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Abstract

The spirochete Borrelia recurrentis is the causal agent of louse-borne relapsing fever and is transmitted to humans by the
infected body louse Pediculus humanus. We have recently demonstrated that the B. recurrentis surface receptor, HcpA,
specifically binds factor H, the regulator of the alternative pathway of complement activation, thereby inhibiting
complement mediated bacteriolysis. Here, we show that B. recurrentis spirochetes express another potential outer
membrane lipoprotein, termed CihC, and acquire C4b-binding protein (C4bp) and human C1 esterase inhibitor (C1-Inh), the
major inhibitors of the classical and lectin pathway of complement activation. A highly homologous receptor for C4bp was
also found in the African tick-borne relapsing fever spirochete B. duttonii. Upon its binding to B. recurrentis or recombinant
CihC, C4bp retains its functional potential, i.e. facilitating the factor I-mediated degradation of C4b. The additional finding
that ectopic expression of CihC in serum sensitive B. burgdorferi significantly increased spirochetal resistance against human
complement suggests this receptor to substantially contribute, together with other known strategies, to immune evasion of
B. recurrentis.
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Introduction

B. recurrentis, the causative agent of louse-borne relapsing fever is

transmitted to humans by contamination of abraded skin with

either hemolymph from crushed, infected lice (Pediculus humanus

humanus) or excreted feces thereof [1,2]. The last century has seen

multiple epidemics of louse-borne relapsing fever in Europe, with

high mortality rates of up to 40%. Louse-borne relapsing fever has

been epidemic in Africa throughout the 20th century with foci

persisting in the highlands of Ethiopia [3,4]. Clinically, louse-

borne relapsing fever is characterized by a 5- to 7-day incubation

period followed by one to five relapses of fever, and spirochetemia

[5,6]. Spontaneous mortality remains as high as 2–4% despite

antibiotics, with patients suffering from distinctive hemorrhagic

syndrome and/or Jarish-Herxheimer reactions [7].

To survive in human tissues, including blood, B. recurrentis has to

escape innate and adaptive immune responses. Complement is a

major component of first line host defense with the potential to

eliminate microbes. However, pathogens have evolved strategies to

evade complement-mediated lysis, either indirectly, by binding

host-derived regulators to their surface or directly, by expressing

endogenous complement inhibitors [8,9]. In fact, we and others

have recently demonstrated that tick- and louse-borne pathogens,

i.e. B. hermsii and B. recurrentis, specifically bind complement

regulatory proteins, i.e. CFH and CFHR-1, via their outer surface

lipoproteins FhbA, BhCRASP-1 and HcpA, respectively [10–14].

Surface bound CFH was shown to interfere with the alternative

complement pathway by inhibiting complement activation via

accelerating the decay of the C3 convertase and inactivating newly

formed C3b [15,16].

However, complement may also attack pathogenic bacteria via

the classical pathway, i.e. by interacting with previously bound

antibodies, resulting in deposition of the membrane attack

complex on the surface of bacteria and their final death [17].

The classical pathway is initiated by the binding and activation of

the C1 complex, consisting of C1q, C1r and C1s. C1q can bind to

clustered IgG and IgM bound to the surface of bacteria, and also

directly to many bacteria through lipoteichoic acids or other

structures [18,19]. When C1q binds, its associated proteases, C1r

and C1s, become activated and form the activated C1 complex,

which cleaves C4 and C2 to generate the C3 convertase. The

lectin pathway is initiated when mannose-binding lectin (MBL) or

ficolins bind carbohydrates on the surface of a microbe [20]. A key

endogenous regulator of the classical and lectin pathway is serum-

derived C4b-binding protein (C4bp). C4bp is a cofactor in factor I-

mediated cleavage of C4b to C4d and interferes with the assembly

and decay of the C3-convertase (C4bC2a) of the classical and

lectin pathway [21,22]. It was recently shown that acquisition of

the regulators CFH and C4bp on the surface of B. recurrentis and B.

duttonii contributes to serum resistance in vitro [17]. However, the
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respective receptors on the spirochetal surface have not been

identified.

It was thus the aim of the present study to identify and

characterize the putative receptor for C4bp of B. recurrentis and B.

duttonii. Here, we show for the first time that B. recurrentis and B.

duttonii express a novel potential outer surface lipoprotein, which

specifically binds C4bp and in addition C1-Inh. The finding that

pathogen-bound C4bp retains its co-factor activity suggests that

this process contributes to the exceptional resistance of the two

spirochetes species to bactericidal activity of human serum.

Materials and Methods

Bacterial strains and growth conditions
Relapsing fever spirochetes B. recurrentis strains A1 and A17, B.

hermsii (ATCC35209) strain HS1, B. duttonii strain LA, B. parkeri

RML, B. turicatae RML (provided by Tom Schwan, Rocky

Mountain Laboratories) and the Lyme disease spirochete B.

burgdorferi strains ZS7 and B313, a clonal mutant of B31 lacking all

linear and circular plasmids with the exception of cp32-1, cp32-2,

cp32-4, cp26 and lp17 [23,24], were cultivated in BSK-H

complete medium (Bio&Sell, Feucht, Germany) supplemented

with 5% rabbit serum (PAN Biotech, Freiburg, Germany) at 30uC.

Bacteria were harvested by centrifugation and washed with

phosphate-buffered saline. The density of spirochetes was

determined using dark-field microscopy and a Kova counting

chamber (Hycor Biomedical, Garden Grove, CA). E. coli JM109

were grown at 37uC in LB medium.

Human plasma and sera
All human plasma and serum samples used in this study were

purchased from the Heidelberg University blood bank. Human

plasma obtained from 20 healthy, anonymous blood donors

without known history of spirochetal infections were pooled and

used as source for C4bp. Nonimmune human serum (NHS) was

acquired from healthy donors with no prior history of Borrelia spp.

infection. Factor B-depleted human serum was purchased from

Complement Technology, Inc. (http://www.ComplementTech.

com).

Complement proteins
C4bp protein was purified from pooled human plasma by

barium citrate precipitation as described [25]. Briefly, following

extensive dialysis the solution was subjected to ion exchange

chromatography using Q-Sepharose (GE Healthcare) and proteins

were eluted with a gradient of 0 – 2 M NaCl. C4b, C1-Inh and

factor I were purchased from Calbiochem. Purified C4bp, C1-Inh

and BSA were conjugated to biotin with No-Weigh Biotin-NHS

(Pierce Biotechnology).

Isolation and cloning of the receptor for C4bp,
construction of expression plasmids and production of
recombinant proteins

Isolation of the C4bp binding protein of B. recurrentis was carried

out by co-immunoprecipitation. Whole cell lysates of B. recurrentis

were prepared as described elsewhere with minor modifications

[10]. Briefly, cultures were grown at 33uC in modified BSK

medium to the late-log phase and harvested by centrifugation at

6.0006g for 10 min at 4uC. The resulting pellets were washed

twice with PBS, resuspended in ice-cold 50 mM Tris-HCl

(pH 7.5), 25 mM KCl, 5 mM Mg2Cl, 1mM EGTA, 0.5% NP40

and rotated for 1 h at 4uC. Cell debris were removed by

centrifugation and for pre-clearing lysates were incubated with

protein G sepharose (GE Healthcare) for 1 h at 4uC. For immu-

noprecipitation pre-cleared B. recurrentis lysates were incubated

with protein G Sepharose previously loaded with anti-C4bp

antibody and purified human C4bp for 12 h at 4uC with gentle

agitation. After washing in 50 mM NaH2PO4, 300 mM NaCl, 10

mM imidazole (pH 8) bound proteins were eluted with 2x SDS

sample buffer (Serva) and subjected to 14% Tris/Tricine SDS-

PAGE under reducing conditions. Immunoprecipitates were

separated by SDS-PAGE and visualized by staining with colloidal

Coomassie (Pierce/Thermofisher, Bonn, Germany). The selected

protein band of 40 kDa was cored from the gel and subjected to

MALDI mass spectrometric analysis as previously described [26].

Recently, the genome of the selected B. recurrentis strain A1 was

sequenced [27]. The identified peptide matched an open reading

frame of 1071 bp of the B. recurrentis A1 genome, named cihC. The

gene encoding CihC was amplified by PCR using primers CihC F

and CihC R (Table 1), cloned into pGEM-T Easy vector

(Promega, Mannheim, Germany) and sequenced by using the

BigDye terminator cycle sequencing kit (PE Applied Biosystems).

The resulting plasmid pGEM-BrCihC was used as template for

construction of expression plasmids by PCR amplification. For

recombinant full-length CihC protein, primers CihC Bam and

CihC HincII were used. For N- and C-terminal deletion mutants,

these primers were applied in combination with CihCD83F,

CihCD122F, CihCD160F, CihCD149R, CihCD190R, CihC-

D260R, and CihCD294R (Table 1) resulting in recombinant

proteins CihCD20–260, CihCD83–294, CihCD122–294, CihCD20–190,

CihCD83–149, and CihCD160–294, respectively. The ORF encoding

CihC of B. duttonii (CihCBD) was amplified using genomic DNA of

B. duttonii strain La in combination with oligonucleotides CihC

Bam and CihC Hinc. After digestion with restriction enzymes

BamHI and HincII, PCR fragments were ligated in frame into the

His6-tag encoding sequence into vector pQE-30Xa (Qiagen,

Hilden, Germany). For expression of N-terminal His-tagged fusion

proteins, the plasmids were transformed into E.coli strain JM109

and recombinant proteins were purified as recommended by the

manufacturer (Qiagen).

Author Summary

Borrelia recurrentis, the causal agent of louse-borne
relapsing fever is transmitted to humans via infected body
lice. Infection with B. recurrentis has been achieved only in
humans and is accompanied by a systemic inflammatory
disease, multiple relapses of fever and massive spirochet-
emia. A key virulence factor of B. recurrentis is their
potential to undergo antigenic variation. However, for
survival in the blood during the early phase of infection
and for persistence in human tissues, spirochetes must be
endowed with robust tools to escape innate immunity. We
have recently shown that B. recurrentis acquires the serum-
derived regulator factor H, thereby blocking the alternative
complement pathway. Here, we show that B. recurrentis
expresses in addition a novel outer surface lipoprotein that
selectively binds serum-derived C4b-binding protein and
C1 esterase inhibitor, two endogenous regulators of the
classical and lectin pathway of complement activation. The
combined data underscore the versatility of B. recurrentis
to effectively evade innate and adaptive immunity,
including serum resistance. Thus, the present study
elucidates a new mechanism of B. recurrentis important
for its evasion from complement attack and will be helpful
for the development of new drugs against this fatal
infection.

Immune Evasion of Relapsing Fever Spirochetes
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Production of monoclonal antibodies
Monoclonal antibody BR2, directed against CihC was gener-

ated by immunization of Balb/c mice with whole cells of B.

recurrentis A1 according to a method described elsewhere [28]. All

animal research was approved in advance by the Laboratory

Animal Committee of the University of Heidelberg (RP Karlsruhe

35-9185.82/A-25/07). The animals were kept in a filter cabinet

and given food and water ad libitum, with all maintenance

performed according to German animal welfare guidelines.

SDS-PAGE, ligand affinity blot and Western blot analysis
To prepare whole cell lysates Borrelia were centrifuged and washed

three times with PBS. Cells were resuspended in BugBuster Master

Mix (Merck) and lysed for 5–10 min on ice. Borrelial whole cell

lysates (15 mg) or purified recombinant CihC proteins (200 ng) were

subjected to Tris/Glycine-SDS-PAGE under reducing conditions

and transferred to nitrocellulose as previously described [29]. Briefly,

after transfer of proteins onto nitrocellulose, nonspecific binding sites

were blocked using 5% (w/v) dried milk in TBS (50 mM Tris-HCl

pH 7.4, 200 mM NaCl) for 2 h at room temperature (RT).

Subsequently, membranes were rinsed two times in TBS and

incubated for 1 h at RT with NHS (1:1 diluted in TBS) or purified

C4bp. Membranes were washed four times with 50 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.2% Tween20 (TBST) and incubated for 1

h with either peroxidase-conjugated anti-C1-Inh (Linaris) or anti-

C4bp antibody (Quidel, San Diego). Following four washes with

TBST, blot strips were incubated with a secondary peroxidase-

conjugated anti-mouse IgG antibody (Dako, Glostrup, Denmark) for

1 h at RT. Detection of bound antibodies was performed using the

enhanced chemiluminescence ECL Western blotting detection

reagent and ECL Hyperfilms (GE Healthcare, Amersham).

For Western blot analysis, membranes were incubated for 1 h at

RT with either anti-C4c antiserum (Dako), anti-C1s (Atlantic

antibody), anti-CihC (mAb BR2) or anti-flagellin (mAb LA21)

monoclonal antibodies [30]. For detection of purified recombinant

CihC full-length protein and deletion mutants, the anti-His6-tag

(Calbiochem) antibody was employed.

Southern blotting
Southern blotting of total genomic DNA was done as previously

described [31]. Briefly, 250 ml of Borrelia cultures were centrifuged,

washed twice in PBS and resuspended in 9 ml of TE (10 mM Tris

pH 7.5, 1 mM EDTA) buffer. Subsequently, 20% SDS (1 ml) and 20

mg/ml proteinase K (50 ml) was added and incubated for 1 h at

37uC. NaCl (5 M) and Hexadecyl-trimethyl-ammonium-bromide

(10%) was added followed by incubation for 10 min at 65uC. DNA

was extracted twice with phenol-chloroform-isoamyl ethanol

(25:24:1) and DNA was precipitated with 0.6 volume of isopropanol.

The precipitates were washed with 70% ethanol and resuspended in

H2O. 10 mg of total genomic borrelial DNA was prepared as agarose

blocks, loaded into the agarose gels and fractionated by pulse-field

gel electrophoresis (PFGE) in combination with the CHEF-DR II

System (Bio-Rad, Germany). Hybridization with a random primed

cihC gene probe was conducted as described [32].

Immunofluorescence analysis
Spirochetes (16107) were washed with Tris buffer (30 mM Tris,

60 mM NaCl, pH 7.4) and incubated with mAb directed against

CihC (mAb BR2) or flagellin (mAb LA21) for 1 h at RT.

Spirochetes were then washed with Tris buffer/0.1% BSA, spotted

on coverslips and allowed to air-dry for 1 h. After methanol

fixation, samples were dried for 15 min and incubated for 1 h in a

humidified chamber with Cy3-labeled rabbit anti-mouse IgG

(1/200, Dianova). Cells were visualized at a magnification of

1000x using a Nikon Eclipse 90i upright automated microscope

and images were obtained using a Nikon DS-1 QM sensitive black

and white CCD camera at a resolution of 0.133 mm/pixel.

In situ protease treatment of spirochetes
Cells of B. recurrentis strain A1 were treated with proteases using

a modified, previously described method [33]. Briefly, intact

borrelial cells were incubated with either proteinase K or trypsin to

a final concentration of 0 -12.5 mg/ml. Borrelial cells were then

lysed and equal volumes (20 ml) were separated by SDS-PAGE

(13%). Proteins were visualized by Western blotting using specific

monoclonal antibodies.

C4bp cofactor assay
Functional activity of C4bp was analyzed by measuring factor I-

mediated conversion of C4b to iC4b. Either 100 ml of CihC

(0.5 mg/well) or intact B. recurrentis A1 spirochetes were coated

onto microtiter plates (MaxiSorp, Nunc) and incubated with

Table 1. Oligonucleotides used in this study.

Primer Sequence (59 to 39) Purpose of Use

CihC F GGA GGA AAA TGG ATC GAT GAA GAG ACA ATG amplification of cihC

CihC R ATT TAA GCT ATC TGC CAT TC amplification of cihC

CihC Bam TAT TGG ATC CGA TTT ATT ATT TGA CGA AG generation of expression plasmid

CihC Hinc ATT TAA GCT ATC TGC CAT TC generation of expression plasmid

CihCD83F GGA CAA CAG GGA TCC ATA G construction of deletion mutant

CihCD122F GAG ATT AGT AAG GGA TCC AAA GAG construction of deletion mutant

CihCD160F GAA GGA TCA GGA TCC GGT GGA construction of deletion mutant

CihCD149R GTG TCG ACA GTT ATG TTG TAC CG construction of deletion mutant

CihCD190R ATA TTC ATA GTC GAC TCA ATC TTC construction of deletion mutant

CihCD260R CAA AAG TCG ACT AAA GTT CTT GTG CTA GC construction of deletion mutant

CihCD294R CTT GGT CGA CTA AAT AGC CCT GTA AAG construction of deletion mutant

CihC Prom AAA AGG ATC CAC AAT TAC TTA TAC construction of pCihC

CihC SphI GTA AAT TTG CAT GCT TGC TTA AGA G construction of pCihC

doi:10.1371/journal.pntd.0000698.t001
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purified human C4bp (50 mg/ml) for 1h at RT and after washing,

C4b (4 mg/ml) and factor I (2 mg/ml) were added and incubated at

37uC for up to 2 h. Supernatants were removed from the wells,

subjected to SDS-PAGE (10%) under reducing conditions and

transferred to a nitrocellulose membrane. Degradation of C4b was

evaluated by using a rabbit anti-C4c antibody (DAKO) followed

by a peroxidase-conjugated goat anti-rabbit IgG.

Complex-formation assay of B. recurrentis–bound C1-Inh
The protease inhibitory activity of C1-Inh bound to the

borrelial surface was examined by detection of SDS-insoluble

complexes of C1-Inh and C1s protease. To opsonize cells with C1,

108 B. recurrentis cells were incubated with 10% NHS for 1 h at

30uC. After washing, cells were treated with 1 mg biotinylated C1-

Inh for 1 h at 30uC. Following three washes, cells were lysed and

the borrelial whole cell preparations were subjected to SDS-PAGE

(7.5%) under non-reducing conditions. Proteins were transferred

to nitrocellulose membranes and probed with either peroxidase-

conjugated streptavidin or goat anti-C1s (Atlantic antibody)

followed by a peroxidase-conjugated rabbit anti-goat IgG.

Construction of a shuttle vector for transformation of
B. burgdorferi B313

The CihC encoding cihC gene including its native promoter region

was amplified by PCR using primers CihC Prom and CihC SphI.

The resulting amplicon was cloned into pBSV2 yielding shuttle

vector pCihC. Transformation of B. burgdorferi B313 and character-

ization of transformants was previously described [11]. Expression of

CihC of transformed B. burgdorferi B313 was determined by Western

blot, whole cell ELISA and immunofluorescence analysis, using mAb

BR2. High-passage, non-infectious B. burgdorferi strain B313 were

grown in 100 ml BSK medium and harvested at mid exponential

phase (108 cells/ml). Electrocompetent cells were prepared as

described previously [26] with slight modifications. Briefly, 50 ml

aliquots of competent B. burgdorferi strain B313 cells were

electroporated at 12.5 kV/cm in 2-mm cuvettes with 10 mg of

plasmid DNA. For control purpose B. burgdorferi strain B313 cells also

were transformed with pBSV2 vector alone. Cells were immediately

diluted into 10 ml BSK medium and incubated without antibiotic

selection at 30uC for 48 to 72 h. Bacteria were then diluted into 100

ml BSK medium containing kanamycin (30 mg/ml) and 200 ml

aliquots were plated into 96-well cell culture plates (Corning) for

selection of transformants. After three weeks, wells were evaluated

for positive growth by color change of the medium, confirmed by

dark-field microscopy for the presence of motile spirochetes. The

cihC gene of transformed B. burgdorferi B313 was detected by PCR

using oligonucleotides CihC F and CihC SphI. Ectopic CihC

expression was analyzed using immunofluorescence microscopy and

ELISA in combination with mAb BR2. In addition, ectopically

expressed CihC was analyzed by ligand affinity blotting and flow

cytometry with regard to its capacity to acquire C4bp and C1-Inh.

Flow cytometry
Briefly, 107 B. recurrentis A1, B. duttonii La, B. burgdorferi B313/vc

and B313/pCihC cells were washed twice with PBS, blocked for

15 min at RT with PBS/10% BSA, and incubated with 10 mg/ml

of biotinylated C4bp or C1-Inh in FACS-buffer (PBS/1% BSA)

for 1 h at RT. As a negative control, spirochetes were incubated

with the same concentration of biotinylated BSA. Cells were

washed three times, stained with phycoerythrin (PE) labeled

streptavidin (Bio-Rad) and were then fixed with 1% paraformal-

dehyde overnight and analyzed using a FACS-Calibur and the

CellQuest software (BD Biosciences).

Serum susceptibility testing of Borrelia strains
The serum susceptibility of mock-transformed B. burgdorferi B313

(B. burgdorferi B313/vc) and transformed B. burgdorferi B313 (B.

burgdorferi B313/pCihC) was assessed using a survival assay. Cells

grown to mid-logarithmic phase were harvested, washed and

approximately 36107 spirochetes were resuspended in BSK-H

medium supplemented with either 50% factor B-depleted human

serum (NHS-B) or 50% heat inactivated factor B-depleted human

serum (hiNHS-B). Cells were incubated in Eppendorf tubes at

30uC for 2 days. At day 0, 1, and 2, cells were washed in 0.85%

NaCl, transferred to microtiter plates and incubated with SYTO9

(Molecular Probes, Invitrogen) as recommended by the manufac-

turer. Subsequently, relative growth of spirochetes as compared to

day 0 was determined by measuring the fluorescence intensity at

530 nm (excitation 485 nm) on a microtiter plate reader (Victor2

plate reader, Perkin Elmer).

ELISA
For whole cell ELISA, approximately 108 spirochetes (B.

burgdorferi B313/vc and B313/pCihC) were washed twice, resus-

pended in PBS and immobilized on microtiter plates overnight at

4uC. The wells were washed with PBS/0.05%Tween, blocked with

PBS/5% BSA and were then incubated with the CihC-specific mAb

BR2 or the flagellin-specific mAb LA21 followed by a peroxidase-

conjugated sheep anti mouse IgG. Substrate reaction was

performed with o-phenyldiamine dihydrochloride (Sigma-Aldrich)

and absorbance was measured at 492 nm.

Statistical analysis
Statistics were analyzed with the unpaired Student’s t-test,

P values less than 0.05 were considered significant.

Nucleotide sequence deposition
The cihC gene sequences of B. recurrentis and B. duttonii reported

in this paper have been deposited in the EMBL/GenBank data

bases under the following accession numbers: FN552439 and

FN552440, respectively.

Results

Cloning and characterization of the receptor for C4bp
and C1-Inh

To verify acquisition of C4bp onto the outer surface B. recurrentis

and B. duttonii spirochetes were incubated with biotinylated human

C4bp and analyzed by flow cytometry. Both strains were found to

acquire C4bp onto their surfaces (Fig. 1A). By applying ligand

affinity blot analysis for detection of C4bp-binding molecules, a

protein of about 40 kDa was identified in B. recurrentis and B.

duttonii, but not in B. hermsii and B. burgdorferi (Fig. 1B). In addition,

B. recurrentis and B. duttonii are capable of binding the complement

regulator C1-Inh (Fig. 1). To isolate and characterize the receptor

for C4bp, cell lysates of B. recurrentis A1 were incubated with C4bp

and added to Protein G Sepharose coupled anti-C4bp immune

serum. The co-precipitating protein of approximately 40 kDa was

analyzed by mass spectrometry and the peptides generated

matched an open reading frame of 1071 bp on the genome of

B. recurrentis A1 [27]. The open reading frame encoded for a

putative lipoprotein with a calculated molecular mass of 40.4 kDa.

The encoding gene was designated cihC (complement inhibition

via C4bp). Pulse-field gel electrophoresis and hybridization

analysis revealed that the cihC gene represents a single genetic

locus in B. recurrentis and B. duttonii that maps to a larger plasmid of

approximately 200 kb (Fig. 2) [27,34]. Neither the tick-borne
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relapsing fever strains of B. parkeri, B. hermsii and B. turicatae nor B.

burgdorferi, the causal agent of Lyme disease, hybridized with the

cihC probe (data not shown). Isolation of the homologous B. duttonii

gene revealed 91% amino acid sequence similarity with that of B.

recurrentis (Fig. 3). Lescot et al. previously identified the cihC gene of

B. duttonii as a p35-like antigen (BDU_1) exhibiting similarity to the

B. burgdorferi fibronectin-binding lipoprotein BBK32. In contrast to

our observation the homologous gene in B. recurrentis was not

detected [27]. Interestingly, our preliminary studies indicated that

recombinant CihC of B. duttonii and B. recurrentis binds fibronectin

(unpublished). A BLAST search failed to detect any other protein

with significant homology, indicating that the two genes/proteins

are restricted to these highly related species of Borrelia.

Surface exposure and protease sensitivity of the receptor
for C4bp and C1-Inh

To determine whether CihC is surface exposed, immunofluo-

rescence assays were performed using mAb BR2 specific for CihC.

B. recurrentis spirochetes were incubated sequentially with mAb

BR2 and rabbit anti-mouse Cy3-conjugated antibody (Fig. 4A).

Epifluorescence microscopy revealed that B. recurrentis organisms

expressed CihC on their outer surface in a patch-like manner.

Controls incubated with the secondary antibody alone were

negative (not shown).

To further confirm surface localization of CihC, B. recurrentis

organisms were treated with either proteinase K or trypsin and

subjected to Western blot analysis. As shown in Figure 4B, a

significant reduction was observed for CihC after 2 h of incubation

with proteinase K at concentrations $3 mg/ml. Upon treatment of

the spirochetes with trypsin, a more restricted protease, only

higher amounts ($6 mg/ml) yielded complete degradation of

CihC. The mouse mAb LA21 directed against the periplasmic

FlaB protein was used in this experiment as a internal control to

confirm that the fragile spirochetal outer membrane was not

damaged (Fig. 4B, lower panels). These data indicate that CihC is

exposed at the outer surface of B. recurrentis.

Localization of the binding domains of the C4bp and
C1-Inh receptor

To localize the putative domain(s) of CihC that bind to C4bp

and C1-Inh, a number of CihC deletion mutants with distinct N-

or C-terminal truncations were constructed (Fig. 5A). Protein

Figure 1. Binding of C4bp and C1-Inh to the spirochetal surface. A) Intact B. recurrentis A1 (left panel) and B. duttonii La (right panel)
spirochetes were incubated with biotinylated human C4bp, C1-Inh or as a negative control with biotinylated BSA, followed by PE-labeled streptavidin
and were then analyzed by flow cytometry. B) Binding of human C4bp and C1-Inh to a<40 kDa protein. Whole cell lysates of B. recurrentis strains A1
(B.r. A1) and A17 (B.r. A17), and B. duttonii La (B.d. La) were separated by SDS-PAGE, transferred to nitrocellulose membrane and incubated with
purified human C4bp (upper panel) or NHS (lower panel). Membranes were probed with anti-C4bp antiserum followed by peroxidase-conjugated
secondary antibody (upper panel) or with C1-Inh-specific peroxidase-conjugated IgG (lower panel). As a control, cell lysates of B. hermsii HS1 (B.h.
HS1) and B. burgdorferi ZS7 (B.b. ZS7) were included.
doi:10.1371/journal.pntd.0000698.g001
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expression was confirmed by using a His-tag specific antibody and

all recombinant proteins exhibited the predicted size. Screening

for C4bp and C1-Inh binding by ligand affinity blotting revealed

that from the polypeptide preparations tested, full-length CihC

(residues 20 to 356) and all truncated versions employing the

central protein domain (amino acid residues 145 – 185) similarly

retained C4bp and C1-Inh binding activity (Fig. 5B). These results

suggest that CihC contained a central region that bound to both

human complement regulators.

C4bp retains cofactor activity when bound to its receptor
Inactivation of complement component C4b occurs by factor I

mediated cleavage of the C4b alpha chain. To assess whether

C4bp maintains this cofactor activity when attached to the surface

of intact B. recurrentis spirochetes were coated with purified human

C4bp and incubated with C4b and factor I. The supernatant was

subjected to SDS-PAGE and C4b alpha chain degradation

products were detected by immunoblot analysis. As shown in

Figure 6 (left panel), binding of C4bp to the cell surface resulted in

a4 and a3 degradation products of 15 kDa and 25 kDa,

respectively. In contrast, B. recurrentis spirochetes alone did not

promote factor I-mediated cleavage of C4b demonstrating that

louse-borne relapsing fever spirochetes lack endogenous C4b

cleaving activity. Similarly, C4bp bound to immobilized recom-

binant CihC protein efficiently mediated C4b processing via factor

I, as indicated by the appearance of a a4 fragment (Fig. 6, right

panel). B. recurrentis or CihC preincubated with C4bp and C4b in

the absence of factor I did not promote cleavage of C4b (data not

shown). These findings demonstrate that CihC-associated C4bp

retains its cofactor activity and may lead to accelerated

disintegration of the C3 convertase (C4bC2a) of the classical

complement activation pathway.

C1-Inh bound to B. recurrentis exhibits complement
inhibitory activity

The protease inhibitor C1-Inh reacts with its complement target

proteases such as C1s and C1r to form high molecular weight SDS

resistant complexes [35]. We examined the formation of these

covalent C1-Inh-protease complexes as an index for the protease

inhibitory activity of CihC-associated C1-Inh. Intact B. recurrentis

cells were preincubated in NHS as source for C1 and biotinylated

C1-Inh was applied. Subsequently, cells were washed extensively

to remove unbound C1-Inh, lysed and subjected to immunoblot-

ting. As shown in Figure 7A, biotinylated C1-Inh acquired by B.

recurrentis formed complexes on the spirochetal surface as indicated

by the occurrence of a high molecular weight band at .170 kDa.

To identify the constituent protease of these complexes, immuno-

blot analysis using C1s-specific antiserum was employed revealing

C1s is a component of the .170 kDa large complex (Fig. 7B).

Exogenously applied biotinylated C1-Inh as well as serum-derived

C1-Inh formed the respective complexes with C1s. These data

suggest that C1-Inh bound to the surface of B. recurrentis retains its

functional activity and thus, by inactivating C1s protease, exhibits

complement inhibitory activity.

Expression of the receptor for C4bp and C1-Inh increases
resistance to complement-mediated killing

To test whether CihC of B. recurrentis plays an important role in

mediating complement resistance, the serum-sensitive B. burgdorferi

B313 mutant strain was transformed with the shuttle vector pCihC

containing the complete cihC gene (B. burgdorferi B313/pCihC); for

control, the pBSV2 vector alone (B. burgdorferi B313/vc) was

employed. Expression and surface localization of CihC was

determined by whole cell ELISA (Fig. 8A) and immunofluores-

cence (Fig. 8B) analyses using the CihC-specific mAb BR2.

Moreover, to ascertain whether the ectopically expressed CihC is

capable of recruiting C4bp and C1-Inh to the surface of B313/

pCihC flow cytometry was performed (Fig. 8C). The B313/

pCihC-transformed isolate but not the mock-transformed B313/

vc isolate of B. burgdorferi strongly expressed CihC and acquired

both complement regulators.

To compare the susceptibility of B313/pCihC and B313/vc to

complement-mediated killing, both specimens were subjected to a

human serum sensitivity assay. In order to avoid killing of Borrelia

strains via the alternative pathway of complement activation a

factor B-depleted human serum was employed. Accordingly,

spirochetes were incubated in factor B-depleted human serum

(NHS-B) or heat-inactivated factor B-depleted serum (hiNHS-B)

and spirochetal growth was monitored by uptake of a nucleic acid

dye. B313/pCihC and the mock-transformed strain multiplied

during the 48 h time interval when incubated with heat-

Figure 2. Genomic localization of cihC. A) Genomic DNA of
indicated relapsing fever Borreliae was separated by PFGE and probed
with a full-length 32P labelled cihC gene probe. Linear plasmids are
indicated by arrows. B) PFGE patterns of the indicated Borrelia strains.
doi:10.1371/journal.pntd.0000698.g002
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Figure 3. Alignment of the deduced amino acid sequences of CihCBR (B. recurrentis A1) and CihCBD/BDU_1 (B. duttonii La). Divergent
residues are marked with asterisks. The putative ligand binding site for human C4bp and C1-Inh is represented by the open box.
doi:10.1371/journal.pntd.0000698.g003

Figure 4. Surface localization of CihC. A) Immunofluorescence analysis of B. recurrentis A1 after incubation with mAb specific for CihC (BR2)
followed by rabbit anti mouse Cy3-conjugated IgG. Antibodies directed against flagellin were included as a non-surface accessible control protein.
The corresponding differential interference contrast image is depicted in the lower panel. B) Proteinase K and trypsin treatment affects surface
expression of native CihC. B. recurrentis cells were incubated with the indicated concentrations of proteinase K and trypsin, lysed, immunoblotted,
and probed with either anti-CihC mAb BR2 (upper panel) or with anti-flagellin mAb LA21 (lower panel).
doi:10.1371/journal.pntd.0000698.g004
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Figure 5. Mapping of the CihC domain interacting with C4bp and C1-Inh. A) Whole cell lysates of E. coli, expressing the recombinant, His-
tagged CihCBR, CihCBD and the indicated CihCBR deletion mutants were separated by SDS-PAGE, transferred to nitrocellulose and were either probed
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inactivated factor B-depleted serum (Fig. 8D). However, when

exposed to NHS-B only B313/pCihC spirochetes could replicate

indicating that ectopic expression of CihC renders serum-sensitive

B.burgdorferi B313 more resistant to complement-mediated lysis.

These data suggest a decisive role for CihC in serum resistance of

B. recurrentis and B duttonii.

Discussion

Bacteria have evolved multiple strategies to interfere with

complement-mediated clearance of pathogens by blocking distinct

steps of the lytic cascade. Recently, we provided evidence that the

louse-borne relapsing fever spirochete B. recurrentis selectively

inhibits activation of the alternative complement pathway by

specifically binding the endogenous complement inhibitor CFH

via its lipoprotein HcpA [11]. We now demonstrate for the first

time that B. recurrentis also expresses a surface receptor specific for

C4bp and C1-Inh, two major serum-derived inhibitors of the

lectin and classical complement pathways, termed CihC. Genetic

and molecular analyses revealed that CihC of B. recurrentis is a

potential lipoprotein and that B. duttonii harbors a homologue of

CihC [27]. Upon binding to the pathogen’s surface or to

recombinant CihC, C4bp retained its cofactor activity for factor

I-mediated C4b inactivation. Together with the fact that B.

recurrentis also expresses HcpA, the presented data suggest that the

potential of louse-borne relapsing fever spirochetes to interfere

with both, classical and alternative pathways, contributes to their

high resistance and pathogenicity in humans.

The correlation between serum resistance of bacteria and cell

surface binding of functionally active C4bp has been reported

before for a number of pathogenic microorganisms, including the

spirochetes B. recurrentis, B. duttonii and B. burgdorferi s.s. (strain IA),

the causative agent of Lyme disease [17]. Moreover, when

incubated with human serum, Yersinia enterocolitica, Bordetella

pertussis, Neisseria gonorrhoeae, Candida albicans, Moraxella catarrhalis,

Escherichia coli K1, Streptococcus pyogenes and Yersinia pestis were also

shown to acquire C4bp [36–43]. However, the respective

receptors for C4bp have only been identified for some bacteria,

e.g. Streptococcus pyogenes, Yersinia enterocolitica, and Moraxella catar-

rhalis, but not for B. recurrentis, B. duttonii and B. burgdorferi. The

present data provide evidence that the receptor for C4bp of B.

recurrentis, CihC is a surface exposed putative lipoprotein.

Preliminary Southern Blot analysis and BLASTN search on

databases revealed a putative homologue of cihC only in B. duttonii

but not in other spirochetal species suggesting that the gene

encoding C4bp receptor is unique to these two Borrelia species. To

determine whether the cihC gene is located either on the

with an anti His-tag mAb (upper panel) or subjected to ligand affinity blotting using NHS as a source for human C4bp and C1-Inh. B) Diagrammatic
representation of native and expressed recombinant CihCBR and CihCBD proteins and their binding characteristics for C4bp and C1-Inh as determined
by ligand affinity blot analysis. Numbers refer to amino acid residues.
doi:10.1371/journal.pntd.0000698.g005

Figure 6. Cofactor activity of C4bp bound to CihC and B.
recurrentis. A) Functional activity of C4bp was analyzed by measuring
factor I-mediated conversion of C4b to iC4b. C4bp bound to the surface
of intact B. recurrentis spirochetes (left panels) or to CihC coated
microtiter plates (right panels) was incubated with C4b and factor I.
Reaction mixtures were separated by SDS-PAGE and transferred to
nitrocellulose membrane. C4b alpha chain degradation products were
detected using polyclonal anti C4c antibody followed by peroxidase-
conjugated secondary antibody. As a positive control C4bp was directly
added to C4b and factor I.
doi:10.1371/journal.pntd.0000698.g006

Figure 7. Complex formation of C1-Inh bound to B. recurrentis.
Protease inhibitory activity was evaluated by the formation of C1-Inh/
protease SDS-insoluble complexes. Spirochetes were incubated with
NHS, washed and subsequently treated with biotinylated human C1-
Inh. Cells were lysed, immunoblotted and probed with either A)
peroxidase-conjugated streptavidin or B) anti-C1s antibodies followed
by peroxidase-conjugated IgG.
doi:10.1371/journal.pntd.0000698.g007
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chromosome or any of the linear plasmids, PFGE and Southern

blotting were performed. The cihC gene was localized to a 190 kb

linear plasmid adjacent to the previously identified factor H

binding hcpA gene. Similarly, the B. hermsii gene encoding the

factor H binding protein FhbA maps to the large linear plasmid of

220 kb [13]. However, further studies are required to resolve this

issue for other bacterial pathogens.

To localize the peptide domains of CihC relevant for binding of

C4bp and C1-Inh, truncated N- and C-terminal deletion mutants

were generated and used for functional analyses. C4bp and C1-

Inh binding was not abrogated by N-terminal (amino acid residues

20–121) or the C-terminal (amino acid residues 191–356) deletion

mutants of CihC indicating that both, C4bp and C1-Inh, bind to

the central domain of CihC. In related studies, Streptococcus pyogenes

was previously shown to bind C4bp through the N-terminal highly

variable region of M-proteins Arp and Sir and similar results were

also obtained with the FHA receptor for C4bp of Bordetella pertussis

[38,39,41,44]. However, the reason for the differential binding

domains of the various pathogen receptors for C4bp is not known

at present.

Preliminary data indicate that binding of C4bp to CihC

ectopically expressed by B. burgdorferi B313 cells is independent of

ionic strength suggesting a hydrophobic interaction between the

receptor and its ligand. Similar findings have been reported before

for other pathogens. Thus, interaction of the Y. enterocolitica Ail

receptor with C4bp was also found to be less sensitive to salt [45].

Figure 8. Ectopic expression of CihC in serum-sensitive B. burgdorferi B313. A) Expression and surface localization of CihC by transformed B.
burgdorferi B313 was analyzed by whole cell ELISA using CihC-specific mAb BR2 and as control, the flagellin-specific mAb LA21. B) Binding of C4bp
and C1-Inh to B313/vc and transformed B313/CihC cells was analyzed by FACS analysis. C) Immunfluorescence analysis using CihC-specific mAb BR2
followed by rabbit anti-mouse Cy3-conjugated IgG. The corresponding differential interference contrast image is shown in the lower panel. D) For
human serum susceptibility assay, mock-transformed B. burgdorferi B313 (B313/vc) and B. burgdorferi B313 transformed with the cihC gene (B313/
pCihC) were incubated in the presence of 50% factor-B depleted human serum (NHS-B) or heat-inactivated factor B-depleted human (hiNHS-B) serum
at 30uC for 48 h. Cells were stained with a nucleic acid dye and the growth as compared to day 0 was determined by measuring of the fluorescence
intensity at 530 nm. Values represent the mean 6 SEM of a single experiment performed in triplicate that is representative of three independent
experiments. **, P = 0.001; *, P,0.01 for B313/pCihC NHS(-B) at 24h and 48h, respectively, compared to B313/vc NHS(-B).
doi:10.1371/journal.pntd.0000698.g008
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Moreover, C4bp receptors like Por1A of N. gonorrhoeae [42,46],

UspA1/2 of M. catarrhalis [36], OmpA of E. coli [43] and the M-

proteins of S. pyogenes bind C4bp in a nonionic fashion. However,

further analyses including C4bp deletion constructs are required to

solve this issue for CihC.

The present study adds another facet on the versatility of

relapsing fever spirochetes to persist in human blood and to evade

innate and adaptive immunity. The best-known immune evasion

strategy of relapsing fever Borrelia is antigenic variation, i.e. the

ability to respond to newly generated specific antibodies with a

switch to an altered variable major outer surface protein (Vmp).

Essentially, the pathogen always stays one step ahead of antibodies.

However, while antigenic variation is restricted to Vmps, other

surface exposed proteins are stable and antigenic, e.g. the surface-

exposed lipoprotein FhbA of B. hermsii [12,13,47,48]. In this context

it could be speculated that upon binding to CihC, C4bp and C1-Inh

inhibit the lectin and classical complement pathway, including the

formation of the lytic membrane attack complexes.

In addition to the observed anti-complement activity, B.

recurrentis-exposed C4bp may exhibit another biological activity

relevant for spirochetal serum resistance. This is indicated by the

fact that C4bp circulates in plasma as a complex with protein S

that in turn binds to negatively charged phospholipids on

membranes [49–51]. Thus, it is possible that C4bp also promotes

adhesion and subsequently hematogenous dissemination by

simultaneously binding to B. recurrentis and endothelial cells. This

assumption is supported by the recent observation that the related

fibronectin and glycosaminoglycan binding protein, BBK32, of B.

burgdorferi mediates endothelial interactions in vivo, thereby

facilitating microvascular interactions [52]. Similarly, CihC of B.

recurrentis and B. duttonii bound fibonectin and thus could also

be involved in the dissemination process of relapsing fever

spirochetes.

The assumption that CihC of B. recurrentis and probably also

CihC/BDU_1 of B. duttonii are critically involved in their escape

from complement-mediated lysis is further supported by the

present finding that ectopic expression of CihC in the serum-

sensitive B. burgdorferi strain B313 led to a significant increase in

resistance to complement mediated lysis. Moreover, binding of

C1-Inh, the major inhibitor of several pathways of inflammation in

humans, to CihC could be observed. However, the actual role of

CihC in the pathogenesis of louse-borne relapsing fever will only

be elucidated by in vivo studies in a relevant mouse model [53].

Complement resistance in cihC transformed B. burgdorferi strain was

detected in the presence of non-immune factor B-depleted human

serum indicating that the lectin/classical pathway of complement

activation may be triggered by Borrelia structures other than

specific antibodies. Indeed, we have shown that C1q and the C1

complex can bind to the surface of B. recurrentis in the absence of

specific antibodies. Moreover, recognition molecules specific for

the lectin pathway (i.e. MBLs and ficolins) could also bind to

borrelial carbohydrates and activate MASPs [20,54–58]. MASP-2

is the enzyme component that, like C1s in the classical pathway,

cleaves the complement components C4 and C2 to form the C3

convertase C4bC2a, common for activation of both the lectin and

the classical pathways. However, it remains to be determined

whether C4bp and C1-Inh binding significantly increases B.

recurrentis spirochetes resistance against complement attack in

humans.

In summary, this study is the first to show that B. recurrentis and

most probably B. duttonii express a potential lipoprotein receptor,

which selectively binds C4bp and C1-Inh, the endogenous

regulators of the classical and lectin complement pathway.

Together with the fact, that both spirochetal species also carry a

specific receptor for the serum-derived complement inhibitor of

the alternative pathway, CFH, the present data emphasize the

versatility of B. recurrentis and B. duttonii to evade lectin/classical

and alternative pathways of complement activation. Elucidating

the pathological processes underlying relapsing fever will be

helpful to design novel regimens for therapeutic treatment of

spirochete-induced relapsing fever and to develop potential

vaccine candidates.
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