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Abstract
The federated learning has gained prominent attention as a collaborative
machine learning method, allowing multiple users to jointly train a shared
model without directly exchanging raw data. This research addresses the funda-
mental challenge of balancing data privacy and utility in distributed learning by
introducing an innovative hybrid methodology fusing differential privacy with
federated learning (HDP-FL). Throughmeticulous experimentation onEMNIST
and CIFAR-10 data sets, this hybrid approach yields substantial advancements,
showcasing a noteworthy 4.22% and up to 9.39% enhancement in model accu-
racy for EMNIST and CIFAR-10, respectively, compared to conventional feder-
ated learning methods. Our adjustments to parameters highlighted how noise
impacts privacy, showcasing the effectiveness of our hybrid DP approach in
striking a balance between privacy and accuracy. Assessments across diverse
FL techniques and client counts emphasized this trade-off, particularly in
non-IID data settings, where our hybrid method effectively countered accu-
racy declines. Comparative analyses against standard machine learning and
state-of-the-art FL approaches consistently showcased the superiority of our pro-
posedmodel, achieving impressive accuracies of 96.29% for EMNIST and 82.88%
for CIFAR-10. These insights offer a strategic approach to securely collaborate
and share knowledge among IoT devices without compromising data privacy,
ensuring efficient and reliable learning mechanisms across decentralized net-
works.
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1 INTRODUCTION

The exponential rise of data and the connection of items through networked sensors have driven recent advances in the
Internet of Things (IoT). The interchange and use of enormous volumes of data become essential for optimizing intel-
ligent services and goods as the IoT expands. The underlying problem, however, comes in protecting the privacy and
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security of user datawhile capitalizing on the potential insights obtained from these linked devices.1 An analysis of param-
eter variations between training and recording, including neural network training weights, has revealed that privacy
can still be compromised to some extent. Furthermore, the need for repetitive uploading and compilation of parameters
using a global model during federated learning poses a risk of exposing sensitive data, making it susceptible to model
inversion attacks2 that compromise personal information. In response to these formidable challenges, a new frontier has
emerged—Big Data Security, where data security engineers specialize in safeguarding data against cyber threats, be they
external or originating within an organization. In this paper, federated learning (FL) which enables numerous entities to
collaboratively train a model using their individual data without the need to exchange raw data, while facilitating coop-
erative model training across many IoT platforms. This study focuses on FL, an approach that enables numerous entities
to foster cooperative model training across various IoT platforms. Additionally, we delve into the concept of differential
privacy, a privacy-protection technique that obscures query responses to conceal specific data points and enables safe
knowledge sharing while maintaining data security and reliability across the cross-IoT infrastructure.

With the advancement in machine learning FL (FL),3 is revolutionized since it allows numerous clients to collabo-
rate on model training while maintaining data privacy through localized training. This approach efficiently lowers the
expenses and privacy hazards associated with centralizedmachine learning systems. By enabling several organizations to
work together onmodel improvementwithout exchanging sensitive data, FL radically changes themachine learning envi-
ronment. FL protects data privacy and advances machine learning capabilities by concentrating on training algorithms
on distinct local data sets owned by smart devices or platforms.

Differential privacy (DP) stands as a fundamental machine learning approach designed to safeguard data while pro-
tecting individual privacy. Its strength is in ensuring anonymity in outputs, protecting user-specific data, and enhancing
privacy without relying on trust assumptions. FL and DP have gained traction in the recent years, especially in the IoT
and healthcare industries. These combined strategies attempt to create a compromise between safeguarding privacy and
training efficacy. Still, protecting model privacy without sacrificing accuracy is a recurring problem. Earlier attempts to
apply DP to FL frequently involved adding noise to the training process and relying on a consistent degree of trust in the
central server.

Here, two questions come to consideration: Howmay DP protections in FL systems be adjusted to account for the var-
ious data properties across participating clients?4 Further, how can hybrid DP techniques that maximize privacy without
sacrificing model performance be smoothly integrated into FL models across a variety of data sets?5 To handle DP mea-
sures efficiently in FL, this research introduces detailed methods that are suited to the particular information properties
across participating clients.

The examination of two fundamental data sets—EMNIST andCIFAR-10—provides a useful perspective for investigat-
ing the complexities of privacy in intricate IoT configurations. These data sets provide critical understanding of the issues
and remedies necessary to protect privacy in real-world applications. The depiction of handwritten characters by EMNIST
allows for a closer investigation of privacy approaches in scenarios demanding exact identification without revealing
sensitive information. CIFAR-10, which covers image classification and object recognition, demonstrates the need of pro-
tecting privacy while working with visual data in networked IoT systems. These data sets are excellent resources that
highlight the practical applications of our suggestedmethodology. These are situations in whichmaintaining data privacy
is essential to maintaining the efficiency and accuracy of shared models in FL settings.

Our paper introduces a multi-level dynamic multi-participant privacy budget allocation mechanism that varies to
the convergence of the global model and the heterogeneity of participant data. This mechanism ensures data privacy
while minimizing noise injection and enhancing the model’s utility. To maximize utility, our proposed method includes
an active participant selection mechanism for each training iteration. This selection process relies on an appropriate
participant assessment approach that uses the 1-Wasserstein distance to quantitatively evaluate the effect of participant
data heterogeneity on the global accuracy. This method dynamically assigns the privacy budget across various entities
and iterations to adaptively balance privacy and utility. Furthermore, we implement a noise scaling approach that reduces
noise injection as the global model converges, leading to optimal accuracy at a local ideal point.

The paper makes noteworthy contributions in the following aspects:

1. We present a unique technique for secure and reliable cross-platform knowledge sharing by combining hybrid DP and
FL.

2. We address the challenge of balancing privacy and utility in FL situations, where data privacy preservation is crucial
while ensuring the trained model is accurate and useful.
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3. By incorporating an active participant selection mechanism in each training iteration based on a suitable participant
assessment technique that utilizes the 1-Wasserstein distance to quantitatively assess data heterogeneity’s impact on
the global model’s correctness, we adaptively balance privacy and utility.

4. Our method employs a noise scaling adjustment approach that reduces noise injection as the global model converges,
resulting in optimal accuracy at a local ideal point.

The paper is structured to offer a comprehensive exploration of proposed methodologies and their theoretical under-
pinnings. Section 2 meticulously reviews related work, encompassing DP, FL and the application of model compression
techniques within this framework. In Section 3, fundamental concepts are introduced, elucidating differential Pri-
vacy in federated learning contexts. Section 4, outlines the proposed approaches detailing their implementations and
functionalities. Section 5 undertakes a thorough extensive empirical evaluations derived from experiments, exploring
generalization within the proposed methods. Following this Section 6 encapsulates the paper by outlining essential dis-
coveries and proposing potential avenues for future research and advancements specificallywithin the domain ofHDP-FL
methodologies.

2 RELATED WORK

With the massive growth of data collection and storage, ensuring the security of data emerges as a paramount priority for
organizations. Although access restrictions and encryption are frequently employed to secure data, they have limitations
such as scalability and susceptibility to attacks. To address these issues, novel strategies that hybridizeDP and FL are used.
The FL technique improves data privacy by decentralizing the data and minimizing the likelihood of data breaches or
illegitimate access to confidential data. By utilizing the advantages of each strategy, HDP-FL has the efficacy to improvise
big data security. The issues of data sharing and privacy can be addressed via FL, and hybrid DP can offer further security
against data breaches.

Several research investigations evaluate and contrast the efficiency of differentially private FL methodologies. Liu
et al.6 find that a novel approach achieves higher privacy assurances while maintaining accuracy levels similar to
non-differentially private FL. Another study shows that hybrid strategies are more accurate than client-side techniques
when compared to both client-side and server-side DPmethods. Kairouz et al.7 compare DP in both client and server-side
using FL, showing that hybrid techniques can perform better than each strategy by itself. The authors demonstrate that
this method works well with big data sets and that great accuracy may be attained while maintaining anonymity.

To enhance the protection of large data, several research efforts look into ways to combine machine learning with
DP. A recent work by Bonawitz et al.8 proposes that machine learning on multipartite distributed data sets maintains
data privacy. Li et al.9 establish a novel framework for FL to make it more resistant to hostile assaults. Abdul Rahman
et al.10 offer a thorough analysis of FL, including its uses, difficulties, and privacy-preserving methods. For distributed
data fusion, Liu et al.11 provide a solid FL method to secure multiparty computing and combine DP.

With the rise in data collection and storage, organizations are increasingly concerned about data security and shar-
ing. However, access restrictions12 and encryption13 limitations have led to the development of novel strategies like FL
and deep learning. Singh and Shukla14 review different methods for maintaining privacy in machine learning, utilizing
homomorphic encryption, multiparty secure computation, and DP. Wang et al.15 provide a survey of FL with DP, focus-
ing on the challenges and recent developments in this field. Maeng et al.16 propose an incremental learning approach
that maintains privacy by exploiting local and global consistency, leveraging differential privacy to protect training data
privacy. Some studies17–19 demonstrate that a FL approach for healthcare outperforms other DP methods implementing
deep learning approaches. Hassan et al.20 suggest a system design for larger data set FL that uses a hybrid strategy to tackle
privacy concerns in this study. The authors show that this method works well with big data sets and that great accuracy
may be attained while maintaining anonymity. Nair et al.21 devise and execute a privacy-focused FL approach for analyz-
ing substantial IoT-generated data, employing edge computing. Their evaluation, performed on an authentic healthcare
data set, demonstrates the framework’s ability to maintain high accuracy levels while safeguarding data privacy.

The proposed work distinguishes itself from related studies through its innovative combination of DP and FL to
address the critical balance between data privacy andmodel accuracy. HDP-FL demonstrates superiority in scenarioswith
non-I.I.D. This is a significant departure frommany related works that often focus on scenarios with uniform data distri-
bution. The ability of HDP-FL tomaintain high accuracy in such non-I.I.D. settings set it apart from other methodologies.
Unlike some existing methods that primarily focus on achieving high accuracy with minimal consideration for privacy,
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HDP-FL excels inmaintaining strong accuracy while simultaneously enhancing privacy protection. It showcases ametic-
ulous balance between these two critical aspects in FL. The proposed work extensively delves into parameter tuning for
DP, thoroughly analyzing the impact of noise on both privacy loss and accuracy over various training rounds. This depth of
analysis contributes to a nuanced understanding of the trade-offs between privacy, noise levels, and model performance.
HDP-FL goes beyond theoretical propositions by conducting detailed comparative assessments against state-of-the-art
techniques andperforming scenario-based evaluations. This empirical validation provides concrete evidence of its efficacy
in real-world settings with diverse data distributions and privacy requirements.

3 PRELIMINARIES

We present hybrid differential privacy and its collaboration with federated learning for trustworthy cross-platform knowl-
edge exchange with a focus on noise scaling and dynamic privacy budget allocation mechanisms is figured out in
Figure 1.

HDP-FL introduces a novel method ensuring data privacy in collaborative machine learning environments. In this
system, users collaborate to train a sharedmachine-learning model through amain server. The unique approach involves
users sending gradients based on their trust level: those trusting the server directly share their local data, while cautious
users only send gradient direction information. Thismethod, while preserving privacy, allows securemodel updates with-
out the server gaining individual user insights. Encrypted data from cautious users is aggregated securely, preventing any
learning about specific users by the server. This iterative process of information sharing and model refinement continues
until convergence, ultimately delivering a reliable, privacy-preserving shared model for all users involved.

3.1 Hybrid differential privacy

One of the known methods for protecting in the privacy is DP which introduces random noise to data before release to
shield the identities of people. Thismethod is employed by FL to protect participant data privacy. The globalmodel’s accu-
racy, however, might be adversely impacted by the volume of added noise. Hence, a hybrid DP technique that dynamically

F IGURE 1 Architecture for HDP-FL.
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distributes the privacy budget among a number of participants and iterations is provided in Equation (1)

ε = ε0∕((i∕I)α), (1)

where i is the present iteration, I is the number of iterations, α is the noise scaling factor, ε0 is the initial privacy budget,
and ε is the privacy budget. To establish a relationship between privacy and utility, use the noise scaling adjustment
factor to modify the noise level at each iteration. Using this method, privacy is protected while the injected noise may be
greatly reduced and the model’s effectiveness increased. Moreover, it takes into account both global model convergence
and heterogeneous participant data.

Let Gj be the local model’s gradient for participant j. If that is done, the noise gradient G′
j prime may be computed

using Equation (2)

G′
j = Gj +N

(
0, ε2 ∗ Cj

)
, (2)

where Cj is the gradient sensitivity for participant j and Gaussian noise N
(
0, ε2 ∗ Cj

)
is introduced to the gradient with

variance ε2 ∗ Cj.
The Cj sensitivity is equated from Equation (3) as

Cj = maxx,yindj ||grad(f(a, b))||, (3)

where f(a, b) is the loss function and dj is the participant j local data set. More privacy protection is provided by smaller
sigma values, although updating the global model may be less accurate.

3.2 Federated learning

Without the requirement for centralized data storage, FL enables numerous parties to cooperatively train a global model.
After local training on individual devices, updates are consolidated to form a globalmodel upon completion of the training
process. Let fw(a) be a parameter in the neural network model L(W, a), where ‘a’ is the input data. With the huge data set
the d = a1, a, … , an objective is to learn the w*model that reduces the loss function. A data set d is divided intom distinct
d1, d2, … , dm, non-overlapping subsets in FL so that d =

⋃m
j=1dj. Each participant j’s local model is first populated with

the global model Wj, and each subset dj is maintained by a distinct participant.
A randomly chosen subset of the pt participants receive themost recent global modelWi during each training session.

Each participant j at pt initialises its local model Wj,i+1 using the current global model and trains it on the local subset
dj. The server receives the updated local model parameters and adds them to create the new global model Wi+1. Up to
convergence, this process is performed several times. The global model updateWi+1 in round i + 1may be calculated from
Equation (4)

Wi+1 =
∑

j∈pt

ni
n
Wj,i+1, (4)

where nj is the size of the participant j’s local data set, n is the total data set range, andWj,i+1 is the participant j’s updated
localmodel at round i+ 1. DPmay be added to the FL process to assure privacy protection. Thismay be done by computing
gradients locally, then before transferring them to the server, including the random noise to them. The privacy budget
parameter can be used to regulate the level of extra noise and the local model j’s noisy gradient update in round i + 1 is
provided in Equation (5) as,

̃Wj,i+1 = Wj,i − ηt
(
∇L

(
Wj,i, dj

)
+𝒩

(
0, σ2t K

))
, (5)

where ηt is the learning rate at round t, σ2t K = [2 log(1.25∕δ)]
[
εnj

]
is the added Gaussian noise variance to the gradient

variance, and𝒩
(
0, σ2t I

)
represents the Gaussian noise with mean 0 and variance σ2t .

Using a hybrid method to DP, noisy gradients are incorporated. This method assigns a privacy budget to each partic-
ipant depending on the heterogeneity of the data and the contribution of the model. In this work, we have successfully
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balanced privacy and usefulness by dynamically altering the allocation of the privacy budget, thereby enhancing the
useability and precision of the FL process.

4 PROPOSED METHOD

The HDP-FL methodology involves several key steps: First, gathering and preprocessing data from distributed sources
to ensure uniformity. Then, initializing the global model parameters and sharing them across clients. Clients perform
local training with their data sets while incorporating DP mechanisms to protect sensitive information. Next, the locally
updated model parameters are aggregated to update the global model. Continuous evaluation and monitoring of met-
rics such as accuracy occur to assess the model’s performance. This iterative process continues, improving the global
model’s accuracy while safeguarding data privacy, until predefined termination criteria are met. These steps emphasize
collaborative learning among distributed entities, aiming to balance model enhancement and privacy preservation.

4.1 1-Wasserstein distance

1-Wasserstein distance is used to estimate the distinction amid global and local models in FL. A mapping between two
probability distributions that reduces the overall transportation cost from one distribution to the other is known as an
optimum transportation plan. In many cases, cost is determined based on the distance metric such as the Euclidean
distance. For each participant, we determine out the 1-Wasserstein distance among the local and globalmodels. The effect
of data heterogeneity on the overall system is determined using the average distance.

The Wasserstein distance is determined by applying the Equation (6) below:

W(P,Q) = inf
γ∈Π(P,Q)

E(a,b)∼γ[|a − b|], (6)

P and Q are considered to be the probability distributions for both participant data sets, and Π(P,Q)is the collection of
joint distributions encompassing both P and Q as their marginal distributions.

Each j participant can add noise to their local model updates using the equation (7) to leverage hybrid DP in
conjunction with 1-Wasserstein distance:

̃θj = θj +𝒩
(
0, 2σ

2

njεp

)
, (7)

where nj is the count of remaining data points, ̃θj is signifies the noisy local model update for that participant, θj is the
update of true local model for participant j. The noise provided for the updating of remaining data points by controlling
the nj, σ is the noise standard deviation, and εp is the privacy parameter. The noisy local model’s updates may then be
collected by the central server using the equation (8):

̃θ =
∑N

j=1nj ̃θj
∑N

j=1nj
, (8)

where ̃θ is the noisy global model update, N is the total participants, and nj is the data points held by participant j.The
procedure is continued until convergence, initiating subsequent rounds of training with a noisy global model update.

The algorithm for 1-Wasserstein distance.

1. Set the θmodel parameter to zero
2. Do the following in each round t:

a. Randomly choose the C participants.
b. Every participant in j:
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i. Based on the input’s sensitivity, determine the privacy budget ϵj.
ii. Train a local model Mjwith DP using ϵi.

c. Determine the local model’s weighted average using the Wasserstein distance as the weight.
d. Include the weighted mean into the global model parameter theta.

3. Output of the final global model θ parameter.

Consider the CIFAR-10 data set, which contains thumbnail pictures of various objects, and the EMNIST data set,
which comprises of handwritten numbers. The global model using FL with coupled DP and 1-Wasserstein distance that
excels on both data sets despite data heterogeneity across users. Also, by incorporating noise to the local model updates,
it is possible to guarantee the confidentiality of the data for each participant. A potent strategy for examining how data
heterogeneity affects overall model performance in FL situations is themerge of DPmethodswith 1-Wasserstein distance.

4.2 Dynamic allocation

In privacy budget allocation technique, the overall privacy budget among all participants is considered according to the
degree of data heterogeneity. Based on the participant and data type, δ(h, pa) is used to calculate the degree of hetero-
geneity. Let pa be the participants count and H be the degrees of data heterogeneity. The overall privacy budget ε is
then distributed according to the degree of heterogeneity α

(
h, pa

)
to the level h, pa: of each participant is provided in

equation (9).

ε
(
h, pa

)
= α

(
h, pa

)
∕
∑

α
(
h, pb

)
∗ ε, (9)

where α (h, pa) is the allocation ratio for each participant at level h and ε is the overall privacy budget.
The allotment for the privacy budget for each level and participant is then set up in an array. An iterative calculation is

made for allocating the ratio, depending on the degree of heterogeneity for each level and participant. The privacy budget
allocation is then determined for each level and participant, returning a list of allocations. We can confirm that privacy
budgets are assigned depending on data and contributor heterogeneity by using this dynamic allocation mechanism. On
the EMNIST and CIFAR-10 data sets, this can increase the overall accuracy of the HDP-FL models.

4.3 A hybrid implementation of DP and FL

We integrate the proposed privacy-preserving method into the framework of FL on two different data sets. This hybrid
approach is termed as HDP-FL. A multi-level and multi-participant dynamic allocation technique of privacy budgets
are presented to decrease injection noise and effectively enhance model usability after examining the effect of data
heterogeneity on the accuracy of global models.

Algorithm for HDP-FL for secure and reliable cross-platform knowledge sharing

1. Randomly initialize global model parameters: W(0)
2. Divide the data set into non-IID subsets: D = D1,D2, … ,Dn
3. For every round i = 1, 2, 3, … ,R do:
a. Randomly choose a subset of participants: pat
b. For each participant j in the subset, do the following:

i. Evaluating a local model on a non-IID subset of data: Wj(t) = argminwEj(W)
ii. Calculate the gradients of the loss function and the model parameters for each local device from Equation (10).

Gj(t) = ∇Lj
(
Wj(t)

)
(10)
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iii. Add differential privacy noise to the gradient using a hybrid DP mechanism from Equation (11).

̂Gj(t) = Gj(t) +𝒩
(
0, σ2t K

)
(11)

iv. Give the server a noisy gradient.

c. Update the parameters of the global model gathering noisy gradients from all participants and using a learning
technique like federated averaging.

W(i + 1) = Agg
(
pai, ̂G1(t), ̂G2(t), … ,

̂G|pai|(t)
)

(12)

d. Continue through steps b through c until convergence or a predetermined set of local repetitions.

4. Examine the global model’s precision and privacy on the validation set.
5. Continue steps 3–4 until convergence or a predetermined number of rounds.

It also stratifies clients into tiers based on factors such as data sensitivity and privacy practices, allocating a more sub-
stantial budget to clients with greater privacy considerations. It dynamically adapts to changes in the client composition,
data characteristics, and model progression, ensuring equitable and practical budget distribution.

From Equation (12) the global model parameter is W(i) at D is the entire data set, the subset of participants is chosen
to take part in round t is called pai, the local model parameter for participant j in round t is Wj(i), the empirical risk of the
data subset for participant j is Ej(W). Random sampling can also be employed with certain constraints to ensure non-IID
characteristics. Constraints can be applied to the sampling process to prevent the formation of overly homogenous subsets,
promoting diversity in data distribution.

The local gradient of participant j’s data subset Gj(t), the noise gradient of the data set for participant j with respect
to the global model parameters at round t is represented by ̂Gj(t). The noise scaling parameter at round t is represented
by σt.𝒩

(
0, σ2t K

)
is Gaussian noise with mean 0 and covariance matrix sigma σ2t ∗ I. In order to update the global model

parameters at round t+ 1, the aggregation function Agg
(
pai, ̂G1(t), ̂G2(t), … ,

̂G|pai|(t)
)
aggregates the noisy gradients of

the participants in the subset pai. The loss function for the participant j’s data subset with regard to model parameter W
is Lj(W).

For the EMNIST and CIFAR-10 data sets, deep learning models may be trained using a hybrid differential
privacy-preserving and federated strategy. In thismethod, non-IID portions of the training data are separated, and a subset
of participants is randomly chosen to take part in each training cycle. Using the validation set, the noise scale parameter
sigma tis is dynamically modified to reduce accuracy loss while respecting privacy requirements. This ongoing iterative
approach persists until it attains convergence, typically extending over a predetermined set of cycles or iterations. In order
to confirm that themodel is correct and private, the globalmodel’s accuracy and privacy are evaluated in the validation set.

5 RESULTS

5.1 Experimental setup

In this study, we developed the algorithm in Python using the TensorFlow federated learning package. For assessment
purposes, two publicly available real-world data sets, namely EMNIST and CIFAR-10, were employed in this study. The
70 000 handwritten figures in grayscale found in the EMNIST data set are split into 60 000 training pictures and 10 000
test images. Each picture is 28 by 28 pixels and has the numbers 0 to 9 written on it. Ten categories of RGB color pictures
in the CIFAR-10 data set are split into 50 000 training images and 10 000 test images. There are 10 picture categories, each
with a 32× 32-pixel image, including aircraft, vehicle, bird, cat, deer, dog, frog, horse, and truck.

The experiments are processed on a Linux server with Intel® Xeon® CPU E5-2690 v4 processors clocked at 2.60GHz,
120GB of RAM, and a V100 GPU. Due to hardware constraints, the FL clients trained sequentially. To ensure the server
model’s convergencewithout resorting to early-stop strategies,wemeticulously trained all clientmodels. In each iteration,
each client model received one epoch of training using its raw data. The EMNIST and CIFAR-10 data sets were utilized to
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IBRAHIM KHALAF et al. 9 of 15

TABLE 1 Parameter settings for FL with EMNIST and CIFAR-10 data sets.

Parameter EMNIST CIFAR-10 Parameter EMNIST CIFAR-10

σ 1.0 1.0 Hybrid DP noise multiplier (δ) 1.5 1.2

k 0.7 0.7 Hybrid DP clipping norm (C) 2.5 3.0

Batch size 20 20 Rounds for FL 100 200

Clipping threshold 4.0 7.0 Batch size for FL 10 10

Learning rate 0.05 0.05 Clients for FL 500 50

Number of participants 1000 100 Server learning rate for FL 0.1 0.01

Training round 50 50 Client learning rate for FL 0.01 0.001

Noise scale adjusting factor (α) 0.5 0.5 Federated averaging factor (β) 0.5 0.9

train neural network models using FL techniques, and their parameters are provided in Table 1. The Learning rate (0.05)
gives the details how quickly the main server updates its global model based on contributions from all participants; it’s
higher for EMNIST (0.1) and lower for CIFAR-10 (0.01). The Client learning rate for FL determines how fast individual
devices update their local models before distributing them with the server. EMNIST clients updated faster (0.01) than
CIFAR-10 (0.001). EMNIST had 1000 potential contributors, with 500 actively participating per round. For CIFAR-10,
out of 100 participants, 50 contributed per round. “Batch size for FL” determines howmany clients updated their models
each round, playing key roles in our model training strategy.

5.2 Performance

In the HDP-FL approach’s noise scale, which ranges from 0.1 to 1. Table 2 illustrates the privacy loss in DP with vary-
ing noise parameters (σ) over training rounds for the EMNIST data set. It shows how the privacy loss changes over time
and with different noise scales. As the training rounds progress, we observe a decrease in privacy loss for each value of σ,
demonstrating the impact of noise on privacy. It is important to note that while toomuch noise can compromise accuracy,
our method aids in achieving an equilibrium between preserving privacy and maximizing utility. For instance, the noise
scale at round 1 is 0.1 for ε =1.0. This indicates that during training, themodel introduces noise to the data that is 0.1 times
the data’s standard deviation. The noise scale grows along with the number of training rounds. The noise introduced dur-
ing training is less at round 10 than itwas at round 1 (the noise scale is 0.039 for ε=1.0 at round 10). This demonstrates how
privacy is significantly impacted by the amount of noise that is introduced to the data. But over-noising model might also
make it less accurate. In a FL context, utilizing hybrid DP generally aids in striking a good compromise between accuracy
and privacy. Local and centralizedDPmethods are combined to provide hybridDP.According to the table, as the reduction
in privacy loss is related to the increase in the number of trainings rounds and applies to each value of the noise scale.

Figure 2 depicts the correlation between increasing the number of training sessions and enhancing both the model’s
accuracy and privacy. This visual representation elucidates the intricate balance between privacy and accuracy, show-
casing that as noise levels diminish, accuracy ascends and conversely declines. Table 3 is presented to compare the
accuracy outcomes of three FL techniques—Client-based FL (CL-FL), Hybrid DP-FL(HDP-FL), and Differentiated Pri-
vate FL (DP-FL)—on different client counts. As the privacy parameter value escalates, the degree of privacy safeguarding
diminishes. The table also shows the accuracy comparison of these techniques on the EMNIST and CIFAR-10 data sets
for various client counts and privacy budgets. With the exception of DP-FL 1000 clients, which have a better accuracy
than DP-FL 100 customers, all FL techniques see a minor decline in accuracy as the number of clients rises. Figure 3
confirms this information by visualizing the accuracy comparison for EMNIST and CIFAR-10 data sets using these tech-
niques.We observe thatHDP-FL achieves the highest accuracywhen no privacy protection is applied.However, as privacy
parameters increase, accuracy decreases, emphasizing the trade-off.

Table 4 compares the EMNIST and CIFAR-10 data set’s accuracy across 50 training cycles in Independent and Iden-
tically Distributed (IID) and non-IID environments. For EMNIST Starting at 0.968, it rises steadily until it reaches 0.979
at the halfway point. It highlights that differentiated privacy and FL can mitigate the detrimental impact of non-IID data
distribution on model accuracy. It is indicated by the significantly higher accuracy in IID settings. The best accuracy
attained for the IID tuning is 0.989, making it substantially more accurate than the non-IID tuning.
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10 of 15 IBRAHIM KHALAF et al.

TABLE 2 Privacy loss in HDP-FL with varying noise parameter (σ) over training rounds.
Training
Round 𝛔= 0.1 𝛔= 0.2 𝛔= 0.3 𝛔= 0.4 𝛔= 0.5 𝛔= 0.6 𝛔= 0.7 𝛔= 0.8 𝛔= 0.9 𝛔= 1.0

1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

5 0.058 0.116 0.174 0.232 0.290 0.348 0.406 0.464 0.522 0.580

10 0.039 0.078 0.117 0.156 0.195 0.234 0.273 0.312 0.351 0.390

15 0.029 0.058 0.087 0.116 0.145 0.174 0.203 0.232 0.261 0.290

20 0.023 0.046 0.069 0.092 0.115 0.138 0.161 0.184 0.207 0.230

25 0.019 0.038 0.057 0.076 0.095 0.114 0.133 0.152 0.171 0.190

30 0.016 0.032 0.048 0.064 0.080 0.096 0.112 0.128 0.144 0.160

35 0.014 0.028 0.042 0.056 0.070 0.084 0.098 0.112 0.126 0.140

40 0.012 0.024 0.036 0.048 0.060 0.072 0.084 0.096 0.108 0.120

45 0.011 0.022 0.033 0.044 0.055 0.066 0.077 0.088 0.1 0.1

50 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.1 0.1 0.1

F IGURE 2 Effect of noise levels on training accuracy in HDP-FL.

TABLE 3 Comparison of FL Techniques on Different Numbers of Clients with Varying Privacy Parameters.

Accuracy of HDP-FL Accuracy of CL-FL Accuracy of DP-FL

# of Clients 𝛅 EMNIST CIFAR-10 EMNIST CIFAR-10 EMNIST CIFAR-10

Non-DP 10 0.991 0.891 0.925 0.882 0.872 0.854

DP 10 1
e2

0.929 0.775 0.867 0.769 0.821 0.756

DP 100 1
e3

0.938 0.846 0.878 0.797 0.856 0.779

DP 1000 1
e4

0.989 0.884 0.917 0.862 0.869 0.788
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IBRAHIM KHALAF et al. 11 of 15

F I GURE 3 Comparative accuracy analysis of FL methods: (A) EMNIST, (B) CIFAR-10.

TABLE 4 Comparison of accuracy in different distributed scenarios.

Data sets
Training
rounds 1 5 10 15 20 25 30 35 40 45 50

EMNIST IID 0.942 0.956 0.960 0.963 0.966 0.970 0.973 0.981 0.983 0.985 0.989

Non-IID 0.937 0.946 0.951 0.963 0.964 0.965 0.966 0.967 0.968 0.969 0.979

CIFAR-10 IID 0.537 0.696 0.764 0.805 0.831 0.846 0.857 0.866 0.873 0.878 0.884

Non-IID 0.480 0.594 0.675 0.716 0.746 0.764 0.778 0.789 0.799 0.807 0.855

Figure 4A,B visualizes the effect of training rounds onmodel accuracy forCIFAR-10 andEMNIST respectively, empha-
sizing the potential of a hybrid strategy to handle privacy and accuracy challenges effectively. These findings demonstrate
that, while retaining a respectable degree of privacy protection, differentiated privacy and FL may be employed to lessen
the detrimental effect of data distribution for non-IID on model accuracy. The best accuracy for CIFAR-10 attained for
the IID tuning was 0.884, making it much more accurate than the non-IID tuning. This study demonstrates that FL and
DP when used together can achieve respectable accuracy in IID and non-IID settings, although non-IID conditions still
have space for improvement.

Table 5 offers an extensive breakdown analysis of the performance of various traditional FL algorithms, including
FedAvg,22 FedSGD,23 FedMA,24 FedDyn,25 and the proposed method, across two distinct data distribution scenarios:
Non-IID and IID. Among them, “FedMA” consistently shows good training accuracy in Non-IID data sets. “FedSGD” also
performs well in both settings. “FedAvg” is slightly less accurate, especially with CIFAR-10. The ProposedMethod stands
out in IID scenarios, achieving the highest overall accuracy of 96.29% in IID EMNIST as shown in Figure 5. This demon-
strates its strength across various FL scenarios, especially when data is evenly distributed among clients. This hybrid
method proves effective in addressing privacy concerns. Statistically, the differences in accuracy percentages among algo-
rithms vary notably, with the proposed method showcasing significantly higher validation accuracy compared to FedAvg
and FedSGD, particularly in IID data sets.

Furthermore, to benchmark our method against the latest State-Of-The-Art (SOTA) in FL privacy protection, we
have incorporated referencing studies 26 and 27 as controls within our experimentation. Additionally, references
[28–30] aim to ensure a rigorous comparison against established privacy protection mechanisms and highlight the
advancements achieved by our proposed approach. We believe these enhancements significantly contribute to the
robustness and relevance of our experimental section. Table 6 compares the precision of our innovative model com-
pared to prevalent state-of-the-art analyses on EMNIST and CIFAR-10 data sets. FedSGD coupled with a deep neural
network (DNN) achieves moderate accuracy, reaching 75% on EMNIST and 54% on CIFAR-10. Similarly, FL employing
K-nearest neighbor (KNN) records 65% accuracy on EMNIST and 62% on CIFAR-10, presenting reasonably competitive
results. However, the standout performer is the proposed model, demonstrating remarkable accuracy rates of 96.29% on
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12 of 15 IBRAHIM KHALAF et al.

F IGURE 4 Model accuracy variation with training rounds (A) EMNIST data set(B) CIFAR-10.

TABLE 5 Performance metrics of various algorithms on EMNIST and CIFAR-10 data sets Under Non-IID and IID Settings.

Non-IID IID

Data sets EMNIST CIFAR-10 EMNIST CIFAR-10

Algorithms (%) Train Validation Train Validation Train Validation Train Validation

FedAvg 96.78± 0.11 85.80± 0.60 79.87± 1.52 63.27± 0.67 96.12± 0.85 89.58± 0.25 80.70± 0.83 70.15± 0.47

FedSGD 95.18± 0.64 83.32± 0.19 79.07± 0.45 59.81± 0.81 95.61± 0.94 68.87± 0.31 82.90± 0.72 67.56± 0.02

FedMA 96.21± 0.02 84.18± 0.73 76.71± 0.01 63.52± 0.53 92.71± 0.61 77.75± 0.37 81.12± 0.83 69.56± 0.57

FedDyn 96.28± 0.02 85.20± 0.35 77.55± 0.02 63.10± 0.18 93.66± 0.40 78.27± 0.19 80.90± 0.86 68.10± 0.22

Proposed
method

97.96± 0.04 93.41± 0.91 85.52± 0.02 76.75± 0.35 98.90± 0.40 94.90± 0.86 88.42± 0.52 80.86± 0.57

F IGURE 5 Comparison of Algorithms’ Performance on EMNIST and CIFAR-10 Data sets: Non-IID versus IID.
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TABLE 6 Comparison of SOTA model accuracies: EMNIST and CIFAR-10.

Models EMNIST accuracy CIFAR-10 accuracy

FedSGD+deep neural network (DNN)26 75% 54%

FL+K-nearest neighbor (KNN)27 65% 62%

FedDyn+DP+ convolutional neural networks (CNN)28 - 82%

FedAvg+recurrent neural network (RNN)29 89% -

FedAvg+CNN30 96% 81%

Proposed model 96.29% 82.88%

TABLE 7 Accuracy comparison between different scenarios and privacy budgets.

Privacy budgets 𝛆 = 2 𝛆 = 4 𝛆 = 6 𝛆 = 8

Distribution Algorithm r-1 r-2 r-1 r-2 r-1 r-2 r-1 r-2

Non-IID FedAvg 0.528 0.59 0.652 0.726 0.67 0.748 0.719 0.76

HDP-FL 0.561 0.634 0.684 0.784 0.693 0.802 0.74 0.821

IID FedAvg 0.56 0.608 0.689 0.715 0.711 0.738 0.735 0.79

HDP-FL 0.609 0.636 0.699 0.747 0.735 0.79 0.751 0.835

EMNIST and a competitive range of 82–88% on CIFAR-10. These findings underscore the proposed model’s potential,
particularly its robust performance on CIFAR-10, warranting further in-depth comparisons with existing FL models to
comprehensively assess its efficacy.

The scenario-based illustrative evaluation investigates HDP-FL and FedAvg algorithms in the context of cross-IoT
device FL. The clients are limited to one or two training rounds, and each client exclusively handles two distributions of
data from the MNIST data set is presented in Table 7. HDP-FL consistently outperforms FedAvg in both Non-IID and IID
distributions across different privacy levels (ε=2, 4, 6, 8). The rationale behind the higher accuracy enhancement observed
in scenarios where clients engage in two training rounds (r-1,2) are attributed to the personalized data transformation
incorporated in HDP-FL. This approach better adapts to and models the local training data, consequently mitigating the
heterogeneity induced by DP in such settings.

The algorithm demonstrates its efficacy through detailed parameter tuning for differential privacy, illustrating the
impact of noise on privacy loss over training rounds. Analyses of noise effects on accuracy and privacy, comparative assess-
ments against existing techniques, performance benchmarking, and scenario-based evaluations consistently highlight
the algorithm’s superiority. The HDP-FL approach effectively manages the trade-off between privacy and utility, making
it a promising solution for secure knowledge sharing in IoT settings. The extensive experimental evaluation and refer-
enced findings collectively establish the applicability and effectiveness of HDP-FL in preserving privacy while ensuring
high accuracy in FL.

Expanding our methodology to larger data sets and diverse applications poses several challenges. First, scalability
becomes a concern as handling extensive datamay strain computational resources, potentially causing delays in real-time
updates. Balancing privacy and utility at a larger scale becomes more complex, affecting model accuracy due to stronger
privacymeasures. Adapting themodel effectively to different data distributions across diverse contexts is also challenging.
Communication among numerous clients or managing larger data volumes risks latency and resource-heavy processes.
To ensure scalability without compromising accuracy, simplifying the algorithm’s complexity is crucial. Guaranteeing the
model’s adaptability across varied data sets and contexts while addressing infrastructure readiness and security concerns
is essential. Overcoming these challenges requires innovative algorithmic approaches, and a careful balance between
privacy and utility.

6 CONCLUSION

In conclusion, the findings showcased the method for safe and trustworthy information exchange among IoT devices
while safeguarding data privacy, promoting effective learning methods across decentralized networks. The proposed
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14 of 15 IBRAHIM KHALAF et al.

HDP-FL showed great potential in managing the balance between privacy and usefulness, hinting at its broader appli-
cation in addressing diverse challenges in FL. Experiments performed on EMNIST and CIFAR-10 data sets showed the
excellent performance of this methodology concerning the accuracy and resilience of the model. We propose that our
hybrid DP and FL approach can be extended to address additional challenges in FL, such as data heterogeneity, effec-
tive communication, and model customization. To improve security in big data handling through FL, the study suggests
standardizing security measures, fine-tuning privacy settings, and finding ways to streamline communication for better
data protection. Future work could focus on developing optimized privacy-preserving mechanisms tailored for specific
industry applications, such as implementing the hybrid approach in healthcare for secure collaborative diagnostics across
hospitals while ensuring patient data confidentiality.
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