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ABSTRACT 

Total Knee Replacement (TKR) rehabilitation critically depends on precise physiotherapy 
exercise execution, and the rise of patient volumes and constrained clinical resources limit 
continuous supervision. This study presents an Artificial Intelligence (AI) framework for real-
time assessment and feedback of TKR exercises using deep learning–based human pose 
estimation to empower remote rehabilitation. We investigate three architectures: a Dense 
Convolutional Neural Network (DCNN) incorporating frame decoupling for robust joint 
tracking; a pruned Generative Adversarial Network (Sparse GAN) optimized for 
computational efficiency; and a novel hybrid model that embeds the DCNN as a 
discriminator within the GAN model. A diverse dataset of over 10,000 annotated video clips, 
sourced from clinical environments and public repositories, was processed with OpenCV, 
and joint annotations were generated using OpenPose. Models were trained and evaluated 
on standard metrics (i.e. Precision, Recall, F1-score) alongside runtime and memory usage 
benchmarks. The hybrid architecture achieved the highest classification performance with 
86.01% F1-score, which demonstrates the synergetic benefits of combining rich feature 
extraction with generative refinement, though it incurred elevated computational costs. The 
Sparse GAN provided faster inference suitable for mobile deployment, with only a marginal 
decrease in F1-score. The standalone DCNN provided a balance between accuracy and 
speed, but it did not match the hybrid’s precision. These results highlight a fundamental 
trade-off between model complexity and real-time usability in AI-driven therapeutic 
monitoring. The hybrid model is optimal for clinical settings where accuracy is paramount, 
while the Sparse GAN provides a practical solution for resource-constrained and edge-
based applications. Future work will explore model compression, hardware acceleration, 
and edge-computing strategies to further optimize performance. By demonstrating the 
viability of advanced pose estimation techniques in a physiotherapy context, this research 
contributes to the broader discourse on the use of AI in healthcare for scalable, autonomous 
rehabilitation tools across several medical and wellbeing domains. 
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INTRODUCTION 
Postoperative rehabilitation is crucial for optimal recovery following TKR, where 
precise execution of therapeutic exercises significantly impacts functional 
outcomes (Cheong Chung et al., 2020; Kluzek et al., 2023). However, healthcare 
systems like the NHS face growing challenges in providing continuous supervision 
due to increasing patient volumes and limited clinical resources (Schoen, 2008). 
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This supervision gap raises concerns about improper exercise performance, which 
may delay recovery or cause complications among patients. 

Recent advances in deep learning-based Human Pose Estimation (HPE) provide 
optimal solutions to enhance rehabilitation monitoring capabilities (Sigal, 2021; 
Sun et al., 2019). These computer vision systems can automatically analyse 
exercise movements from video by detecting deviations from correct form and 
providing real-time feedback. By integrating such medical technology (MedTech) 
into rehabilitation protocols, patients can perform guided exercises independently 
while maintaining clinical standards of care outside traditional healthcare settings. 

This study built and validated a deep learning framework to automate 
physiotherapy monitoring by comparing three architectures: First, DCNN for 
robust feature extraction; Second, a pruned Sparse GAN optimized for efficiency; 
and third, a novel hybrid DCNN+GAN model combining both approaches 
(AbouGrad and Shabarshov, 2024). The models are trained using video datasets 
representing various environments and different conditions, including patient 
demographics, to ensure generalizability (LeCun et al., 1998; Saito et al., 2020). 

Experimental results demonstrate that the hybrid model achieves superior 
classification accuracy, though with higher computational demands, revealing a 
critical trade-off between precision and operational efficiency. These findings 
contribute to developing scalable, intelligent monitoring systems capable of 
supporting both clinical and remote rehabilitation (PoseTrainer Project Team, 
2023). By addressing real-world healthcare constraints, this research advances AI-
driven solutions for accessible, patient-centered rehabilitation, and contributes to 
the evolving discourse on AI in healthcare by demonstrating how machine vision 
and pose estimation can be repurposed to support patient autonomy, improve 
recovery outcomes, and reduce clinical workloads. In doing so, it aligns with global 
efforts to create AI-driven patient-centric healthcare systems. The hybridisation 
approach also presents a promising pathway for developing high accuracy pose 
estimation models applicable in various domains, such as elderly care, sports injury 
recovery, and telemedicine. 

Overall, this study underscores the transformative potential of deep learning in 
enabling more efficient, accessible, and accurate health interventions. By offering 
a technically feasible and socially impactful solution to physiotherapy supervision, 
it lays a foundation for future research in combining AI models to balance accuracy 
with usability. Further work should explore reducing runtime through algorithmic 
optimisation or hardware acceleration to enhance the model's suitability for 
widespread and real-time deployment. 

 

RELATED WORK 

Computer vision-based HPE has shown significant potential for revolutionizing 
rehabilitation assessment models (Ferraz et al., 2014; Přibyl et al., 2017). 
Foundational work using geometric approaches, such as Perspective-n-Point 
algorithms, established important mathematical principles for three-dimensional 
(3D) pose reconstruction, while modern improvements seek real-world robustness 
and computational efficiency (Wu et al., 2023; Pascual-Escudero et al., 2021). 
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The projection ray mapping demonstrates the use of perspective projection from 
the camera centre to project 3D points (x1, x2, x3) onto a 2D image plane, as shown 
in Figure 1. It emphasises the importance of focal length, camera settings, and 
spatial transformation in precise human pose estimation (Ferraz, Binefa, and 
Moreno-Noguer, 2014). 

 
Figure 1: Projection Ray Mapping (Ferraz, L., Binefa, X. and Moreno-Noguer, F., 2014). 

The field underwent a paradigm shift with the introduction of deep learning 
techniques, and was pioneered by LeCun et al. (1998) Convolutional Neural 
Network (CNN) architecture. This enables breakthroughs, such as DeepPose's end-
to-end joint coordinate prediction (Toshev & Szegedy, 2014). Subsequent 
innovations in research, including Ouyang et al. (2014) multi-source training 
frameworks and He et al. (2016) residual network designs, substantially enhanced 
pose estimation reliability by addressing fundamental deep learning challenges. 

The graphic displays the results of a convolutional layer that uses learnt filters 
to highlight and extract significant image features like edges and shapes. As shown 
in Figure 2, the higher activation levels indicate the presence of more noticeable 
characteristics in the input image (LeCun et al. 2015). 

 
             Figure 2: Post-Convolution Feature Extraction (LeCun et al., 2015). 
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Recent architectural advances have pushed performance boundaries further. The 
Sun et al. (2019) High-Resolution Networks (HRN) model has achieved 
unprecedented accuracy through sophisticated feature preservation, while Özyer et 
al. (2021) comprehensive reviews and specialized platforms, such as PoseTrainer 
Project Team, (2023), demonstrated the MedTech's growing clinical applicability. 

Generative approaches have expanded HPE capabilities, with optimized GAN 
variants balancing computational demands with motion modeling fidelity (Saito et 
al., 2020). These healthcare systems with such MedTech abilities show promise 
for rehabilitation settings by maintaining functionality even in suboptimal 
conditions, such as low-light environments (Sevikumar et al., 2025). 

Emerging evidence highlights how patient-centric digital rehabilitation 
platforms boost engagement and enhance recovery outcomes (Santórum et al., 
2023). These findings validate the effectiveness of interactive and feedback-based 
systems for remote therapy purposes, particularly relevant for developing TKR 
physiotherapy monitoring solutions that require sustained patient involvement. 

As emphasized in foundational surveys by Sigal (2021), successful clinical 
implementation requires careful optimization of three key factors: (1) 
Measurement precision; (2) Computational performance; and (3) Practical 
adaptability. Current evidence positions deep learning-based HPE as a 
transformative technology for remote rehabilitation, which can deliver real-time 
movement analysis to augment traditional physiotherapy while addressing critical 
healthcare resource limitations. 

Methodology 
The research approach and methods used to create a deep learning-based HPE 
system designed for monitoring in physical therapy are described and discussed in 
this section. It includes the procedures of data collection, preprocessing, model 
construction, training, and assessment to create a systematic framework that can 
accurately analyse patient movements. 

Data Collection and Description: To build an effective model for analysing 
physiotherapy postures, a diverse dataset encompassing accurate and inaccurate 
poses was crucial. The dataset integrated primary data gathered from customized 
video recordings of patients and secondary data obtained from authorized online 
physiotherapy resources (Davis et al., 2011; Santórum et al., 2023). 
Primary Data: Structured video recordings are captured of participants performing 
TKR rehabilitation exercises in a controlled setting. Each participant executed 
prescribed movements, including leg lifts, squats, and step-ups, with proper and 
intentionally flawed techniques recorded for analysis (Cheong Chung et al., 2020). 
Secondary Data: Supplementary datasets were curated from publicly accessible 
physiotherapy training tutorials, which incorporate diverse demographics, 
environmental conditions, and camera perspectives (PoseTrainer Project Team, 
2023). Ethical compliance has been considered for quality assurance, and proper 
authorisation was secured for data utilisation. 

The combined datasets, which included more than 17 hours of video recordings, 
were subsequently divided into separate frames to perform the model training. 
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Data Preprocessing: The video datasets underwent frame-wise processing using 
OpenCV and NumPy using the following key steps: 
Frame Extraction: Videos were sampled at fixed intervals to maintain temporal 
consistency and consistent time intervals between movements. 
Normalization: Pixel intensities ( p ) were rescaled to [0, 1] in order to uniform all 
data for stable training convergence. 
Augmentation: Spatial transformations, including flipping and rotation, were 
applied to improve dataset diversity and model robustness. 
Annotation: Joint keypoints were extracted using OpenPose and classified as 
correct or incorrect based on biomechanical alignment to ensure proper positioning 
of the body's segments during movement (PoseTrainer Project Team, 2023). 

The pre-processed dataset was strategically divided into three distinct subsets to 
optimize model development and evaluation, where 70% was allocated for training 
purposes, 15% for validation, and 15% for final testing. This partitioning scheme 
served multiple critical purposes: (1) providing ample training data for robust 
model learning, (2) enabling hyperparameter optimization and overfitting 
detection through validation, and (3) ensuring fair assessment of generalization 
capability using completely unseen test data. The balanced distribution across 
these subsets was carefully maintained to guarantee unbiased performance 
comparisons between all investigated architectures while preserving the statistical 
integrity of the evaluation process. 

Model Development: To identify the optimal approach for physiotherapy and 
pose classification technical solution, three deep learning architectures were 
developed and evaluated:  

Decoupled Convolutional Neural Network: Based on LeCun et al. (1998), the 
DCNN model processed video frames independently using NumPy for reducing 
overfitting and improving error recovery, as shown in Figure 3. 

 
Figure 3: DCNN Architecture (LeCun et al., 1998). 

The architecture consisted of: 

• Input Layer: Processes normalized frame data by converting pixel values 
into input nodes for subsequent feature extraction. 

• Hidden Layers with ReLU Activation: Two interconnected hidden layers 
using ReLU activation to capture non-linear pose relationships while 
preventing gradient vanishing and improving training efficiency. 

• Softmax Output Layer: Utilizes Softmax normalization to generate 
classification probabilities, determining exercise correctness through 
probabilistic outputs. 
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By using the decoupled feedback principles and training in batches of 20 frames, 
the model was able to learn independently across batches to reduce gradient noise 
and enhance generalisation ability overall. 

Sparse Generative Adversarial Network: Implemented in PyTorch, the Sparse 
GAN model, presented in Figure 4, includes the following key components: 

• Generator, G: The generator synthesizes artificial pose sequences by 
progressively transforming random noise through layered neural 
computations. Its objective is to create movements that increasingly 
approximate real exercises by responding to the discriminator's evaluation 
of authenticity. 

• Discriminator, D: A deep neural classifier distinguishes between genuine 
and synthesized poses by analysing hierarchical movement patterns. The 
adversarial training process simultaneously refines both networks and 
sharpens the discriminator's detection precision while improving the 
generator's ability to produce convincing simulations. 

 
Figure 4: GAN-based synthetic data generation framework (Little et al., 2021). 

Network sparsity was optimized using PyTorch’s pruning utilities with 20% 
pruning yielding the best efficiency-performance balance (Saito et al., 2020).  

Hybrid DCNN + GAN Model: The hybrid architecture integrated the DCNN as the 
discriminator within the GAN framework for combining the DCNN's robust 
classification performance with the GAN's data generation capabilities. By 
implementing a fully trained DCNN instead of a conventional shallow 
discriminator, the model achieved more precise discrimination between real and 
synthetic pose sequences, which significantly enhanced the adversarial learning 
mechanism. This integration utilised the DCNN's sophisticated feature extraction 
to have detailed movement analysis while benefiting from the GAN's ability to 
generate diverse pose variations. 
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The combined architecture demonstrated superior classification performance, 
evidenced by higher F1-scores compared to standalone models, indicating 
improved accuracy in detecting correct and incorrect therapeutic movements. 
However, this performance gain came with increased computational demands, 
including longer processing times, greater memory usage, and more extensive 
training requirements. These trade-offs underscore the need to balance model 
complexity with practical deployment constraints, particularly in clinical settings 
where both accuracy and efficiency are critical considerations. 

Model Training: The three models were trained on annotated pose dataset for 
binary classification (correct vs. incorrect form). Training spanned 50 epochs with 
early stopping to mitigate overfitting. Performance was evaluated using Precision, 
Recall, and F1-score. Results demonstrated that the hybrid DCNN+GAN model 
outperformed others with an F1-score of 86.01%, followed by the standalone 
DCNN with 81.68% and Sparse GAN with 71.09%. 

This study implemented a multi-architecture deep learning approach to evaluate 
automated physiotherapy posture assessment. By systematically collecting and 
processing motion data, then developing specialized neural networks, the research 
successfully demonstrated accurate automated evaluation of therapeutic exercises. 

Experiments and Findings 
During the research study, a comprehensive evaluation of three distinct neural 
network architectures was conducted for automated physiotherapy monitoring: 
DCNN model, GAN model, and a hybrid combination DCNN+GAN model. Our 
quantitative analysis used standard classification metrics precision, recall, and F1-
score supplemented by graphical representations of model performance. The 
comparative assessment reveals critical insights into the relative strengths and 
limitations of each approach for clinical posture analysis applications. 

The Proposed DCNN+GAN Model Performance: The assessment applied three 
clinically relevant performance metrics, which are Precision, Recall, and the F1 
Score. These measures were deliberately selected given their importance in 
medical diagnostics, where both false identifications and missed detections could 
potentially impact patient outcomes. Table 1 presents the proposed DCNN+GAN 
model performance comparison. 

Table 1. The Proposed DCNN+GAN Model Performance Comparison. 

Model Precision (%) Recall (%) F1 Score (%) 

DCNN 82.36 81.01 81.68 

Sparse GAN 72.03 70.10 71.09 

Combined 
DCNN+GAN 87.90 84.20 86.01 
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Inference Time Comparison: Processing latency represents a crucial operational 
parameter for real-world practice and implementation. We conducted rigorous 
benchmarking of computational performance across all architectures by measuring 
execution time for standardized 30-second clinical video segments. Table 2 
presents benchmarking of computational performance across the models. 

Table 2. Computational Performance Benchmarking. 

Model Inference Time (min) 

DCNN 8.2 

Sparse GAN 7.1 

Combined DCNN+GAN 14.0 

 
While our hybrid model achieved superior classification accuracy with an 

86.01% F1-score, its computational overhead presents significant deployment 
challenges for time-sensitive clinical applications. It has been obvious that Sparse 
GAN implementation demonstrated the most favourable balance between 
processing speed, with 7.1 minutes, and acceptable F1-score accuracy of 71.09%, 
suggesting its potential as a candidate for real-time applications where latency 
constraints outweigh marginal accuracy gains, see Table 2. 

 
The Research Key Findings: The experimental results demonstrate that the 
hybrid DCNN+GAN model achieved the highest classification accuracy, making 
it particularly suitable for clinical applications requiring precise movement 
assessment. While the sparse GAN model showed the fastest inference speeds 
advantageous for real-time mobile implementations, this came at the cost of 
reduced accuracy compared to the hybrid approach. The standalone DCNN 
provided intermediate performance, being outperformed by the combined model's 
enhanced capabilities. These findings suggest that the hybrid architecture offers 
the most promising solution for accurate physiotherapy monitoring in resource-
sufficient environments, whereas the sparse GAN represents a viable alternative 
when real-time processing is prioritized over maximum precision. The research 
study establishes an important benchmark for future development of AI-assisted 
rehabilitation systems, which reveals the need for continued optimization to bridge 
the current accuracy-speed trade-off in practical deployments. This research work 
provides valuable insights for implementing adaptive pose estimation technologies 
across different clinical and home-based rehabilitation scenarios using MedTech. 

Future research directions could investigate integrating explainable AI methods 
and algorithms to improve model interpretability. For healthcare applications, such 
as physiotherapy monitoring, transparent deep learning predictions are crucial for 
building clinical confidence and patient participation (Bairy and Fränzle, 2023). 
Emerging work on attention-based explanation models presents viable approaches 
for enhancing transparency in future rehabilitation systems. 
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Conclusion 
The application of deep learning techniques for automated monitoring of 
physiotherapy exercises, specifically targeting TKR rehabilitation, has been 
investigated with significant research findings. The study aimed to develop a 
system capable of providing real-time postural feedback to patients, thereby 
reducing dependency on clinical supervision while maintaining exercise quality. 
As a result, three neural network architectures were valuated: a DCNN model, a 
computationally optimised GAN model, and the DCNN+GAN hybrid model.  

The hybrid architecture demonstrated the highest analytical performance with 
an F1-score of 86.01%, confirming that model fusion techniques can enhance 
classification accuracy. In contrast, this improved performance came with 
significant computational costs, requiring 14 minutes to process a 30-second video 
segment. On the other hand, the Sparse GAN achieved the fastest processing times, 
but with less F1-score accuracy of 71.09%, while the DCNN provided intermediate 
results on both performance metrics. These findings underscore the inherent trade-
off between model sophistication and practical deployability in clinical settings, 
presenting important considerations for implementing AI-assisted rehabilitation 
systems. The results provide valuable insights for developing tailored solutions 
based on specific clinical requirements and operational constraints. 

Future work will focus on integrating explainable AI approaches and machine 
learning algorithms to improve model interpretability to enable physiotherapists 
and patients to better understand the rationale behind exercise feedback. Attention-
based explanation models will be explored to highlight key joint movements 
influencing predictions. This transparency is essential for improving clinical trust, 
enhancing patient engagement, and supporting personalised rehabilitation. 
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