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Abstract—As the popularity of electric propulsion using 

batteries rises alongside the demand for renewable energy, 

effective battery management and monitoring are crucial for 

sustainability and efficiency in electric vehicles (EVs). The 

battery monitoring system (BMS) utilizes IoT and sensor 

networks to assess crucial battery metrics such as remaining 

useful life (RUL), state-of-health (SoH), and state-of-charge 

(SoC), based on measurements of current status, temperature, 

and voltage. Machine learning (ML) and artificial intelligence 

(AI) are increasingly utilized to enhance BMS accuracy, 

addressing challenges like real-time data processing and the 

accuracy of estimations. This paper investigates the 

effectiveness of Linear Regression and Random Forest models 

in estimating SoC. During the hyperparameter tuning phase, the 

models were optimized using the Grid Search method, and their 

performance was evaluated at various temperatures: -10°C, 

0°C, 10°C, and 25°C. The findings indicate that the models' 

effectiveness enhances as the temperature increases. Random 

Forest model demonstrated the best performance at 25°C with 

R2 score of 0.99646, and the RMSE score of 0.000264. This paper 

not only contributes to advancing Li-ion battery monitoring 

system, but also empowers professionals in this field to harness 

machine learning capabilities effectively. 
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I. INTRODUCTION

The automobile industry is swiftly advancing with the 
growing popularity of EVs, which are quickly becoming a 
pivotal element of the global energy economy [1,2]. One of 
the primary challenges in designing and operating EVs is the 
efficient management of their batteries [3,4]. To enhance both 
functionality and safety in electric vehicles, Battery 
Management Systems (BMS) are utilized. These systems 
monitor battery conditions, offer protection, predict 
operational statuses, and optimize overall performance [1]. To 
achieve this, the BMS evaluates the RUL, SoH, and SoC by 
analysing measurements of current status, temperature, and 
battery voltage [2,5,6]. Nevertheless, accurately forecasting 
battery performance in real-world conditions, including 

fluctuating environments and aging, continues to be a 
significant challenge. Models developed for estimating 
battery parameters are typically calibrated under controlled 
conditions, which may not fully capture the real-time 
variations experienced in practical settings. Therefore, the 
reliability of methods such as employing a Kalman filter is 
constrained in dynamic real-world environments. Recently, 
the integration of AI and ML into BMS has provided 
promising solutions to address these limitations [5,7]. 

With the growing use of lithium batteries across various 
applications, the need for developing efficient and scalable 
recycling processes has become increasingly critical [22]. 
Conventional recycling techniques frequently encounter 
obstacles such as the effective recovery of valuable materials, 
economic viability, and greenhouse gas emissions [23]. 
Consequently, the use of ML in lithium battery recycling has 
garnered attention as a data-driven method to forecast 
recycling potential [24]. 

This study contributes to enhancing Li-ion battery 
monitoring systems by evaluating the effectiveness of specific 
machine learning models in predicting the SoC across varying 
temperatures in two different datasets. 

II. PREVIOUS WORKS

Li-ion batteries are favoured for their extended lifespan 
and high energy density, making them a popular choice for use 
in portable devices and EVs [25]. For batteries operating in 
highly dynamic environments, accurately estimating the 
battery state is essential. Of the different battery states that 
need to be estimated, the SoC is essential for preserving the 
battery's efficiency and safety [25]. 

The trend in battery management leverages AI/ML to 
analyze extensive data accumulated over a battery's 
operational life, combined with cloud computing for enhanced 
manufacturing and digital twins. For instance, convolutional 
neural networks (CNNs) have been utilized to predict the SoC 
from battery data [9]. CNN models and memory correlation 
techniques have also been used to enhance fault prediction for 
Li-ion batteries, leading to more reliable performance 
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assessments [12]. Support Vector Machine (SVM) has also 
been employed to predict the SoC, outperforming traditional 
methods and thereby extending battery life [10]. Moreover, 
Deep Learning (DL) models have been used to optimize 
charge/discharge rates, adapting to varying driving conditions 
to boost performance and longevity [11]. AI can also be used 
to integrate data from multiple sensors, significantly 
improving the accuracy of the SoC predictions for batteries 
[13]. 

Additional machine learning approaches, including feed-
forward neural networks [17], deep neural networks [18], 
long-short-term-memory (LSTM) [19], and Gaussian process 
regression frameworks [20], have been investigated for the 
SoC estimation.  

While AI/ML enhances battery state prediction in BMS, 
challenges persist in real-time data processing, computational 
power, and refining the accuracy of estimated parameters. 
Moreover, these techniques typically require substantial real-
world datasets to attain satisfactory generalization capabilities 
[21].  

 Linear Regression (LR) and Random Forest (RF) models 
are particularly effective for handling large sets of data 
variables, enhancing efficiency. The accuracy of these models 
could be further optimized through hyperparameter tuning, 
which identifies the best settings to minimize the loss function 
and improve prediction accuracy. Our literature review 
revealed that these models are not commonly used in battery 
management systems for predicting the SoC, and their 
efficiency has not been extensively studied. We also noted that 
many previous studies did not evaluate the models' 
performance across different temperatures to assess the 
impact of temperature variations. 

In this research, we employ RF and LR models to predict 
the SoC in batteries and evaluate their performance across 
different temperatures. The prediction accuracy will be 
enhanced through hyperparameter tuning, using the Grid 
Search Cross-Validation (GSCV) method. For comparative 
analysis, the outcomes from the Random Forest model will be 
benchmarked against those from a LR model to select the best 
performing model. 

III. METHODOLOGY

A. Data Collection

The research utilizes two specific datasets including the 
LG 18650HG2 Li-ion Dataset [14] and the dataset from the 
Tesla Model 3 2170 Li-ion cells [15]. 

Figure 1 depicts the data distribution in the LG 18650HG2 
Li-ion battery dataset, showcasing metrics such as SoC, 
temperature, current status, voltage, average current status, 
and average voltage. Similarly, Figure 2 presents the 
corresponding data plots for the dataset from the Tesla Model 
3 2170 Li-ion cells. In both figures, the x-axis indicates the 
number of data points. 

Fig. 1. Data distribution within the LG 18650HG2 Li-ion battery dataset 

Fig. 2. Data distribution within the dataset from the Tesla Model 3 2170 
Li-ion cells 
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B. Graphical User Interface

Randomly selected data from the datasets were transmitted 
via the ESP8266 microcontroller to a web server, where they 
were used to populate a MySQL database through 
phpMyAdmin. A graphical user interface was created using 
PHP to display real-time data from the database. This database 
was then used to predict the SoC. Figure 3 shows the 
developed user interface. 

Fig. 3. Graphical User Interface to display data in real-time 

C. Model Implementation

Figure 4 demonstrates our methodology for SoC 
prediction, which starts with importing necessary libraries for 
data analysis and visualization. The google drive is mounted 
to access the data files and the data is loaded using ‘loadmat’ 
function. The data is then concatenated and converted into a 
Pandas data frame and divided into training and testing 
datasets. These datasets are employed to train the ML models, 
and the results are evaluated using the root mean square error 
(RMSE) and the coefficient of determination (R²) score. 

Fig. 4. Demonstration of the methodology for SoC prediction 

D. Model Evaluation

As previously mentioned, the models' performance is 
assessed using the RMSE and R² score. The R² score is a 
crucial metric for evaluating the performance of ML models. 
It offers insight into how precisely the actual data align with 
the predictions. The R² score measures the proportion of the 
variance in the dependent variable that is predictable from the 
independent variables. A score of 1 means the model 
accounts for all the variance in the target variable, while a 
score of 0 indicates it accounts for none of it. 

A higher R² score generally suggests that the model fits 
the data more effectively. This means that an R² score close 
to 1 signifies that the actual values match the predicted 
values, while A score near 0 signifies that the model is 
ineffective at capturing the underlying trend in the data. R² is 
also useful for comparing the performance of different 
models. A model with a higher R² score is generally 
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considered to be better at predicting the target variable than 
one with a lower R² score. 

     Additionally, the RMSE measures the average size of 
prediction inaccuracies by taking the square root of the mean 
of the squared variances between the observed values and the 
forecasted values. Essentially, it measures the extent to which 
the predicted values diverge from the actual values. Since 
RMSE is expressed in the same units as the target variable, it 
is more easily interpretable than some other metrics. RMSE 
penalizes larger errors more than smaller ones due to the 
squaring of differences. This makes it sensitive to outliers, as 
larger errors have a disproportionately large impact on the 
RMSE value. 

     RMSE is useful for comparing model performance, with 
a lower RMSE indicating a better fit to the data. When 
evaluating models, the one with the lowest RMSE is typically 
regarded as the best performing in terms of prediction 
accuracy. 

E. Data Integration and model Deployment

The ESP8266 microcontroller utilizes HTTP GET 
requests to transmit data to the web server, connecting to Wi-
Fi through an ESP8266 Wi-Fi module for seamless data 
transfer. Sensor data is centrally managed in a MySQL 
database, simplifying the retrieval and analysis of historical 
information and facilitating integration with other data 
analysis systems. 

IV. RESULTS AND DISCUSSION

A. SoC prediction for LG 18650HG2 Li-ion data

      Table 1 shows the R2 scores for the LG 18650HG2 Li-ion 
Cell dataset across various temperatures using LR and RF 
models. At -10°C, the LR model attained an R² score of 
0.96605, while the RF model outperformed it with an R² 
score of 0.99472. At 0°C, the LR model's performance 
improved significantly, reaching an R² score of 0.99116, with 
the RF model attaining a similar R² score. At 10°C, the LR 
model achieved an R² score of 0.98917, and the RF model 
reached 0.99570. At 25°C, the LR model maintained strong 
accuracy with an R² score of 0.98557, while the RF model 
attained its highest accuracy with an R² score of 0.99895. 

TABLE I. R2 SCORE FOR 18650HG2 LI-ION DATA AT VARIOUS 

TEMPRATURES. 

Model 
Temperature 

-10°C 0°C 10°C 25°C 

LR 0.96605 0.99116 0.98917 0.98557 

RF 0.99472 0.99407 0.99570 0.99895 

The comparison reveals notable patterns. The RF model 
consistently outperformed the LR model across all 
temperatures, suggesting its superior ability to capture 
complex relationships within the dataset. Notably, all models 
showed improved accuracy as temperatures rose from -10°C 

to 25°C, indicating better predictive performance at higher 
temperatures. 

In addition, TABLE 2 shows the RMSE scores for both 
models, revealing a clear trend of decreasing error with 
increased temperature. At -10°C, the LR model registered an 
RMSE of 0.002074, and the RF model demonstrated a lower 
RMSE of 0.000330. At 0°C, both models showed reduced 
RMSE values. The LR model recorded an RMSE of 
0.000635, while the RF model achieved a lower RMSE of 
0.000428. At 10°C, the RMSE values decreased further, with 
the LR model achieving an RMSE of 0.000816 and the RF 
model performing better with an RMSE of 0.000316. At 
25°C, the RMSE values reached their lowest levels. The LR 
model recorded an RMSE of 0.0012147, while the RF model 
attained the lowest RMSE of 0.0000871. 

TABLE II. RMSE SCORES FOR 18650HG2 LI-ION DATA AT VARIOUS 

TEMPERATURES. 

Model 
Temperature 

-10°C 0°C 10°C 25°C 

LR 0.002074 0.000635 0.000816 0.0012147 

RF 0.000330 0.000428 0.000316 0.0000871 

B. SoC prediction for  Tesla  3 2170 Li-ion Cell data

Based on the experiments on 18650HG2 Li-ion data, we 
were convinced that the best performance will be achieved at 
higher temperatures. As a result, the R2 scores for the Tesla 
Model 3 2170 Li-ion Cell data, were calculated for both LR 
and RF models at 25°C temperature and are presented in 
TABLE 3. The LR model achieved an R² score of 0.96681, 
indicating a reasonable fit and explaining approximately 
96.68% of the variance in the dependent variable. In 
comparison, the RF model outperformed the LR model with 
an R² score of 0.99646, signifying a strong fit and accounting 
for approximately 99.64% of the variance. 

TABLE III. R2 SCORE FOR TESLA  3 2170 LI-ION CELL DATA 

Model 25 °C 

LR 0.96681 

RF 0.99646 

Additionally, Table 4 presents the RMSE scores for the LR 
and RF models at a temperature of 25°C. The LR model 
recorded an RMSE score of 0.002492, reflecting an average 
discrepancy of 0.2492% between predicted and actual values. 
The RF model achieved a slightly improved RMSE score of 
0.000264. This corresponds to an average discrepancy of 
0.0264%, representing a noticeable enhancement in predictive 
accuracy over the LR model.  

TABLE IV. RMSE SCORE FOR TESLA  3 2170 LI-ION CELL DATA 

Model 25 °C 

LR 0.002492 

RF 0.000264 
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V. CONCLUSION

This paper outlines a comprehensive framework for real-
time data transmission, web-based monitoring, and precise 
SoC prediction using machine learning models. It describes 
how voltage, current state, and temperature data are generated 
and stored in a MySQL database to facilitate easy retrieval 
and analysis of data. Two specific datasets, the LG 
18650HG2 Li-ion and the Tesla Model 3 2170 Li-ion Cell, 
were utilized for SoC prediction. The models employed—
Linear Regression (LR) and Random Forest (RF)—were 
trained using these datasets.  

In comparative analysis, the RF model consistently 
outperformed the LR model in terms of accuracy and 
predictive performance. It demonstrated superior results in 
both R2 scores and RMSE values, achieving the highest 
accuracy and the smallest average discrepancy between 
actual values and predicted values. 

Additionally, it was observed that the accuracy of all 
models improved with increases in temperature, suggesting 
more reliable predictions of battery behavior under elevated 
temperatures. Exploring the reasons for this temperature-
related enhancement in model performance could be a fruitful 
direction for future research. 

VI. FUTURE WORK

We plan to extend this research by implementing and evaluating 
additional machine learning models. In future work, we will also 
consider incorporating datasets related to different battery types to 
enhance the generalizability of our results. 
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