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Abstract

In recent years, because of the growing demand for location based services in

indoor environment and development of Wi-Fi, fingerprint-based indoor local-

ization has attracted many researchers’ interest. In Wireless Sensor Networks

(WSNs), fingerprint based localization methods estimate the target location by

using a pattern matching model for the measurements of the Received Signal

Strength (RSS) from the available transmitter sensors, which are collected by

a smartphone with internal sensors. Due to the dynamic nature of the envi-

ronment, the fingerprint database needs to be updated, periodically. Hence, it

is better to add new fingerprint data to the primary database in order to up-

date them. However, collecting the labeled data is time consuming and labor

intensive. In this paper, we propose a novel algorithm, which uses high level

extracted features by an autoencoder to improve the localization performance

in the classification process. Furthermore, to update the fingerprint data base,

we also add crowd-sourced labeled and unlabeled data in order to improve the

localization performance, gradually. Simulation results indicate that the pro-

posed method provides a significant improvement in localization performance,
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using high level extracted features by the autoencoder, and by increasing the

number of unlabeled training data.

Keywords: Indoor localization, fingerprint, wireless sensor

network, semi-supervised, autoencoder, deep extreme learning

machine

1. Introduction

Due to the increasing request for location-based services inside homes and

offices, indoor localization has undergone a lot of investigations. In outdoor ar-

eas, Global Positioning System (GPS) and Global Navigation Satellite Systems

(GNSS) have been identified as the common positioning technologies, because of5

the accurate location information they provide [1]. However, these technologies

are not applicable indoor, because of the unpredictability of the radio propa-

gation, very weak GPS signals sent from satellites to devices while penetrating

through buildings and the low visibility of satellite in indoor areas. Therefore, al-

ternative signals such as Wi-Fi, Bluetooth, FM radio, radio-frequency identifica-10

tion (RFID), light, and magnetic field have been used for localization [2, 3, 4, 5].

Because of the wide usage of Wireless Local Area Networks (WLANs) as indoor

access systems and the popularity of wireless communication equipment, indoor

location-based services such as indoor object search, indoor object localization,

navigation and tracking have been greatly expanded. However, complex indoor15

areas and high equipment costs, have prevented the achievement of satisfactory

location accuracy in practice [6]. Therefore, it is important to obtain real-time

and accurate location information using mobile devices without extra hardware

installation or modification. Also, Channel State Information (CSI) can be used

for localization [7, 8, 9, 10], which may achieve even better accuracy than RSS20

based methods [8, 9]. However, the use of RSS of Wi-Fi signals is more popu-

lar as the measurement of the RSS can be done by most of the present smart

phones, while CSI measurement needs special instruments [8, 9, 10].

Recently, fingerprint based indoor localization methods have been used in
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Wireless Sensor Networks (WSNs), due to their advantages of lower cost and25

flexible applications [11, 12, 13, 14]. WSNs are made of spatially distributed sen-

sors to monitor physical or environmental conditions [15]. Fingerprint based lo-

calization methods in WSNs use Received Signal Strength (RSS) measurements

from the available transmitters in the area which are collected by smartphones

with internal sensors. These measured RSSs and corresponding positions are30

used for target location estimation [16].

Fingerprint methods usually consist of two phases. During the offline phase,

samples of RSSs for each transmitter sensor are taken at different Reference

Points (RPs) and are stored in a database. In this phase, machine learning

methods are used to train fingerprints and extract reliable features according to35

a certain rule to find a relationship between features and RPs’ locations. During

the online phase, the server compares the target RSS with offline database, us-

ing some pattern matching algorithms and estimates the target location. Such

pattern matching algorithms include deterministic and probabilistic methods

[3]. Training probabilistic methods such as Horus systems may require largest40

datasets than that of deterministic methods. In deterministic methods such as k

nearest neighbors (k -NN), Support Vector Machine (SVM) and linear discrimi-

nant analysis, a similarity metric such as Euclidean distance is used to differen-

tiate between different measured RSS of the target. Then, the target location

is estimated based on the closest stored RSS in the fingerprint database. Deter-45

ministic methods are most commonly used because of their simplicity [3, 17, 18].

In recent years, several fingerprinting methods have been proposed such as

k -NN and SVM [19]. Neural networks are also used for fingerprinting [20]. Deep

Learning (DL) methods based on neural network, have been proposed since 2006,

which simulate hierarchical structure of human brain [21] and can explore the50

features by a multilayer feature representation framework and get the optimal

weights [22]. The authors of [23] introduce a Deep Neural Network (DNN) which

is pre-trained by stacked de-noising autoencoder. In [24] SAE method, a deep

learning method based on stacked autoencoder using Wi-Fi fingerprinting, is

introduced that allows to efficiently reduce the feature space in order to achieve55
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a robust and precise classification. In [8] a deep learning network with 4 hidden

layers is proposed for indoor localization, which uses channel state information.

Also this network uses hidden Markov model based fine localizer to smooth the

initial position estimation obtained by DNN based coarse localizer. In [25], a

sparse deep autoencoder network is proposed to realize location, activity and60

gesture recognition simultaneously.

For indoor localization, labeled data are required, which both RSSs and

corresponding locations of them are known. Theoretically, more labeled data

results in better localization performance [26]. However, obtaining the labeled

data is time consuming and costly. Thus, the number of labeled data is limited.65

Indoor environments are dynamic because of factors such as people, doors,

elevators, escalators, the change of temperature and humidity. Thus, fingerprint

data need to be updated. Moreover, high level feature extraction of signals is

an important problem for efficient localization. One of the common methods to

extract shallow level information is the mean value method that collects RSS70

vectors at the same location and extract the features by averaging those vectors

[27]. The other method is Gaussian model that is applied when the RSS at

the same location has a Gaussian distribution [28]. To deal with the dynamic

nature of indoor environments, an algorithm is proposed in [29] which uses the

average of a number of maximum RSS observations by analyzing the spatial75

resolution of the signal strength.

The process of collecting fingerprint data requires a considerable time and

labor cost, which makes the number of labeled data limited. In order to re-

duce the required costs and time for collecting labeled fingerprint data which is

needed in dynamic environments frequently, another localization method is em-80

ployed that uses unlabeled data with just a limited number of labeled data, and

is called semi-supervised machine learning method [30]. In contrast to collection

of labeled data, the collection of unlabeled data can be done easily. One method

for unlabeled data collection is utilizing handsets. This method prompts volun-

teer users to report their collected data, in order to participate in data updating85

[31]. The procedure of collecting unlabeled data in order to update fingerprint
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database, in addition to save cost and time, keeps the privacy of participants.

Utilizing unlabeled data also preserve participants’ privacy, who may be con-

cerned about the disclosure of their location information during crowd-sensing

precess. Since in collecting unlabeled data, the location of participant is not90

needed, the volunteer users who don’t like others to be aware of their location

in the area, can also easily help in data collection by sending their RSS from the

access points. Since unlabeled data collection does not require users location,

it keeps the privacy of the users.

The authors of [32] introduce an approach that uses manifold learning for95

localization. It builds a manifold based model for labeled and unlabeled data

and then uses weighted k Nearest Neighbors (WKNN) to localize the target. In

[33] semi-supervised manifold alignment is used to localize targets. Pulkkinen

et al present another semi-supervised manifold learning technique in [34]. This

technique constructs a nonlinear projection to map high dimensional RSS data100

onto a two-dimensional manifold. The authors of [5] use graph based radio

map generation for semi-supervised indoor localization. They use graph-based

signal processing schemes for polishing the input data, determining the outliers

and radio-map generation and achieve to about 2.6 meter localization error in

18× 36m2 area.105

To improve localization performance using unlabeled data, manifold learn-

ing based and semi-supervised learning based works, were proposed in [35].

After data collection, the challenge in indoor localization is feature extraction.

In traditional localization methods, feature extraction is carried out by shal-

low networks, which is not efficient for complex environment because of limited110

modeling and representational power when dealing with such big and noisy data

problem [23]. Deep learning (DL) automatically learns high level features and

can represent original data better than shallow networks. Although DL is bet-

ter than traditional neural networks, its training time is high. Moreover, as

mentioned above, by increasing the size of fingerprint dataset, the localization115

process is time consuming. In order to address these problems, Extreme Learn-

ing Machine (ELM) is utilized, whose learning speed is higher than DL [36]. The
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authors of [37] introduce semi-supervised ELM, which shows that with the same

number of labeled data, Semi-supervised Extreme Learning Machine (SELM)

which uses more unlabeled data has a better performance than traditional ELM.120

Semi-supervised Deep Extreme Learning Machine (SDELM) is the other ELM

based method, which has the advantages of semi-supervised learning and deep

learning [26]. The authors of [26] show that SDELM has 25% success rate by

using 500 labeled data and 3000 unlabeled data. However, because of the ran-

domness of input weight matrix and bias of ELM, it cannot extract high level125

features from the input data. In [38], a semi-supervised ELM based method

is introduced which uses Wi-Fi and Bluetooth Low Energy (BLE) signals. By

using 3000 labeled data, they can achieve to 95.5% localization performance for

3 m error distance threshold.

In this paper, considering the aforementioned challenges, we propose an Au-130

toencoder based Semi-supervised Deep Extreme Learning Machine (ASDELM)

for classification of users based on their location in indoor areas. It uses an

autoencoder which learns high level feature extraction from RSS samples and

merges these features into the deep extreme learning machine (DELM) in or-

der to improve the localization performance. This paper is an extension to our135

previous work [39] in the following aspects:

• Using unlabeled data to encourage more participant in crowd-sensing pro-

cess: semi-supervised method is used, which decreases the time and labor

cost of collecting labeled data. Also, by crowdsensing technique, the vol-

unteers who are in different places of indoor environment can participate140

in collecting unlabeled without disclosure of their location. Since the par-

ticipants only send the collected received signal strength from the trans-

mitter, and do not send their locations (the room number which they are

located), their locations is kept confidential. This privacy can be very en-

couraging for the possible participants in the crowd-sensing process, and145

our proposed method helps to have much more participants with much

cheaper expenses.
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• Decreasing the complexity and improving the accuracy: since in this work,

all of the outputs of the hidden layers are calculated by an autoencoder

network, the time required for the calculation of the extracted feature150

matrix for last hidden layer is decreased. Moreover, the localization ac-

curacy is improved in comparison with our previous method for the same

semi-supervised scenario.

• Real test in addition to computer simulations: in this work, we have

examined the capabilities of our proposed method by using real data and155

we have shown that our proposed algorithm has appropriate localization

performance in real scenarios.

The rest of this paper is organized as follows: In section 2 the basic knowledge

of ELM and autoencoder are introduced. The proposed localization algorithm

(ASDELM) is presented in section 3. Section 4 shows the experimental results160

and confirms the advantages of the proposed algorithm. Finally, the conclusion

is drawn in section 5.

2. PRELIMINARIES

Graph based semi-supervised learning which uses deep autoencoder network

to extract discriminative features is one of the approaches to improve localization165

performance. Due to the long training time for deep learning, ELM is used and

increases the learning speed. This section introduces the basic knowledge of

graph based semi-supervised learning, deep learning, autoencoder networks and

ELM. Then the ASDELM will be presented in detail.

2.1. Graph based semi-supervised learning170

Traditionally, we may categorize the learning processes into two types: learn-

ing with a teacher and learning without a teacher. The former is also referred to

as supervised learning whose goal is to learn a mapping from X to Y, given the

training set made of pairs (xi,yi). The latter may be subcategorized into unsu-

pervised learning and reinforcement learning and as the name implies, there is175
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no teacher to oversee the learning process and relies only on unlabeled examples

[40]. In semi-supervised learning, a training sample that consists of labeled and

unlabeled data is utilized. This can reduce the time and labor needed for data

collection. In addition to unlabeled data, this method is provided with some

supervision information [40, 41].180

For semi-supervised learning to work, certain assumptions have to hold, such

as smoothness assumption, cluster assumption, and manifold assumption. Semi-

supervised smoothness assumption states that if two points x1 and x2 are close

in high density region, then the corresponding outputs y1 and y2 should be close.

The cluster assumption implies that if points are in the same cluster, they are185

likely to be of the same class. The manifold assumption that forms the basis

of several semi-supervised learning methods states that the high dimensional

data lie roughly on a low dimensional manifold. The curse of dimensionality is

a problem of many learning algorithms, which is a term to describe the problem

caused by the exponential increase in volume related to adding extra dimensions190

to Euclidean space. If data lie on a low dimensional manifold, the learning algo-

rithm can operate in a space of corresponding dimension [45]. Semi-supervised

learning should satisfy at least one of the aforementioned assumptions [41, 42].

Graphs are general forms of data representation which are utilized for ex-

plaining the geometric structure of data domains in multiple applications, such195

as energy, transportation, sensor and neural networks. The weight of each edge

in the graph mostly represents the similarity between two vertices that connect

them. The connections and corresponding edge weights are allocated by the

physics of problem or data. For example, the edge weights may have an inverse

relationship with the physical distance between nodes of the network [43]. In200

graph based semi-supervised learning, both labeled and unlabeled data are the

vertices of the graph and this provides a paradigm for modeling the manifold

structures. The main goal of these methods is to find an optimal classification
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function f∗ by solving the following optimization problem [44]:

argmin
f

[ 1l

l∑
i=1

(f (xi)− yi)
2

+ λA||f ||2+

λI
n∑

i,j=1

(f (xi)− f (xj))
2
Wij ]

(1)

where {(xi,yi)}; i = 1, ..., l are labeled samples, {xi}; i = l + 1, ..., n are unla-205

beled samples, xi is RSS sample and yi is its corresponding label. λA and λI

are the control parameters of smoothness in the ambient and inherent spaces, l

is the number of labeled samples and n is the sum of the number of labeled and

unlabeled data. W is an affinity matrix whose element Wij denotes the simi-

larity weight of samples xi and xi. To use the geometrical structure of feature210

space, most researchers adopt a Laplacian graph, which makes (1) be expressed

as:

argmin
f

[ 1l

l∑
i=1

(f (xi)− yi)
2
+

λA||f ||2 + λIf
TLf ]

(2)

where L is the Laplacian matrix [44], and will be explained in section 3.

2.2. Autoencoder

An autoencoder is a neural network that is trained to replicate its input to215

output. Training an autoencoder is unsupervised in the sense that no labeled

data is needed. Each layer of autoencoder consists of encoding and decoding

procedure. Hidden layer of autoencoder, h, describes a code for representing

the input data and the decoder produces a reconstruction. The encoder and

decoder can have multiple layers, but for simplicity consider that each of them220

has only one layer. If the input data is x ∈ <Di , then the encoder maps the

input to r ∈ <De as Eq. (3), where Di and De are input dimension and encoded

representation dimension, respectively.

r(1) = h(1)
(
Ψ(1)x + b(1)

)
(3)

where h(1) is activation function for the encoder, and Ψ(1) is encoding weight

matrix and b(1) is the encoding bias. The decoder maps the encoded represen-225

9



tation r back into an estimate of the original input vector:

x̂ = h(2)
(
Ψ(2)r(1) + b(2)

)
(4)

where h(2) is the decoder activation function and, Ψ(2) and b(2) are decoding

weight matrix and decoder bias, respectively [45, 46, 47].

The learning process of autoencoder is defined as minimizing a loss function

that measures the error between the input and its reconstruction [25]:230

J(Ψ,b) =

[
1
N

N∑
i=1

(
1
2 ||r

(l−1)
i − x̂

(l)
i ||2

)]
+ϑ

2

nl−1∑
j=1

nl∑
i=1

(
Ψ

(l−1)
ij

)2 (5)

where N is the total number of training samples, nl indicates the number of

units in layer l, and we define r1i = xi, and second term denotes the weight decay

which is utilized to avoid overfitting, and ϑ is the weight decay parameter.

Traditionally, autoencoders were utilized for feature learning or dimension

reduction. If the capacities of encoder and decoder are too much or if the hidden235

code has dimension equal to or greater than the input, this autoencoder is called

overcomplete which fails to learn anything useful. The cost function which is

used in regularized autoencoder leads to further properties in capacity model,

including the sparsity of representation, the small size of the derivative of the

representation, and robustness to noise or to missing inputs [45].240

A sparse autoencoder is simply an autoencoder that adds a regularizer to

the cost function [48]. This regularizer is a function of the average output

activation value of a neuron. Particularly, if a sparsity constraint is imposed on

hidden neurons, the autoencoder can extract useful features even if the number

of hidden neurons is large.245

The cost function for training a sparse autoencoder is defined as:

Ĵ (Ψ, b) = J (Ψ, b) + γ.Ωsparsity (6)

where the second term is sparsity penalty term and γ controls the weight of spar-

sity term. We can learn the parameters Ψ and b by minimizing the overall cost
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function [25]. Finding of researches show that deep autoencoders’ efficiency is

much better than that of shallow or linear autoencoders [49]. In a deep autoen-250

coder network, each layer is trained as a one layer autoencoder by minimizing

the error in reconstructing [45].

2.3. Extreme Learning Machine

We considerN arbitrary distinct samples (xi,yi) where xi = [xi1, xi2, ..., xin]T ∈

<n are RSS samples and yi = [yi1, yi2, ..., yim]T ∈ <m are corresponding labels,255

which n and m are the numbers of transmitter sensors and classes, respectively.

The output of a neural network with one layer including Ñ neurons is:

fÑ (xj) =
Ñ∑
i=1

ϕiG(ρi, bi,xj),

ρi ∈ <n, bi ∈ <,ϕi ∈ <m, j = 1, 2, ..., N

(7)

where ϕi = [ϕi1, ϕi2, ..., ϕim]T is the weight vector connecting the ith hidden

neuron and output neurons, and ρi = [ρi1, ρi2, ..., ρin]T is the weight vector

connecting the input neurons and the ith hidden neuron. bi is the threshold of260

the ith hidden neuron, and G(ρi, bi,xj) is the output of the ith hidden neuron.

If the activation function of hidden neuron is g(.), the output of the ith hidden

neuron is given by Eq. (8):

G(ρi, bi,xj) = g(ρi.xj + bi) (8)

The goal of this one layer network with Ñ hidden neurons and activation func-

tion g(.) is to approximate these N samples by tending the mean error to zero265

according to
Ñ∑
j=1

||fÑ (xj)− yj ||22 = 0, where ||.||2 represents the 2-norm opera-

tion. Therefore, there exist ϕi, ρi and bi such that:

Ñ∑
i=1

ϕiG(ρi, bi,xj) = yj , j = 1, 2, ..., N. (9)
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Eq. (9) for the whole network can be rewritten as [26]:

HΦ = Y;

H =


G(ρ1, b1,x1) · · · G(ρÑ , bÑ ,x1)

...
. . .

...

G(ρ1, b1,xN ) · · · G(ρÑ , bÑ ,xN )


N×Ñ

,

Φ =


ϕT1
...

ϕT
Ñ


Ñ×m

,Y =


yT1
...

yTN


N×m

.

(10)

where H is the feature matrix. The goal of ELM is to minimize the error between

real output and expected one and its solution can be represented as [26]:270

Φ = arg min
Φ
||HΦ−Y|| → Φ = (HTH)−1HY (11)

3. PROPOSED METHOD

As claimed above, due to the dynamic nature of indoor environment, train-

ing data need to be updated. Also, since the labeled data collecting is time

consuming and labor intensive, the number of them is limited. To address this

problem, and to preserve the privacy of the participants of crowd-sensing, we275

propose a semi-supervised deep autoencoder based algorithm, which uses both

labeled and unlabeled data for training.

Since we use both labeled and unlabeled data, to study their characteristics,

this problem is changed to [26]:

HΦ = X (12)

where X = [x1,x2, ...,xN ] ∈ <n×N represents N data including N1 labeled280

data (xi,yi); xi = [xi1, xi2, ..., xin]T ∈ <n, yi = [yi1, yi2, ..., yim]T ∈ <m and

N2 unlabeled data xj = [xj1, xj2, ..., xjn]T ∈ <n. If xj is a labeled data and

belongs to class k, the kth value of tj is set to be 1 and the rest (m − 1) is set

to be -1. The label vector of unlabeled data is set with its all elements to be

12



0. Therefore, the label matrix is Y = [y1,y2, ..,yN1 ,0, ...,0] ∈ <m×N , where285

0 ∈ <m. In order to extract discriminative features from training data, we use

deep autoencoder network. The feature matrix, H, is obtained by training a

deep autoencoder network, rather than using H in (10), that is generated by

random weights and biases.

After feature extraction by neurons in hidden layers of deep autoencoder290

network, these features are put into the classifier. Assuming that F = HΦ, the

training aims to find an optimal classification function Φ optimizing as:

min
ϕ

1

2
||F−Y||2 +

γ

2
||Φ||2 (13)

The second term γ
2 ||Φ||

2 is the `2 norm regularization which is added to

guarantee the generalization ability, and γ is a balance factor that controls

the influence of the manifold regularization. Besides `2 norm regularization,295

Laplacian regularization is brought into (13) to provide a closed form solution

to an optimization problem:

min
ϕ

1

2
||F−Y||2 +

γ

2
||Φ||2 + λTr

(
FTLF

)
(14)

where λ is a balance factor to control the influence of the manifold regularization.

Here Tr(.) is the trace of the matrix and L is Laplacian matrix. The graph

Laplacian is defined as L = D −W, where the degree matrix D is a diagonal300

matrix and each diagonal element is given by Dii =
N∑
i=1

Wij . W is the weight

edge matrix. When the edge weights are not naturally defined, one common

way is via Gaussian kernel [43]:

W(i, j) = exp

(
−||xi − xj ||2

2ς2

)
(15)

where ς is the kernel parameter for location coordinates.

By considering F = HΦ, the final goal of the semi-supervised classifier305

becomes [26]:

l2 = min
ϕ
{||JHΦ−Y||2 + γ||Φ||2+

λTr
(

(HΦ)
T
L (HΦ)

)
}

(16)
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where J = diag (1, 1, ..., 1, 0, 0, ..., 0) ∈ <N×N with the first N1 diagonal elements

set to 1, and Y ∈ <N×m is the corresponding label matrix. The derivative of

Φ with respect to l2 is:

∂l2
∂Φ

= (JHΦ−Y)
T
JH + γΦT + λ(HΦ)

T
LH (17)

The optimum solution of Φ is given by [26]:310

∂l2
∂Φ

= 0→ Φ =
(
γI + HT (J + λL) H

)−1
HTJY (18)

Similar to ELM, the corresponding locations for an input data matrix as

XD are calculated by HΦ = YD, in that H is the feature matrix obtained by

training a deep autoencoder network, Φ is the optimum classification function

in (18), and YD is the corresponding label matrix of XD.

The classifier parameters in Eq. (18), (γ and λ), affect the overall localization315

performance, so they need to be tuned. Besides, to study the influence of deep

autoencoder network depth on the performance, we increase the depth by 1

and adopt the same procedure for parameter optimization, to calculate the

localization performance.

4. PERFORMANCE EVALUATION320

In this section, we describe the simulation setup to test our purposed algo-

rithm for fingerprint data adopted from transmitter sensors. In order to generate

the RSS values at different RPs to construct the fingerprint database, the large

scale path-loss model with lognormal shadowing is used [51]:

PL(d) = PL(d0)− 10nlog10

d

d0
−

P∑
p=1

WAF (p) +X(σ) (19)

where d0 is the reference distance and d is the distance between transmitter325

sensors and the RP. PL(d0) is the received signal in the reference distance and

its value for different transmitter sensors are different. Moreover, n is the path-

loss exponent and X(σ) is a zero mean Gaussian random variable with the

standard deviation σ, which models the shadowing effect. Also WAF is the

14



wall attenuation factor and P is the number of walls. In this simulation we330

consider 10dB power loss for each wall. All simulations are carried out using

MATLAB 2016(a) software. These simulations are performed on a platform

with an Intel(R) Core i3-4160 CPU @3.60GHz, and 8 GB RAM.

4.1. MODEL GENERATION

Experiments are conducted in a rectangular shape laboratory of 40× 29m2,335

including 19 rooms. The allocated transmitter sensors in this environment are

shown in Fig. 1. We simulate such an environment to generate 5000 fingerprint

data for localization. 1200 of them were randomly chosen as testing data and

the rest became training data. As mentioned above, the number of training data

3.4
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18.4

23.4

28.4

Y(
m

)

4035302520151050
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-80
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0

dB
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Figure 1: Simulation area layout with transmitters’ coverage.

affects the localization performance. We use a limited number of labeled data340

and a large number of unlabeled data for training. We increase the number of

training data gradually, and show how the labeled and unlabeled training data

can affect the proposed fingerprint based localization performance.

To verify the performance of the proposed algorithm, at first we set up an

effective model. We construct the ASDELM network with 3 hidden layers in345

which the numbers of neurons are 300,500 and 700, respectively. In the first step,

we set a limited number of data from the training database to learn the network

and calculate the localization performance of the test data. Then, in order to

show how the increasing training data improves the localization performance,

we add extra training data and calculate the localization performance. In this350
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paper, we have considered some rooms in the area, and we want to determine

that each user is located in which room (classification of users in terms of rooms).

Therefore, if the room number which we estimate for a special user is correct,

we say that the localization is successful, and if the estimated room is not

correct, we say that the localization is not successful. So, in this work the355

correct localization means the correct estimate of room number for a user. The

localization success rate is defined as Ncorrect/Ntotal, where Ncorrect and Ntotal

are the number of correct localizations and the number of total localization,

respectively.

4.2. LOCALIZATION PERFORMANCE360

In this subsection, we evaluate the localization performance of our proposed

method. The parameters γ and λ are optimized by hierarchical optimization

mechanism. For this purpose, firstly we assign empirical values to γ, and then we

tune the other parameter. After optimizing parameters in the λ, we adjust the

γ. By this hierarchical adjustment mechanism, the optimal values for classifier365

parameters are γ = 0.01, and λ = 0.01. After the parameters are optimized,

we test the localization performance. For this purpose, in the first step, we

use 158 labeled data from the training set to train the network and measure the

localization accuracy for the test data. In the remainder of this article, wherever

we use the accuracy, we mean the success rate. In order to investigate the effect370

of increasing the number of the training data on the localization performance,

we add 300 extra data in each step to training data and measure the localization

accuracy, again. At each step, 30% of the added training data are labeled data

and the rest are unlabeled. As shown in Fig.2, in the first stage, our proposed

algorithm leads to 77.95% success in localization. By increasing the number375

of training data, including unlabeled data and a limited number of labeled

data in the next stages, it can be seen that the localization performance is

improved. In the last stage, the localization success exceeds 89.42%. As can be

seen, our proposed algorithm can improve the localization success rate by about

24% than our previous Autoencoder based Deep Extreme Learning Machine380
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Figure 2: Localization performance with 158 primary labeled training data and adding extra

training data for semi-supervised localization methods, where in each step 30% of added data

are labeled and the rest of them are unlabeled.

Table 1: Localization success rate for different semi supervised methods.

Method name ASDELM semi-supervised ADELM semi-supervised SAE SDELM SELM

Success rate(%) 85.90 61.73 73.82 11.40 9.88

(ADELM) method in semi-supervised way and more than 70% compared with

the traditional SELM and SDELM.

Moreover, to compare our proposed algorithm localization performance in

a supervised way with other supervised algorithms, we apply our proposed al-

gorithm and some conventional supervised localization methods in the same385

scenario. For this purpose, in the first step we use 158 labled training data and

calculate the localization performance. In order to update the training data,

we have increased the number of training data by adding labeled data in sev-

eral steps. As shown in Fig.3, our proposed method in supervised way, has

better localization performance compared with other conventional supervised390

localization methods.

In Table I, the mean of localization success rate for the proposed method

(ASDELM) is compared with the performance of some different semi-supervised

methods. Also, in Table II, the mean of localization success rate for the super-

vised ASDELM is compared with the performance of some different supervised395
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Figure 3: Localization performance with 158 primary labeled training data and adding extra

labeled training data for supervised localization methods.

Table 2: Localization success rate for different supervised methods.

Method name supervised ASDELM Horus supervised SAE k -NN

Success rate(%) 87.73 84.58 83.16 81.58

methods.

Moreover, we have compared the required time of ASDELM with other meth-

ods in Table III. For this purpose, we have considered the same scenario that

is considered in paper. In the first step, we have 158 primary labeled data and

in each next step, 300 extra data is added, which 30% of them are labeled for400

semi-supervised methods and for supervised methods all of added training data

in each step are labeled. Although the measured time for each method is for

total training and testing phases, but most of this time is for training phase.

In other words, after learning the network and extracting the feature matrix,

testing phase is done quickly. Moreover, it should be noted that, though the405

training time for our proposed algorithm is more than SELM and SDELM,

our proposed method achieves about 86% localization accuracy, but SELM and

SDELM localization accuracy for the same scenario is less than 12%. In com-

parison with k -NN and Horus, though ASDELM training time is more, but this

method is semi-supervised which saves the time and cost, while k -NN and Ho-410

rus are supervised and they need labeled data, which collecting of them is time
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Table 3: Total training and testing time (localization time) for different localization methods.

Method name ASDELM ADELM[39] SELM SDELM Horus k -NN

Localization time(sec) 3031 3804 50 60 957 7

consuming and labor intensive.

In order to investigate the effect of the number of labeled training data

on the localization performance, another scenario is considered. In the first

step, 67 training data are used and the localization performance is calculated.415

In order to update the fingerprint database, we add extra training data, step

by step; in each step 90 extra data are added. As shown in Fig.4, with the

increase of labeled data ratio, the localization performance increases. The case

in which all of added training data are labeled, is a supervised algorithm. As

depicted in Fig.4, with a slight loss in localization performance compared with420

the supervised case, we can save the time and cost of collecting labeled data by

adding unlabeled data for training purposes.

Moreover, in order to compare the accuracy of our proposed method in

supervised and semi supervised cases with the Horus, k -NN and supervised and

semi-supervised SAE, for different RSS measurement noises, we have calculated425

the success rates of these methods for the case with 158 training data. The

RSS noise is generated based on factors such as human movements, variable

temperature, and transmitter/ receiver noise. In order to model the effects of

mentioned factors, we consider RSS noise as a Gaussian model. In each step

we have added the same noise to the data. In supervised methods, all of the430

training data are labeled. However, in semi-supervised method 28% of 158 data

(45 data) are labeled and the rest are unlabeled. As shown in Fig. 5, with

a 15% drop in accuracy, we have saved the time and cost by using just 28%

labeled data. As shown in Fig. 5, by increasing the σ of the Gaussian noise, our

proposed method in supervised and semi-supervised cases, have good resistance435

to RSS noise in the environment compare with the Horus method.
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Figure 4: ASDELM based localization performance with 67 primary training data and adding

extra training data with different fraction of labeled data.
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Figure 5: Accuracy of the different methods for different RSS noise levels.

4.3. LOCALIZATION PRACTICAL PERFORMANCE

In this subsection, localization accuracy of a real-scenario experiments is

calculated. For this purpose, we collected RSS data from available transmitters

in the area. By using an android application which was installed on a Sony440

Xperia ZR C5502 smart phone, the power of received signals from available

transmitters were collected, according to Fig. 6.

We consider a laboratory area of 24× 16m2, including 5 rooms and 6 trans-

mitter sensors on the second floor of the Cyberspace Research Institute of Shahid

Beheshti University. The rooms and locations of the transmitter sensors are445

shown in Fig. 7. For data collection, in each point we have collected the re-

ceived powers for 30 seconds (totally about 10 samples from each transmitters

in the area in this 30 seconds) in 2 different days. After collecting data, we have
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Figure 6: Screenshot of data collection application.

calculated the average of these data taken in 30 seconds and have considered it

as the fingerprint data of that point. We have used the collected data of the first450

day as training data and we have tested our method by 47 randomly selected

data from collected data of the second day.

To verify the practical performance of our algorithm, we have used the col-

lected data for training and testing. For this purpose, we constructed the same

ASDELM network with 3 hidden layers in which the number of neurons are455

300-500-700, respectively. In the first step, we used 29 labeled data to train the

ASDELM network. Then in each of the next steps, we added 25 extra data

to update the training data, from which 8 were labeled and 17 were unlabeled.

Fig. 8 shows the location of labeled, unlabeled and test data in the laboratory

environment. As expected, our proposed approach was applicable for practical460

environments. In order to compare the performance of our proposed method

with another semisupervised method, we apply our ASDELM and SAE method

in the same scenario. As shown in Fig. 9, in first step using only 29 labeled

training, the localization success rate of ASDELM was 77%, and with the in-

crease of the number of training data, including labeled and unlabeled data,465
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Figure 7: Layout of the environment and transmitter sensors.

the localization performance was improved. By updating training data with the

new fingerprint data, in the last step, the localization performance was about

83.1%. In all steps, ASDELM has better localization performance compared

with semisupervised SAE.

Also, in order to compare the performance of our proposed method with470

the traditional supervised method with using practical data, we apply our AS-

DELM, Horus, k -NN and supervised SAE methods in the same scenario. For

this purpose, in the first step we use 29 labeled training data. In order to up-

date the training data, we add 100 extra labeled training data, step by step. As

shown in Fig. 10, our proposed method in supervised way has better localization475

performance compared with the Horus, k -NN and based localization methods.

5. Conclusion

In this paper, we have proposed an Autoencoder-based Semi-supervised Deep

Extreme Learning Machine (ASDELM) indoor localization method, which uses

the high level extracted features by autoencoder from the collected RSS mea-480

surements using a smartphone with internal sensors. In order to improve the

localization performance, we showed that using more training data, including
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Figure 8: The location of labeled, unlabeled and test data in the laboratory environment.
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Figure 9: ASDELM based localization performance with 29 primary training data and adding

extra training data by utilizing collected data.

unlabeled and a limited number of labeled data, can lead to an improved local-

ization performance. Also using more unlabeled data, can save the time and the

cost of collecting labeled data. We compared our proposed algorithm perfor-485

mance with the traditional semi-supervised ELM and semi-supervised DELM,

which use random input weights and bias. Simulation results show that our

ASDELM method improves the performance, and using more training data in-

cluding unlabeled data and a limited number of labeled data, further improves

the localization performance. This last achievement means that by using smart-490

phones to collect labeled and unlabeled data, we can improve the localization
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Figure 10: Localization performance with 29 primary labeled training data and adding extra

collected labeled training data for supervised localization methods.

performance by updating the training data set.
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