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Abstract:

Standard Molodensky is a recognised method of transforming coordinates between geodetic datums. Although 
less accurate than some other methods, it has the merit of being direct. That is to say it can be applied to geodetic 
coordinates, without involving Cartesian coordinates that give rise to difficulties in computing latitude. This paper 
considers the use of Standard Molodensky when at least one of the datums is 2D+1D in nature, meaning that 
that horizontal and vertical positions are obtained by different methods. This was generally the case before 3D 
positioning by satellites and is a widespread characteristic of local datums that are still used. The 2D+1D property 
weakens the argument for 3D conformality, and invites the possibility that different translation parameters might be 
used for horizontal and vertical shifts. The possibility of including a Z-rotation as a 7th parameter is also considered. 
Besides being ideal for those who favour the simplicity of Standard Molodensky, the variations introduced in this 
paper offer significant improvements in accuracy such as error reductions of 75%, 69% and 99% in the three selected 
case studies.
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1. Introduction

A geodetic datum is a reference frame to facilitate precise positioning. It must define (either directly or indirectly) 
a reference ellipsoid of a given size and shape, its centre, the direction of its polar axis, and the zero meridian.

Geodetic datums have developed over time for different countries and regions. When dealing with geodetic 
coordinates, there is a variety of reference ellipsoids, some chosen to fit the local geoid, others chosen arbitrarily. 
The advent of satellites has given rise to the concept of best-fitting geocentric reference ellipsoid. The version 
adopted by the International Union of Geodesy and Geophysics (IUGG) in 1979 was the Geodetic Reference System 
1980 (GRS80) described in Moritz (2000). 

GRS80 includes a reference ellipsoid for dynamic datums/reference frames based on the International 
Terrestrial Reference System. The corresponding reference frames are named after the year in which the frame 
started (eg ITRF92, ITRF2008, ITRF2014). They allow station positions to reflect the effect of plate tectonic motion, 
which is done by positional functions of time elapsed since the start time. Sometimes a dynamic datum gives rise 
to a static realisation at a particular epoch within a few years of the start time; an example is Geocentric Datum of 
Australia (GDA94) which is a static realisation of ITRF92 at epoch 1994.0.

The World Geodetic System 1984 (WGS84) has itself become a series of dynamic or time-varying datums, with 
each re-definition designed to be consistent to a few centimetres with the latest ITRF. Before the full implementation 
of NAVSTAR Global Positioning System (GPS) and other global navigation satellite systems (GNSS), 3D positioning 
of points on the earth’s surface was problematic. In particular, datums were ‘2D+1D’ in their use, in the sense that 
geodetic latitudes  and longitudes  were obtained in an entirely different manner to heights. Originally orthometric 
heights (obtained by levelling) were used directly; later, ellipsoidal heights  were used, converted from orthometric 
heights by the application of a geoid model. For a time, this was even true in ITRFs or realisations of ITRS.

Transformation of coordinates between geodetic datums, generally referred to as datum transformations, are 
an ongoing tool for position determination. A growing number of countries have sophisticated models in accessible 
software that provide a high degree of accuracy, eg Brazil’s ProGriD (Santos et al. 2012). Such models, however, 
require a lot of observed data. Many countries (for example, Brunei, Ghana, Italy and Sudan) are not at that stage. 

The range of possible models that are used as datum transformations is considerable. Varga, Grgić and 
Bašić (2017) describes and compares several direct approaches applied to Croatian data. Grgić, Varga and Bašić 
(2016) describes and compares 12 distortion-modelling methods applied to the same data, creating a grid that 
enables bilinear interpolation. A comprehensive comparison of transformation methods is beyond the scope of this 
paper. However, it is worth noting that multi-parameter models derived from small datasets could be introducing 
characteristics that reflect noise rather than physical reality. In some cases, notably when polynomials are involved, 
this can cause instability. Limited data and the drawbacks of over-elaborate models are factors which explain the 
continued use of simple transformations, in addition to ease of computation.

The notation used for ellipsoidal quantities is near-universal (a, e2, f, b, v, ρ for semi-major axis, eccentricity 
squared, flattening, semi-minor axis, prime-vertical radius of curvature and meridional radius of curvature). The 
mathematical relationships can be found, for example, in Deakin (2004). Ellipsoidal quantities are quoted with 
subscripts s and t when it is necessary to distinguish between the ellipsoids of the source and target datums. In 
the context of source-to-target transformations, the prefix Δ is shorthand for ‘target minus source’; eg Δa = at – as. 
References to ‘linear units’ usually indicate metres and can be assumed to be such in this paper.

One of the simplest types of datum transformation is the one with just 3 shift parameters, namely ΔX, ΔY, ΔZ, 
applied to global Cartesian coordinates. Derived sets of 3 parameters for transforming local geodetic datums to the 
first realisation of WGS84 can be found in NIMA (2004). The differences between the respective ellipsoids in semi-
major axes and flattening, ∆a and ∆f, are not normally counted as unknown parameters to be estimated from field 
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data as they are derived from the definition of source and target reference ellipsoids. However, they need to be included 
in the model. Conceptually, this is a conformal transformation. To be precise, it is a translation since there is no change in 
scale or in the direction of the axes. The rigorous implementation of this transformation consists of 3 stages:

• conversion of geodetic coordinates to Cartesian coordinates in the source datum;

• application of the shifts ΔX, ΔY and ΔZ to the Cartesian coordinates;

• conversion of Cartesian coordinates to geodetic coordinates in the target datum.

The final stage is more difficult than the first, the problem being the computation of latitude. The traditional 
method involves iteration and is described, with the rest of the 3-stage algorithm, in Ruffhead (2016). Research 
around the world has produced a wide variety of non-iterative methods, many of which are listed in Featherstone 
and Claessens (2008).

The most direct methods for computing the 3-parameter datum transformation are those associated with 
Mikhail Sergeevich Molodensky (1909-1991). Changes in latitude, longitude and ellipsoidal height are computed 
as linear combinations of ΔX, ΔY, ΔZ, Δa and Δf. The version originating directly from Molodensky, Eremeev and 
Yurkina (1962) consists of the ‘Standard Molodensky’ formulae, given in subsection 2.1 below. This method is an 
approximate implementation of the 3-parameter conformal transformation. A computation process to make it an 
exact implementation was proposed in Ruffhead (2016).

The question arises, however, whether 3D conformal transformations are appropriate for datums that are 
2D+1D in character. This paper considers the scope for improving accuracy in the Standard Molodensky algorithm 
in cases where at least one of the datums is 2D+1D. The conformality requirement is applied to the horizontal 
components with one set of translation parameters, a different set being used to transform ellipsoidal heights.

A further aspect of investigation is the extent to which accuracy is further improved by a 7th parameter – 
rotation about the Z axis. This paper demonstrates that it is easily derived and easily applied.

2. Existing methods

It has been noted that there are a wide variety of transformation methods. The ones described here are 
Standard Molodensky formulae and other forms of Molodensky formulae. The standard version is the starting point 
for the 6-parameter variations proposed in this paper. The other forms are mentioned for completeness, and for the 
simple modification that allows a Z-rotation parameter.

2.1 Standard Molodensky formulae

Datum transformations based on three shift parameters ΔX, ΔY, ΔZ are often computed (approximately) by 
Standard Molodensky formulae, documented in Molodensky, Eremeev and Yurkina (1962). They are explicitly 
recommended by NIMA (2004) for most applications involving local geodetic datums and WGS84.

Although NIMA (2004) is a much-quoted source of specific Standard Molodensky transformations to WGS84, 
it should not be regarded as definitive. The shift parameters were computed from data that preceded GPS and other 
GNSS. Also, ‘WGS84’ in that context refers to the first realisation in 1987.

A detailed derivation of Standard Molodensky formulae can be found in Deakin (2004). Δϕ and Δλ are given 
below in radians, but can easily be converted to arc-seconds or degrees. The equation for Δh is given in linear units.
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𝛥𝛥 𝜙𝜙 = [− 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 c o s 𝜆𝜆 𝑠𝑠 − 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 si n 𝜆𝜆 𝑠𝑠  

+ 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 + 𝛥𝛥 𝛥𝛥 ( 𝜈𝜈 𝑠𝑠 𝑒𝑒 𝑠𝑠
2 si n 𝜙𝜙 𝑠𝑠 c o s 𝜙𝜙 𝑠𝑠 ) / 𝛥𝛥 𝑠𝑠  

 

( 1)

+ 𝛥𝛥 𝛥𝛥 ( 𝜌𝜌 𝑠𝑠 𝑎𝑎 𝑠𝑠 / 𝑏𝑏 𝑠𝑠 + 𝜈𝜈 𝑠𝑠 𝑏𝑏 𝑠𝑠 / 𝑎𝑎 𝑠𝑠 ) si n 𝜙𝜙 𝑠𝑠 c o s 𝜙𝜙 𝑠𝑠 ]/ ( 𝜌𝜌 𝑠𝑠 + ℎ 𝑠𝑠 )  

𝛥𝛥 𝛥𝛥 = ( − 𝛥𝛥 𝛥𝛥 si n 𝛥𝛥 𝑠𝑠 + 𝛥𝛥 𝛥𝛥 c o s 𝛥𝛥 𝑠𝑠 ) / [( 𝜈𝜈 𝑠𝑠 + ℎ 𝑠𝑠 ) c o s 𝜙𝜙 𝑠𝑠 ] 

 

h

h
( 2)

                                  𝛥𝛥 ℎ = 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 c o s 𝜆𝜆 𝑠𝑠 + 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 si n 𝜆𝜆 𝑠𝑠  

+ 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 − 𝛥𝛥 𝛥𝛥 ( 𝛥𝛥 𝑠𝑠 / 𝜈𝜈 𝑠𝑠 ) + 𝛥𝛥 𝛥𝛥 ( 𝑏𝑏 𝑠𝑠 / 𝛥𝛥 𝑠𝑠 ) 𝜈𝜈 𝑠𝑠 si n 2 𝜙𝜙 𝑠𝑠  
( 3)

E q u a ti o n s ( 1) a n d ( 2) c a n b e c o n v ert e d fr o m r a di a ns i nt o t h e s a m e li n e ar u nits us e d i n ( 1 1):

( 𝜌𝜌 𝑠𝑠 + ℎ 𝑠𝑠 ) 𝛥𝛥 𝜙𝜙 = − 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 c o s 𝜆𝜆 𝑠𝑠 − 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 si n 𝜆𝜆 𝑠𝑠  

+ 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 + 𝛥𝛥 𝛥𝛥 ( 𝜈𝜈 𝑠𝑠 𝑒𝑒 𝑠𝑠
2 si n 𝜙𝜙 𝑠𝑠 c o s 𝜙𝜙 𝑠𝑠 ) / 𝛥𝛥 𝑠𝑠  

+ 𝛥𝛥 𝛥𝛥 ( 𝜌𝜌 𝑠𝑠 𝛥𝛥 𝑠𝑠 / 𝑏𝑏 𝑠𝑠 + 𝜈𝜈 𝑠𝑠 𝑏𝑏 𝑠𝑠 / 𝛥𝛥 𝑠𝑠 ) si n 𝜙𝜙 𝑠𝑠 c o s 𝜙𝜙 𝑠𝑠  
( 4)

( 𝜈𝜈 𝑠𝑠 + ℎ 𝑠𝑠 ) 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 = − 𝛥𝛥 𝛥𝛥 si n 𝛥𝛥 𝑠𝑠 + 𝛥𝛥 𝛥𝛥 c o s 𝛥𝛥 𝑠𝑠  ( 5)

E q u a ti o n s ( 4), ( 5) a n d ( 3) c a n b e r e g ar d e d as t h e e q u a ti o ns of h o m o g e nis e d g e o d e ti c s hi fts gi v e n t h at t h e y ar e 

i n t er ms of ϕ , λ  a n d h , b ut wit h t h e s a m e li n e ar u nits.

2. 2 Ot h er f or m s of M ol o d e n s k y f or m ul a e

It s h o ul d b e n ot e d t h at M ol o d e ns k y, Er e m e e v a n d Y ur ki n a ( 1 9 6 2) c o nt ai ns i m pl e m e nt a ti o ns of m or e g e n er al 

c o nf or m al tr a nsf or m a ti o ns. T h e a d di ti o n al p ar a m et ers ar e a c h a n g e i n s c al e Δ S  a n d s m all r ot a ti o ns R X , R Y , R Z  i n t h e 

gl o b al C art esi a n a x es. D et ails ar e gi v e n i n S ol er ( 1 9 7 6). I n pr a c ti c e t h es e h a v e r ar el y b e e n us e d, pr o b a bl y b e c a us e t h e 

r es ul ti n g g e n er alis a ti o ns of e q u a ti o ns ( 1) –( 3) ar e f ar m or e c o m pli c at e d. It is w ort h n o ti n g, h o w e v er, t h at t h e r ot a ti o n 

t er m R Z  i s e a s y t o a c c o m m o d at e: it o nl y n e e ds t o b e a d d e d t o t h e ri g ht- h a n d si d e of ( 2) ( ass u mi n g it c o m pli es wit h 

t h e p osi ti o n- v e ct or si g n c o n v e n ti o n).

M ol o d e ns k y, Er e m e e v a n d Y ur ki n a ( 1 9 6 2) als o h as a g e n er alis a ti o n w hi c h v ari es Δ a  a n d Δf . T his is, of c o urs e, 

o ut si d e t h e s c o p e of tr a nsf or m a ti o ns b et w e e n elli ps oi ds of k n o w n si z e a n d s h a p e.

T h er e ar e si m pli fi e d v ersi o ns of t h e st a n d ar d f or m t h at w er e n ot pr o p os e d b y M ol o d e ns k y. T h e b est k n o w n of 

t h es e is t h e s et of ‘ A bri d g e d M ol o d e ns k y’ f or m ul a e, w hi c h d o n ot us e elli ps oi d al h ei g hts. T h e f or m ul a e ar e gi v e n i n 

( 6)-( 8), i n r a di a ns, r a di a ns a n d li n e ar u nits r es p e c ti v el y.

𝛥𝛥 𝜙𝜙 = [− 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 c o s 𝜆𝜆 𝑠𝑠 − 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 si n 𝜆𝜆 𝑠𝑠  
+ 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 + ( 𝑎𝑎 𝑠𝑠 𝛥𝛥 𝛥𝛥 + 𝛥𝛥𝑠𝑠 𝛥𝛥 𝑎𝑎 ) si n 2 𝜙𝜙 𝑠𝑠 ]/ 𝜌𝜌 𝑠𝑠  

( 6)

𝛥𝛥 𝛥𝛥 = ( − 𝛥𝛥 𝛥𝛥 si n 𝛥𝛥 𝑠𝑠 + 𝛥𝛥 𝛥𝛥 c o s λ s ) / ( 𝜈𝜈 𝑠𝑠 c o s 𝜙𝜙 𝑠𝑠 )  ( 7)

𝛥𝛥 ℎ = 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 c o s 𝜆𝜆 𝑠𝑠 + 𝛥𝛥 𝛥𝛥 c o s 𝜙𝜙 𝑠𝑠 si n 𝜆𝜆 𝑠𝑠  

+ 𝛥𝛥 𝛥𝛥 si n 𝜙𝜙 𝑠𝑠 + ( 𝑎𝑎 𝑠𝑠 𝛥𝛥 𝛥𝛥 + 𝛥𝛥𝑠𝑠 𝛥𝛥 𝑎𝑎 ) si n 2 𝜙𝜙 𝑠𝑠 − 𝛥𝛥 𝑎𝑎  
( 8)

T h e A bri d g e d f or m ul a e ar e s h o w n al o n gsi d e t h os e of St a n d ar d M ol o d e ns k y i n S e p p eli n ( 1 9 7 4), w hi c h s a ys t h e 

M ol o d e ns k y f or m ul a e h a d b e e n ‘ pr e vi o usl y s el e ct e d f or us e wit h W G S 6 6’. D M A ( 1 9 8 7, s e c ti o n 7. 2. 4. 3. 2) n ot e d t h at 

4P ar ti all y- c o nf or m al v ari a ti o ns of t h e st a n d ar d m ol o d e ns k y d at u m tr a nsf or m a ti o n

B ol e ti m d e Ci ê n ci as G e o d ési c as, 2 8( 4): e 2 0 2 2 0 2 1, 2 0 2 2



‘the Abridged Molodensky Datum Transformation Formulas have been used more extensively that the Standard 
Formulas’ but on grounds of accuracy firmly recommends the latter in ‘any new software involving the Molodensky 
Datum Transformation Formulas’. Despite this advice, Abridged Molodensky is still widely used (see, for example, 
IOGP 2020 and Yun, Lee and Song 2020). Varga, Grgić and Bašić (2017) found that both Abridged and Standard 
Molodensky fitted Croatian horizontal data as precisely as the 3-stage 3-parameter conformal transformation (which 
they call “Molod-3p”).

3. New methods

This section proposes new variations on the Standard Molodensky formulae. It also describes how 
to compute the inverse formulae. The particular least-squares method chosen for this study to optimise the 
parameters is also described.

3.1 New variations on Standard Molodensky formulae

Partially-conformal variation (PCV) of Standard Molodensky is a new method with up to 7 unknown 
parameters, not counting Δa or Δf. It is applied to geodetic coordinates. A convenient abbreviation for the method 
is SM-PCV. The full set of parameters consists of:

• translation parameters ΔXhor, ΔYhor, ΔZhor for use in the horizontal-shift equations (1) and (2);

•  rotation parameter RZ (as per the position vector convention) for application to the longitude after the 
Standard Molodensky longitude formula;

• translation parameters ΔXver, ΔYver, ΔZver for use in the vertical-shift equation (3).

These are not to be confused with the 7 parameters of the 3D conformal transformation (which include 3 
rotation parameters and a scale change). If all 7 SM-PCV parameters are used, the transformation formulae are

𝛥𝛥𝜙𝜙 = [−𝛥𝛥𝑋𝑋ℎ𝑜𝑜𝑜𝑜 sin𝜙𝜙𝑠𝑠 cos 𝜆𝜆𝑠𝑠 − 𝛥𝛥𝑌𝑌ℎ𝑜𝑜𝑜𝑜 sin𝜙𝜙𝑠𝑠 sin 𝜆𝜆𝑠𝑠 
+𝛥𝛥𝑍𝑍ℎ𝑜𝑜𝑜𝑜 cos 𝜙𝜙𝑠𝑠 + 𝛥𝛥𝛥𝛥(𝜈𝜈𝑠𝑠𝑒𝑒𝑠𝑠2 sin𝜙𝜙𝑠𝑠 cos 𝜙𝜙𝑠𝑠)/𝛥𝛥𝑠𝑠 

+𝛥𝛥𝛥𝛥(𝜌𝜌𝑠𝑠𝛥𝛥𝑠𝑠/𝑏𝑏𝑠𝑠 + 𝜈𝜈𝑠𝑠𝑏𝑏𝑠𝑠/𝛥𝛥𝑠𝑠) sin𝜙𝜙𝑠𝑠 cos 𝜙𝜙𝑠𝑠]/(𝜌𝜌𝑠𝑠 + ℎ𝑠𝑠) 
(9)

𝛥𝛥𝛥𝛥 = 𝑅𝑅𝑍𝑍 + (−𝛥𝛥𝑋𝑋ℎ𝑜𝑜𝑜𝑜 sin 𝛥𝛥𝑠𝑠 + 𝛥𝛥𝑌𝑌ℎ𝑜𝑜𝑜𝑜 cos 𝛥𝛥𝑠𝑠)/[(𝜈𝜈𝑠𝑠 + ℎ𝑠𝑠) cos 𝜙𝜙𝑠𝑠] (10)

                                𝛥𝛥ℎ = 𝛥𝛥𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 cos 𝜙𝜙𝑠𝑠 cos 𝜆𝜆𝑠𝑠 + 𝛥𝛥𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣 cos 𝜙𝜙𝑠𝑠 sin 𝜆𝜆𝑠𝑠 
+𝛥𝛥𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣 sin 𝜙𝜙𝑠𝑠 − 𝛥𝛥𝛥𝛥(𝛥𝛥𝑠𝑠/𝜈𝜈𝑠𝑠) + 𝛥𝛥𝛥𝛥(𝑏𝑏𝑠𝑠/𝛥𝛥𝑠𝑠)𝜈𝜈𝑠𝑠 sin2 𝜙𝜙𝑠𝑠 (11)

Equations (9) and (10) are in radians but can be converted into the same linear units used in (11). The resulting 
equations (12) and (13), when coupled with equation (11), describe homogenised geodetic shifts.

(𝜌𝜌𝑠𝑠 + ℎ𝑠𝑠)𝛥𝛥𝜙𝜙 = −𝛥𝛥𝑋𝑋ℎ𝑜𝑜𝑜𝑜 sin𝜙𝜙𝑠𝑠 cos 𝜆𝜆𝑠𝑠 − 𝛥𝛥𝑌𝑌ℎ𝑜𝑜𝑜𝑜 sin𝜙𝜙𝑠𝑠 sin 𝜆𝜆𝑠𝑠 
+𝛥𝛥𝑍𝑍ℎ𝑜𝑜𝑜𝑜 cos 𝜙𝜙𝑠𝑠 + 𝛥𝛥𝛥𝛥(𝜈𝜈𝑠𝑠𝑒𝑒𝑠𝑠2 sin𝜙𝜙𝑠𝑠 cos 𝜙𝜙𝑠𝑠)/𝛥𝛥𝑠𝑠 

+𝛥𝛥𝛥𝛥(𝜌𝜌𝑠𝑠𝛥𝛥𝑠𝑠/𝑏𝑏𝑠𝑠 + 𝜈𝜈𝑠𝑠𝑏𝑏𝑠𝑠/𝛥𝛥𝑠𝑠) sin𝜙𝜙𝑠𝑠 cos 𝜙𝜙𝑠𝑠 
(12)

(𝜈𝜈𝑠𝑠 + ℎ𝑠𝑠)𝛥𝛥𝛥𝛥 cos 𝜙𝜙𝑠𝑠 = (𝜈𝜈𝑠𝑠 + ℎ𝑠𝑠)𝑅𝑅𝑍𝑍 cos𝜙𝜙𝑠𝑠 − 𝛥𝛥𝑋𝑋ℎ𝑜𝑜𝑜𝑜 sin 𝛥𝛥𝑠𝑠 + 𝛥𝛥𝑌𝑌ℎ𝑜𝑜𝑜𝑜 cos 𝛥𝛥𝑠𝑠 (13)
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In equations (10) and (13), RZ is in radians. If RZ is disregarded, meaning no allowance for Z-rotation, these 
equations become a 6-parameter variation.

Equations (12) and (13) have some similarity to the approach used by Molnár and Timár (2005). They scaled 
the longitude difference Δλ by ϕs, but the relative weight of their expressions for Δϕ and Δλcosϕs made no allowance 
for differences in radii of curvature. Moreover, their equations were for Abridged Molodensky rather than Standard 
Molodensky, and were entirely for the purpose of optimising the horizontal transformation without regard for 
ellipsoidal heights.

Equations (9) to (11) are insensitive to errors in the ellipsoidal heights. This can easily be shown by test 
computations: a change of 10 metres in hs will have a negligible effect on Δϕ, Δh and Δh, although ht will experience 
an equivalent change. This characteristic of Standard Molodensky is shared by the 3-stage 3-parameter method. For 
both methods, a rough approximation of hs should not affect the horizontal accuracy of the transformation.

3.2 Computing the inverse transformation

Given the parameters for the forward transformation (ϕs, λs, hs) → (ϕt, λt, ht), there remains the issue of how 
to compute the reverse (or inverse) transformation (ϕt, λt, ht) → (ϕs, λs, hs).

The formulae (9)-(11) can be used in reverse, but a modification is needed to cover the 7-parameter variation 
when RZ is non-zero. In the forward transformation, RZ is applied to the longitude after the translations; therefore, 
in the reverse transformation, –RZ must be applied to the longitude before application of the reverse translations. 
Intermediate longitudes λt

U (where U stands for ‘unrotated’) are computed using

(14)𝜆𝜆𝑡𝑡U = 𝜆𝜆𝑡𝑡 − 𝑅𝑅𝑍𝑍  

The ‘simple inverse’ (ϕs
SI, λs

SI, hs
SI) is obtained by computing the following shifts and adding them to ϕt, λt, ht.  

(ϕs
SI = ϕt + ΔϕSI, etc.) If ht is not known, a dummy value should be assigned so that the resulting hs

SI represents the 
same point.

𝛥𝛥𝛥𝛥SI = [𝛥𝛥𝑋𝑋ℎ𝑜𝑜𝑜𝑜 sin𝛥𝛥𝑡𝑡 cos 𝜆𝜆𝑡𝑡U + 𝛥𝛥𝑌𝑌ℎ𝑜𝑜𝑜𝑜 sin 𝛥𝛥𝑡𝑡 sin 𝜆𝜆𝑡𝑡U  
−𝛥𝛥𝑍𝑍ℎ𝑜𝑜𝑜𝑜 cos𝛥𝛥𝑡𝑡 − 𝛥𝛥𝛥𝛥(𝜈𝜈𝑡𝑡𝑒𝑒𝑡𝑡2 sin𝛥𝛥𝑡𝑡 cos 𝛥𝛥𝑡𝑡)/𝛥𝛥𝑡𝑡 

−𝛥𝛥𝛥𝛥(𝜌𝜌𝑡𝑡𝛥𝛥𝑡𝑡/𝑏𝑏𝑡𝑡 + 𝜈𝜈𝑡𝑡𝑏𝑏𝑡𝑡/𝛥𝛥𝑡𝑡) sin𝛥𝛥𝑡𝑡 cos 𝛥𝛥𝑡𝑡]/(𝜌𝜌𝑡𝑡 + ℎ𝑡𝑡) 
(15)

𝛥𝛥𝛥𝛥SI = (𝛥𝛥𝑋𝑋ℎ𝑜𝑜𝑜𝑜 sin 𝛥𝛥𝑡𝑡U − 𝛥𝛥𝑌𝑌ℎ𝑜𝑜𝑜𝑜 cos 𝛥𝛥𝑡𝑡U)/[(𝜈𝜈𝑡𝑡 + ℎ𝑡𝑡) cos 𝜙𝜙𝑡𝑡] (16)

𝛥𝛥ℎSI = −𝛥𝛥𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 cos𝜙𝜙𝑡𝑡 cos 𝜆𝜆𝑡𝑡U − 𝛥𝛥𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣 cos 𝜙𝜙𝑡𝑡 sin 𝜆𝜆𝑡𝑡U  
−𝛥𝛥𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣 sin𝜙𝜙𝑡𝑡 + 𝛥𝛥𝛥𝛥(𝛥𝛥𝑡𝑡/𝜈𝜈𝑡𝑡) − 𝛥𝛥𝛥𝛥(𝑏𝑏𝑡𝑡/𝛥𝛥𝑡𝑡)𝜈𝜈𝑡𝑡 sin2 𝜙𝜙𝑡𝑡 

(17)

If formulae (9)-(11) are applied to (ϕs
SI, λs

SI, hs
SI), with those coordinates used to derive ρs and vs, there will be 

a misclosure that can be as much as 0.050 metres in 3D distance. The misclosure (ϕt
SMV – ϕt, λt

SMV – λt, ht
SMV – ht) is a 

good indication of the error in the simple inverse. (SMV denotes the application of Standard Molodensky Variation 
to the simple inverse.)

If the user wishes a corrected inverse (CI) which is more exact, the misclosure can be applied in much the 
same way as in Sections 2.4, 2.5 and 2.13 of Ruffhead and Whiting (2020).
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𝜙𝜙𝑠𝑠CI = 𝜙𝜙𝑠𝑠SI − (𝜙𝜙𝑡𝑡
SMV − 𝜙𝜙𝑡𝑡) (18)

𝜆𝜆𝑠𝑠CI = 𝜆𝜆𝑠𝑠SI − (𝜆𝜆𝑡𝑡SMV − 𝜆𝜆𝑡𝑡) (19)

ℎ𝑠𝑠CI = ℎ𝑠𝑠SI − (ℎ𝑡𝑡SMV − ℎ𝑡𝑡) (20)

In the 6-parameter variation (where RZ is zero), both the forward and reverse transformations involve the same 
amount of computation as the 3-parameter Standard Molodensky. This is because ΔX is simply replaced by ΔXhor or 
ΔXver, with similar replacements occurring for ΔX and ΔY. In the reverse transformation, λt

U will be λt since reverse 
application of RZ is not needed.

For the 7-parameter variation, the only extra computation in the forward transformation is the addition of RZ 
in equation (10). The only extra computation in the reverse transformation is the subtraction of RZ in equation (14). 

3.3 Computation of parameters

For the purposes of this paper, least-squares optimisation means ‘ordinary’ least-squares (possibly weighted). 
It is worth noting that the alternative of ‘total’ least-squares has become increasingly popular for deriving datum 
transformations (See, for example, Fang 2014 and Tao, Hua and Feng 2020.) Papers that compare the two methods 
include Pan et al. (2015) and Laari, Ziggah and Annan (2016). 

The traditional method of optimising parameters ΔX, ΔY and ΔZ for Standard Molodensky has been mean 
Cartesian shifts. See, for example, NIMA (2004, p.7-4). Mean Cartesian shifts are calculated from the Cartesian 
coordinates of the control points in the source and target datums. In terms of least-squares, these are the optimum 
parameters for the 3-parameter conformal transformation applied to (XS, YS, ZS) which is not quite the same as the 
two Molodensky transformations.

The rigorous method for optimising ΔX, ΔY and ΔZ for Standard Molodensky is to use equations (4), (5) and 
(3) for each control point, with residual terms (which like the equations themselves will be in linear units). Using x 
to denote the vector containing the parameters (in this case ΔX, ΔY and ΔZ), the observation equations for the n 
control points will take the form

(21)

 

𝐀𝐀𝐀𝐀 + 𝐯𝐯 = 𝐛𝐛 

The 3n × 3 design matrix A contains the coefficients of ΔX, ΔY and ΔZ for each equation and each point. Vector 
b contains the 3n ‘observed’ quantities arising from equations (4), (5) and (3). These are

(𝜌𝜌𝑠𝑠 + ℎ𝑠𝑠)𝛥𝛥𝜙𝜙 − 𝛥𝛥𝛥𝛥(𝜈𝜈𝑠𝑠𝑒𝑒𝑠𝑠2 sin 𝜙𝜙𝑠𝑠 cos 𝜙𝜙𝑠𝑠)/𝛥𝛥𝑠𝑠 − 𝛥𝛥𝛥𝛥(𝜌𝜌𝑠𝑠𝛥𝛥𝑠𝑠/𝑏𝑏𝑠𝑠 + 𝜈𝜈𝑠𝑠𝑏𝑏𝑠𝑠/𝛥𝛥𝑠𝑠) sin𝜙𝜙𝑠𝑠 cos 𝜙𝜙𝑠𝑠, 
(𝜈𝜈𝑠𝑠 + ℎ𝑠𝑠)𝛥𝛥𝛥𝛥 cos𝜙𝜙𝑠𝑠����nd  �

𝛥𝛥ℎ + 𝛥𝛥𝛥𝛥(𝛥𝛥𝑠𝑠/𝜈𝜈𝑠𝑠) −𝛥𝛥𝛥𝛥(𝑏𝑏𝑠𝑠/𝛥𝛥𝑠𝑠)𝜈𝜈𝑠𝑠 sin2 𝜙𝜙𝑠𝑠 
 

for each point. Vector v consists of the 3n residuals.

The quantity to be minimised can be expressed as vTWv, where W is a square symmetric matrix of weights. 
Ideally, W should consist of variances and covariances, to reflect variations in data quality and correlation. In 
practice, W is frequently taken to be the identity matrix.

As shown, for example, in Bomford (1980) and Cross (1983), the parameter vector x which minimises vTWv 
is the solution of the normal equations ATWAx = ATWb.
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The author has derived Standard Molodensky parameters for several datasets (Great Britain, Western 
Australia, Sweden, Ghana) and found them to be within 0.025 metres of the mean datum shifts computed from 
Cartesian shifts. NIMA’s technically-incorrect approach is therefore excusable.

The main advantage of homogenised geodetic shifts is the separation of horizontal shifts from shifts in 
height. This allows one set of parameters ΔXhor, ΔYhor, ΔZhor to be used for the horizontal shift and another set 
ΔXver, ΔYver, ΔZver to be used for the vertical shift. The former can be derived from the equations for Δϕ and Δλ, 
and the latter from the equations for Δh. This is the key to deriving the parameters in the partially-conformal 
variations of Standard Molodensky.

For the Standard Molodensky variations, there are 6 parameters to be optimised with the possibility of a 
systematic shift (RZ) in longitude as a 7th. The parameter vector x to be used in equation (21) will consist of ΔXhor, 
ΔYhor, ΔZhor, RZ, ΔXver, ΔYver and ΔZver. The elements of the 3n × 7 design matrix A will consist of the coefficients 
of those terms arising from the homogenised equations (12), (13) and (11). Vector b will contain the same 3n 
quantities as before.

4. Results

Each of the transformations considered involved at least one local geodetic datum. The datasets are relatively 
old (circa 1990s) and vary in size from 20 to 82 common points. They were selected on the basis of what was 
available to the author. Each set of coordinates is 2D+1D in nature, with orthometric heights converted to ellipsoidal 
heights via a geoid model. The latter cannot be identified in all cases.

The Swedish and Australian datasets have been used by Andrei (2006) and Awange, Bae and Claessens (2008) 
to derive datum transformations, although the method considered in their studies was affine transformations.

For this study, Standard Molodensky and the new variations were each derived by ordinary least squares 
optimisation using unit weights. No weighting information was available, and indeed both Andrei (2006) and Awange, 
Bae and Claessens (2008) assumed unit weights in their studies. As in those investigations, no points were set aside as 
testing points and root-mean-square (RMS) residuals were derived from all the data points.

The quality-of-fit of the SM-PCVs is compared primarily with Standard Molodensky to demonstrate a large 
improvement without increased computation. The parameters and RMSs are given to greater precision than would 
normally be expected given the uncertainty of the calculation (1 decimal place of a metre, 3 decimal places of an arc-
second). This is purely to assist checks by software developers.

Comparisons are made with Bursa-Wolf. This is a simplification of the 7-parameter conformal transformation 
applied to Cartesian coordinates (see, for example, Ruffhead and Whiting 2020). It is indirect in the sense it requires 
conversions of source geodetic coordinates to Cartesians and Cartesians to target geodetic coordinates. There is no 
attempt to model two different types of conformality. The accuracy advantage of Bursa-Wolf over direct methods is 
greatly reduced when compared to SM-PCVs.

The author also programmed partially-conformal variations on Abridged Molodensky. Given the arguments in 
1.3 against the continued use of Abridged Molodensky, the results are given in lesser detail, but sufficient to show that 
the PCVs give near-identical improvements.
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4.1 Case study 1 (Western Australia)

This study involves datum transformations from Australian Geodetic Datum 1984 (AGD84) to Geocentric 
Datum of Australia 1994 (GDA94). The area of application is Western Australia. There are 82 data points known in 
both datums and their distribution is illustrated in Figure 1.

The points are the 82 stations of the STATEFIX GPS network, described in Agustan and Featherstone (2004) 
and more fully in Stewart et al. (1997). The coordinates were computed in 1996 by the Geodesy Group at Curtin 
University of Technology from observations provided by the Western Australian Department of Land Administration 
(later superseded by Landgate).

From the age of the data, it is clear that neither set of ellipsoidal heights could have come directly from 
GNSS surveys. Enquiries made to Landgate failed to reveal the precise methods by which orthometric heights were 
converted to AGD84 ellipsoidal heights, although it seems likely that the conversion used the 1971 astrogeodetic 
datum produced by the Division of National Mapping in Canberra. For the GDA94 heights, the geoid model used 
was AUSGeoid98.

The optimised parameters and the statistical properties of the fit are given in Table 1. In this instance, the extra 
translation parameters have a much bigger impact than the rotation parameter.

Figure 1: Data points of case study 1 (Western Australia)
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Table 1: Statistics of optimised models for case study 1.

Parameters and properties Std Mol (3P) 6P SM-PCV 7P SM-PCV
ΔX

hor
-140.488 m -129.902 m -133.451 m

ΔY
hor

-33.932 m -52.064 m -54.210 m

ΔZ
hor

142.251 m 153.218 m 153.254 m

R
Z

-0.151112″

ΔX
ver

-140.488 m -127.212 m -127.212 m

ΔY
ver

-33.932 m -30.226 m -30.226 m

ΔZ
ver

142.251 m 134.653 m 134.653 m

Δϕ RMS 2.2917 m 0.5388 m 0.5052 m
Δλ RMS 1.7678 m 0.5926 m 0.5721 m
Δh RMS 1.5223 m 0.2760 m 0.2760 m
2D RMS 2.8943 m 0.8009 m (72.3%) 0.7632 m (73.6%)
3D RMS 3.2703 m 0.8472 m (74.1%) 0.8116 m (75.2%)

Percentage values indicate improvement (reduction) with respect to Std Mol values.

The variations on Standard Molodensky have a similar accuracy advantage over the 3-stage 3-parameter 
conformal transformation, since the optimised form of the latter has a horizontal RMS of 2.8946 m and a 3D RMS 
of 3.2705 m. The variations also have the simplicity advantage because the geodetic coordinates do not need to be 
converted to and from Cartesian coordinates.

The variations on Standard Molodensky have a simplicity advantage over Bursa-Wolf and Molodensky-Badekas 
which are also 3-stage methods requiring conversion to and from Cartesian coordinates. They are, however, slightly 
more accurate than 7P SM-PCV since they have a horizontal RMS of 0.7142 m and a 3D RMS of 0.7583 m.

Least-squares models were also derived for Abridged Molodensky and the corresponding 6- and 7-parameter 
variations. The 6-parameter variation reduces the 3D RMS distance residual by 74.1% and the horizontal RMS 
distance residual by 72.3%. For the 7-parameter variation, the corresponding reductions are 75.2% and 73.6%.

4.2 Case study 2 (Great Britain)

This study involves datum transformations from Ordnance Survey Great Britain 1936 (OSGB 36) to WGS84. 
The area of application is Great Britain and there are 44 data points known in both datums. Their distribution is 
illustrated in Figure 2. The combined dataset was received by a colleague of the author circa 2001, so it is not recent. 
The ‘WGS84’ designation is clearly an early realisation of the datum.

Advice from the UK Defence Geographic Centre was that the points are Doppler stations and that the WGS84 
coordinates came from Doppler precise positioning, not GPS. Geoid models must have been used to convert 
orthometric heights to ellipsoidal heights. (It was not possible to establish which of the many possibilities those 
models were.)  This suggests that the ellipsoidal heights were much less accurate than the latitudes and longitudes.
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Figure 2: Data points of case study 2 (Great Britain)

The optimised parameters and the statistical properties of the fit are given in Table 2. In this instance, 
the extra translation parameters have a bigger impact than the rotation parameter, but the latter makes a 
significant contribution.
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Table 2: Statistics of optimised models for case study 2.

Parameters and properties Std Mol (3P) 6P SM-PCV 7P SM-PCV
ΔX

hor
376.414 m 453.370 m 452.520 m

ΔY
hor

-111.291 m -114.524 m -134.223 m

ΔZ
hor

431.660 m 538.810 m 538.793 m

R
Z

1.091748″

ΔX
ver

376.414 m 369.571 m 369.571 m

ΔY
ver

-111.291 m -156.683 m -156.683 m

ΔZ
ver

431.660 m 434.664 m 434.664 m

Δϕ RMS 7.5257 m 1.9818 m 1.6032 m
Δλ RMS 2.7466 m 1.9220 m 1.6039 m
Δh RMS 1.5964 m 1.0872 m 1.0872 m
2D RMS 8.0112 m 2.7608 m (65.5%) 2.2678 m (71.7%)
3D RMS 8.1687m 2.9671 m (63.7%) 2.5149 m (69.2%)

Percentage values indicate improvement (reduction) with respect to Std Mol values.

The variations on Standard Molodensky have a similar accuracy advantage over the 3-stage 3-parameter 
conformal transformation, since the optimised form of the latter has a horizontal RMS of 8.0146 m and a 3D RMS 
of 8.1720 m. The variations also have the simplicity advantage because the geodetic coordinates do not need to be 
converted to and from Cartesian coordinates.

The variations on Standard Molodensky have a simplicity advantage over Bursa-Wolf and Molodensky-
Badekas which are also 3-stage methods requiring conversion to and from Cartesian coordinates. They do, however, 
broadly match 7P SM-PCV for accuracy since they have a horizontal RMS of 2.2522 m and a 3D RMS of 2.5196 m.

Least-squares models were also derived for Abridged Molodensky and the corresponding 6- and 7-parameter 
variations. The 6-parameter variation reduces the 3D RMS distance residual by 63.6% and the horizontal RMS 
distance residual by 65.5%. For the 7-parameter variation, the corresponding reductions are 69.2% and 71.7%.

4.3 Case study 3 (Sweden)

This study involves datum transformations from SWEREF93 (The Swedish realisation of ETRS89) to a local 
reference coordinate system designated RT90/RH70 by Andrei (2006). The latter is ‘a mixture of the Swedish 
triangulation network RT90 and the 2nd Swedish precise levelling network RH70’. The geoid model associated 
with RT90 is RN02 (Engberg and Lilje, 2001). There are 20 data points known in both datums. Their distribution is 
illustrated in Figure 3.
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Figure 3: Data points of case study 3 (Sweden)

The geocentric Cartesian coordinates are given in Table 4.1 of Andrei (2006), but with columns in the wrong 
order. For a correct listing, see Table 5 of Amiri-Simkooei (2018).

The optimised parameters and the statistical properties of the fit are given in Table 3. In this instance, the 
rotation parameter had a much greater overall impact than the 3 extra translation parameters, although the latter 
caused a dramatic reduction in the ∆h RMS residual.

The variations on Standard Molodensky have a similar accuracy advantage over the 3-stage 3-parameter 
conformal transformation, since the optimised form of the latter has a horizontal RMS of 12.6148 m and a 3D RMS 
of 13.9134 m. The variations also have the simplicity advantage because the geodetic coordinates do not need to be 
converted to and from Cartesian coordinates.

The variations on Standard Molodensky have a simplicity advantage over Bursa-Wolf and Molodensky-
Badekas which are also 3-stage methods requiring conversion to and from Cartesian coordinates. They are slightly 
more accurate than 7P SM-PCV, since they have a horizontal RMS of 0.1296 m and a 3D RMS of 0.1796 m, but the 
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massive advantage they have over Standard Molodensky is largely eliminated.

Table 3: Statistics of optimised models for case study 3.

Parameters and properties Std Mol (3P) 6P SM-PCV 7P SM-PCV
ΔX

hor
-498.396 m -502.211 m -471.993 m

ΔY
hor

36.640 m 35.655 m -66.133 m

ΔZ
hor

-563.431 m -569.957 m -569.643 m

R
Z

7.134725″

ΔX
ver

-498.396 m -416.328 m -416.328 m

ΔY
ver

36.640 m -99.283 m -99.283 m

ΔZ
ver

-563.431 m -585.556 m -585.556 m

Δϕ RMS 5.1664 m 4.8139 m 0.1115 m
Δλ RMS 11.5042 m 11.6407 m 0.1057 m
Δh RMS 5.8693 m 0.1293 m 0.1293 m
2D RMS 12.6111 m 12.5968 m (0.1%) 0.1536 m (98.8%)
3D RMS 13.9100 m 12.5975 m (9.4%) 0.2008 m (98.6%)

Percentage values indicate improvement (reduction) with respect to Std Mol values.

It must be admitted that the 7-parameter variation is an improvement on Standard Molodensky because a 
transformation limited to translation parameters is highly unsuitable for the Swedish dataset. The rotation RZ between 
zero meridians is a very significant part of the transformation from SWEREF93 to RT90/RH70.

Least-squares models were also derived for Abridged Molodensky and the corresponding 6- and 7-parameter 
variations. The 6-parameter variation reduces the 3D RMS distance residual by 9.4% and the horizontal RMS distance 
residual by 0.1%. For the 7-parameter variation, the corresponding reductions are 98.6% and 98.8%.

5. Discussion

While the place of Standard Molodensky in the field of datum transformations is declining, its appeal as a simple 
direct method has led to its continued use, particular in countries where high-accuracy surface-fitting models are not 
yet available. It is therefore worth examining variations that preserve its simplicity whilst improving its accuracy.

In all three case studies, the 7-parameter variations improve the accuracy of Standard Molodensky by more 
than two-thirds, in terms of the reduction in residuals. The reasons for this vary from the alternative translation 
terms in Cases 1 and 2 to the rotation term in Case 3. The improvement in the 6-parameter variation over Standard 
Molodensky is substantial in Cases 1 and 2, but not in Case 3.

While these Standard Molodensky variations are not necessarily more accurate than the 3-stage methods 
which use Cartesian coordinates (eg Bursa-Wolf), they are simpler to apply and are an important addition to the 
direct methods. The application involves no more computation than the basic Standard Molodensky, apart from the 
addition of a constant term in the 7-parameter case.

The horizontal-accuracy comparisons have particular importance in cases where ellipsoidal heights are 
ignored (either because of unavailability or suspected inaccuracy). The 6-parameter SM-PCV then becomes 2D 
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Standard Molodensky using horizontally-derived ΔX, ΔY, ΔZ as opposed to mean Cartesian shifts; the reductions in 
RMS horizontal distance residual were 72.3% and 65.5% in the first two case studies, although negligible in the third 
where the main source of error has not been addressed. The 7-parameter SM-PCV becomes rotationally-modified 
2D Standard Molodensky using horizontally-derived ΔX, ΔY, ΔZ; the reduction in RMS horizontal distance residual is 
a massive 98.8% in the third case study.

Direct SM-PCV methods are worth investigating for transformations between local datums and modern 
realisations of global datums, where the case for full 3D conformality does not apply. The possibility of a change 
in Z-rotation is worth pursuing not only for its possible significance but also because it is easy to include in the 
observation equations and even easier to apply. 

The primary conclusion can be stated as follows. On the evidence of the case studies in this paper, those 
who advocate the Standard Molodensky transformation for its simplicity should consider the partially-conformal 
variations as an equally-simple but more accurate alternative. The key limitation is that SM-PCV methods are only 
appropriate when at least one of the datums is of type 2D+1D.

As with any transformation method derived from a single application to the entire set of data points, the 
RMS of the residuals from SM-PCV methods will not give a true indication of their accuracy as a predictor. If such 
information is required within the region covered by the data points, there is always the option of cross-validation, 
a process described succinctly in Berrar (2018).
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