
 

Leveraging Artificial Intelligence to Secure 
Wireless Network: Exploring Threats, Existing 
Approaches, and Proposed Mitigation Strategies 

 

Alice Lee Nan Xin  
Department of Computing and 

Information Systems 
Sunway University 
Selangor, Malaysia 

21067848@imail.sunway.edu.my 
 

 

Athirah Mohd Ramly 
School of Architecture, Computing and 

Engineering, UEL 
London, United Kingdom 
a.mohd-ramly@uel.ac.uk 

Mhd Saeed Sharif 
Intelligent Technologies Research 

Group, School of Architecture, 
Computing and Engineering, UEL 

London, United Kingdom 
s.sharif@uel.ac.uk 

Mehran Behjati 
Department of Computing and 

Information Systems 
Sunway University 
Selangor, Malaysia 

mehranb@sunway.edu.my 

 

 

 

  

Abstract— The exponential growth of network has 
introduced new Internet-of-Things (IoT) use cases that has 
enabling us convenience and comfort. The surge of IoT devices 
due to the capabilities brought by fifth generation (5G) have 
given rise to security threats and attacks, particularly malware 
attacks IoT botnets have been an alarming issue, where smart 
devices can be manipulated by malicious actors to commence 
subsequent attacks such as Denial of Service (DoS). Traditional 
and complex security techniques may not be a viable solution 
towards these resource-constrained devices with limited 
processing power. Machine Learning techniques (ML) are the 
rising trend, and it is often used in Intrusion Detection Systems 
and Network Anomaly Detection. This paper emphasizes on 
analyzing and comparing various ML models on the IoT-23 
dataset. It aims to predict anomalies and conclude the model 
with optimal performance and least computational time cost 
that can be used for network anomaly detection systems with 
real-time data in future works. The ML models used in this 
paper are Decision Trees (DT), K-nearest neighbours (KNN), 
Random Forest (RF), Naïve Bayes (NB) and Histogram 
Gradient Boosting (HGB). DT displayed the best performance 
with an accuracy score of 73% and F1 score of 0.49 with a time 
cost of 28.22 seconds.  

Keywords—5G, Artificial Intelligence, Cybersecurity, 
Internet-of-Things, Wireless Network 

I. INTRODUCTION  

As technology advances throughout the years, the world 
is transitioning into the fifth generation (5G) of wireless 
mobile communication technology.  According to [1], a 
significant increase in number of devices in the network has 
been recorded and mobile traffic is expected to increase 
about 27% from the year 2019 to 2025 annually. With the 
increase of tremendous amount of data traffic, previous 
mobile communication technologies such as fourth 
generation/ Long Term Evolution (4G/4G LTE) are not 
capable of handling such requirements. 

5G wireless systems not only provide traditional voice 
and data communication, but also it introduces new uses 
cases and industrial applications. With the roll out of 5G 
technology, high speed connectivity within a household 
allows electronic appliances to be connected and for devices 
to communicate between another which is a major 

application called Smart Homes. Additionally, another 
popular application of Internet of Things (IoT) in vehicular 
communications also known as Vehicular Networks can 
prevent accidents and collisions by transmitting information 
between cars through sensors [2]. 

New technologies, use cases and applications introduces 
new security issues and vulnerabilities which are critical to 
resolve. IoT devices [16], [17] are normally dependent on the 
internet and more devices are interconnected throughout the 
years especially with 5G. There exists various security and 
privacy issues as majority of IoT devices could store 
personal information of users such as wearables like smart 
watches potentially storing the location information and 
smart home devices being hacked where cyber attackers can 
spy or monitor on user’s activities.  

Moreover, many new advanced radio schemes that are 
realistic over 5G networks, which one of them are 5G New 
Radio (NR) developed by the 3GPP.  The new technologies 
introduce new uses cases such as Device to Device (D2D), 
Machine to Machine (M2M), Internet of Vehicles (IoV) and 
Internet of Things (IoT) [2]. 5G is developed in a way to 
better implement the IoT with lower latency and energy 
consumption. 

5G wireless systems not only provide traditional voice 
and data communication, but also it introduces new uses 
cases and industrial applications. The application of IoT and 
5G is transforming the technological era and is used in 
broadly in different fields of intelligent applications. With 
the roll out of 5G technology, high speed connectivity within 
a household allows electronic appliances to be connected and 
for devices to communicate between another which is a 
major application called Smart Homes. Additionally, another 
popular application of IoT in vehicular communications also 
known as Vehicular Networks can prevent accidents and 
collisions by transmitting information between cars through 
sensors [2]. 

Furthermore, the obtained  data produced by IoT devices 
are enormous in numbers and they have unique 
characteristics where traditional security approaches such as 
network segmentation may not be able to tackle the security 
of such devices [3]. Another concern is the resource-



constraint requirements of IoT (low energy consumption and 
limited computational power) that makes it challenging for 
the adoption of advanced and complex security technologies. 
Traditional security mechanisms often involve encryption 
techniques and methods with the use of complex 
mathematical operations which requires powerful 
computation. Due to such computational limitations, there is 
a need of optimized security solutions that can accommodate 
these requirements. 

The prevalent deployment of massive numbers of devices 
in 5G networks increases the vulnerability footprint and 
given that IoT devices are commonly resource-constrained, it 
may not be viable to utilize advanced and complex security 
mechanisms that are computationally expensive to counter 
notable attacks. The objectives of this paper are as stated 
below: 

i. To review and conduct concise research on existing 
security approaches and analyse the challenges of 
each approach. 

ii. To investigate the threats and attacks faced by 5G 
IoT.  

iii. To mitigate against threats and attacks faced using 
Machine Learning (ML) techniques 

iv. To evaluate the performance metrics and the results 
using open-source tools.  

The aim of this work is to utilize various ML models to 
detect network anomalies. Based on the analysed results, the 
ML model which has the most optimal performance and least 
computational cost required can be used in real world 
network anomaly detection systems. 

II. METHODOLOGY 

Fig.1 below shows a generic system architecture of a 
network anomaly detection system. Typically, network 
anomaly detection systems employ ML along with Artificial 
Intelligence (AI) to detect abnormal network behaviours or 
concealed threats such as sophisticated malware. Network 
attributes such as traffic intensity, protocols, bandwidth, 
source and destination Internet Protocol (IP) addresses, 
timestamps and more are tracked by these systems during 
real-time. An alert will be triggered in the event of malicious 
or abnormal network traffic being detected and this will 
notify relevant network security personnel to perform further 
mitigation. Therefore, the ML model with the best 
performance and least time cost in this study will be selected 
and be used to identify network anomalies for future works 
based on real network traffic captured.  

 
Fig. 1 Generic Anomaly Detection System 

 
Supervised and Unsupervised learning are the two 

primary ML methods for anomaly detection however, based 
on the availability of a labelled dataset – IoT-23, Supervised 
ML will be used in this paper instead. The ML algorithms 
utilized are Decision Trees (DT), Random Forest (RF), K-
nearest neighbours (KNN), Naïve Bayes (NB) and 
Histogram Gradient Boosting (HGB) which is an ensemble 
ML algorithm. Below displays a generic overview of how 
the methodology will be carried out and evaluated using the 
different types of ML models in this paper as shown in Fig.2. 

 
Fig. 2 Methodology Overview 

 
The pre-processed dataset was obtained from an online 

community for data science and ML called Kaggle but it is 
based on the IoT-23 dataset obtained from [4]. The IoT-23 
dataset contains 23 captures of diverse IoT network traffic 
from infected devices and was produced in the year 2020. 
Smart home devices were used during the capture and those 
devices are: Smart Low Emitting Diode (LED) Lamp 
(Philips HUE), Smart door lock (Somfy) and Amazon Echo 
home intelligent personal assistant, also known as “Alexa” in 
the modern days. The labels of the dataset were generated by 
the authors in [4] from the Stratosphere laboratory based on 
their manual evaluation of the network. The IoT-23 dataset 
was selected as it is a popular dataset which was publicly 
made available, and it comprises of numerous IoT traffic. 
Moreover, the dataset contains different types of common 
IoT threats and malware attacks which are relevant to this 



study such as Botnets (Mirai, Torii, Okiru) and DoS attacks 
which makes it a good fit for simulating and accessing the 
performance of different ML models. 

However, the pre-processed version of the dataset 
obtained from Kaggle will be used instead. The reason is 
that, due to the constraints of current hardware settings for 
carrying out this project, loading all the 23 .pcap files from 
the original site and combining it into a .csv file requires 
complex work thus it would require more computational time 
whereas training, testing, and plotting necessary visual 
representation of the results of different ML models already 
consumes a significant amount of computational time. Thus, 
by using the pre-processed version of the IoT-23 dataset 
obtained from Kaggle, computational time can be saved, and 
it can be spent more on training the models, perform testing 
and plotting required visual representation for comparison 
instead. 

The pre-processed version is already a .csv file which is 
extracted from the actual IoT-23 dataset, but the sampling 
numbers differ from the actual dataset thus the amount of 
data will vary. The number of labels for the pre-processed 
version of the dataset is shown in Table 1.  

TABLE 1 Number of attacks of the pre-processed version of IoT23 dataset 
from Kaggle 

Label Number 

Benign 3389036 

C&C- Heartbeat 1313012 

C&C- Torii 688812 

DDoS 638506 

Okiru 15286 

Okiru-attack 1332 

Attack 538 

C&C-File Download 46 

FileDownload 30 

C&C 13 

C&C-Mirai 8 

C&C-HeartBeat-
FileDownload 

3 

PartOfAHorizontalPortScan 1 

 

The last step of data preparation is to split the data into 
training and testing to obtain a representation of the data 
points. The random state will be set to 42 so that the results 
will be the same each time it runs whereas the training and 
testing data will be divided to a 70:30 ratio split. The .csv file 
comprises of 6,046,623 entries in total. 

Five ML models which are RF, DT, KNN, NB and HGB 
were selected to test and train on the IoT-23 dataset. Several 
libraries were used in this methodology and those are Scikit-
learn, Pandas, numpy, matplotlib and seaborn. Scikit-Learn 
is a library in Python which provides a variety of tools used 
for ML tasks such as classification, clustering, and 
regression. Classification will be used to classify benign 
network behaviour amongst abnormal network behaviour. 
Meanwhile for the visualisation of results, it will be done 
using the matplotlib and seaborn libraries. The process is 
described as shown Fig. 3. 

A. Process Overview 

 Import the classification models (RF, SVM, DT, 
KNN, HGB) from scikit-learn library. 

 Instantiate and fit the models upon the training data. 

 Use the model’s method to predict test data and 
determine model accuracy using Scikit-Learn’s 
model.score () method instead of manually 
calculating the mean absolute error (mae). This 
method calculates the R^2 value.  

 Determine the performance metrics by importing the 
classification_report() method from Scikit-Learn. 
This displays the relevant metrics to assess the 
effectiveness of each model.   

 To visualise the performance of each classification 
model, the libraries: numpy, seaborn, matplotlib and 
confusion_matrix from Scikit-Learn were used. 

 
Fig. 3 Process Overview 

B. Supervised Learning 

The Supervised Learning is a learning method in ML 
where the models make use of labelled data to train on and 
make predictions. It can be categorized into two types which 
are classification and regression. In this paper, multiclass 
classification is used as there are more than two classes 
present. Five supervised learning models were chosen to be 
analysed upon the IoT-23 dataset.  Due to limitations of 
current hardware settings, cross validation is not performed 
to prevent overfitting as the dataset is very large and it can be 
very computationally expensive. 

1) Random Forest (RF) 
Random Forest utilizes numerous DT to make decisions, 
and it is a flexible algorithm. It is typically applied in 
classification scenarios like fraud detection, anomaly 
detection and Distributed Denial of Services (DDoS) 
detection [6]. Based on [7], RF is proven to be advantageous 
in detecting anomalous network attacks. The algorithm 
tends to have a higher accuracy than DT however the trade-
off is it requires more computation power and requires more 
time to train especially on a large dataset. Table 2 below 
depicts the hyperparameters configured in the RF Classifier: 
 

TABLE 2 Parameters Configured for Random Forest 
Parameters Explanation/Justification 

n_estimators = 100 Refers to the number of trees. The 
default value 100 was used as any value 
more than that would cause the model to 



take longer time to train.  

 
2) Decision Trees (DT) 
Decision Trees is one of the fundamental supervised 

learning algorithms that utilizes a tree-like framework and 
divide the data into smaller samples to make decisions. The 
advantages of DT are that it is simple and easy to 
understand, and it is relatively faster in making predictions 
than other algorithms like RF. However, the downside is it 
is susceptible to overfitting. According to [6] and [7], DT is 
commonly utilized in Intrusion Detection and DDoS 
detection as a classifier. Random Search was initially 
performed on DT to optimize the hyperparameter as it is less 
computationally intensive than when GridSearch was 
performed. The best estimator and score were printed out 
based on figure 4, however the time cost based on using the 
parameters after performing Random Search was slightly 
higher than without performing Random Search as shown in 
Table 3. 
 

 
Fig. 4 Decision Tree (Random Search) 

 
TABLE 3 Decision Trees (Random Search) 

 With Random Search Without Random 
Search 

Accuracy 0.73 

Time Cost 61.63 seconds 25.86 seconds  

 
According to the source [8], performing random search 

does not assure that the best hyperparameters will be found. 
Thus, this paper moves forward without Random Search and 
the results for this algorithm will be displayed without 
making any adjustments towards the hyperparameters. 
 

3) K-nearest neighbours (KNN) 
KNN is perceived as one of the least complex ML 

algorithms in the supervised learning group. The algorithm 
presumes the similarity of two close data points tend to have 
the same label or class. The advantage of KNN is it is easy 
to execute, nevertheless the downside is it requires 
significant computational cost, and it can be time consuming 
due to calculation of the distance among data points. 
Moreover, the model is susceptible to overfitting. KNN uses 
a metric to calculate the distance and one of its default 
metrics is the Euclidean distance. 

According to [6] and [7], the common applications of 
KNN in security are Intrusion prevention and detection, 
anomaly detection, pattern recognition and ransomware 
detection in IoT. Gridsearch to find the optimal tuning 
parameters was not performed in this model as it is too 
computationally expensive for current hardware settings. 
The following table 4 presents the hyperparameters 
configured in the KNN classifier: 

TABLE 4 Parameters configured for K-Nearest Neighbors 
Parameters Explanation/Justification 

n_neighbors = 5 Refers to the value k, the default 
value 5 was used as the higher the 
value of k, the less accurate the model 
will be. 

Metric = ’minkowski’ Refers to the distance metric which in 
this case is derived from the 
Euclidean distance.  

P = 2 Refers to the parameter for the 
distance metric. 

 
4) Naïve Bayes (NB)  
Naïve Bayes is a simple and commonly used algorithm 

especially for large datasets. It makes fast predictions and 
has the assumption that the features in a class are 
independent of each other. NB is built on the Bayes theorem 
which makes it a probabilistic classifier. The advantages of 
this algorithm are it is fast and simple and is efficient 
towards multi class classification. Nevertheless, the 
drawback is the assumption of features are independent 
which may lead to misclassifications affecting the accuracy 
in making correct predictions. According to [6], this 
algorithm is often deployed in Intrusion detection at the 
network layer. The default parameters were used in this 
model.  

5) Histogram Gradient Boosting (HGB)  
Histogram Gradient Boosting (HGB) is an ensemble ML 

algorithm just like the well-known AdaBoost, but it relies 
on histograms & integer-based data structures unlike 
traditional boosting methods which uses organized 
continuous values [9]. This allows HGB to execute faster 
than traditional gradient boosting methods. However, it can 
be computationally expensive to train on large datasets. 
Table 5 below represents the hyperparameters configured in 
the HGB classifier: 
 

TABLE 5 Parameters configured for Histogram Gradient Boosting 
Parameters Explanation/Justification 

learning_rate = 0.1 Refers to the parameter that manages the steps of 
the model in updating its predictions. A lower 
learning rate will slow down the model’s 
predictions whereas a higher learning rate might 
cause the model to overfit.  

max_depth = 5 Refers to the depth of the trees that can be built. A 
higher rate may cause the model to be susceptible 
to overfitting, but a lower rate may decrease the 
accuracy. 

III. ANALYSIS OF RESULTS 

In this section, the performance and results acquired for 
each ML model used in this paper will be discussed and 
compared to derive the ML model with the best performance 
with the least computational time cost. This section is then 
followed by a comparison with the results of related works 
reviewed in this study. The algorithm: Support Vector 
Machine (SVM) was initially trained and tested based on the 
IoT-23 dataset. However, this paper moves on without the 
results of SVM due to the expensive computation cost it has 
with a time cost of 19.08 hours and no results were 
generated. The current hardware settings and environment 
could not operate beyond the time limit thus the result 



comparison for SVM will be carried out in future works 
where better hardware settings will be used. The figure 
below depicts the time cost when generating results for 
SVM. 

 
Fig. 5 Computation time for SVM 

 
Below Tables 6-11 display the classification reports 

generated for the 5 ML models used in testing. An analysis 
of results will be given, followed by a comparison of results 
for the classification models used. 
 

TABLE 6 Classification Report 1: Random Forest 
Metric Precision Recall F1-score Support 

Accuracy - - 0.73 1813987 

Macro 
average 

0.65 0.46 0.48 1813987 

Weighted 
average  

0.74 0.73 0.65 1813987 

 
TABLE 7 Classification Report 2: Decision Trees 

Metric Precision Recall F1-score Support 

Accuracy - - 0.73 1813987 

Macro 
average 

0.65 0.48 0.49 1813987 

Weighted 
average  

0.74 0.73 0.65 1813987 

 
TABLE 8 Classification Report 3: K-nearest neighbours 

Metric Precision Recall F1-score Support 

Accuracy - - 0.65 1813987 

Macro 
average 

0.32 0.30 0.22 1813987 

Weighted 
average  

0.57 0.65 0.53 1813987 

 
TABLE 9 Classification Report 4: Naïve Bayes 

Metric Precision Recall F1-score Support 

Accuracy - - 0.65 1813987 

Macro 
average 

0.32 0.30 0.22 1813987 

Weighted 
average  

0.57 0.65 0.53 1813987 

 
TABLE 10 Classification Report 5: Histogram Gradient Boosting 

Metric Precision Recall F1-score Support 

Accuracy - - 0.71 1813987 

Macro 
average 

0.23 0.20 0.20 1813987 

Weighted 
average  

0.65 0.71 0.64 1813987 

 
TABLE 11 Results obtained for each model 

ML Model Accuracy Time Cost (seconds) 

Random Forest 0.7325 344.09 

Decision Trees 0.7325 28.22 

KNN 0.7323 27933.61 

Naïve Bayes 0.6493 23.49 

Histogram Gradient 
Boosting 

0.7135 137.83 

 
According to Table 11 shown above, the algorithm with 

the highest accuracy cannot be derived based on the results 
generated as the three algorithms: Random Forest (RF), 
Decision Trees (DT) and K-nearest neighbours (KNN) share 
the same accuracy of 0.73 with KNN’s decimal notation 
slightly lower compared to the other two classification 
models. The presumption is the three models are overfitting 
which causes them having the same accuracy. Cross 
validation needs to be performed to discover and investigate 
if the models are overfitting. Due to the limitations of current 
hardware settings, it is not performed for all the five models 
as it is computationally expensive especially for large 
datasets. 

However, the three algorithms have distinct time costs 
where DT has the least time cost with 28.22 seconds. The 
algorithm with the highest computational time cost of all 
models is KNN with 27933.61 seconds which is equivalent 
to 7.7 hours. According to [10], KNN’s computational 
complexity relies on the size of the dataset which in this case 
the dataset used in this project has 6046623 entries in total. 
Another factor that might affect the time cost is the value of 
k; where the higher the k value, the higher the computational 
time. A smaller k value would be more appropriate for a 
large dataset however it is susceptible to overfitting therefore 
the default k value 5 was used instead. 

Random Forest (RF) has a time cost of 344.09 seconds 
which is approximately 5.7 minutes. The time cost for RF is 
higher than DT, however it is lower than KNN. HGB shows 
an accuracy of 0.71 which is the second highest in this study. 
HGB has a time cost of 137.83 seconds which is lower than 
RF and KNN. NB has the lowest accuracy compared to the 
other algorithms in this study with an accuracy of 0.65. 
Nevertheless, it has the least time cost of all the algorithms 
with a time cost of 23.49 seconds. As discussed in Section 
3.4, NB assumes that the features are independent while the 
rest of the models used in this paper do not make this 
assumption. This factor could lead to NB being less accurate 
but faster to train. In the context of this analysis, DT presents 
the highest accuracy and has the lowest execution time 
among the other classification models tested in this study.  

Apart from the accuracy metric to evaluate the 
performance of the classification models, the metrics 



Precision, Recall, F1-score, and Support are significant as 
well in comprehending the trade-offs between 
mispredictions: false negatives and false positives. The 
accuracy metric can be misleading as it only displays the 
percentage of correctly predicted classes which disregards 
mispredictions which is essential to understand the 
effectiveness of the model. The dataset is considered to be 
imbalanced as the support score for some classes are notably 
lower than the score for other different classes. Figure 6 
below depicts a full classification report for one of the ML 
models used in this analysis.  

The above report indicates that the model is performing 
quite well towards the majority classes 
(PartOfAHorizontalScan, DDoS, Benign) with higher 
precision and recall scores. Nevertheless, the classification 
model is not performing too well on some of the minority 
classes (C&C-HeartBeat-FileDownload, C&C-Torii). 
Moreover, there are 0 values for F1-socre, precision, recall 
for the classes: C&C- Mirai & Okiru-Attack; 0 values are 
also present for recall and F1-score of the class: Okiru. This 
denotes that the dataset is possibly imbalanced. 

 
Fig. 6 Full Classification Report: Decision Trees 

 
As the dataset is imbalanced, Macro Average is more 

preferred to evaluate the classification models’ 
performances. The reason is that Macro Average treats all 
classes as uniformly important to evaluate the performance 
of the model. In contrast, Micro Average (accuracy) provides 
equal importance to each class where in the case of an 
imbalanced dataset, classes with higher observations will 
greatly affect the results [11]. According to multiple sources 
such as [11], [12], and [7], Macro Average scores are 
preferred for imbalanced datasets as it will indicate the 
model’s true performance even though the classes are 
skewed. Macro average scores are the unbiased mean of the 
performance metric scores (Precision, Recall, F1-score) 
calculated for each class [12]. The Macro Average of these 
performance metrics will be compared and evaluated instead 
of the individual performance metric scores for each class.  

The algorithm which has the highest Macro precision 
score is KNN with a macro score of 0.73 in which refers to 
the predictions that were correctly identified. The Macro 
Precision scores for RF and DT both have the same score of 
0.65. NB has a Macro precision score of 0.32 whereas HGB 
has the least score of all algorithms with a score of 0.23. 
Moreover, DT has the highest Macro Recall score of 0.48 
where this score refers to as the positive instances the 
classifier can identify. KNN shares a close Macro Recall 
score with RF with scores of 0.47 and 0.45 correspondingly. 
HGB has the least score as well for Macro recall score with a 
score of 0.20 whereas NB has a score of 0.30.  

In the context of this analysis, the Macro F1-score will be 
more focused on to evaluate the performance of each 
classification model as it considers both the two metrics: 
Precision and Recall. The reason is that, both false positives 
and false negatives are critical when detecting network 
anomalies. For instance, regarding false positives, incorrectly 
identifying benign or authorized network activity as 
anomalous or malicious may result in unnecessary 
interruptions such as segregating the infected IoT device 
from the network. Moreover, pertinent to false negatives, 
unable to identify or predict network anomalies and 
malicious network activities when in fact is present may 
cause malicious attackers gaining unauthorized access to IoT 
devices such as compromising the devices to launch further 
attacks such as DoS/DDoS. Additionally, the Macro F1-
score also provides a comprehensive measure of the 
classification model’s performance than just the accuracy 
metric.  

A higher Macro F1-score demonstrates that the 
classification model is performing well. Both DT and KNN 
have a Macro F1-score of 0.49 which is the highest among 
the other classification models in this study. RF has a score 
of 0.47 making it the second highest whereas HGB and NB 
have a similar score of 0.20 and 0.22 respectively, which is 
the lowest in this study. The factor that might cause a low 
score and poor performance of these two models is the 
imbalance of classes present in the dataset which causes it to 
be biased towards the majority class. Moreover, another 
factor is that the parameters of the models are not tuned 
properly. 

In comparison with the accuracy score, both KNN and 
DT have the highest accuracy with a score of 0.73 and macro 
average F1 score of 0.49. This indicates that these two 
classification models performed better than the rest of the 
models in this study. However, this also implies that the two 
model’s performance is poor in predicting on the minority 
classes as the difference between the two-performance 
metrics: accuracy and Macro F1-score are notably large. 
Further interpretation on the performances will be done by 
evaluating the confusion matrices of each classification 
model.  

A summary table 12 of the count of correctly identified 
classes by each model are as presented below.  

TABLE 12 Summary results of confusion matrix 
 RF DT KNN NB HGB 
Attack 150 146 145 6 0 

Benign 156673 156675 156702 5994 150968 

C&C 527 528 519 472 483 
C&C-
FileDownload 

8 7 10 8 0 

C&C-
HeartBeat  

128 128 131 135 0 

C&C-
HeartBeat-
FileDownload 

1 1 1 1 0 

C&C-Mirai 0 0 0 0 0 

C&C-Torii 2 2 1 0 0 

DDoS 154110 154112 154211 154094 154084 
FileDownload 3 4 3 2 0 

Okiru 155 155 193 0 7 

Okiru-Attack 0 0 0 0 0 
PartOfA 
Horizontal 

1017070 1017066 1016614 1017112 988884 



PortScan 

Performance 
Ranking 

Third Second First Fourth Last 

 

Intriguingly, none of the ML models are able classify the 
C&C- Mirai and Okiru-Attack class. This could be due to the 
fact that there is only 1 occurrence of that class in the entire 
dataset. Similarly with the C&C-HeartBeat-FileDownload 
class, however, some models managed to classify and 
display some results. For the majority classes such as 
Benign, DDoS, Okiru, and PartOfAHorizontalPortScan 
class, the five ML models are able to classify most of them 
which indicates the models have problems in classifying the 
minority classes because of the proportion in the dataset. 
Moreover, there exists a large number of misclassifications 
for the Okiru and C&C class for all ML models used in this 
study. An assumption is that for the captures of these attacks 
might not have the features that can properly differentiate 
them from the others thus it categorizes it as the class that 
resembles it the most [13].  

According to the comparisons and analysis made for 
Macro Average scores of the performance: Precision, Recall 
and F1 score, the comparison of the accuracy metrics and 
computational time costs of each classification model and the 
generic interpretation of confusion matrices, it is evident that 
the model with the most exceptional performance along with 
the least computational time cost is DT. Although KNN 
displayed better performance in classifying the classes 
accurately than the rest of the models but the computational 
cost of KNN is 27933.61 (approximately 7.7 hours). 
Conversely, DT displayed the 2nd best performance, and its 
performance is similar to of KNN but with a significantly 
lower computational time cost of 28.22 seconds.  

This section compares the performance metrics obtained 
in this paper against related works using similar models on 
the same dataset (IoT-23). Two of the authors mentioned in 
this section [13] and [14] did not include computational time 
costs for each model in their study, which is an important 
metric in the context of IoT devices and there is no method 
in identifying how computationally fast their testing is as the 
devices usually have resource constraints requirements. The 
accuracy metric will be used for comparison against related 
works as majority of the papers reviewed in this study do not 
provide sufficient information about the Macro Average 
scores. HGB is not discussed in this section as the related 
works using the same dataset did not incorporate HGB in 
their work but instead incorporated a different ensemble 
learning method: AdaBoost. Thus, the remaining four 
models will be discussed instead.  

TABLE 13 Result comparison with related works: [13], [14] and [15] 
Model [paper] Accuracy 

RF [paper 13] 1.00 

RF [paper 14] 0.96 

RF [this paper] 0.73 

NB [paper 13]  0.23 

NB [paper 14] 0.63 

NB [paper 15] 0.30 

NB [this paper] 0.65 

KNN [paper 14] 0.65 

KNN [this paper] 0.73 

DT [paper 14] 0.76 

DT [paper 15] 0.73 

DT [this paper] 0.73 

 

Based on related works reviewed using the same dataset 
– IoT-23, Stoain et.al [13] obtained an accuracy of 1.00 for 
RF where the authors segregated the dataset into four parts of 
the same size and the accuracy was obtained from each 
segregated parts which might be the cause of obtaining a 
very high accuracy. Piragash et. al. [14] utilized the same 
ML models in their work on the same dataset as well where 
the accuracy score, they acquired for RF is 0.96. During the 
data pre-processing phase, the authors [14] mentioned that 
they omitted several file captures in which not all file 
captures were converted to a .csv which makes their dataset 
smaller with fewer rows. In comparison to this study, the 
accuracy score obtained for RF is 0.73 which is lower than 
the two papers. The reason for that could be because the pre-
processed .csv dataset obtained from Kaggle has 6,046,623 
records which is noticeably larger than the two papers [13] & 
[14].  

Stoain et.al [13] obtained an accuracy score of 0.23 for 
NB which is the lowest compared to other related works and 
the results in this study. Yue et.al. [15] obtained a score of 
0.30 whereas Piragash et. al. [14] acquired an accuracy score 
of 0.63 which is similar with this study. This study obtained 
an accuracy score of 0.65 for NB. A possible assumption is 
that NB is usually more suited for large datasets, and it is 
prone to overfitting with limited data where [13] opted for 
the lighter version of the .pcap files. According to the authors 
[13], the lighter version does not contain complete captures 
whereas the authors of [15] stated that their combined .csv 
file has a total of 1,444,674 entries. In contrast to this study 
where there are a total of 6,046,623 records in the dataset 
used.  

Furthermore, Piragash et. al. [14] obtained an accuracy 
score of 0.65 where this study obtained a higher accuracy 
score of 0.73 for KNN. This could be because of the 
variation in data processing techniques or the selection of 
n_neighbours (K) which may affect the accuracy score. 
Piragash et. al. [14] did not provide a thorough description of 
methods involved in data processing or the value of 
parameters used when training the model. As for DT, Yue 
et.al. [15] acquired the same accuracy score as obtained in 
this study with a score of 0.73. In contrast, the authors of 
[14] achieved the highest accuracy score of 0.76 for DT. The 
possible reason that the accuracy score obtained in this study 
is lower than of [34] could be due to different data 
processing methods and hyperparameters tuning differences 
where no hyperparameters were tuned for Decision Trees in 
this study. Similarly, to the justification made above, 
Piragash et. al. [14] did not provide sufficient information 
about the parameters used in their analysis.  

As compared to the papers mentioned in this section, this 
paper provides a more detailed discussion of results and a 
concise explanation and possible assumptions that affect the 
results of each ML model. From the comparative discussion 
above, although the accuracy score of NB in this study is 
higher, it is evident that NB has the lowest accuracy 
compared to the other models. On the other hand, RF 



displayed the highest accuracy although this study achieved a 
lower result than the two papers. Nevertheless, the combined 
dataset obtained by the authors are not as large compared to 
the one obtained in this study which affect the results 
obtained. To sum up, the comparison with paper [13], [14] 
and [15] demonstrates that the results obtained in this study 
is precise.  

IV. CONCLUSION 

To conclude, out of the five ML models evaluated, DT 
presented the best performance along with a computational 
time cost of 28.22 seconds whereas HGB displayed the 
worst performance in the context of detecting and 
classifying network anomalies upon the IoT-23 dataset. 
Although NB has the least time cost generated in this study 
(23.49 seconds), its performance is not as substantial as DT. 
Additionally, the imbalance dataset is also a factor that 
affects the accuracy and performance of each model, 
causing it to be bias to the majority classes. The dataset used 
in this paper (IoT-23) does not perfectly represent 5G IoT 
scenarios and all of its encountered attacks.  Nevertheless, it 
still exhibits the effectiveness of the ML models in 
classifying anomalous network behavior to present a proof 
of concept for general anomaly detection that can be 
implemented in future works. The apparent limitation of this 
paper is the technical drawbacks of hardware settings. Cross 
validation and Hyperparameter tuning for all classification 
models were not performed due to limitations of current 
hardware settings, and it is computationally expensive 
especially for a large dataset like IoT-23. Moreover, the 
results for SVM could not be generated as the current 
hardware could not operate beyond the time limit. Thus, 
cross validation and hyperparameter tuning will be 
performed in future works with upgraded hardware to 
prevent overfitting and to improve the performance of the 
ML models. With upgraded hardware in future works, the 
results for SVM can be generated as well. 

V. REFERENCES 
[1] C. Suraci, S. Pizzi, A. Molinaro, A. Iera and G. Araniti, "An RSA-

based Algorithm for Secure D2D-aided Multicast Delivery of 
Multimedia Services," IEEE International Symposium on Broadband 
Multimedia Systems and Broadcasting (BMSB), pp. 1-6, 2021. 
Available: https://doi.org/10.1109/BMSB49480.2020.9379851 

[2] L. Chettri and R. Bera, "A Comprehensive Survey on Internet of 
Things (IoT) Towards 5G Wireless Systems," IEEE Internet of 
Things Journal, vol. 7, no. 1, pp. 16-32, 2020. Available: 
https://doi.org/10.1109/JIOT.2019.2948888 

[3] F. Hussain, R. Hussain, S. A. Hassan and E. Hossain, "Machine 
Learning in IoT Security: Current Solutions and Future Challenges," 
IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1686-

1721, 2020.  Available: 
https://doi.org/10.1109/COMST.2020.2986444 

[4] A. P. &. M. J. E. Sebastian Garcia, "IoT-23: A labeled dataset with 
malicious and benign IoT network traffic (Version 1.0.0) [Data set]," 
Zenodo, 2020. Available: http://doi.org/10.5281/zenodo.4743746R. 
Nicole, “Title of paper with only first word capitalized,” J. Name 
Stand. Abbrev., in press. 

[5] L. McNulty and V. G. Vassilakis, "IoT Botnets: Characteristics, 
Exploits, Attack Capabilities, and Targets," 13th International 
Symposium on Communication Systems, Networks and Digital 
Signal Processing, pp. 350-355, 2022. Available: 
http://dx.doi.org/10.1109/CSNDSP54353.2022.9908039 

[6] Tahsien, Syeda & Karimipour, Hadis & Spachos "Machine learning 
based solutions for security of Internet of Things (IoT): A survey," 
Journal of Network and Computer Applications, vol. 161, pp. 1084-
8045, 2020. Available: http://dx.doi.org/10.1016/j.jnca.2020.102630 

[7] P. Sharma, S.Jain, S.Gupta, V.Chamola "Role of Machine Learning 
and Deep Learning in Securing 5G-Driven Industrial IoT 
Applications," Ad Hoc Networks, vol. Volume 123, p. 102685, 2021. 
Available: https://doi.org/10.1016/j.adhoc.2021.102685 

[8] A. Bonnet, "Fine-tuning Models: Hyperparameter Optimization," 
Encord, 22 August 2023. [Online]. Available: 
https://encord.com/blog/fine-tuning-models-hyperparameter-
optimization/. [Accessed 10 September 2023]. 

[9] A. Pius, "A Faster Ensemble Model Method in Sklearn: Histogram-
Based Gradient Boosting," Medium, 22 September 2020. [Online]. 
Available: https://medium.com/chat-gpt-now-writes-all-my-articles/a-
faster-ensemble-model-method-in-sklearn-histogram-based-gradient-
boosting-7033ff170bc0. [Accessed 3 October 2023]. 

[10] T. LaViale, "Deep Dive on KNN: Understanding and Implementing 
the K-Nearest Neighbors Algorithm," Arize, 16 March 2023. 
[Online]. Available: https://arize.com/blog-course/knn-algorithm-k-
nearest-neighbor/. [Accessed 3 October 2023]. 

[11] A. M. Sefidian, "Understanding Micro, Macro, and Weighted 
Averages for Scikit-Learn metrics in multi-class classification with 
example," Sefidian Academy, [Online]. Available: 
https://iamirmasoud.com/2022/06/19/understanding-micro-macro-
and-weighted-averages-for-scikit-learn-metrics-in-multi-class-
classification-with-example/. [Accessed 4 October 2023]. 

[12] S. Allwright, "Micro vs Macro F1 score, what’s the difference?" 20 
July 2022. [Online]. Available: https://stephenallwright.com/micro-
vs-macro-f1-score/. [Accessed 4 October 2023]. 

[13] N. A. Stoain, "Machine Learning for anomaly detection in IoT 
networks: Malware analysis on the IoT-23 data set," 2020. Available: 
https://www.semanticscholar.org/paper/Machine-Learning-for-
Anomaly-Detection-in-IoT-
oStoian/a1dcd833360298a806c67e5622da56f6cfd1cfde 

[14] Piragash Maran, Timothy Tzen Vun Yap, Ji Jian Chin, Hu Ng, Vik 
Tor Goh, Thiam Yong Kuek, "Comparison of Machine Learning 
Models for IoT Malware Classification," Atlantis Press, pp. 15-28, 
2022. Available: https://doi.org/10.2991/978-94-6463-094-7_3 

[15] N. V. Yue Liang, "Machine Learning and Deep Learning Methods for 
Better Anomaly Detection in IoT-23 Dataset Cybersecurity," 2021. 

[16] A. Ghasempour, “Internet of Things in Smart Grid: Architecture, 
Applications, Services, Key Technologies, and Challenges,” 
Inventions Journal, vol. 4, no. 1, pp. 1-12, 
2019, https://doi.org/10.3390/inventions4010022. 

[17] “What is the IoT?,” https://www.ibm.com/topics/internet-of-things. 

 

 


