
 

 

 
Abstract—Transportation brings immense benefits to society, but 

it also has its costs. Costs include the cost of infrastructure, personnel, 
and equipment, but also the loss of life and property in traffic accidents 
on the road, delays in travel due to traffic congestion, and various 
indirect costs in terms of air transport. This research aims to predict the 
probabilistic crash prediction of vehicles using Machine Learning due 
to natural and structural reasons by excluding spontaneous reasons, 
like overspeeding, etc., in the United States. These factors range from 
meteorological elements such as weather conditions, precipitation, 
visibility, wind speed, wind direction, temperature, pressure, and 
humidity, to human-made structures, like road structure components 
such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, 
etc. The probabilities are categorized into ten distinct classes. All the 
predictions are based on multiclass classification techniques, which are 
supervised learning. This study considers all crashes in all states 
collected by the US government. The probability of the crash was 
determined by employing Multinomial Expected Value, and a 
classification label was assigned accordingly. We applied three 
classification models, including multiclass Logistic Regression, 
Random Forest and XGBoost. The numerical results show that 
XGBoost achieved a 75.2% accuracy rate which indicates the part that 
is being played by natural and structural reasons for the crash. The 
paper has provided in-depth insights through exploratory data analysis. 

 
Keywords—Road safety, crash prediction, exploratory analysis, 

machine learning. 

I. INTRODUCTION 

ITH the widespread use of sensors, coupled with the 
latest developments in wireless technologies, Intelligent 

Transport Systems (ITS) have become commonplace. The 
focus is collecting data from the distributed sensors, archiving 
it, analyzing it, transforming it into actionable knowledge, and 
disseminating it through multiple transportation applications 
that provide planning, mobility, and safety assistance. Data are 
critical to the transportation sector and all modes of transport, 
and now transport operators have access to a vast amount of 
information that they can use to optimize performance, service, 
efficiency, and safety. Data are continuously collected in the 
ever-increasing number of sensors, remote sensors, cameras, 
microphones, wireless sensor networks, and mobile devices. 
Due to the wide availability of data through multiple 
technologies, datasets can rapidly become too large and 
complex to be processed using traditional data analysis. Still, 
with increasing transportation demands, data play an 
increasingly important role in transportation management and 
administration. Due to the expansion of traffic and detectors, an 
increase in data is manifest in the volume of available traffic 
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information, which is constantly growing.  
This paper uses an expanded accident dataset to study the 

specific variables, which are weather-related and road structure 
phenomena that are being caused for crashes. It will take a 
probabilistic approach and classify the crash percentage of 
vehicles using Multinomial Logistic Regression, Random 
Forest and XGBoost techniques. These techniques are part of 
supervised machine learning algorithms of classification. They 
consider both natural reasons for crashes and man-made 
structures. Natural reasons for the crash are weather conditions, 
GPS location, temperature, pressure, wind speed, wind 
direction, precipitation, and other man-made systems like, 
Bump Roundabout, Turning loop etc. Overall, this paper 
considers random factors that belong to natural and manmade 
causes. Many machine algorithms can tackle this problem, from 
supervised learning to reinforcement learning. We preferred 
supervising learning techniques over unsupervised because of 
the availability of sufficient amounts of data, and the 
probabilistic models are classification models.  

The rest of this paper is organized as follows: Section II 
discusses the related works. Section III introduces the problem 
statement. Section IV is devoted to the research methodology 
underlying the system model and the notations in our analysis. 
Section V describes the details regarding data collection, data 
pre-processing, and feature engineering in this research. Section 
VI discusses the multiclass classifiers used for this problem. 
Section VII represents numerical results from exploratory data 
analysis and multiclass classification models. Section VIII 
provides deep insights based on numerical results. Section IX 
discusses the contributions of this paper. Finally, Section X 
concludes this paper and gives ideas for future works. 

II. RELATED WORKS 

Authors in [1] have worked on a Smart watch-based driver 
vigilance indicator with the Kernel-Fuzzy-C_means-Wavelet 
method. They found that sensors at the fingertips give better 
data collection and then proposed and tested different AI 
methodologies. In [2], the authors proposed a system that can 
predict and avoid crashes in real-time with past data. In this 
paper, different data analytics are performed on a crash 
database of 14 years from UK DoT, which contains a million 
rows and 32 categories and presents Peak Accident Time, Day, 
Week, Location, etc. The authors in [3] surveyed various 
technologies utilized in the automotive industry, ranging from 
vehicular networks to artificial intelligence (AI). They 
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described how decision trees and artificial neural networks 
(ANN) could be applied to data gathered from diverse sensors. 
The paper delved into the interaction between vehicles and the 
environment and message-sharing systems. Furthermore, it 
explored different AI methods and how they can be integrated 
with vehicle networks.  

Reference [4] represents a generative model that solves GPS 
errors without knowing environmental conditions and uses the 
information inside a vehicle for Automated Vehicles. It 
proposes a model to reduce GPS residual errors, which mimics 
the environmental conditions and information inside the vehicle 
only. Authors [5] researched predicting automated driving 
vehicles’ trajectories during cut-in lanes. They provided a 
model predictive controller and built a probabilistic trajectory 
of lane cut-in using previously trained data with interaction 
awareness capability of other vehicles approaching. 

Reference [6] discusses the application of AI in mitigating 
the geo-hazards risk for vehicles in the Mountains of Beijing. 
The paper mainly contributes to applying AI in different 
categories, e.g., how well the information extracted from 
Images can be used to mitigate more crash drivers. Authors [7] 
propose a deep learning-based mapping approach for predicting 
city-scale road safety maps from raw satellite imagery. They 
investigate the usage of satellite imagery for Road safety and 
the detection of problematic structures that can cause road 
crashes. 

Reference [8] worked on predicting crashes using neural 
networks by taking vehicle, driver, and road characteristics 
data. It explains the complex and nonlinear relationships 
between road crashes and their reasons by taking huge 
parameters. It helps vehicle drivers be more aware of hotspots 
and their conditioning in moving through them. If the model is 
updated every time, it will yield better results. Authors [9] 
provide a public representative support system to identify the 
unwanted things on the road to remove or change the structure 
that causes many traffic and accident problems. They explain 
how public authorities can spend their funds on effective road 

safety. They use a new technique called ‘Concordance analysis’ 
to rank the structure or part of the road. Some other works on 
this topic investigate the critical factors of road accidents [10]-
[13]. Some safety models minimize or predict accident factors 
[14]-[17]. 

This paper uses an expanded accident dataset to study the 
specific variables, which are weather-related and road structure 
phenomena that are being caused by crashes. It will take a 
probabilistic approach and classify the crash percentage of 
vehicles using three different multiclass classification 
techniques. 

III. PROBLEM STATEMENT 

As per our problem statement, we aim to predict the 
probability of a crash of a vehicle given by natural and man-
made interventions. There are many other reasons to establish a 
reason for a crash. It may be because of the driver's misguided 
attention, drunk driving, traffic rule-breaking, etc. However, the 
scope of this study is limited to the natural and structural causes 
of the crash. 

IV. RESEARCH METHODOLOGY 

We obtained a dataset from the US government to build a 
predictive model for crash probability. This dataset comprises 
2.7 million instances of crash data spanning a particular 
timeframe, along with an observational analysis of various 
random variables linked to each crash. There are two distinct 
methodologies for conducting research: qualitative and 
quantitative. Researchers can gather more information by 
combining qualitative and quantitative methods, mainly when 
data cannot be observed and measured directly. In our case, 
while the collected dataset includes many observed values of 
natural and structural phenomena, the probability of which 
category they belong to is not directly mentioned. Therefore, 
we will utilize the quantitative method to obtain further 
information.

 

 

Fig. 1 Research Pipeline 
 

 Fig. 1 represents the entire pipeline of research. The dataset 
collected for the United States Government website has been 
used for our study. It has been explored in depth to analyze the 
descriptive statistics as Exploratory Data Analysis by applying 
qualitative research methodology. However, we need pre-
processing and some inferences to assume any relationship 

between the data. Our task is to predict the crash probability in 
ten bins of 100-width. After performing the necessary 
Quantitative Analysis for inference-making, data were pre-
processed using those inferences. 
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V. DATA COLLECTION 

A dataset is taken from the United States government 
website, which contains 47 different variables that were 
collected during crashes of 2.7 million occurrences. The 
parameters include temperature, pressure, wind temperature, 
humidity, precipitation, wind speed, wind direction, weather 
type, GPS coordinates, time of crash, traffic congestion due to 
crash, bump, crossing, give way, junction, no exit, traffic signal, 
etc. 

This dataset is perfect for studying our area, but no dataset 
can give complete information as usual. We need more data for 
a comprehensive analysis, so prescriptive analytics were 
performed on this dataset using exploratory data analysis. 

A. Data Pre-processing 
Data pre-processing is the most critical task before building 

any model because the right kind of data should be 
appropriately chosen before estimating any parameters. It 
involves data exploration, drawing inferences, data cleaning, 
and feature engineering to be done to data given as input to the 
model. Our problem statement specifies the need to predict the 
likelihood of a crash based on natural and structural causes. The 
dataset requires cleaning and inferring certain conclusions, 
which are outlined in Subsections V B and C. The qualitative 
method gave us collected data. Quantitative methods will allow 
us to do the rest. From the given dataset, the most influential 
factors for our research are Start_Latitude, Start_Longitude, 
Side, Temperature, Pressure, Humidity, Visibility, Wind Speed, 
Wind direction, Wind chill, Weather Type, Precipitation, 
Turning loop, Give Way, No exit, Traffic Signal, Roundabout, 
Junction, Crossing, Bump. These features include the data 
suited for calculating our probability for data to be estimated 
for natural and structural reasons. The rest of the data can be 
used for data exploration, but these columns are concluded for 
our Problem statement. 

B. Data Cleaning 
Data cleaning is the process where unwanted and 

unnecessary data types that can interfere with the model are 
removed. A dataset was extracted containing all the variables 
mentioned above. This dataset holds multiple Not a Number 
values (Nan), and some have no Types. These rows are removed 
from the dataset to execute a clear model. 

C. Feature Engineering 
Now that our dataset is ready by cleaning it, we need to 

engineer the necessary features to be given as input to the 
Machine Learning model. Feature engineering is a technique 
that is both analytical and quantitative. It ensures that the data 
fed to the model are correctly encoded, and enough features are 
selected. 

For our problem statement, we need to predict the probability 
of a vehicle crash given the inputs from the above-selected 
columns. However, the dataset does not contain any prior 
probability, and the whole variables in a dataset point to the one 
class that is Crash probability 100%. For this reason, a whole 
new column of different classes must be engineered. We chose 

to give the name of that column as Probability class which 
contains the following classes: 0-10, 11-20, 21-30, 31-40, 41-
50, 51-60, 61-70, 71-80, 81-90, 91-100. 

Here are the steps performed for feature engineering: 
1. As all data points are evidence of a crash, we assigned the 

highest probability class to them. That is 91-100. 
2. We calculated the Mean, Range, and Median of all columns 

separately for every column. 
3. We calculated the frequency of each point in the column 

relative to other values in the column. That gives us the 
probability of that value in relation to other values. We 
suppose there are N rows in the column and value B 
occurred I times in the column. The probability of finding 
B in that column is given as: 
 
P(B) = (B*I)/ N ----- For every value in every column 

 
4. By using Range and Mean (𝞵) we created multiple rows 

that vary randomly for every column. 
5. We calculated the expected value for each row by 

multinomial probability mass distribution function as 
shown in the diagram presented in Fig. 2. 

 

𝑓ሺ𝑥ଵ, … , 𝑥; 𝑝ଵ … , 𝑝ሻ ൌ∝ ௰ሺ∑ ௫ାଵ ሻ

∏௰ሺ௫ାଵሻ
∏ 𝑝

௫
ୀଵ     (1) 

 
6. Then, we calculated the expected value of each row by 

multiplying the data value with its relative frequency and 
assigned that score to every row. 

7. All the values that are near the mean of the original points 
are assigned the same probability of 91-100. 
Recommended by the score, the rest of the rows are allotted 
with different class labels from 0-10 to 81-90. 

8. By doing so, a new column of classes is generated. 

VI. MULTICLASS CLASSIFICATION 

As explained before, we need to use multiclass classification 
due to the nature of our problem. Given a dataset, it can be 
dissected or trisected into training and testing samples with the 
already observed class it belongs to. While the model trains on 
training samples, the testing set is used to predict unseen data. 
This lets us know how to evaluate the model that is trained. 
Model implementation has the following stages: 
1. Dataset Division stage 
2. Data Encoding Stage 
3. Learning Stage 
4. Calculating cost function, Minimizing cost function. 
5. Calculating probabilities 
6. Predicting Stage 

Dataset division stage: During this stage, data provided with 
‘n’ number of samples are divided into testing and training sets 
with 0.33 and 0.66 ratios, respectively. 

Data Encoding Stage: During this stage, data should be 
properly encoded to give it as input to the model. Datasets may 
contain two types of variables: numerical, which can be 
quantified, and categorical, which primarily consists of text. As 
ML models cannot comprehend text data, label encoding is 
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employed to transform the categorical data into numerical 
values. One-hot encoding technique is then used to carry out 
this process. This technique converts all categorical values into 
numbers and then inputs them into the model. 

Learning stage: During this stage, the Machine learns from 
the training samples we provide, which carries its observed 
output from the collected data. Every example row will be fed 
to the model. The model learns from each example by 
calculating and minimizing the cost function. 

Calculating and minimizing cost function: Every training 
sample carries its observed value when some line is fit to predict 
the output. The machine will compare it with the observed 
output and calculate its differences. It is called the Cost 
function. Minimizing this cost function gives us the best line for 
the samples fed to the SoftMax function. 

Calculating probabilities and Prediction Stages depends on 
the Classification models used for the problem. In this paper, 
we have applied three common multiclass classifiers as in 
Subsection A. 

A.  Multinomial Logistic Regression 
Multinomial Logistic regression is the most suitable 

algorithm for many classification problems because it can work 
on any large dataset. It is prescribed mostly when there are 
multiple classes in the data that are needed to be predicted. 
Logistic regression is like linear regression, but instead of 
predicting a certain value, it predicts a certain probability to 
which class it belongs. The formula to calculate the logistic 
regression is: 

 
𝑃ሺ𝑧/𝑥ሻ ൌ 1/ሺ1  𝑒𝑥𝑝 ሺെ𝑧ሻሻ         (2) 

 
The learning and evaluation process of logistic regression is 

illustrated in Fig. 2. To address the nature of the problem, we 
have employed the Multinomial or One vs Rest classifier, 
wherein probabilities are computed through One vs Rest. The 
aim is to determine the probability that the given sample data 
belong to all the categories listed in the dataset and then classify 
the sample into the category with the highest probability.  

 

 

Fig. 2 Learning and Evaluation of Logistic Regression 
 
During the Prediction Stage, the model will receive the test 

dataset one by one to make predictions and determine its 

performance. The probability prediction process is as follows: 
Let K be the number of classes to be calculated for the 
prediction. P1, P2, P3… Pk are the probabilities that the model 
calculates. Instead of calculating the probability for one class, 
it follows One vs Rest. The model then calculates the 
probability of belonging to every class in the dataset. If I is the 
sample, the test data model will calculate the corresponding 
probabilities. 

 
𝑃ሺ𝐼/𝑥ሻ ൌ 𝑀𝑎𝑥ሺ𝑃1/ሺ𝑃1  𝑃2  𝑃3. . . . 𝑃𝐾ሻሻ     (3) 

 
Then, the model calculates the probabilities for P2… Pk, and 

identifies the class with the highest value. 

B. Random Forest 
The Random Forest algorithm is one of the most popular 

machine learning algorithms comprising Decision Trees. The 
more trees it has, the more sophisticated the algorithm is. It 
selects the best result from the votes polled by the trees, making 
it robust. This creates numerous branches of decision trees 
randomly to determine the class probability. It uses a multi-
node approach from where the decision branches are created 
based on the requirement. 

To achieve precise predictions, random forests employ a 
multitude of decision trees. While there is a common notion that 
having numerous trees might lead to overfitting, it appears not 
to be a drawback. This is because only the optimal prediction 
(the one with the most votes) is selected from the potential 
output classes, ensuring seamless, dependable, and adaptable 
executions. An important strength of Random Forests is that 
they can perform well in the case of missing data. According to 
their construction principle, not every tree uses the same 
features. If there is any missing value for a feature during the 
application, there usually are enough trees remaining that do not 
use this feature to produce accurate predictions. On the other 
hand, when applied to regression problems, Random Forests 
have the limitation that they cannot exceed the range of values 
of the target variable used in training. Thus, Random Forests 
may perform poorly with data that are out of the range of the 
original training data [18].  

C. XGBoost 
XGBoost is a decision-tree-based ensemble Machine 

Learning algorithm that uses a gradient-boosting framework. 
This is an implementation of gradient boosting that pushes the 
edges of computing power for boosted tree algorithms. It was 
developed primarily to enhance machine learning performance 
and computational speed. The intuition behind it is that the best 
possible next model will minimize the prediction error when 
combined with previous models. For this next model, the key 
concept is to set target outcomes to minimize errors. Depending 
on how much each case's prediction changes the overall 
prediction error, the target outcome for that case will vary [19]: 
 The next target outcome of a case is a high value when a 

small change in the prediction leads to a large drop in error. 
The error will be reduced by using a model that predicts 
close to its targets. 

 The next target outcome of a case is zero when a small 
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change in the prediction leads to no change in error. A 
change in this prediction does not reduce the error. 

VII. NUMERICAL RESULT 

Results of the research can be divided into two sections: 
• Results from Exploratory Data Analysis (EDA) 

• Results from Multiclass Classification Models 

A. Results from EDA 
We map all the GPS coordinates from the dataset the United 

States map as Fig. 3, where a red spot indicates the site of 
accidents. 

 

 

Fig. 3 Plotting accidents from the dataset on a US map [20] 
 

TABLE I 
DESCRIPTIVE FACTS OF LOCATION LATITUDE AND LONGITUDE IN DEGREES 

 Range Mean Median Max 

Latitude 24.446 36.53 36.099 49.002 

Longitude 57.510 -96.426 -91.166 -67.113 

 Min Variance Standard deviation 

Latitude 49.002 25.139 5.0139  

Longitude -124.62 315.208 17.754  

 

Fig. 5 indicates that Severity Type 2 crashes are causing the 
highest congestion, and severity Type 3 crashes are followed by 
that. Severity is an ordinal number. A higher number indicates 
heavy traffic congestion and a lower number indicates low 
traffic congestion due to crashes. Severity Type 2 is followed 
by Severity Type 3, which shows these large types of traffic 
congestion. Traffic congestion affects every other person who 
has been traveling on the road.  

Fig. 3 is plotted by the coordinates given in the dataset and 
mapped from open-street.org using geopandas. This figure 
clearly shows that accident density is higher in coastal regions 
of the United States, especially California and Florida. 

Start_lat and Start_lng are the area features that correspond 
to the observed values of location latitude and longitude in GPS, 
respectively. They represent where latitude and longitude 
accidents have occurred. Kernel Density Estimation is used to 
measure the probability of finding cumulative data. It is also 

called cumulative distribution. It is measured to create new data 
points that follow the same type of distribution. Table I shows 
some of the descriptive facts for these features. 

We can see from Fig. 4 that more accidents occur at 34 
degrees start latitude and -117 degrees longitude. Mid-level 
latitudes have seen a greater number of accidents than either 
side.  

Four types of severity indicate a scale on how severe the 
traffic has been congested. It represents the effect that other 
people on the road felt. 

End_lat and End_lng are the area features that correspond to 
the observed values of location latitude and longitude in GPS, 
respectively. These features denote the point where traffic 
congestion concludes based on latitude and longitude. These are 
numerical variables. So, we can calculate the information 
represented in Table II through quantitative methods. 

 
 

TABLE II 
DESCRIPTIVE FACTS OF CONGESTION END LOCATION LATITUDE AND 

LONGITUDE IN DEGREES 

 Range Mean Median Max 

Latitude -24.519 -36.517 -36.058 -49.075 

Longitude - 57.514 -96.203 - 91.051 -67.109 

 Min Variance Standard deviation 

Latitude -24.555 -25.166 -5.0166  

Longitude -124.62 -311.865 -17.659  
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(a) 
 

 

(b) 

Fig. 4 Histogram of accident location with KDE: (a) Location latitude; (b) Location longitude 
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Fig. 5 Histogram of Severity with its KDE 
 

We can see from Fig. 6 that crash data spread from -24 
degrees longitude to -49 degrees latitude on Globe. It converges 
with United States Geographical coordinates. 

Analyzing the distance of traffic congestion shows that the 
maximum number of crashes causes no traffic congestion, 
which indicates roads are in pretty good condition or 
Authorities may have worked efficiently to clear the traffic. The 
highest traffic congestion happened with 333 miles of traffic 
jammed. It may indicate a very big accident that entirely cut the 
road commute. 

As shown in Fig. 7, more accidents occurred on the Right 
Side of the road than on the left. The right side in the United 
States indicates the regular traveling traffic rule. It means 
accidents by the wrong route are far less than accidents on the 
regular traveling side, ‘Right Side’. There might be so many 
underlying causes for this. We require additional data to 
conduct a thorough analysis. 

Fig. 8 (a) shows that California (CA) and Florida (FL) have 
more crashes than the rest of the states, while Vermont (VT), 
North Dakota (ND), South Dakota (SD) and Wyoming (WY) 
have very few crashes. There are many reasons for this type of 
outcome ranging from road structures and conditions to 
population density and traffic volume, but it indicates that CA 
and FL had more crashes. Fig. 8 (b) shows that more crashes 
happened in the US/Eastern Time Zone, which belongs to DC 

and Florida. Coastal areas come Second, and the Central Region 
has a medium number of crashes. Mountain Region has a 
significantly smaller number of crashes compared to other Time 
zones. 

Fig. 9 (a) indicates the histogram of windchill for every 
accident with its kernel density estimation. As expected, the 
figure follows a bimodal distribution with two peaks. Most 
accidents happen between two ranges, one between 10 degrees 
Fahrenheit to 50 degrees Fahrenheit and another range from 50 
degrees Fahrenheit to 100 degrees Fahrenheit. At extreme 
temperatures, very few accidents were recorded. It can be due 
to other causes like low traffic volume at extreme values. 

Fig. 9 (b) shows humidity values recorded during and at crash 
locations. Humidity is the percentage of moisture in cubic cm 
of air. It is measured in percentages. It correlates with 
temperature. If the temperature decreases, humidity can convert 
into rain. This is one of the Natural factors that can be 
considered for our problem statement. The figure shows that the 
humidity distribution is left-tailed and skewed to the right. As 
Humidity increases, the number of crashes also increases. The 
observed values tell us there are more accidents when there is 
100% humidity and 90% humidity. When Humidity is zero, the 
number of accidents is less. It is just a correlation between 
Humidity and crashes. It is not causation; some underlying 
factors might also be involved. 
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(a) 
 

 

(b) 

Fig. 6 Histogram of end location of accident congestion with KDE: (a) Location latitude; (b) Location longitude 
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Fig. 7 Histogram of Side column 
 

Fig. 10 (a) shows the histogram of recorded pressure 
observations during crash locations. Pressure is a force caused 
by the atmosphere in a particular area. It is inversely correlated 
with temperature and directly correlated with Humidity. 
Pressure can affect the person driving the vehicle. The human 
body is made to withstand only a certain amount of pressure. If 
it falls below or becomes high, it will have severe consequences 
on a person's health, so it must be somehow related to the 
accident as one of the natural factors. As shown in Fig. 10 (a) 
distribution of this feature follows the single peak distribution 
close to normal distribution but not precisely. It has one peak at 
30 inches of pressure. It tells us that more accidents happened 
at 30 inches of pressure, and entire vehicle crashes occurred in 
the range of 27.5 to 31.5 approximately. The human body can 
withstand 50 inches of sudden impact pressure and gradual 
pressure up to 400 inches. So, Pressure has very little relevance 
here until and unless it affects other variables in some correlated 
way. 

Fig. 10 (b) indicates the histogram of observed visibility 
values during crash events. Visibility is measured in the 
distance measured in miles in this dataset. Visibility can affect 
the probability of a crash severely. It can lead to many crashes 
in the same place and can also be a cause of traffic congestion. 
From the figure, it is obvious that most of the accidents are 
caused when visibility is between 0-10 miles. Surprisingly, 
crash values are higher when visibility is at 7-10 than when 
there is zero visibility. It confirms that other causes for 
accidents might influence the crash probability more than 
Visibility. When visibility is far higher, there are very few 
crashes. This indicates that column values can be a minor factor 
in deciding a crash. 

Fig. 11 (a) shows the values of wind direction during crashes. 
Wind direction may not cause the crash because the direction is 
less critical when the wind flows slower. As shown in the 
figure, there is no clear pattern in the distribution; it lies 
somewhere between the Uniform distribution except in two 

cases where a greater number of accidents happened in the calm 
wind direction. A small number of accidents happened during 
variable wind and eastern wind direction. This can be a minor 
factor from natural causes to decide the crash probability. Wind 
speed can affect crash probability when it blows against or 
alongside the vehicle during travel. This entirely depends upon 
how fast the wind is blowing.  

Fig. 11 (b) shows the histogram of precipitation, which 
contains the values of precipitation measured in inches for each 
observed crash incident. Precipitation can be of many types, 
such as Rain, Drizzle, Snow, etc. It is usually measured in 
centimeters or inches. Precipitation can affect the crash 
probability in many ways like reducing visibility and making 
roads sloppy. By analysing this, we can understand how 
precipitation affects crash probabilities. Some of the 
quantitative are presented in Table III. 

 
TABLE III 

DESCRIPTIVE FACTS OF PRECIPITATION 

Range Mean Median Max 

24.0 0.011 0.0 24.0 

Variance Standard deviation Mode 

0.023 0.154 0.0 
 

The precipitation data span a range of 24 inches, with a 
minimum of 0 inches and a maximum of 24 inches. The mode 
and median are both 0.0, and the mean is approximately 0. 
Despite the wide range, the maximum value of 24 falls outside 
the last quarter of the interquartile range, indicating it could be 
an outlier. Considering this, we may choose to exclude it from 
our analysis. Most accidents occurred within the range of 0 to 1 
inch of precipitation. When factoring in visibility data, it 
appears that precipitation may not be a significant contributing 
factor to accidents.  

By analyzing data on weather conditions, it becomes evident 
that in fair weather, accidents are primarily attributed to 
spontaneous errors by commuters and other variables. The next 
highest incidence of accidents occurs in cloudy weather, which, 
when combined with precipitation, can significantly reduce 
visibility on the roads, thereby increasing the likelihood of 
accidents. The fewest accidents occurred during thunder/hail, 
heavy smoke, sleet/windy, and rain and sleet weather 
conditions. It is important to note that this feature consists of 
categorical values. Therefore, a qualitative approach may offer 
deeper insights compared to a quantitative one. Table IV shows 
the number of accidents versus some effective structural 
parameters. 

 
TABLE IV 

THE NUMBER OF ACCIDENTS VS SOME EFFECTIVE STRUCTURAL PARAMETERS 

 Amenity Bump Crossing Give Way Junction 

No 2875240 2906031 2687681 2898390 2630533 

Yes 31370 579 218929 8220 276077 

 No Exit Railway Roundabout Station Stop 

No 2902752 2880683 2906468 2848700 2861156 

Yes 3858 25927 142 57910 45454 

 Traffic Calming Traffic Signal Turning Loop

No 2905303 2452945 2906610 

Yes 1307 453665 ≅0 
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Fig. 8 (a) Histogram of States 
 

 

Fig. 8 (b) Histogram of the Time zone 
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Fig. 9 (a) Histogram of windchill (F) 
 

 

Fig. 9 (b) Histogram of Humidity (%) 
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Fig. 10 (a) Histogram of pressure (in) 
 

 

Fig. 10 (b) Histogram of Visibility (mi) 
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Fig. 11 (a) Histogram wind direction 
 

 

Fig. 11 (b) Histogram of precipitation (in) 
 

Amenity represents if there is a nearby amenity center or 
rehabilitation provider during a crash. By analyzing this, we can 
clearly understand the facilities available for crash incidents 
and how much chance it is for a person to live after a heavy 
crash. As shown in Table IV, for 2875240 types of crashes, 
there is no availability of amenities. It exists only for 31370 
crash incidents. It indicates very poor infrastructure and public 
authorities should take this issue seriously and establish 
opportunities in these crash locations to save many lives. With 

this kind of infrastructure, the chance of dying in a fatal accident 
is very high.  

Bump indicates whether there is an accident near the Bump. 
Bump is one of the traffic-calming techniques. If an accident 
happens near a bump, it indicates overspeed by the vehicle 
driver. From the above value counts, only 579 accidents are at 
bump out of 2.9 million records. 

Crossing indicates whether accidents happened near the 
crossing. A crossing is generally where the walking public can 
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cross a road for a certain period. As shown in Table IV, 
approximately 8% of the crashes are at crossing only, which 
indicates a severe problem with overspeeding and danger to the 
walking public. This issue should be taken seriously. 

Give Way represents observed values from 2.9 million 
crashes, whether there is a crash at Give Way sites or not. As 
can be seen in Table IV, very few crash incidents happened at 
Give Way sites. No more inferences can be drawn from here. 

Junction represents observed values from 2.9 million 
crashes, regardless of whether they occurred at Give Way 
locations. It refers to a point where multiple roads intersect, 
involving two or more directions. Over 10% of accidents occur 
exclusively at junctions, indicating the Urban phenomenon, as 
urban areas contain more junctions than rural areas. This 
implies that crashes may occur more frequently in urban areas 
compared to rural ones. A crash near a junction indicates wrong 
judgments by the vehicle’s driver, potentially serving as an 
immediate cause for the crash. 

No Exit contains information on whether there is an accident 
at the No Exit traffic rule. No Exit is where government 
authorities intentionally keep a signal of No Exit to control the 
traffic flow. The cause of the crash at these places indicates a 
traffic rule violation. Table IV shows that very few crashes 
happened at No Exit signs compared to the remaining crashes 
of 2.9 million. It can be due to traffic violations. 

Railway contains information on whether a railway station is 
near the accident for other transportation sources. Only 0.87% 
of the crash sites have railways as an alternative commutation. 

Roundabout contains data on whether a crash is near or 
during a roundabout. As can be seen, very few crashes 
happened at Roundabout when compared to the remaining 
crashes of 2.9 million. It can be due to traffic violations. 

Station holds the data on whether a metro station near the 
accident site exists for all 2.9 million records. Approximately 
2.1% of crash sites have metro facilities as alternative 
commutation. 

Stop holds the data on whether there is a stop signal near the 
accident site for all 2.9 million records. Table IV shows that 
approximately 1.8% of crashes happened at stop signals, 
indicating overspeed or jerk movements. 

Traffic Calming contains whether there is a traffic-calming 
structure or not during a crash. Traffic calming is a technique 
used by public authorities to manage the speed and flow of 
vehicles during commuting hours. If there is a crash nearby, it 
may indicate an overspeeding effect. There are very few crashes 
at traffic-calming sites. 

Traffic Signal contains information on whether a crash is 
near a traffic signal. Crash near traffic signals indicates the 
violation of traffic rules or overspeeding. As presented in Table 
IV, approximately 17% of the accidents are near traffic signals, 
which indicates the citizen's behavior in following the rules. A 
crash can only happen at a traffic signal by overspeeding and 
traffic violations. 

Turning Loop contains information on whether there is an 
accident near turning loops. The information in Table IV shows 
almost zero crashes near traffic loops. It indicates a better 
structure to regulate the traffic flow than junctions and traffic 

signals.  
Table V shows the number of accidents versus some other 

important parameters.  
 

TABLE V 
THE NUMBER OF ACCIDENTS VS SOME EFFECTIVE PARAMETERS 

 
Sunrise 
Sunset

Civil 
Twilight 

Nautical 
Twilight 

Astronomical 
Twilight

Day 1941068 2073629 2212270 2321705 

Night 965432 832871 694230 584795 

 
Sunrise Sunset indicates whether it is a day or night 

according to sunset and sunrise on Earth. Civil Twilight 
contains information on whether it is a day or night according 
to Civil Twilight. Civil twilight is when the sun is below 6 
degrees of the horizon. Nautical Twilight contains information 
on whether it is a day or night, according to Nautical Twilight. 
Nautical twilight is when the sun is not visible, but there is still 
light. Astronomical Twilight contains information on whether 
it is a day or night according to Astronomical twilight. 
Astronomical twilight is when the sun is below 18 degrees of 
the horizon. 

Fig. 12 illustrates the correlation among some variables in 
the dataset as an Image matrix. Correlation is the relation 
between two variables. It indicates how two variables are 
related. It is mainly used in finding patterns in the data visually. 

In Fig. 12, every correlation graph between two individual 
variables is shown as a 9x9 Image matrix where each matrix 
element is the correlation between one variable vs another. All 
the diagonal Image elements indicate the correlation between 
the variable and itself. There are nine quantifiable variables 
apart from categorical variables. Start_Lat, Start_Lng, 
Temperature, Windchill, Humidity, pressure, visibility, wind 
speed, and precipitation. All nine variables are placed in rows 
and columns in the same order. The values are obtained from 
the correlation Image matrix.  
• The correlation between Start_Lat and Start_Lng roughly 

mirrors the geographical layout of the United States. The 
relationship between Latitude and temperature, windchill, 
and humidity is not uniform, suggesting the presence of 
diverse landscape features. Latitude's correlation with 
pressure, windspeed, precipitation, and visibility remains 
relatively consistent at lower values of these variables. 
However, it tends to diminish after reaching a certain point. 

• Start_Lng and other variables follow the same correlation 
values, like latitude. It suggests there are different 
geographical areas where crashes happen, and they spread 
over large ecosystems of the lithosphere. 

• Temperature and wind chill exhibit an almost linear 
relationship, with higher temperatures corresponding to 
greater wind chills. These two variables are dependent, and 
their correlation is close to 99%. Additionally, as 
temperature rises, humidity experiences a very slight 
decrease, indicating a weak correlation between 
temperature and humidity. Conversely, temperature shows 
no significant correlation with Pressure, visibility, 
Precipitation, and Wind speed at crash sites. 
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Fig. 12 Correlation visualization 
 

• Windchill has a weak correlation with Humidity. The slope 
is negative. Windchill with pressure, precipitation, wind 
speed, and visibility have no notable correlation. 

• Humidity with pressure, precipitation, wind speed, and 
visibility has no notable correlation. 

• Pressure has no notable correlation with any variable. 
• Wind speed has no notable correlation with any variable. 
• Precipitation and visibility have no notable correlations. 

Fig. 13 (a) presents the same data as Fig. 12 but in the form 
of a heatmap. Heatmap makes it visually easy to compare the 
correlation with other variables. The darker cells indicate lesser 
correlations and brighter ones indicate higher correlations. All 
diagonal heat cells are shown as white because the correlation 
between variables and itself is linear. Fig. 13 (b) shows 
Covariance among some variables. 

Covariance reveals how each variable behaves over other 
variables. Covariance is defined as the change between 

variables as one variable vs another. It evaluates the change by 
either positive or negative and values for change. If change is 
+ve, it means that as one variable increases, another variable 
dependent upon it increases. If the change has a -ve sign, it 
indicates the negative covariance where a change in one 
variable adversely affects the other variable by decreasing its 
value. The strength of the covariance is a numerical value that 
indicates how strong the covariance is. In Fig 13 (b), the 
variables are arranged in a grid manner with the same number 
of rows and columns. Every row-column position indicates 
covariance between one variable and another, arranged in the 
same order as rows and columns. The darker cells indicate 
lesser covariances and brighter ones indicate higher 
covariances. As can be seen, the covariance between most of 
the variables is the same except for temperature, wind chill, and 
Humidity. It indicates the covariance high between these 
variables, which are not independent. 
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Fig. 13 (a) Heatmap of Correlation among some variables 
 

 

Fig. 13 (b) Heatmap of Covariance among some variables 
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(a)             (b)             (c) 
 

 

(d)              (e)             (f) 

Fig. 14 (a) 3D Representation of Windchill vs Latitude vs Longitude; (b) 3D representation of Wind speed vs Humidity vs Precipitation; (c) 3D 
Representation of Longitude, Latitude, and pressure; (d) 3D representation of Humidity, Precipitation, and Distance; (e) 3D Representation of 

latitude, longitude, and Wind Direction; (f) 3D representation of Bump, Latitudes, and Windchill 
 

Some other relationships between variables are in the 
diagrams represented in Fig. 14. Fig. 14 (a) represents the 3D 
correlation between Windchill measured in Fahrenheit and the 
latitude-longitude in the X and Y axes. As latitude and 
longitude increase, windchill remains constant but gives some 
blob in between, indicating the underlying geography of 
provided coordinates and their different types of ecosystems. In 
Fig. 14 (b), Windspeed and Humidity are plotted in the X and 
Y axes. The correlation between them and Precipitation in the 
Z axis shows that Windspeed remained constant, and as 
Humidity increases, Precipitation remains a weak correlation. 
In Fig. 14 (c), change in Pressure over certain crash sites is 
visible for only a small range of values. X and Y axes are 
Longitude and Latitude. The z-axis took the Pressure 
Measurement. More accidents occurred around lesser 
longitude, mid-latitudes, and mid-pressure. In 14 (d), X and Y 
axes are taken as Humidity and Precipitation, respectively. The 
Z axis is taken as the Distance of the traffic congestion. 
Correlation moves towards High values of Precipitation. 
Humidity and distance have similar kinds of patterns. 
Precipitation must do something with the distance of 
congestion. Precipitation generally occurs at 100% humidity. 
Humidity can vary with temperature and pressure. In Fig. 14 
(e), Longitude and Latitude are taken as X and Y axes, 
respectively, while the Z axis has a Wind direction. Correlation 

between these three variables indicates that most accidents 
happen around lesser longitudes, higher wind speeds, and mid-
latitudes. In Fig. 14 (f), X and Y axes are taken as Latitude and 
Wind chill, respectively. While the Z axis has a Bump, it 
indicates Bump has a lesser correlation with the number of 
accidents. Mid latitudes and higher wind chills contain more 
accidents with non-parametric correlation. 

B. Results from Multiclass Classification Models  
As explained in Section VI, we have used three different 

multiclass classifiers, including Logistic Regression, Random 
Forest, and XGBoost, to predict the probability class defined 
for our problem. Then, we used hyperparameter tuning to 
determine the right combination of hyperparameters that allows 
the model to maximize performance. Setting the correct 
combination of hyperparameters is the only way to extract the 
maximum performance out of models. The selection of the right 
combination of hyperparameters is a challenging task. There are 
two ways to set them. 
 Manual hyperparameter tuning: In this method, different 

combinations of hyperparameters are manually set (and 
experimented with). This is a tedious process and cannot 
be practical in cases with many hyperparameters. 

 Automated hyperparameter tuning: In this method, optimal 
hyperparameters are found using some algorithms that 
automate and optimize the process. This method has been 
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used in this paper. 
We have reported the numerical results for the 

abovementioned models with and without hyperparameter 
tuning. 

We first develop multiclass logistic regression to predict the 
probability class defined for the problem in this paper. The 
numerical result shows that the overall accuracy is 66.5%, 
which indicates that we left many variables except Natural and 

Structural causes. Eliminating spontaneous causes during the 
prediction class calculation resulted in a decrease in accuracy, 
signifying the impact on the overall predictive performance. 
Additionally, it reveals the percentage of predictability for 
Probability attributed to Natural and Structural causes. 
Accuracy, at times, may not provide a comprehensive 
depiction, hence the classification report offers insights into our 
performance across individual classes. 

 

 

(a) 
 

 

(b) 

Fig. 15 (a) Classification Report of Multiclass logistic regression; (b) Classification Report Heatmap 
 

Fig. 15 (a) represents the Multiclass logistic regression 
classification report for the testing data. It is essential to 
evaluate accuracy due to potential biases in accuracy curves. 
The report encompasses a total of 10 classes, where the range 
91-100 is denoted as the '0' class, 0-10 as '1', 11-20 as '2', 21-30 
as '3', 31-40 as '4', 41-50 as '5', 51-60 as '6', 61-70 as '7', 71-80 

as '8', and 81-90 as '9'. These intervals are the classification of 
which probability the data point belongs to. The accuracy of the 
model is evaluated in three indicators. Precision indicates 
performance, Recall measures completeness, and F1 scores 
assess the model's agility. The values for these metrics are 
presented as follows:  
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1. class 91-100 has Precision 0.82, Recall 0.91, f1-score 0.82. 
2. class 0-10 has Precision 0.56, Recall 0.62, f1-score 0.54. 
3. class 11-20 has Precision 0.66, Recall 0.77, f1-score 0.70. 
4. class 21-30 has Precision 0.59, Recall 0.70, f1-score 0.58. 
5. class 31-40 has Precision 0.61, Recall 0.75, f1-score 0.62. 
6. class 41-50 has Precision 0.67, Recall 0.79, f1-score 0.68. 
7. class 51-60 has Precision 0.58, Recall 0.68, f1-score 0.57. 
8. class 61-70 has Precision 0.65, Recall 0.76, f1-score 0.67. 
9. class 71-80 has Precision 0.68, Recall 0.82, f1-score 0.69. 
10. class 81-90 has Precision 0.68, Recall 0.71, f1-score 0.70. 

Fig. 15 (b) shows the Heatmap of the Classification report. 
All ten classes are arranged in rows and columns in the same 
order. Each meeting point of a row and column is called a heat 
cell. Heat cells measure the performance. A brighter heat cell 
concerning other cells indicates that row and column classes 
perform better than each other. The darker the cell is compared 
to others, indicating it performed badly in that class. This 
visualization helps in performing the comparison between 
different classes. The classification report has the following 
parameters: 
 F1 score: F1 score of our model is 0.66 on Average for all 

ten classes. F1 score indicates the ratio of True Positive to 
the (True positives + ½ (False positives + False Negatives). 
It also says how the model is performing in overall 
situations. F1 score = TP/(TP+1/2(FP+FN)  

 Precision: The precision of our model is 0.655. It indicates 
what percentage of positives were not considered False 
Negatives. The formula to calculate Precision is: Precision 
= TP/(TP+FP) 

 Recall: The recall score of our model is 0.76. It indicates 
what percentage of True Positives were not labeled as False 
Negatives. The recall is also called the completeness of the 
model. The formula to calculate this is: Recall = 
TP/(TP+FN) 

Fig. 16 (a) illustrates the accuracy curve of multiclass logistic 
regression. The machine learning algorithm ran 15,000 
iterations over the training dataset to evaluate and visualize its 
performance. The X-axis represents the number of Iterations 
over train data. The y-axis represents the accuracy achieved 
after each iteration. Accuracy improved slowly over each 
iteration. After teaching 8000 iterations, the accuracy fluctuates 
around 60-68 values up to 1500. This is the most an algorithm 
can perform. To reduce the overfitting, iteration was set to 
15000 only. Implementing multinomial regression using the 
One-vs-Rest (OvR) classifier in scikit-learn has been utilized, 
with the specific choice of a "loglinear" solver. 

Fig. 16 (b) illustrates the loss curve over iterations of 
multiclass logistic regression. The X axis is taken as Iterations. 
It indicates the number of iterations over train data the 
algorithm went for. The Y axis is represented by loss for each 
iteration over training data the algorithm faced. The graph 
shows loss was gradually decreasing slowly up to 8000 
iterations. After 8000 iterations, the loss hovers around 40-32. 
The algorithm reached the lowest possible loss around this 
interval. Maximum iterations were set to 15000. If training was 
done in more iterations, the algorithm would overfit. 

 

 

Fig. 16 (a) Accuracy curve over iterations on Data  
 

 

Fig. 16 (b) Loss curve over Iterations till convergence 
 

Table VI represents the accuracy and runtime values for three 
multiclass classifiers with and without hyperparameter tuning.  

 
TABLE VI 

DESCRIPTIVE FACTS OF LOCATION LATITUDE AND LONGITUDE IN DEGREES 

 Accuracy (%) Runtime 

Logistic Regression 66.5 1m 53sec 

Logistic Regression with hyperparameter tuning 69.3 31m 12sec 

Random Forest 70.7 3m 32sec 

Random Forest with hyperparameter tuning 73.6 4m 13sec 

XGBoost 71.4 71m 12 sec

XGBoost with hyperparameter tuning 75.2 88m 20sec 

 

As shown in Table VI, XGBoost with hyperparameter tuning 
has provided better accuracy, which is about 75.2%, with a 
runtime of 88 minutes and 20 seconds. To be realistic, we 
cannot expect higher accuracy because we had to leave out 
Spontaneous reasons for the crash, and the probability class 
values are calculated through random and stochastic processes, 
which may be biased towards one value. Using other methods 
of classification is also suffering from the same kind of bias in 
the dataset. So, it only reveals how much we can predict the 
probability of a crash due to natural and structural reasons. 

VIII. DISCUSSION 

This section represents the findings of exploratory data 
analysis as follows. 
 Turning loops are better traffic structures than traffic 

junctions. They recorded absolutely zero crashes, which 
indicates that fewer crashes can happen if there is a chance 
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that we replace all junctions with turning loops, providing 
that cost-effectiveness. 

 Coastal Urban areas like Miami and Florida, along with the 
other areas surrounding the Great Lakes, have seen many 
crashes, which indicates the population density and 
economic activity in that area. 

 17% of the crashes occurred at junctions, while none 
occurred at turning loops. Traffic signals may have been 
causing mental pressure for commuters in urban areas. 

 Major natural factors for more crashes are Humidity, Wind 
Chill, Precipitation, and Weather type. 

 Minor natural factors for more crashes are Wind speed, 
Wind direction, Pressure, and Temperature. 

 Major structural causes for crashes are Junctions, Traffic 
signals, and Crossings. 

 Minor structural causes for crashes are Bumps, No exit 
signs, Give way, Roundabouts, and Stop signals. 

 Most crash sites have no amenity to save people’s lives as 
early as possible. 

 There seems to be an urban-rural gap between crashes. 
There may be a correlation between traffic volume, 
population density, and economic activity. 

 Approximately 10% of the accidents occurred during the 
crossing. 

 Covariance between Temperature, Pressure, and Humidity 
is very high. It indicates they may not be very independent. 

 Calm and cloudy weather conditions are reported at many 
crashes. It indicates that the rain level has a neutral effect 
on the number of crashes. 

 California has recorded more accidents, followed by 
Florida.  

 Vermont, Wyoming, North Dakota, and South Dakota 
recorded very few incidents of crashes. 

 The correlation between Visibility, Temperature, and 
Humidity is very high. 

 Correlation between traffic signals and crossing is very 
high. As it is clear, a major part of the crashes happened in 
these localities. 

 US/Eastern and US/Pacific time zones have seen more 
crashes. While the US/Mountain region is less. 

IX. CONTRIBUTION OF THIS PAPER 

Our problem statement aims to predict the likelihood of road 
crashes by considering both natural and structural factors. This 
prediction is based on the extensive dataset from the United 
States government, which includes numerous columns and 
rows detailing every crash. The technical aspects discussed in 
this paper are specifically applicable to the United States.   
 We categorized the factors contributing to the crash into 

three independent Variables, including 1) Natural Reasons 
like weather conditions, Humidity, Pressure, Temperature, 
Visibility, Precipitation, Longitude, Latitude, etc. 2) 
Structural reasons like, Bumps, Traffic signals and 
Junctions, No exit and Stop signals from authorities, side 
etc. 3) Spontaneous Reasons like vehicle speed, drunk 
driving, erratic driving behavior, Signal jumps, etc. 

 We limited our research to natural and structural reasons 

due to limited real-time sensor data and no idea of its 
distribution. 

 Dataset contains numerical, Boolean, and categorical 
variables that were observed during every crash that 
happened in the United States in all states. Most of the 
dataset columns are useless for our purpose. After doing 
some exploratory data analysis, we pointed out 21 columns 
out of 47 that we need for analysis and prediction through 
the model. 

 To find the probability, we also needed examples of where 
a crash has never happened, if there is a certain probability 
of a crash as well as a dataset that does not contain them. 

 To find this, we need to generate data that follows the same 
distribution as the original dataset. 

 There are three ways to solve this problem.  
o Gaussian Process Regression: This process takes a 

different approach than normal regression. Instead of 
calculating only one possible way to create the data using 
the Bayesian approach, it generates all possible vector 
spaces that follow the given distribution. 

o Linear Regression: This technique is effective for 
predicting specific values based on dataset vectors. It 
involves calculating the expected values of each 
multivariate distribution, creating random vectors from the 
same distribution, and using linear regression to determine 
the expected values for these new vectors. These values are 
then stored for anomaly detection purposes. 

o Multinomial Expected Value: Given that the data are 
multivariate, random data points are generated as vectors 
following the same multinomial distribution as the original 
dataset. The expected values for these random points are 
calculated using the multinomial expected value.  

 We selected the multinomial expected value as an anchor 
to generate new random data to create a train set. It is 
simple but powerful. After generating new data and 
expected values, we assigned probabilities close to those of 
the original distribution. According to Chebyshev's 
theorem, 60% of the data should fall within two standard 
deviations from the mean, 80% within three standard 
deviations, and 99.9% within five standard deviations. 

 By using that rule, we created 10 bins of probability by 
comparing the present distribution with the original 
distribution. 

 The rest of the ten bins are assigned accordingly.  
 After the training set was ready, we normalized and scaled 

the data to ensure accuracy was not skewed. 
 We experimented with the dataset by taking 70% of it as a 

training dataset and used three different multiclass 
classifiers to predict the probability bin of the data point. 

 30% of data are used as test data for prediction. 
 Multiclass XGboost with hyperparameter tuning could 

achieve 75.2% accuracy. Accuracy suffered because there 
were no spontaneous reasons.  

X. CONCLUSIONS AND FUTURE WORKS 

This study aims to predict the likelihood of a crash based on 
natural and structural factors such as weather, temperature, 
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pressure, wind direction, wind speed, precipitation, humidity, 
traffic signals, and road features like bumps, crossings, and 
junctions. The analysis has revealed significant correlations, 
such as between traffic signals and crossings, which commonly 
occur together. This demonstrates that exploratory data analysis 
is an effective method for drawing and quantifying inferences 
for further use. We applied multiclass logistic regression 
(OneVsRest), Random Forest, and XGBoost, all with and 
without hyperparameter tuning, to predict the probability class 
a crash incident belongs. The results show that XGBoost with 
hyperparameter tuning gives better accuracy of 75.2% but at a 
greater computational cost, which is about 88 minutes and 20 
seconds. It indicated that we need more and more natural 
variables to be taken into consideration. The models presented 
in this paper do not deal with spontaneous causes of accidents 
like overspeeding, traffic violations, drunk driving, vehicle 
conditions, etc. Some important measures are identified as 
follows. 

Amenity, rehabilitation, or the help needed at the crash 
locations, even in the hotspots of accident zones like junctions, 
crossings, and traffic signals, were also not available in proper 
proportion. We identified that the only way accidents could 
occur at junctions is due to human-made spontaneous mistakes 
like overspeeding and traffic signal violations. 17% of the 
accidents belong to this category. Crashes near bumps and no 
exit are also caused by misguided human behaviors of 
overspeeding. The crashes during Give Way are also 
misjudgments by humans. 

Therefore, calculating probability based on natural structural 
reasons is only a part of the work. There must be some way to 
find out spontaneous reasons like overspeeding, drunk driving, 
and spontaneous reactions to quantify and analyze to find the 
proper solutions to the menace of these crashes.  

In future works, we plan to work on the following ideas. 
 To get the proper probability, one must use extensive 

sensor data and heavy processing to understand the patterns 
in spontaneous causes like overspeeding and traffic 
violations. The combination of all these things can 
perfectly estimate the real-time probability of a crash by 
any event or cause. 

 Data collection is the most important work that needs to be 
done. Public authorities should make sure that the real-time 
data are freely available and updated now and then to help 
academia conduct more research on things that provide 
valuable solutions. One idea is that there must be a network 
of traffic and vehicle networks just like the internet in every 
country to properly manage traffic flow and control the 
number of crashes. v2X technologies are working towards 
these. A more systematic approach is needed. 

 We plan to use streaming data and Big Data technology for 
real-time monitoring of road traffic. The road traffic 
prediction models will also be developed using Spark 
Streaming. 
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