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A B S T R A C T

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that resist conventional 
water treatment methods, raising concerns about their impact on human health and ecosystems. As PFAS 
contamination becomes increasingly widespread, the need for novel, effective treatment solutions have grown. 
Predictive modeling offers a promising approach to evaluate PFAS behavior, removal efficiency, and trans
formation pathways in emerging treatment technologies. This narrative review explores current advancements in 
predictive models for PFAS remediation, focusing on methods that incorporate PFAS structural characteristics, 
environmental factors, and treatment type. Three main modeling approaches are discussed: empirical, mecha
nistic, and machine learning models, each with unique strengths and limitations depending on data availability 
and treatment conditions. The review also addresses recent developments in advanced treatment systems such as 
advanced oxidation processes (AOPs), electrochemical treatment, and adsorption, as well as the role of machine 
learning in optimizing treatment predictions. Key challenges, including data limitations, transformation product 
toxicity, and model validation, are examined, with recommendations for future research emphasizing data 
expansion, integration of toxicity predictions, and enhanced model interpretability. By tailoring predictive 
models to PFAS-specific variables and diverse treatment conditions, researchers can advance sustainable PFAS 
management practices and guide effective remediation strategies for contaminated sites.

1. Introduction

Per- and polyfluoroalkyl substances (PFAS) encompass a broad group 
of synthetic chemicals that have been integral to various industrial ap
plications, largely due to their unique chemical properties (Glüge et al., 
2020; Brase et al., 2021; Gaines, 2023). Known for their exceptional 
thermal stability (Joudan and Lundgren, 2022) with a decomposition 
temperature ranging from 150 to 200◦C (Sasi et al., 2021), water and oil 
repellency (Meng et al., 2023), and resistance to biological and chemical 
degradation (Wackett, 2022), PFAS compounds have found widespread 
use in products ranging from nonstick cookware and water-resistant 
fabrics to firefighting foams and industrial cleaning agents (Zornes 

et al., 2022). However, these same chemical characteristics, which make 
PFAS invaluable in industrial and consumer products, have also 
rendered them some of the most persistent contaminants in the envi
ronment (Panieri et al., 2022). This persistence stems from the strong 
carbon-fluorine bonds in PFAS structures, which resist breakdown by 
traditional environmental and biological processes (Grgas et al., 2023). 
As a prominent member of PFAS, perfluorooctane sulfonate (PFOS) has 
an octafluorinated carbon chain (C8F17) linked to a sulfonate group 
(-SO3-) at one terminus (See Fig. 1). This configuration exhibits signif
icant hydrophobicity owing to the fluorine atoms around the carbon 
chain, rendering PFOS impervious to water and oil. The sulfonate group 
confers a significant negative charge, enhancing its solubility in water 
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and environmental persistence. The distinctive structure of PFOS ren
ders it resistant to degradation in natural environments, resulting in 
extensive contamination and related health hazards. Consequently, 
PFAS can persist in the environment for decades, leading to widespread 
and pervasive contamination of water, soil, and air (Kibbey et al., 2020).

Over time, PFAS accumulation in various ecosystems has raised 
significant health concerns (Gagliano et al., 2020). Many PFAS com
pounds are bioaccumulative, meaning they build up in the tissues of 
living organisms, traveling through the food chain and ultimately 
impacting human health (Brennan et al., 2021). Numerous studies have 
documented potential adverse effects of PFAS exposure, including liver 
damage (Costello et al., 2022), immune system disruption (Beans, 
2021), developmental issues (Yao et al., 2023), and increased cancer risk 
(Seyyedsalehi and Boffetta, 2023). PFAS exposure pathways primarily 
involve ingestion of contaminated drinking water, but other routes, such 
as food consumption, inhalation, and dermal contact, are also of concern 
(Domingo and Nadal, 2019). As a result, PFAS contamination has 
become an urgent environmental and public health issue, driving reg
ulatory bodies, researchers, and industry stakeholders to seek effective 
treatment solutions.

However, the environmental resilience of PFAS poses significant 
challenges for conventional water treatment technologies 
(Wanninayake, 2021), many of which are ineffective in breaking down 
or removing PFAS. Processes such as coagulation, sedimentation, and 
biological treatment, commonly employed in wastewater treatment 
plants, do little to degrade PFAS compounds (Lenka et al., 2021). 
Advanced treatment methods, including electrochemical, sonochemical, 
plasma and hybrid techniques, activated carbon adsorption, 
ion-exchange resins, and high-energy processes like advanced oxidation, 
have demonstrated some effectiveness, yet these technologies often face 
limitations in terms of efficiency, cost, or potential by-product formation 
(Wanninayake, 2021). These challenges underscore the need for novel 
and efficient treatment approaches specifically designed to target the 
unique characteristics of PFAS.

Given the limitations of existing treatment methods, predictive 
modeling has emerged as a promising approach to improve PFAS 
remediation strategies (Sima and Jaffé, 2021). Predictive modeling in
volves the use of computational tools and algorithms to simulate the 
behavior, fate, and transformation of PFAS compounds in various 
treatment scenarios (Le et al., 2021). These models can incorporate 
numerous variables, including PFAS chemical structure, environmental 
conditions, and specific treatment methods, to predict how PFAS com
pounds will behave in different settings and in identifying the source of 
PFAS contamination in environmental samples (Kibbey et al., 2020). 
This approach offers several advantages: it allows researchers to 
experiment with different treatment methods in a virtual environment, 
optimizing conditions for maximum PFAS removal before physical 
implementation (Raza et al., 2019). For instance, recent advances in 
PFAS modeling in soil-water environments show promise for under
standing their fate, transport, and response to remediation techniques 
(Sima and Jaffé, 2021). By simulating PFAS removal in diverse treat
ment systems, predictive models can help identify optimal treatment 

combinations tailored to specific PFAS profiles and environmental 
conditions, potentially overcoming some of the limitations seen with 
traditional treatment processes.

Furthermore, predictive modeling is invaluable in its capacity to 
anticipate the transformation and degradation pathways of PFAS com
pounds. Certain treatment methods, particularly those that involve high- 
energy processes or chemical reactions such as electrochemical oxida
tion, advanced reduction processes (ARPs), and plasma-based technol
ogy, has shown potential to effectively degrade PFAS compounds rather 
than fully mineralizing them (Nzeribe et al., 2019; Cui et al., 2020; Chen 
et al., 2023). This degradation can produce transformation products, 
some of which may retain toxicity or environmental persistence. Accu
rate predictive models can help in understanding these transformation 
products’ behavior, providing essential insights into potential risks 
associated with partial PFAS degradation.

In recent years, advances in computational power and machine 
learning have further enhanced the potential of predictive modeling for 
PFAS treatment applications. Machine learning algorithms, for example, 
Random Forest, Least Absolute Shrinkage, and Feed-forward Neural 
Networks, can predict extremely accurate carbon-fluorine bond disso
ciation energies for PFAS, aiding in their efficient treatment removal by 
identifying patterns and correlations that might elude traditional 
modeling approaches (Raza et al., 2019). These data-driven models can 
account for complex interactions between PFAS compounds and treat
ment media, offering nuanced predictions of treatment efficacy. Such 
approaches are particularly beneficial for simulating novel treatment 
technologies that lack extensive field data, providing a cost-effective 
means of assessing their potential effectiveness and limitations. How
ever, despite the promise of predictive modeling, significant challenges 
remain, particularly concerning sufficient data for training, time and 
cost constraints, ethical considerations, and model validation (Polyzotis 
et al., 2018; Wörmann et al., 2022; Shankar et al., 2023).

Ultimately, the goal of predictive modeling in PFAS treatment is to 
provide a science-backed foundation for developing and implementing 
customized remediation strategies. By offering a detailed understanding 
of PFAS behavior in response to different treatment types and environ
mental variables, predictive models can guide decision-making in both 
research and regulatory contexts, but they need to adhere to rigorous 
scientific method and adopt best modeling practice to ensure reliability 
(Özkundakci et al., 2018). This approach aligns with the broader trend 
toward sustainable environmental management, where tailored, 
data-driven strategies are increasingly valued over one-size-fits-all so
lutions. The rationale for this narrative review lies in the urgent need to 
understand and optimize treatment methods for PFAS, a class of highly 
persistent and toxic compounds. Given the limitations of conventional 
water treatment technologies in effectively removing or degrading 
PFAS, there is a pressing demand for novel, efficient, and sustainable 
treatment solutions. Predictive modeling offers a promising avenue to 
simulate PFAS behavior across different treatment scenarios, tailoring 
approaches based on PFAS chemical structure, environmental condi
tions, and the specific treatment method. This review aims to synthesize 
recent advancements in predictive modeling applied to PFAS removal 
and degradation, highlighting the approaches, challenges, and emerging 
technologies that can improve treatment outcomes. By compiling and 
analyzing current research, this review provides a comprehensive 
overview of predictive models in PFAS treatment, aiming to guide future 
studies and assist stakeholders in designing targeted and effective 
remediation strategies for PFAS-contaminated environments.

Table 1 presents the physical and chemical properties of PFOS, a 
perfluorinated molecule frequently encountered in environmental 
research. The empirical formula of PFOS is C8HF17O3S, signifying its 
intricate structure comprising a perfluorinated alkyl chain and a sulfo
nate moiety. The substance possesses a molar mass of 500.13 g/mol and 
is characterised by its white powder form. The melting point of PFOS is 
between 258 and 260 ºC, indicating its considerable stability at high 
temperatures, while its boiling point is not provided. PFOS exhibits 

Fig. 1. Schematic representation of carbon-fluorine bonds.
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moderate solubility in water, quantified at 680 mg/L, facilitating its 
persistence in aquatic habitats and accumulation within ecosystems.

2. PFAS properties and challenges in treatment

The structural diversity of PFAS compounds further complicates 
treatment, as each variant can behave differently in terms of mobility, 
bioaccumulation, and reactivity under various treatment scenarios. 
However, characterizing the structural diversity of PFAS alternatives is 
important for understanding their environmental distribution, bio
accumulation, transfer, and ecological impacts (Ruan et al., 2022). This 
section discusses the specific properties that render PFAS challenging to 
treat and how these characteristics impact predictive modeling and 
treatment efficiency.

2.1. Chemical structure and stability

The core characteristic of PFAS compounds is the presence of carbon- 
fluorine bonds, which are among the strongest in organic chemistry 
(Langer et al., 2019). This bond strength imparts thermal and chemical 
stability (Joudan and Lundgren, 2022), allowing PFAS to withstand 
conditions that would typically degrade other organic pollutants. 
Structurally, PFAS can be divided into two main categories: per
fluoroalkyl and polyfluoroalkyl substances (Domingo and Nadal, 2019). 
Perfluoroalkyl compounds, like perfluorooctanoic acid (PFOA) and 
PFOS, have carbon chains fully fluorinated, while polyfluoroalkyl sub
stances contain both fluorinated and non-fluorinated carbon atoms. The 
length of the carbon chain in PFAS also influences their environmental 
behavior and toxicity, with long-chain PFAS being more bio
accumulative and often more challenging to remove compared to 
short-chain variants (Feng et al., 2023). Recent studies underscore that 
the variation in PFAS structure affects both their environmental trans
port and interaction with treatment media, necessitating treatment 
methods specifically tailored to PFAS chain length and functional 
groups.

2.2. Influence of functional groups on reactivity

In addition to carbon chain length, the presence of functional groups 
in PFAS compounds and their and hydrophilicity/hydrophobicity 
significantly impacts their reactivity and behavior in treatment systems 
(Rahman et al., 2014). For example, PFAS compounds with sulfonate 
groups (e.g., PFOS) differ in water solubility and treatment susceptibility 
compared to those with carboxylate groups (e.g., PFOA). For instance, 
electrochemical treatment shows potential for decomposition of PFOA 
and PFOS in AFFF-impacted groundwater, with 58 % and 98 % recovery 
as fluoride, with shorter chain PFAAs being more recalcitrant (Schaefer 
et al., 2015). Functional groups, surface chemistry, binding sites, and pH 
can influence the adsorption potential of PFAS on treatment media, such 
as activated carbon or ion-exchange resins, as well as their susceptibility 
to oxidative degradation in processes like advanced oxidation (Wu et al., 
2020). Studies have shown that specific functional groups can alter how 
PFAS interact with reactive species generated in treatment systems, such 
as hydroxyl radicals in oxidation processes or reactive intermediates in 
electrochemical treatments. Therefore, understanding and accounting 

for these functional group influences is essential when designing pre
dictive models that accurately reflect PFAS behavior under various 
treatment conditions.

2.3. Environmental variables affecting treatment efficiency

Environmental factors such as pH, temperature, and the presence of 
co-contaminants further complicate PFAS treatment (Schaefer et al., 
2015). pH levels, for example, can alter the charge and solubility of 
PFAS compounds, affecting their interaction with treatment media. A 
study showed that acidic conditions can enhance PFAS adsorption on 
activated carbon due to the surface charge of the PAC and the properties 
of protonation of the PFASs, while alkaline conditions may reduce 
adsorption efficiency (Son et al., 2020). Temperature is another crucial 
variable; increased temperatures can accelerate reaction kinetics in 
oxidative and electrochemical processes (Alam et al., 2020), potentially 
improving PFAS degradation rates. However, higher temperatures may 
also lead to the formation of toxic transformation products, compli
cating the treatment outcome. The presence of co-contaminants, 
including organic matter, metals, and other pollutants, can compete 
for adsorption sites or react with treatment agents, diminishing the ef
ficiency of PFAS removal processes. Therefore, predictive models must 
incorporate these environmental variables to simulate realistic PFAS 
treatment outcomes accurately.

2.4. Bioaccumulation and environmental persistence

PFAS compounds, particularly long-chain variants for instance PFOA 
and PFOS, are known for their bioaccumulative potential, posing risks to 
aquatic life and humans (Podder et al., 2021). Due to their stability and 
resistance to degradation, PFAS can persist in environmental compart
ments such as groundwater, soil, and sediment for long periods (Zweigle 
et al., 2023). Bioaccumulation occurs when PFAS compounds enter 
biological systems and are retained rather than metabolized or excreted. 
This characteristic increases PFAS concentrations through food webs, 
posing potential health risks to higher trophic organisms, including 
humans. The environmental persistence and bioaccumulation of PFAS 
complicate their remediation, as treatment strategies must not only 
remove these compounds but also minimize the formation of toxic 
transformation products that could contribute to ongoing contamina
tion. Predictive models, therefore, need to account for the long-term 
environmental fate of PFAS, simulating both primary compound 
removal and the potential risks of any degradation by-products. Fig. 2
depicts the principal health hazards associated with perfluorooctane 
sulfonate (PFOS) exposure. The diagram classifies these concerns into 
six principal domains: endocrine disruption, reproductive and devel
opmental toxicity, immune system suppression, carcinogenic risk, car
diovascular and metabolic consequences, and neurotoxicity/liver 
impairment. The health implications underscore the potential long-term 
effects of PFOS bioaccumulation and persistence in human populations 
and ecosystems, highlighting the urgent necessity for additional 
research and regulatory measures.

2.5. Challenges in modeling PFAS behavior for treatment

The complex interplay of PFAS structure, functional groups, and 
environmental conditions poses a significant challenge for predictive 
modeling. Traditional models may not capture the unique properties of 
each PFAS variant, leading to underestimation or overestimation of 
treatment efficiency. Developing accurate models requires collecting 
large and high-quality data, properly reporting data set characteristics, 
and combining data from multiple institutions with proper normaliza
tion on PFAS-specific reaction kinetics, sorption characteristics, and 
transformation pathways across different treatment scenarios (Yang 
et al., 2023). Additionally, data scarcity, particularly for emerging PFAS 
and novel treatment methods, complicates model validation and limits 

Table 1 
Physico-chemical properties of PFAS.

Property Details

Empirical formula C8HF17O3S
Molar mass 500.13 g/mol
Appearance White powder
Boiling Point Not available
Melting Point 258–260 ºC
Water solubility 680 mg/L

Source: American Society of Nigeria
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the applicability of some predictive approaches (Tardioli et al., 2020). 
Machine learning and data-driven models are beginning to address these 
challenges by identifying patterns within large datasets using methods 
like model simplification, optimization approximation, and computa
tion parallelism (Wang et al., 2022); however, interpretability remains 
an obstacle, as these models may lack the mechanistic insights needed to 
fully understand PFAS behavior in treatment processes.

3. Overview of predictive modeling approaches for PFAS 
removal

Predictive modeling for PFAS removal involves the use of compu
tational tools designed to simulate the fate, transport, and degradation 
pathways of PFAS across various treatment processes (Sima and Jaffé, 
2021). These models are invaluable in advancing the understanding of 
PFAS behavior under different treatment conditions, including reaction 
kinetics, removal efficiencies, and transformation pathways. Predictive 
models can be categorized into three main types: empirical models 
(Gallagher et al., 2021), mechanistic models (Simpson and Maclaren, 
2023), and machine learning models (Vora and Iyer, 2018), each with 
unique strengths and limitations. The choice of model depends on the 
treatment system’s complexity, the specific PFAS compounds targeted, 
and the availability of relevant data. Table 2 delineates multiple PFAS 
degrading methods and their efficacy. Electrochemical oxidation and 
plasma-based technologies provide excellent efficiency and rapid dete
rioration rates. Advanced reduction techniques exhibit promising out
comes, notably shaped by solution chemistry. Sonolysis and 
photochemical oxidation exhibit reduced efficacy, with the latter being 
the least effective technique. Adsorptive photocatalysis is an innovative 
method characterised by elevated degradation and mineralisation rates. 
Enzymatic degradation and electroreductive defluorination are nascent 
approaches with considerable potential, however additional research 
and optimisation are required.

3.1. Empirical models

Empirical models rely on experimental data to simulate PFAS 
removal under specific conditions (Xu et al., 2023). These models are 

often developed from controlled laboratory studies or field data, 
providing reliable predictions for conditions closely resembling those 
used in data collection (Njoku, 2017). By incorporating data on observed 
removal rates, reaction kinetics, and influencing variables, empirical 
models can offer robust and relatively accurate predictions for similar 
PFAS and treatment systems. However, their reliance on experimental 
data limits their generalizability to other settings with differing condi
tions, treatment methods, or PFAS types. As a result, empirical models 
are most effective in scenarios where there is a high degree of similarity 
between the model’s training data and the actual treatment conditions, 
such as in small-scale applications or specific treatment facilities. Recent 
studies have shown that while empirical models are useful for 
process-specific applications, their limited adaptability makes them less 
ideal for large-scale or novel treatment scenarios where variability is 
high.

3.2. Mechanistic models

Mechanistic models simulate PFAS behavior by representing the 
physical and chemical processes governing PFAS interactions within 
treatment systems. For instance, this approaches are needed to under
stand PFAS-soil-water-plant interactions and improve remediation effi
ciency (Sima and Jaffé, 2021). Unlike empirical models, mechanistic 
models do not rely solely on experimental data; instead, they incorpo
rate fundamental principles of chemistry and physics to generalize PFAS 
behavior across different treatment conditions (Reid et al., 2023). For 
instance, these models account for reaction kinetics, 
adsorption-desorption processes, and transport dynamics within the 
treatment medium, making them useful for predicting PFAS removal 
under a broader range of environmental conditions and treatment types. 
Mechanistic models can simulate complex treatment processes such as 
advanced oxidation or electrochemical degradation (Koukkari and 

Fig. 2. Health Risks Associated with PFOS Exposure: A Summary.

Table 2 
PFAS degradation techniques and their efficiencies.

Technique Efficiency Key Insights

Electrochemical 
Oxidation

High efficiency, up to 
100 % degradation of 
PFOA under optimal 
conditions

Effective for both water and 
wastewater; influenced by 
current density and treatment 
time (Uwayezu et al., 2021; 
Üner et al., 2022).

Advanced 
Reduction 
Processes

Promising, highly 
reductive hydrated 
electrons (eaq-) enhance 
degradation

Effective for various PFAS 
types; influenced by solution 
chemistry and operating 
factors (Cui et al., 2020).

Plasma-Based 
Technology

High efficiency, rapid 
degradation (e.g., 99 % 
PFOA in <2.5 min)

Effective for a wide range of 
pollutants; high energy 
efficiency; mass-transfer- 
controlled kinetics (Palma 
et al., 2021; Saleem et al., 
2022).

Sonolysis High energy demand, less 
efficient compared to other 
methods

Noted for high energy 
consumption; less effective 
overall (Nzeribe et al., 2019).

Photochemical 
Oxidation

Ineffective Least effective method among 
those reviewed (Nzeribe et al., 
2019).

Adsorptive 
Photocatalysis

> 90 % degradation of 
PFOA, 62 % mineralization 
to F-

Combines adsorption and 
photocatalysis; effective and 
regenerable material (Li et al., 
2020).

Enzymatic 
Degradation

Potentially effective, still 
under research

In silico design of enzymes 
shows promise; future 
bioengineering needed (
Marciesky et al., 2023).

Electroreductive 
Defluorination

99.81 % removal 
efficiency, 78.67 % 
defluorination efficiency

Utilizes quaternary 
ammonium surfactant- 
modified cathode; effective at 
low cathodic potential (Wang 
et al., 2023).
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Paiva, 2018), where PFAS removal depends on multiple, interacting 
factors. Studies on PFAS treatment have demonstrated that mechanistic 
models are especially valuable for understanding the transformation 
pathways and potential by-products formed during degradation pro
cesses (Clark et al., 2019). However, mechanistic models are 
data-intensive (Gonçalves et al., 2020), requiring detailed input pa
rameters that may not always be available, especially for newer PFAS 
compounds or under field conditions with complex water chemistries. 
Additionally, the computational requirements for mechanistic modeling 
can be substantial, making them more resource-intensive than empirical 
approaches (Gherman et al., 2023).

3.3. Machine learning models

Machine learning models represent a data-driven approach to pre
dictive modeling by leveraging on the synthesis of large datasets to 
identify patterns and relationships in PFAS behavior across treatment 
processes (Manco et al., 2022). These models use algorithms like 
ensemble models, artificial neural networks, deep neural networks, 
recurrent neural networks, and associative reservoir computing to 
“learn” from data (Bloch, 2023), building predictive functions that can 
generalize to new, unseen conditions. Machine learning models are 
particularly advantageous in PFAS modeling as they can analyze 
extensive data from multiple treatment methods, capturing complex, 
nonlinear interactions that may be difficult to model mechanistically. 
For example, machine learning techniques such as neural networks, 
decision trees, and support vector machines have been employed to 
predict PFAS removal efficiencies and identify optimal treatment con
ditions based on input variables like PFAS structure, treatment type, and 
environmental conditions (Andraju et al., 2023). The scalability and 
adaptability of machine learning models allow them to offer rapid in
sights, making them suitable for applications with high variability or 
limited mechanistic understanding.

Despite their strengths, machine learning models often lack physical 
interpretability, as they do not inherently provide insights into the un
derlying mechanisms of PFAS removal (Mi et al., 2020). This limitation 
makes it challenging to understand the chemical or physical basis of the 
model’s predictions, which may be necessary for applications requiring 
detailed knowledge of PFAS transformation pathways or by-product 
formation. Furthermore, machine learning models rely heavily on 
high-quality, comprehensive datasets, and their predictive accuracy can 
decline if trained on incomplete or biased data (Andaur Navarro et al., 
2021; Miceli et al., 2022; Soni et al., 2023). Current research highlights 
that while machine learning models are effective for rapid predictions 
and handling data-intensive scenarios, blending mechanistic and 
machine-learning approaches can provide similar or better predictive 
performance and domain interpretability in dynamical systems, with 
hybrid methods being less data-hungry and more parametrically effi
cient (Levine and Stuart, 2022).

3.4. Comparative strengths and limitations

Each predictive modeling approach offers distinct benefits depend
ing on the specific requirements and constraints of the treatment sce
nario. Empirical models are advantageous for their robustness under 
known conditions but lack generalizability to new settings or PFAS types 
(Gojić et al., 2023). Mechanistic models provide a deeper understanding 
of PFAS behavior and transformation within treatment systems, though 
they are resource-intensive and may be impractical for highly variable 
conditions. Machine learning models, with their data-driven adapt
ability and scalability, can handle complex and high-dimensional data
sets but often lack the interpretative depth needed to explain the 
underlying treatment mechanisms.

4. Novel treatment systems for PFAS removal and their 
modeling needs

The resilience of PFAS compounds against conventional water 
treatment methods has driven the exploration of novel treatment tech
nologies, including advanced oxidation processes (AOPs), electro
chemical systems, nanofiltration, and adsorptive techniques. These 
technologies offer promising alternatives for effective PFAS removal but 
are relatively new and often lack extensive, long-term performance data, 
which complicates the development of predictive models. To effectively 
simulate PFAS removal and degradation in these novel systems, models 
must account for factors such as reaction intermediates, the formation of 
transformation products, and the potential for PFAS reformation under 
certain treatment conditions. The following sections describe the unique 
mechanisms, advantages, and modeling requirements of these emerging 
treatment technologies.

4.1. Advanced oxidation processes (AOPs)

Advanced oxidation processes (AOPs) rely on the generation of 
highly reactive radicals, such as hydroxyl and sulfate radicals, to 
degrade PFAS (Xia et al., 2020). Common AOPs include ozonation, 
photocatalysis, and Fenton reactions, each of which uses specific re
actions to generate reactive species that attack PFAS molecules 
(Malakootian et al., 2020) as depicted in Fig. 3 below. The success of 
AOPs in PFAS degradation depends on several factors, including the 
presence of H2O2, water matrices, the role of hydroxyl radicals, rate of 
radical production, the oxidation potential of PFAS, and the pathways 
through which PFAS molecules transform during treatment (Barisci and 
Suri, 2021). For instance, studies have shown that PFAS compounds 
with sulfonate or carboxylate groups degrade at different rates under 
identical AOP conditions, reflecting the influence of chemical structure 
on oxidation susceptibility (Zhang et al., 2023).

Predictive modeling for AOPs requires detailed information on 
radical production rates, which can vary depending on the oxidant, 
catalyst, and reactor conditions. Additionally, models must simulate the 
oxidation potential of different PFAS compounds to predict degradation 
efficiency accurately. Another critical aspect for AOP modeling is the 
inclusion of transformation pathways, as PFAS compounds often 
degrade through multiple steps, forming intermediate products before 
reaching complete mineralization (Singh et al., 2019; Trang et al., 
2022). These intermediates may vary in toxicity, so understanding their 
formation and persistence is essential for accurately assessing the 
environmental impact of AOP treatment. Therefore, predictive models 
for AOPs need to integrate these complexities to provide realistic pre
dictions of PFAS degradation under diverse treatment conditions.

4.2. Electrochemical treatment

Electrochemical treatment represents a promising approach for PFAS 
removal by directly targeting the molecular bonds, particularly the 
robust carbon-fluorine bonds that characterize these compounds. Elec
trochemical systems operate by applying a current across electrodes, 
which generates reactive species capable of degrading PFAS molecules 
(Radjenovic et al., 2020). This treatment method is advantageous in that 
it can lead to the breakdown of PFAS into less harmful compounds, and 
in some cases, complete mineralization as shown in Fig. 3 below. 
However, the effectiveness of electrochemical treatment depends on 
variables such as the electrode material, the adsorption behavior of 
PFAS onto the electrode surface, and the current density applied during 
treatment.

For predictive modeling of electrochemical degradation, it is crucial 
to include data on electrode properties, as different electrode materials 
(e.g., boron-doped diamond, platinum, or graphite) exhibit varying af
finities for PFAS and reactive species production rates (Sukeesan et al., 
2021). Adsorption behavior is another essential factor, as PFAS 
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molecules may interact differently with electrode surfaces based on their 
specific structures, affecting degradation efficiency. Additionally, cur
rent density plays a critical role in generating reactive species and 
controlling the rate of PFAS breakdown. High current densities may 
increase degradation rates but also pose the risk of producing unwanted 
by-products, making it essential for models to balance these dynamics 
for precise predictions. Predictive models tailored for electrochemical 
treatment are highly specific to treatment conditions, necessitating 
site-specific data to optimize PFAS removal and minimize the formation 
of hazardous transformation products.

4.3. Adsorptive techniques

Adsorptive techniques using materials such as activated carbon and 
ion-exchange resins are well-established for PFAS removal due to their 
high capacity to capture contaminants from water. These techniques are 
primarily based on the physical or chemical attraction of PFAS com
pounds to the adsorbent surface, removing them from the aqueous 
phase. Powder activated carbon with higher molecular weight has 
higher adsorption capacity for long-chain PFAS compounds, achieving 
80 % and 90 % equilibria within 60 and 120 minutes, respectively (Son 
et al., 2020), though short-chain PFAS may require alternative adsor
bents such as bio-adsorbents derived from common biomass feedstocks 
due to their lower affinity for carbon surfaces (Li et al., 2021). Addi
tionally, ion-exchange resins, which operate by exchanging ions be
tween the resin and the water, have also demonstrated promise, 
especially for shorter-chain PFAS (Dixit et al., 2021).

Predictive modeling for adsorptive techniques must consider the 
adsorption behavior of different PFAS compounds, as each compound 
exhibits unique affinity levels based on chain length, functional groups, 
and ionic characteristics. Additionally, competitive adsorption from co- 
contaminants present in water can impact PFAS removal efficiency, as 
other ions or organic molecules may occupy adsorption sites (Wang 
et al., 2019). Models need to account for this competition to predict 

when breakthrough, or saturation, might occur, at which point PFAS 
removal efficiency decreases as shown in Fig. 3 below. Furthermore, 
certain PFAS compounds may undergo partial desorption under 
changing environmental conditions, such as pH or temperature fluctu
ations, which adds complexity to the adsorption process (Kabiri and 
McLaughlin, 2021). By incorporating these variables, predictive models 
can estimate the lifespan of adsorptive media and help optimize 
replacement or regeneration schedules, ensuring continued PFAS 
removal effectiveness.

5. Integrating PFAS structure and environmental conditions into 
predictive models

A tailored approach to predictive modeling for PFAS removal is 
essential due to the structural diversity of PFAS compounds and the 
significant influence of environmental conditions on their behavior. 
Incorporating PFAS-specific characteristics, such as chain length and 
functional groups, alongside environmental factors, such as pH, tem
perature, isomer structure, and salinity, enables more accurate pre
dictions of PFAS removal in treatment processes (McCleaf et al., 2017). 
These factors play a critical role in determining PFAS interactions with 
treatment media, as well as their susceptibility to transformation in 
processes like oxidation and adsorption. Understanding these variables 
is essential for building predictive models that can simulate realistic 
PFAS behavior across diverse treatment scenarios.

5.1. Chain length and functional groups

The chain length of PFAS compounds is a primary structural factor 
influencing their mobility, bioaccumulation potential, and interaction 
with treatment systems. Long-chain PFAS, such as PFOA and PFOS, tend 
to be more hydrophobic and bioaccumulative, often binding more 
strongly to adsorptive media like activated carbon and ion-exchange 
resins (Zhang et al., 2019; Zeng et al., 2020). In contrast, short-chain 

Fig. 3. Illustration summarizing novel treatment technologies for PFAS removal, highlighting mechanisms, and modeling considerations for Advanced Oxidation 
Processes (AOPs), Electrochemical Treatment, and Adsorptive Techniques.
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PFAS compounds exhibit greater mobility in aqueous environments, 
making them more challenging to capture in adsorption-based treat
ments and more prone to persistence and spread in water bodies (Li 
et al., 2020; Román Santiago et al., 2023). Recent studies have high
lighted that Short-chain PFAS are more resistant to removal processes 
that rely on adsorption, necessitating the development of alternative 
treatment approaches or specialized adsorbents tailored to these smaller 
molecules such as adding cationic co-surfactant cetrimonium bromide 
which significantly improves their removal in batch-wise adsorptive 
bubble separation processes (Stevenson and Karakashev, 2024).

Functional groups attached to the PFAS backbone, such as carbox
ylate or sulfonate groups, also play a significant role in determining 
reactivity and treatment efficiency (McCleaf et al., 2017). For example, 
PFAS compounds with sulfonate groups often demonstrate different 
adsorption and degradation profiles compared to those with carboxylate 
groups (Ateia et al., 2019). In oxidative treatment processes, functional 
groups impact the compound’s susceptibility to radical attack, which is 
essential in advanced oxidation processes. Carboxylate-containing 
PFAS, for example, may degrade more readily to fluoride ions through 
a sodium hydroxide-mediated defluorination pathway, potentially of
fering a new method for PFAS destruction compared to 
sulfonate-containing PFAS under certain oxidative conditions, a factor 
that predictive models must incorporate to accurately simulate reaction 
kinetics and transformation pathways (Trang et al., 2022). Incorpo
rating these structural characteristics into predictive models allows for 
more precise predictions of treatment outcomes, particularly in systems 
where PFAS degradation or removal is heavily influenced by molecular 
structure.

5.2. Environmental factors

Environmental variables, such as pH, temperature, and salinity, 
which significantly influence PFAS interactions with treatment media 
and, subsequently, their removal efficiency (Wu et al., 2020; Zhang 
et al., 2021). pH, for instance, can alter the charge and solubility of PFAS 
molecules, affecting their adsorption and reactivity in various treatment 
processes (Wu et al., 2020). At elevated pH levels, some PFAS com
pounds may undergo deprotonation, leading to a negative charge that 
can reduce adsorption efficiency on media with similar charges (Wu 
et al., 2020). Conversely, acidic conditions may enhance PFAS adsorp
tion on certain media, as demonstrated in studies that found increased 
adsorption efficiency of PFAS onto activated carbon at low pH levels 
(Zhang et al., 2021). Accurate predictive models for PFAS removal must, 
therefore, include pH as a variable to simulate realistic interactions 
between PFAS and treatment media under diverse water chemistry 
conditions.

Temperature is another crucial environmental factor, impacting re
action rates and sorption behaviors. Higher temperatures generally 
accelerate reaction kinetics (Bím et al., 2019), potentially improving 
PFAS degradation in processes such as advanced oxidation or electro
chemical treatment. However, elevated temperatures can also lead to 
the formation of transformation products, which may possess varying 
degrees of toxicity or persistence. Consequently, predictive models must 
balance the potential benefits of increased degradation rates with the 
risks associated with intermediate product formation. In 
adsorption-based processes, temperature fluctuations can influence the 
sorption capacity of media, as higher temperatures may reduce 
adsorption efficiency due to decreased intermolecular forces between 
PFAS and the adsorbent (Yin et al., 2023).

Salinity, or the concentration of dissolved salts, also affects PFAS 
removal, particularly in water sources with high ionic content, such as 
seawater or brackish water, increasing the aggregation and surface ac
tivity of PFAS in mixtures, which affect their transport. (Steffens et al., 
2023). Salinity can compete with PFAS for adsorption sites on media 
and, in some cases, disrupt electrostatic interactions essential for PFAS 
binding. The presence of specific ions, such as sodium and calcium, can 

compete with PFAS molecules for adsorption sites on media like acti
vated carbon, reducing overall removal efficiency. Including salinity 
effects in predictive models is particularly important for applications in 
regions with saltwater intrusion or in specialized applications involving 
seawater treatment.

5.3. Towards comprehensive and realistic predictive models

Integrating PFAS structure and environmental conditions into pre
dictive models allows for the development of more comprehensive and 
accurate simulations that reflect the complex interactions governing 
PFAS removal in treatment processes (Bodner et al., 2020). By ac
counting for chain length, functional groups, and environmental factors 
like pH, temperature, and salinity, predictive models can provide more 
realistic approximations of PFAS behavior in diverse treatment systems. 
This tailored approach is essential for optimizing treatment strategies, 
guiding the selection of treatment technologies, and ensuring that 
models can adapt to the highly variable nature of real-world PFAS 
contamination scenarios. Ongoing research to refine these models with 
empirical data on PFAS-specific behavior across different environmental 
conditions will further enhance their utility, supporting more effective 
remediation efforts and informed decision-making in 
PFAS-contaminated environments.

6. Advances in machine learning for PFAS predictive modeling

Machine learning models have become increasingly valuable tools in 
predictive modeling for PFAS, offering advanced data-driven ap
proaches that enhance the understanding and prediction of PFAS 
behavior under various treatment conditions. Among these, deep 
learning models, which use neural networks with multiple layers, are 
especially effective at capturing complex patterns within large, multi
dimensional datasets that traditional models may overlook. Machine 
learning’s ability to process and analyze vast volumes of environmental 
and treatment data allows these models to identify relationships be
tween PFAS characteristics, environmental variables, and treatment 
efficacy as shown in Fig. 4 below. By recognizing patterns in historical 
and experimental data, machine learning models can generate pre
dictions for treatment outcomes, often extending to conditions not 
directly included in the training dataset, making them particularly 
useful in addressing novel treatment challenges and optimizing reme
diation strategies for PFAS-contaminated sites.

6.1. Pattern recognition and predictive capabilities

One of the key advantages of machine learning models in PFAS 
predictive modeling is their ability to handle large and complex datasets, 
allowing them to extract meaningful patterns across varied treatment 
scenarios. Machine learning algorithms, including decision trees, sup
port vector machines, and deep neural networks, can be trained on 
extensive data sources containing information about PFAS structure, 
environmental conditions, and treatment outcomes (Raza et al., 2019). 
These algorithms can accurately predict C-F bond dissociation energies 
in PFAS structures with deviations less than 0.70 kcal/mol (Raza et al., 
2019). For instance, machine learning can reveal the complex in
teractions between PFAS chain length, functional groups, pH, and 
temperature on adsorption rates in filtration-based systems. Through 
training on comprehensive datasets, these models become capable of 
predicting the efficacy of PFAS removal across a wide range of condi
tions, including scenarios for which empirical or mechanistic data may 
be limited. This predictive capability is crucial for applications in novel 
treatment methods, such as advanced oxidation and electrochemical 
processes, where machine learning models can simulate potential 
treatment outcomes and optimize conditions for maximum PFAS 
removal.

Recent studies have demonstrated the predictive strength of machine 
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learning models for PFAS in applications such as adsorption, degrada
tion, and transport within water matrices. For instance, supervised 
machine learning models have been trained to predict adsorption effi
ciencies based on PFAS chain length, media type, and solution chemis
try, enabling the identification of the best adsorptive materials for 
specific PFAS contaminants. Additionally, deep learning models, with 
their ability to manage high-dimensional data, are increasingly 
employed to simulate degradation pathways in advanced oxidation 
processes, providing insights into potential transformation products and 
the conditions necessary for optimal degradation. By accurately fore
casting treatment outcomes, machine learning enhances decision- 
making for both researchers and regulators, enabling more informed 
selection and design of treatment systems.

6.2. Applicability to untested and diverse conditions

Machine learning models’ adaptability makes them particularly 
well-suited to simulate PFAS treatment outcomes across previously un
tested or complex environmental conditions. By generalizing patterns 
from training data, machine learning algorithms can extend predictions 
to new scenarios, accommodating diverse PFAS compounds, environ
mental factors, and treatment conditions (Andraju et al., 2023). For 
example, machine learning models trained on experimental data from 
laboratory-based PFAS degradation studies can be applied to predict 
outcomes in field conditions, providing essential information on how 
treatment performance may vary in real-world applications (Xiao et al., 
2023) as depicted in Fig. 4 below. This capability is especially valuable 
for addressing emerging PFAS compounds for which limited empirical 
data exists, as well as for adapting treatment models to dynamic con
ditions, such as seasonal shifts in water chemistry.

Through predictive modeling in untested conditions, machine 
learning supports the design of adaptable treatment systems that can 
respond to variability in PFAS contamination profiles and environ
mental factors. This adaptability also has implications for regulatory 
planning, as machine learning predictions can offer insight into treat
ment efficacy under regulatory standards, facilitating compliance with 
evolving PFAS guidelines. The rapid scalability of machine learning 
models further enables them to accommodate new data as it becomes 
available, continuously improving their predictions and supporting 
more robust treatment designs.

7. Challenges and future directions in PFAS predictive modeling

The development of predictive models for PFAS treatment has 

brought significant advancements to remediation efforts; however, 
several challenges remain, limiting the effectiveness and accuracy of 
these models. Key obstacles include data limitations, issues related to 
the toxicity of transformation products, and the need for robust model 
validation (Fàbrega et al., 2014; Feinstein et al., 2021). Addressing these 
challenges will be essential to enhancing the accuracy and applicability 
of predictive models in real-world treatment scenarios. Looking for
ward, future research should prioritize expanding treatment datasets, 
integrating toxicity assessments, and refining machine learning models 
for improved interpretability and reliability, ultimately strengthening 
the role of predictive modeling in PFAS management.

7.1. Data limitations

One of the primary challenges in PFAS predictive modeling is the 
scarcity of comprehensive, long-term treatment data. Many novel PFAS 
treatment methods, such as advanced oxidation processes and electro
chemical systems, are still under development, resulting in limited 
empirical data on their long-term efficacy and the conditions under 
which they operate best. In addition, variations in PFAS types, envi
ronmental conditions, and treatment system configurations mean that 
existing data may not be widely generalizable, limiting the predictive 
power of current models. Without adequate data, predictive models may 
struggle to accurately simulate PFAS behavior across diverse treatment 
scenarios, resulting in less reliable outputs for decision-making. 
Expanding datasets to include long-term performance results across 
various treatment technologies and PFAS compounds will be crucial for 
enhancing model accuracy and reliability.

7.2. Transformation product toxicity

Predictive models for PFAS treatment often focus primarily on the 
degradation or removal of parent PFAS compounds but may overlook 
the formation and potential toxicity of transformation products, which 
can pose new environmental risks (Raza et al., 2019). During treatment 
processes such as advanced oxidation or electrochemical degradation, 
PFAS compounds may undergo partial breakdown, forming intermedi
ate products that retain toxic properties or exhibit persistent behavior 
(Lotlikar, 2022). These transformation products are not always 
well-characterized, and their environmental impacts may be unknown, 
making it difficult for predictive models to simulate the full scope of 
potential treatment outcomes. Integrating toxicity predictions for 
transformation products into PFAS models is essential to prevent unin
tentional environmental or health risks associated with incomplete PFAS 

Fig. 4. Integration of Machine Learning for Predictive Modeling in PFAS Treatment: Environmental Inputs, System Processing, and Treatment Outcomes.
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degradation. Achieving this will require toxicological data on PFAS 
by-products, along with models capable of predicting both the formation 
of these products and their likely impacts in environmental contexts.

7.3. Model validation

Validation of predictive models through laboratory experiments and 
field studies is critical for ensuring that models accurately represent 
PFAS behavior in real-world applications (Dvurecenska et al., 2018). 
However, many models remain invalidated or partially validated, which 
raises concerns about their reliability and applicability to field-scale 
treatment systems. Validation is particularly challenging for machine 
learning models, which can be highly accurate under training conditions 
but may fail to generalize when applied to new or varied treatment 
environments. Current ML data validation methods are difficult to 
operationalize, yielding too many false positive alerts, requiring manual 
tuning, or are infeasible at scale (Shankar et al., 2023). To address this, 
models need to be rigorously tested against empirical data from both lab 
and field settings, covering a range of PFAS compounds and treatment 
methods. Model validation should also involve cross-comparison with 
other models, where possible, to benchmark performance and identify 
potential areas for improvement. Investing in validation studies will be 
crucial to establishing predictive models as dependable tools for PFAS 
treatment planning and regulatory compliance.

7.4. Future directions in PFAS predictive modeling

To overcome these challenges, future research in PFAS predictive 
modeling should focus on several key areas. Expanding treatment 
datasets is a priority; as more data is collected from emerging PFAS 
treatment technologies, models will have a stronger foundation for 
making accurate predictions. Collaborative data-sharing efforts among 
researchers, industries, and regulatory bodies could facilitate the rapid 
expansion of these datasets, capturing a wide range of PFAS behaviors 
under diverse environmental and treatment conditions. Additionally, 
incorporating toxicity predictions for transformation products is essen
tial to address the risks associated with incomplete PFAS degradation. 
By integrating toxicological data on PFAS by-products and assessing 
their persistence and mobility, predictive models can provide a more 
comprehensive evaluation of treatment outcomes.

Further refining machine learning models will also play a crucial role 
in future advancements. While machine learning has proven valuable for 
pattern recognition and prediction, enhancing interpretability and 
transparency will be essential to increasing their utility and trustwor
thiness in environmental applications. Techniques such as explainable 
artificial intelligence (XAI) and hybrid modeling approaches that 
combine mechanistic insights with data-driven methods can improve 
the interpretability of machine learning models, making them more 
accessible and informative for researchers and decision-makers. Trans
fer learning, a method that enables models trained on one dataset to be 
applied to similar but distinct datasets, may also offer a solution to data 
limitations by allowing for greater generalizability across diverse PFAS 
compounds and treatment types.

8. Conclusion

Predictive modeling has emerged as an essential tool in evaluating 
and enhancing PFAS removal and degradation in advanced treatment 
systems. By incorporating PFAS-specific characteristics, such as chain 
length and functional groups, along with key environmental factors and 
treatment types, these models enable the development of targeted 
remediation strategies that can address the unique challenges posed by 
PFAS contamination. Through detailed simulations, predictive models 
provide valuable insights into degradation pathways, reaction kinetics, 
and treatment efficiencies, supporting decision-making processes aimed 
at optimizing treatment approaches and reducing environmental 

impact.
Looking to the future, advancements in data collection, model 

complexity, and the integration of machine learning will likely improve 
the accuracy and applicability of these predictive tools. Expanded 
datasets from field and laboratory studies, covering a range of PFAS 
compounds and novel treatment conditions, will enhance model accu
racy and generalizability. Additionally, integrating machine learning 
techniques and developing hybrid models that combine mechanistic and 
data-driven approaches hold promise for capturing complex PFAS be
haviors while improving model interpretability. These advancements 
will empower decision-makers with the tools and insights needed to 
address PFAS contamination in a more sustainable, effective manner, 
ultimately contributing to safer water resources and a healthier 
environment.
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