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Abstract 27 

This article presents a structured and comprehensive review of the existing literature on 28 

physical, chemical, microstructure, and durability properties of recycled aggregate 29 

concrete (RAC). The engineering properties of concrete made from such recycled 30 

aggregates are critically analyzed by focusing mainly on the fresh and hardened states 31 

along with several characterization techniques such as SEM, EDX, XRD, FTIR and TG-32 

DTA. Also, creep and shrinkage, the microstructure and durability of recycled aggregate 33 

concrete (RAC) were studied and evaluated critically. In addition, improvement techniques 34 

in its microstructure are also explored with efficient mixing approaches for the 35 

development of geopolymer recycled aggregate concrete. Furthermore, techniques to 36 

enhance the mechanical characteristics and long-term performance of recycled aggregate 37 

are distilled and divided into three categories: (1) lowering the porosity of recycled 38 

aggregate, (2) lowering the layer of old mortar on the surface of recycled aggregate, and 39 

(3) enhancing the property without changing the recycled aggregate. It is evident from the 40 

thorough examination that recycled aggregates can be used in concrete up to a certain 41 

amount. For the creation of sustainable and high-performance concrete, it is also necessary 42 

to incorporate mineral admixtures of micron, sub-micron, and nano size to address the 43 

drawbacks of recycled aggregates.  44 

Keywords: Construction, demolition, recycled materials, concrete structures, 45 

microstructure, durability, sustainability.  46 
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Highlights 47 

1. Detailed discussion is made by addition of mineral admixture, modified mixing 48 

approach and alkali activators for the improvement of RAC. 49 

2. Detailed microstructure studies on RAC is studied and represented through several 50 

characterization techniques such as SEM, EDX, XRD, FTIR and TG-DTA. 51 

3. Identification and establishment of different trends based on engineering properties 52 

and long-term performance of RAC. 53 

4. Latest developments on RAC is included alongside the impact of carbon di-oxide 54 

curing, sea sand and sea water developed RAC and fiber reinforcement techniques etc. 55 
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1. Introduction 90 

The debris developed during the reformation, constructional activities and the demolition 91 

practices of various structural elements and pavements gives rise to the construction and 92 

demolition (C&D) wastes (Wu et al., 2014). The demolition waste is made up of building 93 

materials like wall coverings, paint, paper, aggregate, wood, concrete, fasteners, and 94 

adhesives, whereas construction waste is a heterogeneous building material that comes 95 

from the construction activities with potential sources at design, procurement, handling, 96 

operation, and residual sources (Devi et al., 2020). The parts of C&D remnants are often 97 

divided into two groups: major and minor. The latter incorporates tiles, paints, glass, 98 

electrical fixtures, and panels, while the former is made of plastic, stone, steel, bricks, and 99 

wood (Jain, 2021). As per study conducted by technology information, forecasting and 100 

assessment council (TIFAC), the contractors play a major role for the C&D waste 101 

management. Both major and minor categories of materials that are salvaged during 102 

demolition are sold on the market at a reduced price compared to the cost of new materials, 103 

and those that cannot be reused are disposed of in landfills. While some municipal 104 

corporations strive to minimise C&D debris to extend the useful life of dump sites, while 105 

others admit it in their landfills (TIFAC 2000). 106 

Three billion tonnes of waste are produced annually by the quick construction and 107 

demolition operations around the world, and this amount is only increasing (Akhtar & 108 

Sarmah, 2018). The majority of C&D waste is non-hazardous and inert, but it may also 109 

contain materials that are harmful to the environment, such as asbestos, organic pollutants, 110 

and heavy metals, particularly zinc (Duan & Li, 2016). Heavy metal leaching makes C&D 111 

waste more likely to pollute land and water (Zheng et al., 2017). Another difficulty with 112 

C&D waste is that it creates disposal issues, leading to the conversion of productive lands 113 

into dump sites, which in turn raises the cost of dumping at landfills (Bravo et al., 2015; 114 

Devi et al., 2020; Ma et al., 2020). In addition to these issues, C&D waste disposal causes 115 

landslides (Zheng et al., 2017; Trivedi et al., 2020). The need to recycle C&D waste on a 116 

wide scale is essential due to environmental concerns (Bui et al., 2017). It is stated that 117 

recycling C&D waste helps reduce the need for new resources, preserve land for future 118 

urbanization, protect the environment and ecology, reduce the costs associated with 119 

transportation and energy production, and prevent waste from ending up in landfills (Yuan 120 

& Shen, 2011). 121 
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The ecological footprint left by the building industry can be reduced by using C&D debris 122 

in place of natural aggregates (Silva et al., 2015). According to a study (Bui et al., 2017), 123 

this substitution can help save up to 60% of natural aggregates. Additionally, recycled 124 

aggregates (RA) minimise carbon dioxide emissions by 28% when compared to natural 125 

aggregates (Tam et al., 2018). Reusing C&D waste can assist the construction sector meet 126 

its rising need for aggregate due to a lack of natural resources (Kong et al., 2010). The 127 

C&D waste produced around the world is depicted in Figure 1 below (Aleksanin, 2019; 128 

Bester et al., 2000; Elchalakani & Elgaali, 2012; Environment and Climate Change Canada, 129 

2000; Environmental Protection Agency., 2020; Huang et al., 2018; Jain et al., 2020; 130 

Kartam et al., 2004; Kim, 2021; López de Munain et al., 2021; Mah et al., 2016; Menegaki 131 

& Damigos, 2018; Nunes & Mahler, 2020; Ulubeyli et al., 2017; Villoria Sáez & Osmani, 132 

2019; Zhao et al., 2021).  It can be observed that China and India generate most of the C&D 133 

waste worldwide followed by the USA. On the contrary, most of the European nations are 134 

generating least number of C&D wastes except France, and Germany and the UK with 135 

African countries generating a moderate number of C&D debris (Trivedi et al., 2023). 136 

According to the Central Pollution Control Board (CPCB), India produces an estimated 137 

23.75 MT of C&D debris annually and that number is anticipated to double (CPCB, 2017). 138 

The Building Materials and Technology Promotion Council (BMTPC) has acknowledged 139 

that a shortage of traditional construction resources exists in India because the necessity 140 

for building materials for the years 2021–22 is expected to be close to 380 MT for cement 141 

and roughly 400 MT for aggregates. (BMTPC, 2018). 142 

Due to the considerable volume of C&D waste generated worldwide, managing the waste 143 

has become a serious issue (Yuan & Shen, 2011). Every continent has its own methods for 144 

managing C&D residues; as an example, in Europe, there are strategies in place for 145 

managing site waste, items that can be recycled, and debris generated during building 146 

deconstruction is sorted and processed. When it comes to recycling C&D waste, mobile 147 

crushers and plasma membrane systems are potential equipment in some southern Asian 148 

regions (Hoang et al., 2020), while landfills and recycling are the current C&D 149 

waste supervision practises in Vietnam (Lockrey et al., 2016). Quality assurance schemes 150 

are currently in use (Gálvez-Martos et al., 2018); the circular economy technique, 151 

incentives, and market are present in the USA (Aslam et al. The 3R (reduce, reuse/recycle, 152 

and discard) strategy is used in Canada to handle C&D waste. (Yeheyis et al., 2013), the 153 
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Australian government is also promoting C&D debris management with emphasis on the 154 

3R principle and circular economy (Zhao et al., 2021). Following the processing of the 155 

C&D waste, recycled aggregates are obtained. This could be abandoned asphalt pavement, 156 

tiles, brick masonry, or rejected concrete. Such type of concrete is known as recycled 157 

aggregate concrete (Trivedi et al., 2023; Verian et al., 2018). According to Safiuddin et al. 158 

(2013), the use of recycled aggregates from multiple sources helps preserve naturally 159 

occurring resources, a healthy ecology by lowering carbon dioxide emissions, and the issue 160 

of waste disposal all at once. In addition, this may lower down the soil and water table 161 

pollution that is prevalent due to huge pile ups of C&D debris.  162 

This review is prepared using a thorough analysis of the literature that focuses on the 163 

microstructure of RAC, its characteristics, and its application potential. In addition, several 164 

research articles based on the newest advancements in RAC technology and the use of 165 

recycled aggregates as structural reinforcement in concrete have been gathered. The 166 

compilation effort assisted in determining the general cap for the incorporation of such 167 

recycled aggregates from the C&D sector in concrete for satisfying the regulations for 168 

sustainable design while maintaining the practicality of concrete, so encouraging the 169 

conservation of natural resources. 170 
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Figure 1 C&D waste statistics (Aleksanin, 2019; Bester et al., 2000; Elchalakani & 172 

Elgaali, 2012; Environment and Climate Change Canada, 2000; Environmental 173 

Protection Agency., 2020; Huang et al., 2018; Jain et al., 2020; Kartam et al., 2004; Kim, 174 

2021; López de Munain et al., 2021; Mah et al., 2016; Menegaki & Damigos, 2018; 175 

Nunes & Mahler, 2020; Ulubeyli et al., 2017; Villoria Sáez & Osmani, 2019; Zhao et al., 176 

2021) 177 

2.  Research implication and novelty 178 

This state-of-the-art review gives information to the aggregate manufacturers, concrete 179 

producers, contractors, practitioners, and researchers about the effective management of 180 

C&D waste for their sustainable incorporation in concrete applications through adoption 181 

of latest developments such as modified mix design, carbon curing and various fiber 182 

reinforcement techniques. For a comprehensive understanding on RA and RAC, a detailed 183 

review is done combining all the vital researches from 2000-2024, alongside latest trends 184 

have been established based on addition of fillers, mineral admixture etc. Furthermore, the 185 

microstructural characterisation techniques have been thoroughly covered based on the 186 

adoption of novel technologies such as of biomineralization, nano SCMs, pressurised 187 

carbonation, vinasse and graphene oxide induced RAC mixes. Additionally, this work 188 

demonstrates that challenges in determining and characterising an appropriate type and 189 

amount of binder fractions and suitable mixing techniques that can potentially be engulfed 190 

in the sustainable production of RAC. Furthermore, this investigation validates the 191 

effectiveness of incorporating diverse size additives that are blended appropriately to 192 

eliminate the permeable pores, that in turn significantly improves the quality of RA, 193 

making it suitable to adopt in concrete applications. 194 

3.  Microstructure of recycled aggregate concrete (RAC) 195 

3.1 Surface Morphology 196 

The microstructure of RAC encompasses of two interfacial transition zone, older and newer 197 

ITZ (Kong et al., 2010; Li et al., 2012; Tam et al., 2005; Wang et al., 2020) .The density 198 

of ITZ in RAC is inferior as compared to NAC (Rao et al., 2019). The thickness of ITZ can 199 

range from 5 μm to over 80 μm depending on the moisture content of the RA  (Adessina et 200 

al., 2019; Evangelista & Guedes, 2019; Xiao et al., 2013). A study observed that a lower 201 

water content RA results in an effective ITZ (Evangelista & Guedes, 2019). Figure 2 202 

illustrates the SEM image of a typical RAC specimen (Wang et al., 2020) . It can be 203 
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observed that the ITZ system of RAC comprise of Ca(OH)2, other hydration products 204 

(namely C-S-H gel and ettringite), porosity and unhydrated cement particles. From Figure 205 

3 it can be observed that compared to control concrete, RAC has more interfaces (Rao et 206 

al., 2019) . The interface between the original aggregate and the adhered mortar is referred 207 

to as the "old ITZ," while the interface between the attached mortar and the "new mortar 208 

matrix" is referred to as the "new ITZ."  209 

The ITZ of RA has multiple pores, as observed in Figure 4 (Tam et al., 2009) . This 210 

aggregate is prone to significant water absorption because the pores are mostly distributed 211 

and formed in the layers of cement pastes close to the aggregate surface. From Figure 5 it 212 

can be observed that two stage mixing approach (TSMA) fills up the gaps and fissures of 213 

the old paste matrix adhering to the RA, coated it with cement paste, creating a stronger 214 

new ITZ (Li et al., 2012) . Figure 6 (a-d) illustrates a few bubbles of trapped air alongside 215 

a dense cement matrix in the area. The interfacial transition zone (ITZ) is where the cracks 216 

are inclined to develop that is leading to the failure of cement paste-aggregate bonding 217 

whereas Figure 7 (a-d) shows the propagation of primary as well as secondary fissures, 218 

with majority of cracks formation at the ITZ between cement matrix and aggregates 219 

(Thomas et al., 2020). Figure 8 (a-d) shows a similar density of cementitious matrix as 220 

observed in previous two cases with the only difference in the fissure size whereas figure 221 

9 (a-d) illustrates the occurrence of primary fissure at ITZ and secondary fissure through 222 

cement paste (Thomas et al., 2020) .  223 

 224 
 225 

 226 
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Figure 2(a-b). SEM images of ITZs in RAC (Wang et al., 2020)  (a) Old ITZ (b) New 227 

ITZ 228 

 229 

 230 
 231 

Figure 3(a-b). Images of ITZs  (Rao et al., 2019) (a) In RAC (b) In Normal aggregate 232 

concrete 233 

 234 

 235 
 236 
Figure 4(a-b). Cracks in the mortar remains on surface of RA (a) Old ITZ (b) New ITZ 237 

(Tam et al., 2009) 238 

 239 
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 240 
Figure 5 (a-b). SEM images of ITZs in RAC (a) C-S-H post TSMA (Tam et al., 2009); 241 

(b) High density (Li et al., 2012) 242 

 243 
Figure 6 (a-d). SEM images at aggregate-cement interface with no recycling (a) 50x, 244 

(b)100x, (c)500x, (d)1500x (Thomas et al., 2020) 245 
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  246 

Figure 7 (a-d). Aggregate-cement interface post recycling (a) 50x, (b)100x, (c)500x, 247 

(d)1500x (Thomas et al., 2020) 248 

 249 
Figure 8 (a-d). SEM at aggregate-cement interface post second recycling, 250 

 9 (a-d). Aggregate-cement interface post third recycling (a) 50x, (b)100x, (c)500x, 251 

(d)1500x (Thomas et al., 2020) 252 

3.2 Surface elemental composition 253 

This section represents a diverse elemental composition present in different RA or RAC 254 

samples analysed through EDX patterns. According to reports, the Ca/Si ratio for dense 255 

concrete often is lower than 2 (Goudar et al., 2019; Snehal et al., 2020). Figure 10 shows 256 

that the atomic percentage of Ca/Si for various investigations as compared to the control 257 
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or untreated aggregate/concrete mix varies significantly. Among these studies, (Bian et al., 258 

2022; Kazemian et al., 2019; Ozbakkaloglu et al., 2018) achieved Ca/Si ratio below 2. Such 259 

studies are representing the formation of favourable hydration products that further 260 

densified the microstructure. 261 

 262 
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 263 

Figure 10. Ca/Si atomic ratio for RAC samples (Bian et al., 2022; Kazemian et al., 2019; 264 

Ozbakkaloglu et al., 2018) 265 

3.2 Surface mineralogical composition 266 

For brevity, X-ray diffraction (XRD) pattern of biomineralized RAC mix by (Rais & Khan, 267 

2021) is presented in Figure 11.  268 

Figure 11 shows the XRD analysis of bacteria incorporated RAC mix that 269 

further demonstrates the peaks of the calcite crystals. In the XRD patterns of the RAC and 270 

control concrete, the peaks of CSH and CH crystals are evident. (Rais & Khan, 2021).  271 

 272 

 273 
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 274 

 275 

 276 

 277 
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Figure 11. XRD pattern of (a) control RAC (b) RAC50 (c) RAC100 (d) Bacterial RAC50 278 

(e) Bacterial RAC100 (Rais & Khan, 2021) 279 

     CH-calcium hydroxide; CAH-calcium aluminate hydrate; C-calcite; CSH-280 

calcium silicate hydrate 281 

From the XRD peaks shown in Figure 12 (a-g), it can be detected that the durability of 282 

these mixes enhanced by the inclusion of GGBS by the rise occurring with the peaks of 283 

quartz and calcite (Majhi & Nayak, 2019) . The XRD peaks for the bacterial RAC and raw 284 

RA is presented in Figure13. From Figure 13 (a-b), it is evident that the additional calcite 285 

is getting formed owing to the bacterial activity in the bacteria incorporated RAC mix 286 

(Sahoo et al., 2016) . From Figure 14., it can be detected that the addition of nano silica 287 

results in the formation of C-S-H which further makes the microstructure dense and 288 

compact by getting into the pores of mortar fraction (Wang et al., 2019).  289 

 290 
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 291 

Figure 12. XRD peaks of (a) RG0C0 (b) RG0C50 (c) RG0C100 (d) RG40C50 (e) 292 

RG60C50 (f) RG40C100 (g) RG60C100 (Majhi & Nayak, 2019). 293 

 294 

Figure 13. XRD peaks of (a) bacterial RAC and (b) raw RCA (Sahoo et al., 2016) 295 
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 296 

Figure 14. XRD pattern of RAC mixes blended with nano silica and basalt fibre (Wang 297 

et al., 2019) 298 

Figure 15 shows that increasing percentage of MK, the peak intensity of portlandite 299 

(Ca(OH)2) decreases owing to the reaction between active SiO2 inside MK and Ca(OH)2 300 

with pozzolana to form C-S-H (Liu et al., 2021).  301 
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 302 
Figure 15. XRD pattern of RAC mixes blended with metakaolin (Liu et al., 2021) 303 

Among these studies shown in Figures 11-15, the bacterial treatment to RA yields highest 304 

amount of C-S-H fractions. However, the GGBS incorporated RAC mixes reported an 305 

increase in the ettringite fractions in contrast to bacteria induced RAC mix.  306 

3.3 FTIR characterization 307 

When analysing cementitious materials like clinker or hydrated phases in the bulk or 308 

surfaces of concrete, Fourier-Transform Infrared (FTIR) spectroscopy shown a number of 309 

advantages (Horgnies et al., 2013; Patil et al., 2020; Sharath et al., 2023; Prasanna et al., 310 

2023). Puertas et al. (2012) found the significant band of the distinctive C-S-H peaks shifts 311 

between 1100 and 900 cm-1 as shown in Table 1.      312 

Figure 16 presents a secondary C-S-H, as shown by alterations in the Si-O-Si transmittance 313 

band at 750–800 cm-1. The Si-O-Si transmittance bands were increased when recycled 314 

coarse aggregate with used Nano-silica (RCA-UNS) replaced 30% of the natural coarse 315 

aggregates (Shahbazpanahi et al., 2021). Figure 17 shows the formation of highly 316 

polymerized silica gel after both pressurised carbonation and liquid-solid carbonation (Liu 317 

et al., 2021) . In Figure 18, the characteristic peaks are indicating that the calcite and CH 318 

were consumed by the reaction between the fine RCA and TA (Wang et al., 2020) . The 319 
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FTIR studies revealed that the structure of the vinasse-infused concrete (Figure 19) had not 320 

undergone any chemical alterations (Tamashiro et al., 2022). 321 
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Table 1 Wavenumbers corresponding to various phases of concrete (FTIR) (Puertas et al., 2012) 322 

Sl.no. Clinker/hydrat
ed phases Al-O O-H 

O-H 
Capillary 

water 

Si-O 
Asymmetric 
stretching 

Si-O 
symmetri

c 

Si-O 
(in 

plane) 

Si-O 
(out of plane) 

S-O 
[SO4]2- 

C-O 
[CO3]2- Ref 

1 C3S -  - 938s, 883s, 812l - 430s 522s - - 
(Puertas 
et al., 
2012) 

2 C2S -  - 995S,900s,844S, 
810l, 518s - - - - - 

(Puertas 
et al., 
2012) 

3 C3A 

898s, 786l, 
739s, 

704s, 588l, 
521s 

 - 456s - - - - - 
(Puertas 
et al., 
2012) 

4 C4AF Unwell determined bonds 

5 Afwillite -  3352l,1660l 985m, 963s, 911S 860m, 
781m 450s 617l, 520s 

490s - - 
 (Puertas 
et al., 
2012) 

6 C-S-H -  3356l,1640l 1000s, 950S 814m 456s 667l, 496s - - 
(Puertas 
et al., 
2012) 

7 Portlandite 
(CH) - 3642s - - - - - - - 

 (Puertas 
et al., 
2012) 

8 Ettringite 
(AFt) 

857l, 
537m 3637s 3431m,1680-

1640l - - - - 1115s, 
617m - 

(Puertas 
et al., 
2012) 

9 Monocarbo 
aluminate 

954l, 
669l, 535s 

3676m, 
3624m, 
3543m 

3363m, 
3005m, 1650l - - - - - 1363s, 

873m 

(Puertas 
et al., 
2012) 
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10 Hemicarbo 
aluminate 

954l, 671l, 
537s 

3676m 
3642m, 
3624m, 
3544m 

3367m 3007m 
1645l - - - - - 1364s 

(Puertas 
et al., 
2012) 

11 Monosulfat
e (AFm) 

579m, 
525s 

3672m, 
3549m 

3423s, 1650m - - - - 1150m 1380l 
(Puertas 
et al., 
2012) 

12 Hydrogarne
t 

810m, 
537s 3660s - - - - - - - 

(Puertas 
et al., 
2012) 

13 Stratlingite 951s, 
524s 3669l 3442m, 1652l 1050s, 

452s - - - - - 
(Puertas 
et al., 
2012) 

14 Vaterite         

713l, 
875l, 

1423s, 
1479l, 

(Puertas 
et al., 
2012) 

323 



25 
 

 324 

 325 

Figure 16. FTIR spectrum representing control, RAC-NS30% and RAC-UNS30% 326 

samples at 28 days (Shahbazpanahi et al., 2021) 327 

 328 
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Figure 17. FTIR spectrum of RA post pressurised carbonation (Liu et al., 2021) 329 

 330 

Figure 18. FTIR spectrum of fine RA treated with tannic acid (Wang et al., 2020) 331 

 332 

Figure 19. FTIR spectrum of modified concrete, sand, cement and vinasse (Tamashiro et 333 

al., 2022) 334 

3.4 TGA characterization 335 
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The symbols in the equation below stand for the proportion of decomposed calcium 336 

hydroxide (CH%), whereas Wn% and CC%, respectively, reflect the percentages of bound 337 

water and calcium carbonate that have produced (Trivedi et al., 2023; Trivedi et al., 2024). 338 

CH% = (%WCH) × ( 𝑀𝑀𝐶𝐶𝐶𝐶
𝑀𝑀𝐻𝐻2𝑂𝑂

)= (%WCH × 74
18

)                       (3) 339 

Wn% = WT-WCH                                                    (4) 340 

CC% = (%WCC) × ( 𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝐶𝐶𝑂𝑂2

) = (%WCC × 100
44

)                                  (5) 341 

 342 

Figure 20(a-b). (a) TG curves and (b) DTG curves of RAC samples (Devi & Khan, 343 

2020) 344 

From the above Fig. 20 (a-b) it is understood that in case of accelerated carbonation, a 345 

declination is observed in the penetration of carbon di-oxide, owing to the assimilation of 346 

graphene oxide which provides a better pore to pore connectivity at the microstructure state 347 

(Devi & Khan, 2020). 348 
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 349 

Figure 21(a-d). (a) TG-DTG plots of different RAC sample (b) C-S-H (80-200ºC); (c) 350 

CH (430-460 ºC); (d) CaCO3 dehydration (500-800 ºC) (Wang et al., 2022) 351 

From TG curves presented in Figure 21, it can be observed that the formation of an adhesive 352 

mortar is taking place that on further reaction with the crystallizer producing an improved 353 

microstructural site. Also, with increase in the water cement ratio, an additional amount of 354 

reactants are generating more C-S-H after reacting with the crystallizer (Wang et al., 2022). 355 
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 356 

Figure 22(a-c). TG-DTG plots of (a)Nano silica (NS) and micro CaCO3 (MC) admixed 357 

mortar samples; (b)C-S-H and (c) CH hydration  (Yue et al., 2020) 358 

From the TG-DTG curves presented in Figure 22, it is evident that the incorporation of NS 359 

and MC resulted in more consumption of CH crystals as compared to control sample. This 360 

rise in bound water is owing to the contribution form C-S-H, CH and ettringite phases post 361 

addition of NS and MC which further improves the rate of hydration in cement matrix and 362 

microstructure of modified composite (Yue et al., 2020)363 

4. Engineering Properties of Recycled aggregate concrete (RAC) 364 

4.1. Fresh properties 365 

Among the fresh state concrete properties, workability is the most important as it is related 366 

to the ease with which one can work with concrete or in terms of definition, workability is 367 

the amount of work done to achieve full compaction in concrete (Neville & Brooks, 1987). 368 

With respect to the NAC, RAC shows inferior workability (Gao et al., 2020; Hani et al., 369 

2007; Nazarimofrad et al., 2017; Surya et al., 2013; Yang et al., 2011; Younis & Pilakoutas, 370 

2013). This is basically accredited to the deprived shape properties of crushed RA when 371 

associated to natural aggregates and high absorption demand of RA (Lavado et al., 2020; 372 
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Matias et al., 2013). For achieving the comparable workability values, it must be ensured 373 

that the aggregates should be somewhat lower than the SSD condition. In direction to limit 374 

the water requirement in recycled aggregate, the incorporation of water reducing 375 

admixtures can be done (Verian et al., 2018). A study claimed that there is a methodical 376 

growth in the RAC slump occurred as the percentage of crushed concrete in the mix 377 

increases, whereas a diminution is detected with the accumulation of crushed brick content 378 

for fine substitution of aggregate in concrete (Khatib, 2005). However, it is found that with 379 

help of mineral or chemical admixtures, the loss of slump can be compensated (Faysal et 380 

al., 2020; Ju et al., 2020; Radonjanin et al., 2013; Somna et al., 2012)  381 

4.2. Properties of hardened RAC 382 

4.2.1. Compressive strength 383 

The strength in compression of RAC is a function of mean size of aggregate (MSA) 384 

(Shahidan et al., 2017). Other factors which affect the compressive strength is the source 385 

through which the recycled aggregates have been derived (Bravo et al., 2015). Based on 386 

extensive literature survey, it is found that with growing percentage of RA in concrete, the 387 

strength in compression goes on decreasing  (Bai et al., 2020; Bui et al., 2017; Dimitriou 388 

et al., 2018) (Abed & Nemes, 2019; Etxeberria et al., 2007; Khatib, 2005; Kou et al., 2008; 389 

Zheng et al., 2018) However, research from Lotfi et al., (2015) proved that the loss in 390 

strength in compression by the accumulation of RA in concrete is less for mixes with higher 391 

targeted compressive strength as linked with the mixes with inferior targeted compressive 392 

strength (Kou & Poon, 2015). Another study claimed that the assimilation of FA and SF as 393 

a substitution of fine aggregate alongside adding a superplasticizer having an acrylic base 394 

could improve the strength in compression of RAC (Corinaldesi & Moriconi, 2009). In 395 

addition, it is also found that the assimilation of GGBS, MK, SF, phosphorus slag and FA 396 

as cement replacing materials significantly improved the strength in compression of RAC 397 

mixes (Bui et al., 2018; Dimitriou et al., 2018; Faysal et al., 2020; Ju et al., 2020; Kou et 398 

al., 2008; Lu et al., 2020; Muduli & Mukharjee, 2020; Nandanam et al., 2021; Radonjanin 399 

et al., 2013; Wang et al., 2013; Wang et al., 2020; Yaba et al., 2021). For achieving a 400 

comparable strength, it is investigated that aggregates subjected to sulphuric acid or 401 

scrubbing/heating treatment results in similar compressive strength as linked with the 402 

control concrete (Purushothaman et al., 2015). Also, the modification in the mixing 403 

approach (NMA to TSMA) could well lead to superior compressive strength in RAC 404 
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(Ozbakkaloglu et al., 2018). In a study it is also revealed that an alteration in the recycled 405 

fine aggregate could yield a similar compressive strength in RAC with respect to NAC 406 

even at 100% substitution rate (Kim et al., 2019).   407 

4.2.2. Split tensile strength and flexural strength 408 

Shahidan et al., (2017) and Purushothaman et al., (2015) detected that the tensile strength 409 

of RAC is reliant on the size of RA. In another research it is found that the split tensile 410 

strength of RAC with respect to NAC is 10% minor, however there is no negative impact 411 

of RCA is detected as far as flexural strength is concerned even at full substitution of NCA 412 

by RCA (Safiuddin et al., 2013). The decrement in the split tensile strength and flexural 413 

strength with growing substitution percentage of RCA in NSC or HSC is confirmed by 414 

another research (Purushothaman et al., 2015). But research based on the consequence of 415 

carbon dioxide curing on RAC found a noteworthy surge in the strength in tension than 416 

that in the strength in compression (Chen et al., 2010). Also, it is reported by a number of 417 

studies that with a rise in the replacement ratio, a minor decline in the relative strength in 418 

tension of concrete took place (Bai et al., 2020; Bui et al., 2017; Dimitriou et al., 2018; Gao 419 

et al., 2020; Nazarimofrad et al., 2017; Ozbakkaloglu et al., 2018). Also, based on several 420 

experimental investigations, the similar observations were made for flexural strength of 421 

RAC (Barhmaiah et al., 2020; Chen et al., 2010; Dimitriou et al., 2018; Yang et al., 2011) 422 

and both these investigations can be observed from Figure 23(a) and 24 respectively. The 423 

state of recycled aggregate also has an impression on flexural strength of RAC (Verian et 424 

al., 2018). From the other research, the impact of full substitution of RA resulted in a 20% 425 

mean loss in flexural strength of RAC (Dimitriou et al., 2018). Also, a study observed 426 

concrete made with full substitution of aggregate resulted in 10% inferior tensile strength 427 

with respect to reference concrete and the usage of SF further progressed the RAC 428 

properties (Mukharjee & Barai, 2014). Another experimental investigation found that the 429 

nature of coarse aggregates, its crushing strength and surface characteristics are having the 430 

stimulus on the split tensile strength of RAC (Matias et al., 2013). It is to be noted that a 431 

dissimilar trend is noticed by the studies conducted by Chen et al., (2010) and Dimitriou et 432 

al., (2018) where the strength in flexure of RAC mixes improves after 50% replacement 433 

levels. This is owing to the adoption of RA from higher grade parent concrete and 434 

appropriate pre- treatment of RA specimens (Chen et al., 2010; Dimitriou et al., 2018). 435 
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Also, through literature the consequence of nano silica induction in concrete is investigated 436 

and it is found that the same material become vital in filling the concrete voids and 437 

produced a robust and dense ITZ as equated to control concrete, thus improved the concrete 438 

strength in tension (Mukharjee & Barai, 2014). The consequence of silica fume on splitting 439 

tensile strength of RAC is investigated and its incorporation up to 5% significantly 440 

upgraded the splitting tensile strength of RAC mix (Dilbas & Çakır, 2020) a similar kind 441 

of improvement is seen when steam curing is adopted which caused 8% escalation in the 442 

splitting tensile strength of RAC as compared with the control concrete (Gonzalez-443 

Corominas et al., 2016). Based on the RA’s amount, range, category and quality, there is 444 

an advanced or minor relative tensile strength damage amongst the NAC and RAC (Silva 445 

et al., 2015). Figure 23 (b) presents the percentage achieved splitting tensile strength of 446 

various RAC mixes as related to the control concrete which involves the assimilation of 447 

different mineral admixtures as well as diverse curing conditions and it can be detected that 448 

the accumulation of 5% SF and introduction of steam curing results in superior splitting 449 

tensile strength of RAC with respect to the control mix even with complete substitution of 450 

RA. 451 
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 453 

Figure 23. Split tensile strength of (a) RAC (Dimitriou et al., 2018; Bui et al., 2017; 454 

Ozbakkaloglu et al., 2018; Etxeberria et al., 2007; Nazarimofrad et al., 2017; Gao et al., 455 

2020); Figure 23(b) Mineral admixture admixed RAC mixes (Bui et al., 2017, 2019; 456 

Dilbas et al., 2014; Dimitriou et al., 2018; Gonzalez-Corominas et al., 2016) 457 

 458 
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 459 

Figure 24. Flexural strength in RAC (Yang et al., 2011; Zhou & Chen, 2017*; 460 

Barhmaiah et al., 2020; Chen et al., 2010) 461 

*Relative flexural strength 462 

4.2.3. Bond Strength 463 

In an experimental investigation, a 10% fall in the bond strength of the RAC at 100% 464 

substitution by RA is studied (Rao et al., 2007).  Research carried out by (Malešev et al., 465 

2010) highlighted that the bond between RAC and reinforcement is not mainly prejudiced 466 

by RAC instead influenced significantly by the cement paste. It is also found that the bond 467 

strength can be enhanced by adding SF or FA in the RAC mixes (Ramasamy et al., 2021). 468 

Another experimental study claimed that the concrete mixes with high volume waste 469 

materials, i.e., 50% Coarse RA and 40% GGBFS, 50% Coarse RA and 60% GGBFS, 100% 470 

Coarse RA and 40% GGBFS and 100% Coarse RA and 60% GGBFS satisfied the bond 471 

strengths of the concrete mixes of M25, M20, M15 grades as specified by IS 456 (2000) 472 

(Majhi & Nayak, 2019). The dependency of bond stress on quality of parent concrete is 473 

also studied in which it is found that there is a significant drop in bond strength when RA 474 

is obtained from inferior-strength and lightweight PC, indicating the straight stimulus of 475 

parent concrete (PC) quality on the transmission of stresses and bond to the entrenched 476 



35 
 

steel bars (Behera et al., 2014). Figure 25 presents the variation of bond strength in concrete 477 

mixes incorporating deformed bar and plane bar and it can be observed that in case of 478 

deformed bar, the bond is due to mechanical anchorage and friction where as in case of 479 

plane bar, the bonding is influenced by the concrete and rebar. 480 

 481 

 482 

Figure 25. Bond strength in RAC (Behera et al., 2014) 483 

4.2.4 Young’s modulus 484 

In various experimental investigations, the consequence of RA on the elastic modulus of 485 

RAC is examined and based on the experimental outcomes, with rising content of RA, the 486 

elastic modulus decreases (Bui et al., 2017; Dimitriou et al., 2018; Etxeberria et al., 2007; 487 

Kou et al., 2008; Malešev et al., 2010). This can be understood by the fact that RA are more 488 

vulnerable to deformation than raw aggregates and the modulus of concrete rely 489 

significantly on the aggregate moduli (Etxeberria et al., 2007). Another study reported that 490 

the low stiffness and bulk density of RA are responsible for the downfall of elastic modulus 491 

of RAC mixes (Zhou & Chen, 2017). A similar reduction is also reported alongside the 492 

effect of curing age and w/c ratio on the elastic modulus, as it is found that the same 493 

parameter shown an increment with reduction in the water cement ratio or surge in curing 494 

age (Kou et al., 2008). In attempt to explore the improving methods for elastic modulus in 495 

RAC, the accumulation of high range water reducing admixture proved that the same 496 

property can be enhanced even with 50% replacement of concrete induced RCA in the mix 497 

(Abed & Nemes, 2019). Similar trends were observed in another study where the laboratory 498 

treated recycled aggregates improved the elastic modulus of RAC mixes as compared that 499 

of raw RAC aggregates (Dimitriou et al., 2018). Figure 26(a) presents the variation of 500 

elastic modulus of RAC mixes on different percentages of RA and it is clear that with rising 501 

percentage of RA in concrete, the elastic modulus is decreasing.  502 
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However, the shortcomings of RA on elastic modulus can be rectified by using phosphorus 503 

slag, fly ash, GGBS, silica fume etc (Bui et al., 2017, 2019; Dilbas et al., 2014; Ju et al., 504 

2020; Nandanam et al., 2021; Wang et al., 2013). The detailed representation of elastic 505 

modulus on the incorporation of various mineral admixtures is presented in Figure 26(b) 506 

below and it can be observed that with the assimilation of fly ash or metakaolin, the 507 

modulus of elasticity of RAC can be made comparable or superior than control mix even 508 

at complete substitution of RA. 509 
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 510 

Figure 26. 28 days Elastic modulus in (a)RAC  (Malešev et al., 2010; Dimitriou et al., 511 

2018; Bui et al., 2017; Surya et al., 2013; Kou et al., 2008) ; Figure 26(b). RAC with 512 

mineral admixtures (Bui et al., 2017, 2019; Dilbas et al., 2014; Ju et al., 2020; Nandanam 513 

et al., 2021; Wang et al., 2013) 514 

4.3. Durability Properties 515 

4.3.1. Carbonization 516 
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From the literatures, it is evident that the carbonation depth enhances with the increasing 517 

content of recycled aggregates, assuming all the supplementary aspects are equivalent (Kou 518 

& Poon, 2013; Levy & Helene, 2004; Silva et al., 2015) as can be observed from Figure 519 

27. The investigation of complete substitution of RCA in concrete may reason up to twice 520 

the carbonation depth with respect to control concrete (Silva et al., 2015). Other parameters 521 

like water to binder ratio, amount of mineral pozzolana influences the carbonation depth 522 

of RAC. For example, the carbonation depth grows proportionally with the accumulation 523 

of pozzolanic materials, this may be attributed to the drop of the alkali percentage and the 524 

C-S-H formation (Sim & Park, 2011). Other literature investigated the effects of the quality 525 

of RA, its substitution percentage, binder percentage, the type of mineral admixture, and it 526 

is experimentally revealed that the higher strength parent concrete found to safeguard 527 

against carbonation in RAC specimens, with the substitution of coarse RA up to 70% and 528 

accumulation of mineral admixtures as fractional exchange of cement specifically 10% by 529 

mass (Xiao et al., 2012). A similar observation of increase in carbonation depth with 530 

respect to water binder ratio is concluded in an experimental investigation (Otsuki et al., 531 

2003). In case of recycled fine aggregate concrete (RFAC), the carbonation depth surged 532 

with reduction in minimum particle size of recycled fine aggregate. If water binder ratio is 533 

remained to be fixed, the confrontation to carbonation drops with the amplification of RFA 534 

amount (Geng & Sun, 2013). The carbonation depth of RAC with respect to substitution 535 

of recycled aggregates is shown as below. 536 
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 537 

Figure 27. Carbonation depth RAC at 28 days in different conditions (Kou & Poon, 538 

2013; Levy & Helene, 2004; Silva et al., 2015) 539 

4.3.2 Chloride penetration 540 

Chloride ion penetration is the measurement of the depth up to which the chloride ions 541 

present in the environs pierce into the concrete (Das et al., 2012). Through several 542 

literatures it is confirmed that the recycled aggregates incorporation in substitution of 543 

natural aggregates in concrete mixes promotes the chloride ion penetration (Andreu & 544 

Miren, 2014; Kenai, 2018; Kou et al., 2008; Özalp et al., 2016; Shaikh & Nguyen, 2013). 545 

In other experimental analysis, the effect of curing time on chloride penetration is analysed 546 

and it is found that with age, the penetration becomes weak as the microstructure of 547 

concrete becomes denser with curing time (Sim & Park, 2011). When other parameters like 548 

water binder ratio (w/b) are investigated, it is claimed that a higher w/b can control the 549 

chloride ion penetration in the concrete owing to the enhancement in the ITZ (Otsuki et al., 550 

2003). In order to explore the controlling measures for chloride penetration in RAC, a 551 

number of experimental investigations are reported and it is confirmed that the 552 

incorporation of mineral admixture and modifying mixing approach can progress the 553 



39 
 

chloride resistance in RAC (Otsuki et al., 2003; Sim & Park, 2011). Figure 30(a) presents 554 

the variation of chloride ion penetration against the substitution percentage of natural 555 

aggregates by RA. It can be detected from the Figure that with growing substitution 556 

percentage of RA, the penetration goes on increasing. 557 

Also, through several literatures it is proved that application of mineral admixtures as 558 

supplementary cementitious materials resulted in controlling the chloride ion penetration 559 

in RAC mixes (Dimitriou et al., 2018; Faysal et al., 2020; Kou et al., 2011; Nandanam et 560 

al., 2021). Figure 30(b) presents the percentage achieved chloride ion penetration of the 561 

various RAC specimens with respect to the control mix and by the integration of various 562 

mineral admixtures as SCMs, the chloride ion penetration can be controlled. 563 

0 20 40 60 80 100
0

1000

2000

3000

4000
5000

6000

7000

8000

9000

10000

T
ot

al
 c

ha
rg

e 
pa

ss
ed

 (
C

ou
lo

m
b)

Replacement of recycled aggregates (%)

 Kou et al, w/c=0.55  Kou et al, w/c=0.5  Kou et al, w/c=0.45
 Kou et al, w/c=0.4  Sim et al, 21 days  Sim et al, 56 days
 Kenai et al  Ozalp et al, Coarse RA  Ozalp et al, Fine RA
 Ozalp et al, Coarse+Fine RA  Shaikh et al  Andreu et al, Parent Concrete40MPa
 Andreu et al, Parent concrete60MPa  Andreu et al, Parent concrete100MPa

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

A
ch

ie
ve

d 
C

hl
or

id
e 

io
n 

pe
ne

tr
at

io
n 

(%
)

Different Experimental studies

1. Dimitriou et al, CoarseRA100+FA25+SF5          2. Faysal et al, CoarseRA40+FA20, NMA
3. Faysal et al, CoarseRA+SF7, TSMA                  4. Nandanam et al, CoarseRA100+FA50
5. Nandanam et al, CoarseRA100+GGBS70         6. Nandanam et al, CoarseRA100+MK15

   7. Kou et al, CoarseRA50+FA35                      8. Kou et al, CoarseRA50+SF10    
   9. Kou et al, CoarseRA50+GGBS55     10. Kou et al, CoarseRA50+MK15

28(a)

28(b)

 564 

Figure 28. Chloride penetration in (a) RAC (Andreu & Miren, 2014; Kenai, 2018; Kou et 565 

al., 2008; Özalp et al., 2016; Shaikh & Nguyen, 2013) ; Figure 28 (b) RAC with mineral 566 

admixture (Dimitriou et al., 2018; Faysal et al., 2020; Kou et al., 2011; Nandanam et al., 567 

2021) 568 

4.4 Shrinkage and Creep  569 

4.4.1 Drying shrinkage  570 
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The values of drying shrinkage were found proportional to the percentage of RA in the 571 

concrete, indicating that the above property is more evident in RAC with respect to NAC 572 

(Liang et al., 2020). In a study, it is found that drying shrinkage is mainly dependent on 573 

paste percentage, water to cement ratio and controlled by aggregate particles (Safiuddin et 574 

al., 2013). Another study claimed that a large shrinkage strain is witnessed as the proportion 575 

of RA surges in the mix (Ozbakkaloglu et al., 2018). In a study it is found that the drying 576 

shrinkage declines with the incorporation of waste powder from C&D debris (Ma et al., 577 

2020). Also, the methods like carbonation treatment diminishes the drying shrinkage of 578 

RAC (Liang et al., 2020). A study claimed that the drying shrinkage can be controlled by 579 

incorporating RA from better concrete grade of higher strength (Kou & Poon, 2015). 580 

Research reported by Duan & Poon, (2014) states that concrete made with the superior 581 

quality of RA, minor shrinkage values were reported. It is also reported by the authors that 582 

drying shrinkage of concrete improved with the curing days. The representation of drying 583 

shrinkage with respect to age of RAC mixes is shown in Figure 29 and it can be detected 584 

that at various substitution percentages of fine and coarse RA, the drying shrinkage is 585 

increasing with respect to age of the mix. 586 
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Figure 29. Drying shrinkage in RAC (Yong Ho et al., 2013; Kenai, 2018; 588 

Shaikh & Nguyen, 2013) 589 

4.4.2 Creep  590 
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An experimental investigation concluded that on full substitution of natural aggregates by 591 

the RA, the creep deformation got increased by 50% at 180 days of time period (Domingo 592 

et al., 2010). Most of the studies have reported that creep deformation surges with the 593 

integration of RA in replacement of natural aggregates in concrete mixes (Chinzorigt et al., 594 

2020; Fathifazl et al., 2011; Geng et al., 2016; Kou & Poon, 2012; Seara-Paz et al., 2016; 595 

Tam et al., 2015). Apart from replacement percentage of RA, creep of RAC is primarily 596 

prejudiced by the existence of old residual mortar and new mortar (Kou & Poon, 2012). 597 

The same observation is endorsed in a study in which the effect of water cement ratio (w/c) 598 

of source concrete and RA mix concrete is explored and it is found that the creep 599 

deformation is more affected by the higher w/c of the parent concrete and lower w/c of the 600 

RA concrete (Geng et al., 2016). The moisture state of RCA also has an impression on the 601 

creep of RAC mix as an experimental study concluded that pre-soaked RCA at below 602 

saturated surface dry (SSD) condition resulted in a balanced creep at early age (Henschen 603 

et al., 2012). Another investigation on long term creep includes recycled brick aggregates 604 

(RBA) as both coarse and fine aggregate substitution in concrete and through results, it is 605 

reported that the creep is acceptable up to 20% substitution for structural applications 606 

(Gayarre et al., 2019). Through a study, the addition of FA as a partial substitution or 607 

accumulation of cement is found to be helpful in controlling the creep deformation in RAC 608 

mixes, owing to the pozzolanic reaction that happened due to accumulation of fly ash (Kou 609 

& Poon, 2012). Figure 30 presents the graphical variation of creep strain up on 610 

incorporation of different recycled aggregates in concrete mixes and it can be detected that 611 

with assimilation of recycled coarse and brick aggregates, creep strain goes on swelling 612 

with age. 613 
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 614 

Figure 30. Creep strain in RAC  (Chinzorigt et al., 2020; Gayarre et al., 615 

2019) 616 

5. Techniques for improving properties of Recycled aggregate concrete (RAC) 617 

With respect to the benefits and shortcomings of the application of RA in the concrete, 618 

various techniques are investigated based on the extensive literature survey, which are 619 

further classified into following categories. 620 

5.1. Modifying mixing process 621 

Numerous studies supported the use of the two-stage mixing technique (TSMA) in place 622 

of the standard or normal mixing strategy (NMA) for RAC. The created TSMA can 623 

increase the RAC's strength (Tam et al., 2006). Another study developed a modified TSMA 624 

approach, which involved adding cement to the first step of the mix and silica fume to the 625 

premix (TSMAsc). This approach was found to increase the RAC's strength in compression, 626 

tension, flexure, and young's modulus.  627 

A study carried out by  Shaikh et al., (2018) proved that the presoaking of recycled coarse 628 

aggregates 2% nano-silica solution followed by presoaking of resulted in an enhancement 629 

in the engineering properties of RAC. Similarly, research from (Dimitriou et al., 2018) used 630 

the modified recycled treated aggregates in concrete i.e., laboratory, treated and field 631 

aggregates and due to treatment, the recycled aggregate achieved better than the control 632 

concrete. Figure 31 presents the different mixing approaches of some of these techniques 633 

and as a result the densification of ITZ is taking place.  634 
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 635 

Figure 31. Mixing approaches (a) NMA (b) TSMAs and (c) TSAMsc (Tam & Tam, 2008) 636 

5.2 Incorporation of filler materials (micron, submicron to nano size) in RAC 637 

According to Awoyera & Okoro, (2019), silica fume and GGBS were added as micro fillers 638 

to RAC, and the findings showed that both materials' compression strength increased by 639 

6% and 17%, respectively. Research by Babalola et al., (2020) similarly supported the 640 

combination of FA and SF as filler materials in RAC, and the results demonstrated an 641 

increase in the strength in compression and durability properties of the improved RAC mix. 642 

A rise in the mechanical characteristics of RAC was achieved by assimilation of perlite 643 

powder with an optimal percentage of 15% in addition to the aforementioned ingredients 644 

(Abed & Nemes, 2019). According to another study, adding marble as a filler material 645 

increased the strength of RAC in comparison to natural aggregate concrete at an ideal 646 

percentage of 5% (Belagraa et al., 2017). Younis & Mustafa (2018) looked into substituting 647 

silica nanoparticles for cement in RAC, and it was shown that doing so produced RAC with 648 

a similar split tensile strength to the control mix while also reducing its water absorption. 649 

Research from (Zhang et al., 2016) investigated the use of nano slurries for the surface 650 

treatment of RA in concrete in order to advance the ITZ of RAC, which subsequently 651 

produced an improvement in the microstructure of RAC. A decrease in the water absorption 652 

of RAC mix was seen in an experimental investigation by Singh et al. (2018) that 653 

investigated the impact of presoaking RA in nanosilica and ureolytic/non uneolytic 654 

bacterial environments. Additionally, there has been a rise in RAC density as well as an 655 

improvement in RAC mix durability. The combined use of nano silica and basalt fibre in 656 

RAC was researched by Zheng et al. in 2021. It was also noted that the same materials 657 

produced a densified RAC as a result of the mix's decreased porosity.  658 



44 
 

Yue et al. (2020) conducted a similar study in which the effect of nano silica (NS) and 659 

micro calcium (MC) carbonate as fillers in RAC was examined. Based on the findings, an 660 

improvement in the microstructure and mechanical properties is reported. Another 661 

experimental analysis looked at using nanoscale silica and nanoscale titanium dioxide 662 

together as filler material, and it found that the pore structure of RAC had improved. 663 

Further information indicates that the same fillers increased the mix's resistance to chloride 664 

ion diffusion thereby indicating the influence of nano silica and on durability aspects of 665 

RAC. 666 

6 Utilization of Recycled aggregates for development of geopolymer concrete and as 667 

fine aggregates in concrete 668 

6.1 Development of Geopolymer Recycled aggregate concrete (GRAC) 669 

Various researches unanimously endorsed the use of geopolymer in RAC, like coarse RA 670 

and the fine RA helped to develop a novel green concrete geopolymer having fly ash as 671 

base. Literature observations proved that the increment in the w/c is accountable for the 672 

downfall of the engineering properties in geopolymer recycled aggregate concrete (GRAC) 673 

(Liu et al., 2016). Another study claims that in the prepared RAC, the inclusion of GGBFS 674 

and FA-based geopolymer results in an excellent sulphate resistance property and 675 

simultaneously improved the compactness of RAC (Xie et al., 2019). Similarly, a study 676 

explored the amalgamation of the recycled concrete aggregates as a substitution of coarse 677 

aggregate in geopolymer concrete with a base of high calcium fly ash and the results 678 

indicated a 93% strength recovery in compression with respect to the crushed limestone 679 

based geopolymer concrete (Nuaklong et al., 2016). A study determined 12-24 hours as an 680 

optimum curing time for attaining the required characteristics in a fly ash-GGBS based 681 

GRAC  (Wang et al., 2020). In attempt to advance the microstructure of RA based 682 

geopolymer concrete, inclusion of various fillers and mineral admixtures is added i.e., rice 683 

husk ash and nano silica based geopolymer concrete shows comparable strength than 684 

geopolymer based NAC at an age of 28 days (Nuaklong et al., 2020). Other materials such 685 

as metakaolin is used as a fractional substitution for high calcium fly ash (HCF) in 686 

geopolymer binder, proved to provide significant enhancement in the mechanical and 687 

abrasion properties of concrete (Nuaklong et al., 2018). Figure 32 (a-b) presents the 688 

scanning electron micrograph images of GRAC and OPC-RAC matrix at similar water 689 

cement ratio and a proper bonding can be detected in the former case between the old 690 
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cement paste and the synthesized geopolymer paste thereby the porous nature of the 691 

microstructure is eliminated which is existing in the ITZ of OPC-RAC matrix. 692 

 693 

 694 

Figure 32. SEM images of (a)GRAC      (b) OPC-RAC (Liu et al., 2016) 695 

6.2 Recycled aggregates as a replacement of fine aggregates in concrete 696 

A study incorporated fine RA as a fractional and full substitution of natural sand in concrete 697 

and a increase is observed in the water absorption and slump value of the resulting concrete 698 

alongside decrement in the compressive strength and modulus of elasticity as compared to 699 

the control mix (Chan & Sun, 2006). Research from Kou & Poon, (2009) inspected the 700 

assimilation of fine recycled aggregate (FRA) in concrete as 25-100% substitution of 701 

natural fine aggregates and based on the experimental investigation, it is observed that at 702 

fixed w/c ratio the strength in compression declined whereas a surge in the drying shrinkage 703 

is detected at the same time. However same study conveyed that the incorporation of FRA 704 

improved the resistance against chloride ion penetration at a fixed slump value. Another 705 

research utilizes crushed bricks and crushed concrete as a substitution of fine aggregates in 706 

concrete and based on the outcomes, it is reported that the accumulation of the former 707 

caused a strength declination up to 30%. However, the later resulted in a comparable 708 

strength value with respect to the control mix (Khatib, 2005). A study from Anastasiou et 709 

al., 2014 reported that the joint utilization of steel slag and mixed C&D waste as a 710 

substitution of fine aggregates in concrete resulted in 30 MPa strength alongside 711 

satisfactory durability criterion for low grade concrete applications. The accumulation of 712 

crushed concrete waste as an interchange of fine aggregates in concrete is endorsed by Fan 713 

et al., 2016 and  Señas et al., 2016. The former study documented that the crushing process, 714 
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replacement ratio of aggregate significantly affects the mechanical and durability 715 

properties of the subsequent concrete. Even the complete substitution of fine RA in lieu of 716 

natural aggregates is supported in an experimental investigation for a reasonable strength 717 

property of the resulting concrete (Hassan et al., 2021). An experimental analysis from 718 

Evangelista & de Brito, 2007 proved that the substitution of FRA up to 30% of natural 719 

aggregate or sand does not disturb the mechanical properties RAC in substantial terms. 720 

Figure 33 illustrates the achieved strength in compression of various RAC mixes with FRA 721 

as a substitution to natural fine aggregates in concrete and it can be observed that with an 722 

optimum percentage of 25-30%, the substitution of fine RA can be done to achieve 723 

comparable strength. 724 

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

Ac
hi

ev
ed

 C
om

pr
es

si
ve

 s
tre

ng
th

 (M
Pa

)

Different experimental studies

1. Chan et al., FRA50                              2. Kou & Poon et al., FRA 25, W/C=0.55

3. Kou & Poon et al., FRA25, w/c=0.52   4. Khatib et al., Concrete RA25%

5. Khatib et al., Brick RA25%        6. Evangelista et al., Concrete RA30%

7. Hassan et al., FRA100       8. Fan et al., FRA25,w/c=0.35

9. Fan et al., FRA25,w/c=0.55

 725 

Figure 33. Percentage achieved compressive strength of RAC (Chan & Sun, 2006; 726 

Evangelista & de Brito, 2007; Fan et al., 2016; Hassan et al., 2021; Khatib, 2005; Kou & 727 

Poon, 2009) 728 

7. Latest technologies on Recycled aggregate concrete 729 

7.1 Carbon dioxide curing of RAC 730 

CO2 can be utilized for improving RA and RAC. The two currently utilized methodologies 731 

are carbon conditioning and carbon-curing in which the former method is of greater 732 

practicality. The main advantage of carbon curing is it can provide quicker early-age 733 

strength for concrete and carbonation of RA can be accomplished former to concrete 734 
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mixing (Tam et al., 2020). A detailed investigation of carbon conditioning in recycled 735 

aggregate (RA) is carried out with varying RA replacement percentages of 0%, 30% and 736 

100% and it is observed that the porosity and water absorbance of RA is decreased. Also, 737 

with the improved quality of RA, CO2 emissions from the aggregate helped to fill the 738 

openings in the concrete composition, creating a better-quality bond matrix from the 739 

formation of calcite. Other properties such as workability, compressive, flexural, split 740 

tensile strength and elastic modulus observed an improvement post carbon conditioning 741 

(Liang et al., 2020; Tam et al., 2016; Zhan et al., 2014). Liang et al., 2020 further observed 742 

that carbonation efficiency of RA with small particle size is greater than aggregate with 743 

large particle size. Zhan et al., 2013 investigated that carbon dioxide curing helps in 744 

attaining higher compressive strength and low drying shrinkage in RAC mixes. 745 

7.2 Fiber reinforced Recycled aggregate concrete (FRAC) 746 

Fiber reinforcing is an influential practice that avoids and decelerates the micro-cracks 747 

inside the concrete matrix and accordingly outcomes in an upgraded strength, ductility, 748 

crack pattern, fracture energy properties in the frailer recycled aggregates (Ahmed & Lim, 749 

2021; Chan et al., 2019). Based on the literatures, various types of fibers for example glass 750 

fiber, polypropylene fiber, steel fiber and basalt fiber can be incorporated in the RAC and 751 

based on respective investigations, it is found that steel fiber caused the strength 752 

enhancement of RAC, polypropylene fiber resulted in reduction of shrinkage cracks in 753 

cementitious composites whereas basalt fiber proved to improve the tensile strength and 754 

glass fiber provided the thermal stability in recycled aggregate concrete (Ahmed & Lim, 755 

2021). The accumulation of polypropylene fibers in RAC is also endorsed in other studies 756 

on the substance of rise in the flexural and split tensile strength at an optimum fiber content 757 

of 0.5% (Das et al., 2018). In other researches it is also evident that higher fiber content 758 

tends to increase the Youngs modulus and residual flexural strength in fiber reinforced 759 

RAC (Chan et al., 2019). In a study, the consequence of crumb rubber with steel fibered 760 

recycled aggregate concrete (RSRAC) is investigated and it is found that this combination 761 

enhances the compressive ductility and toughness of RSRAC at 2% optimum rubber 762 

content (Xie et al., 2015). Also, the durability properties such as sulphate attack resistance 763 

of RAC with NaOH treated crumb rubber was investigated and it proved to be useful in 764 

terms of enhancing the sulphate attack resistance of RAC at optimum dosage of 20% NaOH 765 

treated crumb rubber with size range of 0.16-0.30 mm (Li et al., 2021).  766 
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7.3 Incorporation of sea water and sea sand in Recycled aggregate concrete 767 

The joint utilization of seawater and coarse RA promotes the development for a sustainable 768 

concrete, however the potential risk associated with sea water application in concrete is the 769 

corrosion of steel reinforcement due to abundance of chlorides present in seawater. Recent 770 

studies on the application of seawater in RAC demonstrated a downfall in the workability, 771 

mechanical properties and durability characteristics (Younis et al., 2020). Also, the sea 772 

water effect in the RAC produces quick initial setting effect alongside employing blast 773 

furnace slag cement with sea water in RAC can cause the minimum plastic shrinkage but 774 

on the same time increases the drying shrinkage (Etxeberria et al., 2016). The association 775 

of sea water sea sand in RAC is studied and it is found that this addition upgraded the 776 

mechanical performance of RAC, but worsens the early-age cracking behavior in the mix 777 

(Xiao et al., 2019). Another investigation concluded the feasibility of using sea water sea 778 

sand based recycled aggregate concrete (SSRAC) columns as SSRAC columns 779 

outperformed the RAC columns in terms of strength and deformability with a peak load 780 

capacity exceeding 17% higher than the latter (Zhang et al., 2019). Also, it is studied that 781 

with respect to normal aggregate concrete, sea water sea sand mixed concrete developed 782 

an early strength, whereas the long-term strength is found to be comparable. It is further 783 

explored that the durability issues of sea water sea sand concrete could be wiped out 784 

through a blend of mineral admixtures for the concrete with the reinforcement of fiber 785 

reinforced polymer (FRP) (Xiao et al., 2017). Other studies incorporated sea sand and RAC 786 

in glass fiber reinforced polymer tube (GFRP) resulted in some important findings such as 787 

sea sand and coarse RA diminished the strength and deformation of specimens and sea 788 

sand was found to delay the transverse deformation while the coarse RA improved the same 789 

(Huang et al., 2021). 790 

8. Concluding Remarks 791 

This review article comes up with a detailed investigation about microstructure and 792 

engineering properties of recycled aggregate concrete and its application in the structural 793 

elements. In order to make the recycled aggregate concrete comparable with control 794 

concrete, various improvement techniques and several latest trends are explored.   795 

By adopting suitable process techniques recycled aggregates can be generated from the 796 

construction and demolition waste that can be utilized in the production of high 797 

performance concrete. The inclusion of recycled aggregates in cement and concrete 798 
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industry is a unanimous solution towards safeguard of natural resources (amid crunch 799 

situation between its demand and availability) and protection of the environment and 800 

ecology by cutting down the carbon dioxide emissions. Even though there found to be some 801 

short-comings in the attainment of engineering properties of concrete with the addition of 802 

RA as partial or full replacement with that of natural aggregates, it is observed that the 803 

properties of RAC can be modified with the addition of various mineral and chemical 804 

admixtures such as GGBS, MK, FA, SF, phosphorous slag and several fillers like nano 805 

silica, vinasse or others agro-industrial by-products. In particular, addition of 30-50% FA 806 

or 5-10% SF by weight is observed to result suitable workability in RAC mixes and higher 807 

strength in compression and tension whereas incorporating up to 15% MK and 75% GGBS 808 

by weight illustrates higher compressive strength and resistance to chloride ion penetration 809 

in RAC mixes. The advantages of mineral additions comprise microstructure densification 810 

and improved binding capacity in the RAC system however, the early strength is found to 811 

be slightly lower in such mixes than that of the control mix. Henceforth, an optimum 812 

percentage of mineral additions and suitable mix design is necessary to achieve desired 813 

performance in RAC mixes.  Further, if a mixture designer adopts different approaches of 814 

mix design alongside the inclusion of fillers (micron, submicron to nano size), performance 815 

of RAC can be enhanced significantly. Comprising a complex and vulnerable 816 

microstructure, observations from SEM studies revealed that the inclusion of treated RA 817 

with pozzolanic slurry solution is helpful in enhancing the hydration at microstructural 818 

scale. Further, the adoption of dual and triple stage mixing can significantly reduce the 819 

porosity of the RAC mixes and contributes to a dense and compact microstructural matrix. 820 

Apart from the modification at the mix design approaches, treatment of RA with recycled 821 

fine powder followed by carbonation curing, dual surface treatment, incorporation of high 822 

strength RA, nano silica and bacterial RAC can further lead to an improvement in the 823 

compressive strength properties. Several other techniques such as biomineralization, nano 824 

silica addition, slag and basalt fibre-based RAC, phase changed carbonized RA, tannic acid 825 

coated RA, milled graphene oxide and sodium silicate modified RAC are helpful in 826 

strengthening the microstructure of RAC as observed by XRD, FTIR and TG-DTA 827 

analysis. Developments on the geopolymer RAC is also documented in this article 828 

alongside the latest developments on RAC such as carbon dioxide curing, inclusion of sea 829 

water and sea sand based RAC mix and fiber reinforced RAC. The feasibility of sea sand 830 
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merged RAC is supported with the joint inclusion of suitable fiber reinforcement and 831 

mineral admixtures in order to match the durability standards of the control mix.  832 

Future Scope  833 

1. Performance of RAC under different curing conditions is not well known. Thereby, 834 

more experimental research is required under this area. 835 

2. Geopolymer RAC needs an extensive investigation particularly for long term 836 

mechanical and durability performances. 837 

3. A holistic approach is necessary to be adopted towards the optimum mix design for 838 

RAC mixes.  839 

4. Limited research manuscripts are available on high and ultra-high performance RAC. 840 

This area needs further research. 841 
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