pharmaceuticals

Article

Ligand Growing Experiments Suggested 4-amino and 4ureido pyridazin-3(2H)-one as Novel Scaffold for FABP4 Inhibition

Letizia Crocetti, Giuseppe Floresta, Chiara Zagni, Divya Merugu, Francesca Mazzacuva, Renan Rodrigues de Oliveira Silva, Claudia Vergelli, Maria Paola Giovannoni and Agostino Cilibrizzi

Special Issue
Computational Methods in the Design of Anticancer Drugs
Edited by
Dr. Marialuigia Fantacuzzi and Dr. Mariangela Agamennone

Ligand Growing Experiments Suggested 4-amino and 4-ureido pyridazin-3(2H)-one as Novel Scaffold for FABP4 Inhibition

Letizia Crocetti ${ }^{1, *(\mathbb{D}}$, Giuseppe Floresta ${ }^{2}$ © , Chiara Zagni ${ }^{2}$ © ${ }^{(D)}$ Divya Merugu ${ }^{3}$, Francesca Mazzacuva ${ }^{4}$, Renan Rodrigues de Oliveira Silva ${ }^{3}{ }^{(D}$, Claudia Vergelli ${ }^{1}{ }^{(D)}$, Maria Paola Giovannoni ${ }^{1}$ and Agostino Cilibrizzi ${ }^{3,5, *}$ (D)
1 Dipartimento NEUROFARBA—Pharmaceutical and Nutraceutical Section, via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
2 Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
3 Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
4 School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
5 Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
* Correspondence: letizia.crocetti@unifi.it (L.C.); agostino.cilibrizzi@kcl.ac.uk (A.C.); Tel.: +39-0554573683 (L.C.); +44-(0)-20-7848-9532 (A.C.)

Citation: Crocetti, L.; Floresta, G. Zagni, C.; Merugu, D.; Mazzacuva, F.; de Oliveira Silva, R.R.; Vergelli, C.; Giovannoni, M.P.; Cilibrizzi, A Ligand Growing Experiments Suggested 4-amino and 4-ureido pyridazin-3(2H)-one as Novel Scaffold for FABP4 Inhibition. Pharmaceuticals 2022, 15, 1335. https://doi.org/10.3390/ ph15111335

Academic Editors: Marialuigia Fantacuzzi and Mariangela Agamennone

Received: 6 October 2022
Accepted: 21 October 2022
Published: 28 October 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Fatty acid binding protein (FABP4) inhibitors are of synthetic and therapeutic interest and ongoing clinical studies indicate that they may be a promise for the treatment of cancer, as well as other diseases. As part of a broader research effort to develop more effective FABP4 inhibitors, we sought to identify new structures through a two-step computing assisted molecular design based on the established scaffold of a co-crystallized ligand. Novel and potent FABP4 inhibitors have been developed using this approach and herein we report the synthesis, biological evaluation and molecular docking of the 4-amino and 4-ureido pyridazinone-based series.

Keywords: fatty acid binding protein; FABP4; FABP4is; FABP4 inhibitors; pyridazinone; computing assisted molecular design

1. Introduction

Fatty acids (FAs) are long carbon chain organic carboxylic acids responsible for different actions in the human organism [1,2]. Their chronic high concentration in circulation leads to various disorders [3,4], including atherosclerosis [5], diabetes [6] and obesity [7]. Considering that their chemical structure is characterized by high lipophilicity, FAs are insoluble in water, and their trafficking into the body requires specific carriers such as the fatty acid-binding proteins (FABPs). [8]. Since their discovery, FABPs have been classified into different families based on their localization in the human body, such as A-FABP (adipocyte), B-FABP (brain), E-FABP (epidermal), H-FABP (muscle and heart), I-FABP (intestinal), Il-FABP (ileal), L-FABP (liver), M-FABP (myelin), and T-FABP (testis). FABP4 (aP2 or A-FABP) is the subtype expressed in adipocytes [9], and the research into small molecule inhibitors for such protein initially started when it was reported that knockout animal models of FABP4 produced protective effects against the development of insulin resistance [10], as well as several pathological events linked to the metabolic syndrome and atherosclerosis [11-13]. Interestingly, pharmacological approaches with small molecules that inhibit the normal function of the protein are also valid in this regard, demonstrating similar results as the genetic procedures by mimicking the phenotype of FABP4-deficient mice [14]. This family of transporter proteins also has a role in cancer progression [15], and it was discovered that non-physiological expressions of FABPs are present in some of the most common cancers such as renal cell carcinoma, bladder and prostate, as well as other types of cancer cells [16-18]. It was recently discovered that FABP4 promotes the metastasis and invasion of colon cancer and that the treatment with a classical small molecule
inhibitor (BMS309403) weakened the migration and invasion of colon cancer cells [19]. FABP4 leads also to abnormal metastasis patterns in ovarian cancer, and recent findings demonstrate that the protein is responsible for the disease's aggressivity, contributing to poor prognosis in this tumor [20]. Moreover, the transporter has also been shown to play a role in accelerating glioblastoma cell growth [21]. All these recent findings related to cancer research proved that FABP4 targeting may represent an effective and promising therapeutic strategy against oncological conditions, in addition to the established effects on metabolic and cardiovascular diseases.

Recently, a variety of effective FABP4 inhibitors (FABP4i) have been developed, but unfortunately, none of them is currently in the clinical research phases [14,22]. Computeraided drug design represents a promising and effective tool for the identification of molecular hits as FABP4i [23-27]. In line with our recent interest in the development of new antitumor compounds and the identification of novel bioactive heterocycles [28-32], herein we report the design, synthesis and in vitro characterization of 4 -amino and 4 -ureido pyridazinone-based series of FABP4i inspired by the scaffold hopping of an established ligand co-crystallized within the protein.

2. Results and Discussion

2.1. Heterocyclic Small-Molecule Design

To generate a novel series of FABP4 inhibitors we have exploited a two-step computing assisted molecular design. As shown in Figure 1, in the first step of the drug-design process we focused on the search for bioisosteric-replacements/scaffold hopping of the pyrimidine scaffold of the co-crystallyzed ligand (2-[(2-oxo-2-piperidin-1 -ylethyl)sulfanyl]-6-(trifluoromethyl)pyrimidin-4-ol; pdbID: 1TOU). Our bioisosteric replacement analysis led to the selection of three nitrogen-containing heterocyclic frameworks, i.e., pyridazinones, pyridines and benzo[d]thiazole (see Supplementary Materials). Considering the synthetic accessibility of pyridazinone-based molecules and that pyridazinone was not investigated earlier as a scaffold to access FABP4 inhibitors, we envisaged to use this heterocycle to carry out automated ligand growing experiments inside the FABP4 cavity, as described in the Section 3, leading to 52 target molecules. The compounds were then synthesized and screened against FABP4 and the chemical structures are reported in Tables 1 and 2. Both the scaffold hopping and the ligand growing experiments were conducted using Spark (https:/ / www.cresset-group.com/products/spark/ accessed on 15 June 2022) [33].

Figure 1. Schematic representation of the computer assisted design of the 4 -amino and 4-ureido pyridazinones.

Table 1. 4- NH_{2}-pyridazinones synthesized and screened against FABP4.

Table 1. Cont.

Comp.	R_{2}	R_{5}	R_{6}
4a	H	CONHPh	Ph
4b	H	$\mathrm{CONH} n \mathrm{C}_{3} \mathrm{H}_{7}$	Ph
5 a	$\mathrm{C}_{2} \mathrm{H}_{5}$	CONHPh	Ph
5b	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CONH} n \mathrm{C}_{3} \mathrm{H}_{7}$	Ph
6	H	CONH_{2}	Ph
7	H	CN	Ph
16	Ph	CONH_{2}	CH_{3}
17	Ph	CN	CH_{3}
18	Ph	COCH_{3}	H
21	$\mathrm{cC}_{6} \mathrm{H}_{11}$	CONH_{2}	Ph
22	$\mathrm{cC}_{6} \mathrm{H}_{11}$	CN	Ph
24d	$i^{\text {C }} 3_{3} \mathrm{H}_{7}$	H	Ph
24e	$n \mathrm{C}_{3} \mathrm{H}_{7}$	H	Ph
24f	$n \mathrm{C}_{4} \mathrm{H}_{9}$	H	Ph
27		H	Ph
32	CH_{3}	H	Ph
37a	H	H	3-thienyl
37c	H	H	$c \mathrm{C}_{6} \mathrm{H}_{11}$
37d	H	H	$\mathrm{iC}_{3} \mathrm{H}_{7}$
38a	CH_{3}	H	3-thienyl
38b	CH_{3}	H	$c \mathrm{C}_{6} \mathrm{H}_{11}$
38c	CH_{3}	H	$\mathrm{iC}_{3} \mathrm{H}_{7}$
38d	CH_{3}	H	CH_{2}-Ph
42a	CH_{3}	H	2-(OH)-Ph
42b	CH_{3}	H	$4-\left(\mathrm{NH}_{2}\right)-\mathrm{Ph}$
44	CH_{3}	H	4 -(NHCOCH_{3})-Ph
48	CH_{3}	H	2-pyridinyl
54	Ph	H	CH_{3}
57	Ph	pyrazole	CH_{3}

Table 2. 4-Amino and 4-ureido pyridazinones synthesized and screened against FABP4.

Comp.	R_{2}	R_{4}	R_{6}
25a	CH_{3}	NHCONH_{2}	Ph
25b	$c_{6} \mathrm{H}_{11}$	NHCONH_{2}	Ph
25c	$\mathrm{C}_{2} \mathrm{H}_{5}$	NHCONH_{2}	Ph
25d	$i \mathrm{C}_{3} \mathrm{H}_{7}$	NHCONH_{2}	Ph
25e	$n \mathrm{C}_{3} \mathrm{H}_{7}$	NHCONH_{2}	Ph
$25 f$	$n \mathrm{C}_{4} \mathrm{H}_{9}$	NHCONH_{2}	Ph
28	H	NHCONH_{2}	Ph
29a	CH_{3}	NHCOCH_{3}	Ph
29b	CH_{3}	$\mathrm{NHCOC}_{2} \mathrm{H}_{5}$	Ph
29,	CH_{3}	$\mathrm{NHCOiC} 3 \mathrm{H}_{7}$	Ph
29d	CH_{3}	$\mathrm{NHCOnC} 3 \mathrm{H}_{7}$	Ph
30a	CH_{3}	NH-(3-CN)-Ph	Ph
30b	CH_{3}	$\mathrm{NH}-(2-\mathrm{CN})-\mathrm{Ph}$	Ph
31a	CH_{3}	$\mathrm{NH}-\left(3-\mathrm{CONH}_{2}\right)-\mathrm{Ph}$	Ph
31b	CH_{3}	$\mathrm{NH}-\left(2-\mathrm{CONH}_{2}\right)-\mathrm{Ph}$	Ph

Table 2. Cont.

Comp.	\mathbf{R}_{2}	\mathbf{R}_{4}	R_{6}
35	CH_{3}		Ph
39a	CH_{3}	NHCONH_{2}	$c^{2} \mathrm{C}_{6} \mathrm{H}_{11}$
39b	CH_{3}	NHCONH_{2}	$i \mathrm{C}_{3} \mathrm{H}_{7}$
40	H	NHCONH_{2}	$2-(\mathrm{OH})-\mathrm{Ph}$
43	CH_{3}	NHCONH_{2}	$2-(\mathrm{OH})-\mathrm{Ph}$
49	CH_{3}	NHCONH_{2}	2-pyridinyl
51	CH_{3}	CONH_{2}	Ph
55	Ph	NHCONH_{2}	CH_{3}

2.2. Chemistry

The synthetic procedures carried out to obtain the target compounds containing the pyridazinone scaffold are reported in Schemes 1-9. The structures were confirmed on the basis of analytical and spectral data. Scheme 1 shows the synthetic pathway affording the final compounds $\mathbf{4 a , b}, \mathbf{5 a}, \mathbf{b}, \mathbf{6}$ and $\mathbf{7}$. Intermediate $\mathbf{2}$ [34] was obtained starting from isoxazole-pyridazinone $\mathbf{1}$, synthesized by adopting previously reported protocols [29-32] and using methanol and triethylamine for opening the isoxazole nucleus. The subsequent hydrolysis (acid 3 [35]) and acylation with thionyl chloride, triethylamine and appropriate amine led to final compounds $\mathbf{4 a}, \mathbf{b}$. Products $\mathbf{5 a}, \mathbf{b}$ were obtained from alkylation reaction of $\mathbf{4 a} \mathbf{a} \mathbf{b}$ with ethyl bromide in standard conditions. The opening of isoxazole core of the starting material 1 with $33 \% \mathrm{NH}_{4} \mathrm{OH}$ afforded to amide 6 [28] which, by subsequent dehydration with POCl_{3}, led to compound 7. The synthesis of final compounds $\mathbf{1 6 - 1 8}$ is reported in Scheme 2. The reaction between sodium salt of diketone 8 with the commercially available ethyl chloro(hydroximino)acetate 9 in ethanol led to a mixture of isomers 10 and 11 [36] that were cyclized to isoxazole-pyridazinone 12 and 13 using phenylhydrazine and PPA. After chromatographic separation, the latter were subjected to a series of reactions to obtain the compounds 16-18. The treatment of intermediate $\mathbf{1 3}$ with ammonium formate and Pd / C provided compound 18, while the treatment of 12 with methanol and triethylamine led to pyridazinone 14 . Intermediate 14 was first hydrolyzed to acid (15), then converted to amide (16) and finally treated with POCl_{3} to obtain the cyano derivative 17. The final compounds 21 and 22 were obtained through a procedure similar to that shown in Scheme 1 for amide derivative 6 and cyano derivative 7 , using intermediate 20 as the starting material, which was obtained by reaction of cyclohexyl hydrazine and PPA with isoxazole 19 [34] (see Scheme 3). Scheme 4 reports the synthesis of the pyridazinone-based derivatives of type 24 and 25 (unsubstituted at position 5), compound 28 and the thio-derivative 27. Intermediate 23 [37] was reacted with the appropriate brominated alkylating agent in presence of potassium carbonate and dry DMF to afford 24a-f derivatives (24a, [38]; 24c, [34]). The formation of urea derivatives of type $\mathbf{2 5}$ was carried out using sodium acetate and triphosgene in dry THF at reflux, and then treated with ammonia. The urea 28 was directly obtained from intermediate 23 using the same conditions used for compound type 25. The transformation of the carbonyl $(\mathrm{C}=\mathrm{O})$ in thiocarbonyl group $(\mathrm{C}=\mathrm{S})$ was carried out using the Lawesson's reagent in toluene (26) and the subsequently alkylation with methyl iodide in standard condition led to the thio derivative 27. In Schemes 5 and 6 are reported the synthetic procedures of other un-substituted pyridazinones at position 5, but bearing different groups/functions at position 4 and 6 . In particular, Scheme 5 depicts the synthetic pathways for compounds with a phenyl ring at position 6 and a methyl group at $\mathrm{N}-2$, while different substituents are introduced at position 4 . Starting from compound 24a [38] (Scheme 4), the amino group at position 4 was acylated using the suitable anhydride in pyridine in a sealed/pressure vessel to obtain the final compounds 29a-d. Moreover, the same amino group was also subjected to a coupling reaction using the appropriate

R-phenylboronic acid in presence of copper (II) acetate and triethylamine to furnish the derivatives $\mathbf{3 0 a}, \mathbf{b}$ and $\mathbf{3 3}$. The substituent R on the phenyl at position 4 was further elaborated. The $m / o-\mathrm{CN}$ group of compounds $\mathbf{3 0 a}, \mathbf{b}$ was converted into $\mathrm{m} / \mathrm{o}-\mathrm{CONH}_{2}$ (compounds 31a,b, respectively) with 80% sulfuric acid under reflux. The 4-carbethoxy function in product 33 was firstly hydrolyzed to acid 34 , converted into the corresponding acid chloride with thionyl chloride and then acylated with 1-acetylpiperazine (compound 35). Lastly, the carbonyl group of intermediate 24a was converted in thiocarbonyl (32) using the same procedure discussed in Scheme 4. In Scheme 6 are depicted pyridazinone-based derivatives with a methyl group or a hydrogen at $\mathrm{N}-2$, an amino group or urea functionality at position 4, but bearing different groups e/o functions (e.g., R-phenyl, alkyl, cycloalkyl) at position 6 . Starting from commercially available intermediates 36a-f, the introduction of an amino group at position 4 with hydrazine hydrate at high temperature led to compounds $37 \mathbf{a - e}(37 \mathbf{e},[38])$ and the subsequent alkylation with methyl iodide provided products 38ad. The derivatives $39 a, b$ and 40 were obtained from reaction with triphosgene and ammonia in the same conditions reported in Scheme 4 , starting from $\mathbf{3 8 b}, \mathbf{c}$ and 37 e, respectively. The direct alkylation of the intermediates 36 e and 36 f afforded the corresponding N -methyl derivatives 41a,b (41a, [39]), which were subsequently converted into compounds $\mathbf{4 2 a , b}$ through the same reaction used to obtain $37 \mathbf{a}-\mathbf{e}$. In particular, the reaction conditions used to introduce an amino group at position 4 led also to the reduction in the nitro group in compound $\mathbf{4 2 b}$. The latter was subjected to acylation reaction with acetyl chloride to obtain product 44. Instead, intermediate 42a was subjected to triphosgene treatment to obtain the urea derivative 43 . Scheme 7 reports the synthesis of final compounds 48 and 49. Intermediate 47 was obtained starting from isoxazole 45 , previously synthesized by us [34] by cyclization reaction with methyl hydrazine (46) and subsequent opening of the isoxazole ring with ammonium formate and palladium on carbon. The deacetylation (on 47) with 48% bromic acid at high temperature led to compound 48 , which was subsequently treated with triphosgene and ammonia to obtain the urea derivative 49. Compound 51 was obtained through alkylation reaction using standard conditions [40], but starting from product 50 [41] (Scheme 8). Lastly, the final compound 55 (Scheme 9) was obtained starting from intermediate 52 [42], through the same reactions of isoxazole nucleus opening (53 [42]), deacetylation (54 [43]) and formation of the urea function. In Scheme 9 is also illustrated the treatment of $\mathbf{5 2}$ with dimethylformamide dimethyl acetal to generate intermediate 56, which was subsequently converted into compound 57 using hydrazine hydrate.

Scheme 1. Reagents and conditions: (a) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{OH}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $6 \mathrm{~N} \mathrm{NaOH}, \mathrm{EtOH}$, reflux, 30 min ; (c) (i) SOCl_{2}, $\mathrm{Et}_{3} \mathrm{~N}$, r.t., 30 min ; (ii) R-NH2, anhydrous THF, r.t., 2 h; (d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}$, anhydrous DMF, reflux, $30-90 \mathrm{~min}$; (e) $33 \% \mathrm{NH}_{4} \mathrm{OH}, \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}, 60^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (f) $\mathrm{POCl}_{3}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

12

13
g

f \downarrow

17

Scheme 2. Reagents and conditions: (a) anhydrous EtOH, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) phenylhydrazine, PPA, EtOH, $70^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (c) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{Et}_{3} \mathrm{~N}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) $\mathrm{NaOH}, \mathrm{EtOH}$, reflux, 30 min ; (e) (i) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, reflux, 30 min .; (ii) $33 \% \mathrm{NH}_{4} \mathrm{OH}$, anhydrous THF, r.t., 15 min ; (f) $\mathrm{POCl}_{3}, 6{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (g) HCOONH_{4}, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, reflux, 2 h .

Scheme 3. Reagents and conditions: (a) cyclohexylhydrazine, PPA, EtOH, $70^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) 33% NH_{3}, piperidine, $60^{\circ} \mathrm{C}, 90 \mathrm{~min}$; (c) $\mathrm{POCl}_{3}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Scheme 4. Reagents and conditions: (a) suitable $\mathrm{R}-\mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}$, anhydrous DMF, reflux, $1-4 \mathrm{~h}$; (b) (i) dry THF, $\mathrm{CH}_{3} \mathrm{COONa}, 0^{\circ} \mathrm{C}$ then triphosgene, reflux, 2 h ; (ii) $\mathrm{NH}_{3} 33 \%, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c) Lawesson's reagent, anhydrous toluene, reflux, 5 h .

$\mathbf{2 9}$	\mathbf{R}
\mathbf{a}	CH_{3}
\mathbf{b}	$\mathrm{C}_{2} \mathrm{H}_{5}$
\mathbf{c}	$i \mathrm{C}_{3} \mathrm{H}_{7}$
\mathbf{d}	$n \mathrm{C}_{3} \mathrm{H}_{7}$

31a,b

Comp.	CN/CONH
30a	meta
30b	ortho
31a	meta
31b	ortho

Scheme 5. Reagents and conditions: (a) suitable ($\mathrm{R}-\mathrm{CO}_{2}$) O , anhydrous $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$, closed tube, $140{ }^{\circ} \mathrm{C}$, 5 h ; (b) 2/3-cyanophenylboronic acid (for $\mathbf{3 0 a}, \mathbf{b}$) or 4-ethoxycarbonylphenylboronic acid (for 33), $\mathrm{Cu}(\mathrm{Ac})_{2}, \mathrm{Et}_{3} \mathrm{~N}$, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 12 h ; (c) $\mathrm{H}_{2} \mathrm{SO}_{4} 80 \%, 80^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (d) Lawesson's reagent, anhydrous toluene, reflux, 10 h ; (e) $\mathrm{NaOH} 6 \mathrm{~N}, \mathrm{EtOH} 96 \%$, reflux, 1 h ; (f) (i) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ (catalytic), reflux, 1 h ; (ii) anhydrous THF, 1 -acetylpiperazine, $0^{\circ} \mathrm{C}$ then r.t., 1 h .

Comp.	R
41a	2- $\mathrm{OH}-\mathrm{Ph}$
41b	4- $\mathrm{NO}_{2}-\mathrm{Ph}$
42a	2- $\mathrm{OH}-\mathrm{Ph}$
42b	$4-\mathrm{NH}_{2}-\mathrm{Ph}$

$\mathbf{3 7}$	\mathbf{R}
\mathbf{a}	$3-$ thienyl
\mathbf{b}	$c \mathrm{C}_{6} \mathrm{H}_{11}$
\mathbf{c}	$i \mathrm{C}_{3} \mathrm{H}_{7}$
\mathbf{d}	$\mathrm{CH}_{2} \mathrm{Ph}$
\mathbf{e}	$2-\mathrm{OH}-$ Ph

$\mathbf{3 8}$	\mathbf{R}
\mathbf{a}	3-thienyl
\mathbf{b}	$\mathrm{cC}_{6} \mathrm{H}_{11}$
\mathbf{c}	$i \mathrm{C}_{3} \mathrm{H}_{7}$
\mathbf{d}	$\mathrm{CH}_{2} \mathrm{Ph}$

$\mathbf{3 6}$	\mathbf{R}
\mathbf{a}	3-thienyl
\mathbf{b}	$c \mathrm{C}_{6} \mathrm{H}_{11}$
\mathbf{c}	$i \mathrm{C}_{3} \mathrm{H}_{7}$
\mathbf{d}	$\mathrm{CH}_{2} \mathrm{Ph}$
\mathbf{e}	$2-\mathrm{OH}-\mathrm{Ph}$
\mathbf{f}	$4-\mathrm{NO}_{2-}$
	Ph

Scheme 6. Reagents and conditions: (a) $\mathrm{NH}_{2} \mathrm{NH}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, sealed/pressure vessel, $180^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) $\mathrm{CH}_{3} \mathrm{I}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$, anhydrous DMF, $80^{\circ} \mathrm{C}, 2-4 \mathrm{~h}$; (c) (i) anhydrous THF, $\mathrm{CH}_{3} \mathrm{COONa}, 0^{\circ} \mathrm{C}$ then triphosgene, reflux, 2 h ; (ii) $\mathrm{NH}_{4} \mathrm{OH} 33 \%, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) ClCOCH_{3}, anhydrous THF, $0^{\circ} \mathrm{C}$, then r.t., 20 min .

Scheme 7. Reagents and conditions: (a) $\mathrm{CH}_{3}(\mathrm{NH}) \mathrm{NH}_{2}, \mathrm{EtOH} 96 \%$, r.t., 2 h ; (b) $\mathrm{HCOONH}_{4}, \mathrm{Pd} / \mathrm{C}$, EtOH 96\%, reflux, 2h; (c) $\mathrm{HBr} 48 \%$, sealed/pressure vessel, $130^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (d) (i) anhydrous THF, $\mathrm{CH}_{3} \mathrm{COONa}, 0^{\circ} \mathrm{C}$ then triphosgene, reflux, 2 h ; (ii) $33 \% \mathrm{NH}_{4} \mathrm{OH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

50
Scheme 8. Reagents and conditions: (a) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2} \mathrm{CO}_{3}$, anhydrous DMF, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
Based on the analytical and spectral data (proton and carbon NMR) and mass spectrometry (MS), all the new compounds confirmed the predicted chemical structures, as well as satisfactory results in terms of formulation and purity (See Section 3; in Supporting Information are reported representative examples of analytical characterization data of the compounds processed to FABP4 inhibition assay in vitro). Reversed phase liquid chromatography was used to perform a qualitative analysis of the dataset's purity. The formation of the products was monitored by UV absorbance at wavelengths of 281 nm and 254 nm . The retention times range was from 6 to 17 min (See Section 3 and Supporting Information). The overall feature of mass spectra (LC-MS) of this series of pyridazinonederivatives is the presence of a predominant peak corresponding to the molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$(See Section 3 and Supporting Information).

52

54

56

53

55

Scheme 9. Reagents and conditions: (a) $\mathrm{HCOONH}_{4}, \mathrm{Pd} / \mathrm{C} 10 \%$, EtOH 96\%, reflux, 2 h ; (b) $\mathrm{HBr} 48 \%$, sealed/pressure vessel, $130^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) (i) anhydrous THF, $\mathrm{CH}_{3} \mathrm{COONa}, 0^{\circ} \mathrm{C}$ then triphosgene, reflux, 2 h ; (ii) $\mathrm{NH}_{4} \mathrm{OH} 33 \%, 0{ }^{\circ} \mathrm{C}$, 1 h ; (d) DMF-DMA, $90^{\circ} \mathrm{C}$, 1 h ; (e) $\mathrm{NH}_{2} \mathrm{NH}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, anhydrous EtOH , $70^{\circ} \mathrm{C}, 10 \mathrm{~h}$.

2.3. FABP4 Inhibition Evaluation

FABP4 inhibitory activity was assessed by measuring the decrease in fluorescent signal of a detection reagent (DR) when displaced by a strong FABP4 ligand. Specifically, the DR exhibits an increased fluorescence intensity when bound to FABP4. Therefore, any effective ligand of the protein, which binds to the same binding pocket and can displace the DR , determines a reduction in the fluorescence read-out. The new molecular series was screened in a two-step procedure. Firstly, a single concentration of $5 \mu \mathrm{M}$ was used to gain an estimation of the overall inhibitory effect of all the molecules. Subsequently, only the compounds that were able to reduce the fluorescence reading of at least 95% were further evaluated by measuring the IC_{50} values $(\mu \mathrm{M})$, which were lastly compared with the activity of the arachidonic acid (i.e., FABP4 established ligand). The single point displacement results are reported in Figure 2. Based on the data of the first screening, 10 molecules were selected as most effective compounds-i.e., able to reduce the fluorescence of the DR to at least 95%, for which the $\mathrm{IC}_{50}(\mu \mathrm{M})$ was calculated. Arachidonic acid was used as a positive control, resulting with an IC_{50} of $3.42 \mu \mathrm{M}$. The IC_{50} values of our set of compounds are reported in Table 3. Compound 25a demonstrated a potent inhibitory activity, with an IC_{50} value (i.e., $2.97 \mu \mathrm{M}$) lower than the reference arachidonic acid.

Figure 2. Single point displacement experiment for selected compounds.
Table 3. Measured IC_{50} values for selected compounds.

Compounds	$\mathbf{I C}_{50}(\boldsymbol{\mu M})$
Arachidonic acid	3.42 ± 0.54
$\mathbf{4 b}$	8.27 ± 0.20
$\mathbf{2 5 a}$	2.97 ± 0.26
$\mathbf{3 0 b}$	23.18 ± 0.52
$\mathbf{2 2}$	15.23 ± 0.76
$\mathbf{2 5 c}$	>50
$\mathbf{3 5}$	>50
$25 \mathbf{e}$	>50
54	>50
55	>50
27	>50

2.4. Molecular Modelling Studies

Since the first apo-FABP crystal structure was published in 1992, many other holoFABP structures with a variety of ligands have been solved. The hydrophobic pocket side chains engage a hydrogen bond to the carboxylate of FAs toward several amino acids. Moreover, a network of water molecules may be involved in mediating these interactions. The docking experiments of the molecular series compounds were conducted on the most active compounds $\mathbf{4 b}, \mathbf{2 5 a}, \mathbf{3 0 b}$, and 22. Figure 3 shows the 2D binding interactions for the molecules, while Figure 4 displays the predicted poses inside the binding pocket of FABP4. All the compounds are able to engage several interactions with relevant residues in the binding pocket, such as R126 and Y128, as well as R106. R126 can interact with both the carbonyls of the most potent compound 25a, that also interacts directly with Y128 and, through the network of water molecules, with S53. The $\mathbf{4 b}$ is well allocated inside the binding pocket and is engaging a strong H-bond interaction with R126. Differently, compound 22 is not suitably allocated inside the pocket to generate appropriate binding with R126 and Y128 and most of the stabilizing interactions are due to pi-pi stacking with A75, F16 and M20. Lastly, the -CN group of 30b results responsible of the stabilizing interaction with R126 and Y128, that are likely to account for the lower activity of the compound, as determined by the lower binding interaction for this group with the residues.
(a)

(100)

(AR)
$\left({ }^{10}\right.$

(via)
(30)
(410)
(b)

(c)

(104)
(iii)

(10)
(刃if)
(2ia)

(3i)
(118)
(d)
(ㅇ)이 arene-arene
(○) H arene-H
(0) + arene-cation
(2) (223$)$

(d)(d)
$\begin{array}{ll}\text { solvent residue } \\ \text { metal complex } \\ \text { solvent contact } \\ \text { metal/ion contact } \\ \text { receptor } \\ \text { exposure }\end{array}$
(0) arene-arene arene-cation

Figure 3. (a) 2D interaction between $\mathbf{4 b}$ and FABP4. (b) 2D interaction between 25a and FABP4. (c) 2D interaction between 30b and FABP4. (d) 2D interaction between 22 and FABP4.

Figure 4. Docked poses inside FABP4 of molecules 4b (green), 25a (blue), 30b (dark yellow) and 22 (light red).

3. Experimental Section

3.1. General Remarks

All the chemical reagents were purchased from Merk and Sigma Aldrich of reagent grade and were used without any further purification. Extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. All reactions were monitored by thin-layer chromatography (TLC) using commercial plates (Merck) pre-coated with silica gel 60 F-254. Visualization was performed by UV fluorescence ($\lambda \max =254 \mathrm{~nm}$) or by staining with iodine or potassium permanganate. Chromatographic separations were performed on silica gel columns by gravity (Kieselgel 40, 0.063-0.200 mm; Merck) or flash chromatography (Kieselgel 40, 0.040-0.063 mm; Merck). Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. When reactions were performed in anhydrous conditions, the mixtures were maintained under nitrogen atmosphere. Compounds were named following IUPAC rules as applied by Beilstein-Institut AutoNom 2000 (4.01.305) or CA Index Name. All melting points were determined on a microscope hot stage Büchi apparatus and are uncorrected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were obtained on a Bruker AVANCE 400 spectrometer at 400 MHz and 100 MHz , respectively, using 5 mm i.d. glass tubes. Chemical shifts (δ) values are expressed as parts per million (ppm) using DMSO $\left(\mathrm{d}_{6}\right)$ (2.50 for proton and 39.52 for carbon), methanol $\left(\mathrm{d}_{4}\right)$ (3.31 for proton and 49.00 for carbon) or CDCl_{3} (7.26 for proton and 77.16 for carbon) as solvents. The coupling constants (J) are reported in Hz . The following splitting patterns are identified: s, singlet; d, doublet; t, triplet; m, multiplet; or any combination of these e.g., dd, dt, etc. Analytical reversed-phase high performance liquid chromatography (reversed-phase HPLC) was conducted out on HP 1050 instrument (Agilent Technologies, Waldbronn, Germany) to ascertain the chromatographic purity of compounds. The system includes a quaternary pump, an autosampler, and a Kontron DEG 104 degasser (Kontron, Tokyo, Japan). A C 18 column, Zorbax, $80 \AA, 3.5 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ was used with a total run time of 30 min . The mobile phase is composed of 0.1% Trifluoro acetic acid (TFA) in Milli-Q $\mathrm{H}_{2} \mathrm{O}$ and Acetonitrile (can) at a flow rate of $0.3 \mathrm{~mL} / \mathrm{min}$ with an injection volume of $10-30 \mu \mathrm{~L}$ [44]. The compounds were detected at 281 nm and 254 nm UV wavelengths. The values of the retention times (t_{R}) are given in minutes. Mass spectrometry (LC-MS) experiments were performed on all the samples. The stock solutions ($1 \mathrm{mg} / \mathrm{mL}$ in MeOH) where diluted with $0.1 \% \mathrm{HCOOH}$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(50: 50)$ to a final concentration of $50 \mu \mathrm{~g} / \mathrm{mL}$ prior to analysis. The instrument used consisted of a Thermo Accela LC system interfaced to a Thermo TSQ Access triple quadrupole mass spectrometer with a HESI source. The data were processed with Xcalibur software (version 2.0). An amount of $10 \mu \mathrm{~L}$ of sample was analyzed in flow injection, with a flow rate of $0.2 \mathrm{~mL} / \mathrm{min}$ of mobile phase $0.1 \% \mathrm{HCOOC}$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (50:50). Parameters used for the analysis in positive ion mode were: spray voltage 3500 V ; vaporizer temperature $300^{\circ} \mathrm{C}$; sheath gas pressure 50 au ; capillary temperature $350{ }^{\circ} \mathrm{C}$; capillary offset 35 .

3.2. Chemistry

3.2.1. General Procedure for Compounds $\mathbf{4 a , b}$

A mixture of 3 (0.35 mmol) [35], a catalytic amount of $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ and SOCl_{2} $(9.35 \mathrm{mmol})$ was stirred at room temperature for 30 min . Then the excess of SOCl_{2} was removed in vacuo and the residue oil was dissolved in cold anhydrous THF (1 mL). To this suspension, the appropriate amine $(0.75 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 2 h . After cooling, cold water was added ($2-5 \mathrm{~mL}$) and the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$; the solvent was evaporated under vacuum to afford the desired final compounds, which were purified by flash column chromatography using cyclohexane/ethyl acetate 1:2 as eluent (4a), or by crystallization from ethanol (4b).

5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid phenylamide (4a)
Yield $=40 \% ; \mathrm{mp}=228-229^{\circ} \mathrm{C}(\mathrm{EtOH})$. Light brown solid, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-$
$\left.\mathrm{d}_{6}\right) \delta 6.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.02(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}$, ArCONH$), 7.23(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.32(\mathrm{~d}$,
$2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}), 7.39$ (d, 2H, J = $8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.47-7.49$ (m, 2H, Ar), 10.04 (s, 1H, CONH2), 12.88 (s, 1H, ArNH). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 163.75,156.35,155.43,145.54,141.87$, $138.61,128.43,128.24,127.93,123.86,119.95,109.88$. MS-ESI for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 306.11), $[\mathrm{M}+\mathrm{H}]^{+}$at m / z 306.96, $\mathrm{t}_{\mathrm{R}}=11.825$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 66.66 ; \mathrm{H}, 4.61 ; \mathrm{N}, 18.29$. Found C, 66.92; H, 4.63; N, 18.36.

5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid propylamide (4b)
Yield $=35 \% ; \mathrm{mp}=228-230^{\circ} \mathrm{C}(\mathrm{EtOH})$. Yellow coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 0.57-0.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{dp}, 2 \mathrm{H}, \mathrm{J}=14.2,7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.94(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right), 6.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.36(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=4.5,1.6 \mathrm{~Hz}, \mathrm{Ar}), 7.44(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=6.4$, $1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.98$ (t, 1H, J = $5.8 \mathrm{~Hz}, \mathrm{Ar}), 12.79$ (s, 1H, ArNH). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) $\delta 164.94,156.30,145.52,141.61,137.07,128.17,127.90,127.80,110.26,40.55,21.51,11.24$. MS-ESI for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 272.13), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 273.02, \mathrm{t}_{\mathrm{R}}=9.970$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 61.75; H, 5.92; N, 20.58. Found C, 61.99; H, 5.94; N, 20.66.

3.2.2. General Procedure for Compounds 5a,b

A mixture of $\mathbf{4 a , b}(0.43 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.86 \mathrm{mmol})$ and 0.50 mmol of ethyl bromide in anhydrous DMF (2 mL) was refluxed for 30-90 min. After cooling, the mixture was diluted with cold water (15 mL) and compound $5 \mathbf{a}$ was recovered by filtration under vacuum. For compound $\mathbf{5 b}$ the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the solvent was evaporated in vacuo. The crude products were purified by crystallization from ethanol.

5-Amino-1-ethyl-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid phenylamide (5a)

Yield $=90 \% ; \mathrm{mp}=172-173{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 4.26\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 6.70$ (exch br s, 1H, CONH), 6.93 (d, $2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.20(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.49-7.54(\mathrm{~m}, 3 \mathrm{H}$, Ar), 7.55-7.60 (m, 2H, Ar). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 68.25; H, 5.43; N, 16.76. Found C, 68.41; H, 5.44; N, 16.72.

5-Amino-1-ethyl-6-oxo-3-phenyl-1,6-dihydro-pyridazine-4-carboxylic acid propylamide (5b)

Yield $=80 \% ; \mathrm{mp}=141-143{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.64(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}$), 1.15 ($\mathrm{sex}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{~J}=7.6 \mathrm{~Hz}$), $1.43(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 3.05\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 4.25\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\mathrm{J}=7.2 \mathrm{~Hz}), 5.02$ (exch br s, 1H, CONHCH2), 6.95 (exch br s, 2H, NH2 $), 7.45-7.51$ (m, 5H, Ar). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 63.98; H, 6.71; N, 18.65. Found C, 63.83; H, 6.70; N, 18.70 .

3.2.3. 5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid amide (6)

A mixture of isoxazolopyridazinone $1(0.94 \mathrm{mmol})$ [29], 2 mL of $33 \% \mathrm{NH}_{3}$ and a catalytic amount of piperidine was stirred at $60^{\circ} \mathrm{C}$ for 90 min in a sealed/pressure vessel. After cooling the precipitate was recovered by suction and recrystallized with diethyl ether. Yield $=46 \% ; \mathrm{mp}>300{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Light brown solid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ $6.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.38(\mathrm{dd}, 3 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=5.0,2.1 \mathrm{~Hz}), 7.47-7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 12.79$ (s, 1H, ArNH). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 167.25,156.28,145.36,141.66,137.17,128.17$, 127.97, 127.83, 109.75. MS-ESI for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 230.08), $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 230.95$, $\mathrm{t}_{\mathrm{R}}=6.091$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 57.39 ; \mathrm{H}, 4.38 ; \mathrm{N}, 24.34$. Found $\mathrm{C}, 57.16 ; \mathrm{H}, 4.36$; N, 24.24.

3.2.4. 5-Amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carbonitrile (7)

A suspension of $6(0.40 \mathrm{mmol})$ in $\mathrm{POCl}_{3}(8 \mathrm{mmol})$ was stirred at $60^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$. After cooling, the reaction mixture was treated with cold water (15 mL) and the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic solvent was evaporated to afford the desired final compound which was purified by crystallized from diethyl ether. Yield $=48 \%$; $\mathrm{mp}=287-289{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Yellow coloured solid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 6.78$ (s,
$\left.1 \mathrm{H}, \mathrm{NH}_{2}\right), 7.48(\mathrm{tt}, 3 \mathrm{H}, \mathrm{J}=3.9,2.4 \mathrm{~Hz}, \mathrm{Ar}), 7.57-7.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 12.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArNH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $8154.47,154.06,149.95,145.72,135.21,129.28,128.29,128.13$, 115.68, 113.42. MS-ESI for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$ (Calcd, 212.07), $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 212.89, \mathrm{t}_{\mathrm{R}}=10.234$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 62.26 ; \mathrm{H}, 3.80 ; \mathrm{N}, 26.40$. Found C, 62.01; H, 3.78; N, 26.29.
3.2.5. 4-Acetyl-isoxazole-3-carboxylic acid ethyl ester (10)

To a cooled $\left(-5{ }^{\circ} \mathrm{C}\right)$ and stirred suspension of $\mathbf{8}(9.9 \mathrm{mmol})$ in anhydrous ethanol, a solution of ethyl chloro(hydroximino)acetate 9 (6.6 mmol) in the same solvent (11 mL) was added dropwise. The solvent was evaporated in vacuo, cold water was added (10 mL) and the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. A mixture of isoxazoles $\mathbf{1 0}$ and 11 [36] was obtained and they were separated by flash column chromatography using cyclohexane/ethyl acetate $2: 1$ as eluent. Yield $=15 \%$; oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.45\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.51\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right)$, 8.95 (s, 1H, Ar). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{4}$: C, $52.46 ; \mathrm{H}, 4.95 ; \mathrm{N}, 7.65$. Found C, $52.33 ; \mathrm{H}$, 4.94; N, 7.67.

3.2.6. General Procedure for Compounds 12 and 13

To a cooled and stirred mixture of isoxazoles $\mathbf{1 0}$ or $\mathbf{1 1}(6.56 \mathrm{mmol})$ and 2.5 g of PPA (25 mmol) in 2 mL of anhydrous $\mathrm{EtOH}, 7.87 \mathrm{mmol}$ of phenylhydrazine were added. The reaction was carried out at $70^{\circ} \mathrm{C}$ for 30 min . After cooling the solvent was evaporated under vacuum, cold water was added $(10 \mathrm{~mL})$ and the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. Evaporation of the solvent afforded the desired compounds.

4-Methyl-6-phenyl-6H-isoxazolo [3,4-d]pyridazin-7-one (12)
Yield $=90 \% ; m p=200-201{ }^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.54(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.38(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.55-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 9.22(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 63.43 ; \mathrm{H}, 3.99 ; \mathrm{N}, 18.49$. Found C, 63.58; H, 4.00; N, 18.44.

3-Methyl-6-phenyl-6H-isoxazolo [3,4-d]pyridazin-7-one (13)
Yield $=80 \% ; \mathrm{mp}=188-190^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.88$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.51(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.60(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz})$, 8.16 (s, 1H, N=CH). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 63.43 ; \mathrm{H}, 3.99 ; \mathrm{N}, 18.49$. Found C, 63.55; H, 3.99; N, 18.46.

5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carboxylic acid methyl ester (14)

A mixture of $12(6.21 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL})$ in 2 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was heated at $60^{\circ} \mathrm{C}$ for 2 h . After cooling, ice water (20 mL) was added and the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. Then the solvent was evaporated in vacuo to afford compound 14 which was purified by flash column chromatography using cyclohexane/ethyl acetate 1:1 as eluent. Yield $=80 \% ; \mathrm{mp}=91-93^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.53(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 7.39(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.49(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.65$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.16$ (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 60.22 ; \mathrm{H}$, $5.05 ;$ N, 16.21. Found C, 60.08; H, 5.06; N, 16.26.

3.2.7. 5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carboxylic acid (15)

A mixture of $\mathbf{1 4}(2.12 \mathrm{mmol})$, ethanol $(3 \mathrm{~mL})$ and $6 \mathrm{~N} \mathrm{NaOH}(2 \mathrm{~mL})$ was stirred at reflux for 30 min . After cooling, the solvent was evaporated under vacuum, cold water was added $(2-3 \mathrm{~mL})$ and the mixture was acidified with 6 N HCl . The precipitate was recovered by vacuum filtration and crystallized from cyclohexane. Yield $=90 \%$; $\mathrm{mp}=214-216^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.39(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.46$ $(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.25$ (exch br s, 2H, NH2 $)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, $58.77 ; \mathrm{H}, 4.52 ; \mathrm{N}, 17.13$. Found C, $58.61 ; \mathrm{H}, 4.51 ; \mathrm{N}, 17.16$.
3.2.8. 5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carboxylic acid amide (16)

A mixture of $\mathbf{1 5}(1.88 \mathrm{mmol})$, a catalytic amount of $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ and $\mathrm{SOCl}_{2}(51 \mathrm{mmol})$ was refluxed for 30 min . After cooling, the excess of SOCl_{2} was removed in vacuo and the residue oil was dissolved in cold dry THF (1 mL). To this suspension a solution of $33 \% \mathrm{NH}_{3}(2 \mathrm{~mL})$ in 1.5 mL of dry THF was added and the mixture was stirred at room temperature for 15 min . After evaporation of the solvent, the mixture was diluted with cold water $(20 \mathrm{~mL})$ and the precipitate obtained was filtered and crystallized from ethanol. Yield $=80 \% ; \mathrm{mp}=247-249{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.35-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.45-7.51(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 7.88$ (s, 1H, CONH_{2}). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 167.39,155.53,143.12,141.99,141.63$, 128.82, 127.99, 125.85, 110.42, 20.24. MS-ESI for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 244.10), [M + H] at $m / z 244.95, \mathrm{t}_{\mathrm{R}}=7.921$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 59.01; H, 4.95; N, 22.94. Found C, 59.24; H, 4.97; N, 23.03.
3.2.9. 5-Amino-3-methyl-6-oxo-1-phenyl-1,6-dihydropyridazine-4-carbonitrile (17)

Compound 17 was obtained starting from compound 16, through the same procedure described for 7. After dilution with cold water, the precipitate was recovered by filtration under vacuum and the solid obtained was purified by flash column chromatography using cyclohexane/ethyl acetate 1:1 as eluent. Yield $=20 \% ; \mathrm{mp}=201-203{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.38$ (ddd, 1H, J = 7.7, 5.5, 3.6 Hz, Ar), 7.42-7.51 (m, 4H, Ar). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 153.37, 149.50, 144.17, 141.60, 130.03, 127.68, 125.90, 115.14, 100.83, 20.47. MS-ESI for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$ (Calcd, 226.08), $226.96 \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$, $435.11 \mathrm{~m} / \mathrm{z}\left[2 \mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 451.07 \mathrm{~m} / \mathrm{z}\left[2 \mathrm{M}-\mathrm{H}_{2}+\mathrm{H}\right]^{+} . \mathrm{t}_{\mathrm{R}}=11.385$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$: C, 63.71; H, 4.46; N, 24.76. Found C, 63.96; H, 4.48; N, 24.85.

3.2.10. 5-Acetyl-4-amino-2-phenylpyridazin-3(2H)-one (18)

Intermediate $13(1.01 \mathrm{mmol})$ was suspended in 3.5 mL of EtOH , then 6.08 mmol of HCOONH_{4} and 40 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ were added. The mixture was refluxed for 2 h and after cooling, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added. The solution was stirred for 5 min , then the catalyst was filtered off and the solvent was evaporated in vacuo to furnish desiderd compound 18. Yield $=98 \% ; \mathrm{mp}=181-183{ }^{\circ} \mathrm{C}($ Cyclohexane $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.60(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right), 6.95($ exch br s, 1H, NH2 $), 7.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.51(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz})$, $7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.13$ (s, 1H, C6-H), 9.15 (exch br s, 1H, NH2). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 62.87; H, 4.84; N, 18.33. Found C, 62.69; H, 4.83; N, 18.28.

3.2.11. 6-Cyclohexyl-4-phenyl-6H-isoxazolo [3,4-d]pyridazin-7-one (20)

Compound 20 was obtained starting from 19 [34] adopting the general procedure described for compounds 12 and 13, but using cyclohexyl hydrazine as reagent. The mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 5 h . After dilution with ice-water, the precipitate was recovered by filtration under vacuum and crystallized from ethanol. Yield $=45 \% ; \mathrm{mp}=211-213{ }^{\circ} \mathrm{C}$ $(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27-1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.45-1.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$, $1.75-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.85-1.95\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 5.05-5.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 7.50-7.60(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar}), 7.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.2 \mathrm{~Hz}), 9.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, isoxazole). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}$, 69.14; H, 5.80; N, 14.23. Found C, 69.33; H, 4.82; N, 18.28.
3.2.12. 5-Amino-1-cyclohexyl-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylic acid amide (21)

A mixture of $20(0.64 \mathrm{mmol})$ and $33 \% \mathrm{NH}_{3}$ was stirred at $120^{\circ} \mathrm{C}$ for 3 h in a sealed/ pressure vessel. After cooling, ice-water was added and the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. Evaporation of the solvent afforded the desired final compound. Yield $=20 \% ; \mathrm{mp}=125-128{ }^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.20-1.25(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.35-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.60-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.70-1.88\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$, 4.77-4.82 (m, 1H, $\mathrm{C}_{6} \mathrm{H}_{11}$), 6.55 (exch br s, 2H, NH2), 7.25-7.31 (m, 3H, Ar), 7.44 (d, 2H, Ar,
$\mathrm{J}=7.6 \mathrm{~Hz}), 8.50$ (exch br s, 2H, CONH_{2}). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 65.37; H, 6.45; N, 17.94. Found C, 65.52; H, 6.46; N, 17.99.

3.2.13. 5-Amino-1-cyclohexyl-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carbonitrile (22)

Compound 22 was obtained starting from compound 21, through the same procedure described for 7 and 17. After dilution with cold water, the precipitate was recovered by suction and the solid was purified by crystallization from etanol. Yield $=90 \% ; \mathrm{mp}=170-172{ }^{\circ} \mathrm{C}$ (EtOH). Yellow coloured solid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{qt}, 1 \mathrm{H}, \mathrm{J}=13.2,3.3 \mathrm{~Hz}$, CH_{2}-cyclohexane), 1.46 (ttt, 2H, J = 13.8, $7.8,3.0 \mathrm{~Hz}, \mathrm{CH}_{2}$-cyclohexane), 1.71 (dt, 1H, J = 13.3, $3.4 \mathrm{~Hz}, \mathrm{CH}_{2}$-cyclohexane), 1.84-1.91 (m, 6H, J = 4.4, $3.5 \mathrm{~Hz}, \mathrm{CH}_{2}$-cyclohexane), 4.84-4.93 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$-cyclohexane), $7.45-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.72-7.74$ (m, 2H, Ar). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.65,148.93,144.34,135.02,129.91,128.75,128.20,114.83,85.25,58.19,30.99$, 25.60. MS-ESI for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ (Calcd, 294.15), $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 294.99,[\mathrm{M}+\mathrm{ACN}+\mathrm{H}]^{+}$at m / z 336.01, $\mathrm{t}_{\mathrm{R}}=17.509$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 69.37 ; \mathrm{H}, 6.16 ; \mathrm{N}, 19.03$. Found C, 69.09; H, 6.13; N, 18.95.

3.2.14. General Procedure for $\mathbf{2 4 b}, \mathbf{2 4 d} \mathbf{- f}$

A mixture of 23 [37] (0.80 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.60 \mathrm{mmol})$ and $0.96-1.44 \mathrm{mmol}$ of the appropriate alkyl or cycloalkyl bromide in anhydrous DMF (1 mL) was refluxed for $2-4 \mathrm{~h}$. After cooling, the mixture was diluted with cold water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 15 \mathrm{~mL})$. Evaporation of the solvent afforded the desired final compounds which were purified by flash column chromatography using cyclohexane/ethyl acetate 1:1 (for $\mathbf{2 4 b}, \mathbf{e}, \mathbf{f}$) or 1:2 (for $\mathbf{2 4 d}$) as eluent.

4-Amino-2-cyclohexyl-6-phenylpyridazin-3(2H)-one (24b)
Yield $=21 \% ; \mathrm{mp}=120-124^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20-1.35(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.40-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.70-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.90-2.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$, 4.85-5.10 (m, 3H, 1H C ${ }_{6} \mathrm{H}_{11}+2 \mathrm{H} \mathrm{NH}_{2}$), $6.75(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), 7.35-7.50 (m, 3H, Ar), $7.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 71.35 ; \mathrm{H}, 7.11 ; \mathrm{N}, 15.60$. Found C, 71.52; H, 7.10; N, 15.56.

4-Amino-2-isopropyl-6-phenylpyridazin-3(2H)-one (24d)
Yield $=85 \% ; \mathrm{mp}=122-124^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~d}, 6 \mathrm{H}$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=6.8 \mathrm{~Hz}$), 4.97 (exch br s, 2H, NH2), 5.41 (quin, $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=6.8 \mathrm{~Hz}$), 6.75 (s, 1H, -CH pyridaz.), 7.40-7.50 (m, 3H, Ar), 7.81 (d, 2H, Ar, J = 7.6 Hz). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 68.10 ; \mathrm{H}, 6.59 ; \mathrm{N}, 18.33$ Found C, $68.31 ; \mathrm{H}, 6.60 ; \mathrm{N}, 18.29$.

4-Amino-6-phenyl-2-propylpyridazin-3(2H)-one (24e)
Yield $=83 \% ; \mathrm{mp}=79-81{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}$), $1.93\left(\mathrm{sex}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 4.23\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\mathrm{J}=7.2 \mathrm{~Hz}$), 4.99 (exch br s, 2H, NH2 $)$, 6.73 (s, 1H, -CH pyridaz.), $7.38-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.78$ (d, 2H, Ar, J = 8.0 Hz). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 68.10 ; \mathrm{H}, 6.59 ; \mathrm{N}, 18.33$ Found C, 68.28; H, 6.60; N, 18.31.

4-Amino-2-butyl-6-phenylpyridazin-3(2H)-one (24f)
Yield $=94 \% ; \mathrm{mp}=67-69{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $4.26\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right.$), 4.99 (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.75(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), 7.38-7.50 (m, 3H, Ar), $7.76\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}\right.$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}$, 69.11; H, 7.04; N, 17.27 Found C, 69.29; H, 7.03; N, 17.32.

3.2.15. General Procedure for Compounds 25a-f

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred suspension of the appropriate pyridazinone 24a-f (0.65 mmol) in anhydrous THF ($1-3 \mathrm{~mL}$), anhydrous sodium acetate (1.55 mmol) and
triphosgene (2.26 mmol) were added. The mixture was stirred for 10 min at room temperature and refluxed for 2 h . Then, the suspension was cooled to $0^{\circ} \mathrm{C}$ and 1 mL of 33% NH_{3} was added and the mixture was stirred for $30-90 \mathrm{~min}$ at room temperature. After evaporation of the solvent, ice/cold water was added $(15 \mathrm{~mL})$ and the precipitate obtained was recovered by filtration under vacuum and purified by crystallization from ethanol to obtain the pure samples of 25a-f.
(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25a)
Yield $=65 \% ; \mathrm{mp}>300^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.42-7.51 (m, 3H, Ar), 7.73-7.76 (m, 2H, Ar), 8.35 (s, 1H, Ar), $8.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCONH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) $\delta 155.69,155.11,145.12,137.92,135.75,129.39,129.09,126.02$, 106.62, 20.93. MS-ESI for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 244.10), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 244.95, \mathrm{t}_{\mathrm{R}}=11.531$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 59.01; H, 4.95; N, 22.94 Found C, 59.24; H, 4.97; N, 23.03.
(2-Cyclohexyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25b)
Yield $=35 \% ; \mathrm{mp}=261-263{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18-1.31(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.40-1.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.64-1.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.70-1.90\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 4.87$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 6.80$ (exch br s, 2H, NH2), 7.45-7.55 (m, 3H, Ar), 7.79 (d, 2H, Ar, J = 7.6 Hz), 8.37 (s, 1H, -CH pyridaz.), 8.96 (exch br s, $1 \mathrm{H}, \mathrm{NHCONH}_{2}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 65.37; H, 6.45; N, 17.94. Found C, 65.18; H, 6.46; N, 17.91.
(2-Ethyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25c)
Yield $=25 \% ; \mathrm{mp}=270-271^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.70($ exch br s, 2H, NHCONH 2) $7.47(\mathrm{dt}, 3 \mathrm{H}, \mathrm{J}=13.1,7.1 \mathrm{~Hz}, \mathrm{Ar}), 7.73(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=23.5,7.6 \mathrm{~Hz}, \mathrm{Ar})$, $8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCONH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 155.36,154.51$, $150.89,145.06,137.97,135.75,128.88,125.84,106.29,47.00,13.39$. MS-ESI for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 258.11), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 259.02,215.90 \mathrm{~m} / \mathrm{z}\left[\mathrm{M}-\mathrm{CONH}_{2}+\mathrm{H}\right]^{+} . \mathrm{t}_{\mathrm{R}}=12.090$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $60.45 ; \mathrm{H}, 5.46 ; \mathrm{N}, 21.69$. Found C, $60.21 ; \mathrm{H}, 5.44 ; \mathrm{N}, 21.60$.
(2-Isopropyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25d)
Yield $=68 \% ; \mathrm{mp}=260-263^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 1.36\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.24(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{NCH}), 7.47(\mathrm{dt}, 2 \mathrm{H}$, $\mathrm{J}=15.9,7.2 \mathrm{~Hz}, \mathrm{Ar}), 7.67-7.79(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCONH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-}$) $\delta 155.69,154.31,144.75,137.69,136.13,132.04,129.30,129.08$, 127.97, 125.91, 105.93, 49.71, 20.96. MS-ESI for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 272.13), $[\mathrm{M}+\mathrm{H}]^{+}$at m / z $272.95, \mathrm{t}_{\mathrm{R}}=14.248$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 61.75; H, 5.92; N, 20.58. Found C, 61.99; H, 5.94; N, 20.66.

(3-Oxo-6-phenyl-2-propyl-2,3-dihydro-pyridazin-4-yl)urea (25e)

Yield $=60 \% ; \mathrm{mp}=273-275{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 0.89\left(\mathrm{td}, 3 \mathrm{H}, \mathrm{J}=7.4,2.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.79\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $4.13\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.42-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{Ar}), 7.73-7.76$ (m, 2H, Ar), 8.33 (s, 1H, Ar), $8.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCONH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$ - $\mathrm{d}_{6} \delta$ 155.68, 154.88, 145.06, 137.94, 135.87, 132.03, 129.36, 129.07, 128.06, 126.03, 106.37, 53.19, 21.39, 11.13. MS-ESI for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 272.13), $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 272.95,229.90 \mathrm{~m} / \mathrm{z}$ $\left[\mathrm{M}-\mathrm{CONH}_{2}+\mathrm{H}\right]^{+} . \mathrm{t}_{\mathrm{R}}=14.037$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 61.75 ; \mathrm{H}, 5.92 ; \mathrm{N}, 20.58$. Found C, 61.99; H, 5.94; N, 20.66.
(2-Butyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (25f)
Yield $=85 \% ; \mathrm{mp}=265-267^{\circ} \mathrm{C}(\mathrm{EtOH})$. White solid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}+\right.$ $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.73(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.13-4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{ArN}\right), 7.41-7.51(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.73-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $8.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCONH}_{2}\right), 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 9.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CONH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-$
$\left.\mathrm{d}_{6}\right) \delta 154.80,154.60,137.56,135.69,129.20,128.94,127.78,125.79,118.03,106.44,51.11,29.92$, 19.24, 13.53. MS-ESI for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 286.14), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 286.94, \mathrm{t}_{\mathrm{R}}=31.162$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 62.92; H, 6.34; N, 19.57. Found C, 62.66; H, 6.31; N, 19.49.
3.2.16. 4-Amino-6-phenylpyridazine-3(2H)-thione (26)

A mixture of 23 [37] (0.86 mmol) and Lawesson's reagent (1.71 mmol) in anhydrous toluene ($2-3 \mathrm{~mL}$) was heated at $90^{\circ} \mathrm{C}$ for 5 h . After cooling the solvent was evaporated under vacuum, cold water was added (10 mL) and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 15 \mathrm{~mL})$. Evaporation of the solvent afforded 26 which was purified by flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 10: 1$ as eluent. Yield $=63 \% ; \mathrm{mp}=175-178{ }^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77$ (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.80(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), 7.45-7.55 (m, 3H, Ar), 7.75-7.81 (m, 2H, Ar). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{~S}: \mathrm{C}, 59.09$; $\mathrm{H}, 4.46$; N, 20.67. Found C, 59.23; H, 4.45; N, 20.62.

3.2.17. 3-Methylsulfanyl-6-phenyl-pyridazin-4-ylamine (27)

Compound 27 was obtained, starting from compound 26 , through the general procedure described for $\mathbf{2 4 b}$ and $\mathbf{2 4 d} \mathbf{- f}$. After dilution with cold water, the precipitate was recovered by suction and purified by crystallization. Yield $=40 \% ; \mathrm{mp}=168-170{ }^{\circ} \mathrm{C}$ (Cyclohexane). Greenish colour solid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 6.27$ (exch br s, 2H, NH2), 7.00 (s, 1H, Ar), 7.46 (dt, 3H, ArH, J = 12.6, 6.9 Hz), 7.90-7.93 (m, 2H, Ar). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $8155.31,147.71,144.50,137.20,129.38,129.02,126.51$, 102.80, 12.72. MS-ESI for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$ (Calcd, 217.07), $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 217.86$, $\mathrm{t}_{\mathrm{R}}=9.922$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}: \mathrm{C}, 60.80 ; \mathrm{H}, 5.10 ; \mathrm{N}, 19.34$. Found C, $60.56 ; \mathrm{H}, 5.08 ; \mathrm{N}, 19.26$.

3.2.18. (3-Oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)urea (28)

Compound 28 was obtained, starting from 23 [37], through the same procedure described for 25a-f. Yield $=85 \%$; $\mathrm{mp}>300{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ 7.41-7.50 (m, 3H, Ar), 7.72-7.75 (m, 2H, Ar), 8.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}$), 8.94 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NHCONH}_{2}$), 13.21 (s, 1H, ArNH). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) 8156.00, 155.33, 145.54, 139.57, 138.27, 135.77, 134.50, 128.87, 125.70, 106.97. MS-ESI for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 230.08), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 230.88, \mathrm{t}=10.042$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 57.39; H, 4.38; N, 24.34. Found C, 57.62; H, 4.39; N, 24.44.

3.2.19. General Procedure for Compounds 29a-d

A mixture of 24a [38] (0.39 mmol) and the appropriate R-anhydride (13.1 mmol) in 1 mL of pyridine was heated at $140^{\circ} \mathrm{C}$ for 5 h in a sealed/pressure vessel. After cooling, ice/cold water was added (50 mL), the precipitate was recovered by filtration under vacuum and purified by crystallization from ethanol to obtain the desired compounds.

N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)acetamide (29a)
Yield $=90 \% ; \mathrm{mp}=211-212{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. Brownish black coloured solid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CONH}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{ArN}\right), 7.42-7.48(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.80-7.83 (m, 2H, Ar), 8.61 (s, 1H, ArH). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.96,155.66$, 146.61, 135.61, 135.59, 129.59, 128.97, 126.46, 110.82, 40.91, 24.98. MS-ESI for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (Calcd, 243.10), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 243.90, \mathrm{t}_{\mathrm{R}}=13.311$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 64.19$; H, 5.39; N, 17.27. Found C, 64.45; H, 5.41; N, 17.34.

N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)propionamide (29b)
Yield $=93 \% ; \mathrm{mp}=210-21{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. Ash coloured solid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26\left(\mathrm{td}, 3 \mathrm{H}, \mathrm{J}=7.5,1.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}\right), 2.49-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}\right), 3.92(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{ArN}$), 7.41-7.47 (m, 3H, Ar), 7.81-7.84 (m, 2H, Ar), 8.65 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.77,155.73,146.62,135.63,135.60,129.58,128.95,126.43,110.76,40.90,31.00$, 9.24. MS-ESI for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (Calcd, 257.12), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 257.90, \mathrm{t}_{\mathrm{R}}=14.604$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 65.36; H, 5.88; N, 16.33. Found C, 65.10; H, 5.90; N, 16.39.

N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)isobutyramide (29c)
Yield $=95 \% ; \mathrm{mp}=146-148{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. Brown coloured solid, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.28\left(\mathrm{dd}, 6 \mathrm{H}, \mathrm{J}=6.9,1.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCONH}\right), 2.64-2.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCONH})$, 3.92 (s, 3H, CH3 ArN), 7.41-7.46 (m, 3H, Ar), 7.81-7.85 (m, 2H, Ar), 8.66 (s, 1H, Ar). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.10,155.82,146.61,135.71,135.59,129.57,128.94,126.42$, 110.83, 40.87, 36.95, 19.45. MS-ESI for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ (Calcd, 271.13), [M + H $]^{+}$at $\mathrm{m} / \mathrm{z} 272.04$, $t_{R}=16.829$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 66.40 ; \mathrm{H}, 6.32 ; \mathrm{N}, 15.49$. Found C, 66.66; H, 6.34; N, 15.55.

N-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-yl)butyramide (29d)
Yield $=92 \% ; \mathrm{mp}=187-189{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}$), $1.80\left(\mathrm{sex}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.49\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\mathrm{J}=7.2 \mathrm{~Hz}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.45-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.63$ (exch br s, 1H, NH), 8.68 (s, $1 \mathrm{H},-\mathrm{CH}$ pyridaz.). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 66.40; H, 6.32; N, 15.49. Found C, 66.25; H, 6.31; N, 15.44.

3.2.20. General procedure for compounds $\mathbf{3 0 a}, \mathbf{b}$ and 33

A mixture of compound 24a [38] (0.79 mmol), the appropriate R-phenylboronic acid (0.79 mmol), copper acetate (1.19 mmol) and triethylamine (1.59 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at room temperature for 3-12 h. After evaporation of the solvent, ethyl acetate was added ($15-20 \mathrm{~mL}$) and the solution was extracted first with $33 \% \mathrm{NH}_{3}(3 \times 5 \mathrm{~mL})$ and then with water $(2 \times 5 \mathrm{~mL})$. The organic layer was evaporated under vacuum and the residue was purified by crystallization from ethanol.
3.2.21. 3-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzonitrile (30a)

Yield $=60 \% ; \mathrm{mp}=234-235{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.42-7.48$ (m, 3H, Ar), 7.55-7.59 (m, 2H, Ar), 7.80 (dd, 3H, J = 8.0, $1.8 \mathrm{~Hz}, \operatorname{ArCN}$), 7.86 (d, 1H, J = $1.8 \mathrm{~Hz}, \mathrm{ArCN}$), 9.03 (exch br s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 193.78,157.05,151.81,140.85,136.62,129.18$, 126.83, 111.09, 100.21, 23.94. MS-ESI for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (Calcd, 302.12), $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 302.90$, $[\mathrm{M}+\mathrm{ACN}+\mathrm{H}]^{+}$at $m / z 343.92, \mathrm{t}_{\mathrm{R}}=16.247$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 71.51 ; \mathrm{H}, 4.67$; N, 18.53. Found C, $71.22 ; \mathrm{H}, 4.65$; N, 18.45.
3.2.22. 2-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzonitrile (30b)

Yield $=32 \% ; \mathrm{mp}=178-180^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.41-7.47(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArCN}), 7.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$, ArCN), 7.65 (td, 1H, J = 7.8, 1.6 Hz, Ar), 7.72 (ddd, 3H, J = 7.6, 3.6, 1.7 Hz, Ar), 7.96 (exch br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.91,138.56,13.22,129.42,128.97,126.44$, 124.63, 121.19, 114.68, 100.94, 40.59. MS-ESI for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (Calcd, 302.12), $[\mathrm{M}+\mathrm{H}]^{+}$at m / z 302.97, $[\mathrm{M}+\mathrm{ACN}+\mathrm{H}]^{+}$at $m / z 344.06, \mathrm{t}_{\mathrm{R}}=16.180$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 71.51 ; \mathrm{H}$, 4.67 ; N, 18.53. Found C, 71.22; H, 4.65; N, 18.45.
3.2.23. 4-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzoic acid ethyl ester (33)

Yield $=80 \% ; \mathrm{mp}=171-172{ }^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.42(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.41\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 7.30-7.40(\mathrm{~m}, 3 \mathrm{H}$, $2 \mathrm{H} \mathrm{Ar}+\mathrm{CH}$ pyridaz.), 7.45-7.50 (m, 3H, Ar), 7.77 (d, 2H, Ar, J = 8.8 Hz), 7.90 (exch br s, 1H, $\mathrm{NH}), 8.12(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.8 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 68.75 ; \mathrm{H}, 5.48 ; \mathrm{N}, 12.03$. Found C, 68.58; H, 5.47; N, 12.06.

3.2.24. General Procedure for Compounds 31a,b

A mixture of appropriate pyridazin-benzonitrile 30a or $\mathbf{3 0 b}(0.165 \mathrm{mmol})$ and 80% $\mathrm{H} 2 \mathrm{SO} 4(2 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 4 h . After cooling, ice/cold water ($2-3 \mathrm{~mL}$) was
slowly added, the precipitate obtained was recovered by filtration under vacuum and purified by crystallization.
3.2.25. 3-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzamide (31a)

Yield $=93 \% ; \mathrm{mp}=214-216^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) $\delta 3.81$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.13\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}\right.$ pyridaz.), $7.40-7.50\left(\mathrm{~m}, 5 \mathrm{H}, 4 \mathrm{H} \mathrm{Ar}+1 \mathrm{H} \mathrm{CONH}_{2}\right), 7.60(\mathrm{~d}, 1 \mathrm{H}$, Ar, J = 9.2 Hz), $7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.02$ (exch br s, $1 \mathrm{H}, \mathrm{CONH}_{2}$), 8.93 (exch br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 67.49 ; \mathrm{H}$, 5.03 ; N, 17.49. Found C, 67.36; H, 5.04; N, 17.53.
3.2.26. 2-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzamide (31b)

Yield $=95 \% ; \mathrm{mp}=140-142{ }^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 3.80$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.15(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.38(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), 7.43-7.50 (m, 3H, Ar), $7.57(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.66\left(\right.$ exch br s, 1H, $\left.\mathrm{CONH}_{2}\right), 7.77(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=9.2 \mathrm{~Hz}), 7.84(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=6.8 \mathrm{~Hz}$), 8.17 (exch br s, $1 \mathrm{H}, \mathrm{CONH}_{2}$), 10.68 (exch br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 67.49; H, 5.03; N, 17.49. Found C, 67.36; H, 5.04; N, 17.53.
3.2.27. 4-Amino-2-methyl-6-phenylpyridazine-3(2H)-thione (32)

Compound 32 was obtained, starting from compound 24a [38], through the same procedure described for 26 . In this case, the mixture was refluxed for 10 h . After cooling, ice/cold water was added. The precipitate was recovered by suction and purified by flash column chromatography using cyclohexane/ethyl acetate 1:1 as eluent. Yield $=85 \%$; $\mathrm{mp}=134-135{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.90$ (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.78 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), $7.45-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.80-7.85$ (m, 2H, Ar). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}: \mathrm{C}, 60.80 ; \mathrm{H}, 5.10 ; \mathrm{N}, 19.34$. Found C, $60.97 ; \mathrm{H}, 5.11 ; \mathrm{N}, 19.30$.
3.2.28. 4-(2-Methyl-3-oxo-6-phenyl-2,3-dihydro-pyridazin-4-ylamino)benzoic acid (34)

Compound 34 was obtained through the general procedure described for 15. After cooling, the mixture was acidified with 6 N HCl and the final product was filtered off to obtain the desired compound. Yield $=90 \% ; \mathrm{mp}=280-281^{\circ} \mathrm{C}$ (Diethyl ether). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.37(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), $7.40-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.58 (d, 2H, Ar, J = 8.8 Hz), $7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.4 \mathrm{~Hz}), 9.16$ (exch br s, $1 \mathrm{H}, \mathrm{NH}$), 12.78 (exch br s, $1 \mathrm{H}, \mathrm{OH}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 67.28; H, 4.71; N, 13.08. Found C, $67.44 ; H, 4.71 ;$ N, 13.05.
3.2.29. 4-[4-(4-Acetyl-piperazine-1-carbonyl)-phenylamino]-2-methyl-6-phenylpyridazin-3(2H)-one (35)

Compound 35 was obtained starting from 34 through the same procedure described for $\mathbf{4 a , b}$. In this case the mixture was stirred at room temperature for 40 min . After cooling, THF was removed in vacuo and cold water was added (10 mL). The crude precipitate was recovered by filtration under vacuum and purified by crystallization. Yield $=94 \%$; $\mathrm{mp}=213-215^{\circ} \mathrm{C}$ (Cyclohexane). Ligrownown solid, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.14$ (s, 3H, CH3 CONH), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.60\left(\mathrm{~d}, 8 \mathrm{H}, \mathrm{J}=46.0 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 7.22 (s, 1H, Ar), 7.33 (d, 2H, J = 7.9 Hz, Ar), 7.47 (dd, $6 \mathrm{H}, \mathrm{J}=24.3,7.9 \mathrm{~Hz}, \mathrm{Ar}$), 7.71-7.80 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{NH}+\mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.15,169.37,156.24,146.00,140.96$, $139.58,136.38,130.72,129.39,129.32,128.96,126.42,120.74,99.58,40.75,21.55$. MS-ESI for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$ (Calcd, 431.20), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 432.10,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 454.08, \mathrm{t}_{\mathrm{R}}=13.347$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 66.81; H, 5.84; N, 16.23. Found C, 66.54; H, 5.82; N, 16.16.
3.2.30. General procedure for compounds $\mathbf{3 7 a} \mathbf{a} \mathbf{d}$ and $\mathbf{4 2 a}, \mathbf{b}$

A suspension of appropriate pyridazinone $\mathbf{3 6 a - d}(1.29 \mathrm{mmol})$, commercially available, and hydrazine hydrate (48 mmol) was stirred in a sealed/pressure vessel at $180-200{ }^{\circ} \mathrm{C}$ for 6-12 h. After cooling, ice-cold water was added (15 mL) and the precipitate obtained was re-
covered by filtration under vacuum to obtain the desired compounds $37 \mathrm{a}-\mathrm{d}$. To obtain compounds $\mathbf{4 2 a}, \mathbf{b}$ we adopted the same procedure, using $\mathbf{4 1 a , b}$ (41a, [39]) as starting materials.

3.2.31. 4-Amino-6-thiophen-3-yl-pyridazin-3(2H)-one (37a)

Yield $=52 \% ; \mathrm{mp}>300{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta 6.40$ (exch br s, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.68\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}\right.$ pyridaz.), $7.45\left(\mathrm{dd}, 1 \mathrm{H}\right.$, thiophene, $\mathrm{J}_{1}=1.2 \mathrm{~Hz}$ and $\mathrm{J}_{2}=4.8 \mathrm{~Hz}$), $7.60\left(\mathrm{dd}, 1 \mathrm{H}\right.$, thiophene, $\mathrm{J}_{1}=2.8 \mathrm{~Hz}$ and $\left.\mathrm{J}_{2}=4.8 \mathrm{~Hz}\right), 7.81(\mathrm{ds}, 1 \mathrm{H}$, thiophene, $\mathrm{J}=1.2 \mathrm{~Hz})$, 12.54 (exch br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}$: C, $49.73 ; \mathrm{H}, 3.65 ; \mathrm{N}, 21.75$. Found C, 49.61; H, 3.65; N, 21.69.

3.2.32. 4-Amino-6-cyclohexylpyridazin-3(2H)-one (37b)

Yield $=46 \% ; \mathrm{mp}=284-287{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 1.20-1.39(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.72-1.83\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 2.30-2.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 6.14$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ pyridaz.), 6.18 (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 12.24 (exch br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 62.15$; H, 7.82; N, 21.74. Found C, 62.29; H, 7.80; N, 21.79.

3.2.33. 4-Amino-6-isopropylpyridazin-3(2H)-one (37c)

Yield $=40 \% ; \mathrm{mp}=246-248{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) \delta 1.11(\mathrm{~d}, 6 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.16(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), 6.18 (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 12.23 (exch br s, 1H, NH). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 54.89 ; \mathrm{H}, 7.24 ; \mathrm{N}, 27.43$. Found C, 54.76; H, 7.23; N, 27.51.
3.2.34. 4-Amino-6-benzylpyridazin-3(2H)-one (37d)

Yield $=42 \% ; \mathrm{mp}=247-250^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 3.70(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 6.04 (s, 1H, -CH pyridaz.), 6.22 (exch br s, 2H, NH2 $), 7.20-7.40$ (m, 5H, Ar), 12.31 (exch br s, 1H, NH). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 65.66 ; \mathrm{H}, 5.51 ; \mathrm{N}, 20.88$. Found C, 65.84; H, 5.50; N, 20.83.
3.2.35. 4-Amino-6-(2-hydroxyphenyl)-2-methylpyridazin-3(2H)-one (42a)

Yield $=58 \% ; \mathrm{mp}=212-213{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.92(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.7,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.00-7.05(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 7.29$ (td, 1H, J = 8.3, $7.8,1.6 \mathrm{~Hz}, \mathrm{Ar}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.81,131.24,126.35,119.47,118.30,98.93,29.87$. MS-ESI for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ (Calcd, 217.08), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 217.93, \mathrm{t}_{\mathrm{R}}=11.693$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 60.82 ; \mathrm{H}, 5.10$; N, 19.34. Found C, 60.57; H, 5.08; N, 19.26.

3.2.36. 4-Amino-6-(4-aminophenyl)-2-methylpyridazin-3(2H)-one (42b)

Yield $=55 \% ; \mathrm{mp}=208-209{ }^{\circ} \mathrm{C}($ Cyclohexane $) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 3.65$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 5.35 (exch br s, 2H, NH2), 6.33 (exch br s, 2H, Ph-NH2), 6.59 (d, 2H, Ar, $\mathrm{J}=8.0 \mathrm{~Hz}), 6.63\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}\right.$ pyridaz.), $7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}$: C, 61.10; H, 5.59; N, 25.91. Found C, C, 61.27; H, 5.58; N, 25.85.

3.2.37. General Procedure for Compounds 38a-d

A mixture of the appropriate pyridazinone $37 \mathrm{a}-\mathbf{d}(0.67 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.34 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(1.01 \mathrm{mmol})$ in anhydrous DMF $(1.5 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for $1-4 \mathrm{~h}$. After cooling, the mixture was diluted with cold water (15 mL) and compound 38a was recovered by suction and crystallized from ethanol. For compounds 38b-d the suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the solvent was evaporated in vacuo. The final compounds were purified by flash column chromatography using cyclohexane/ethyl acetate 1:2 (for $\mathbf{3 8 b}, \mathbf{d}$) or $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 9.5: 0.5$ (for $38 \mathbf{c}$) as eluents.
3.2.38. 4-Amino-2-methyl-6-thiophen-3-yl-pyridazin-3(2H)-one (38a)

Yield $=62 \% ; \mathrm{mp}=178-179{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 3.67(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}_{3}$), 6.50 (exch br s, 2H, NH_{2}), 6.68 (s, 1H, -CH pyridaz.), 7.47 (d, 1H, thiophene,
$\mathrm{J}=4.8 \mathrm{~Hz}), 7.61\left(\mathrm{~m}, 1 \mathrm{H}\right.$, thiophene), $7.84\left(\mathrm{~s}, 1 \mathrm{H}\right.$, thiophene). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}$, $52.16 ;$ H, 4.38 ; N, 20.27. Found C, 52.05 ; H, 4.37; N, 20.22.
3.2.39. 4-Amino-6-cyclohexyl-2-methylpyridazin-3(2H)-one (38b)

Yield $=58 \%$; oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30-1.43\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.68-1.92(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 2.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.91$ (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.21(\mathrm{~s}, 1 \mathrm{H}$, -CH pyridaz.). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 63.74 ; \mathrm{H}, 8.27 ; \mathrm{N}, 20.27$. Found C, 63.87; H, 8.29; N, 20.23.

3.2.40. 4-Amino-6-isopropyl-2-methyl-2H-pyridazin-3-one (38c)

Yield $=49 \%$; oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=7.2 \mathrm{~Hz}\right)$, $2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.96$ (exch br s, 2H, NH2 $), 6.21$ (s, 1H, -CH pyridaz.). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 57.46 ; \mathrm{H}, 7.84 ; \mathrm{N}, 25.13$. Found C, 57.58; $\mathrm{H}, 7.82$; N, 25.07.

3.2.41. 4-Amino-6-benzyl-2-methylpyridazin-3(2H)-one (38d)

Yield $=48 \% ; \mathrm{mp}=104-108{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.81$ (exch br s, 2H, NH_{2}), 6.07 (s, 1H, -CH pyridaz.), 7.22-7.35 (m, 5H, Ar). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 66.96 ; \mathrm{H}, 6.09 ; \mathrm{N}, 19.52$. Found C, 66.83; H, 5.50; N, 20.83.

3.2.42. General Procedure for Compounds 39a,b, 40 and 43

Compounds $39 a, b, 40$ and 43 were obtained starting from $38 b, c, 37 e$ and $42 a$, respectively, through the same procedure described for compound 25a-f.

3.2.43. (6-Cyclohexyl-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)urea (39a)

Yield $=66 \% ; \mathrm{mp}=251-254{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta 1.30-1.40(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.70-1.85\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.74$ (exch br s, $2 \mathrm{H}, \mathrm{CONH}_{2}$), 7.79 (s, 1H, -CH pyridaz.), 8.84 (exch br s, 1H, NHCO). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $57.58 ; \mathrm{H}, 7.25 ; \mathrm{N}, 22.38$. Found C, $57.41 ; \mathrm{H}, 7.23 ; \mathrm{N}, 22.43$.
3.2.44. (6-Isopropyl-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl)urea (39b)

Yield $=60 \% ; \mathrm{mp}=248-251^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 1.15(\mathrm{~d}$, $\left.6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~J}=6.8 \mathrm{~Hz}\right), 2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.74$ (exch br $\mathrm{s}, 2 \mathrm{H}, \mathrm{CONH}_{2}$), 7.81 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CH}$ pyridaz.), 8.85 (exch br s, 1H, CONH). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 51.42; H, 6.71; N, 26.65. Found C, 51.31; H, 6,70; N, 26.61.
3.2.45. [6-(2-Hydroxy-phenyl)-3-oxo-2,3-dihydro-pyridazin-4-yl]-urea (40)

Yield $=85 \% ; \mathrm{mp}>300^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 6.75$ (exch br s, $2 \mathrm{H}, \mathrm{CONH}_{2}$), 6.90-6.95 (m, 2H, Ar), $7.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.45\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}_{1}=1.2 \mathrm{~Hz}\right.$ and $\mathrm{J}_{2}=8.0 \mathrm{~Hz}$), 8.39 (s, 1H, -CH pyridaz.), 8.92 (exch br s, 1H, NHCO), 10.43 (exch br s, $1 \mathrm{H}, \mathrm{OH}$), 13.18 (exch br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 53.66; H, 4.09; N, 22.75. Found C, 53.51; H, 4,08; N, 22.81.
3.2.46. [6-(2-Hydroxyphenyl)-2-methyl-3-oxo-2,3-dihydropyridazin-4-yl]-urea (43)

Yield $=95 \% ; \mathrm{mp}=278-280^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 3.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 6.79$ (exch br s, 2H, NH2), 6.88-6.95 (m, 2H, Ar), 7.27 (t, 1H, Ar, J = 7.2 Hz), 7.44 (d, $1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=6.8 \mathrm{~Hz}$), 8.37 (s, 1H, -CH pyridaz.), 8.93 (exch br s, 1H, NHCO), 10.17 (exch br s, $1 \mathrm{H}, \mathrm{OH})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $55.38 ; \mathrm{H}, 4.65 ; \mathrm{N}, 21.53$. Found C, $55.49 ; \mathrm{H}, 4,65$; N, 21,49.
3.2.47. N-[4-(5-Amino-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-phenyl]-acetamide (44)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of $\mathbf{4 2 b}(0.93 \mathrm{mmol})$ in anhydrous THF $(2-3 \mathrm{~mL})$, 1.02 mmol of acetyl chloride was added and the mixture was stirred at room temperature
for 20 min . After dilution with cold water ($20-30 \mathrm{~mL}$), the precipitate was recovered by filtration under vacuum and purified by crystallization. Yield $=92 \% ; \mathrm{mp}=270-272{ }^{\circ} \mathrm{C}$ (Cyclohexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, 6.48 (exch br s, 2H, NH_{2}), 6.71 (s, 1H, -CH pyridaz.), $7.60-7.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 8.80$ (exch br s, $1 \mathrm{H}, \mathrm{NHCO}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 60.45 ; \mathrm{H}, 5.46 ; \mathrm{N}, 21.69$. Found C, 60.58; H, 5.45; N, 21.63.

3.2.48. 3,6-Dimethyl-4-pyridin-2-yl-isoxazolo [3,4-d]pyridazin-7(6H)-one (46)

To a cooled $\left(0-4{ }^{\circ} \mathrm{C}\right)$ solution of 45 [34] (0.38 mmol) in EtOH ($2-3 \mathrm{~mL}$), methylhydrazine $(1.30 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 90 min . The precipitate was recovered by filtration under vacuum to obtain the desired compound. Yield $=84 \% ; \mathrm{mp}=154-155{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 2.94$ (s, 3H, C3$\left.\mathrm{CH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.57(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=5.2 \mathrm{~Hz}), 7.95-8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 8.76$ (d, 1H, $\mathrm{Ar}, \mathrm{J}=5.2 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 59.50 ; \mathrm{H}, 4.16 ; \mathrm{N}, 23.13$. Found C, 59.66; H, 4.16; N, 23.20.
3.2.49. 5-Acetyl-4-amino-2-methyl-6-pyridin-2-yl-pyridazin-3(2H)-one (47)

A mixture of $46(0.82 \mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ and ammonium formate (4.9 mmol) in $\mathrm{EtOH}(5 \mathrm{~mL})$, was refluxed for 2 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4-5 \mathrm{~mL})$ and filtration of charcoal, evaporation of the solvent afforded the product 47. Yield $=65 \% ; \mathrm{mp}=201-203{ }^{\circ} \mathrm{C}$ $(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.23$ (exch br s, 2H, NH2), 7.44-7.50 (m, 1H, Ar), 7.89 (d, 1H, Ar, J = 7.2 Hz), 7.96 (t, 1H, Ar, $\mathrm{J}=7.2 \mathrm{~Hz}), 8.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=4.4 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 59.01 ; \mathrm{H}, 4.95 ; \mathrm{N}$, 22.94. Found C, $59.18 ;$ H, $4.96 ;$ N, 22.99 .

3.2.50. 4-Amino-2-methyl-6-pyridin-2-yl-pyridazin-3(2H)-one (48)

A suspension of $47(0.53 \mathrm{mmol})$ in 1 mL of $48 \% \mathrm{HBr}$ was stirred in a sealed/pressure vessel at $130^{\circ} \mathrm{C}$ for 3 h . After cooling ice-cold water was added and the precipitate was recovered by filtration under vacuum to obtain the desired product 48 . Yield $=65 \%$; $\mathrm{mp}=294-295{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.24(\mathrm{~s}, 1 \mathrm{H}$, -CH pyridaz.), 7.51 (m, 1H, Ar), $8.00(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.2 \mathrm{~Hz}), 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=8.0 \mathrm{~Hz}), 8.66$ (d, 1H, Ar, J = 4.4 Hz). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 59.40 ; \mathrm{H}, 4.98 ; \mathrm{N}, 27.71$. Found C, 59.51; H, 4.99; N, 27.75.

3.2.51. (2-Methyl-3-oxo-6-pyridin-2-yl-2,3-dihydropyridazin-4-yl)-urea (49)

Compound 49 was obtained starting from 48 , through the same procedure described for compounds 25a-f, 39a,b, 40 and 43. Yield $=15 \%$; $\mathrm{mp}>300^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.80$ (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.46 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}$), $7.92(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6 \mathrm{~Hz}), 8.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=4.8 \mathrm{~Hz}), 8.83(\mathrm{~s}$, $1 \mathrm{H},-\mathrm{CH}$ pyridaz.), 8.97 (exch br s, $1 \mathrm{H}, \mathrm{NHCO}$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 53.87; H, 4.52 ; N, 28.56. Found C, 53.78; H, 5.00; N, 27.71.

3.2.52. 2-Methyl-3-oxo-6-phenyl-2,3-dihydropyridazine-4-carboxamide (51)

Compound 51 was obtained starting from 50 [41], through the same procedure described for compounds 38a-d. The compound was purified by crystallization from diethyl ether. Yield $=55 \% ; \mathrm{mp}=215-217^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Light brown solid, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.99$ (s, 3H, CH3), 5.98 (exch br s, 1H, CONH 2), 7.43-7.51 (m, 3H, Ar), 7.84-7.88 (m, 2H, Ar), 8.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}$), 9.41 (exch br s, $1 \mathrm{H}, \mathrm{CONH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.58$, $160.21,145.33,134.16,132.64,130.02,129.23,129.04,126.15,41.53$. MS-ESI for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ (Calcd, 229.08), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 229.90, \mathrm{t}_{\mathrm{R}}=12.205$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 62.87$; H, 4.84; N, 18.33. Found C, 62.62; H, 4.82; N, 18.26.
3.2.53. 1-(6-Methyl-3-oxo-2-phenyl-2,3-dihydropyridazin-4-yl)urea (55)

Compound 55 was obtained strating from 54 [43], through the same procedure for the formation of urea described for compounds 25a-f, 39a,b, 40 and 43 . Yield $=95 \%$; $\mathrm{mp}=288-290^{\circ} \mathrm{C}(\mathrm{EtOH})$. White coloured solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 2.25(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.40-7.42 (m, 1H, Ar), 7.47 (d, 2H, J = $8.2 \mathrm{~Hz}, \mathrm{Ar}$), 7.50-7.54 (m, 2H, Ar), 7.78 (s, $1 \mathrm{H}, \mathrm{Ar}), 8.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCONH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 155.56,154.89,146.52$, 141.98, 138.04, 128.86, 128.12, 125.97, 109.55, 21.48. MS-ESI for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ (Calcd, 244.10), $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 244.88, \mathrm{t}_{\mathrm{R}}=10.100$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 59.01 ; \mathrm{H}, 4.95 ; \mathrm{N}, 22.94$. Found C, 59.25; H, 4.97; N, 23.03.
3.2.54. (E)-3-(2-(Dimethylamino)vinyl)-4-methyl-6-phenylisoxazolo [3,4-d]pyridazin-7(6H)-one (56)

A mixture of $52(1.04 \mathrm{mmol})$ [42] in 2.5 mL of DMF-DMA was hetaed at $90-100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling, ice/cold water was added (15 mL) and the precipitate obtained was recovered by filtration under vacuum to obtained the pure desired compound. Yield $=90 \%$; $\mathrm{mp}=224-226^{\circ} \mathrm{C}$ dec. (Cyclohexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.00-3.20$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{N}, \mathrm{J}=10.0 \mathrm{~Hz}), 7.30-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.45-7.50(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 7.59-7.64(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{H} \mathrm{CH}=\mathrm{CH}-\mathrm{N}+2 \mathrm{H} \mathrm{Ar})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 64.85; H, 5.44; N, 18.91. Found C, 65.10; H, 5.46; N, 18.98 .

3.2.55. 4-Amino-6-methyl-2-phenyl-5-(1H-pyrazol-5-yl)pyridazin-3(2H)-one (57)

A mixture of intermediate $56(0.81 \mathrm{mmol})$ and 1 mL of hydrazine hydrate (excess) in 2 mL of abs. EtOH was hetaed at $70^{\circ} \mathrm{C}$ for 10 h . After cooling, ice/cold water was added (15 mL). The precipitate obtained was recovered by filtration under vacum and purified by crystallization from ethanol. Yield $=65 \% ; \mathrm{mp}=119-121^{\circ} \mathrm{C}$. (Cyclohexane). Yellow coloured solid, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Methanol- $\left.\mathrm{d}_{4}\right) \delta 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 6.58 (exch br $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}), 7.52(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}), 7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}$, Ar), 7.83 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (100 MHz, Methanol-d ${ }_{4}$) δ 174.64, 147.92, 143.30, 129.88, 129.32, 127.14, 106.95, 24.30. MS-ESI for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ (Calcd, 267.11), $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 267.98$. $\mathrm{t}_{\mathrm{R}}=10.882$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 62.91 ; \mathrm{H}, 4.90 ; \mathrm{N}, 26.20$. Found C, 62.66; H, 4.88; N, 26.09.

3.3. Molecular Modeling and Biological Data

The 2D chemical structures were built using Marvin Sketch and all the structures were subjected to molecular mechanics energy minimization using the MMFF94 force field present in the same software [45]. The 3D geometry of all compounds was then optimized using the PM3 Hamiltonian [46], as implemented in MOPAC 2016 package assuming a pH of 7.0 [47]. Once built and optimized, all structures were used in the bioisostere replacement tool Spark 10.4.0. Five hundred compounds were generated for the substitution (50 best compounds reported in the Supplementary Materials). The isosteric replacement was performed using the same 178,558 fragments for each part; in particular, the fragments derive from ChEMBL and Zinc databases with a protocol already reported and validated $[27,48,49]$. Ligand growing experiments were performed in the selected pyridazinone structure using an already reported protocol [50]. Docking calculations were made using AutoDock with the default docking parameters and a validated protocol [51,52]. The setup was done with YASARA [47]. The Lamarckian genetic algorithm implemented in AutoDock was used for the calculations. The ligand-centered maps were generated by AutoGrid with a spacing of $0.375 \AA$ and dimensions that encompass all atoms extending $5 \AA$ from the surface of the ligand. All of the parameters were inserted at their default settings. The X-ray crystal structures of the co-crystal FABP4/(2-[(2-oxo-2-piperidin-1-ylethyl)sulfanyl]-6-(trifluoromethyl)pyrimidin-4-ol) (PDBid: 1TOU) was downloaded from the Protein Data Bank (www.rcsb.org accessed on 15 June 2022).

3.4. FABP Inhibitory Activity Assays

To analyze the inhibitory activity of FABP4 ligands, a displacement assay was utilized as described by the Cayman's instruction, FABP4 Inhibitor/Ligand Screening Assay Kit, Item 10,010,231 (see Supplementary Materials for additional details). The samples of compounds for activity determination were prepared as a stock solution (1 mM) in DMSO. On the day of activity assay, the compounds were all diluted in phosphate buffer solution (PBS, pH 7.4) to different concentrations ($100,50,10,5,2,1$, and $0 \mu \mathrm{M}$). Appropriate concentrations of DMSO in PBS were used as control. The detection reagent (FABP Assay Detection Reagent, Item 10010376) was used as provided by the Cayman's kit. The diluted Detection Reagent probe was mixed with FABP4 protein present in the kit and incubated for 10 min at room temperature. Compounds were then added and equilibrated for another 10 min . Lastly, the fluorescence signal was recorded at 470 nm (i.e., emission, with the excitation fixed at 370 nm) with a CytoFluor ${ }^{\circledR}$ Series 4000 Fluorescence Multi-Well Plate Reader. The IC_{50} was calculated as indicated in the kit booklet of FABP4 Inhibitor/Ligand Screening Assay Kit (Item No. 10010231) Cayman chemicals, as follows: 1) calculate the average fluorescence of each sample; 2) calculate the background corrected fluorescence (BCF) by subtracting the blank; 3) divide the BCF of each sample by the maximum BCF and multiply by 100% (this is the value in percent fluorescence units, i.e., \% FU); 4) plot the $\% \mathrm{FU}$ values against the concentration of inhibitor/ligand used; 5) find the concentration of inhibitor/ligand that corresponds to $50 \% \mathrm{FU}$, to determine IC_{50} values.

4. Conclusions

We have identified novel 4-amino and 4-ureido pyridazinone-based FABP4 inhibitors whose design was directed by computing assisted molecular design of bioisosteric-replacements/ scaffold hopping of the pyrimidine skeleton of the co-crystallyzed ligand 1TOU. Selected compounds have been synthesized and tested for their ability to inhibit FABP4. Among the new series, ten compounds were further evaluated on the basis of their inhibitory activity on FABP4 established via a single point displacement assay. In particular, 4b, $\mathbf{2 5 a}, \mathbf{3 0 b}$ and 22 exhibited high FABP4 inhibitory activity with IC_{50} in the low micromolar range. The results demonstrated that compound 25 a was the most potent analogue in terms of displacement of the arachidonic acid, with an IC_{50} value of $2.97 \mu \mathrm{M}$, which is lower than the IC_{50} of the positive control $(3.42 \mu \mathrm{M})$. Docking experiments, conducted with the most active compounds $\mathbf{4 b}, \mathbf{2 5 a}, \mathbf{3 0 b}, \mathbf{2 2}$, confirmed the ability of these molecules to interact with several amino acid residues present inside the FABP4 binding pocket, with the stronger interaction exhibited by compound 25a. This result is in agreement with the higher activity recorded in vitro for $\mathbf{2 5 a}$, in comparison to the other 4-amino and 4-ureido pyridazinone-based analogues developed in this study.

Supplementary Materials: The following supporting information can be downloaded at: https: / /www.mdpi.com/article/10.3390/ph15111335/s1, ${ }^{1} \mathrm{H}$ NMRs of selected compounds; ${ }^{13} \mathrm{C}$ NMRs of selected compounds; Mass spectra of selected compounds; HPLC/UV chromatograms of selected compounds; 50 'best-fit' compounds generated with scaffold hopping replacement; Info on the FABP4 inhibitor assay kit; Averaged data as Background corrected fluorescence for IC_{50} measured compounds.

Author Contributions: Conceptualization, L.C., G.F. and A.C.; methodology, L.C., G.F., D.M., R.R.d.O.S., F.M. and C.V.; software, G.F. and C.Z.; formal analysis, L.C., G.F., D.M., R.R.d.O.S., F.M., C.V. and A.C.; resources, G.F, C.Z., M.P.G., A.C.; data curation, L.C., G.F., D.M., R.R.d.O.S., F.M.; writing-original draft preparation, L.C., G.F.,C.Z. and D.M.; writing-review and editing, L.C., G.F., A.C.; supervision, M.P.G. and A.C.; project administration, M.P.G. and A.C.; funding acquisition, M.P.G. and A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research has received funding for a scholarship to R.R.d.O.S from the Coordination for the Improvement of Higher Education Personnel-Brazil (CAPES-PRINT, funding number 88887.570120/2020-00).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Data Availability Statement: Data is contained within the article or supplementary material.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Das, U.N. Essential Fatty acids—A review. Curr. Pharm. Biotechnol. 2006, 7, 467-482. [CrossRef] [PubMed]
2. Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008, 7, 489-503. [CrossRef] [PubMed]
3. Boden, G. Free fatty acids (FFA), a link between obesity and insulin resistance. Front. Biosci. 1998, 3, d169-d175. [CrossRef]
4. Hotamisligil, G.S.; Bernlohr, D.A. Metabolic functions of FABPs-mechanisms and therapeutic implications. Nat. Rev. Endocrinol. 2015, 11, 592-605. [CrossRef] [PubMed]
5. Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635-646. [CrossRef]
6. DeFronzo, R.A. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int. J. Clin. Pract. Suppl. 2004, 58, 9-21. [CrossRef]
7. Sheth, S.G.; Gordon, F.D.; Chopra, S. Nonalcoholic steatohepatitis. Ann. Intern. Med. 1997, 126, 137-145. [CrossRef]
8. Storch, J.; Thumser, A.E. The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta 2000, 1486, 28-44. [CrossRef]
9. Queipo-Ortuno, M.I.; Escote, X.; Ceperuelo-Mallafre, V.; Garrido-Sanchez, L.; Miranda, M.; Clemente-Postigo, M.; Perez-Perez, R.; Peral, B.; Cardona, F.; Fernandez-Real, J.M.; et al. FABP4 dynamics in obesity: Discrepancies in adipose tissue and liver expression regarding circulating plasma levels. PLoS ONE 2012, 7, e48605. [CrossRef]
10. Syamsunarno, M.R.; Iso, T.; Hanaoka, H.; Yamaguchi, A.; Obokata, M.; Koitabashi, N.; Goto, K.; Hishiki, T.; Nagahata, Y.; Matsui, H.; et al. A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting. PLoS ONE 2013, 8, e79386. [CrossRef]
11. Thompson, B.R.; Mazurkiewicz-Munoz, A.M.; Suttles, J.; Carter-Su, C.; Bernlohr, D.A. Interaction of Adipocyte Fatty Acid-binding Protein (AFABP) and JAK2. J. Biol. Chem. 2009, 284, 13473-13480. [CrossRef]
12. Adida, A.; Spener, F. Adipocyte-type fatty acid-binding protein as inter-compartmental shuttle for peroxisome proliferator activated receptor gamma agonists in cultured cell. BBA-Mol. Cell Biol. 2006, 1761, 172-181. [CrossRef]
13. Fu, Y.; Luo, L.; Luo, N.; Garvey, W.T. Lipid metabolism mediated by adipocyte lipid binding protein (ALBP/aP2) gene expression in human THP-1 macrophages. Atherosclerosis 2006, 188, 102-111. [CrossRef]
14. Floresta, G.; Pistarà, V.; Amata, E.; Dichiara, M.; Marrazzo, A.; Prezzavento, O.; Rescifina, A. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. A comprehensive systematic review. Eur. J. Med. Chem. 2017, 138, 854-873. [CrossRef]
15. Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498-1503. [CrossRef]
16. Tolle, A.; Suhail, S.; Jung, M.; Jung, K.; Stephan, C. Fatty acid binding proteins (FABPs) in prostate, bladder and kidney cancer cell lines and the use of IL-FABP as survival predictor in patients with renal cell carcinoma. BMC Cancer 2011, 11, 302. [CrossRef] [PubMed]
17. Uehara, H.; Takahashi, T.; Oha, M.; Ogawa, H.; Izumi, K. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression. Int. J. Cancer 2014, 135, 2558-2568. [CrossRef]
18. Yang, A.; Zhang, H.; Sun, Y.; Wang, Y.; Yang, X.; Yang, X.; Zhang, H.; Guo, W.; Zhu, G.; Tian, J.; et al. Modulation of FABP4 hypomethylation by DNMT1 and its inverse interaction with miR-148a/152 in the placenta of preeclamptic rats and HTR-8 cells. Placenta 2016, 46, 49-62. [CrossRef]
19. Tian, W.; Zhang, W.; Zhang, Y.; Zhu, T.; Hua, Y.; Li, H.; Zhang, Q.; Xia, M. FABP4 promotes invasion and metastasis of colon cancer by regulating fatty acid transport. Cancer Cell Int. 2020, 20, 512. [CrossRef] [PubMed]
20. Gharpure, K.M.; Pradeep, S.; Sans, M.; Rupaimoole, R.; Ivan, C.; Wu, S.Y.; Bayraktar, E.; Nagaraja, A.S.; Mangala, L.S.; Zhang, X.N.; et al. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat. Commun. 2018, 9. [CrossRef]
21. Li, H.Y.; Lv, B.B.; Bi, Y.H. FABP4 accelerates glioblastoma cell growth and metastasis through Wnt10b signalling. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7807-7818. [CrossRef] [PubMed]
22. Floresta, G.; Patamia, V.; Zagni, C.; Rescifina, A. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. An update from 2017 to early 2022. Eur. J. Med. Chem. 2022, 240, 114604. [CrossRef] [PubMed]
23. Wang, Y.; Law, W.K.; Hu, J.S.; Lin, H.Q.; Ip, T.M.; Wan, D.C. Discovery of FDA-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening. J. Chem. Inf. Model 2014, 54, 3046-3050. [CrossRef]
24. Zhou, Y.; Nie, T.; Zhang, Y.; Song, M.; Li, K.; Ding, M.; Ding, K.; Wu, D.; Xu, Y. The discovery of novel and selective fatty acid binding protein 4 inhibitors by virtual screening and biological evaluation. Bioorg. Med. Chem. 2016, 24, 4310-4317. [CrossRef]
25. Floresta, G.; Cilibrizzi, A.; Abbate, V.; Spampinato, A.; Zagni, C.; Rescifina, A. FABP4 inhibitors 3D-QSAR model and isosteric replacement of BMS309403 datasets. Data Brief 2019, 22, 471-483. [CrossRef]
26. Floresta, G.; Gentile, D.; Perrini, G.; Patamia, V.; Rescifina, A. Computational Tools in the Discovery of FABP4 Ligands: A Statistical and Molecular Modeling Approach. Mar. Drugs 2019, 17, 624. [CrossRef]
27. Floresta, G.; Cilibrizzi, A.; Abbate, V.; Spampinato, A.; Zagni, C.; Rescifina, A. 3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation. Bioorg. Chem. 2019, 84, 276-284. [CrossRef]
28. Crocetti, L.; Floresta, G.; Nazir, S.; Vergelli, C.; Bhogal, A.; Biancalani, C.; Cesari, N.; Giovannoni, M.P.; Cilibrizzi, A. Synthesis and inverse virtual screening of new bi-cyclic structures towards cancer-relevant cellular targets. Struct Chem. 2022, 33, 769-793. [CrossRef]
29. Floresta, G.; Crocetti, L.; Giovannoni, M.P.; Biagini, P.; Cilibrizzi, A. Repurposing strategies on pyridazinone-based series by pharmacophore- and structure-driven screening. J. Enzime Inhib. Med. Chem. 2020, 35, 1137-1144. [CrossRef]
30. Giovannoni, M.P.; Vergelli, C.; Cilibrizzi, A.; Crocetti, L.; Biancalani, C.; Graziano, A.; Dal Piaz, V.; Loza, M.I.; Cadavid, M.I.; Díaz, J.L.; et al. Pyrazolo[$\left.1^{\prime}, 5^{\prime}: 1,6\right]$ pyrimido[4,5-d]pyridazin-4(3H)-ones as selective human A1 adenosine receptor ligands. Bioorg. Med. Chem. 2010, 18, 7890-7899. [CrossRef]
31. Biagini, P.; Biancalani, C.; Graziano, A.; Cesaria, N.; Giovannoni, M.P.; Cilibrizzi, A.; Dal Piaz, V.; Vergelli, C.; Crocetti, L.; Delcanale, M.; et al. Functionalized pyrazoles and pyrazolo[3,4-d]pyridazinones: Synthesis and evaluation of their phosphodiesterase 4 inhibitory activity. Bioorg. Med. Chem. 2010, 18, 3506-3517. [CrossRef] [PubMed]
32. Giovannoni, M.P.; Ciciani, G.; Cilibrizzi, A.; Crocetti, L.; Daniele, S.; Di Cesare Mannelli, L.; Ghelardini, C.; Giacomelli, C.; Guerrini, G.; Martini, C.; et al. Further studies on pyrazolo[$\left.1^{\prime}, 5^{\prime}: 1,6\right]$ pyrimido[4,5-d]pyridazin-4(3H)-ones as potent and selective human A1 adenosine receptor antagonists. Eur. J. Med. Chem. 2015, 89, 32-41. [CrossRef] [PubMed]
33. Cheeseright, T.; Mackey, M.; Rose, S.; Vinter, A. Molecular field extrema as descriptors of biological activity: Definition and validation. J. Chem. Inf. Model 2006, 46, 665-676. [CrossRef] [PubMed]
34. Dal Piaz, V.; Aguilar, I.N.; Buil Albero, M.A.; Garrido, R.Y.; Giovannoni, M.P.; Gracia, F.J.; Lumeras, A.W.; Vergelli, C. Preparation of pyridazin-3(2H)-ones and their use as PDE4 inhibitors. PCT WO2005049581A120050602, 2 June 2005.
35. Aguilar Izquierdo, N.; Carrascal Riera, M.; Dal Piaz, V.; Gracia Ferrer, J.; Lumeras Amador, W.; Masdeu Margalef, M.; Warrellow, G. Preparation of pyridazin-3(2H)-one derivatives as PDE4 inhibitors for the treatment of pathological diseases. PCT WO2005123693A120051229, 29 December 2005.
36. Biancalani, C.; Giovannoni, M.P.; Pieretti, S.; Cesari, N.; Graziano, A.; Vergelli, C.; Cilibrizzi, A.; Di Gianuario, A.; Colucci, M.; Mangano, G.; et al. Further Studies on Arylpiperazinyl Alkyl Pyridazinones: Discovery of an Exceptionally Potent, Orally Active, Antinociceptive Agent in Thermally Induced Pain. J. Med. Chem. 2009, 52, 7397-7409. [CrossRef]
37. Sircar, I. Synthesis of 4-amino-6-phenyl-3(2H)-pyridazinones: A general procedure. J. Heterocycl. Chem. 1983, 20, 1473-1476. [CrossRef]
38. Coates, W.J.; McKillop, A. Preparation of 4 -amino-3(2H)-pyridazinones by direct amination of 3(2H)-pyridazinones with hydrazine. Heterocycles 1989, 29, 1077-1090. [CrossRef]
39. Hubbard, R.D.; Wang, L.; Park, C.H.; Sun, C.; Mcdaniel, K.F.; Pratt, J.K.; Soltwedel, T.N.; Wendt, M.D.; Holms, J.H.; Liu, D. Preparation of pyridinone and pyridazinone derivatives for the treatment of inflammatory diseases, diabetes, obesity, cancer, and AIDS. U.S. Patent US 20130331382A120131212, 12 December 2013.
40. Vergelli, C.; Schepetkin, I.A.; Ciciani, G.; Cilibrizzi, A.; Crocetti, L.; Giovannoni, M.P.; Guerrini, G.; Iacovone, A.; Kirpotina, L.N.; Khlebnikov, A.I.; et al. 2-Arylacetamido-4-phenylamino-5-substituted pyridazinones as formyl peptide receptors agonists. Bioorg. Med. Chem. 2016, 24, 2530-2543. [CrossRef] [PubMed]
41. Wermuth, C.G.; Schlewer, G.; Bourguignon, J.J.; Maghioros, G.; Bouchet, M.J.; Moire, C.; Kan, J.P.; Worms, P.; Biziere, K. 3Aminopyridazine derivatives with atypical antidepressant, serotonergic and dopaminergic activities. J. Med. Chem. 1989, 32, 528-537. [CrossRef]
42. Vergelli, C.; Giovannoni, M.P.; Pieretti, S.; Giannuario, A.D.; Piaz, V.D.; Biagini, P.; Biancalani, C.; Graziano, A.; Cesari, N. 4-Amino-5-vinyl-3(2H)-pyridazinones and analogues as potent antinociceptive agents: Synthesis, SARs, and preliminary studies on the mechanism of action. Bioorg. Med. Chem. 2007, 15, 5563-5575. [CrossRef]
43. Cilibrizzi, A.; Quinn, M.T.; Kirpotina, L.N.; Schepetkin, I.A.; Holderness, J.; Ye, R.D.; Rabiet, M.J.; Biancalani, C.; Cesari, N.; Graziano, A.; et al. 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones: A novel class of small-molecule agonists for formyl peptide receptors. J. Med. Chem. 2009, 52, 5044-5057. [CrossRef]
44. Memdouh, S.; Gavrilović, I.; Ng, K.; Cowan, D.; Abbate, V. Advances in the detection of growth hormone releasing hormone synthetic analogs. Drug Test. Anal. 2021, 13, 1871-1887. [CrossRef] [PubMed]
45. Cheng, A.; Best, S.A.; Merz, K.M., Jr.; Reynolds, C.H. GB/SA water model for the Merck molecular force field (MMFF). J. Mol. Graph. Model 2000, 18, 273-282. [CrossRef]
46. Stewart, J.J. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model 2004, 10, 155-164. [CrossRef] [PubMed]
47. Stewart, J.J. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 1990, 4, 1-105. [CrossRef]
48. Floresta, G.; Pittalà, V.; Sorrenti, V.; Romeo, G.; Salerno, L.; Rescifina, A. Development of new HO-1 inhibitors by a thorough scaffold-hopping analysis. Bioorg. Chem. 2018, 81, 334-339. [CrossRef]
49. Floresta, G.; Amata, E.; Dichiara, M.; Marrazzo, A.; Salerno, L.; Romeo, G.; Prezzavento, O.; Pittalà, V.; Rescifina, A. Identification of Potentially Potent Heme Oxygenase 1 Inhibitors through 3D-QSAR Coupled to Scaffold-Hopping Analysis. ChemMedChem 2018, 13, 1336-1342. [CrossRef]
50. Floresta, G.; Fallica, A.N.; Salerno, L.; Sorrenti, V.; Pittalà, V.; Rescifina, A. Growing the molecular architecture of imidazole-like ligands in HO-1 complexes. Bioorg. Chem. 2021, 117, 105428. [CrossRef]
51. Varrica, M.G.; Zagni, C.; Mineo, P.G.; Floresta, G.; Monciino, G.; Pistarà, V.; Abbadessa, A.; Nicosia, A.; Castilho, R.M.; Amata, E.; et al. DNA intercalators based on (1,10-phenanthrolin-2-yl)isoxazolidin-5-yl core with better growth inhibition and selectivity than cisplatin upon head and neck squamous cells carcinoma. Eur. J. Med. Chem. 2018, 143, 583-590. [CrossRef]
52. Zagni, C.; Citarella, A.; Oussama, M.; Rescifina, A.; Maugeri, A.; Navarra, M.; Scala, A.; Piperno, A.; Micale, N. Hydroxamic Acid-Based Histone Deacetylase (HDAC) Inhibitors Bearing a Pyrazole Scaffold and a Cinnamoyl Linker. Int. J. Mol. Sci. 2019, 20, 945. [CrossRef]
