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A B S T R A C T

The interplay of biotic and abiotic factors driving Ixodes ricinus abundance trends are not fully understood. 
Machine learning (ML) approaches are being increasingly used to explore this and predict future abundance 
patterns of this species, however, the studies focusing on this to date have had limitations (including short study 
duration, limited sample size, narrow geographical range and use of a single ML model). This study was un-
dertaken to address these limitations by applying 11 predictive ML models (across three data clustering tech-
niques) to a large I. ricinus occurrence dataset (27,150 records) containing geographical and temporal data from a 
20-year period across 30 European countries, coupled with data covering a range of climatic and habitat features 
(temperature, rainfall, Normalised Difference Vegetation Index (NDVI), percentage of discontinuous urban fabric 
and land use category). To assess which ML model was most suited to prediction of I. ricinus abundance, four 
performance metric values were calculated per model: Normalised Root Mean Square Error (NRMSE), Scatter 
Index (SI), Mean Absolute Percentage Error (MAPE) and R2, all of which describe the statistical relationship 
between predicted and actual I. ricinus abundance values. Furthermore, using a Random Forest (RF) model across 
three clustering methods, we determined which features most significantly impacted upon I. ricinus abundance. 
The study demonstrated that Agglomerative Hierarchical Clustering (AC) methods and Linear Regression (LR) 
modelling performed best with this dataset. Our findings revealed that land use and rainfall were the primary 
contributors to I. ricinus abundance, with temperature playing a lesser role. This was measured according to the 
extent of prediction error increase following exclusion of that factor from the analysis. We provide a summary of 
the factors most strongly linked to I. ricinus abundance, which can be used to guide interventions to aid the 
control of ticks and tick-borne disease across Europe.

1. Introduction

When examining Ixodes ricinus abundance patterns, the complexities 
of an ecosystem comprised of both biotic and abiotic factors must be 
fully considered (Stachurski et al., 2021). Prevention of I. ricinus desic-
cation requires a minimum of 80 % humidity (Gray et al., 2021) making 
abiotic factors such as rainfall and temperature essential to consider 
(Estrada-Peña et al., 2013). However, we cannot attribute abundance 
entirely to these abiotic factors since biotic influences can also affect tick 
survival and proliferation (Stachurski et al., 2021). For example, 
vegetation-based ground cover features help to retain moisture in the 

tick’s surroundings, thus aiding survival of I. ricinus (Medlock et al., 
2013). Other important environmental factors impacting upon tick 
survival include host availability, biodiversity and land fragmentation 
(Estrada-Peña, 2003).

Due to these ecological complexities, a robust and multifaceted 
approach is required to fully understand which factors most strongly 
influence tick abundance. Machine learning (ML) approaches are 
rapidly evolving and possess the capacity to process large multifactorial 
and complex data sets to not only identify most significant contributing 
factors towards a trend, but also to predict future scenarios (Alanazi, 
2022) making ML approaches highly suitable for deciphering the driving 
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forces for tick abundance.
Others have used similar approaches to understand the factors 

impacting upon I. ricinus abundance patterns in Europe. For example, 
Boulanger et al. (2024) assessed I. ricinus ticks collected from 40 sites in 
France. They examined soil type, land use, forest type and host presence 
in relation to I. ricinus tick (and pathogen) abundance. The sampling 
process was repeated on four different dates between the years of 2020 
and 2021. The data were analysed using the XGB Regressor model to 
predict tick abundance, which was shown to perform best out of the 
seven predictive ML models tested according to Root Mean Square Error 
(RMSE) and R2 values. Results indicated that the strongest predictors of 
tick abundance were related to silt content, soil moisture and presence of 
Sciuridae, deer and birds. However, it could be argued that this study is 
not fully representative of wider tick populations because it was focused 
on just two regions within 20 km of each other and only sampled ticks 
over a single year.

Scandinavian researchers used Boosted Regression Tree (BRT) 
modelling to explore and predict abundance of I. ricinus ticks, using field 
derived data coupled with a variety of environmental variables, 
including land surface temperature, Normalised Difference Vegetation 
Index (NDVI), altitude and precipitation (Kjær et al., 2019). Results 
showed that I. ricinus abundance increases were related to land surface 
temperature and vegetation index, whereas land cover and fragmenta-
tion of land were shown to be poorly linked to tick abundance. 
Furthermore, they evaluated the predictive power of the model by using 
the data from the first year to predict tick abundance in the subsequent 
year, with findings verified by repeating their sampling over the same 
time frame in the following year, comparing actual abundance to pre-
dicted abundance values. However, a limitation of this study was its 
limited duration (which took place over August-September in a single 
year).

Other studies have used ML approaches, but in other contexts, such 
as prediction of binary I. ricinus presence/absence in particular loca-
tions, or to measure overall habitat suitability rather than abundance. 
For example, in a study carried out in Northern Italy by Signorini et al. 
(2019) I. ricinus ticks were collected from a total of 52 sites over the 
course of two years (2009–2010). Environmental variable data were 
added for each site location (including altitude, land cover, rainfall, 
NDVI and land surface temperature). The study focused on habitat 
suitability mapping for I. ricinus ticks using a MaxEnt ML model, 
providing a measure of likelihood of tick presence in a certain location 
(on a scale of 0–1) based on these environmental variables – with the 
results indicating that the factor most important for prediction of tick 
presence was NDVI. However, this was a small-scale study, with only 
341 tick occurrence records used, all of which were localised to a single 
region in a short timeframe, introducing various sources of potential 
bias.

Estrada-Peña and de la Fuente (2024) carried out a similar habitat 
suitability study, but this time spanning Europe between the years of 
1990–2022. A total of five ML approaches (Random Forest (RF), Neural 
Networks, Naïve Bayes, Gradient Boosting and Adaboost) were used to 
calculate probability of I. ricinus presence based upon habitat features, 
including vertebrate host distribution, climatic features (temperature 
and water vapour deficit) and landscape features (related to vegetation, 
land fragmentation and land use). Model performance was mostly 
assessed using area under the receiver-operating characteristic curve 
(AUC). Results indicated that Gradient boosting, RF and Neural Net-
works performed best for habitat suitability mapping, and that model 
performance was impacted by climatic variables more significantly than 
landscape variables. However, the climate data used were calculated as 
a mean value per month as opposed to daily values, which may have 
resulted in skewed data which is less representative of true climatic 
conditions.

As a further example, a study carried out by Noll et al. (2023) used 
I. ricinus and Dermacentor reticulatus tick occurrence data from European 
locations, obtained from a combination of sources (GBIF and relevant 

publications between the years of 1970–2021). Each of these occurrence 
entries were linked to several explanatory variables describing the 
environment (including temperature, precipitation, NDVI, land surface 
temperature and soil moisture). Although the importance of each envi-
ronmental variable was not determined, habitat suitability mapping 
(ecological niche modelling) was carried out using three machine 
learning approaches: Generalised Additive Modelling (GAM), RF and 
MaxENT and performance was measured using: AUC, true skill statistic 
(TSS), omission rate (OR), Miller’s calibration slope (MCS) and 
Continuous Boyce Index (CBI). The authors, however, reported that the 
maps produced for all models did not accurately reflect tick distribution. 
A further limitation was their limited use of habitat-related variables, 
which may have impacted negatively upon the accuracy of their 
predictions.

A similar approach was also used by Lihou and Wall (2022) who 
predicted I. ricinus presence/absence utilising questionnaire-generated 
data from farmers across Britain, indicating whether ticks were pre-
sent on their land in the previous nine months. Data were added for 
other variables related to habitat, climate and animal density at each 
site. An RF model was then used to process the data to predict which 
areas are most likely to be at risk of high tick presence – with the results 
showing that certain areas are at higher risk (such as central Scotland, 
Northern England and Wales). The results also showed that the most 
crucial predictors of tick presence were centred around precipitation. 
However, in addition to the limited duration of data collection, these 
findings were only representative of British farmland, excluding other 
land types and locations. Furthermore, the retrospective nature of this 
study and requirement for farmers to recognise a tick may introduce 
recall and reporting bias.

It is evident from these previous studies that ML-based algorithms 
have potential to model and predict I. ricinus abundance (as well as 
presence/absence or specific habitat/ecological suitability in a partic-
ular location). However, the full potential of abundance prediction 
studies specifically might have been somewhat compromised by limited 
sample size, geographical range, time span and the biotic/abiotic factors 
evaluated. In addition, many previous studies have employed a single 
ML model, providing little opportunity for comparison of model per-
formance. To overcome these limitations, our objective was to apply 11 
predictive machine learning approaches to data obtained from 30 Eu-
ropean countries over a 20-year period. This data will not only 
dramatically increase our understanding of which ML methods are best 
suited to I. ricinus abundance prediction, but it will also provide a 
comprehensive insight into the factors increasing I. ricinus abundance 
(and associated risks) across Europe, thus leading to enhanced knowl-
edge and better-informed intervention strategies.

2. Materials and methods

2.1. Tick occurrence dataset preparation

A dataset of 27,150 I. ricinus tick occurrence records was used in this 
study, with records originating from various sources. Firstly, 5365 
I. ricinus tick occurrence records (from Europe between the years of 2000 
and 2019) were obtained from three online data repositories: Global 
Biodiversity Information Facility (GBIF), National Biodiversity Network 
(NBN) Atlas and Vectormap (explained in further detail below). The 
countries included in the boundaries of Europe were selected according 
to a document published by the United Nations (Countries [WWW 
Document] n.d available at: https://www.ohchr.org/en/countries). For 
each individual record exported, full date of occurrence, data collection 
method and WSG84 decimal coordinates (latitude and longitude) were 
noted. Occurrence records were only included if a tick was present (no 
absence records were included) with a focus on quantitative data (tick 
occurrence count) at each site as opposed to qualitative pre-
sence/absence data.

For GBIF, an occurrence search filtered to I. ricinus was undertaken, 
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and a total of 7945 occurrences were exported in .csv format (GBIF.org 
(16 September 2023) GBIF Occurrence Download. https://doi.org/ 
10.15468/dl.kmp6em). The DOI for each individual contributor of 
data can be found in https://doi.org/10.15468/dl.kmp6em. To initially 
clean the data, records prior to 2000 and after 2019 were removed. 
Occurrences in countries outside of Europe were removed. Entries 
missing latitude or longitude coordinates or day, month or year of 
occurrence were also removed. Following this initial cleaning process, 
3766 records remained. A summary of the raw data provided can be 
found in the Supplementary Material (Table S1).

For NBN Atlas (which only contains records from the UK) I. ricinus 
records were searched, and filtered to exclude unconfirmed entries 
(Search: SPECIES: Ixodes (Ixodes) ricinus | Occurrence records | NBN 
Atlas [WWW Document] n.d https://records.nbnatlas.org/occurrences/ 
search?q=lsid%3ANHMSYS0000730335&fq=occurrence_status% 
3Apresent&fq=(identification_verification_status%3A%22Accepted% 
22%20OR%20identification_verification_status%3A%22Accepted% 
20-%20considered%20correct%22%20OR%20identification_ 
verification_status%3A%22Accepted%20-%20correct%22)&nbn_ 
loading=true). A total of 358 records were exported in .csv format. DOI 
information for each contributor can be found in the Supplementary 
Material (Table S2). As above, entries before 2000 or after 2019 were 
removed. Entries missing latitude or longitude coordinates or day, 
month or year of occurrence were removed. A total of 165 records 
remained following this process (summarised in Table S1).

For Vectormap, a search was conducted for I. ricinus ticks. A total of 
5189 records were exported in .csv format. Data were obtained from 
records held in the VectorMap data portal (https://experience.arcgis. 
com/experience/5f95c3edfbea4634b8347fec0bd1dcd6/) on 16 
September 2023 (VectorMap [WWW Document] n.d). The institutions 
contributing towards the dataset used were: Argyll Biological Records 
Centre, BIS, BRERC, Buglife, Cofnod – North Wales, Environmental In-
formation Service, Highland Biological Recording Group, Lancashire, 
Environment Record Network, Leicestershire and Rutland Environ-
mental Records Centre, National Trust, Natural England, Natural Re-
sources Wales, Naturespot, Biological Records Centre, North East 
Scotland Biological Records Centre, OHBR, Rotherham Biological Re-
cords Centre, Steve Woodward and Yorkshire Wildlife Trust. Data were 
cleaned by removal of entries outside of Europe, before 2000 or after 
2019. Additionally, entries missing latitude or longitude coordinates or 

day, month or year of occurrence were removed. Following this process, 
a total of 1434 records remained (summarised in Table S1).

These 5365 I. ricinus occurrences were plotted on a map using Tab-
leau (Tableau [WWW Document] n.d https://www.tableau.com 
/products) to demonstrate geographical range and tick density per site 
(as shown in Fig. 1) with larger dot size indicating increased tick density 
(demonstrating the quantitative aspect of the work). A further map was 
created using Tableau (Tableau [WWW Document] n.d https://www. 
tableau.com/products) with colour-coded dots representing month of 
year (to demonstrate seasonal patterns) as shown in Fig. 2.

A further 225 records were obtained from Institute of Public Health 
in Albania, who provided data from sites in Albania between the start of 
2000 and end of 2019. We were not given permission to share any 
further details regarding the data provided (consequently we are unable 
to include raw data or details regarding occurrence mapping, 
geographical range or collection method).

Finally, 21,560 records were provided by Professor Roy Brown, Se-
nior Visiting Research Associate at University of Bangor. Ticks were 
collected using blanket dragging and noted as individual occurrences, 
between the years of 2000 and 2019 only. Although we do not have 
permission to share the raw occurrence data from this provider, these 
occurrences were plotted on a map using Tableau (Tableau [WWW 
Document] n.d https://www.tableau.com/products/tableau) shown in 
Fig. 3, documenting the geographical range covered, with larger dot size 
indicating higher tick density at a particular site.

2.2. Selection and addition of climatic and environmental variables to the 
dataset

Data relating to several environmental and climatic variables were 
added to the occurrence record dataset. The following variables were 
selected (in addition to ‘Latitude’, ‘Longitude’ and ‘DayofYear’ variables 
already included in the dataset): ‘Temperature’, ‘Rainfall’, ‘NDVI’, ‘Land 
use’ and ‘Percentage of discontinuous urban fabric’. These variables 
were selected based on an extensive literature search, which indicated 
that they are key contributors to tick abundance (Kjær et al., 2019; 
Signorini et al., 2019; Lihou and Wall, 2022; Estrada-Peña, 2003)

For each I. ricinus occurrence record, maximum temperature and 
precipitation amount were added. This was achieved by using an online 
data repository available at: https://www.visualcrossing.com/weathe 

Fig. 1. Map showing the distribution and density of I. ricinus occurrences across European countries between the years of 2000–2019. The map shows 
I. ricinus occurrence locations across Europe. Larger tick count values in a single location are represented by a larger dot size (as shown in the legend to the right of the 
map). Data were obtained from NBN Atlas, GBIF and Vectormap repositories (previously cited) and plotted using Tableau. 
Created using Tableau (2024) https://www.tableau.com/products (Tableau [WWW Document] n.d).
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r/weather-data-services (“Weather Data Services | Visual Crossing,” n. 
d.) to search for temperature and rainfall measurements according to the 
specific location coordinates and date of the tick occurrence. The 
maximum values for the specified day were used.

Data corresponding to three habitat variables (land cover category, 
NDVI value and percentage of discontinuous urban fabric) were then 
added to each record from an online data repository called EcoDataCube 
(Open Environmental Data Cube viewer [WWW Document] n.d. http 
s://ecodatacube.eu/) a resource provided by Open Data Science 
Europe (“Open Data Science Europe – EU-wide automated mapping 
system for harmonization of Open Data based on FOSS4G and ML,” n. 
d.). For land cover, the layer search function of EcoDataCube was used to 
locate the ‘Land Cover’ data page. For each occurrence record, the 

location coordinates were searched within this data page and the land 
cover category was noted specific to the year of the occurrence. For the 
NDVI part, the occurrence records were firstly split according to month 
of occurrence and assigned to an occurrence season (spring, summer, 
autumn or winter month). The layer search function was then used on 
EcoDataCube to locate the ‘NDVILandsat (quarterly)’ data pages (with 
one data page available for each season). For each occurrence, the 
location coordinates were searched in the relevant ‘NDVILandsat 
(quarterly)’ data page (according to season) and the NDVI value was 
noted (specific to the year of occurrence). Finally, the ‘Discontinuous 
urban fabric’ data page was located on EcoDataCube using the layer 
search function. For each occurrence, the location coordinates were 
searched in this data page and the percentage value was noted specific to 

Fig. 2. Map showing the distribution and seasonality of I. ricinus occurrences across European countries between the years of 2000–2019. 
The map shows I. ricinus occurrence locations across Europe, with occurrence points colour-coded to represent different months of the year (as shown in the legend to 
the right of the map). Data were obtained from NBN Atlas, GBIF and Vectormap repositories (previously cited) and plotted using Tableau. 
Created using Tableau (2024) https://www.tableau.com/products (Tableau [WWW Document] n.d)

Fig. 3. Map showing the distribution and density of I. ricinus occurrences across the United Kingdom between the years of 2000–2019. 
The map shows I. ricinus occurrence locations across the United Kingdom. Larger tick count values in a single location are represented by a larger dot size (as shown 
in the legend to the right of the map). Data were obtained from Professor Roy Brown (previously cited) and plotted using Tableau (Tableau [WWW Document] n.d).
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the year of the occurrence.

2.3. Dataset cleaning and preprocessing

The 27,150 I. ricinus data records (with climatic and habitat data 
variables added) were further cleaned by removing invalid spatial data 
entries. Missing data relating to any of the climate or habitat variables 
(where ‘No Data Available’ was written in any of these columns because 
of missing data in the data repositories) were handled by replacing these 
with ‘np.NaN’. Data rows containing these entries were then removed to 
avoid impact upon subsequent modelling processes. In addition, 
inconsistent data entries (not following expected format or with values 
contradictory to other data points) were removed. A total of 2804 re-
cords were removed during these cleaning stages, leaving a total of 
24,346 records in the analysis.

Finally, the dataset was simplified by merging the day, month and 
year columns, changing this to a single entry containing day of year. 
Numerical data entries (for ‘Temperature’, ‘Rainfall’, ‘NDVI’ and ‘Per-
centage of discontinuous urban fabric’) were converted to more precise 
numerical formats. In cases where the variable was in the form of cat-
egorical data (such as land use and data collection method) this was 
transformed into a format suitable for numerical analysis, which was 
carried out for the purpose of creating binary data, thus enabling the 
model to process this categorical data without assuming any inherent 
order.

2.4. Feature set engineering

The data relating to ‘Latitude’, ‘Longitude’, ‘Temperature’, ‘Rainfall’, 
‘NDVI’ and ‘Land use’ variables were arranged in two feature sets: 

• Geo-climatic variables (temperature, rainfall, NDVI, latitude and 
longitude data)

• Land use category variables

Data from both datasets were used for subsequent processes 
described below.

2.5. Clustering and data aggregation methodology

Using Python version 3.6 (Python Software Foundation. Python 
Language Reference, version 3.6. Available at http://www.python.org) 
clustering techniques were used to group and summarise the cleaned 
and prepared dataset of I. ricinus observations according to location. The 
dataset was clustered in three different ways (resulting in three separate 
datasets, with each one representing a single clustering method).

The three clustering methods employed (and resulting datasets) 
were: 

• K-Nearest Neighbour (KNN)
• Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN)
• Agglomerative Hierarchical Clustering (AC)

KNN clustering groups data points based on their proximity to each 
other. This method is highly suited to large data sets (Dhanabal and 
Chandramathi, 2011). DBSCAN clustering operates in a different 
manner, focusing on density of data points. It is advantageous due to its 
ability to ignore noise (Deng, 2020). AC clustering involves the merging 
of multiple neighbouring clusters (Wang et al., 2017). This method can 
handle datasets presented in a variety of shapes, dimensions and sizes 
(Chidananda Gowda and Krishna, 1978).

Further features were then added to each of the clusters: 

• Number of I. ricinus observations (tick count)

• Average values for each of the geographic variables (latitude and 
longitude) and environmental variables (temperature, rainfall, NDVI 
and land use category)

• Data collection information

2.6. Outlier removal and data filtering

To enhance data quality and increase precision by eliminating 
extreme data, a robust method of outlier detection and removal was 
applied. Firstly, the 5th and 95th percentiles of the “Tick Count” variable 
were calculated (representing lower and upper data extremes, beyond 
which the data are considered outliers). Data points beyond these data 
extremes were excluded from further analysis to most accurately 
represent tick abundance without skew. As a result, only the central 90 
% of the data was considered (maximising the level of representation). 
Outlier removal varied according to each clustering method. For KNN 
clustering, 5588 (22.95 %) of the records were excluded leaving 18,758 
records remaining. For the DBSCAN clustering, 19,418 (79.76 %) of 
records were excluded, leaving 4928 records remaining. Finally, for AC 
clustering, 5587 (22.95 %) of the records were excluded, leaving 18,759 
records remaining.

Models and clustering methods were also evaluated in the presence 
of the outlier data, to demonstrate the impact of outlier removal upon 
model performance as a point of comparison (although this was not the 
main focus of our work).

2.7. Model training and evaluation (part one of analysis)

For each clustering dataset of I. ricinus records, the data were split 
into ten equal parts for model training and testing. K-fold cross valida-
tion (Leave-one-out Cross Validation) processes were used, during 
which nine parts of the data were used for model training and the 
remaining one part was used for model testing. This was repeated a total 
of ten times so that each individual part formed part of the testing data 
once, acting as a highly advantageous method of cross-validation 
covering all parts of the data (Yadav and Shukla, 2016).

This process was applied to each of the following models: 

• Random Forest (RF)
• XGBoost (XGB)
• LightGBM (LGBM)
• CatBoost (CB)
• Voting Regressor (VR)
• Bagging Regressor (BR)
• Stacking Regressor (SR)
• AdaBoost Regressor (AB)
• Linear Regression (LR)
• Decision Tree (DT)
• Support Vector Machine (SVM)

To determine which of the models showed the best performance 
when applied to I. ricinus occurrence records, various model perfor-
mance metric values were calculated for each of the models, across all 
three clustering methods. These performance metrics were: Normalised 
Root Mean Squared Error (NRMSE), Scatter Index (SI), Mean Absolute 
Percentage Error (MAPE) and R2. Guidance on the definition and 
interpretation of these values can be found in Table 1, all relating to the 
statistical relationship between predicted and actual values.

The model evaluation process had two key aspects based on these 
performance metrics: 

1. Determination of the best-performing clustering method 
For each clustering method, the average value for each perfor-

mance metric was calculated across all models. The clustering 
method showing the lowest average NRMSE, SI and MAPE values 
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(and the highest R2 values) was deemed to be the best performing 
approach.

2. Determination of the best-performing model for each clustering 
method 

For each clustering method, the model showing the lowest 
NRMSE, SI and MAPE values (and the highest R2 values) was deemed 
to be the best performing model.

2.8. Feature importance analysis (part two of analysis)

Each clustering dataset (containing the following variables: ‘Lati-
tude’, ‘Longitude’, ‘Temperature’, ‘Rainfall’, ‘DayOfYear’, ‘NDVI’, ‘Per-
centage of discontinuous urban fabric’ and each ‘Land Use’ category) 
was subjected to RF modelling (for predicting I. ricinus abundance, as 
described in part one). RF modelling was selected due to the ability of 
this model to combine multiple decision trees, as well as its high suit-
ability for variable importance assessments (Boulesteix et al., 2012). 
Success of the prediction model for this part of the work was measured 
according to the MAPE value only (which represents predictive accu-
racy, as described in Table 1). To determine importance of each feature 
in the prediction of I. ricinus abundance, the modelling process was 
repeated multiple times, but with a single variable excluded each time, 
enabling evaluation of the numerical impact of this exclusion on the 
MAPE value. The extent of impact of each factor exclusion on the MAPE 
value was converted to a coefficient value (between 0 and 1) with values 
closer to 1 indicating a more significant impact on MAPE value (thus 
signifying higher feature importance).

As an extension of this, correlation and potential collinearity be-
tween environmental variables (in relation to their impact upon tick 
count) were explored by systematic evaluation via the calculation of a 
correlation matrix (focusing on the strength and direction of the rela-
tionship between environmental factors and tick count). Furthermore, 
scatter plots were generated to visually explore these relationships. 
However, these have not been included in this paper.

2.9. ODMAP protocol

A full in-depth summary of the processes followed in this work can be 
found in Supplementary Material (Fig. S3) completed according to the 
ODMAP protocol (defined by Zurell et al., 2020).

3. Results

3.1. Determination of the most suitable data clustering method

We initially determined which of the three clustering methods (with 
outliers removed) resulted in the best average model performance 
metric values across the 11 models (lowest MAPE, NRMSE and SI values, 
and highest R2 value, as described in Table 1). As shown in Fig. 4, a 
graph was firstly plotted using the average MAPE, NRMSE, SI and R2 

value for each clustering method. Overall, AC clustering performed best 
for prediction of I. ricinus abundance in the absence of outliers. Results 
are fully described in the corresponding figure legend. This same process 
was also repeated for the three datasets, but with outliers included, with 
results included in the Supplementary Material (see Fig. S4) with a full 
description provided in the figure legend.

3.2. Determination of the most suitable ML model (using the best- 
performing clustering method)

Using the AC clustering method (with outlier removal) values for 
each algorithm were plotted in a graph to demonstrate which of the 11 
models showed the best performance (lowest MAPE, NRMSE and SI, and 
highest R2, as per Table 1). The performance metric values for each ML 
model have been plotted in Fig. 5. Using AC clustering, DT performed 
best in terms of MAPE, whereas, LR performed best in terms of NRMSE 
and SI. For R2, the best performance was shown for LR. Overall, LR was 
considered to be the best-performing model. Full description of these 

Table 1 
Performance metric definitions and interpretation.

Performance 
metric

Definition Interpretation References

Normalised 
Root Mean 
Squared Error 
(NRMSE)

RMSE measures 
absolute error 
between predicted 
and actual values. 
To calculate the 
NRMSE value, the 
RMSE is divided by 
the range of the 
actual values 
observed.

Values closer to 
zero represent a 
lower error rate.

Kambezidis, 
2012; 
Shcherbakov 
et al., 2013.

Scatter Index 
(SI)

SI examines the 
frequency of 
observations within 
a dataset. It 
measures how 
scattered these are, 
thus showing levels 
of dispersion within 
the dataset, acting as 
a measure of 
consistency.

Lower values 
indicate less 
dispersion in the 
data (thus 
representing higher 
consistency).

Bhattacharya 
and Sinha, 
2022.

Mean Absolute 
Percentage 
Error (MAPE)

MAPE measures the 
predictive accuracy 
of a model by 
calculating the 
average percentage 
difference between 
predicted and actual 
values.

Values closer to 
zero represent 
lower percentage of 
error (higher 
accuracy).

Chicco et al., 
2021.

R² The coefficient of 
determination (R²) 
measures how 
closely actual values 
fit with predicted 
values. It acts as a 
measure of data 
variance.

Values closer to one 
represent a better 
fit between 
predicted and 
actual values.

Håkanson, 
1995; Chicco 
et al., 2021.

This table outlines the definition of each performance metric (NRMSE, SI, MAPE 
and R2) and specifies how the values should be interpreted.

Fig. 4. Bar chart showing average MAPE, NRMSE, SI and R2 value per 
clustering method (with outliers removed). 
Comparative performance analysis showed that for average MAPE value, 
DBSCAN clustering generated the value closest to zero, indicating greatest ac-
curacy. However, for average NRMSE and SI, the values closest to zero were 
generated using the AC clustering method, indicating the best error rate and 
consistency. For R2, the highest average value was shown for AC clustering, 
indicating that this clustering method shows the lowest variance (indicating a 
good fit between predicted and actual values).
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results can be found in the corresponding figure legend. The same pro-
cess was repeated for the AC clustering dataset, but with outliers 
included. The results for this have been included in the Supplementary 
Material (see Fig. S5) with a full description provided in the figure 
legend.

Finally, the same process was applied for the KNN and DBSCAN 
clustering datasets (both with and without outliers). The results from 
this part of the work are shown in the Supplementary Material (Fig. S6 
for KNN data without outliers, Fig. S7 for KNN data with outliers, Fig. S8 
for DBSCAN data without outliers, Fig. S9 for DBSCAN data with out-
liers) with a full description provided in the figure legend.

3.3. Feature importance analysis

Using AC clustering, the coefficient values for feature importance are 
shown in Fig. 6, revealing that land use (particularly moors and heath-
land), rainfall and temperature showed greatest importance when pre-
dicting tick abundance. Full description of these results can be found in 
the corresponding figure legend. This analysis was also conducted for 
KNN and DBSCAN clustered data (shown in Figs. S10 and S11 of the 
Supplementary Material respectively) with a full description provided in 
the corresponding figure legends.

4. Discussion

Our main objective was to determine which factors played the most 
important role in prediction of I. ricinus abundance. Furthermore, given 
the somewhat contradictory conclusions of prior work, we sought to 
undertake a side-by-side comparison of different ML analytical ap-
proaches using a comprehensive dataset to assess their ability to handle 
I. ricinus occurrence and environmental data. As our study focused only 
on I. ricinus abundance, this section discusses our findings in relation to 
previous abundance studies only (excluding presence/absence studies).

4.1. Feature importance

Our analysis revealed that land use, precipitation and temperature 
had greatest impact for driving tick abundance. The top-ranking factor 
was land use (moors and heathland) which could relate to the water 
retention of moors providing a controlled level of humidity that is 
critical for tick survival (Lihou et al., 2020). Similarly, heathland is 
characteristically covered with bracken which provides a deep leaf litter 
to help promote tick survival during hostile climatic conditions and a 
safe haven for a diverse range of potential hosts for ticks when condi-
tions are conducive for questing (Heylen et al., 2013).

In contrast to our findings, the previous study examining land use as 
a driving factor for tick abundance, carried out by Kjær et al. (2019)
found that land use had no impact on I. ricinus abundance. However, in 

Fig. 5. Bar chart showing MAPE, NRMSE, SI and R2 values for each model 
following AC clustering (with outliers removed). 
Using MAPE, the best performing model was DT, which generated the value 
closest to zero, indicating best accuracy. However, for NRMSE and SI, superior 
results were found for LR in terms of error rate and consistency when compared 
to other models. For R2, the highest value was shown for LR, indicating the 
lowest variance (the best fit between predicted and actual values).

Fig. 6. Results of RF model feature importance analysis for AC clustering. 
Feature importance coefficients closer to 1 represent a higher level of importance in terms of tick abundance prediction. For AC clustering, land use (especially moors 
and heathland), rainfall and temperature were shown to have the most significant impact on I. ricinus abundance.
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addition to their limitations regarding study duration, their land use 
category range was limited (only categorising forests and meadows) 
which could have compromised their findings, whereas, our study 
explored a broad range of land use categories over a 20 year time period, 
providing a more detailed analysis.

Precipitation was shown to be the second most important factor 
following land use. The study by Kjær et al. (2019) examined the role of 
precipitation specifically in relation to I. ricinus abundance – with results 
indicating that this was not a contributing factor. However, they used 
precipitation values from annual or quarterly data averages, which 
could result in data skew from calculation of average values. In contrast, 
our study examined precipitation specific to date of occurrence, giving 
better precision, which is likely to be more representative of true pre-
cipitation values.

Temperature was a significant contributing factor to I. ricinus abun-
dance but not to the same extent as either land use or rainfall. Sup-
porting our study findings, Kjær et al. (2019) concluded that 
temperature played a key role in prediction of tick abundance. However, 
they used average temperature values, which could potentially 
misrepresent true climatic conditions on a given day, whereas we used 
daily temperature readings specific to the tick report, again adding 
precision. Several studies unrelated to ML-based predictions have also 
implied that climatic factors have dramatically influenced both abun-
dance and range of tick species (Estrada- Peña et al., 2012; Gray et al., 
2009).

Climatic factors are clearly important and may govern aspects of tick 
phenology including host-seeking behaviour (such as timing of seasonal 
questing) and diapause, however, we must consider that overestimation 
of the importance of temperature may have arisen from failure to 
appreciate that much of the life of a tick is spent deep in the leaf litter 
where the assemblage of bracken and other vegetation provide a 
microclimate that protects ticks from the more extreme variability of 
temperature and humidity. In response to unfavourable climatic con-
ditions, ticks are capable to deploy their ‘sit and wait’ strategy until 
conditions are favourable to quest for potential hosts, thus limiting their 
exposure to climate factors. Furthermore, they may avoid desiccation in 
hotter climates by seeking alternative hosts (such as lizards) in the leaf 
litter rather than questing at higher levels. In consequence, the impact of 
climatic change might be obscured, resulting in subtle behavioural shifts 
or decreased over-winter mortality rates, rather than binary presence or 
absence of ticks (Stachurski et al., 2021). As such, we may see a shift 
from regions where ticks can survive to areas where ticks can thrive, 
thus increasing tick abundance.

Our study has limitations, with a key limitation being that questing 
tick numbers have been used to gauge overall abundance, which being a 
behavioural trait rather than absolute count, could be a source of error. 
Interpretation of I. ricinus abundance data is further complicated by the 
longevity of this tick species, with the tick life cycle potentially spanning 
up to 4–6 years (Kahl and Gray, 2023). Furthermore, with the 
year-by-year variability of tick numbers, measurement of tick density 
would ideally need to extend over several years to mitigate aberrant 
fluctuations. In addition, it should be noted that our data is open to 
potential bias based upon its requirement for reporting of ticks, either 
through tick biting or active collections of ticks from their habitat. Often 
this latter source of data is dictated by proximity to researchers with an 
active interest in tick abundance rather than being collected through 
systematic surveillance (Kugeler and Eisen, 2020b).

Our study is further limited by the fact that there are many other 
factors which may influence tick survival and perpetuation which have 
not been considered. For example, tick survival will undoubtedly be 
subject to local ecological drivers such as host availability and biodi-
versity (Estrada-Peña, 2003). As witnessed in our study, data on host 
presence and biodiversity is challenging to obtain. Consequently, the 
impact of biodiversity upon tick numbers has not been adequately 
addressed to date. This should include the impact of not only blood meal 
local hosts, but also dispersal hosts such as birds and amplification hosts 

such as deer.
In future work, other features could also be introduced in modelling 

to address some of the limitations of this current study; for example, 
features which more accurately represent the microclimate (such as soil 
temperature and soil moisture) could be included. Additionally, incor-
poration of host and biodiversity data would strengthen our ML model 
for the future.

Despite these limitations, our comprehensive analysis spanning 
Europe across a 20-year duration determined which features were most 
important for I. ricinus abundance prediction, providing novel insights 
which are more widely representative across Europe and can be used to 
better explain tick density patterns. However, there is scope to improve 
this in future work by application of more extensive model evaluation 
procedures.

4.2. ML model evaluation

In addition to our findings regarding feature importance, evaluation 
of models revealed that LR modelling in combination with AC clustering 
showed the best performance values, suggesting that this is the most 
suitable approach for handling I. ricinus data in the context of abundance 
prediction.

The principal strategy for this current work was to focus on results 
obtained from the data following outlier removal, for the purpose of 
ensuring that extreme data which may result in I. ricinus distribution 
skew were excluded from the analysis. By including the central 90 % of 
the data (with minimal exclusion of outliers at the upper and lower data 
extremes), we have ensured maximum inclusion of tick occurrence sites. 
However, the model performance results from data with outliers 
included have been added into the Supplementary Material to demon-
strate model performance using the entire tick dataset, allowing scope 
for further ecological interpretation. Reassuringly, when using the 
combination of approaches found to be most successful in this study (AC 
and LR) outlier inclusion or exclusion had very little impact on model 
performance.

Previous studies comparing the performance of multiple ML models 
in relation to tick abundance prediction have been limited. A previous 
study carried out by Boulanger et al. (2024) compared seven different 
models according to RMSE and R2 performance values, with the finding 
that XGBoost showed the best performance. This conflicts with our 
findings, which showed that LR was the best-performing model. This 
discrepancy might have arisen from differences in clustering techniques 
as they did not disclose the clustering method used. Furthermore, in 
addition to the wider range of models evaluated in our study, our data 
was considerably more comprehensive regarding numbers, timespan 
and geographical range evaluated.

During our comprehensive cross-validation process, each model was 
trained on nine parts of the data to make predictions about tick count in 
the locations present in the remaining one part of the data. In this way, 
some of the models showed excellent predictive abilities in terms of 
accurately predicting tick count in a specifically defined area. However, 
the predictive abilities of the model were not tested on any areas not 
included in the original dataset, making this a further limitation of our 
work. Resource limitations precluded systematic assessment of new lo-
cations to further optimise and evaluate the machine learning methods 
in new areas. This would be a natural future progression of this study.

Furthermore, the use of a broad geographical range with outputs 
which are generalised to the whole of Europe, could be considered both 
a strength given its inclusive applicability, but also a limitation through 
the potential risk of failure of the model to account for individual tick 
conducive eco-areas that might exist adjacent or in close proximity to 
refractory areas for I. ricinus ticks. Due to the constraints of our study, we 
have not been able to address this to date, but exploration of spatial 
resolution of ML models is a priority for future work.

In summary, we undertook extensive comparative analysis to assess 
performance of modelling approaches, to determine those best suited to 
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tick abundance data, providing key insights which can inform future 
modelling work. The successful application of modelling has excellent 
predictive potential, allowing us to identify or even predict which lo-
cations are likely to face the highest risk of high tick abundance, whilst 
also creating an opportunity for potential expansion in the future to 
other aspects (such as prediction of tick-borne pathogen abundance). 
Overall, this will be invaluable for guiding public health policies and 
strategies for tick-borne disease prevention and control across Europe.

5. Conclusion

This study provides a novel insight into the factors driving I. ricinus 
abundance patterns in Europe over a 20-year period. The results showed 
that land use and rainfall measurements play a significant role in tick 
abundance. In contrast to many previous studies, temperature appeared 
to play less of a significant role. The results of the study also showed that 
the most suitable approach to handling tick occurrence datasets involves 
a combination of AC clustering and LR modelling, which show an 
excellent ability to predict tick occurrence in previously unsampled 
areas. The findings from this study provide several key insights which 
will help to guide future tick control approaches.
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