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Abstract—Deep learning techniques for speech enhancement
rely on training a deep neural network to process noisy speech,
regardless the gender of the speaker. However, research shows
that the speech of male and female stimulates different parts in
human brain, and that female speech requires more complex
analysis. This implies that different processing is applied on
the speech, based on the speaker gender. In this work, we
argue that male and female speeches have different features
that can help in the learning process of speech enhancement
deep neural networks if the training is performed on male and
female speech data, independently, and using two different deep
neural networks, specifically implemented for enhancing the clean
speech signal of the target gender. This work presents a gender-
specific speech enhancement architecture, which consists of a
front-end binary classifier to detect the speaker gender. Based on
the classifier decision, the noisy speech is enhanced using either a
male or female speech enhancement model. One-stage and two-
stage speech enhancement approaches are used to process male
and female speeches, respectively. The results reveal that gender-
specific speech enhancement has positive impact on the enhanced
speech by deep neural networks. Additionally, the developed
architecture achieved classifier accuracy 96.9% and 0.11 increase
in Covl speech quality metric for the test data, in comparison to
other best-performing networks.

Index Terms—Denoising autoencoders, deep learning, gender
recognition, signal processing, speech enhancement

I. INTRODUCTION

Removing background noise that accompanies the speech
signal is known as speech enhancement, and it is a common
signal processing technique that has lots of applications,
including mobile communications and Voice over Internet
Protocol (VoIP) [1].

The implementation of deep neural networks (DNNs) for
speech processing is showing a massive progression due to the
availability of huge datasets and deep learning libraries, which
has enabled the implementation of well-trained networks.
These DNNs generate enhanced speech of better quality and
intelligibility, in comparison to other speech enhancement
approaches [2], [3].

Despite the effectiveness of deep learning techniques in
mitigating background noise, some scenarios are still very
challenging for the DNNs to deal with. Examples of these
challenging scenarios include the ability to remove babble
noise with low speech distortion, and processing speech in
environments of high-level and diverse noise [4]. Although

deep learning techniques are data-driven, the DNN often
requires more information about the input data, to guide the
network during the learning process [5], [6]. This becomes
clear when investigating deep learning approaches for speech
enhancement, as it can be noticed that powerful speech en-
hancement models are those that better describe the clean
speech signal using the most important speech features. These
features facilitate the learning process of the non-linear noisy
to clean speech mapping function [7], [8].

Important speech features for network training include:
framing and windowing for time domain signal, Short-Time
Fourier Transform (STFT) for frequency domain signal, spec-
tral decomposition for wavelet domain signal, spectrogram
and cochleagram for image domain signal, Mel-Frequency
Cepstral Coefficients (MFCC) for cepstral domain signal [9].

Research shows that there are specific properties for male
and female speeches related to the different biological structure
of males and females [10], [11]. Among these differences, the
length and size of the vocal folds, where males usually have
longer and thicker vocal folds than females, resulting in lower
sound frequency and pitch for males [12].

Another interesting difference between male and female
speeches is the human brain response to them. A study [13] has
shown that male voices activate specific region in the brain;
while, female voices activate different and more complex re-
gions that are responsible for speech processing. An important
finding of the study is that this brain behaviour could not be
explained by the known speech features, such as frequency and
pitch, or the behavioural response of the study subjects. This
is because the study was performed on ”gender-ambiguous”
voices, defined as the range of fundamental frequencies in
which the speech of males and females overlaps [14].

In this paper, we argue that as long as the human brain pro-
cesses the speech of males and females differently, employing
two different DNNs for eliminating background noise from
speech based on speaker gender will result in better network
performance.

Fig. 1 clarifies the suggested idea, where a gender-specific
speech enhancement architecture is proposed, which first clas-
sifies the input noisy speech as male or female speech. After-
wards, the noisy speech is processed by one of two speech
enhancement models, trained on either male speech (network



a) or female speech (network b). Male speech is processed by
a Deep Encoder - Convolutional Autoencoder DEnoiser (DE-
CADE) model [15], shown in Fig. 2. While, female speech is
enhanced by a two-stage network, in which a Deep Denoising
Autoencoder network (DDAE) and DE-CADE models are
employed. Details about architecture implementation will be
described in Section III.

Fig. 1. Gender-specific speech enhancement architecture: a gender classifier,
a single stage speech enhancement model for male speech (a), and a two-stage
speech enhancement model for female speech (b)

This paper makes the following contributions:
• Showing speaker gender effect on the performance speech

enhancement DNNs
• Proposing a gender-specific network for speech enhance-

ment deep learning approach
The following sections are structured as follows. An ex-

planation is given to the research problem of investigation
in Section II; while, Section III illustrates the presented
gender-specific speech enhancement architecture. Datasets for
network training and testing are described in Section IV. The
obtained results are explained and discussed in Section V.
Paper conclusion is given in section VI.

II. PROBLEM STATEMENT

A. Male versus Female Speech Enhancement

As a way to analyse the learning process of speech enhance-
ment DNNs for male and female speeches, the single stage
DE-CADE frequency domain speech enhancement model [15]
was first tested using the Valentini test dataset [16], after
manually dividing the test set into male and female noisy
speech sets. Details about the dataset are presented in Section
IV. Perceptual Evaluation of Speech Quality (PESQ) [17] was
used for measuring generated speech quality. While, evaluating
the clarity of the output speech was performed using the Short-
Time Objective Intelligibility (STOI) [18].

The outcome of this analysis is shown in Fig. 3. PESQ
and STOI scores clearly show that the network generate better
estimate in the case of male speech, as both scores are higher
than the case of female speech. It should be noted here that the
pre-trained network has no bias to any gender, as the training
and testing sets have equal number of speakers for both
genders. Moreover, all the speech samples for both genders
were corrupted with the same noise environments at the same
noise level, Signal to Noise Ratio (SNR), which means that
the only factor affecting the results is the speaker gender.

To provide further evidence that the gender of the speaker
affects network performance, the frequency domain-based sin-
gle stage DE-CADE speech enhancement model was retrained
twice: one time using male speech samples only, and another
time using female speech samples only. The samples were
taken from the Valentini train set [16]. Fig 4 shows the training
Mean Square Error (MSE) loss curves in both cases, where the
loss in the case of male noisy speech training is significantly
lower than female noisy speech loss. This means that the
model was able to better understand male speech features,
and generated a closer estimate than that of the case of female
speech data.

This analysis proves that female speech is more complex
than male speech and requires more processing by the DNN,
same as the human brain behaviour reported in the literature.
Additionally, a speech enhancement model which improves
male noisy speech may not be suitable for enhancing female
noisy speech with the same performance. In other words, male
and female noisy speeches should be enhanced using two
separate and different DNNs.

B. The Proposed Gender-Specific Speech Enhancement Pro-
cedure

The following equation defines the input signal, y, to the
DNN. This signal is defined in Equation (1) as the additive
mixing of speech and noise signals (s and n):

y = s+ n (1)

The proposed speech enhancement architecture in this work
extracts more information about the input speech signal using a
binary classifier. This classifier acts as a first feature extraction
stage that identifies the input signal as either male speech, sm
or female speech sf . MFCCs features of the input noisy speech
were obtained, denoted by C. Equation (2) defines a Binary
Cross Entropy (BCE) loss function that the classifier uses, LC ,
defined as follows:

LC =
1

M

M∑
i=1

[
Zi log Ẑi + (1− Zi) log (1− Ẑi)

]
, (2)

where i denotes the sample index. M represents total sample
number. Z denotes the binary value of the target (0 for male
speaker and 1 for female speaker). Ẑ is the speaker gender,
estimated by the classifier.

Based on classifier’s decision, the input signal is then sent
to a single stage or two-stage speech enhancement model in
the case of male or female speech, respectively. Both models
operate in the frequency domain using signal spectrogram,
which can be obtained by applying STFT to y. This creates
a time-frequency form, Y(t,f), for the noisy speech, calculated
using the following equation:

Y (t, f) =
F−1∑
f=0

y(a+ t)h(a)e−j2πfa/F , (3)

where t and T represent the time frames and the total number
of frames, respectively. a denotes the time samples index.



Fig. 2. The DE-CADE speech enhancement network [15].

Fig. 3. PESQ and STOI scores for male and female enhanced speech from
the Valentini Voice Bank test set [16], using DE-CADE speech enhancement
model [15]

Fig. 4. Training loss curves for the DE-CADE speech enhancement model
[15], trained on male speech only (blue curve) and female speech only (red
curve). Vertical and horizontal axes represent the MSE and epoch number,
respectively.

All the implemented speech enhancement networks use time
frame of size 256 with 50% overlap. Windowing was applied
to the time frames using Hamming window function, denoted
as h. F is the total number of frequency bins. f is the frequency
bin index.

Spectrograms of the input samples were then calculated us-
ing the magnitude STFT |Y (t, f)|, so Equation (1) is redefined
by the below equation:

|Y (t, f)| = |S(t, f)|+ |N(t, f)|, (4)

where |S(t, f)| represents speech spectrogram, and |N(t, f)|
represents the spectrogram of the noise environment.

In the case that the classifier detects male speaker, the DE-
CADE speech enhancement model enhances the noisy speech,
to predict male clean speech spectrogram, |Ŝm(t, f)|, where:

|Ŝm(t, f)| = DE − CADE(|Y (t, f)|) (5)

If female speech was detected, two speech enhancement
networks process the noisy speech, using two-stage enhance-
ment approach. The first stage is a DDAE network and the
second stage is the DE-CADE network; details about networks
implantation will be given in Section III. The DDAE network
generates a first estimate to the spectrogram of the female
speech, |Ŝ1f (t, f)|, and then this estimate is concatenated with
the first noisy speech spectrogram, |Y (t, f)|, to create a second
input signal, |Y2(t, f)|.

The second-stage DE-CADE network performs further
denoising on |Y2(t, f)|, to generate the final estimate,
|Ŝ2f (t, f)|.

The estimated time speech signal is then recovered by
calculating the Inverse STFT (ISTFT). This procedure can be
described by the following equations.

|Ŝ1f (t, f)| = DDAE(|Y (t, f)|) (6)

|Y2(t, f)| = (|Y (t, f)|, |Ŝ1f (t, f)|), (7)

|Ŝ2f (t, f)| = DE − CADE(Y2(t, f)) (8)



III. GENDER-SPECIFIC SPEECH ENHANCEMENT
ARCHITECTURE

The architecture contains a binary classifier that detects
the gender of the speaker. Depending on the detected gender,
the input signal is then enhanced by one of two speech en-
hancement networks, trained to process either male or female
speech. The following subsections describe the structure of the
architecture in details.

A. Speaker Gender Classifier

The classifier network is shown in Fig. 5. First, feature
extraction is performed to get the MFFCs of the input noisy
speech. These features were then processed by three fully
connected layers, using 128 nodes in the first layer, 64 nodes
in the second, and 32 nodes in the third layer. A final fully
connected layer with sigmoid activation function and dropout
layer of rate 10% were used to generate the prediction. BCE is
the used loss function. Network training lasts for 100 epochs
using batch size equals 64.

Fig. 5. Speaker gender classifier deep neural network for noisy speech

B. Male Speech Enhancement Network

The DE-CADE speech enhancement network [15] was used
to process male noisy speech; network implementation is
presented in Fig. 2. Convolution layers are the main building
blocks of this network, in encoder-decoder structure. The
network has an encoder deeper than the decoder, to allow for
better feature extraction. The implementation also uses strided
and dilated convolution blocks, which improve the overall
performance. Furthermore, the encoder and decoder networks
are connected using skip connections, to prevent information
loss that is likely to happen in deep networks.

Training was performed in the frequency domain using
speech spectrograms as input feature. The used loss function is
MSE with Adam optimizer. The training lasts for 100 epochs
with 64 batch size.

C. Female Speech Enhancement Network

Two-stage speech enhancement architecture was used to
process noisy speech from female speakers, considering the
complexity of the input, proved in Section II.

The input signal is first enhanced using a DDAE network,
shown in Fig. 6, which was proven to be effective in noise re-
moval [19]. The encoder network has 2 dense layers. The first
and second layers use 2,048 and 500 hidden units, respectively.
The network has a middle bottleneck dense layer that uses 180
nodes. The decoder network also has 2 dense layers, but the
first and second layers use 500 and 2,048 nodes, respectively.
All the dense layers have ReLU activations. Dropout technique
was used to avoid training data overfitting, where two 10% rate
dropout layers were added, represented in brown colour in Fig.
6. The final output is predicted using a dense output layer with
linear activation function. Skip connections were added in the
implementation.

Fig. 6. The first stage female speech enhancement deep neural network, black
arrows represent skip connections

The estimated speech by the first DDAE speech enhance-
ment network was then enhanced by a second-stage frequency
domain-based DE-CADE architecture, to perform further de-
noising. The DDAE training lasts for 100 epochs; while DE-
CADE training lasts for 50 epochs. The batch size was 64
in both training processes. MSE with Adam optimizer was
utilized in the entire training process.

IV. DATASET

The Valentini dataset benchmark [16] was used in evaluating
the performance of our gender-specific speech enhancement
network and state of the art implementations. This dataset
includes 30 speakers, each reads around 400 sentences. All
the speakers are English native speakers, and only English
sentences are included in the dataset.



On the one hand, the speech audio samples in the train set
were mixed with 10 noise types, including a mix of real noise
and artificially generated noise. The real noise environments
were taken from the DEMAND dataset [20]. The additive
noise mixing was performed at four SNR levels: 0, 5, 10 and
15dB. The samples number in the train set is 11,572.

On the other hand, The noisy test set includes 5 noise
environments, selected from the DEMAND noise set and
different from the ones used in the train set. The testing data
has a total of 824 noisy speech samples.

We divided the training set into two sets equal in size: male
train set and female train set, to create the training data for
male and female speech enhancement models, respectively.
10% of the training speech samples was used for validation
during the training process.

More noisy speech samples were used in the training pro-
cess of the speaker gender classifier, to improve the accuracy.
A total of 2,000 speech samples for 4 males and 4 females
speakers were taken at random from the Librispeech corpus
[21], which has read English sentences, making around 1000
hours. These 2,000 clean speech samples were corrupted
by random additive mixing of different noise environments.
The noises were randomly selected from the DNS challenge
dataset [22]. These noisy samples were used in addition to
the Valentini train set, to create more challenging data for the
training process of the speaker gender classifier.

V. RESULTS AND DISCUSSION

The speaker gender classifier performance was evaluated
using the Valentini dataset, and it achieved 97.6% and 96.9%
accuracies for the train and test sets, respectively.

The proposed gender-specific speech enhancement model
was evaluated using six speech evaluation metrics. PESQ [17]
and STOI [18] scores were calculated for the enhanced speech;
scores definitions were given in Section II. To measure speech
distortion, Log Spectral Distortion (LSD) was used [23], where
low LSD value indicates low speech distortion.

The results also include the three composite mean opinion
score predictions, speech signal quality (Csig), residual noise
(Cbak), and overall quality of the enhanced speech (Covl) [24].
The three predictions generate a number that ranges from 0 to
5, and high values relate to better network performance.

Two experiments were carried out to evaluate gender-
specific speech enhancement. First, the performance of the
single-stage DE-CADE speech enhancement model was eval-
uated when trained on male and female speech, independently.
This model was then compared with the same speech enhance-
ment network, but when trained using both male and female
speech samples; half of the training data was used here to
perform fair comparison. This comparison shows the effect of
gender-specific training on the generated speech by the model.
Second, the presented gender-specific speech enhancement
architecture, demonstrated in Section III, was evaluated and
compared with well-known speech enhancement models.

Table I shows first experiment results, where DE −
CADEgs denotes independent male and female speeches
training of the frequency domain-based DE-CADE model.

In comparison to the original DE-CADE network, DE −
CADE, gender-specific training has a positive impact on
network performance with reference to all the measures,
expect the Cbak metric that is lower for the DE −CADEgs

network, indicating more residual noise.
Although Cbak score is higher for DE −CADE network,

the enhanced speech signal quality is better in the case of
DE−CADEgs, which means less speech distortion, resulting
in better overall enhanced speech quality, Covl.

Table II provides the Csig, Cbak, and Covl outputs for
the presented gender-specific architecture. The reported results
of high-performance speech enhancement models are also
included in the Table, for comparison.

The comparison includes 12 speech enhancement models:
a classical approach; Wiener filter approach [25], and 11 deep
learning models: [26]–[35], including the DE-CADE model
[15]. Noisy test set evaluation is also included in Table II.

Our architecture achieved the highest overall speech quality
score, Covl, in comparison to the other models. As discussed
above, although Koizumi et al. [35] architecture is the best-
performing in terms of removing background noise (the high-
est Cbak score), this degrades speech signal quality, Csig,
leading to lower Covl. This means that the estimated speech
by our architecture is of the best overall quality.

Referring to Table I and II, it can be concluded from
the results that gender-specific training improves the learning
process of speech enhancement DNNs, resulting in better
enhanced speech overall quality.

VI. CONCLUSION

This paper investigates the training of DNNs for speech en-
hancement on male and female speech samples, independently,
and using different deep learning models. The work is based
on research in the literature that shows that male and female
voices are processed differently by the human brain. A gender-
specific speech enhancement architecture was proposed, which
employs a binary classifier to detect the speaker gender, and
two speech enhancement modes, one for male noisy speech
and another for female noisy speech. The results show that
performing gender-specific training improves speech enhance-
ment DNNs training, leading to better performance when com-
paring our network to best-performing speech enhancement
models, using a variety of speech evaluation measures.

TABLE I
EFFECT OF GENDER-SPECIFIC SPEECH ENHANCEMENT ON DNN

PERFORMANCE



TABLE II
GENDER-SPECIFIC SPEECH ENHANCEMENT ARCHITECTURE

PERFORMANCE COMPARISON WITH THE REPORTED RESULTS OF OTHER
MODELS.
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