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A B S T R A C T

This study investigates the predictive power of machine learning and deep learning models for forecasting 
training outcomes in assistance dogs, using behavioral survey data (C-BARQ) collected from volunteer puppy- 
raisers at two developmental stages: 6 months and 12 months. We used data from two assistance dog training 
organizations–Canine Companions and The Seeing Eye, Inc.– to assess model performance and generalizability 
across different training contexts. Six models, including traditional machine learning approaches (SVM, Random 
Forest, Decision Tree, and XGBoost) and deep learning architectures (MLP and CNN), were trained and evaluated 
on C-BARQ behavioral scores using metrics such as accuracy, F1 Score, precision, and recall. Results indicate that 
Support Vector Machine (SVM) and XGBoost consistently delivered the highest prediction accuracy, with SVM 
achieving up to 80 % accuracy in the Canine Companions dataset and 71 % in the Seeing Eye dataset. Although 
deep learning models like CNN showed moderate accuracy, traditional machine learning models excelled, 
particularly in structured, tabular data where feature separability is essential. Models trained on 12-month data 
generally yielded higher predictive accuracy than those trained on 6-month data, highlighting the value of 
extended behavioral observations. This research underscores the efficacy of traditional machine learning models 
for early-phase prediction and emphasizes the importance of aligning model selection with dataset character
istics and the stage of behavioral assessment.

1. Introduction

The domestic dog’s extraordinary diversity of breeds and types re
flects a long history of human selection for behavioral attributes that 
enhance the ability of these animals to perform specific working roles, 
ranging from hunting, guarding, herding and detection work to the 
provision of companionship and social support (Dutrow et al., 2022; 
Hall et al., 2021; Serpell, 2021). As the global demand for selectively 
bred and trained working dogs continues to grow, organizations and 
agencies dedicated to producing these animals are increasingly focused 
on ways of improving their selection and training (Bray et al., 2021). 

According to organization estimates, the average cost to produce most 
trained working dogs ranges from $40,000 to $75,000 USD (Cleghern 
et al., 2018; Mercato et al., 2022), a significant portion of which can be 
attributed to the effort and resources invested in the production of dogs 
that ultimately fail to become successful in their assigned roles. For 
example, data derived from assistance (guide and service) dog organi
zations suggest that 50–70 % of dogs are released and re-homed because 
they are deemed unsuitable for assistance work (Duffy and Serpell, 
2012; Harvey et al., 2017). Behavioral issues of one kind or another 
account for the majority (63–87 %) of these releases (Duffy and Serpell, 
2012). Given these high costs and losses, working dog organizations and 
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agencies have a strong interest in being able to use behavioral charac
teristics to predict an individual dog’s likelihood of being successful as 
early as possible in its development (Bray et al., 2021).

A variety of different methods and approaches have been used to 
predict future performance in working dogs, including behavioral test 
batteries administered at various ages. Several of these studies across 
multiple working dog programs have confirmed that numerous behav
ioral attributes are correlated with successful program completion and 
may provide useful indicators of training potential, even as early as eight 
weeks of age (Arata et al., 2010; Asher et al., 2013; Batt et al., 2008; 
Brady et al., 2018; Bray et al., 2017b, 2019, 2021; Goddard and Beilharz, 
1986; Harvey et al., 2016; Lazarowski et al., 2021; MacLean and Hare, 
2018; Sinn et al., 2010; Svobodová et al., 2008; Tiira et al., 2020; 
Tomkins et al., 2011; Wilsson and Sundgren, 1997).

To enhance early socialization, most working dog organizations tend 
to foster their puppies with volunteer puppy raisers who care for the 
dogs from about 7–8 weeks of age. Foster homes are often widely 
dispersed geographically, thus rendering these dogs relatively inacces
sible for direct behavioral observation or testing until they return to 
their host organizations to be professionally trained at around 14–18 
months old. To overcome the difficulty of evaluating dogs during this 
period, several studies have used surveys or questionnaires to collect 
behavioral assessments from working dog puppy raisers (Bray et al., 
2019; Cleghern et al., 2018; Duffy and Serpell, 2012; Foyer et al., 2014; 
Serpell and Hsu, 2001). The most widely used and validated survey of 
this type is the Canine Behavioral Assessment & Research Questionnaire 
(C-BARQ), developed at the University of Pennsylvania (Hsu and Ser
pell, 2003; Duffy and Serpell, 2012). Among working dog organizations, 
C-BARQs are usually completed by puppy raisers serially when their 
dogs are 6 and 12 months old.

Previous attempts to use C-BARQ scores to predict training outcomes 
have been moderately successful. One study, conducted in 5 different 
assistance dog organizations, investigated whether a dog’s success 
(being placed with a handler or selected as a breeder) or release from the 
program (for behavioral reasons) could be predicted based on its earlier 
C-BARQ scores. Guide and service dogs that successfully completed their 
training obtained more favorable scores on 27 out of 36 C-BARQ be
haviors, and ‘pulling excessively hard on the leash’ was the most highly 
predictive trait for failure. Logistic regression models indicated that the 
overall C-BARQ evaluations were able to discriminate between suc
cessful and unsuccessful dogs significantly above chance levels (areas 
under the ROC curves 0.64–0.72) (Duffy and Serpell, 2012). A subse
quent study within a single service dog organization obtained similar 
results (AUC of 0.71) but also determined that C-BARQ evaluations were 
more accurate at identifying dogs with the lowest probabilities of being 
successful (85–92 % accuracy) compared with the most successful dogs 
(62–72 % accuracy) (Bray et al., 2019). Both these studies included 
demographic and contextual covariates such as breed, sex (Duffy and 
Serpell, 2012), coat color, training region, and year of assessment (Bray 
et al., 2019) in their models. The primary research objective of the 
current study was to determine whether AI models (machine and deep 
learning) can improve on these earlier attempts to predict training 
outcomes in assistance dogs using only data derived from C-BARQ 
assessments.

To date, few studies have implemented predictive AI modelling ap
proaches to forecast outcomes in dogs, relying instead on traditional 
statistical analyses (but see Panthirana and Balalle, 2024). The current 
study seeks to address this gap by introducing machine learning and 
deep learning approaches to predict training outcomes in assistance 
dogs based on C-BARQ data. The predictive ability of the developed 
models is evaluated at two distinct stages of puppy raising—when the 
dogs are 6 months and 12 months old—to determine if training out
comes can be accurately forecasted relatively early in development. This 
research also compares the effectiveness of AI models on datasets from 
two distinct working dog organizations that breed and train different 
categories of assistance dogs (service vs. guide) to assess the 

generalizability of the approach. While previous studies have estab
lished correlations between C-BARQ scores and training success in 
working dogs using traditional statistical approaches, our goal here was 
to determine whether AI models could enhance predictive accuracy and 
provide a more automated, flexible, and scalable solution for the early 
identification of successful assistance dog candidates.

2. Materials and methods

2.1. Data collection

Datasets from two distinct assistance dog training organizations were 
used to enable a comparative analysis and to assess the generalizability 
of AI-based predictive approaches across different sources. Additionally, 
by analysing data collected at different life stages (6 and 12 months), we 
evaluated the feasibility of predicting training outcomes earlier in the 
puppy-raising process, offering insights into the model’s reliability in 
detecting training potential at earlier developmental phases.

The first dataset was provided by Canine Companions, a U.S.-based 
nonprofit organization that breeds, trains, and places service dogs free 
of charge with individuals with disabilities–including adults, children, 
and veterans–as well as facility dogs for professionals in healthcare, 
criminal justice, and educational settings. This dataset contains de
mographic information for each dog, such as breed, age, and sex, along 
with raw behavioral scores from the comprehensive 100-item Canine 
Behavioral Assessment & Research Questionnaire (Supplementary Table 
S1, see Hsu and Serpell, 2003; Duffy and Serpell, 2012). These C-BARQ 
assessments, completed by puppy raisers, capture quantitative behav
ioral information from when the dogs are approximately 6 and 12 
months old and contain 7627 records from dogs born between the years 
2005 and 2023. The outcome variable captures three classes of training 
results: Graduate (indicating that a dog successfully completed training 
and was assigned a working role), Released (indicating that a dog was 
released from training due to behavioral reasons), and Breeder (indi
cating that a dog enrolled in the breeding program). The Graduate 
category at Canine Companions includes service dogs serving a variety 
of different roles—e.g., dogs placed with adults with physical or audi
tory disabilities, children with developmental disabilities, veterans with 
post-traumatic stress disorder, and facility dogs. Approximately 43 % of 
the dogs in this sample graduated successfully, 52 % were released for 
behavioral reasons, and 5 % became breeders. Dogs released for medical 
reasons were excluded from the dataset since our focus is on predicting 
behavioral success.

The second dataset was provided by The Seeing Eye, Inc., another 
US-based nonprofit organization that breeds, trains, and places guide 
dogs with blind and partially sighted individuals. This dataset includes 
background details for each dog, including age, sex, and breed, as well as 
raw behavioral scores on the 100-item Canine Behavioral Assessment & 
Research Questionnaire (C-BARQ) completed by puppy raisers when the 
dogs were 6 and 12 months old (Duffy and Serpell, 2012). The dataset 
contains 7719 records from dogs born between the years 2004 and 2022, 
and the outcome variable captures the same three classes of training 
results—Graduate, Released, and Breeder—as in the first dataset. The 
Graduate category at The Seeing Eye includes any dogs assigned to be 
guide dogs for blind or partially sighted persons aged 16 or older. 
Approximately 49 % of this sample graduated successfully, 45 % were 
released for behavioral reasons, and 6 % became breeders. As above, 
dogs released for medical reasons were excluded from the dataset.

2.2. Data cleaning and feature engineering

All demographic features such as age, sex, and breed were excluded 
from both datasets to ensure that training outcome predictions were 
based solely on C-BARQ behavioral features. Analyses were performed 
separately on the Canine Companions and Seeing Eye datasets, but the 
same methods were applied to each. Four specific C-BARQ items 
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(AGG32, AGG33, AGG34, and AGG35) were excluded from both data
sets for the 6-month and 12-month age groups due to a high volume of 
missing data (>20 %) in the Seeing Eye data. These items assess a dog’s 
aggressive behavior toward other dogs in the same household and were 
frequently left incomplete by puppy raisers who did not have another 
dog in the household. While the level of missingness for these variables 
was < 20 % in the Canine Companions data, the same variables were 
excluded to facilitate comparisons of the two sets of data.

To handle missing values among the remaining variables in both 
datasets and to ensure that all samples were available for training and 
testing machine learning models, we applied mean imputation in which 
each column is replaced with the mean of the observed values within 
that column, thus preserving the datasets’ original sample sizes. This 
method is effective when data is missing at random, as it provides an 
unbiased estimate by maintaining the mean of the data. As the target 
variable (training outcomes) in both datasets was categorical, we 
employed OneHotEncoder() method to convert the target into a nu
merical format. This method ensures that categorical labels are repre
sented appropriately without imposing ordinal relationships between 
the categories. This transformation enables compatibility with machine 
learning algorithms.

To manage label imbalance in both datasets and mitigate overfitting 
risks during model training, we employed the Synthetic Minority Over- 
sampling Technique (SMOTE). Unlike traditional methods that replicate 
minority samples, SMOTE generates synthetic samples by interpolating 
between existing instances of the minority class. This approach enhances 
the representation of the minority class without merely duplicating 
existing data points (Elreedy, Atiya, and Kamalov, 2024). Specifically, 
for each minority class sample xi, SMOTE selects one of its K-nearest 
neighbors xnn and generates a synthetic sample xnew positioned between 
xi and xnn. This process follows the formula: 

xnew = xi + λ × (xnn − xi)

where λ is a random value between 0 and 1, creating new points that 
maintain the distribution of minority class features. By enriching the 
feature space representation for the minority class, SMOTE enhances 
class balance, which can be especially beneficial for algorithms sensitive 
to imbalance. This method helps in reducing model bias toward the 
majority class, thereby improving classification accuracy and general
izability (Elreedy, Atiya, and Kamalov, 2024).

2.3. Feature selection

Training outcomes in both datasets were determined by the organi
zations based on the dog’s behavior as they progressed through the 
training programs. In Experiment 1, we utilized the C-BARQ scores 
recorded by puppy-raisers at 12 months of age to train and test machine 
learning models and predict training outcomes, allowing for a compar
ison of prediction results across the two datasets. In Experiment 2, we 
used the C-BARQ scores recorded by puppy-raisers at 6 months of age to 
assess whether training outcomes could be reliably predicted at an 
earlier life stage, again comparing prediction results between datasets 
based on the 6-month scores.

Principal Components Analysis (PCA) was also applied to both 
datasets to achieve dimensionality reduction while retaining 95 % of the 
dataset’s variance. PCA achieves this by transforming the original 
dataset into a series of uncorrelated variables, termed principal com
ponents, which prioritize capturing the highest variance. Specifically, 
PCA calculates the covariance matrix of the dataset X and performs an 
eigenvalue decomposition to obtain eigenvectors (principal compo
nents) and eigenvalues, which indicate the variance captured by each 
component (Härdle et al., 2024). Selecting the principal components 
with the highest eigenvalues ensures that they explain a cumulative 
threshold of variance—here, set at 95 %. Mathematically, this rela
tionship can be expressed as: 

Variance explained =

∑k
i=1λi

∑n
i=1λi 

where λi denotes the eigenvalues, and k represents the number of 
selected components. By retaining only the leading components neces
sary to reach this variance threshold, PCA reduces feature count while 
maintaining the critical dataset structure, aiding in preventing over
fitting and enhancing computational efficiency in subsequent model 
training (Härdle, Simar, and Fengler, 2024).

2.4. Preparing training and testing sets

As Python programming language was used for implementation, the 
train_test_split() function from the sklearn library was used to split the 
pre-processed datasets randomly into 80 % training and 20 % testing 
sets, as recommended.

2.5. Developing machine learning models

2.5.1. Experiment 1: 12-month C-BARQ scores
To predict training outcomes (i.e., Graduate, Released, and Breeder) in 

the Canine Companions and Seeing Eye datasets based on 12-month C- 
BARQ scores, four machine learning and two deep learning models were 
developed and evaluated: (1) Support Vector Machine (SVM), (2) 
Random Forest, (3) Decision Tree, (4) XGBoost, (5) Multi-Layer Per
ceptron Neural Network (MLP), and (6) Convolutional Neural Network 
(CNN). Each model underwent systematic hyperparameter tuning using 
RandomizedSearchCV to identify the best-performing parameter con
figurations. This method was selected because it allows for efficient 
hyperparameter optimization by sampling from a defined distribution 
rather than exhaustively searching all possible combinations. This 
approach significantly reduces computational cost while maintaining 
high-quality model performance (see Supplementary Materials).

The identified optimum values for each model’s parameters in the 
Canine Companions and Seeing Eye datasets are presented in Supple
mentary Table S2.

Optimal hyperparameter values frequently vary across models when 
applied to different datasets. As presented in Table S2, tuning the 
hyperparameters of machine learning models resulted in slightly 
different optimal values across the two different datasets. This variation 
is driven by differences in data characteristics, such as feature distri
butions, relationships, and sample size. Hyperparameter tuning, there
fore, aims to adapt models to these unique data features, with results 
showing distinct optimal values for parameters like ‘C’ and ‘gamma’ in 
the Support Vector Machine model, ‘min_samples_split’ in the Random 
Forest model, and ‘max_depth’, ‘min_samples_leaf’, and ‘min_sam
ples_split’ in the Decision Tree model. These adjustments enhance the 
models’ performance by better aligning them with the inherent struc
tures and complexities of each dataset.

In deep learning models, hyperparameters such as learning rate, 
activation functions, and layer configurations tend to be more stable 
across different datasets. This is because deep learning models excel at 
learning hierarchical, complex feature representations directly from 
data, which can make them inherently more adaptable to diverse data 
structures. Once hyperparameters are fine-tuned on one set of training 
data, these models often generalize well, requiring fewer adjustments to 
perform effectively on similar tasks with different datasets. This adapt
ability contrasts with traditional machine learning models, where 
hyperparameters are often more sensitive to changes in dataset char
acteristics. We confirmed the stability of hyperparameters, achieving 
optimal predictive performance across both datasets using consistent 
parameter values.

2.5.2. Experiment 2: 6-month C-BARQ scores
In the second experiment, we used the same machine learning and 
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deep learning models to predict training outcomes in the Canine Com
panions and Seeing Eye datasets based on 6-month C-BARQ scores. 
Similar to experiment 1, the hyperparameter tuning was performed 
using RandomizedSearchCV to identify the best-performing parameter 
configurations. The identified optimum values for each model’s pa
rameters in this experiment are presented in Supplementary Table S3. 
The hyperparameter values that were considered in Random
izedSearchCV for each model and parameter are the same as in Exper
iment 1 and are presented in Supplementary Table S4.

3. Results

3.1. Experiment 1 results: performance of the models based on 12-month 
C-Barq scores

The performance of the models that were trained based on the 12- 
month C-BARQ scores was evaluated using 5-Fold Cross Validation. 
Accuracy (overall proportion of correct predictions), F1 Score (harmonic 
mean of precision and recall), Precision (proportion of positive pre
dictions that are actually correct), Recall (a.k.a. Sensitivity; the pro
portion of actual positive cases correctly classified), and Specificity (the 
proportion of negative cases correctly classified) metrics were generated 
in this evaluation phase to enable a thorough comparative analysis. 
Table 4 presents the results for each dataset following the 5-Fold Cross 
Validation process.

As shown in Table 4, the Support Vector Machine (SVM) and 
XGBoost models demonstrated superior performance in comparison to 
the other models, though each model exhibited unique strengths and 
limitations across the two datasets.

In the Canine Companions dataset, the SVM model achieved the 
highest overall performance, scoring an accuracy, F1 Score, precision, 
and recall of 0.80 across the board, indicating balanced performance 
with consistent predictive strength. The SVM model also achieved an 
impressive level of specificity (0.90) for the 12-month data. XGBoost 
closely followed SVM, with slightly lower metrics but still demon
strating solid classification ability at 0.77 accuracy and with a 0.76 F1 
Score. Random Forest and neural network models (Multi-Layer Per
ceptron and CNN) showed moderate performance, with accuracies 
around 0.74–0.75. The Decision Tree model lagged behind, achieving 
the lowest accuracy of 0.63, highlighting its limitations in handling the 
complexity of the data when compared to more sophisticated models 
like SVM and XGBoost. Our findings suggest that ensemble methods and 
deep learning architectures may better capture the nuanced patterns in 
the Canine Companions dataset.

In the Seeing Eye dataset, all models generally exhibited lower per
formance compared to the Canine Companions dataset. SVM remained 
the best-performing model, achieving 0.71 across all metrics and a 
specificity of 0.84, followed by XGBoost with an accuracy of 0.69. Multi- 
Layer Perceptron achieved moderate accuracy score of 0.67. CNN and 
Random Forest models had relatively low performance, with accuracy 
scores of 0.64 and 0.65, respectively. Similar to the experiment on the 
Canine Companions dataset, the Decision Tree model lagged behind, 
achieving the lowest accuracy of 0.54, indicating its limitations in 
handling the complexity of the data when compared to other models. 

The overall lower performance in the Seeing Eye dataset suggests that 
the feature set may not capture the behavioral nuances as effectively in 
this context, or the data distribution might be more challenging for the 
models.

In summary, SVM and XGBoost consistently performed well across 
both datasets, with SVM excelling in the Canine Companions dataset and 
providing stable performance in the Seeing Eye dataset. The results 
suggest that SVM and XGBoost are particularly effective for this classi
fication task, likely due to their ability to model complex decision 
boundaries and account for non-linear relationships in the data. The 
neural networks (Multi-Layer Perceptron and CNN) performed moder
ately well, indicating potential but perhaps a need for further tuning or 
additional layers to improve generalization. The Decision Tree model, 
while interpretable, showed the weakest performance, which suggests 
that it may struggle with complex, high-dimensional datasets. The 
findings indicate that ensemble and SVM models are more robust 
choices for predicting behavioral outcomes based on 12-month C-BARQ 
scores.

In addition to accuracy-based evaluation metrics, we also assessed 
the confidence of the best-performing model’s predictions using the 
probability scores generated by the classifier. These scores reflect the 
model’s certainty in its classification decisions and were calculated as 
the predicted probability for the assigned class using the predict_proba() 
method. It is important to distinguish between accuracy score and 
confidence score: while accuracy represents the overall proportion of 
correct predictions across the test set, confidence scores reflect how 
certain the model is about individual predictions. A model can have high 
accuracy overall but still be uncertain about specific classi
fications—confidence scores provide insight into that nuance.

The average confidence score for the SVM model across all test 
samples was 80.29 % for the Canine Companions dataset and 70.37 % 
for the Seeing Eye dataset, indicating a generally high level of certainty 
in the model’s predictions, particularly for the Canine Companions 
sample. These confidence scores further reinforce SVM’s status as the 
most robust and reliable model in this experiment, providing not only 
accurate but also consistent and confident predictions.

3.2. Experiment 2 results: performance of the models based on 6-month 
C-Barq scores

The performance of the models trained using the 6-month C-BARQ 
scores was evaluated following the same 5-Fold Cross Validation 
methodology as applied in the previous experiment. Accuracy, F1 Score, 
Precision, Recall and Specificity were again utilized to enable a detailed 
comparative analysis. Table 5 presents the results for each model, tested 
across both the Canine Companions and Seeing Eye datasets.

According to Table 5, the Support Vector Machine (SVM) and 
XGBoost models once again demonstrated strongest performance, while 
other models exhibited limitations. Differences between the Canine 
Companions and Seeing Eye datasets were also evident, reflecting 
dataset-specific challenges in predictive modelling.

In the Canine Companions dataset, the SVM and XGBoost models 
both achieved the highest accuracy scores of 0.75, with balanced F1 
Scores, precision, and recall, suggesting their robustness in capturing the 

Table 4 
Experiment 1: 5-Fold Cross Validation Results for Models Based on 12-Month C-BARQ Scores.

ML Model Canine Companions Seeing Eye

Accuracy F1 Score Precision Recall Specificity Accuracy F1 Score Precision Recall Specificity

SVM 0.80 0.80 0.80 0.80 0.90 0.71 0.71 0.71 0.71 0.84
Random Forest 0.75 0.74 0.74 0.75 0.88 0.65 0.64 0.64 0.65 0.83
Decision Tree 0.63 0.62 0.63 0.62 0.82 0.54 0.53 0.52 0.54 0.77
XGBoost 0.77 0.76 0.76 0.77 0.89 0.69 0.69 0.67 0.69 0.84
Multi-Layer Perceptron Neural Network 0.74 0.74 0.74 0.74 0.87 0.67 0.65 0.66 0.67 0.84
Convolutional Neural Network (CNN) 0.74 0.73 0.74 0.73 0.87 0.64 0.63 0.63 0.64 0.82
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patterns associated with behavioral outcomes even at the 6-month stage. 
SVM also displayed the highest level of specificity (0.88) at this life 
stage. Random Forest followed with a moderate accuracy of 0.72, 
indicating a reasonable but slightly lower predictive power than SVM 
and XGBoost. The Multi-Layer Perceptron Neural Network and CNN 
performed moderately well, with accuracies of 0.69 and 0.68, respec
tively, reflecting their potential but a possible need for further tuning. 
The Decision Tree model, with an accuracy of 0.61, lagged behind the 
other models, likely due to its relatively simple structure and limited 
capacity to handle complex, high-dimensional data.

The results for the Seeing Eye dataset presented a slightly different 
trend, with overall lower performance across most models compared to 
the Canine Companions dataset. SVM remained the best-performing 
model with an accuracy of 0.70, followed by XGBoost with an accu
racy of 0.67. The specificity of the SVM model (0.85) was also relatively 
high. Both models demonstrated balanced F1 Scores, precision, and 
recall, suggesting effective performance, albeit with slightly reduced 
predictive strength relative to the Canine Companions dataset. The 
Random Forest and Multi-Layer Perceptron models showed comparable 
performance, each achieving accuracy scores around 0.65, while CNN 
achieved 0.63. The Decision Tree model struggled significantly on the 
Seeing Eye dataset, with an accuracy of only 0.53, indicating potential 
challenges in adapting to the specific features or data distribution of this 
dataset.

As in the previous experiment, we also evaluated the average con
fidence of the best performing model’s predictions based on probability 
outputs. These confidence scores, calculated as the model’s predicted 
probability for the assigned label, offer additional insight into prediction 
certainty beyond accuracy alone. For the 6-month predictions, the SVM 
model achieved an average confidence score of 71.04 % on the Canine 
Companions dataset and 70.63 % on the Seeing Eye dataset. These re
sults suggest that, while the SVM model maintained stable predictive 
ability across both datasets, its confidence in predictions was somewhat 
lower compared to the 12-month models, potentially reflecting the 
increased challenge of making outcome predictions at an earlier 
behavioral stage.

In summary, the SVM and XGBoost models displayed the most 
consistent performance across both datasets, highlighting their adapt
ability and effectiveness in predicting outcomes based on the 6-month C- 
BARQ scores. The moderate results from Random Forest and neural 
networks suggest that these models may also be viable options with 
further optimization. The Decision Tree’s lower accuracy and F1 Scores 
across datasets underscore its limitations for this task, particularly in 
handling complex or noisy data. Overall, the findings suggest that SVM 
and XGBoost are the most reliable choices for early behavioral predic
tion, with consistent performance that aligns with their results in the 12- 
month C-BARQ analysis, though the predictive challenge appears 
slightly greater at the 6-month stage.

3.3. Comparison of model performance between 6-month and 12-month 
C-BARQ scores

Generally, models trained on the 12-month C-BARQ data achieved 
higher accuracy across both the Canine Companions and Seeing Eye 

datasets. The progression in performance underscores the importance of 
temporal data maturity, particularly in structured behavioral datasets 
where characteristics develop and stabilize over time.

To facilitate a comparative analysis, the prediction accuracy of each 
model based on 6-month and 12-month C-BARQ scores for the Canine 
Companions dataset and the Seeing Eye dataset is presented in Table 6.

As presented in Table 6, all models exhibited greater accuracy when 
trained with 12-month scores from the Canine Companions dataset. The 
SVM and XGBoost models, which had shown strong results at the 6- 
month stage, further enhanced their predictive power with accuracies 
rising from 0.75 to 0.80 for SVM and from 0.75 to 0.77 for XGBoost. 
These results suggest that these models are particularly effective at 
capturing the complex relationships in the dataset, and the additional six 
months of behavioral data provide a clearer signal for outcome predic
tion. Random Forest also showed improvement, moving from 0.72 at 6 
months to 0.75 at 12 months, reflecting its robust adaptability to 
enriched data. Similarly, both neural network models—Multi-Layer 
Perceptron (MLP) and CNN—saw accuracy gains, reaching 0.74 with the 
12-month data. The Decision Tree model had the lowest improvement, 
indicating potential limitations in its ability to leverage the added 
temporal data as effectively as the other models.

In the Seeing Eye dataset, trends were slightly different. While most 
models still showed a small improvement with the 12-month data, the 
gains were more modest than those seen in the Canine Companions 
dataset. SVM, XGBoost, and MLP saw minor increases in accuracy, with 
SVM rising from 0.70 to 0.71, XGBoost from 0.67 to 0.69, and MLP from 
0.65 to 0.67. Interestingly, the Decision Tree model performed better 
with the 12-month data (0.65) compared to the 6-month data (0.53), 
suggesting that it may have benefitted more from extended observations 
in this dataset than in the Canine Companions dataset. Overall, CNN 
showed limited improvement, with accuracy increasing only marginally 
from 0.63 to 0.64, indicating it may be less sensitive to temporal depth 
compared to other models in this dataset.

In addition to improvements in accuracy, models trained on 12- 
month C-BARQ data also demonstrated higher prediction confidence, 

Table 5 
Experiment 2: 5-Fold Cross Validation Results for Models Based on 6-Month C-BARQ Scores.

ML Model Canine Companions Seeing Eye

Accuracy F1 Score Precision Recall Specificity Accuracy F1 Score Precision Recall Specificity

SVM 0.75 0.74 0.75 0.75 0.88 0.70 0.69 0.67 0.70 0.85
Random Forest 0.72 0.71 0.71 0.72 0.85 0.65 0.64 0.64 0.65 0.83
Decision Tree 0.61 0.60 0.60 0.61 0.80 0.53 0.52 0.52 0.53 0.77
XGBoost 0.75 0.75 0.75 0.75 0.87 0.67 0.66 0.66 0.67
Multi-Layer Perceptron Neural Network 0.69 0.68 0.68 0.69 0.84 0.65 0.65 0.64 0.66 0.82
Convolutional Neural Network (CNN) 0.68 0.67 0.67 0.68 0.84 0.63 0.63 0.63 0.64 0.81

Table 6 
Prediction accuracy of each model based on 6-month and 12-month C-Barq 
scores Across both datasets.

ML Model Accuracy based on 6- 
month C-BARQ scores

Accuracy based on 12- 
month C-BARQ scores

Canine 
Companions 
Dataset

Seeing 
Eye 
Dataset

Canine 
Companions 
Dataset

Seeing 
Eye 
Dataset

SVM 0.75 0.70 0.80 0.71
Random Forest 0.72 0.65 0.75 0.65
Decision Tree 0.61 0.53 0.63 0.65
XGBoost 0.75 0.67 0.77 0.69
Multi-Layer 

Perceptron 
Neural 
Network

0.69 0.65 0.74 0.67

Convolutional 
Neural 
Network (CNN)

0.68 0.63 0.74 0.64
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as measured by average probability scores. Specifically, the best per
forming model (SVM) achieved an average confidence score of 80.29 % 
for the Canine Companions dataset and 70.37 % for the Seeing Eye 
dataset at 12 months, compared to 71.04 % and 70.63 % respectively for 
the 6-month models. This suggests that not only does predictive per
formance improve with additional data, but the model also becomes 
more certain in its classifications—highlighting the importance of 
behavioral data maturity over time.

4. Discussion

The aim of this study was to assess the ability of Machine Learning 
(ML) and Deep Learning (DL) models to predict training outcomes for 
young assistance dogs using behavioral data (C-BARQ item scores) 
collected at approximately 6 and 12 months of age. The results indicate 
that the best performing ML model can learn to assign dogs correctly to 
specific career outcomes (Graduate, Released, and Breeder) with an 
impressive level of accuracy, reaching up to 80 % using the 12-month 
data from Canine Companions and 71 % based on the Seeing Eye 
dataset, and 75 % and 70 %, respectively, using the 6-month data. In the 
past, researchers have been able to generate individual-level predictions 
using conventional statistical approaches, such as linear or logistic 
regression models, that take input data for a single dog – e.g., that dog’s 
6- or 12-month C-BARQ scores – and generate a specific prediction about 
that dog’s likely training outcome, along with a probability or confi
dence score. We can do the same thing with our current ML approach, 
but with several advantages (Bray et al., 2019; Duffy and Serpell, 2012). 
First, the current approach performs as well or better with less infor
mation – it only uses the C-BARQ scores of the dogs, without any 
additional covariates (e.g., sex, breed, coat color, training year, etc.). ML 
approaches are also better equipped to handle complex, 
high-dimensional, and non-linear behavioral data. These findings are 
especially encouraging given the substantial time gap—often 
6–12 months or more—between C-BARQ assessments and the eventual 
decision to graduate or release a dog, and the fact that the behavioral 
evaluations are completed by a diversity of puppy raisers with varying 
levels of experience regarding canine behaviour, dog training, and 
puppy raising. Furthermore, these surveys represent a very minor time 
investment on the part of the puppy raisers who spend approximately 
10–15 minutes completing the survey.

It is unclear why the models performed better based on behavioral 
data from Canine Companions compared with The Seeing Eye, partic
ularly in view of the more varied career outcomes for the former. Dif
ferences in breed representation between the two organizations may be 
a factor. The majority of Canine Companions dogs are either Labrador 
retrievers or Labrador x golden retriever crosses, whereas the Seeing Eye 
also breeds and trains significant numbers of German shepherds as dog 
guides. Given observed behavioral differences between German shep
herds and the two retriever breeds (Serpell and Duffy, 2014), it is 
possible that greater variance in breed-related traits impacted the ac
curacy of the ML models for the Seeing Eye.

Model performance generally improved with data collected at 12 
months compared with 6 months. This is likely due to the greater sta
bility and maturity of behavioral traits in the older cohort of dogs, as 
well as their closer temporal proximity to the period of training and 
ultimate career determination. These findings also highlight the value of 
extended data collection periods when developing predictive models for 
datasets capturing gradual developmental changes in behavior and 
temperament. The SVM and XGBoost models emerged as the most reli
able across both datasets, showcasing their adaptability to both earlier 
and later observational periods. The Canine Companions dataset 
exhibited stronger performance gains with additional data than the 
Seeing Eye dataset, suggesting that dataset-specific factors, such as 
behavioral consistency or breed representation, may also play a role in 
model effectiveness over time.

The Support Vector Machine (SVM) model was the top performer 

across both datasets, particularly excelling with 12-month data. This 
strong performance underscores SVM’s adaptability to structured, 
tabular data, where its ability to create optimal class boundaries en
hances predictive accuracy. SVM’s consistent accuracy between 6 and 
12-month data highlights its robustness, especially for datasets with 
well-defined class boundaries, as seen in guide dog training outcomes.

In addition to traditional performance metrics, we also evaluated the 
confidence of the SVM model’s predictions using probability estimates 
generated by the predict_proba() function. This analysis provided 
insight into how certain the model was in its classifications, beyond 
simply being correct or incorrect. The average confidence score, calcu
lated as the predicted probability associated with each predicted label 
(Graduate, Released or Breeder), was highest for the 12-month Canine 
Companions dataset (80.29 %), followed by the 12-month Seeing Eye 
dataset (70.37 %), and the 6-month Canine Companions (71.04 %) and 
Seeing Eye (70.63 %) datasets. These results suggest that the SVM model 
was not only more accurate at later timepoints, but also more certain in 
its predictions—supporting the interpretation that temporal maturity in 
behavioral traits improves both performance and model confidence. 
This adds another dimension to our evaluation, indicating that the 
predictions made at 12 months are both more accurate and more 
trustworthy.

XGBoost also demonstrated strong performance, with accuracy levels 
of 77 % for the Canine Companions dataset and 69 % for the Seeing Eye 
dataset at 12 months. While Random Forest provided slightly lower 
accuracy than SVM and XGBoost, it proved to be a stable baseline model. 
On the other hand, the Decision Tree model exhibited modest accuracy 
(63 % on the Seeing Eye dataset at 12 months), reflecting its limitations 
in generalizability and sensitivity to noise compared to ensemble 
approaches.

Deep Learning models, including the Multi-Layer Perceptron (MLP) 
and Convolutional Neural Network (CNN), exhibited moderate perfor
mance, generally trailing behind the ML models. For instance, MLP 
achieved 74 % accuracy on the Canine Companions dataset and 67 % on 
the Seeing Eye dataset with 12-month data, indicating that DL models 
may be less effective on structured, tabular data without spatial or 
sequential dependencies. The lower performance of DL models 
compared to ML models suggests that while deep learning is advanta
geous for complex data structures, traditional ML models like SVM and 
XGBoost can outperform them when dealing with structured datasets 
such as C-BARQ. This outcome highlights that traditional ML models, 
with proper tuning, can better leverage the structured nature of C-BARQ 
data, focusing on feature separability to deliver accurate predictions.

These findings have significant implications for assistance dog 
breeding and training programs. Knowing a dog’s C-BARQ scores at 6 or 
12 months provides valuable insights into training suitability, thereby 
allowing for informed decisions earlier in the dog’s development. Such 
predictive insights can help to optimize resource allocation; for example, 
by ensuring that dogs at risk of failing receive appropriate behavioral 
remediation as early as possible, or by informing the decision to release 
a dog from the program before it enters the more cost- and resource- 
intensive phase of professional training. Overall, these results under
score the importance of selecting ML models aligned with dataset 
characteristics and suggest that ML-driven tools offer promising poten
tial for early decision-making in assistance and other working dog pro
grams. Because they are powered by AI, these ML algorithms can also be 
fully automated, allowing rapid and relatively inexpensive processing of 
data on new dogs as they progress through the puppy-raising system.

The present study’s reliance solely on C-BARQ data, and the inherent 
limitations of using a single, though well-validated, phenotypic mea
sure, suggest that incorporating additional sources of behavioral, 
cognitive, physiological, and demographic information may be valuable 
in improving the accuracy of predictions. For example, Hare et al. 
(2024) recently developed a modified version of the C-BARQ for work
ing detection dogs that includes additional behavioral domains, such as 
distractibility, impulsivity, playfulness, and basophobia (fear of falling), 
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which may be relevant to the assessment of assistance dogs. Also, while 
the C-BARQ focuses primarily on problem behaviors that tend to have a 
negative impact on a dog’s working ability, behavioral tests or assess
ments that capture uncorrelated positive dimensions of working per
formance are likely to contribute to the predictive accuracy of future ML 
models (e.g., Asher et al., 2013; Batt et al., 2008; Berns et al., 2016; 
Brady et al., 2018; Bray et al., 2017a, 2019, 2021; Harvey et al., 2016; 
Lazarowski et al., 2021; MacLean and Hare, 2018; Sinn et al., 2010; 
Svobodová et al., 2008; Tiira et al., 2020; Tomkins et al., 2011; Wilsson 
and Sundgren, 1997). Further work, however, is needed to determine 
the most informative and reliable test components, and the most 
appropriate ages for testing.

Additional analyses using combined datasets may offer further in
sights. However, the primary goal of the present study was to evaluate 
model performance across two separate canine populations that differ in 
terms of breed composition and training objectives, as our aim was to 
support individual working dog organizations that focus on different 
breeds and prepare dogs for distinct roles. While we initially considered 
training a model on one dataset and evaluating it on another to assess 
generalizability, we determined that such an experiment would present 
significant feasibility concerns due to contextual and demographic dif
ferences between the study populations. Despite this limitation, we were 
able to demonstrate consistency in model performance across both 
datasets, suggesting that C-BARQ behavioral features are relatively 
stable and reliable indicators of training outcomes.

In sum, this study provides several meaningful scientific 
contributions: 

• It demonstrates that ML models, particularly SVM and XGBoost, can 
effectively predict training outcomes in assistance dogs with higher 
accuracy and greater confidence than previously reported methods.

• It confirms that behavioral assessments conducted at 12 months 
yield more reliable predictions than those at 6 months, emphasizing 
the importance of developmental stability in behavioral traits.

• It provides insights into how different ML models perform on struc
tured, tabular data, contributing to the broader field of applied ML in 
behavioral science.

• It offers a methodological framework for working dog organizations 
to implement AI-driven decision-making, potentially optimizing 
resource allocation and training investments.

• It demonstrates that prediction confidence scores can serve as a 
useful proxy for evaluating model reliability and should be consid
ered alongside accuracy in future working dog assessments.

5. Conclusions

This study offers a comparative analysis of traditional machine 
learning and deep learning models for predicting training outcomes in 
working dogs, utilizing C-BARQ scores collected at two key develop
mental stages—6 months and 12 months—across two assistance dog 
organizations. Our findings reveal that traditional machine learning 
models, especially SVM and XGBoost, consistently deliver strong pre
dictive performance across both age stages and datasets, demonstrating 
their robustness and suitability for structured, tabular data. By contrast, 
deep learning models like CNN and MLP, while advantageous for high- 
dimensional and sequential data, did not surpass traditional models in 
this setting, achieving only moderate accuracy levels.

The comparison between 6-month and 12-month C-BARQ scores il
lustrates that longer observational periods and/or capturing behavior at 
a more mature stage in a dog’s life leads to improved model accuracy, 
with all models showing enhanced performance with 12-month data. 
SVM and XGBoost, however, performed reliably even at the 6-month 
mark, making them viable for early-stage predictions where timely as
sessments are essential. This research emphasizes the importance of 
selecting models that align with the dataset’s structure and the specific 
predictive goals, particularly in contexts like working dog training, 

where early prediction can have substantial impacts on training in
vestments and resource management.

Future research could focus on enhancing deep learning models for 
structured data by incorporating advanced feature engineering or 
custom model architectures, alongside additional sources of behavioral, 
cognitive, physiological, and demographic data. Such enhancements 
might further bridge the performance gap between traditional ML and 
deep learning approaches, offering more nuanced insights into early- 
stage predictions and assisting in the optimization of training de
cisions within assistance dog programs. Further work on applying ML 
models to automate the process of classifying and assigning individual 
dogs to specific career outcomes would be beneficial, as would addi
tional analysis of the specific C-BARQ variables that are most/least 
informative as predictors of success and failure.
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