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Abstract: 
 
This review paper provides a comprehensive exploration of integrating data-driven 
approaches in the domain of concrete science. The paper commences with an introduction 
elucidating the background and context of data-driven concrete science, outlining objectives 
and scope, and underscoring the importance of data-driven methodologies. Subsequently, it 
delves into the traditional analytical approaches and the potential for data-driven methods. 
The paper elucidates data collection and pre-processing techniques tailored to the domain, 
encompassing concrete-related data types, collection methodologies, and data pre-
processing strategies. Moreover, it extensively covers data-driven modelling and prediction 
in concrete science, presenting an overview of data-driven models, machine learning 
techniques, deep learning approaches, and integration of big data analytics. The review 
consolidates insights into diverse applications, including concrete strength prediction, 
durability analysis, and concrete microstructure characterisation, employing data-driven 
approaches. Furthermore, it highlights challenges and opportunities in this burgeoning field, 
encompassing data quality and availability, interpretability and explainability of models, and 
ethical consideration. The paper concludes with recommendations for researchers and 
practitioners aiming to harness the full potential of data-driven methodologies. 
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1. Introduction 
 
Traditional concrete analysis, reliant on empirical formulas and experiments, falls short of 
understanding the intricate nature of concrete (Kelham, 1988; Kim et al., 2003; Erzar & 
Forquin, 2010; Debicki et al., 2012; Amriou & Bencheikh, 2017). Empirical formulas 
oversimplify, while experiments are time-consuming, impeding quick decision-making and 
innovation. In contrast, data-driven approaches, leveraging computing power and advanced 
machine learning (He et al., 2022; Volker et al., 2023; Nguyen & Tran, 2023), represent a 
transformative shift in analysing and optimizing concrete properties. By harnessing extensive 
datasets and advanced analytics, data-driven methods uncover intricate patterns, 
correlations, and insights, facilitating informed decision-making for optimized concrete 
composition regarding strength, durability, and sustainability. 
 
Data-driven approaches offer a significant advantage in predictive modelling within concrete 
science (Xu & Feng, 2022; Cakiroglu et al. 2023). Through robust data analysis, these 
approaches enable accurate estimation of concrete properties, such as strength and 
durability, even before construction. This predictive capability not only saves time and 
resources but also contributes to the creation of resilient and cost-effective concrete 
structures, aligning with evolving construction industry needs. A transformative shift in 
concrete property analysis and optimization has been ushered in by data-driven approaches. 
Traditionally, reliance on empirical formulas and experimental methods had limitations, 
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requiring substantial time and resources for data collection and hindering innovation in the 
concrete industry.  
 
The rise of data-driven approaches, fuelled by computing advancements and machine 
learning, has ushered in a new era in concrete science. Leveraging extensive datasets and 
advanced analytics, these methods offer a more comprehensive and efficient understanding 
of concrete composition, behaviour, and performance. Unveiling previously elusive patterns 
and insights, data-driven concrete science is motivated by optimizing concrete for enhanced 
strength, durability, and sustainability (Imran et al. 2023; Hafez et al. 2023; Shamsabadi et 
al. 2023). These approaches also enhance quality control during construction, ensuring real-
time adjustments for consistent and high-quality standards (Cai et al. 2014; Li et al. 2023; 
Zheng et al. 2023). Machine learning (ML) in concrete technology enhances material 
performance prediction, quality control, and mix optimization. It enables data-driven models 
to forecast strength, durability, and crack propagation. ML algorithms analyse large datasets, 
improving efficiency in construction, reducing costs, and promoting sustainability by 
optimizing material proportions and predicting structural behaviour more accurately 
 
This review paper underscores the transformative impact of data-driven approaches on 
concrete science. Traditional methodologies often fall short of capturing the complex nature 
of concrete. Fuelled by computational advancements and abundant data, data-driven 
techniques have revolutionized concrete analysis, enhancing understanding, optimizing 
composition, enabling predictive modelling, and fostering sustainability. The paper 
emphasizes the crucial role of data-driven methods in shaping a more efficient and 
sustainable future for concrete construction. While providing a comprehensive exploration, it 
acknowledges limitations, such as a broad scope and the need for frequent updates in the 
rapidly evolving field. Nonetheless, it serves as a valuable starting point, stimulating further 
research and discussion in this dynamic domain. 
 
The paper explores the evolution of concrete analysis from traditional empirical approaches 
to advanced data-driven methods. Traditional analytical techniques relied on empirical 
formulas and experimental observations to predict concrete properties. As technology 
advanced, computational and machine learning models emerged, enhancing precision and 
predictive capabilities. Data-driven methods, including machine learning and big data 
analytics, optimize mix designs, monitor real-time performance, and predict durability. 
Challenges such as data quality, interpretability, and ethical considerations are discussed, 
emphasizing the need for responsible implementation. Recommendations highlight best 
practices for researchers and practitioners, ensuring efficiency, sustainability, and innovation 
in modern concrete engineering. 
 
2. Traditional Analytical Approaches 
 
In the field of concrete analysis, traditional analytical approaches have held a central position 
in comprehending the properties and dynamics of this foundational construction material. 
These customary methods, deeply rooted in empirical formulas and experimental practices, 
served as the linchpin for evaluating and characterising concrete well before the advent of 
sophisticated computational techniques and data-driven methodologies. Empirical formulas, 
arising from meticulous observation and experimental data, represented a fundamental 
approach to concrete analysis. These formulas established mathematical correlations 
among critical constituents such as cement, aggregates, and water, offering predictive 
insights into various concrete properties. For example, renowned empirical relationships that 
correlated the water-cement ratio with compressive strength formed a bedrock for the early 
understanding of concrete behaviour (Popovics & Ujhelyi, 2008; ElNemr, 2020).  
 
Analytical models had simplifying assumptions. Technological advancements drove the 
evolution of precise computational and data-driven methodologies in concrete analysis. 
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Chalioris (2013) focused on steel fibrous concrete beams, predicting the minimum fibre 
factor for optimal performance using an analytical approach, offering insights into fibre 
influence. Asutkar et al. (2017) analysed rubber aggregates in concrete beams, revealing 
their potential through analytical methods. Rashid et al. (2017) integrated experimental and 
analytical approaches for sustainable recycled concrete, showcasing the significance of 
varied methods. Yang et al. (2019) used analytical models to predict fracture parameters for 
concrete with coral aggregates in seawater, providing insights for coastal construction. Opon 
& Henry (2022) presented a study that introduced an analytical framework for the 
sustainability evaluation and comparison of concrete materials. 
 
Building upon these analytical techniques, technological advancements have led to the 
emergence of computational and data-driven methodologies that enhance accuracy and 
predictive capabilities in concrete analysis. Machine learning, finite element modelling, and 
artificial intelligence now enable deeper insights into material behaviour, surpassing the 
limitations of empirical approaches. These innovations refine existing empirical correlations 
by integrating vast datasets and real-time simulations, optimizing mix designs and structural 
performance predictions. Studies now leverage hybrid approaches that combine 
experimental, analytical, and data-driven methods, fostering sustainable concrete solutions. 
By evolving from empirical roots, modern techniques drive efficiency, durability, and 
innovation in concrete engineering. 
 
3. Potential for Data-Driven Methods 
 
Data-driven methods in concrete science bring transformative potential by leveraging data 
analytics, machine learning, and artificial intelligence. These approaches revolutionize 
concrete property analysis, prediction, and optimization. Table 1 outlines their multifaceted 
advantages, emphasizing enhanced predictive modelling for precise forecasts and optimized 
material composition to reduce waste. These methods offer substantial improvements in 
concrete quality and sustainability, ensuring high-quality construction through real-time 
monitoring and data integration.  
 

Table 1: Potential Benefits of Data-Driven Methods in Concrete Science 
 

Potential Aspect Description Impact 

Enhanced 
Predictive 
Modelling 

Data-driven methods enable precise 
prediction of concrete properties, 
optimising mix designs and formulations. 

Improved concrete 
quality and performance. 

 

Optimised Material 
Composition 

Understanding concrete component 
relationships leads to ideal mix 
proportions, enhancing durability and 
sustainability. 

Reduced material waste 
and cost-effective 
solutions. 

Real-time 
Monitoring and 
Control 

Sensors and data analysis provide real-- 
time quality control, ensuring high-quality 
concrete, and reducing resource waste. 

Enhanced construction 
efficiency and cost 
savings. 

Comprehensive 
Data Integration 

Integration of diverse data sources offers 
a holistic understanding of concrete 
behaviour and characteristics. 

Informed decision-
making and innovative 
solutions. 

Accelerated 
Research and 
Innovation 

Data-driven analysis expedites research, 
facilitating the development of new 
formulations, sustainable practices, and 
construction innovations. 

Faster project 
completion and industry 
advancements. 
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4. Data Collection and Pre-processing 
 
Table 2 provides a concise yet comprehensive overview of the diverse data types crucial in 
the field of concrete science. Diverse data collection methods are vital in concrete science 
for meaningful insights. Laboratory testing yields precise data on properties such as 
compressive and tensile strength (Wright & Garwood, 1952; Darvell, 1990). Field testing, 
using non-destructive methods, assesses in-situ properties of operational structures (Mori et 
al., 2002). Instrumentation and sensors provide real-time data on structural behaviour (Yehia 
et al., 2014). Surveys and questionnaires offer qualitative insights, while LiDAR captures 
topographical data (Janowski et al., 2016). Data logging monitors concrete properties and 
environmental conditions continuously (McCarter et al., 1995). Material sampling and 
analysis in laboratories determine the chemical composition and aggregate characteristics 
for mix design optimization (Conciatori et al., 2014). Each method contributes uniquely, 
enhancing understanding, guiding decisions, and improving practices. Selection depends on 
research objectives, resources, and data requirements. 
 
 
Table 2: Types of Concrete-Related Data and Their Significance 
 

Type of Data Description Importance 
Examples of Data 
Sources 

 

Composition 

Constituents and 
proportions in the concrete 
mix. 

Directly influences 
concrete properties. 

Lab tests, supplier 
specs 

 

Strength 

Mechanical properties like 
compressive, tensile, and 
flexural strength. 

Vital for structural 
design and quality control. 

Compression tests, 
flexural tests 

 
Workability 

Concrete's ease of mixing, 
placing, compacting, and 
finishing. 

Crucial for construction 
processes and quality. 

Slump tests, flow 
tests 

 
Durability 

Resistance to factors like 
freeze-thaw cycles and 
chemical attacks. 

Ensures longevity and 
performance, 
especially in harsh 
conditions. 

Weathering tests, 
penetration tests 

Curing 

Details about the curing 
process: duration, 
temperature, and humidity. 

Crucial for achieving the 
desired strength and 
durability. 

Curing records, 
environmental 

monitoring 

Setting and 
Hardening 

Data on concrete's setting 
time and hardening 
characteristics. 

Essential for effective 
scheduling and 
achieving 
desired strength promptly. 

Setting time 
records, strength 
gain monitoring 

Microstructure Internal structure at a 
microscopic level, including 
particle arrangement. 

Provides insights 
into properties and 
behavior. 

SEM, XRD, 
mercury intrusion 

 
Environmental 

Environmental conditions 
during concrete production 
and placement. 

Affects curing and setting, 
impacting 
overall quality and 
performance. 

Weather records, 
on-site monitoring 

 
 
 
Addressing missing data poses a common challenge in research (Finch, 2008; Pani et al., 
2013; Lahat et al., 2015). Techniques such as mean imputation, interpolation, or judicious 
deletion ensure systematic handling, creating a complete and suitable dataset. Detecting 
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and managing anomalies or outliers caused by measurement errors is critical (Pearson, 
2002; Foorthuis, 2021). Statistical approaches, visualization, or machine learning algorithms 
identify and address outliers, preventing undue influence on outcomes. Data transformation 
involves normalizing or standardizing variables for fair comparisons (Dare et al., 2002; Xu et 
al., 2022; Kumar & Pratap, 2023). Feature engineering enhances concrete characteristic 
representation, while data reduction techniques like Principal Component Analysis (PCA) 
promote efficient analysis (Boukhatem et al., 2012; Sadowski et al., 2015; Hameed et al., 
2021). 
 
5. Data-Driven Modelling and Prediction 
 
5.1 Machine Learning Techniques 

 
Machine learning techniques have significantly transformed concrete science, constructing 
predictive models and extracting meaningful insights. Table 3 succinctly outlines various 
machine learning techniques and their applications in concrete science, offering a 
comprehensive overview. From regression and decision trees predicting concrete properties 
to clustering algorithms categorizing materials, these techniques provide valuable insights. 
Neural networks, like Convolutional Neural Networks (CNN), aid in microstructure analysis. 
Principal Component Analysis (PCA) reduces data complexity. Reinforcement learning 
optimizes concrete mix designs, and Genetic Algorithms fine-tune compositions. This 
compilation illustrates how ML contributes to understanding, analysing, and optimizing 
diverse aspects of concrete, advancing the field and revolutionizing the construction 
industry. 
 

Table 3: Summary of applications of machine learning techniques in concrete science 
 

ML 
Technique 

Description Application in 
Concrete Science 

References 

 
 
Regression 
Analysis 

Predicts continuous 
concrete properties 
(e.g., strength) based 
on input features such 
as mix proportions and 
curing conditions 

 
Predicting concrete 
strength, workability, 
and durability based 
on mix components 
and curing conditions 

Atici, 2011; Omran et 
al. 2016; Chithra et al. 
2016; Nilsen et al. 
2019; Koya et al. 2022 

 
 
 
Decision 
Trees 

Versatile models 
useful for predicting 
concrete properties 
and aiding in material 
selection based on 
various parameters 

 
 
Predicting 
concrete 
properties, 
optimising mix 
designs 

Zhang et al. 2019; 
Zhang et al. 2020; 
Behnood & Golafshani 
2020; 
Abbasloo et al. 2019; 
Taffese et al. 2015; 
Asghshahr et al. 2016; 
Chen et al. 2020. 

 
Random 
Forest 

Ensemble technique 
combining multiple 
decision trees to 
enhance prediction 
accuracy 

Improving 
prediction 
accuracy of 
concrete 
properties, 
optimising mix 
designs 

Ouyang et al. 2020; 
Marani & Nehdi, 2020; 
Oey et al. 2020; 
Cook et al. 2021; 
Pei, et al. 2020 
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Support 
Vector 
Machines 

Versatile models for both 
regression and 
classification tasks, 
useful in predicting 
properties like 
compressive 
strength in concrete 
science 

 
Predicting concrete 
properties, aiding in 
structural design 
based on material 
components 

Nguyen et al. 2021; 
Huang et al. 2020; 
Nguyen-Sy et al. 2020; 
Yazdi et al. 2013; 
Ünlü, 2020; Liao et al. 
2016 

 
 
Clustering 
Algorithms 

Group similar concrete 
data points based on 
features, aiding in 
concrete material 
characterisation and 
selection 

 
Identifying clusters 
of materials with 
similar properties, 
optimising material 
selection 

Calabrese et al. 2012; 
Lattanzi et al. 2014; 
Völker & Shokouhi 
2015; Tayfur et al. 
2018; Chen et al. 2021; 
Fan, 2021 

 
 
 
Neural 
Networks 

 
Complex models 
effective in concrete 
science, e.g., 
Convolutional Neural 
Networks (CNNs) for 
microstructure analysis 

 
 
Analysing concrete 
microstructures, 
modelling sequential 
curing data 

Yeh, 1998); 
Ouyang et al. 2020; 
Nguyen et al. 2021; 
Nasr et al. 2019; 
Adhikary & 
Mutsuyoshi, 2004; 
Basma, et al. 1999; 
Lyngdoh et al. 2020 

Principal 
Component 
Analysis (PCA) 

Reduces complexity by 
retaining essential 
features while reducing 

dimensionality of large 
datasets 

Analysing and 
visualizing multi-
dimensional concrete 
data 

Boukhatem et al. 2012; 
Sadowski et al. 2015; 
Abd Elaty et al. 2017; 
Şimşek, 2020; 
Koo et al. 2021 

 
 

5.2 Deep Learning Approaches 
 
Convolutional Neural Networks (CNNs) revolutionize concrete technology by automating 
tasks like crack detection and real-time monitoring. Dung's study (2019) highlights CNNs' 
autonomy in crack detection, reducing reliance on manual methods. Dorafshan et al. (2018a) 
demonstrated CNNs' superiority over traditional approaches, advocating their adoption. Kim 
& Cho's approach (2019) using a mask and region-based CNNs improves accuracy. Despite 
advancements like the SDNET2018 dataset (Dorafshan et al., 2018b), addressing biases is 
crucial. Wang et al.'s work (2021; 2022) extends CNN utility to aggregate segmentation and 
monitoring, showing diverse applications. Dong et al. (2020) focused on microstructural 
crack segmentation, emphasizing CNNs' potential for intricate concrete analysis. Challenges 
like dataset biases and model robustness must be addressed for ongoing CNN 
advancements in concrete analysis and monitoring. 
 
Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) architecture 
designed to capture long-term dependencies in sequential data. Recent studies showcase 
LSTM network efficacy in concrete analysis. Ranjbar & Toufigh (2022) employed LSTM for 
ultrasonic damage assessment. Chen et al. (2022) predicted high-strength concrete 
compressive strength. Gogineni et al. (2023) explore LSTM's adaptability in strength 
prediction. Tanhadoust et al. (2023) extended LSTM to stress-strain under high 
temperatures. Tanyildizi (2021) forecasted geopolymerization in fly ash-based geopolymer. 
Fu et al. (2023) predicted internal humidity under varying thermal conditions, and Candelaria 
& Kee (2023) evaluated thermal damage using LSTM for ultrasonic waves. Despite their 
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significance in construction, LSTM applications require further interpretability, validation, and 
reliability enhancements for real-world concrete industry applications. 
 
5.3 Integration of Big Data Analytics 
 
Big data analytics streamlines the processing and storage of vast and diverse data in the 
concrete industry (Sandryhaila & Moura, 2014; Elgendy & Elragal, 2014; Saggi & Jain, 
2018). This encompasses material properties, construction processes, and environmental 
conditions. Advanced storage solutions handle structured and unstructured data for 
seamless analysis. Integration of big data analytics enables sophisticated techniques and 
predictive modeling (Gandomi & Haider, 2015; Munawar et al., 2022). Machine learning 
algorithms uncover patterns and correlations in extensive datasets, particularly regarding 
concrete properties like strength and durability. Predictive modelling aids professionals in 
optimizing concrete mix designs for optimal performance. Table 4 offers insights into big 
data analytics applications, spanning data processing, analytics, real-time monitoring, and 
resource optimization. 
 
Table 4: Integration of Big Data Analytics in Concrete Science Aspects and Applications 
 

Aspect Description Benefits Applications 
 Efficient processing and  

- Centralized data 
repository for various 
projects. - Rapid 
retrieval and analysis 
of historical project 
data. 

 storage of diverse data - Centralized data 
Data types including material storage. - Efficient 
Processing properties, construction handling of structured 
and Storage processes, and and unstructured 

 environmental data. 
 conditions.  

 
Advanced 
Analytics and 
Modelling 

Utilising advanced 
analytical techniques and 
predictive modelling to 
understand concrete 
properties and 
behaviour. 

- Accurate prediction 
of concrete properties. 
- Fine-tuning mix 
designs for optimal 
performance. 

- Predicting concrete 
strength and 
durability. - 
Optimising concrete 
mix proportions. 

 Instantaneous monitoring  - Real-time 

Real-time 
Monitoring 
and Control 

of construction 
processes and concrete 
performance through 
real-time analysis of 

- Immediate 
intervention for quality 
control. - Prevention 
of potential issues. 

Monitoring of ongoing 
construction projects. 
- Ensuring quality 
control during the 

 sensor data.  construction phase. 

 

 
Resource 
Optimisation 

Data-driven decision-
making to minimise 
resource wastage and 
enhance efficiency by 
understanding factors 
affecting concrete 
properties. 

 
- Efficient utilisation of 
resources. - Cost-
effective construction 
practices. 

- Optimisation of 
material usage for 
sustainable practices. 
- Budget-conscious 
decision-making 
during projects. 

 
 

6. Applications of Data-Driven Approaches 
 
6.1 Prediction of fresh properties  
 
Machine learning revolutionizes the prediction of fresh concrete properties, optimizing mix 
designs for enhanced workability and setting time. Algorithms forecast vital properties like 
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workability based on mix proportions and environmental conditions, tailoring compositions to 
specific project needs. Dias and Pooliyadda (2001) used neural networks to predict concrete 
properties with admixtures, while Xie et al. (2020) focused on concrete temperature 
development using machine learning. Unlu (2020) assessed machine learning for slump 
flow, and Kina et al. (2021) compared models estimating fresh properties of hybrid fiber-
reinforced self-compacting concrete. Techniques like genetic algorithms and support vector 
machines modelled concrete slump and fresh properties (Chandwani et al., 2015; Sonebi et 
al., 2016). Machine learning, particularly neural networks, exhibits the potential to predict 
compressive strength and slump (Öztaş et al., 2006; Timur Cihan, 2019). Artificial neural 
networks were applied to model the impact of additives on fresh self-consolidating cement 
paste rheological properties (Mohebbi et al., 2011). By enhancing prediction and 
understanding, machine learning provides valuable insights for quality control and 
optimization in construction. Table 5 summarises Machine Learning predictions for fresh 
concrete properties in various applications. 
 
 
Table 5: Machine Learning Predictions for Fresh Concrete Properties in Various Applications 
 

Reference 
Fresh 
Properties 
Predicted 

Machine Learning 
Model(s) Used 

Reliability Application 

Dias & 
Pooliyadda, 
(2001) 

Various 
properties with 
admixtures 

Neural Networks Medium 
Concrete mix 
design 

Xie et al. 
(2020) 

Concrete 
temperature 
development 

Machine Learning High 
Quality control of 
field curing 

Unlu (2020) Slump flow Machine Learning Medium Quality control 

Kina et al. 
(2021) 

Fresh properties 
of SCC 

Extreme Learning 
Machine, Deep 
Learning Model 

High 
Self-compacting 
concrete (SCC) 

Zheng et al. 
(2019) 

Concrete 
moisture level 

Percussion and 
Machine Learning 

Medium 
Moisture level 
monitoring 

Aydogmus et 
al. (2015) 

Concrete slump 
flow 

Ensemble Models 
(Bagging) 

Medium 
Concrete slump 
prediction 

Chandwani 
et al. (2015) 

Slump of ready- 
mix concrete 

Genetic 
Algorithms, 
Artificial Neural 
Networks 

 
Low 

Concrete slump 
prediction 

Sonebi et al. 
(2016) 

Fresh properties 
of SCC 

Support Vector 
Machine 

Medium 
Self-compacting 
concrete (SCC) 

Öztaş et al. 
(2006) 

Compressive 
strength, slump 

Neural Network Medium 
Strength and slump 
prediction 

Timur Cihan 
(2019) 

Compressive 
strength, slump 

Machine Learning 
Methods 

Medium 
Strength and slump 
prediction 

Mohebbi et 
al., 2011 

Rheological 
properties 

Artificial Neural 
Network 

Medium 
Cement paste 
rheology prediction 

 
 
 
6.2 Prediction of compressive strength 
 
Concrete strength prediction using machine learning involves employing algorithms to 
forecast the compressive strength of concrete based on various input parameters. Machine 
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learning models are trained on historical data that includes concrete mix proportions, curing 
conditions, material properties, and other relevant factors. Yeh pioneered strength prediction 
in 1998, introducing linear regression and Artificial Neural Networks (ANN) for high-
performance concrete (Nunez et al., 2021). Advanced methods gained momentum over 
time. Deng et al. (2018) applied deep learning to efficiently predict recycled concrete 
compressive strength. Ghasemzadeh et al. (2016) used genetic programming for long-term 
compressive strength and creep predictions. Neural networks by Duan et al. (2013) and 
Dantas et al. (2013) forecast strength in recycled aggregate and demolition waste concrete. 
Luo and Paal (2018) employed the Backbone Curve Model (BCV) for cyclic loading 
simulation. Alipour et al. (2017) used decision trees and random modelling for bridge load 
capacity prediction, assessing potential post-casting failures. Contento et al. (2022) 
demonstrated remarkable accuracy with a probabilistic axial capacity model for load 
eccentricity and debonding estimation. 
 
Feng et al. (2020) demonstrated concrete strength prediction using machine learning with an 
adaptive boosting approach. This involves training models on a comprehensive dataset of 
mix proportions, curing conditions, and material properties. Adaptive boosting allows the 
model to learn intricate patterns, improving prediction accuracy for concrete compressive 
strength. The study showcases how considering various factors enables reliable strength 
estimation, vital for optimizing mix designs and ensuring structural adequacy in construction. 
Fig. 1 plots comparing predicted values with tested values reveal AdaBoost's notably linear 
relationship, indicating closer proximity to actual test values. MAPE (Mean Absolute 
Percentage Error) is a common metric used to evaluate the accuracy of a forecasting or 
regression model. It measures the average percentage difference between predicted and 
actual values, making it useful for assessing model performance. AdaBoost's ensemble 
learning mechanism, aggregating outputs from multiple weak learners, enhances accuracy 
and robustness, resulting in superior performance across measures with an impressive R2 
value of 0.982 and a substantial MAPE decrease of 6.78%. 
 

 
 

Fig. 1: Results for different machine learning techniques (Feng et al. 2020) 
 
Pakzad et al. (2023) made a comprehensive comparison of different machine-learning 
algorithms for predicting the compressive strength of steel fibre-reinforced concrete. Salami 
et al. (2021) introduced a data-driven model for predicting ternary-blend concrete 
compressive strength using machine learning. LSSVM-CSA combines Least Squares 
Support Vector Machine (LSSVM) with Coupled Simulated Annealing (CSA) for optimized 
concrete strength prediction. GP (Gaussian Process) is a probabilistic model capturing data 
uncertainty. In Fig. 2, two models, LSSVM-CSA (A) and GP (B), demonstrate their 
respective fittings over the training data. The closeness of the red line to the red stars 
indicates the accuracy of the model's predictions, with a closer alignment signifying higher 
precision in predicting concrete compressive strength. 
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Fig. 2: Fitting of models over the train data. A) LSSVM-CSA B) GP. The target data in the 
red star (*) and the model prediction in the red line, respectively (Salami et al. 2021) 

 
 
Ahmad et al. (2022) employed advanced machine-learning techniques to predict the 
compressive strength of fly ash-based geopolymer concrete. This research assessed the 
effectiveness of these approaches in predicting concrete strength, providing a tool for 
estimating geopolymer concrete compressive strength. Leveraging advanced machine 
learning, the study contributed to formulating geopolymer concrete, aligning with sustainable 
construction practices. The investigation underscored machine learning's potential in 
enhancing predictions for specialized concrete types, fostering innovation and efficiency in 
the construction industry. In Fig. 3, the Decision Tree model displays a commendable level 
of precision, with minimal deviation between actual and predicted values. The high R2 value 
of 0.90 confirms strong accuracy in result prediction, validating the model's effectiveness. 
 

 
 

Fig. 3: Correlation between the actual and predicted results of the decision tree model 
(Ahmad et al. 2022) 

 
 
Sevim et al. (2021) employed machine learning to develop predictive models for 
compressive strength in cementitious composites with fly ash. The study aimed to forecast 
the compressive strength of such composites, offering a valuable tool for the construction 
industry. Machine learning enhanced the understanding and prediction of compressive 
strength in these composites, fostering more efficient and sustainable construction practices. 
Figure 4 illustrates estimated values during training and testing, along with performance and 
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error histograms showing Mean Squared Error (MSE) and Root Mean Squared Error 
(RMSE) values for both data sets. Despite the analysis, a clear correlation with experimental 
results proving acceptable affinity could not be established. 
 
 

 
 

Fig. 4: Training and Test Results of MLR Model (Sevim et al. 2021) 
 
 

6.3 Concrete Mix Design  
 
The incorporation of machine learning into concrete mix design represents a significant 
advancement in the construction industry. Esmaeilkhanian et al. (2017) introduced Eco-
SCC, optimizing low-powder self-consolidating concrete for sustainability. Ziolkowski & 
Niedostatkiewicz (2019) refined mix designs with machine learning, focusing on performance 
enhancement. Chaabene et al. (2020) highlighted machine learning's potential in predicting 
concrete mechanical properties for informed decision-making. Pandey et al. (2021) explored 
machine learning's adaptability in accommodating variations like plasticizer presence in mix 
designs. Nunez et al. (2020) advanced sustainable production by integrating recycled 
materials into mixes using a hybrid machine learning model. Zheng et al. (2023) proposed 
multi-objective optimization with machine learning for tailored concrete mixes. Naseri et al. 
(2020) introduced innovative machine-learning techniques for sustainable concrete, 
envisioning seamless integration of sustainability into design. Dias et al. (2021) optimized 
lightweight concrete using Miscanthus through machine learning, promising tailored designs 
for specific types. These studies collectively demonstrate machine learning's transformative 
role in optimizing concrete mixes for sustainability and performance enhancement. 
 
6.4 Durability Analysis and Prediction  
 
The incorporation of machine learning (ML) in predicting concrete durability signifies a 
substantial advancement in construction materials. Vital for infrastructure longevity, 
accurately forecasting properties like chloride resistance, carbonation depth, and corrosion 
rates is crucial for assessing the service life of reinforced concrete structures. Cai et al. 
(2020) employed ensemble ML techniques to predict the surface chloride concentration of 
marine concrete, a crucial factor influencing concrete durability in marine environments. This 
prediction aids in designing concrete structures capable of withstanding the corrosive effects 
of marine surroundings. Seventy-five percent of the gathered data were utilised for training 
six machine learning models. These models were employed to forecast Surface chloride 
concentration (Cs) under varying conditions related to the 12 input variables. Subsequently, 
the predictions were compared with the remaining 25% of the database, depicted in Fig. 5, 
to evaluate the models' prediction performance. 
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Fig. 5: Predictions of Cs made by ML models (Cai et al. 2020) 
Taffese & Espinosa-Leal (2022a) introduced an ML-based predictive model for evaluating 
concrete's chloride resistance, essential for assessing durability and service life. 
Subsequently, their study (Taffese & Espinosa-Leal, 2022b) presented a specific ML method 
predicting the chloride migration coefficient, a key parameter influencing concrete's 
resistance to chloride-induced corrosion. In a comprehensive review, Taffese & Sistonen 
(2017) outlined recent ML advances in evaluating the durability and service life of reinforced 
concrete structures, highlighting progress in enhancing predictions and understanding 
concrete durability. 
 
Taffese et al. (2015) pioneered the CaPrM model, utilizing ML to predict carbonation depth in 
reinforced concrete. Nunez & Nehdi (2021) extended this to recycled aggregate concrete 
with SCMs, emphasizing sustainability. Liu et al. (2021) applied hybrid ML algorithms to 
forecast carbonation depth in recycled aggregate concrete, showcasing ML's adaptability. 
Tran et al. (2023) explored carbonation depth in fly ash concrete with ML, emphasizing ML's 
potential in innovative mixes. Lee et al. (2020) integrated AIJ, FEM analysis, and ML for 
comprehensive carbonation progress assessment. Figure 6 compares machine learning-
predicted carbonation depth, closely aligning with experimental data, demonstrating its 
efficacy. 
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Fig. 6: Comparing carbonation rate coefficients and depth values predicted by accelerated 

carbonation experiments and deep learning (Lee et al. 2020) 
 
 
Ji & Ye (2023) utilized ML to predict the corrosion rate of steel in carbonated cementitious 
mortars, offering insights into corrosion assessment in reinforced concrete. Jia et al. (2022) 
provided a comprehensive review on employing machine learning for evaluating 
environmental corrosion in reinforced concrete structures, exploring their potential in 
assessing corrosion-related issues. Huo et al. (2023) introduced a hybrid ensemble model 
predicting carbonation depth in concrete, demonstrating the efficacy of combining ML 
techniques for enhanced durability predictions. Zhang et al. (2023) proposed a framework 
incorporating ML and metaheuristic algorithms to predict the carbonation depth of concrete 
with fly ash, highlighting the potential of ML integration with optimization techniques for 
improved durability predictions. 
 
6.5 Microstructure Characterisation 
 
Traditional methods of concrete analysis and microstructure characterisation often require 
substantial manual effort and expertise. Machine learning offers an automated and data-
driven approach to analyse complex microstructures with increased accuracy and efficiency. 
Bangaru et al. (2019) pioneered automated ML-based microstructure analysis for estimating 
concrete hydration degree. Lin et al. (2022) applied deep learning to characterize 
microstructures in graphene oxide-silica-reinforced OPC composites, showcasing its 
potential in identifying subtle features for tailored concrete designs. Extending this, Bangaru 
et al. (2022) used convolutional neural networks (CNNs) to automate microstructure 
segmentation in concrete through scanning electron microscopy (SEM) images. Figure 7 
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illustrates U-Net model assessment for concrete microstructure analysis, demonstrating its 
accurate segmentation and identification of components. This visual comparison highlights 
the U-Net model's efficiency in automating precise microstructure analysis, crucial for 
concrete research advancements. 
 

 
 

Fig. 7: Actual, Ground Truth, and Predicted images using the proposed U-Net model 
(Bangaru et al. 2022) 

Sui et al. (2023) employed machine learning for spatial correlation and pore morphology 
analysis in limestone calcined clay cement (LC3), demonstrating ML's efficacy in unravelling 
intricate microstructures for understanding material behaviour. Qian et al. (2023) focused on 
cement particle segmentation and analysis through deep learning, showcasing ML's 
accuracy in segmenting cement particles, a crucial step for comprehending cementitious 
matrix composition. Lorenzoni et al. (2020) applied deep learning to micro-computed 
tomography scans for semantic segmentation of strain-hardening cement-based composites 
(SHCC), highlighting ML's capability in handling complex 3D images for insights into 
advanced concrete materials' microstructure. Figure 8 illustrates a 3D representation of 
segmented voids (blue) and fibres (red) in M1-PVA concrete achieved through deep 
learning, emphasizing its automated and accurate identification of key components for 
enhanced understanding of concrete microstructure. 
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Fig. 8: Segmented 3D voids (blue) and fibres (red) in M1-PVA image by Deep Learning 
(Lorenzoni et al. 2020) 

 
 
Ford et al. (2021) applied machine learning (ML) to microstructural chemical maps, 
classifying component phases in cement pastes. Using chemical information, the study 
showcased ML's potential to understand concrete's chemical composition and phase 
distribution, providing a holistic view. Qoku et al. (2023) emphasized ML's role in advancing 
characterisation techniques for comprehensive understanding of cementitious systems. 
Integrating imaging, scattering, spectroscopy, and ML presents a promising avenue for 
multiscale characterization of concrete microstructures. ML is transforming concrete 
microstructure analysis, automating processes and improving accuracy, offering a valuable 
tool for researchers and engineers. These studies collectively highlight ML's promising future 
in civil engineering and construction materials, contributing to advancements in the field. 
 
7. Challenges and Opportunities 
 
7.1 Data Quality and Availability 
 
Data quality and availability profoundly influence concrete analysis, demanding accurate, up-
to-date, and context-relevant information for reliable predictions and decisions. Li et al. 
(2022) stressed the importance of high-quality data in ML applications for concrete science, 
emphasizing the need for accurate datasets for effective model training. Ensuring meticulous 
data quality is crucial to prevent misleading ML models and ensure reliable predictions. 
Lyngdoh et al. (2022) addressed the concern of missing data in concrete strength prediction, 
highlighting the significance of accurate imputation techniques to maintain model 
robustness. Properly handling missing data enhances ML models' predictive power, 
emphasizing the completeness of datasets. In contrast, Sun et al. (2021) discussed 
challenges in data availability for structural design, advocating collaborative efforts to create 
centralized repositories for improved ML model development and validation. Collectively, 
these studies underscore the pivotal role of data quality and availability in advancing ML 
applications in concrete science, promoting efficiency and effectiveness in construction 
practices. 
 
Figure 9 depicts the balance between underfitting and overfitting in concrete science, using a 
dataset of 40 concrete mixes with one input (water/cement ratio) and one output 
(compressive strength). The dataset is split into training and validation sets (80/20). Three 
polynomial models (p=1, p=3, and p=10) are fitted to the training data. The figure indicates 
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the polynomial of degree three as optimal, showing good performance on the validation set. 
The subplot labeled "b" illustrates the prediction error for training and validation sets 
concerning model complexity. It underscores the challenge of finding the right complexity for 
optimal generalization, crucial in machine learning models' implementation and validation, 
particularly with smaller datasets. 

 
 

Fig. 9: Trade-off between underfitting and overfitting (Li et al. 2022) 
 
 
7.2 Interpretability and Explainability of Models 
 
Interpretability and explainability are vital in applying machine learning models to concrete 
science. Interpretability ensures that the model's operations and outcomes are transparent, 
allowing users, even those without deep machine learning knowledge, to understand them. 
In concrete science, interpretability involves presenting how alterations in input parameters, 
like mix proportions or curing conditions, impact predicted concrete strength. Examining 
Figure 10, two instances of concrete strength prediction reveal issues with the permutation 
method generating impractical mixes. Focusing on superplasticizers, known for reducing 
water content and enhancing flowability, a negative relationship with water content is 
anticipated (Pearson correlation coefficient -0.66, denoted by black circles in Fig. 10a). 
However, after permutation, some generated mixes (red pluses) lack workability, positioned 
in extremes—high water content with superplasticizer or low water content without, both 
impractical for real-world use. Similar challenges arise with cement and supplementary 
materials (SCMs) correlations, where permutation generates mixes with unviable 
combinations, affecting water-to-cementitious material ratio and rendering them unsuitable 
for practical concrete applications. 
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Fig. 10: Illustration of unrealistic concrete mixes generated by permutation feature 

importance method (Li et al. 2022) 
 
 
Interpretability and explainability are indispensable in machine learning models within 
concrete science, offering engineers and stakeholders valuable insights into model 
decisions. These aspects enhance the usability and trustworthiness of predictive models, 
leading to substantial progress in the field. By providing clear, understandable rationales for 
predictions, machine learning models help optimise concrete compositions and properties. 
Consequently, this facilitates the construction of more resilient, sustainable, and cost-
effective concrete structures, promoting innovation and efficiency in the construction 
industry. In summary, interpretability and explainability play pivotal roles in driving 
advancements in concrete science and the broader construction sector. 
 
7.3 Ethical Considerations 
 
Integrating machine learning (ML) into concrete science poses ethical challenges amidst a 
rapidly evolving technology landscape. Ethical practices necessitate respect for privacy, data 
ownership, and informed consent, coupled with robust security measures for sensitive data. 
Addressing bias is crucial to avoid perpetuating societal inequalities, ensuring fairness 
across demographic groups. Transparency in model predictions fosters trust and enables 
stakeholders to assess decisions critically. Accountability entails adherence to ethical 
guidelines, legal regulations, and responsible deployment. Collaborative knowledge-sharing 
refines ethical guidelines, fostering responsible decision-making. Considerations extend to 
environmental and social impacts, aligning ML integration with sustainability goals. In 
summary, ethical considerations are vital for responsible and informed ML integration in 
concrete science. 
 
8. Recommendations for Researchers and Practitioners 
 
Implementing data-driven approaches in concrete science requires strict adherence to key 
recommendations for heightened effectiveness. Priority lies in Comprehensive Data 
Acquisition, gathering diverse data on ingredient proportions, curing conditions, and 
environmental factors through sensors, lab experiments, and field measurements. Diligent 
Data Pre-processing and Cleaning are essential for ensuring data quality by addressing 
missing values and inaccuracies using statistical methods and domain knowledge. 
 
Collaboration with concrete science experts integrates Domain Expertise, guiding analysis 
with their profound understanding. Emphasizing Model Interpretability instills confidence in 
predictions, while regular Model Validation and Updating maintain accuracy. Ethical Data 
Usage safeguards sensitive information. Open Collaboration and Continuous Skill 
Development sustain technological relevance. Benchmarking and Comparative Studies 
evaluate data-driven models, while Industry Engagement aligns solutions with practical 
needs. Following these recommendations establishes a structured framework, enhancing 
comprehension of concrete properties and optimizing composition. This systematic approach 
drives efficiency, durability, and innovation in construction, fostering sustainability. 
Rigorously applying these principles unlocks the full potential of data-driven methodologies, 
propelling the field towards deeper insights and progress. 
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