTrust tool. These are the following:

• The NHS System depends on the GP to Update SCR after the examination

of patients.

• The NHS System depends on the GP to electronically Sign Prescription.

All prescribers need to apply advanced electronic signatures to prescriptions.

These advanced electronic signatures are unique to individual users and are

131

Chapter 6. Evaluation

Figure 6.7: Correspondences links between NHS System and GP and Pharmacist

132

Chapter 6. Evaluation

applied using their smartcard or passcode.

• The NHS System depends on the Pharmacist to confirm that the medicine

has been dispensed to the Patient.

Figure 6.8: NHS System dependencies

The modelled dependencies represent the means with which the system can fulfil

its goals and be trustworthy for the stakeholders. Nevertheless, they represent just

assumptions, hence they require further attention.

The modelled dependencies of the system on other entities of the system domain

constitute a potential threat to the NHS system trustworthiness. The system is

required to be trustworthy, but if the dependencies are not fulfilled when the system

133

Chapter 6. Evaluation

is put in operation, then it will not be trustworthy. In particular, if the GP does

not constantly update the SCR then the SCR will not be updated and accurate

and the system is not trustworthy in terms of holding and updated and accurate

SCR. If the GP does not sign the prescription, the system will not be able to show

the prescription to the Pharmacist in order to dispense the patient’s medicine in

time, thus the system is not trustworthy in terms of showing the prescription to

the Pharmacist. If the Pharmacist does not confirm the dispensing of the medicine,

the system will not have an accurate record of the medicines taken by the patient,

thus the system is not trustworthy again. Moving on and implementing the system

without investigating further these dependencies by identifying ways to remove the

uncertainties at this stage, will result in a system that has the risk of not being

trustworthy.

ACTIVITY 2: RESOLUTION ANALYSIS

To build confidence that the NHS system dependencies on other entities will be

fulfilled and the NHS system will be trustworthy, trust and control resolutions of the

modelled dependencies need to be found. Each one of the identified dependencies

from the previous activity constitutes a potential vulnerability to the system because

there is uncertainty whether they will be fulfilled. To remove the uncertainty the

dependencies must be resolved either by trust or control. The dependency on the

GP to Update SCR is resolved by Control. This means that at this stage there

is the assumption that the NHS England is controlling the GP to update the

SCR after the examination of a patient. The dependency on the GP to electron-

ically Sign Prescription is resolved by Normative Trust. Initial information

suggests that it is a norm in the health care domain of England that the GPs sign

the prescriptions in time. The dependency on the Phamacist to Confirm Dis-

pense of the medicine to the Patient is resolved by Normative Trust. Similarly,

it is considered a norm that the Pharmacists confirm the dispensing of medicines

to the patients. For the specific dependencies the resolutions are shown in Fig-

ure 6.9. These resolutions are just assumptions at the specific stage of the software

development process and they were based on initial domain information. However,

the introduction of a new dependency on the NHS England raises the question of

whether NHS England will actually do this once the system is implemented.

The reliance of the NHS System on the NHS England to control the GP

introduces a new dependency on the NHS England. The system can be considered

trustworthy as long as NHS England has the control means to force the GP to

Update the SCR. As a result the System will be trustworthy because it will

constantly have an updated and accurate record. Consequently, there is a new

dependency, i.e., the NHS System depends on the NHS England to control the

134

Chapter 6. Evaluation

Figure 6.9: First iteration of resolution analysis

135

Chapter 6. Evaluation

GP. In the developed model, the NHS England actor is added and its goal diagram

is constructed that will contain the goal Control GP as shown in Figure 6.10.

On the other hand normative trust type of resolutions do not introduce any new

dependency.

The newly introduced dependency on the NHS England is a potential vulnera-

bility for the system and needs to be resolved as well. So, the dependency is resolved

by External Trust, i.e., the UK Government states that the NHS controls the

GP. That is why there is no further introduction of new dependencies, but there

is a need now to examine what are the entailments that derived from the identified

resolutions.

ACTIVITY 3: ENTAILMENT ANALYSIS

The identified resolutions point out the underlying trust relationships. From the

resolutions we need to identify the entailments, which represent the existing trust

assumptions about the trust relationships in the e-health care socio-technical system

that are underlying our analysis.

The developed model for the analysis of the entailments is shown in Figure 6.11.

So, the control resolution NHS England controls GP to update SCR required

an entailment that NHS England can was trusted to control the GP. The

external trust resolution, i.e., UK government states that NHS England con-

trols the GP, required an entailment that UK government was trusted for

what it was stating. Then the normative trust resolution that GP signs the pre-

scription required an entailment that the environment norm was trusted for

GP to sign the prescription. The normative trust resolution that Pharmacist

confirms the medicine required an entailment that the environment norm

was trusted for the Pharmacist to do so. These entailments would have an

impact on the trustworthiness of the developed system and their validity needed

justification.

The next step was to justify if the entailments were valid or not and to modify

their ”Valid” property accordingly as shown in Figure 6.12. The entailments by

default were set as false unless we found evidence that proved the opposite. For the

entailment that the environment norm was trusted for the GP to sign pre-

scriptions was true as there was history of evidence that supported this assumption.

However, for the entailment that environment norm was trusted for the phar-

macist to confirm the medicine given to the patient there was evidence, i.e.,

history of events that showed the opposite. Therefore this is not a valid entailment

and as a consequence the dependency between the system and pharmacist may not

be fulfilled. In addition, for the entailment that UK Government is trusted for

stating that NHS controls the GP to update the SCR it is false as there

136

Chapter 6. Evaluation

Figure 6.10: Second iteration of resolution analysis

137

Chapter 6. Evaluation

is not sufficient evidence that UK Government is trusted in the context of health

care. Therefore, the entailment that NHS is trusted to control the GP becomes

invalid as well. The invalid entailments represented trust assumptions about trust

relationships on which the further development of the NHS system would have been

based. Eventually they would have become potential vulnerabilities of the system.

Thus, additional requirements were added to the functionality of the system to en-

sure the fulfilment of dependencies and as a consequence the trustworthiness of the

NHS system.

ACTIVITY 4: TRUSTWORTHINESS REQUIREMENT ANALYSIS

This activity considered the invalid entailments of the entailment analysis. Such

entailments originated from dependencies that were not resolved and constituted

a potential vulnerability to the trustworthiness of the developed NHS system, as

there was no confidence that the dependencies would have been fulfilled once the

system was developed and put into operation. As a result, there was the need to

identify new resolutions to feel confident in the fulfilment of the dependencies. The

new resolutions were control resolutions where the NHS system would act as the

controller and force actors to fulfil their dependencies.

Therefore new resolutions were necessary for the dependencies between the NHS

System and the GP and between the NHS System and the Pharmacist as shown

in Figure 6.13. For the first case of the dependency between the System and the GP

there was new system functionality added, which consisted of two trustworthiness

requirements:

i) The NHS System shall examine whether the SCR of a patient has been accessed

and updated.

ii) The NHS System shall prevent the issue of a prescription from the GP unless

he has updated the patient’s SCR.

Between the two requirements, the first one was observation and the second one

deterrence.

For the second case, new functionality was added, which consisted of three trust-

worthiness requirements:

i) A pharmacist shall input the medicine given to the patient to the NHS system.

ii) The NHS System shall verify whether the pharmacist provides the exact medicine

to the patient.

iii) The NHS System shall prevent the pharmacist from issuing a receipt if the

pharmacist does not provide accurate medicine.

138

Chapter 6. Evaluation

Figure 6.11: Entailments analysis

139

Chapter 6. Evaluation

Figure 6.12: Entailments validation

Among the three requirements, first two were observation and third one was deter-

rence.

Therefore, through observation and deterrence requirements the system enforces

the fulfilment of the dependency on the pharmacist to confirm the medicine given to

the patient and the fulfilment of the dependency on the GP to update the patient’s

SCR.

ACTIVITY 5: NHS SYSTEM TRUSTWORTHINESS ASSESSMENT

At any stage, the JTrust tool automatically assessed the NHS system trustwor-

thiness. Before the trust analysis the trustworthiness was at 91.25% as shown in

Figure 6.14. When the trustworthiness requirements were added to the system the

trustworthiness became 100%.

6.1.3 Data analysis - Evaluation results and discussion

Our experience in using the JTrust methodology presented in the thesis for the

NHS System revealed a number of issues that are worth pointing out. The richness

of the trust issues in the case study gave us confidence that we had succeeded in

our aim to develop a trustworthy information systems development methodology.

In general the results of the evaluation were favourable. There was a qualitative

analysis of the data collected in the previous step. The objective of the analysis was

to derive conclusions from the data, keeping a clear chain of evidence. The chain

of evidence means that the reader should be able to follow the derivation of the

results and conclusions from the collected data. To this end, sufficient information

from each step of the methodology application and decision taken was presented

in the previous section. During the case study we made a number of observations

and these observations contributed to the evaluation of our methodology. In this

regards, the main observations were the following:

• The methodology provides a useful systematic way to identify and

model direct and indirect trust relationships: This systematic way is of

140

Chapter 6. Evaluation

Figure 6.13: Trustworthiness requirement analysis

Figure 6.14: Trustworthiness level before and after the trust analysis

141

Chapter 6. Evaluation

high importance especially when the success of the information system under

development will depend on the strength of such trust relationships. Con-

structing a model of an information system includes modelling of entities that

are free to behave however they want, such as humans and third party software.

These are trust relationships that underlie the information system and the de-

veloper cannot easily identify them. The modelling of direct and indirect trust

relationships makes them explicit and brings them into focus. For example,

our model of the case study included a dependency on the GP to update the

SCR, which was not clear to the developer that it is also a trust relationship

with the GP. Moreover, the indirect trust relationship on the NHS England

it would have been difficult to identify. Therefore, identifying the underlying

trust relationships, both direct and indirect, is a necessary first step towards

the implementation of a successful information system.

• The methodology successfully enables the developer to reason about

trust relationships: This structured way is also important especially in situ-

ations where the development team consists of members with different cultural

backgrounds and perceptions about trust. Employing JTrust’s structured way

of reasoning about trust relationships, i.e. experiential trust, reported trust,

normative trust, external trust, it is easier for the development team to explain

why they believe that a trust relationship will be realised. For example, when

the model of our case study included the dependency on the GP to update

the SCR and to sign the prescription, it was hard to explain why she would

actually do it once the system was developed. With structure reasoning about

trust relationships becomes clear where such development decisions are based.

• The methodology successfully enables the identification, modelling,

and analysis of trustworthiness requirements: The methodology enables

the developer to identify trustworthiness requirements, by recognizing func-

tionality that is required to ensure the system trust trustworthiness and to

model trustworthiness requirements by associating system functionality with

specific system dependencies in which there is lack of confidence that they

will be fulfilled once the system is in operation. In addition, JTrust provides

a systematic way for the developer to analyse trustworthiness requirements

by examining them in detail and discovering essential features, such as ob-

servation and deterrence functionalities. For example, in case of the system

dependency on the GP to update the Summary Care Record there was not

trust that he will do it, so a trustworthiness requirement was identified and

modelled. That trustworthiness requirement was analysed and consisted of an

142

Chapter 6. Evaluation

observation functionality to examine whether a SCR has been accessed and

updated and a deterrence functionality to prevent the issue of prescription

unless the SCR has been updated.

• The methodology successfully enables the identification of situations

where there is a trade-off between trust and control: The more the de-

veloper trusts the entities that are interacting with the technical system that

he is developing the less stringent the system requirements are that force the

interacting entities to behave in a desired by the developer way. These situa-

tions are implicit and not clearly visible to the developer. However, employing

JTrust such situations are discovered and become explicit. The developer is

able to comprehend the different alternatives between trust and control and

consider the benefits, risks, and implications of her decisions to the system

under development. For example, in the case of system dependency on the

GP to sign the prescription was resolved because there was normative trust

that made us confident that the GP will actually do that once the system is

put in operation. However, even if there was not enough trust the developer

could have considered not to add any extra trustworthiness requirement as this

would have increased the complexity of the system, decreased its usability for

the GP and it would have outweighed the benefits. The introduction to the

software system control measures because of luck of trust, it will have a neg-

ative effect. The control measures will result in a less usable software system

and also they will decrease its performance. The negative effect is not only

limited to the usability and performance of the system, but it will also affect

other non-functional requirements, e.g. usability or availability.

• The methodology successfully provides an early assessment of the

trustworthiness level: This assessment is reasonably beneficial during the

early development. It provides the advantage of identifying early potential

threats to system trustworthiness in order to be mitigated. Therefore, the

system development is based on strong foundations that will help develop a

successful system. Otherwise, the development of the system is based on the

wrong assumptions and can lead to a potential failure of the developed system

or cost a vast amount of resources, such as time and money, in order to fix

them. For example, in the case of system dependency on the GP to update the

SCR, if there was no trustworthiness requirement the GP would not have been

updating the SCR, and as a result the system would not have been trustworthy

because it would not possess a patient’s medical record that is accurate and

updated.

143

Chapter 6. Evaluation

• There is an overhead of modelling elements and activities: First, when

the project focuses on a large number of system dependencies, the efforts for

developing and maintaining the models are considered high. In particular,

JTrust needs more effort in analysing the dependencies and constructing res-

olutions and entailments models. The models were often becoming too big

which constituted them less readable.

• Additional guidelines are needed regarding the validation of the en-

tailments: The methodology identifies entailments, which are conditions of

trust relationships on which the system development is based. Therefore, these

entailments require validation. JTrust provides some general guidelines that

evidence needs to be collected, such as historical data or testimonials from

various stakeholders. However, more guidelines could have been helpful for

the developer.

6.2 Study 2: Evaluation of JTrust methodology by survey

research

An important category of empirical study is that of the survey, where expert indi-

viduals that have used specific methods or tools on projects are asked to provide

information about the method or the tool (Kitchenham, Linkman, and Law, 1997).

Then the information collected from the survey is analysed using standard statistical

techniques. We adopted the survey method as way to further evaluate our JTrust

methodology and confirm, strengthen, and further generalise our research claims

about the efficacy and usefulness of our methodology.

The survey included both offline and online phases. Expert individuals, including

academic and industry researchers, performed a trial of our proposed methodology

using a simulated case study and then they answered the online questionnaires after

an evaluation has been completed. Throughout this thesis we will use the term

”user” for those expert individuals as they were the users of the methodology. The

evaluation study was both a quantitative and qualitative survey. On one hand it

was quantitative because it was an investigation of the number of researchers that

they were agreeing with the statements presented to them. And on the other hand

it was qualitative because there was a feature-based evaluation carried out by users

who had studied and had experience of the methodology. Users assessed the extent

to which the methodology and the tool provide the required features in as usable

and effective manner based on personal opinion. The survey approach is depicted

in Figure 6.15.

144

Chapter 6. Evaluation

The goal of the survey was to build up ”weight of evidence” to support our

claims and confirm the propositions that were generated from the data of the pre-

vious evaluation through the case study. In particular, to collect enough data from

sufficient number of subjects, i.e. the users, all adhering to the same treatment, i.e.

our proposed methodology, in order to obtain a statistically significant result on the

attribute of concern compared to some other treatment, i.e. the methodologies that

users were using at their institution.

Figure 6.15: Survey approach

6.2.1 Survey design

SURVEY OBJECTIVES

145

Chapter 6. Evaluation

The survey objectives are to answer the research questions of the evaluation

study RQ4, RQ5, and RQ6. Therefore, the following research objectives were de-

fined in order to address the research questions of the evaluation study, which used

perception-based measures and performance based measures.

O1: Measure to what extent the methodology enables the user to model and reason

about trust relationships during information systems development (perceived

efficacy).

O2: Measure to what extent the methodology enables the user to model and analyse

trustworthiness requirements during information systems development (per-

ceived efficacy).

O3: Measure to what extent the methodology enables the user to assess system

trustworthiness at a requirements level (perceived efficacy).

O4: Measure the ease of use of the methodology (perceived efficiency).

O5: Measure the actual effectiveness of the methodology by evaluating how well

the participants perform the evaluation exercise. The evaluation will be in

terms of validity and completeness of the developed models.

SUBJECTS

To evaluate our methodology we organised four lab sessions, each one at a dif-

ferent research institution and invited groups of users to apply our methodology on

a scenario. The specific institutions were selected based on judgmental and conve-

nience sampling, because of their research speciality, which can bring more accurate

results, and because of the ease of recruiting them, their accessibility to us, and the

availability of limited resources. The users who participated in the sessions had al-

ready experience with software development methodologies and especially the ones

from the academic institutions were familiar with virtual learning environments. In

particular the lab sessions were organised at the following institutions:

• University of East London, UK. Its Software Systems Engineering Research

Group is focussed on applied software engineering in an industrial context,

where distributed systems engineering and secure systems engineering are es-

sential concerns. It contributes to the fundamentals of software engineering

through its research on architectures, evolution, requirements and reuse.

• British Telecom, UK. Its Security Futures Practice is conducting research in

three broad areas: securing the converged network; security the virtual organ-

isation; security management framework; In securing the virtual organisation

146

Chapter 6. Evaluation

trust is essential in any form of communication and especially in securing rela-

tionships between enterprises. BT’s researchers are exploring the development

of systems that can enable the appropriate sharing of information assets while

protecting them from external software attacks and physical theft.

• University of the Aegean, Greece. Its postgraduate program on cultural in-

formatics includes a module where students learn how to analyse and design

cultural systems that ensure the security and privacy of information. The

students had experience with goal modelling techniques.

• University of Castile-La Mancha University, Spain. Its Institute of Informatics

Technologies and Systems is to enhance research in different areas of Computer

Engineering in order to develop and transfer to the organisations, information

systems and technologies that contribute to the progress and well being of so-

ciety. The ITSI has over 70 researchers with great experience in both basic and

applied research. Researchers develop their work in eight groups addressing

different research lines related to technology and information systems.

In total there were thirty-two users who voluntarily took part in the four lab

sessions. More specifically, six were from the University of East London, seven from

British Telecom, twelve from the University of the Aegean, and five from the Univer-

sity of Castile-La Mancha. Among the users were academics, industry researchers,

research students and postgraduate students. Five users had more than fifteen years

of experience in software engineering, seven users had experience between six to fif-

teen years, and the rest of the users had experience in software engineering up to five

years. Also, the majority of the users were experienced in security engineering, while

there were some users that had experience in trust engineering, risk analysis, soft-

ware protection, privacy analysis, dependability analysis, and quality assessment.

Almost, all users were familiar with UML, while there were some users that were

also familiar with iStar modelling language, Secure Tropos, and PriS.

ETHICS PROTOCOL

During the study the guidelines from the European Code of Conduct for Research

Integrity (Drenth, 2012) were followed. More specifically, subjects were informed

fully about the purpose, methods, and intended possible uses of the research, what

their participation in the research entails. Also, the subjects voluntarily participated

in the research study and provided their consent. In addition, the confidentiality of

any sensitive information supplied by subjects and their anonymity was respected

and preserved.

LOCATION

147

Chapter 6. Evaluation

The evaluation sessions were carried out at the locations of the institutions. Lab

rooms were used in the case of academic institutions, while a meeting room was

used in the case of BT.

TOOLS

For the case of academic institutions the labs included personal computers with

Microsoft Windows XP operating system, while for the case of BT the users brought

their BT laptops with them. Furthermore, a web link was provided to the users in

order to download the JTrust tool. The link included versions of the JTrust tool for

the Microsoft Windows operating system and the MacOS operating system.

TRAINING

Since JTrust is a new methodology and the users were not familiar with it, a

forty-five minute presentation of the JTrust methodology was carried out in order

to provide training to the users. The presentation did not include any general in-

formation regarding trust in software engineering, but it was very focused on the

methodology. It explained the goal of the methodology, its concepts, the process,

and the calculations regarding the resolution levels of a dependency and the system

trustworthiness. At the end of the methodology presentation users’ questions were

answered and the scenario on which the users applied the JTrust methodology was

described. The scenario was about the development of a trustworthy Virtual Learn-

ing Environment (VLE). A VLE is a system for delivering learning materials to

students via the web. These systems include assessment, student tracking, collab-

oration, and communication tools. They can be accessed both on and off-campus,

meaning that they can support students’ learning outside the lecture hall 24 hours

a day, seven days a week.

TASKS

After the description of the scenario the users were asked to carry out a trust

analysis of the system of the scenario and the following task were given to the users:

• Model trust relationships and identify the underlying trust assumptions about

such those trust relationships.

• Identify and model trustworthiness requirements.

• Assess the trustworthiness of the system at a requirements level.

To this end, the users had to construct the respective JTrust models and the dura-

tion for the completion of the task was one hour. Moreover, specific functionality

regarding the VLE was given to the users in order not to spend time on the system

requirements but focus the trustworthiness aspect of VLE analysis. In particular,

students, as users of the VLE, should be able to carry out the following actions:

148

Chapter 6. Evaluation

• Access any academic material related to their course.

• View their coursework group members and be able to collaborate.

• Access any administration forms or informational documents related to their

studies.

• Access and modify the personal information of their student record.

• Access their academic student record (grades, attendance, registered courses).

DATA COLLECTION METHODS

In this study the unit of analysis was the individual user, and based on this

the questionnaire was selected as one method for collecting data as shown in Fig-

ure 6.16. After completing the tasks the users were asked to complete a question-

naire. The questionnaire collected both quantitative (close questions) and qualita-

tive data (open-ended questions). More particularly, the questionnaire contained

twenty-three questions, which can be categorised as follows:

• User’s profile related.

• Modelling language related.

• Tool related.

• Methodology activities related.

• Methodology usability related.

• Open recommendations.

The survey was carried out with an online questionnaire by employing the Google

Forms service. Therefore the data was collected and stored online automatically.

In addition, a second way to collect data was observation of the subjects while

they were carrying out the requested tasks. The observation was in terms of how

much time the users were spending on each task, the questions they asked, and the

comments that they made verbally. Also, the users were told that we were there

for answering their questions and not to observe them in order to ensure that those

being observed are not constantly thinking about being observed and to ensure that

the observed behaviour was normal, i.e. what usually happens in the environment

being observed and is not affected by the observer. The gathered data from the

observations were recorded in the form of field notes, which begun during the actual

observation, where we wrote what was necessary and we filled in the details later,

but as soon as possible.

149

Chapter 6. Evaluation

Figure 6.16: Survey data collection methods

DATA ANALYSIS METHODS

The first step in the analysis of the survey data was to tabulate them and then

to identify patterns in the tables. The second step was to evaluate the different

aspects of the methodology based on the survey data. In particular, there was a

distinction of two types of measures:

• Performance based measures. How well did the users perform the task? There

are three measures used to evaluate the performance on the task, i.e. syntactic

quality, semantic quality and pragmatic quality.

• Perception based measures. How useful and how easy to use did the users

perceive the methodology? Perceived usefulness is defined as the degree to

which the participant believes that the methodology is effective in achieving

its objectives. Perceived ease of use is defined as the degree to which the

participant believes that the methodology is free of effort.

STUDY VALIDITY

In terms of construct validity the quality of the questionnaires was improved af-

ter several iterations of improvement by following the feedback from questionnaire

experts from BT in order to make sure that there were no major discrepancies of

understanding by the users. In addition, we also carried out a pilot test at the

university of East London and there was a process of reflection and redevelopment

of definition, in order to make sure that the users understood the terms being used.

Moreover, there was an investigation in the literature and comparison with other

metrics used in similar surveys. We evaluated the JTrust methodology and cor-

rectly measured quantitative metrics, such as the efficacy and the effort required to

150

Chapter 6. Evaluation

undertake trust analysis activities in a software project. The participants answered

most of the questions apart from those that were perceived as difficult at an early

stage.

In order to increase the internal validity of the study we were not directly involved

in the application of the methodology on the scenario given apart from answering

any questions of the users regarding the methodology and observing their behaviour.

Also, there was method triangulation as we collected data with two different ways,

through questionnaires and observation of the users while applying the methodology.

The workshops were held at three different countries, UK, Spain and Greece in

order to increase the external validity of the study. Also, participants were from

various countries around the world and we ensured data triangulation. Moreover,

among the users were academics, industry researchers, research students, and post-

graduate students in order to ensure the representativeness of the user population.

6.2.2 Data collection

On the days in which the lab sessions were held, the presentation slides, the JTrust

tool were made available to the users. The tool contained an already started project

for the VLE scenario with an instance of a dependency resolution in order to make

the users get started.

The users once they attended the JTrust presentation, started performing the

evaluation tasks. We were present during this time in order to observe and capture

first-hand behaviour and interactions for data collection, and to answer any possible

additional questions that the users might have. The goal was to capture if possible

the users’ thought process and what work takes place inside the users’ head. To this

end we wanted to establish a communication with the users, since users reveal their

thought process most naturally when communicating with other users (Seaman99),

so this communication offers the best opportunity for us to observe the application

of JTrust. All users constructed the JTrust models with at least a part of the system

functionalities proposed.

At the of the trust analysis of the scenario, the users were given web links to

the online questionnaire in order to fill in and complete the evaluation lab session.

With regards to data validation, in general we observed that the users developed

the proposed JTrust models satisfactorily. This means that the JTrust methodology

was applied correctly and in accordance with the planning. Therefore, we can claim

that the obtained data was valid to conduct the proposed evaluation.

151

Chapter 6. Evaluation

6.2.3 Data analysis - Evaluation results and discussion

The results were evaluated by a combination of quantitative and qualitative analysis

techniques. For the quantitative data descriptive statistics techniques were used,

while for the case of qualitative data there were first coded, then patterns were

identified, and generalisations could be formulated. These analyses achieved the

objectives that were set at the start of the survey evaluation.

Among the users, 92% that said that the modelling language is powerful enough

in order to support trust analysis and modelling. 54% of the users said that the

modelling language did not included redundant concepts. Nevertheless, there was a

35% that agreed that the modelling language had redundant concepts. In addition,

65% agreed and 31% strongly agreed that the modelling language concepts were well

defined respectively. Moreover, 58% of the users agreed and 27% strongly agreed

that the graphical notation employed by the modelling language were intuitive (Fig-

ure 6.17).

Figure 6.17: Results related to JTrust modelling language

With regards to the JTrust modelling tool, the majority of the users agreed that

the tool required further improvement. On the other hand, 81% and 15% of the

152

Chapter 6. Evaluation

users agreed and strongly agreed that the trust related functions of the tool are

satisfying respectively. Moreover, 62% and 31% of the users agreed and strongly

agreed respectively that the JTrust tool was easy to use (Figure 6.18).

Figure 6.18: Results related to JTrust tool

With regards to the methodology as a whole, 69% and 23% of the users agreed

and strongly agreed respectively that with the use of JTrust methodology the trust

assumptions are explicitly captured. In addition, 50% and 46% of the users agreed

and strongly agreed respectively that the methodology successfully captures trust-

worthiness requirements. This is a very significant result as this is one of the most

important aspects of the methodology. Furthermore, 62% and 31% agreed and

strongly agreed respectively that the methodology successfully assesses the system

trustworthiness at a requirements level. In terms of the usability of the method-

ology, 58% and 35% of the users responded that the activities of the methodology

were easy to follow (Figure 6.19).

The qualitative data from the users’ responses were coded and patterns were

identified. Based on these patterns we can report the following:

• The trust and control techniques are useful. In particular the techniques

are useful in order to identify the nature of trust and level of control that is

153

Chapter 6. Evaluation

Figure 6.19: Results related to JTrust methodology

154

Chapter 6. Evaluation

required. Moreover, these techniques enable the calculation of the system

trustworthiness at a requirements level.

• UML style of notation would be more preferable. The goal modelling

language is not very popular among developers. Thus, a JTrust modelling

language with a UML-like graphical notation could have been easier to learn

and to remember.

• Developers with no prior experience of goal modelling might find

challenging to use the methodology. As the methodology is greatly based

on goal modelling, it requires a decent level of knowledge of goal modelling from

the developers. As a consequence, developers not familiar with goal modelling

will require detailed training to learn to use the methodology.

• The JTrust tool could be improved. The improvement could be in the

form of integration of the tool with other tools or the integration of other

relevant concepts, such as associative risk, into the JTrust tool. Moreover,

JTrust models tend to become large in size and there is lack of modelling

space for the developer.

During the lab session we observed the execution of the survey tasks by the users

and we collected data in the form of notes. This data was coded and we made a

number of observations, which contributed to the evaluation of our methodology.

In this context, the main observations were the following:

• JTrust process: The activities of the JTrust methodology were identified

as fully operational and adequate, as the approach provided adequate tech-

niques to model and analyse trustworthiness requirements. The combination

of these techniques was treated as being systematic, reasonably applicable and

in particular, reducing the bias for the trust relationships reasoning.

• Artefacts: JTrust provides graphical representation of artefacts produced

by its activities. In particular, visual presentation is provided through trust

models, which made it easy, to communicate the trust analysis information

with other developers, as observed during the lab sessions.

• The size of JTrust models may become big: This is a problem the Jtrust

models have inherited from goal modelling. A system under development may

have a great number of interactions with other entities of the system envi-

ronment. By representing all the system dependencies in a model the model

becomes large in size. JTrust adds an overhead to that, since it requires the

155

Chapter 6. Evaluation

modelling of resolutions and entailments of dependencies. Also, it requires the

modelling of trustworthiness requirements. As a result, the models tend to

become big and complex to read.

• Entailment validation techniques were limited: We have proposed that

once the entailments have been identified and model, the developer needs to

seek evidence, such as historical records and past experience, in order to exam-

ine their validity. However, this may not be adequate for the developer in order

to proceed to such examination of validity. To this end, new techniques could

be needed. For instance, for each entailment there could be techniques that

guide the developer on where to seek for evidence and what kind of evidence

to seek. Such techniques will allow a more system validation of the entailment

and will complement the methodology.

6.3 Chapter summary

In this chapter we have conducted an empirical evaluation of our proposed method-

ology. It included two evaluation methods, a feature based case study, which con-

cerned the e-health care system in England, and a qualitative and quantitative

survey. For the survey we organised four lab sessions inviting software developers

and researchers to apply our methodology. The case study and the survey enable us

to evaluate our methodology. We have reported the feedback we got from the soft-

ware developers and the researchers and the observations we made during the case

study and the lab sessions. This included the limitations of our methodology and

the areas that need further research. Overall, the JTrust methodology was found

to be valid, and the observations during the case study were consistent with each

other and with the feedback that we got from the users. Our findings were that our

proposed methodology was both easy to use and useful in modelling and reason-

ing about trust relationships, modelling and analysing trustworthiness requirements

and assessing the system trustworthiness at a requirements level.

156

Chapter 7

Conclusions and future work

Trust is so all pervasive in all of our lives, online or not, that it sometimes seems

strange to either have to ask or answer the question of why trust is important. Trust

is a part of the decision making process and as such it remains a paramount part

of our daily lives, which is especially true when other humans are involved when

making decisions. Such is the case of the development of an information system

where decision-making is at the core of the process and where trust is an element

in the decisions. Real world systems involve large populations of humans who use,

configure, and maintain them. The trustworthiness of the information system de-

pends on the trust relationships between the developer and the components of the

information system. The components are expected to behave in a desired way in

order the system to meet all its goals. This behaviour is reflected in the model the

developer is constructing during the requirements stage.

However, components do not always behave as expected. For example, they

tend to circumvent, misuse, and abuse security controls. They do not always do

it as attacks, but as a way to achieve their job activities and organisational goals.

Therefore, appropriate constructive techniques are required to enable the developer

to capture trust relationships and to reason about them. Also, constructive tech-

niques are required to enable the developer to identify trustworthiness requirements.

To this end, this thesis aimed to develop appropriate trust and control abstractions,

along with a methodological process that provides such ability to the developer. In

addition, it enables her to assess the trustworthiness of the system to be a require-

ments stage.

Chapter 7. Conclusions and future work

7.1 Thesis summary

In this thesis, we have proposed a requirements engineering methodology for mod-

elling and reasoning about trust relationships and modelling and analysing trust-

worthiness requirements. We adopted Goal Oriented Requirements Engineering

concepts, such as goal, actor, and dependency, in order to capture the trust re-

lationships between the developer and the components of the information system

under development. Such trust relationships concern the behaviour of the system

components and they affect its ability to meet its requirements and be trustwor-

thy. So capturing those trust relationships with the system components and their

expected behaviour is essential for achieving system trustworthiness.

We suggested to resolve the uncertainty of the behaviour of the system com-

ponent by utilising means of building confidence in their expected behaviour. To

this end we defined trust and control abstractions in order to enable the developer

to reason about her trust relationships and build confidence. Sources of trust were

categorised in four categories, Experiential Trust, Reported Trust, Normative Trust,

and External Trust. On the other hand, control components that make control ef-

fective were defined such as Observation and Deterrence. Reasoning about trust

relationships allows the assumptions that underlie the system development and can

potentially harm its trustworthiness if they are not valid to surface naturally. All

the end assumptions are assumptions of trust. Once identified, the developer can

examine their validity and proceed to a justified decision about the design of the

system.

Furthermore, constructive techniques were developed for the modelling and anal-

ysis of trustworthiness requirements. In situations where trust assumptions are not

valid, the software system-to-be acts as the controller who enforces system compo-

nents to comply with the expected behaviour. To this end, the control abstractions

are used in order to identify the capabilities of the system to observe certain resources

for monitoring purposes, and the deterrence capabilities, for preventing system com-

ponents from achieving some goals of their own, as a leverage for enforcing them to

behave in an expected way.

Moreover, algorithms were developed for evaluating the trustworthiness of the

system at a requirements stage. The first algorithm calculates the resolution level of

a dependency, while the second algorithm calculates the confidence level of a goal.

The third algorithm calculates the trustworthiness of the system under development

by considering the confidence level of the high level goals of the system along with

their importance to the overall system trustworthiness.

We have developed a CASE tool, named JTrust Tool, which supports the devel-

158

Chapter 7. Conclusions and future work

oper in using the methodology. Trust models can be constructed using the modelling

capabilities of the tool and also the syntactical correctness of the models is auto-

matically checked by utilising the meta-model. Moreover, the developed algorithms

are run by the tool, so the resolution levels of a dependency, the confidence level of

goals, and the system trustworthiness are automatically calculated by the tool.

We have applied our methodology using a case study from the e-health care sector

in England. The case study was an e-health system for storing medical records of

patients, which allows the access of basic patient information from any hospital or

medical care record in England. It enables also a more efficient dispense of medicines

to patients. Furthermore, a survey was conducted in four different institutions across

Europe. Three of these were universities, University of East London, University of

the Aegean, and University of La Mancha, while one was a company from industry,

the British Telecom. The methodology was evaluated based on the results of the

case study and the survey, and the evaluation results were discussed.

7.2 Research questions

A set of research questions was formulated according to two phases, the development

of the methodology and the evaluation of the methodology. In this section we review

the research questions and the findings, which have been presented as initial answers

to them. In Table 7.1 we present a summary of them and then we explain each row.

RQ1: What are the required trust abstractions and their relationships in order to

reason about trust relationships at a requirements stage? We defined four

trust abstractions, namely experiential trust, reported trust, normative trust,

and external trust. We defined their relationships in a semi-formal way by

defining a meta-model that describes the relationships with each other and

with concepts adopted from goal oriented requirements engineering.

RQ2: What are the required abstractions and their relationships that can ensure the

development of trustworthy information systems at a requirements stage? We

defined two control abstractions, namely observation and deterrence. Similarly,

we defined their relationships in a semi-formal way by defining a meta-model

that describes the relationships with each other and with concepts adopted

from goal oriented requirements engineering.

RQ3: How can we assess trustworthiness of the system under development at a re-

quirements stage? The ability of the system and the resolution levels of the

dependencies inside the information system are required to be considered. We

159

Chapter 7. Conclusions and future work

Table 7.1: Summary of research questions and answers

Research
Phase

Research Question Research Answer

Methodology
Development

RQ1: What are the required
trust abstractions and their re-
lationships in order to reason
about trust relationships at a re-
quirements stage?

Trust abstractions, JTrust
meta-model, and JTrust
Process (Sections 3.5, 3.7,
Chapter 4)

RQ2: What are the required ab-
stractions and their relationships
that can ensure the development
of trustworthy information sys-
tems at a requirements stage?

Control abstractions,
JTrust meta-model, and
JTrust Process (Sections
3.5, 3.6, 3.7, Chapter 4)

RQ3: How can we assess trust-
worthiness of the system under
development at a requirements
stage?

Trust and Control abstrac-
tions, JTrust meta-model,
and JTrust process (Sec-
tions 3.5, 3.6, 3.7, 3.8,
Chapter 4)

Methodology
Evaluation

RQ4: How well does the method-
ology support modelling and rea-
soning about trust relationships?

Case study and survey
evaluation (Chapter 6)

RQ5: How well does the method-
ology support trustworthiness re-
quirement modelling and analy-
sis?

Case study and survey
evaluation (Chapter 6)

RQ6: How well does the method-
ology assess the system trustwor-
thiness at a requirements level?

Case study and survey
evaluation (Chapter 6)

160

Chapter 7. Conclusions and future work

developed two algorithms that calculate the confidence and resolution level

of goals and dependencies and a third algorithm that calculates the overall

system trustworthiness by considering the confidence and resolution levels.

RQ4: How well does the methodology support modelling and reasoning about trust

relationships? During the case study we observed that the methodology fully

supported the modelling and reasoning of trust relationships. Furthermore,

92% of the participants responded the same thing in our survey.

RQ5: How well does the methodology support trustworthiness requirement modelling

and analysis? During the case study we observed that the methodology fully

supported the modelling and analysis of trustworthiness requirements. Fur-

thermore, 46% and 50% of the survey participants strongly agreed and agreed

respectively with our observation.

RQ6: How well does the methodology assess the system trustworthiness at a re-

quirements level? During the case study we observed that the methodology

successfully assesses the system trustworthiness at a requirements level. Fur-

thermore, 31% and 62% of the survey participants strongly agreed and agreed

respectively with our observation.

7.3 Contributions to the state of the art and impact

In the literature, there were gaps in the reasoning of developers’ trust relationships

with components of an information system and in the identification and analysis

of trustworthiness requirements. The research that was carried out in this thesis

contributed immensely towards filling this gap and allow for reasoning of trust re-

lationships and modelling of trustworthiness requirements. In section 1.4, the four

novel contributions of the thesis were briefly introduced, along with the development

of a CASE tool. However they can be grasped in more detail as to how fruitfully they

have contributed to the state of the art from the answers to the research questions

and more precisely they were the following:

Contribution 1: The identification of limitations, problems, and chal-

lenges of the current state of the art with respect to trustworthy infor-

mation system development. This contribution provided the foundation for the

research carried out in this thesis. This contribution substantiates that there are

limitations in the current state of the art.

Contribution 2: The development of trust abstractions as part of a

modelling language and their associated constructive methods to allow

161

Chapter 7. Conclusions and future work

modelling and reasoning of trust relationships. This paper introduces a trust

based process that enables the developer to identify direct and indirect trust rela-

tionships and to analyse the respective trust assumptions. The process makes use

GORE, trust, and control related concepts. Using concepts like resolution and en-

tailment allows to model and reason about the trust relationships. Therefore, trust

assumptions within a socio-technical system are not left unexamined by using our

approach. The proposed process leads to design trustworthy system. Nevertheless,

a trustworthy system does not ensure that users will fully trust the system. User’s

trust is subjective and depends on factors like marketing of the final product and

reputation. However, the trust abstractions establish a common understanding of

trust among the developers. There is a clear definition about trust and trustworthi-

ness, so the developers are not confused from the subjectivity of the concept.

Contribution 3: The development of control abstractions as part of a

modelling language and their associated constructive methods to allow

modelling and analysis of trustworthiness requirements. Trustworthiness

requirement is the functionality added to the system in order to replace gaps of

trust in the chain of trust relationships between the system and its environment.

A modelling language for trust and control in order to represent how confidence

in the dependencies between the system under development and its environment is

achieved. A process, which describes the methods in a structured way that consti-

tutes the development tasks clear and visible to the developers.

Contribution 4: The development of a methodological process that

employs the modelling language in order to reason about trust rela-

tionships and identify trustworthiness requirements in a systematic and

structured way. Moreover, the development of algorithms that allow the early as-

sessment of the trustworthiness of the system under development at a requirements

level.

Contribution 5: The development of a CASE tool to support the

proposed methodology. The development of a supporting tool for the

methodology was deemed of high importance. Therefore, a CASE tool was

developed to support the developers in constructing the required models to anal-

yse the trust relationships. It enables the developers to model dependencies among

actors, their kind of resolutions, i.e., experiential, reported, normative, and exter-

nal trust, and control, along with their respective entailments. The tool is used

throughout the case study. The case study was from the health care sector where

the applicability and benefits of the proposed process were demonstrated. In par-

ticular, the case study revealed that the initial design is based on trust assumptions

that were not valid. As a consequence it could lead to a untrustworthy system. Using

162

Chapter 7. Conclusions and future work

the proposed process and concepts, those invalid trust assumptions were identified

and extra functionality was added to the system design to address the identified

vulnerabilities.

7.4 Limitations of the approach

While our proposed methodology enables the developer to model and reason about

trust relationships, model and analyse trustworthiness requirements, and assess the

system trustworthiness at a requirements stage, this ability is also limited in some

aspects. The following list provides some points of criticism that we have identified

for the approach:

• Castelfranchi and Falcone (2000) argues that the measurement of trust should

not be attempted because of the complexity of the process of trust and they

multiple aspects that it has. Nevertheless, still when a phenomenon is simpli-

fied it provides great insights to an issue that in other circumstances it will not

be investigated (Cofta, 2007). We believe that the proposed trust and trustwor-

thiness metrics, no matter how simplified they are and they may not exactly

measure trust and trustworthiness, are still useful. They force the developer

to look into issues that otherwise would not have considered. The investiga-

tion of whether the dependencies will be fulfilled once the system is put in

operation or what is required in order to ensure their fulfilment is necessary in

order to build strong foundations from the requirements stage and proceed to

further system development. Trust levels are ambiguous at best, in terms of

semantics and subjectivity, but we will use them anyway. We believe benefits

far outweigh their disadvantages, and include the ability to narrow down and

discuss important aspects.

• Trust cannot give us certainty, it is a judgement based on evidence, (Marsh

and Briggs, 2009). Active components can still go against a control and they

can still go against the expected behaviour (Möllering, 2005). In other words

this means that even if there are control measures in place for an individual to

behave as expected, she can still behave in a different way. This is apparent

in everyday life where even though there are prisons as a control measures for

individuals that commit illegal acts, yet they still commit illegal acts. Going

back to the running example, even if there is system functionality that controls

the lecturer to upload the lecture slides in advance of the lecture, she may still

decide not to do so no matter how strong is the control measure.

163

Chapter 7. Conclusions and future work

• The trust analysis is occurring during the development stage. Over time things

can change, such as norms and entities may not be trusted anymore. Trust

relationships change over time and therefore the trust analysis made during

the development time may not be valid anymore and constitute the system not

trustworthy to meet all its requirements. For example, if during the develop-

ment of the system it was decided that the lecturer can be trusted to upload

the lecture slides in advance of the lecture this trust relationship may change

after some time and the lecturer may not be trusted anymore. By that time

though the system could be already developed and put in operation. Thus, it

may not be trustworthy in terms of providing the lecture slides to the students

because the lecturer is not uploading the slides and there is no control measure

to force him to do so.

7.5 Future work

For the future work, we are interested in addressing some limitations of our pro-

posed methodology and some further challenges that have appeared in developing

trustworthy information systems, and propose possible areas for future research that

build upon the contributions arising from this thesis. The research questions are

the following:

• What are the requirements that lead to adaptation capabilities of a system

because of changes in the trust relationships? A more dynamic assessment of

trust assumptions is required in order to adapt to possible changes. Moreover,

modern software systems become more complex and the environments these

systems operate in, become more and more dynamic. So, users’ expectations

change and this has an immediate effect on users’ trust level (Hoffman, Lawson-

Jenkins, and Blum, 2006). Also, the number of stakeholders increase and the

stakeholders’ needs change constantly as they need to adjust to the constantly

changing environment. A consequence of this trend is that the number of

requirements for a software system increases and changes continually. As a

result, in order for software systems to maintain their ability or competence

as trustees to satisfy their trustors, which are the stakeholders, and remain

trustworthy need to adapt to the changes.

• What other concepts can be used that motivate entities to behave as expected?

Apart from control there are also other reasons that someone can show trust-

worthy behaviour. Such motives can be ethical obligation or driven by greed

(Cofta, 2007). Instead of deterring a system component from achieving one of

164

Chapter 7. Conclusions and future work

her own goals an alternative way to motivate her to behave in an expected

way is to provide a reward as long as she behaves in an expected way.

• How to engineer systems that facilitate the assessment of trust among parties?

This research questions belongs in the area of trust management. Transacting

and interacting through information systems and computer networks makes

it difficult to use traditional methods for establishing trust between parties,

such as the ones used in face to face communication between humans. Modern

information systems are increasingly removing us from familiar styles of inter-

acting and doing business, which both rely on some degree of trust between the

interaction or business partners. Most traditional cues for assessing trust in

the physical world are not available through information systems. So, there is

the need for systems that enable the assessment of trustworthiness of another

party that someone is collaborating with. Systems that enable trustworthy

parties to demonstrate their trustworthiness, while they prevent parties that

are not trustworthy to show themselves as trustworthy.

While the tasks for future work are the following:

• Develop validation techniques for entailments. This requires more research

in human psychology and will still be far from perfect. As future work, we

intend to propose methods that will further support developers for validating

the entailments, for instance what kind and how much evidence is required for

the entailments to be validated.

• Formalise the proposed methodology. The formalisation will complement the

methodology by extending the JTrust modelling language into a formal spec-

ification language. It can also be employed to perform formal analysis of the

system and verify the trust model by employing formal verification techniques.

• Improve the CASE tool. Trustworthiness requirement concepts should go in-

side the system goal diagram, because they are system functionality. Also

improvements in terms of usability, such as to not allow the user to put what-

ever values in the share property of the decomposition link and add colours to

the graphical notations to represent different value properties.

Apart from the specific research questions and tasks, another interesting area for fu-

ture research is computational models of trust that can be used to create substitutes

by which software agents can derive trust in others through information systems.

The developed trust abstractions could be incorporated into such computational

models of trust.

165

Bibliography

Antón, A. I. and C. Potts (1998). “The use of goals to surface requirements for evolving

systems”. In: Proceedings of the 20th international conference on Software engineering.

ICSE ’98. Kyoto, Japan: IEEE Computer Society, pp. 157–166.

Avižienis, A., J.-C. Laprie, and B. Randell (2004). “Dependability and Its Threats: A

Taxonomy”. In: Building the Information Society. Ed. by R. Jacquart. Vol. 156. IFIP

International Federation for Information Processing. Springer US, pp. 91–120.

Axelrod, R. (1984). The evolution of Cooperation. New York, NY, USA: Basic Books Inc.

Bangemann, M. et al. (1994). “Recommendations to the European Council: Europe and

the global information society”. In: Brussels: European Commission.

Barber, B. (1983). The logic and Limits of Trust. Rutgers University Press.

Berard, E. V. (1995). What is a methodology. White Paper. The Object Agency.

Berzins, V. (2004). “Trustworthiness as risk abatement”. In: Center for National Software

Studies Workshop on Trustworthy Software. Citeseer, p. 9.

Bigley, G. A. and J. L. Pearce (1998). “Straining for Shared Meaning in Organization

Science: Problems of Trust and Distrust”. In: The Academy of Management Review

23.3, pp. 405–421.

Bimrah, K. K. (2009). “A Framework for Modelling Trust During Information Systems

Development.” PhD thesis. University of East London.

Blaze, M., J. Feigenbaum, and J. Lacy (1996). “Decentralized trust management”. In:

Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pp. 164–173.

Blaze, M., J. Feigenbaum, and A. D. Keromytis (1999). “KeyNote: Trust Management for

Public-Key Infrastructures (Position Paper)”. In: Proceedings of the 6th International

Workshop on Security Protocols. London, UK, UK: Springer-Verlag, pp. 59–63.

Bostrom, R. P. and J. S. Heinen (1977). “MIS Problems and failures: a sociotechnical

perspective part I: the cause”. In: MIS Q. 1.3, pp. 17–32.

Braynov, S. (2002). “Contracting with uncertain level of trust”. In: Computational Intel-

ligence 18, pp. 501–514.

Bresciani, P. et al. (2004). “Tropos: An Agent-Oriented Software Development Methodol-

ogy”. English. In: Autonomous Agents and Multi-Agent Systems 8.3, pp. 203–236.

Bibliography

Brooks, A. and L. Scott (2001). “Constraints in CASE tools: results from curiosity driven

research”. In: Software Engineering Conference, 2001. Proceedings. 2001 Australian.

IEEE, pp. 285–293.

Castelfranchi, C. and R. Falcone (1998). “Principles of trust for MAS: Cognitive anatomy,

social importance, and quantification”. In: Multi Agent Systems, 1998. Proceedings.

International Conference on. IEEE, pp. 72–79.

— (2000). “Trust Is Much More than Subjective Probability: Mental Components and

Sources of Trust”. In: Proceedings of the 33rd Hawaii International Conference on Sys-

tem Sciences-Volume 6 - Volume 6. HICSS ’00. Washington, DC, USA: IEEE Com-

puter Society.

Charney, S. (2012). “Trustworthy Computing Next”. In: Microsoft, white paper.

Chu, Y. H. et al. (June 1997). “Referee: Trust Management for Web Applications”. In:

World Wide Web J. 2.3, pp. 127–139.

Chung, L. and J. C. S. do Prado Leite (2009). “On non-functional requirements in soft-

ware engineering”. In: Conceptual modeling: Foundations and applications. Springer,

pp. 363–379.

Chung, L. et al. (2000). Non-functional requirements in Software Engineering. Kluwer

Academic Publishers.

Cofta, P. (2007). Trust, complexity and control: confidence in a convergent world. John

Wiley.

Cofta, P. (2008). “Towards a better citizen identification system”. English. In: Identity in

the Information Society 1.1, pp. 39–53.

Cofta, P., H. Lacohée, and P. Hodgson (2010). “Incorporating Social Trust into Design

Practices for Secure Systems”. In: IJDTIS 1.4, pp. 1–24.

Dardenne, A., A. van Lamsweerde, and S. Fickas (Apr. 1993). “Goal-directed requirements

acquisition”. In: Science of Computer Programming 20.1-2, pp. 3–50.

Das, T. K. and B.-S. Teng (1998). “Between trust and control: developing confidence in

partner cooperation in alliances”. In: Academy of management review 23.3, pp. 491–

512.

Dasgupta, P. (2000). “Trust as a commodity”. In: Trust: Making and breaking cooperative

relations 4, pp. 49–72.

Deutsch, M. (1962). “Cooperation and trust: Some theoretical notes”. In: Nebraska Sym-

posium on Motivation.

Doherty, N. and M. King (1998). “The importance of organisational issues in systems

development”. In: Information Technology & people 11.2, pp. 104–123.

Drenth, P. J. (2012). A European code of conduct for research integrity.

Easterbrook, S. et al. (2008). “Selecting Empirical Methods for Software Engineering

Research”. In: Guide to Advanced Empirical Software Engineering. Ed. by F. Shull,

J. Singer, and D. Sjøberg. Springer London, pp. 285–311.

168

Bibliography

Egger, F. N. (2003). “From interactions to transactions: designing the trust experience for

business-to-consumer electronic commerce”. PhD thesis.

Elahi, G. and E. Yu (2009). “Trust trade-off analysis for security requirements engineer-

ing”. In: Requirements Engineering Conference, 2009. RE’09. 17th IEEE International.

IEEE, pp. 243–248.

Finnigan, D., R. Kemp, and D. Mehandjiska (2000). “Towards an ideal CASE tool”. In:

Software Methods and Tools, 2000. SMT 2000. Proceedings. International Conference

on. IEEE, pp. 189–197.

Flyvbjerg, B. (2006). “Five Misunderstandings About Case-Study Research”. In: Quali-

tative Inquiry 12.2, pp. 219–245.

Fortune, J. and G. Peters (2005). Information Systems: Achieving Success by Avoiding

Failure. John Wiley & Sons.

Friedman, B., P. H. Khan Jr, and D. C. Howe (2000). “Trust online”. In: Communications

of the ACM 43.12, pp. 34–40.

Gambetta, D. (1988). Trust: Making and Breaking Cooperative Relations. Blackwell.

Garćıa-Magariño, I. and J. J. Gómez-Sanz (2008). “Framework for defining model lan-

guage metamodels for CASE tools”. In: Model-based Methodologies for Pervasive and

Embedded Software, 2008. MOMPES 2008. 5th International Workshop on. IEEE,

pp. 14–23.

Giorgini, P. et al. (2005). “Modeling security requirements through ownership, permission

and delegation”. In: Requirements Engineering, 2005. Proceedings. 13th IEEE Inter-

national Conference on, pp. 167–176.

Giorgini, P. et al. (2003). “Reasoning with goal models”. In: Conceptual Modeling—ER

2002. Springer, pp. 167–181.

Giorgini, P. et al. (2004). “Requirements Engineering Meets Trust Management”. In: Trust

Management. Ed. by C. Jensen, S. Poslad, and T. Dimitrakos. Vol. 2995. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, pp. 176–190.

Górski, J. et al. (2005). “Trust case: Justifying trust in an IT solution”. In: Reliability

Engineering & System Safety 89.1, pp. 33–47.

Grandison, T. (2003). “Trust Management for Internet Applications”. PhD thesis. Impe-

rial College London.

Haley, B. et al. (Feb. 2006). “Using Trust Assumptions with Security Requirements”. In:

Requir. Eng. 11.2, pp. 138–151.

Haley, C. et al. (2008). “Security Requirements Engineering: A Framework for Represen-

tation and Analysis”. In: Software Engineering, IEEE Transactions on 34.1, pp. 133

–153.

Hasselbring, W. and R. Reussner (2006). “Toward trustworthy software systems”. In:

Computer 39.4, pp. 91–92.

169

Bibliography

Hatebur, D., M. Heisel, and H. Schmidt (2007). “A Pattern System for Security Require-

ments Engineering”. In: Availability, Reliability and Security, 2007. ARES 2007. The

Second International Conference on. IEEE, pp. 356–365.

Herzberg, A. et al. (2000). “Access control meets public key infrastructure, or: assigning

roles to strangers”. In: Security and Privacy, 2000. S P 2000. Proceedings. 2000 IEEE

Symposium on, pp. 2–14.

Hoffman, L. J., K. Lawson-Jenkins, and J. Blum (July 2006). “Trust Beyond Security: An

Expanded Trust Model”. In: Commun. ACM 49.7, pp. 94–101.

IEEE (1990). “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE

Std 610.12, pp. 1–84.

Iivari, J. and R. Hirschheim (1996). “Analyzing information systems development: A com-

parison and analysis of eight is development approaches”. In: Information Systems

21.7, pp. 551 –575.

Islam, S., H. Mouratidis, and S. Wagner (2010). “Towards a framework to elicit and man-

age security and privacy requirements from laws and regulations”. In: Requirements

Engineering: Foundation for Software Quality. Springer, pp. 255–261.

Jackson, M. (1997). “The meaning of requirements”. English. In: Annals of Software En-

gineering 3.1, pp. 5–21.

— (2001). Problem frames: analysing and structuring software development problems.

Addison-Wesley.

Jayaswal, B. K. and P. C. Patton (2006). Design for Trustworthy Software: Tools, Tech-

niques, and Methodology of Developing Robust Software. Upper Saddle River, NJ, USA:

Prentice Hall PTR.

Jøsang, A., R. Ismail, and C. Boyd (2007). “A survey of trust and reputation systems for

online service provision”. In: Decision support systems 43.2, pp. 618–644.

Jøsang, A., C. Keser, and T. Dimitrakos (2005). “Can We Manage Trust?” In: Trust

Management. Ed. by P. Herrmann, V. Issarny, and S. Shiu. Vol. 3477. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, pp. 93–107.

Jürjens, J. (2005). Secure systems development with UML. Vol. 1. Springer.

Kalloniatis, C., E. Kavakli, and S. Gritzalis (2008). “Addressing privacy requirements in

system design: the PriS method”. In: Requirements Engineering 13.3, pp. 241–255.

Karagiannis, D. and H. Kühn (2002). “Metamodelling platforms”. In: EC-Web, p. 182.

Kini, A. and J. Choobineh (1998). “Trust in electronic commerce: definition and theoretical

considerations”. In: System Sciences, 1998., Proceedings of the Thirty-First Hawaii

International Conference on. Vol. 4, 51–61 vol.4.

Kitchenham, B. (1996). DESMET: A method for evaluating Software Engineering meth-

ods and tools. Tech. rep. Department of Computer Science Department of Computer

Science, University of Keele.

170

Bibliography

Kitchenham, B., S. Linkman, and D. Law (1997). “DESMET: a methodology for eval-

uating software engineering methods and tools”. In: Computing Control Engineering

Journal 8.3, pp. 120–126.

Kitchenham, B. et al. (2002). “Preliminary guidelines for empirical research in software

engineering”. In: Software Engineering, IEEE Transactions on 28.8, pp. 721–734.

Klopper, R., S. Gruner, and D. G. Kourie (2007). “Assessment of a framework to com-

pare software development methodologies”. In: Proceedings of the 2007 annual research

conference of the South African institute of computer scientists and information tech-

nologists on IT research in developing countries. ACM, pp. 56–65.

Lamsweerde, A. van (2001). “Goal-oriented requirements engineering: a guided tour”. In:

Requirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium

on, pp. 249–262.

Lamsweerde, A. and E. Letier (2004). “From Object Orientation to Goal Orientation:

A Paradigm Shift for Requirements Engineering”. In: Radical Innovations of Software

and Systems Engineering in the Future. Ed. by M. Wirsing, A. Knapp, and S. Balsamo.

Vol. 2941. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 325–

340.

Lapouchnian, A. (2005). “Goal-Oriented Requirements Engineering - An Overview of the

Current Research”. MA thesis. University of Toronto.

Letier, E. and A. van Lamsweerde (2002). “Agent-based Tactics for Goal-oriented Require-

ments Elaboration”. In: Proceedings of the 24th International Conference on Software

Engineering. ICSE ’02. Orlando, Florida: ACM, pp. 83–93.

— (2004). “Reasoning about partial goal satisfaction for requirements and design engi-

neering”. In: Proceedings of the 12th ACM SIGSOFT twelfth international symposium

on Foundations of software engineering. SIGSOFT ’04/FSE-12. Newport Beach, CA,

USA: ACM, pp. 53–62.

Lewicki, R. J. and B. B. Bunker (1996). “Developing and maintaining trust in work rela-

tionships”. In: Trust in organizations Frontiers of theory and research. Ed. by R. M.

Kramer and T. R. Tyler. Vol. 1. Sage, pp. 114–139.

Lewis, J. D. and A. Weigert (1985). “Trust as a social reality”. In: Social forces 63.4,

pp. 967–985.

Lipner, S. (2004). “The trustworthy computing security development lifecycle”. In: Com-

puter Security Applications Conference, 2004. 20th Annual. IEEE, pp. 2–13.

Luhmann, N. (1979). Trust and Power. Wiley.

— (1988). “Familiarity, Confidence, Trust: Problems and Alternatives”. In: D. Gambetta,

editor, Trust: Making and Breaking of Cooperative Relations, Basil Blackwell, Oxford,

1988.

171

Bibliography

Luna-Reyes, L. et al. (2005). “Information systems development as emergent socio-technical

change: a practice approach”. In: European Journal of Information Systems 14.1,

pp. 93–105.

Lund, M. S., B. Solhaug, and K. Stølen (2010). Model-driven risk analysis: the CORAS

approach. Springer.

Lyytinen, K. and M. Newman (2008). “Explaining Information Systems Change: A Punc-

tuated Socio-technical Change Model”. In: European Journal of Information Systems

17.6, pp. 589–613.

Marcos, E. (2005). “Software engineering research versus software development”. In: ACM

SIGSOFT Software Engineering Notes 30.4, pp. 1–7.

Marsh, S. and P. Briggs (2009). “Examining Trust, Forgiveness and Regret as Computa-

tional Concepts”. In: Computing with social trust. Springer, pp. 9–43.

Marsh, S. P. (1994). “Formalising trust as a computational concept”. PhD thesis.

Masthoff, J. (2007). “Computationally modelling trust: an exploration”. In: Proceedings

of the SociUM workshop associated with the User Modeling conference.

Mayer, R. C., J. H. Davis, and F. D. Schoorman (1995). “An integrative model of organi-

zational trust”. In: Academy of management review 20.3, pp. 709–734.

McAllister, D. J. (1995). “Affect and Cognition Based Trust as Foundations for Inter-

personal Cooperation in Organisations”. In: Academy of Management Journal 38.1,

pp. 24 –59.

McGraw, D. et al. (2009). “Privacy as an enabler, not an impediment: building trust into

health information exchange”. In: Health Affairs 28.2, pp. 416–427.

McKnight, D. H. and N. L. Chervany (1996). The Meanings of Trust. Tech. rep. University

of Minnesota.

McKnight, D. H. and N. L. Chervany (2000). “What is trust? A conceptual analysis and

an interdisciplinary model”. In: AMCIS.

McKnight, D. H., L. L. Cummings, and N. L. Chervany (1998). “Initial trust formation in

new organizational relationships”. In: Academy of management review 23.3, pp. 473–

490.

McKnight, D. and L. Chervany (2006). “Handbook of Trust Research”. In: ed. by R.

Bachmann and A. Zaheer. Edward Elgar Publishing Ltd. Chap. Reflections on an

Initial Trust-Buiding Model, pp. 29–51.

Michie, D. (1982). “The state of the art in machine learning”. In: Introductory readings

in expert systems, pp. 208–229.

Miller, K. and J. Voas (2009). “The Metaphysics of Software Trust”. In: IT Professional

11.2, pp. 52–55.

Möllering, G. (2005). “The Trust/Control Duality An Integrative Perspective on Positive

Expectations of Others”. In: International sociology 20.3, pp. 283–305.

172

Bibliography

Moody, D. et al. (2003). “Evaluating the quality of information models: empirical testing of

a conceptual model quality framework”. In: Software Engineering, 2003. Proceedings.

25th International Conference on, pp. 295 –305.

Mouratidis, H. and P. Cofta (Dec. 2010). “Practitioner’s challenges in designing trust into

online systems”. In: J. Theor. Appl. Electron. Commer. Res. 5.3, pp. 65–77.

Mouratidis, H. and P. Giorgini (2007). “Secure Tropos: A Security-Oriented Extension

of the Tropos Methodology”. In: International Journal of Software Engineering and

Knowledge Engineering 17.02, pp. 285–309.

Mylopoulos, J., L. Chung, and E. Yu (Jan. 1999). “From Object-Oriented to Goal-Oriented

Requirements Analysis”. In: Communications of ACM 42.1, pp. 31–37.

NHS. NHS Careers. url: http://www.nhscareers.nhs.uk/.

— NHS England. url: http://www.england.nhs.uk/.

— (2011a). Summary Care Record Scope. Tech. rep.

— (2011b). The Care Record Guarantee. Tech. rep.

— (2012a). Introduction to the Summary Care Record. Tech. rep.

— (2012b). NHS Summary Care Record - Guide for GP Practice Staff.pdf. Tech. rep.

— (2013a). aaaaaHealth and social care information centre. url: http://www.hscic.

gov.uk/home.

— (2013b). The Handbook to the NHS Constitution. Tech. rep.

Nielsen, J. (1994). Usability engineering. Elsevier.

Office, N. A. (2011). The National Programme for IT in the NHS - an update on the

delivery of detailed care records systems. Tech. rep. Department of Health, UK.

(OMG), O. M. G. SPEM 2.0.

Oxford Dictionary. url: http://www.oed.com/.

Parnas, D. L. and J. Madey (1995). “Functional documents for computer systems”. In:

Science of Computer Programming 25.1, pp. 41 –61.

Partridge, D. (1997). “The case for inductive programming”. In: Computer 30.1, pp. 36–

41.

Pavlidis, M. et al. (2012). “Dealing with trust and control: A meta-model for trustworthy

information systems development”. In: Research Challenges in Information Science

(RCIS), 2012 Sixth International Conference on, pp. 1–9.

Pavlidis, M., H. Mouratidis, and S. Islam (2012). “Modelling security using trust based

concepts”. In: International Journal of Secure Software Engineering (IJSSE) 3.2, pp. 36–

53.

Pavlidis, M. et al. (2014). “Modeling Trust Relationships for Developing Trustworthy

Information Systems”. In: International Journal of Information System Modeling and

Design (IJISMD) 5.1, pp. 25–48.

Pearson, S. and B. Balacheff (2003). Trusted computing platforms: TCPA technology in

context. Prentice Hall Professional.

173

http://www.nhscareers.nhs.uk/
http://www.england.nhs.uk/
http://www.hscic.gov.uk/home
http://www.hscic.gov.uk/home
http://www.oed.com/

Bibliography

Phillips, C. et al. (1998). “The usability component of a framework for the evaluation of OO

CASE tools”. In: Software Engineering: Education & Practice, 1998. Proceedings.

1998 International Conference. IEEE, pp. 134–141.

Pourshahid, A. and T. Tran (2007). “Modeling trust in e-commerce: an approach based on

user requirements”. In: Proceedings of the ninth international conference on Electronic

commerce. ACM, pp. 413–422.

Presti, S. L. et al. (2006). “Holistic Trust Design of E-Services”. In: Trust in E-Services:

Technologies, Practices and Challenges, pp. 113–139.

Public Accounts, C. of (2013). The dismantled National Programme for IT in the NHS.

Tech. rep. House of Commons.

Rasmusson, L. and S. Jansson (1996). “Simulated social control for secure Internet com-

merce”. In: Proceedings of the 1996 workshop on New security paradigms. ACM, pp. 18–

25.

Ray, I. and S. Chakraborty (2004). “A Vector Model of Trust for Developing Trustworthy

Systems”. In: Computer Security – ESORICS 2004. Ed. by P. Samarati et al. Vol. 3193.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 260–275.

Rempel, J. K., J. G. Holmes, and M. P. Zanna (1985). “Trust in close relationships”. In:

Journal of personality and social psychology 49.1, p. 95.

Riegelsberger, J., M. A. Sasse, and J. D. McCarthy (2005). “The mechanics of trust: A

framework for research and design”. In: International Journal of Human-Computer

Studies 62.3, pp. 381–422.

Rohm, A. J. and G. R. Milne (2004). “Just what the doctor ordered: the role of information

sensitivity and trust in reducing medical information privacy concern”. In: Journal of

Business Research 57.9, pp. 1000–1011.

Ross, D. and J. Schoman K.E. (1977). “Structured Analysis for Requirements Definition”.

In: Software Engineering, IEEE Transactions on SE-3.1, pp. 6–15.

Rousseau, D. M. et al. (1998). “Not so different after all: A cross-discipline view of trust”.

In: Academy of management review 23.3, pp. 393–404.

Roy, M. C., O. Dewit, and B. A. Aubert (2001). “The impact of interface usability on

trust in web retailers”. In: Internet research 11.5, pp. 388–398.

Runeson, P. and M. Höst (2009). “Guidelines for conducting and reporting case study

research in software engineering”. English. In: Empirical Software Engineering 14.2,

pp. 131–164.

Sabater, J. and C. Sierra (2005). “Review on computational trust and reputation models”.

In: Artificial Intelligence Review 24.1, pp. 33–60.

Sasse, M. A. (2005). “Usability and trust in information systems”. In: Trust and Crime

in Information Societies.

Schillo, M., P. Funk, and M. Rovatsos (2000). “Using trust for detecting deceitful agents

in artificial societies”. In: Applied Artificial Intelligence 14.8, pp. 825–848.

174

Bibliography

Schneider, F., S. Bellovin, and A. Inouye (1999). “Building trustworthy systems: lessons

from the PTN and Internet”. In: Internet Computing, IEEE 3.6, pp. 64–72.

Seaman, C. (1999). “Qualitative methods in empirical studies of software engineering”.

In: Software Engineering, IEEE Transactions on 25.4, pp. 557–572. issn: 0098-5589.

doi: 10.1109/32.799955.

Seffah, A. and J. Rilling (2001). “Investigating the relationship between usability and

conceptual gaps for human-centric CASE tools”. In: Human-Centric Computing Lan-

guages and Environments, 2001. Proceedings IEEE Symposia on. IEEE, pp. 226–231.

Shackel, B. (1991). “Usability-context, framework, definition, design and evaluation”. In:

Human factors for informatics usability, pp. 21–37.

Shaw, M. (2003). “Writing good software engineering research papers: minitutorial”. In:

Proceedings of the 25th International Conference on Software Engineering. ICSE ’03.

Portland, Oregon: IEEE Computer Society, pp. 726–736.

Shneiderman, B. (Dec. 2000). “Designing Trust into Online Experiences”. In: Commun.

ACM 43.12, pp. 57–59. issn: 0001-0782. doi: 10.1145/355112.355124. url: http:

//doi.acm.org/10.1145/355112.355124.

Sjoeberg, D. et al. (2005). “A survey of controlled experiments in software engineering”.

In: Software Engineering, IEEE Transactions on 31.9, pp. 733–753. issn: 0098-5589.

doi: 10.1109/TSE.2005.97.

Society, B. C. BCS - The Chartered Institute for IT.

Stapelberg, R. F. (2009). Handbook of reliability, availability, maintainability and safety

in engineering design. Springer.

Sutcliffe, A. (2006). “Trust: From Cognition to Conceptual Models and Design”. In: Ad-

vanced Information Systems Engineering. Ed. by E. Dubois and K. Pohl. Vol. 4001.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 3–17.

Tan, Y.-H. (2003). “A Trust Matrix Model for Electronic Commerce”. In: Proceedings of

the 1st International Conference on Trust Management. iTrust’03. Heraklion, Crete,

Greece: Springer-Verlag, pp. 33–45.

Uddin, M. G. and M. Zulkernine (2008). “UMLtrust: towards developing trust-aware soft-

ware”. In: Proceedings of the 2008 ACM symposium on Applied computing. SAC ’08.

Fortaleza, Ceara, Brazil: ACM, pp. 831–836.

Van Lamsweerde, A. (2000). “Requirements engineering in the year 00: a research perspec-

tive”. In: Proceedings of the 2000 International Conference on Software Engineering,

pp. 5–19.

Van Lamsweerde, A., R. Darimont, and E. Letier (1998). “Managing conflicts in goal-

driven requirements engineering”. In: IEEE Transactions on Software Engineering

24.11, pp. 908–926.

175

http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.1145/355112.355124
http://doi.acm.org/10.1145/355112.355124
http://doi.acm.org/10.1145/355112.355124
http://dx.doi.org/10.1109/TSE.2005.97

Bibliography

Van Lamsweerde, A. and L. Willemet (1998). “Inferring declarative requirements specifi-

cations from operational scenarios”. In: IEEE Transactions on Software Engineering

24.12, pp. 1089–1114.

Van Lamsweerde, A. and E. Letier (2000). “Handling Obstacles in Goal-Oriented Require-

ments Engineering”. In: Software Engineering, IEEE Transactions on 26.10, pp. 978–

1005.

Van Lamsweerde, A. et al. (2007). “Engineering requirements for system reliability and

security”. In: NATO Security through Science Series D - Information and Communi-

cation Security 9, p. 196.

Verner, J. et al. (2009). “Guidelines for industrially-based multiple case studies in software

engineering”. In: Research Challenges in Information Science, 2009. RCIS 2009. Third

International Conference on, pp. 313 –324.

Viega, J., T. Kohno, and B. Potter (Feb. 2001). “Trust (and Mistrust) in Secure Applica-

tions”. In: Commun. ACM 44.2, pp. 31–36.

Wieringa, R. and J. Heerkens (2006). “The methodological soundness of requirements

engineering papers: a conceptual framework and two case studies”. In: Requirements

Engineering 11.4, pp. 295–307.

Wieringa, R. and A. Morali (2012). “Technical Action Research as a Validation Method

in Information Systems Design Science”. In: Design Science Research in Information

Systems. Advances in Theory and Practice. Ed. by K. Peffers, M. Rothenberger, and B.

Kuechler. Vol. 7286. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

pp. 220–238.

Wilson, M. et al. (2007). “The TrustCoM approach to enforcing agreements between

interoperating enterprises”. In: Enterprise Interoperability. Springer, pp. 365–375.

Wohlin, C. et al. (2012). Experimentation in software engineering. Springer (first edition

by Kluwer in 2000).

Yan, Z. and P. Cofta (2003). “Methodology to Bridge Different Domains of Trust in

Mobile Communications”. English. In: Trust Management. Ed. by P. Nixon and S.

Terzis. Vol. 2692. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

pp. 211–224.

Yu, E. (1993). “Modeling organizations for information systems requirements engineer-

ing”. In: Proceedings of IEEE International Symposium on Requirements Engineering,

pp. 34–41. doi: 10.1109/ISRE.1993.324839.

Yu, E. (1995). “Modelling Strategic Relationships for Process Reengineering”. PhD thesis.

University of Toronto.

Yu, E. and L. Liu (2001). “Modelling Trust for System Design Using the i * Strategic Ac-

tors Framework”. English. In: Trust in Cyber-societies. Ed. by R. Falcone, M. Singh,

and Y.-H. Tan. Vol. 2246. Lecture Notes in Computer Science. Springer Berlin Heidel-

berg, pp. 175–194.

176

http://dx.doi.org/10.1109/ISRE.1993.324839

BIBLIOGRAPHY 177

Yu, E. et al. (2011). Social Modeling for Requirements Engineering. The MIT Press.

Yue, K (1987). “What Does It Mean to Say that a Specification is Complete?” In: Fourth

International Workshop on Software Specification and Design (IWSSD-4), Monterey,

USA.

Zarrabi, F. et al. (2012). “A Meta-model for Legal Compliance and Trustworthiness of

Information Systems”. In: Advanced Information Systems Engineering Workshops. Ed.

by M. Bajec and J. Eder. Vol. 112. Lecture Notes in Business Information Processing.

Springer Berlin Heidelberg, pp. 46–60.

Zave, P. (1997). “Classification of research efforts in requirements engineering”. In: ACM

Computing Surveys (CSUR) 29.4, pp. 315–321.

Zelkowitz, M. V. and D. Wallace (1997). “Experimental Validation In Software Engineer-

ing”. In: Information and Software Technology 39, pp. 735–743.

Zelkowitz, M. and D. Wallace (1998). “Experimental models for validating technology”.

In: Computer 31.5, pp. 23–31. issn: 0018-9162. doi: 10.1109/2.675630.

http://dx.doi.org/10.1109/2.675630

	Introduction
	Motivation and problem statement
	Research questions
	Research aims and objectives
	Research contributions
	Research approach
	Publications
	Structure of the thesis

	I State of the Art
	Literature review
	Trust and trustworthiness
	Information System trust and trustworthiness
	Trust and Information System trustworthiness in the context of the thesis
	Information Systems development methodologies
	Modelling language
	CASE tools for Information System methodology

	Evaluation methods for software engineering methodologies
	State of the art in trust engineering
	Trust modelling
	Security engineering considering trust
	Goal satisfaction reasoning
	Trust management
	Human Computer Interaction in the context of trust
	Trusted Computing
	Computational trust

	Chapter summary

	II JTrust: A Trustworthy Information System Development Methodology
	JTrust modelling language
	Methodology requirements
	Methodology structure
	Running example
	Confidence as the key to modelling uncertainty
	JTrust modelling language concepts
	Trustworthiness requirements
	Meta-model of the JTrust modelling language
	Trustworthiness assessment model
	Chapter summary

	JTrust process
	Activity 1: Goal and dependency modelling
	Activity 2: Resolution modelling
	Activity 3: Entailment modelling
	Activity 4: Trustworthiness requirement analysis
	Activity 5: System trustworthiness assessment
	Chapter summary

	JTrust tool
	Tool architecture
	Concepts graphical notation
	Trust tool functionality
	Chapter summary

	III Evaluation and Conclusions
	Evaluation
	Study 1: Evaluation of JTrust by case study research in the health care domain
	Case study design
	Data collection - Applying the JTrust methodology
	Data analysis - Evaluation results and discussion

	Study 2: Evaluation of JTrust methodology by survey research
	Survey design
	Data collection
	Data analysis - Evaluation results and discussion

	Chapter summary

	Conclusions and future work
	Thesis summary
	Research questions
	Contributions to the state of the art and impact
	Limitations of the approach
	Future work

	Bibliography

