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Synopsis	

Relapsing	fever	borreliae	were	notorious	and	feared	infectious	agents	that	earned	their	

place	in	history	through	their	devastating	impact	as	causes	of	both	epidemic	and	

endemic	infection.	More	recently	they	are	considered	more	as	an	oddity	and	their	

burden	of	infection	is	largely	overshadowed	by	other	infections	such	as	malaria,	which	

presents	in	a	similar	clinical	way.	Despite	this,	they	remain	the	most	common	bacterial	

infection	in	some	developing	countries.	Transmitted	by	soft	ticks	or	lice,	these	

fascinating	spirochaetes	have	evolved	a	myriad	of	mechanisms	to	survive	within	their	

diverse	environments.	
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Key	Points		

 Most	relapsing	fever	borreliae	are	transmitted	by	soft	ticks	belonging	to	the	

Argasidae	genera.		These	are	rapid‐feeding	ticks	and	their	bites	may	go	

unnoticed.	

 The	epidemic	member	of	this	group,	Borrelia	recurrentis,	is	transmitted	by	the	

human	clothing	louse,	Pediculus	humanus.			

 Most	relapsing	fever	Borrelia	are	zoonotic,	with	the	exception	of	Borrelia	duttonii	

and	Borrelia	recurrentis.		

 Consider	a	relapsing	fever	borreliosis	among	individuals	with	a	relapsing	febrile	

illness	and	travel	history	to	an	endemic	region,	particularly	when	malaria	is	the	

differential	the	diagnosis.	

 Conventional	diagnostic	microbiological	approaches	are	unlikely	to	detect	

relapsing	fever	spirochaetes.	

 Most	infections	are	successfully	managed	with	penicillin,	tetracycline	or	

doxycycline.		The	Jarisch‐Herxheimer	reaction	can	complicate	treatment.	

	
Self‐Test	Questions	
	
What	is	the	time	required	for	agasid	ticks	to	feed	to	repletion?	

a) 5	minutes	to	2	hours	
b) >48	hours	
c) 1‐10	seconds	
d) >7	days	

Which	of	the	following	statements	regarding	relapsing	fever	borreliosis	is	
incorrect?	

a) These	infections	are	acquired	from	arthropods	including	lice	and	ticks	
b) This	infection	is	a	strictly	tropical	disease	
c) Reinfection	can	occur	
d) Infection	can	be	treated	with	antibiotics	such	as	penicillin	or	doxycycline	

Which	of	the	following	relapsing	fever	borreliae	are	not	considered	to	be	
zoonotic?	

a) Borrelia	persica	and	Borrelia	microti	
b) Borrelia	crocidurae	and	Borrelia	hispanica	
c) Borrelia	hermsii	and	Borrelia	turicatae	
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d) Borrelia	recurrentis	and	Borrelia	duttonii	
Borrelia	recurrentis	is	a	believed	to	have	evolved	from	which	of	the	tick‐borne	
relapsing	fever?	

a) Borrelia	hermsii	
b) Borrelia	duttonii	
c) Borrelia	persica	
d) Borrelia	hispanica	

Which	vertebrate	species	is	believed	to	have	an	important	role	in	the	ecology	of	
relapsing	fever	in	California?	

a) Flying	squirrel	
b) Rat	
c) Bats	
d) Chipmunk	
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Historical	Background	

The	term	‘relapsing	fever’	was	first	coined	following	an	outbreak	of	relapsing	

febrile	illness	in	Edinburgh,	UK.	Whilst	Otto	Obermeier	revealed	the	infectious	aetiology	

of	relapsing	fever	in1868,	fulfilment	of	Koch’s	postulates	proved	challenging	due	to	the	

predilection	of	this	spirochaete	for	its	human	host	1.		This	limitation	prevented	

publication	of	his	findings	until	1873,	when	sufficient	additional	evidence	was	

generated	to	substantiate	a	causative	role	for	the	spirochaete.	Mackie	subsequently	

disclosed	the	role	of	the	human	clothing	louse,	Pediculus	humanus,	as	the	vector	

responsible	for	transmission	of	this	infection	in	1907	2.	During	these	times,	epidemic	

louse‐borne	relapsing	fever	(LBRF)	resulted	in	substantial	mortality,	particularly	during	

situations	of	overcrowding	and	poverty	that	favoured	rapid	spread	of	the	organism,	

facilitated	primarily	by	the	clothing	louse	vector.	Massive	outbreaks	resulted	in	millions	

of	cases	throughout	Africa	and	globally	during	World	Wars	I	and	II	3.	

Livingstone	described	another	variant	of	relapsing	fever	in	1857,	this	time	

associated	with	soft	tick	vectors	4.	Both	Ross	and	Milne	and	Dutton	and	Todd	

independently	established	the	role	of	ticks	in	transmitting	this	form	of	relapsing	fever	in	

1904,	with	Dutton	and	Todd	both	becoming	accidentally	infected	themselves	whilst	

undertaking	their	research	5,6.	Dutton	kept	a	temperature	chart	of	his	relapsing	fever	

until	he	succumbed	to	the	illness,	with	the	infectious	agent	being	named	after	him	to	

reflect	his	contribution	to	our	understanding	of	this	infection.	Interestingly,	these	

researchers	drew	the	parallel	between	this	agent	and	its	louse‐borne	variant	and	their	

observations	were	recently	substantiated	by	full	genomic	sequencing	of	both	infectious	

organisms.	

Subsequently,	other	Ornithodoros	soft	ticks	have	been	identified	as	vectors	for	

different	species	of	relapsing	fever	borreliae.	The	majority	of	these	species	appear	to	
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have	adapted	to	a	particular	tick	species,	and	consequently,	many	are	named	after	their	

tick	vectors	(Table	1).		

Classification	

Classification	of	members	within	the	borreliae	was	initially	based	upon	the	type	

of	tick	species	that	serves	as	their	vectors,	with	the	Borrelia	burgdorferi	sensu	lato	

complex	transmitted	by	Ixodes	species	ticks	(hard	ticks),	whilst	the	relapsing	fever	

borreliae	are	transmitted	by	ticks	belonging	to	the	Argasidae	genera	(soft	ticks;	Figure	

1).	More	recently,	this	rather	simplistic	division	has	been	challenged	with	the	finding	

that	Borrelia	miyamotoi	(see	Chapter	10)	and	Borrelia	lonestari	cluster	phylogenetically	

amongst	the	relapsing	fever	Borrelia,	yet	are	transmitted	by	hard	ticks.	Currently,	there	

are	23	validated	relapsing	fever	Borrelia	species,	though	others	are	awaiting	sufficient	

data	to	achieve	such	status,	and	many	of	these	agents	show	a	distinct	preference	for	

transmission	by	a	specific	tick	vector	species.	Borrelia	recurrentis	is	the	notable	

exception	being	transmitted	by	clothing	lice	(P.	humanus).	Table	1	lists	the	majority	of	

currently	accepted	species,	though	several	novel	species	have	recently	been	described,	

including	“B.	mvumii”	in	ticks	from	Tanzania	7,	B.	microti	and	other	species	from	Iran	8,9,	

B.	turicatae‐like	Borrelia	in	bat	ticks	from	the	USA	10,	and	as	of	yet	unnamed	species	

from	penguins	in	South	Africa	11,	though	the	species	status	and	potential	virulence	of	

this	agent	for	humans	remains	to	be	established.		

The	taxonomic	position	of	relapsing	fever	spirochaetes	is	a	matter	of	

controversy.	Application	of	discriminatory	typing	tools	(see	section	on	diagnosis	and	

typing)	has	revealed	clades	within	species	such	as	B.	hermsii.	Others	have	reported	

different	sub‐populations	within	B.	duttonii,	with	all	of	the	cultivable	isolates	falling	into	

just	one	of	four	sub‐types	12.	Conversely,	16S	rRNA	gene	sequencing	has	underscored	

the	similarity	between	some	species	13.	These	similarities	have	been	corroborated	by	
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whole	genomic	sequencing,	which	suggests	that	the	LBRF,	B.	recurrentis,	actually	

represents	a	degraded	sub‐set	of	B.	duttonii	14.	Whilst	sequencing	of	the	closely	related	

zoonotic	B.	crocidurae	that	predominates	in	west	Africa,	has	further	highlighted	how	

conserved	these	three	African	species	are,	despite	their	profound	differences	in	host	

preferences,	severity	and	arthropod	vectors	15.	Based	upon	their	conserved	genomic	

make‐up,	yet	diverse	ecology,	the	above	three	relapsing	fever	Borrelia	may	best	be	

considered	as	ecotypes	of	a	single	species.	

	

Microbiology	

Members	of	this	group	have	a	characteristic	Gram‐negative	helical	structure	with	

3	to10	coils	and	a	length	of	10‐30µm	and	a	width	of	0.2‐0.5µm	16.	Typical	of	this	genus,	

they	have	up	to	30	flagellae	residing	within	the	periplasmic	space	between	the	outer	

membrane	and	protoplasmic	cylinder.	These	endow	a	rapid	gyrating	motility	to	these	

spirochaetes	that	can	be	seen	using	dark‐field	or	phase	microscopy	of	freshly	collected	

specimens	(see	diagnostic	methods	below).		

Porin	proteins	are	found	spanning	the	outer	cell	membrane	and	serve	as	a	

conduit	for	diffusion	of	low‐molecular	weight	compounds.	The	first	of	these	described	

among	relapsing	fever	spirochaetes	was	p66	17.	Others	have	subsequently	been	

described,	such	as	Oms38	which	appeared	to	be	conserved	between	B.	recurrentis,	B.	

duttonii,	B.	hermsii	and	B.	turicatae	18	that	shows	homology	with	the	DipA	porin	found	

among	Lyme‐associated	borreliae	19.	Elucidation	of	such	features	will	provide	insights	

into	the	physiological	characteristics	of	these	spirochaetes	and	might	additionally	

reveal	potential	targets	for	vaccine	development.	

The	outer	membrane	lipid	bilayer	contains	both	lipidated	and	non‐lipidated	

trans‐membrane	proteins.	Much	attention	has	been	focussed	upon	the	relatively	
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abundant	variable	membrane	proteins	(Vmp)	as	these	appear	to	be	pivotal	for	rapidly	

switching	between	and	surviving	within	the	diverse	environments	of	the	arthropod	

vector	and	the	mammalian	host	(see	section	on	pathogenesis	below).	Furthermore,	

these	highly	antigenic	proteins	are	thought	to	contribute	to	the	rapid	switching	from	

arthropod	to	host	environment,	binding	of	host	factors,	adhesion	and	even	tissue	

tropism	20,21.	Vmps	have	been	extensively	studied	as	they	are	subject	to	antigenic	

variation	with	an	estimated	recombination	frequency	of	10‐4	to	10‐3	per	cell	

generations,	providing	a	mechanism	for	evasion	of	the	vertebrate	host	immune	system.	

Such	persistence	mechanisms	are	likely	to	maximise	the	chances	of	transmission	to	

uninfected	arthropod	vectors	from	infected	vertebrates,	thus	providing	a	vital	means	of	

sustainability.		They	can	generally	be	divided	into	one	of	two	groups,	small	Vmps	(also	

called	vsp)	with	molecular	weight	ranging	from	20‐24kDa	or	large	Vmps	(also	called	

vlp)	that	typically	range	from	35‐45kDa	22.	The	small	Vmps	have	been	likened	to	OspC	

of	the	Lyme	disease	spirochaete,	Borrelia	burgdorferi.	This	has	a	key	role	in	the	

transmission	from	arthropod	to	vertebrate	host	and	establishment	of	early	infection.		

Furthermore,	expression	of	different	small	Vmps	within	B.	turicatae	has	been	

demonstrated	to	result	in	either	central	nervous	infection	(vspA)	or	blood‐borne	

disease	(vspB)	with	associated	arthritis	and	myocarditis	in	a	mouse	infection	model	

(see	pathogenesis	section	below).	Expression	of	one	small	Vmp	(vtp	or	vsp33)	has	been	

proposed	as	a	tick	adapted	variant.	The	large	Vmps	can	be	further	sub‐divided	into	one	

of	four	groups	(α,	β,	γ,	δ)	base	upon	their	sequence	homologies.	In	the	author’s	personal	

experience,	human	clinical	isolates	of	B.	recurrentis	and	B.	duttonii	expressed	either	

small	or	large	Vmps	with	no	evidence	of	correlation.	

The	physiological	requirements	of	these	microbes	is	poorly	understood,	however	

their	fastidious	nature	probably	arises	from	their	limited	metabolic	capabilities.	This	
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restricted	biosynthetic	repertoire	necessitates	the	supply	of	amino	acids,	fatty	acids,	

nucleotides	and	enzyme	co‐factors	from	their	surrounding	environment,	whether	this	is	

in	their	arthropod	vector,	the	mammalian	host	or	complex	growth	medium	(see	section	

on	diagnostic	methods).	Whilst	within	the	vertebrate	host,	the	phenomenon	of	

“rosetting”	has	been	noted	and	it	is	hypothesised	that	the	borreliae	are	“grazing”	to	

harvest	essential	nutrients	such	as	purines	from	red	blood	cells	23,24.	Indeed,	unlike	B.	

burgdorferi,	the	relapsing	fever	spirochaetes	contains	a	full	set	of	purine	salvage	genes	

and	demonstrate	efficient	acquisition	and	incorporation	of	hypoxanthine,	the	purine	

catabolic	produce	found	within	red	blood	cells,	that	might	explain	in	part	why	these	

borreliae	achieve	higher	blood	densities	compared	to	the	Lyme	disease	spirochaetes.	

The	genomic	organisation	of	these	spirochaetes	differs	from	conventional	

bacterial	dogma,	as	these	microbes	containing	linear	chromosomes	with	covalently	

closed	telomeres	and	a	combination	of	both	circular	and	linear	plasmids	that	comprise	

approximately	10%	of	the	full	genetic	complement	of	these	microorganisms	25.	The	

majority	of	essential	“house‐keeping”	genes	reside	on	the	chromosome,	whilst	the	

lipoprotein	genes	tend	to	locate	to	the	plasmids	26.		

Whole	genome	sequencing	has	been	undertaken	for	six	relapsing	fever	

spirochaetes	including	B.	hermsii,	B.	parkeri,	B.	turicatae,	B.	crocidurae,	B.	duttonii	and	B.	

recurrentis	(for	further	information	see	“BorreliaBase”	27)	and	will	provide	a	valuable	

resource	to	gain	greater	insight	into	the	underpinning	microbiological	features	of	these	

organisms	28,29.	A	striking	observation	arising	from	the	project	thus	far	has	been	the	lack	

of	any	unique	virulence	features	for	B.	recurrentis	when	compared	to	the	closely	related	

B.	duttonii.	As	indicated	above,	this	has	led	to	the	conclusion	that	rather	than	being	a	

distinctive	species,	B.	recurrentis	is	instead	a	degraded	subspecies	of	B.	duttonii	that	has	
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become	louse‐transmitted,	though	taxonomically	it	is	still	recognised	as	a	separate	

species.	

	

Ecology	and	transmission	

Most	of	the	relapsing	fever	spirochaetes	are	zoonoses	with	vertebrate	reservoirs	

(Table	1).	In	the	majority	of	cases,	these	reservoirs	are	rodents,	however	bats,	birds	and	

reptiles	may	also	play	a	role	in	the	environmental	maintenance	of	these	organisms	30‐33.	

Chipmunks	have	for	example	been	noted	as	a	significant	reservoir	species	for	B.	hermsii	

in	the	Sierra	Nevada	mountains	of	California.	Notably,	for	B.	recurrentis	and	B.	duttonii	

humans	are	the	exclusive	reservoir.	Many	consider	the	tick	vector	to	also	serve	as	a	

reservoir	of	infection	for	tick	borne	relapsing	fever	(TBRF).		This	is	facilitated	by	

transstadial,	and	for	some	species,	transovarial	transmission	of	the	spirochaete	

between	generations.		Additionally,	these	ticks	have	an	impressive	longevity	during	

periods	of	starvation,	allowing	them	to	survive	for	many	years	while	harbouring	the	

infectious	spirochaetes.	The	typical	argasid	tick	life	cycle	is	depicted	in	Figure	2.	

Some	species	that	fall	within	the	relapsing	fever	group	have	not	been	associated	

with	human	infection,	but	instead	cause	febrile	infection	among	food‐producing	

livestock.	These	zoonotic	agents	include	B.	anserina,	the	cause	of	avian	borreliosis	

transmitted	by	Argas	persicus	ticks,	and	B.	theileri,	the	agent	of	bovine	borreliosis	

transmitted	by	Rhipicephalus	tick	species,	B.	coriaceae	transmitted	to	deer	and	cattle	by	

O.	hermsi	ticks	among	others	34‐37.	It	is	highly	probable	that	other	livestock‐related	

species	exist	37,38	and	that	a	plethora	of	other	relapsing	fever‐related	Borrelia	persist	

amongst	other	as	of	yet	undisclosed	wildlife	reservoirs	11,39‐41.	Study	of	these	borrelial	

species	remains	largely	neglected.	



	 11

Undoubtedly,	poverty	is	a	main	contributory	factor	associated	with	increased	

risk	for	acquisition	of	a	relapsing	fever	infection.	Figures	3	and	4	portray	some	of	these	

risk	factors,	including	poor	housing	conditions	and	street	beggars,	which	are	at	

particular	risk	for	relapsing	fever.	Both	LBRF	and	TBRF	have	their	greatest	burden	

among	those	living	in	extreme	poverty,	who	are	often	unaware	of	or	unable	to	

undertake	the	appropriate	precautionary	measures	to	reduce	the	risk	of	infection	3.	

Those	living	in	close	proximity	to	ticks	or	vertebrate	reservoirs	are	at	additional	risk	for	

acquiring	TBRF	9,42.	With	increasing	industrialisation,	urban	homeless	populations	have	

seen	an	upsurge	in	clothing	lice	(Figures	5	and	6),	which	could	provide	new	clusters	of	

disease	if	infected	lice	are	introduced	into	permissive	regions	43.	Another	intriguing	

possibility	for	transmission	and	spread	beyond	the	confines	of	clothing	lice	arises	from	

the	similarity	between	head	and	clothing	lice	exemplified	by	the	overlapping	phylogeny	

of	clothing	lice	with	cytochrome	B	clade	A	of	head	lice,	“Pediculus	humanus	var	capitis”	

44,45.	Specifically,	this	raises	the	question	as	to	whether	head	lice	could	potentially	serve	

as	alternative	vectors	for	B.	recurrentis?	Individuals	co‐infested	with	both	types	of	lice	

have	revealed	the	presence	of	B.	recurrentis	in	head	lice,	however	role	of	head	lice	in	

transmission	requires	further	investigation	46.	This	is	further	supported	by	the	finding	

of	other	clothing	louse‐borne	infections	(Bartonella	quintana)	in	head	lice	from	

individuals	with	no	evidence	of	co‐infestation	with	both	ecotypes	of	P.	humanus	47‐49.	

Occupational	contact	with	tick‐infested	environments	has	resulted	in	clusters	of	

TBRF	infection.		For	example,	among	military	personnel	in	Israel	who	used	caves	during	

training	activities,	approximately	6.4	cases	of	TBRF	occurred	per	100,000	individuals	50.	

Similarly,	environmental	conservation	workers	in	endemic	areas	are	also	at	risk	of	

infection.	Imported	cases	have	been	encountered	through	migration	and	tourism	where	

clinical	suspicion	in	non‐endemic	regions	may	not	be	as	heightened	to	“exotic”	
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infections	51‐54.	Several	clusters	and	sporadic	infections	have	also	been	traced	back	to	

vacation	destinations	in	rural	regions	where	intermittently	used	accommodations	

provide	refuge	for	reservoir	hosts	and	their	associated	tick	vectors	55.	

	

Epidemiology	

The	relapsing	fever	spirochaetes	have	historically	been	divided	into	Old	and	New	

World	species,	however	with	improving	phylogenetic	tools,	this	division	now	appears	

rather	artificial.	The	prevalence	of	tick	borne	strains	does	show	correlation	with	clearly	

demarked	regions,	as	is	particularly	evident	for	African	TBRF,	and	probably	resulted	

from	climatic	conditions	conducive	for	the	specific	tick	vector	56.	This	has	not	been	the	

case	for	the	louse‐borne	B.	recurrentis,	which	was	formerly	worldwide,	but	is	now	

restricted	to	areas	where	clothing	lice	persist	3,57.		

What	is	becoming	increasingly	apparent,	however,	is	the	burden	of	relapsing	

fever	infections	occurring	in	endemic	regions,	many	of	which	go	undiagnosed	or	

misdiagnosed	as	malaria	4,58‐60.	Recent	reports	from	Senegal	have	suggested	that	

relapsing	fever	borreliae	are	the	cause	of	approximately	13%	of	fevers	presenting	at	

local	dispensaries,	representing	an	alarming	11	to	25	cases	per	100	person	years	61.	

Studies	of	febrile	patients	in	Morocco	have	suggested	that	20.5%	were	due	to	TBRF	62.	

Although	not	at	such	high	levels,	TBRF	cases	are	more	frequently	being	detected	in	the	

USA	63,64.	Given	such	data,	despite	consideration	of	relapsing	fever	is	a	neglected	

disease,	it	certainly	should	not	be	forgotten.	

The	epidemiology	of	LBRF	has	changed	drastically	over	recent	years,	with	the	

demise	of	this	once	worldwide	infection	correlated	directly	with	the	reduced	level	of	

infestation	with	clothing	lice	65.	LBRF	remains	endemic	in	areas	of	extreme	poverty	such	

as	in	Ethiopia,	at	times	spreading	into	adjacent	regions,	such	as	Sudan.		
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Pathogenesis	

The	pathogenesis	of	relapsing	fever	spirochaetes	is	poorly	understood,	though	

the	release	of	host	cytokines	is	thought	to	play	a	major	role.	Production	of	IL‐10	by	the	

host	can	have	a	huge	influence	on	clinical	outcome	demonstrating	protection	against	

microvascular	injury	and	apoptosis	of	innate	immune	mediators,	but	conversely	can	

slow	antibody‐mediated	clearance	of	spirochaetes	66.	The	borreliae,	including	those	

associated	with	relapsing	fever,	are	relatively	neurotropic	and	their	sequestration	

within	the	central	nervous	system	provides	an	ideal	refuge	from	which	new	antigenic	

variants	can	reseed	the	circulatory	system	67.	Animal	experimental	studies	reported	

survival	of	borreliae	months	to	years	post‐infection	underscoring	the	ability	of	these	

spirochaetes	to	reside	within	the	brain.	

Finally,	the	expressed	surface	Vmps	play	a	pivotal	role	in	pathogenesis.	Some	

animal	studies	have	shown	correlation	of	particular	clinical	manifestations,	for	example	

high	blood	counts	versus	neurological	infection	with	the	expression	of	different	Vmps	of	

the	same	B.	turicatae	relapsing	fever	spirochaete	(see	microbiology	section)	68‐71.		Vmp	

proteins	play	a	major	role	in	the	ability	of	these	spirochaetes	to	maintain	high	blood	

densities	in	their	vertebrate	host	sometimes	reaching	levels	of	107	organisms	per	ml	of	

blood.	This	is	augmented	through	a	gene	conversion	mechanism	of	antigenic	variation	

that	generate	serotype	switching	and	thus	an	intricate	means	of	immunological	evasion	

72.	This	is	further	aided	by	the	ability	of	borreliae	to	find	serum	factors	such	as	factor	H	

and	factor	H‐like	proteins	73,74.	

	

Clinical	features	

Transmission	of	tick‐borne	relapsing	fever	follows	the	bite	of	an	infected	tick	

whilst	louse‐borne	infection	ensues	following	inoculation	of	crushed	lice	or	their	faeces	
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into	breaks	in	the	skin	such	as	through	scratching.	Unlike	the	transmission	of	Lyme	

disease	borreliae	that	require	attachment	of	their	tick	vector	for	an	excess	of	48	hours,	

transmission	of	tick‐borne	relapsing	fever	borreliae	is	rapid	and	has	been	demonstrated	

in	murine	models	to	be	possible	in	just	15	seconds	using	transmission	of	B.	turicatae	by	

its	O.	turicata	tick	vector.	This	is	largely	a	result	of	effective	spirochaetal	colonisation	of	

the	lumen	of	saliva‐producing	acini	and	possibly	also	the	excretory	ducts	with	

spirochaetes	facilitating	rapid	and	effective	delivery	of	borreliae	upon	initiation	of	tick	

feeding.	Typically	argasid	ticks	feed	nocturnally	with	attachment	times	of	5	minutes	to	2	

hours	being	reported	(average	feeding	time	of	approximately	20	minutes)	and	the	tick	

taking	up	2‐6	times	its	original	body	weight	in	blood.		

Following	an	incubation	period	of	3	to10	days,	patients	typically	develop	an	

abrupt	onset	of	fever	and	chills.	The	duration	of	febrile	episodes	may	vary,	but	will	

generally	subside	in	3‐5	days.		This	is	followed	by	an	afebrile	period	that	lengthen	as	the	

disease	progresses	interspersed	by	further	febrile	episodes.	Individuals	with	LBRF	may	

have	3‐5	febrile	episodes,	whilst	those	with	TBRF	may	have	up	to	13	recurrences	of	

fever	if	left	untreated.	Each	febrile	episode	correlates	with	a	change	in	the	surface	Vmp	

antigens	of	the	spirochaete,	whilst	clearance	is	associated	with	development	of	a	

specific	immunological	IgM	response	to	the	preceding	borrelial	serotype.	The	severity	

of	these	febrile	periods	generally	reduces	with	time,	however	organ	involvement	can	

complicate	clinical	recovery.		

The	most	severe	cases	of	disease	are	generally	attributed	to	the	human‐adapted	

species,	B.	recurrentis	and	B.	duttonii.		Cases	of	LBRF	typically	present	with	fever,	

headache,	hepatosplenomegaly,	joint	and	body	pains,	and	are	often	accompanied	by	

abdominal	tenderness,	jaundice	and	epistaxis75‐77.	Thrombocytopenia	and	renal	

impairment	are	common	features	following	infection	with	B.	recurrentis.	Major	organ	
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involvement	of	the	brain,	liver,	lungs	and	spleen	result	in	a	poor	prognosis,	with	death	

associated	with	hepatic	damage,	cardiac	failure,	lobar	pneumonia,	subarachnoid	

haemorrhage	or	splenic	rupture.	The	factors	that	predispose	to	poor	clinical	outcomes	

are	poorly	resolved,	but	are	likely	to	involve	the	complex	interplay	between	both	host	

and	microbial	factors.	The	clinical	manifestation	of	TBRF	infections	is	largely	dependent	

on	the	infecting	Borrelia	species	and	can	range	from	a	severe	febrile	disease	similar	to	

that	described	for	LBRF	as	seen	with	B.	duttonii	infection,	to	a	fairly	mild	febrile	illness	

without	associated	mortality	as	seen	for	infection	with	B.	crocidurae.	Some	species	are	

associated	with	particular	clinical	correlates,	such	as	B.	duttonii	and	its	adverse	

pregnancy	outcomes	whilst	epistaxis	and	jaundice	are	typically	clinical	features	of	B.	

recurrentis	infection.	Historically	this	clinical	variability	and	differential	severity	has	

been	used	as	a	means	of	speciation	through	use	of	animal	infection	models	(see	

diagnostic	section),	but	the	biological	basis	remains	poorly	resolved.	

	

Treatment	and	prognosis	

Management	of	clinical	cases	is	generally	achieved	with	use	of	penicillin	or	

doxycycline/tetracycline.	Sometimes	these	are	used	in	sequence	with	penicillin	being	

followed	by	doxycycline	as	this	might	reduce	the	occurrence	of	potentially	life‐

threatening	Jarisch‐Herxheimer	reactions	(JHR).	This	anecdotal	observation	has	been	

substantiated	by	meta‐analysis	findings	that	showed	more	rapid	clearance	with	

tetracycline,	but	also	a	higher	risk	of	JHRs,	whilst	mortality	rates	were	similar	between	

the	two	treatment	regimens	78.	The	JHR	is	a	“therapeutic	shock”	reaction	that	occurs	

within	24	hours	of	the	start	of	therapy	and	is	associated	with	a	dramatic	worsening	of	

clinical	symptoms	in	approximately	5%	of	cases.	This	is	believed	to	occur	through	a	

pronounced	release	of	pyrogenic	cytokines	with	significant	elevation	of	tumour	
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necrosis	factor‐alpha	and	interleukins	IL‐6	and	IL‐8	79.	Indeed,	some	have	reported	

benefit	from	use	of	anti‐TNF‐alpha	80.	Although	some	studies	have	documented	use	of	

single‐dose	therapeutic	regimes,	more	commonly	antimicrobials	are	given	for	7	to	14	

days.	Table	2	details	some	of	the	more	commonly	used	treatment	dosages	and	

regimes.81		

Mortality	rates	vary	with	the	infecting	agent,	with	most	TBRF	cases	having	less	

than	5%	mortality.	Mortality	can	be	higher	however	with	the	East	African	species,	B.	

duttonii	and	its	louse‐borne	variant,	B.	recurrentis.	Particularly	high	perinatal	mortality	

rates	reaching	475	cases/1000	pregnant	women	have	been	reported	from	Tanzania	

where	B.	duttonii	is	endemic.		Notably,	higher	spirochaetal	loads	are	reported	among	

pregnant	individuals	compared	to	non‐pregnant	controls	82.		Life‐long	protection	post‐

infection	does	not	appear	to	be	the	norm	with	repeat	infections	being	reported	amongst	

individuals	residing	in	endemic	regions.	

	

Diagnostic	methods	

Microscopy	

Though	refractory	to	visualisation	by	Gram‐staining,	these	spirochaetes	can	be	

stained	using	Giemsa,	Wright’s	stain	or	silver‐staining	methods	(Figure	7).	Darkfield	or	

phase	microscopy	can	be	used	for	freshly	collected	blood	or	CSF	if	available	(or	to	check	

results	of	cultivation	or	following	animal	inoculation),	enabling	observation	of	the	

highly	motile	spirochaetes.	Assessment	of	ticks	for	infection	has	used	salivary	glands,	

haemolymph	extracted	post	leg	amputation	or	whole	tick	preparations.	Whilst	these	

methods	can	detect	Borrelia,	sensitivity	is	poor	requiring	in	excess	of	105	organisms	per	

millilitre	for	detection,	particularly	challenging	for	some	species	such	as	B.	crocidurae,	

for	which	the	blood	burden	is	lower	than	for	example	B.	recurrentis.	Use	of	thick	blood	



	 17

films	can	improve	sensitivity	where	numbers	are	low,	but	alternative	methods	such	as	

molecular	detection	might	provide	more	reliable	data	where	sensitivity	is	a	priority.	

This	is	further	complicated	by	the	need	to	collect	blood	during	febrile	episodes.	An	

additional	limitation	of	direct	microscopy	is	the	inability	to	differentiate	the	causative	

species.	

		

Animal	inoculation	

Animal	inoculation,	particularly	use	of	small	rodents,	was	popular	both	for	its	

ability	to	recover	cultivable	strains	83	and	to	identify	these	agents	through	comparative	

virulence	studies	(mice	and	guinea	pigs)	8.	Although	not	now	routinely	undertaken,	this	

technique	is	currently	largely	restricted	to	specialist	institutes	where	it	remains	useful	

for	recovery	of	primary	isolates.	On	a	cautionary	note,	it	must	be	remembered	that	

some	species,	such	as	B.	recurrentis,	are	refractory	to	growth	in	rodent	models,	but	can	

be	isolated	in	primate	models.	Use	of	immunocompromised	SCID	mice	to	overcome	this	

limitation	was	met	with	mixed	success,	with	only	low	level	infection	being	achieved	84.		

	

Cultivation	

Isolation	of	relapsing	fever	borreliae	can	also	be	achieved	in	culture	by	directly	

innoculating	clinical	samples	into	specialised	liquid	media	(such	as	BSKII	or	MKP).	

However,	the	fastidious,	slow‐growing	nature	of	these	spirochaetes	makes	this	

technically	demanding	85‐87.	Not	all	batches	of	commercially‐produced	medium	support	

growth	equally	well	and	consequently	batch	testing	of	media	should	be	employed.	In	

cases	of	culture	contamination,	inclusion	of	antimicrobials	such	as	rifampicin,	colistin	

sulphate,	aninoglycosides	or	antifungals	can	be	used	to	help	purify	isolates.	
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Alternatively,	the	slender	Borrelia	morphology	enables	purification	of	contaminated	

cultures	through	filtration.	

On	a	cautionary	note,	not	all	species	or	strains	appear	uniformly	cultivable	12.	

Until	the	1990’s,	B.	recurrentis	and	B.	duttonii	were	deemed	non‐cultivable	until	isolates	

were	successfully	recovered	using	BSKII	medium	88‐90.	Despite	the	successful	isolation	

of	B.	duttonii,	comparison	of	genotypes	recovered	by	cultivation	and	those	detected	by	

PCR/sequencing	directly	from	ticks,	revealed	that	all	cultivable	isolates	belonged	to	

only	one	of	the	four	genotypic	groups	prevalent	in	the	study	area	12.	

	

Serological	detection	

Specific	antigens,	including	GlpQ	or	BipA,	have	been	identified	which	are	shared	

by	all	relapsing	fever	group	spirochaetes,	but	are	absent	from	Borrelia	species	

associated	with	Lyme	disease,	thus	precluding	serologic	cross‐reactions	between	these	

borreliae	91,92.	These	antigens	have	been	used	successfully	in	enzyme‐linked	

immunoassays	to	enable	serological	diagnosis	or	population	screening.	Such	assays	

have	not	been	produced	commercially	however	as	they	would	have	little	value	in	highly	

endemic	regions,	and	the	sporadic	nature	of	imported	cases	makes	commercialisation	

financially	non‐viable.	

	

Molecular	detection	

Molecular	detection	and	identification	approaches	offer	distinct	advantages	over	

the	recovery	of	these	fastidious	microbes	and	has	become	the	mainstay	for	both	

detection	and	typing	of	relapsing	fever	Borrelia.	Various	conserved	targets,	such	as	16S	

rRNA	and	flagellin	(flaB)	genes,	have	been	used	for	diagnosis,	but	lack	discriminatory	

power	for	typing	37,93,94.	Availability	of	genomic	sequence	data	has	enabled	development	
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of	single	nucleotide	polymorphism	(SNP)	based	multiplex	identification	methods	and	

highly	discriminatory	multi‐spacer	typing	methods	95,96.	It	must	be	remembered	that	

these	assays	may	not	always	detect	newly	described	species.	Use	of	16S‐23S	ribosomal	

intragenic	spacer	region	sequencing	has	provided	a	highly	discriminatory	means	of	

delineating	strains	12.	Application	of	these	high‐resolution	methods	has	enabled	

scrutiny	of	the	genotypes	circulating	in	specific	enzoonotic	regions	and	correlation	with	

tick	and	vertebrate	species	4.	

	

Proteomics	

Although	the	application	of	proteomics	for	detection	of	relapsing	fever	

borreliosis	is	in	its	infancy,	this	is	an	exciting	potential	application.	Differences	in	

proteomic	profiles	have	been	detected,	differentiating	tick	haemolymph	derived	from	

Borrelia‐infected	ticks	compared	to	their	uninfected	counterparts.	This	could	provide	a	

more	cost‐effective	means	of	screening	ticks	for	carriage	of	relapsing	fever	spirochaetes	

97.	

	

Control	and	Intervention	

Relapsing	fever	spirochaetes	currently	remain	exquisitely	susceptible	to	

antimicrobials	including	penicillin,	tetracycline/doxycycline,	chloramphenicol,	

ceftriaxone	and	erythromycin.	Wide	use	of	antimicrobials	coupled	with	improvements	

in	living	conditions,	particularly	in	areas	where	relapsing	fever	has	its	reservoir	in	

humans,	such	as	LBRF	in	Ethiopia,	has	been	correlated	with	a	declining	incidence	of	

infection	65.		

This	is	not	so	apparent	for	the	tick‐borne	forms	of	disease	that	persist	in	their	

longer‐lived	tick	vector/reservoirs	and	through	the	zoonotic	vertebrate	reservoirs.	The	
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burden	of	TBRF	among	subsistence	agro‐pastoralist	communities	in	developing	nations	

remains	substantial.	Use	of	acaracides	(including	arsenicals,	chlorinated	hydrocarbons,	

organophosphates,	carbamates	and	synthetic	pyrethroids)	has	been	met	with	some	

success,	though	costs	are	prohibitive	in	many	areas	that	would	benefit	from	use	of	such	

measures	and	the	environmental	consequences	of	their	use	should	not	be	overlooked	

98,99.	Biological	controls	have	been	explored	with	entomopathic	fungi	showing	some	

success	against	ixodid	ticks,	but	control	of	argasid	ticks	has	been	largely	neglected	100‐

102.	

Prohibiting	access	to	high‐risk	areas	has	successfully	reduced	disease	incidence	

in	areas	endemic	for	B.	persica	in	Israel	where	significant	levels	of	infection	occurred	

among	military	personnel	whilst	utilising	tick‐infested	caves	during	training.	If	contact	

is	unavoidable,	doxycline	prophylaxis	has	been	used	for	short‐term	prevention	103.		

Given	the	limitations	of	acaricides	to	reduce	the	burden	of	infection,	other	

options	such	as	immunological	controls	have	also	been	explored.		These	measures	have	

been	used	to	reduce	relapsing	fever	and	indeed	other	pathogens	vectored	by	the	same	

tick	species,	such	as	African	swine	fever	virus,	a	haemorrhagic	febrile	infection	of	swine	

with	a	mortality	rate	approaching	100%.	Control	at	the	level	of	the	vector	is	

consequently	an	attractive	prospect.	Again,	anti‐tick	vaccines	against	ixodid	ticks	have	

led	the	way,	with	commercial	vaccines	against	Rhipicephalus	microplus	being	marketed	

in	Australia	and	Latin	America	99.	Analysis	of	both	the	gut	transcriptome	and	proteome	

of	argasid	ticks	is	an	essential	prerequisite	for	the	development	of	such	vaccine	

candidates.	Whether	these	potential	vaccines	would	be	directed	primarily	towards	

protection	of	livestock	or	companion	animals	from	tick‐borne	infection,	or	whether	a	

“one	health”	approach,	whereby	reduction	of	ticks	through	protection	of	their	

vertebrate	hosts	would	indirectly	reduce	human	infections,	remains	to	be	resolved.	
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Concluding	remarks	

The	relapsing	fever	Borrelia	have	a	long	and	notorious	history,	from		being	one	of	

the	earliest	bacterial	infectious	diseases	described	associated	with	high	mortality	and	

morbidity,	through	to	a	period	of	neglect.	This	in	part	was	a	result	of	the	demise	of	the	

clothing	louse	and	hence	also	LBRF,	through	improved	hygiene,	living	conditions	and	

use	of	DDT.	Similarly,	improvements	in	housing	have	reduced	contact	between	soft	ticks	

and	humans,	except	in	areas	of	poverty.	Despite	these	global	reductions	in	relapsing	

fever,	endemic	regions	persist	and	detection	of	cases	is	often	sub‐optimal.	Clinical	

overlap	with	malaria	and	use	of	suboptimal	diagnostic	methods	for	relapsing	fever	

agents,	hamper	the	detection	of	this	treatable	infection.	

Despite	this	neglect,	application	of	improved	methods	for	detection,	typing	and	

cultivation	of	these	spirochaetes	has	allowed	us	to	gain	intriguing	insights	into	the	

biology	of	these	organisms.	Newly	described	species,	and	deeper	understanding	of	the	

previously	established	members	of	this	group	will	help	us	dissect	evolutionary	and	

ecological	relationships.	Greater	insights	into	the	mechanisms	of	pathogenesis	and	

strategies	employed	to	evade	the	immune	defences	of	the	vertebrate	host	will	provide	

future	research	goals.	 	



	 22

References	

1.	 Birkhaug	K.	Otto	H.	F.	Obermeier.	In:	Moulton	FR,	ed.	A	symposium	on	relapsing	
fever	in	the	Americas.	Washington:	American	Association	for	the	Advancement	of	
Science.	Section	on	Medical	Sciences;	1942:7‐9.	
2.	 Bryceson	ADM,	Parry	EHO,	Perine	PL,	Warrell	DA,	Vukotich	D,	Leithead	CS.	
Louse‐borne	relapsing	fever:	A	Clinical	and	Laboratory	Study	of	62	Cases	in	Ethiopia	
and	a	Reconsideration	of	the	Literature1.	The	Quarterly	Journal	of	Medicine	
1970;39:129‐70.	
3.	 Cutler	SJ,	Abdissa	A,	Trape	JF.	New	concepts	for	the	old	challenge	of	African	
relapsing	fever	borreliosis.	Clinical	Microbiology	and	Infection	2009;15:400‐6.	
4.	 Schwan	TG,	Anderson	JM,	Lopez	JE,	et	al.	Endemic	foci	of	the	tick‐borne	relapsing	
fever	Spirochete	Borrelia	crocidurae	in	Mali,	West	Africa,	and	the	potential	for	human	
infection.	PLoS	Neglected	Tropical	Diseases	2012;6.	
5.	 Ross	PH,	Milne	AD.	Tick	fever.	British	Medical	Journal	1904;ii:1453‐4.	
6.	 Dutton	JE,	Todd	JL.	The	nature	of	tick	fever	in	the	eastern	part	of	the	Congo	Free	
State.	British	Medical	Journal	1905;ii:1259‐60.	
7.	 Mitani	H,	Talbert	A,	Fukunaga	M.	New	World	relapsing	fever	Borrelia	found	in	
Ornithodoros	porcinus	ticks	in	central	Tanzania.	Microbiol	Immunol	2004;48:501‐5.	
8.	 Naddaf	SR,	Ghazinezhad	B,	Bahramali	G,	Cutler	SJ.	Phylogenetic	analysis	of	the	
spirochete	Borrelia	microti,	a	potential	agent	of	relapsing	fever	in	Iran.	Journal	of	
Clinical	Microbiology	2012;50:2873‐6.	
9.	 Naddaf	S,	Ghazinezhad	B,	Sedaghat	M,	Asl	H,	Cutler	S.	Tickborne	relapsing	fever	
in	southern	Iran,	2011–2013.	Emerging	Infectious	Diseases	2015;21:1078‐80.	
10.	 Schwan	TG,	Raffel	SJ,	Schrumpf	ME,	Gill	JS,	Piesman	J.	Characterization	of	a	novel	
relapsing	fever	spirochete	in	the	midgut,	coxal	fluid,	and	salivary	glands	of	the	bat	tick	
carios	kelleyi.	Vector‐Borne	and	Zoonotic	Diseases	2009;9:643‐7.	
11.	 Yabsley	MJ,	Parsons	NJ,	Horne	EC,	Shock	BC,	Purdee	M.	Novel	relapsing	fever	
Borrelia	detected	in	African	penguins	(Spheniscus	demersus)	admitted	to	two	
rehabilitation	centers	in	South	Africa.	Parasitology	Research	2012;110:1125‐30.	
12.	 Cutler	SJ,	Margarita	Bonilla	E,	Singh	RJ.	Population	structure	of	East	African	
relapsing	fever	Borrelia	spp.	Emerging	Infectious	Diseases	2010;16:1076‐80.	
13.	 Ras	NM,	Lascola	B,	Postic	D,	et	al.	Phylogenesis	of	relapsing	fever	Borrelia	spp.	
Int	J	Syst	Bacteriol	1996;46:859‐65.	
14.	 Lescot	M,	Audic	S,	Robert	C,	et	al.	The	genome	of	Borrelia	recurrentis,	the	agent	
of	deadly	louse‐borne	relapsing	fever,	is	a	degraded	subset	of	tick‐borne	Borrelia	
duttonii.	PLoS	Genetics	2008;4.	
15.	 Elbir	H,	Gimenez	G,	Robert	C,	et	al.	Complete	genome	sequence	of	Borrelia	
crocidurae.	Journal	of	Bacteriology	2012;194:3723‐4.	
16.	 Barbour	AG,	Hayes	SF.	Biology	of	Borrelia	species.	Microbiol	Rev	1986;50:381‐
400.	
17.	 Bárcena‐Uribarri	I,	Thein	M,	Sacher	A,	et	al.	P66	porins	are	present	in	both	Lyme	
disease	and	relapsing	fever	spirochetes:	A	comparison	of	the	biophysical	properties	of	
P66	porins	from	six	Borrelia	species.	Biochimica	et	Biophysica	Acta	‐	Biomembranes	
2010;1798:1197‐203.	
18.	 Thein	M,	Bunikis	I,	Denker	K,	et	al.	Oms38	is	the	first	identified	pore‐forming	
protein	in	the	outer	membrane	of	relapsing	fever	spirochetes.	Journal	of	Bacteriology	
2008;190:7035‐42.	



	 23

19.	 Thein	M,	Bonde	M,	Bunikis	I,	et	al.	DipA,	a	pore‐forming	protein	in	the	outer	
membrane	of	lyme	disease	spirochetes	exhibits	specificity	for	the	permeation	of	
dicarboxylates.	PLoS	One	2012;7.	
20.	 Magoun	L,	Zückert	WR,	Robbins	D,	et	al.	Variable	small	protein	(Vsp)‐dependent	
and	Vsp‐independent	pathways	for	glycosaminoglycan	recognition	by	relapsing	fever	
spirochaetes.	Molecular	Microbiology	2000;36:886‐97.	
21.	 Londoño	D,	Cadavid	D.	Bacterial	lipoproteins	can	disseminate	from	the	periphery	
to	inflame	the	brain.	American	Journal	of	Pathology	2010;176:2848‐57.	
22.	 Barbour	AG,	Hayes	SF.	Biology	of	Borrelia	species.	Microbiological	Reviews	
1986;50:381‐400.	
23.	 Guo	BP,	Teneberg	S,	Munch	R,	et	al.	Relapsing	fever	Borrelia	binds	to	neolacto	
glycans	and	mediates	rosetting	of	human	erythrocytes.	PNAS	2009;106:19280‐5.	
24.	 Shamaei‐Tousi	A,	Martin	P,	Bergh	A,	Burman	N,	Brannstrom	T,	Bergstrom	S.	
Erythrocyte‐aggregating	relapsing	fever	spirochete	Borrelia	crocidurae	induces	
formation	of	microemboli.	J	Infect	Dis	1999;180:1929‐38.	
25.	 Miller	SC,	Porcella	SF,	Raffel	SJ,	Schwan	TG,	Barboura	AG.	Large	linear	plasmids	
of	borrelia	species	that	cause	relapsing	fever.	Journal	of	Bacteriology	2013;195:3629‐
39.	
26.	 Restrepo	BI,	Kitten	T,	Carter	CJ,	Infante	D,	Barbour	AG.	Subtelomeric	expression	
regions	of	Borrelia	hermsii	linear	plasmids	are	highly	polymorphic.	Molecular	
Microbiology	1992;6:3299‐311.	
27.	 Di	L,	Pagan	PE,	Packer	D,	et	al.	BorreliaBase:	A	phylogeny‐centered	browser	of	
Borrelia	genomes.	BMC	Bioinformatics	2014;15.	
28.	 Elbir	H,	Gimenez	Gg,	Robert	C,	et	al.	Complete	Genome	Sequence	of	Borrelia	
crocidurae.	Journal	of	Bacteriology	2012;194:3723‐4.	
29.	 Lescot	M,	Audic	S,	Robert	C,	et	al.	The	genome	of	Borrelia	recurrentis,	the	agent	
of	deadly	louse‐borne	relapsing	fever,	is	a	degraded	subset	of	tick‐borne	Borrelia	
duttonii.	PLoS	Genet	2008;4:e1000185.	
30.	 Socolovschi	C,	Kernif	T,	Raoult	D,	Parola	P.	Borrelia,	Rickettsia,	and	Ehrlichia	
species	in	bat	ticks,	France,	2010.	Emerging	Infectious	Diseases	2012;18:1966‐75.	
31.	 Loftis	A,	Gill	J,	Schriefer	M,	et	al.	Detection	of	Rickettsia,	Borrelia,	and	Bartonella	
in	Carios	kelleyi	(Acari:	Argasidae).	J	Med	Entomol	2005;42:473‐80.	
32.	 Reeves	W,	Loftis	A,	Sanders	F,	et	al.	Borrelia,	Coxiella,	and	Rickettsia	in	Carios	
capensis	(Acari:	Argasidae)	from	a	brown	pelican	(Pelecanus	occidentalis)	rookery	in	
South	Carolina,	USA.	Exp	Appl	Acarol	2006;39:321‐9.	
33.	 Takano	A,	Sugimori	C,	Fujita	H,	et	al.	A	novel	relapsing	fever	Borrelia	sp.	infects	
the	salivary	glands	of	the	molted	hard	tick,	Amblyomma	geoemydae.	Ticks	and	Tick‐
borne	Diseases	2012;3:259‐61.	
34.	 McCoy	BN,	Maïga	O,	Schwan	TG.	Detection	of	Borrelia	theileri	in	Rhipicephalus	
geigyi	from	Mali.	Ticks	and	Tick‐borne	Diseases	2014;5:401‐3.	
35.	 Cutler	S,	Abdissa	A,	Adamu	H,	Tolosa	T,	Gashaw	A.	Borrelia	in	Ethiopian	ticks.	
Ticks	and	Tick‐borne	Diseases	2012;3:14‐7.	
36.	 Yparraguirre	LA,	Machado‐Ferreira	E,	Ullmann	AJ,	Piesman	J,	Zeidner	NS,	Soares	
CAG.	A	hard	tick	relapsing	fever	group	spirochete	in	a	Brazilian	Rhipicephalus	
(Boophilus)	microplus.	Vector‐Borne	and	Zoonotic	Diseases	2007;7:717‐21.	
37.	 Kumsa	B,	Socolovschi	C,	Raoult	D,	Parola	P.	New	Borrelia	species	detected	in	
ixodid	ticks	in	Oromia,	Ethiopia.	Ticks	and	Tick‐borne	Diseases	2015;6:401‐7.	



	 24

38.	 Mediannikov	O,	Abdissa	A,	Socolovschi	C,	Diatta	G,	Trape	JF,	Raoult	D.	Detection	
of	a	new	Borrelia	species	in	ticks	taken	from	cattle	in	southwest	Ethiopia.	Vector‐Borne	
and	Zoonotic	Diseases	2013;13:266‐9.	
39.	 Lane	RS,	Mun	J,	Parker	JM,	White	M.	Columbian	black‐tailed	deer	(Odocoileus	
hemionus	columbianus)	as	hosts	for	Borrelia	spp.	in	northern	California.	Journal	of	
Wildlife	Diseases	2005;41:115‐25.	
40.	 Thomas	NJ,	Bunikis	J,	Barbour	AG,	Wolcott	MJ.	Fatal	spirochetosis	due	to	a	
relapsing	fever‐like	Borrelia	sp.	in	a	northern	spotted	owl.	Journal	of	Wildlife	Diseases	
2002;38:187‐93.	
41.	 Evans	N,	Bown	K,	Timofte	D,	Simpson	V,	Birtles	R.	Fatal	borreliosis	in	bat	caused	
by	relapsing	fever	spirochete,	United	Kingdom.	Emerg	Infect	Dis	2009;15:1331.	
42.	 Trape	JF.	Morbidity	record	in	Africa	for	an	unrecognized	emergent	disease.	
Cahiers	Sante	2006;16:102.	
43.	 Brouqui	P,	Stein	A,	Dupont	H,	et	al.	Ectoparasitism	and	vector‐borne	diseases	in	
930	homeless	people	from	Marseilles.	Medicine	(Baltimore)	2005;84:61‐8.	
44.	 Li	W,	Ortiz	G,	Fournier	P‐E,	et	al.	Genotyping	of	Human	Lice	Suggests	Multiple	
Emergences	of	Body	Lice	from	Local	Head	Louse	Populations.	PLoS	Negl	Trop	Dis	
2010;4:e641.	
45.	 Light	JE,	Allen	JM,	Long	LM,	et	al.	Geographic	distributions	and	origins	of	human	
head	lice	(Pediculus	humanus	capitis)	based	on	mitochondrial	data.	Journal	of	
Parasitology	2008;94:1275‐81.	
46.	 Boutellis	A,	Mediannikov	O,	Bilcha	KD,	et	al.	Borrelia	recurrentis	in	head	lice,	
Ethiopia.	Emerging	Infectious	Diseases	2013;19:796‐8.	
47.	 Angelakis	E,	Rolain	JM,	Raoult	D,	Brouqui	P.	Bartonella	quintana	in	head	louse	
nits.	FEMS	Immunology	and	Medical	Microbiology	2011;62:244‐6.	
48.	 Boutellis	A,	Veracx	A,	Angelakis	E,	et	al.	Bartonella	quintana	in	head	lice	from	
Sénégal.	Vector‐Borne	and	Zoonotic	Diseases	2012;12:564‐7.	
49.	 Cutler	S,	Abdissa	A,	Adamu	H,	Tolosa	T,	Gashaw	A.	Bartonella	quintana	in	
Ethiopian	lice.	Comparative	Immunology,	Microbiology	and	Infectious	Diseases	
2012;35:17‐21.	
50.	 Moran‐Gilad	J,	Levine	H,	Schwartz	E,	et	al.	Postexposure	prophylaxis	of	tick‐
borne	relapsing	fever:	Lessons	learned	from	recent	outbreaks	in	Israel.	Vector‐Borne	
and	Zoonotic	Diseases	2013;13:791‐7.	
51.	 Colebunders	R,	De	Serrano	P,	Van	Gompel	A,	et	al.	Imported	relapsing	fever	in	
European	tourists.	Scandinavian	Journal	of	Infectious	Diseases	1993;25:533‐6.	
52.	 Wyplosz	B,	Mihaila‐Amrouche	L,	Baixench	M‐T,	et	al.	Imported	tickborne	
relapsing	fever,	France.	Emerging	Infectious	Diseases	2005;11:1801‐3.	
53.	 Rummens	JL,	Louwagie	A,	Van	Hoof	A,	Boelaert	J,	Gordts	B,	Van	Landuyt	HW.	
Relapsing	fever	imported	into	Belgium:	A	case	report.	Acta	Clinica	Belgica	1987;42:210‐
4.	
54.	 Kutsuna	S,	Kawabata	H,	Kasahara	K,	Takano	A,	Mikasa	K.	Case	report:	The	first	
case	of	imported	relapsing	fever	in	Japan.	American	Journal	of	Tropical	Medicine	and	
Hygiene	2013;89:460‐1.	
55.	 Schwan	TG,	Policastro	PF,	Miller	Z,	Thompson	RL,	Damrow	T,	Keirans	JE.	Tick‐
borne	relapsing	fever	caused	by	Borrelia	hermsii,	Montana.	Emerging	Infectious	
Diseases	2003;9:1151‐4.	
56.	 Trape	JF,	Godeluck	B,	Diatta	G,	et	al.	The	spread	of	tick‐borne	borreliosis	in	West	
Africa	and	its	relationship	to	sub‐Saharan	drought.	American	Journal	of	Tropical	
Medicine	and	Hygiene	1996;54:289‐93.	



	 25

57.	 Cutler	SJ.	Relapsing	fever	‐	A	forgotten	disease	revealed.	Journal	of	Applied	
Microbiology	2010;108:1115‐22.	
58.	 Nordstrand	A,	Bunikis	I,	Larsson	C,	et	al.	Tickborne	relapsing	fever	diagnosis	
obscured	by	Malaria,	Togo.	Emerging	Infectious	Diseases	2007;13:117‐23.	
59.	 Diatta	G,	Souidi	Y,	Granjon	L,	et	al.	Epidemiology	of	Tick‐Borne	Borreliosis	in	
Morocco.	PLoS	Neglected	Tropical	Diseases	2012;6.	
60.	 Lundqvist	J,	Larsson	C,	Nelson	M,	Andersson	M,	Bergström	S,	Persson	C.	
Concomitant	infection	decreases	the	malaria	burden	but	escalates	relapsing	fever	
borreliosis.	Infection	and	Immunity	2010;78:1924‐30.	
61.	 Parola	P,	Diatta	G,	Socolovschi	C,	et	al.	Tick‐borne	relapsing	fever	borreliosis,	
rural	Senegal.	Emerging	Infectious	Diseases	2011;17:883‐5.	
62.	 Sarih	M,	Garnier	M,	Boudebouch	N,	et	al.	Borrelia	hispanica	relapsing	fever,	
Morocco.	Emerging	Infectious	Diseases	2009;15:1626‐9.	
63.	 Schwan	TG,	Raffel	SJ,	Schrumpf	ME,	et	al.	Tick‐borne	relapsing	fever	and	Borrelia	
hermsii,	Los	Angeles	County,	California,	USA.	Emerging	Infectious	Diseases	
2009;15:1026‐31.	
64.	 Trevejo	RT,	Schriefer	ME,	Gage	KL,	et	al.	An	interstate	outbreak	of	tick‐borne	
relapsing	fever	among	vacationers	at	a	Rocky	Mountain	cabin.	American	Journal	of	
Tropical	Medicine	and	Hygiene	1998;58:743‐7.	
65.	 Ramos	JM,	Malmierca	E,	Reyes	F,	Tesfamariam	A.	Results	of	a	10‐year	survey	of	
louse‐borne	relapsing	fever	in	southern	Ethiopia:	A	decline	in	endemicity.	Annals	of	
Tropical	Medicine	and	Parasitology	2008;102:467‐9.	
66.	 Cadavid	D,	Londoño	D.	Understanding	tropism	and	immunopathological	
mechanisms	of	relapsing	fever	spirochaetes.	Clinical	Microbiology	and	Infection	
2009;15:415‐21.	
67.	 Cadavid	D,	Sondey	M,	Garcia	E,	Lawson	CL.	Residual	brain	infection	in	relapsing‐
fever	borreliosis.	Journal	of	Infectious	Diseases	2006;193:1451‐8.	
68.	 Mehra	R,	Londoño	D,	Sondey	M,	Lawson	C,	Cadavid	D.	Structure‐function	
investigation	of	Vsp	serotypes	of	the	spirochete	Borrelia	hermsii.	PLoS	ONE	2009;4.	
69.	 Cadavid	D,	Pennington	PM,	Kerentseva	TA,	Bergström	S,	Barbour	AG.	
Immunologic	and	genetic	analyses	of	VmpA	of	a	neurotropic	strain	of	Borrelia	turicatae.	
Infection	and	Immunity	1997;65:3352‐60.	
70.	 Sethi	N,	Sondey	M,	Bai	Y,	Kim	KS,	Cadavid	D.	Interaction	of	a	neurotropic	strain	of	
Borrelia	turicatae	with	the	cerebral	microcirculation	system.	Infection	and	Immunity	
2006;74:6408‐18.	
71.	 Larsson	C,	Andersson	M,	Pelkonen	J,	Guo	BP,	Nordstrand	A,	Bergström	S.	
Persistent	brain	infection	and	disease	reactivation	in	relapsing	fever	borreliosis.	
Microbes	and	Infection	2006;8:2213‐9.	
72.	 Dai	Q,	Restrepo	BI,	Porcella	SF,	Raffel	SJ,	Schwan	TG,	Barbour	AG.	Antigenic	
variation	by	Borrelia	hermsii	occurs	through	recombination	between	extragenic	
repetitive	elements	on	linear	plasmids.	Molecular	Microbiology	2006;60:1329‐43.	
73.	 Rossmann	E,	Kraiczy	P,	Herzberger	P,	et	al.	BhCRASP‐1	of	the	relapsing	fever	
spirochete	Borrelia	hermsii	is	a	factor	H‐	and	plasminogen‐binding	protein.	
International	Journal	of	Medical	Microbiology	2008;298:272‐83.	
74.	 Grosskinsky	S,	Schott	M,	Brenner	C,	et	al.	Borrelia	recurrentis	employs	a	novel	
multifunctional	surface	protein	with	anti‐complement,	anti‐opsonic	and	invasive	
potential	to	escape	innate	immunity.	PLoS	ONE	2009;4.	



	 26

75.	 Borgnolo	G,	Hailu	B,	Ciancarelli	A,	Almaviva	M,	Woldemariam	T.	Louse‐borne	
relapsing	fever.	A	clinical	and	an	epidemiological	study	of	389	patients	in	Asella	
Hospital,	Ethiopia.	Trop	Geogr	Med	1993;45:66‐9.	
76.	 Borgnolo	G,	Denku	B,	Chiabrera	F,	Hailu	B.	Louse‐borne	relapsing	fever	in	
Ethiopian	children:	A	clinical	study.	Annals	of	Tropical	Paediatrics	1993;13:165‐71.	
77.	 Brown	V,	Larouze	B,	Desve	G,	et	al.	Clinical	presentation	of	louse‐born	relapsing	
fever	among	Ethiopian	refugees	in	northern	Somalia.	Annals	of	Tropical	Medicine	and	
Parasitology	1988;82:499‐502.	
78.	 Guerrier	G,	Doherty	T.	Comparison	of	antibiotic	regimens	for	treating	louse‐
borne	relapsing	fever:	A	meta‐analysis.	Transactions	of	the	Royal	Society	of	Tropical	
Medicine	and	Hygiene	2011;105:483‐90.	
79.	 Negussie	Y,	Remick	DG,	DeForge	LE,	Kunkel	SL,	Eynon	A,	Griffin	GE.	Detection	of	
plasma	tumor	necrosis	factor,	interleukins	6,	and	8	during	the	Jarisch‐Herxheimer	
reaction	of	relapsing	fever.	Journal	of	Experimental	Medicine	1992;175:1207‐12.	
80.	 Fekade	D,	Knox	K,	Hussein	K,	et	al.	Prevention	of	Jarisch‐Herxheimer	reactions	
by	treatment	with	antibodies	against	tumor	necrosis	factor	α.	New	England	Journal	of	
Medicine	1996;335:311‐5.	
81.	 Belum	GR,	Belum	VR,	Chaitanya	Arudra	SK,	Reddy	BSN.	The	Jarisch–Herxheimer	
reaction:	Revisited.	Travel	Medicine	and	Infectious	Disease.	
82.	 Jongen	VH,	van	Roosmalen	J,	Tiems	J,	Van	Holten	J,	Wetsteyn	JC.	Tick‐borne	
relapsing	fever	and	pregnancy	outcome	in	rural	Tanzania.	Acta	Obstet	Gynecol	Scand	
1997;76:834‐8.	
83.	 Fritz	CL,	Bronson	LR,	Smith	CR,	Schriefer	ME,	Tucker	JR,	Schwan	TG.	Isolation	
and	Characterization	of	Borrelia	hermsii	Associated	with	Two	Foci	of	Tick‐Borne	
Relapsing	Fever	in	California.	Journal	of	Clinical	Microbiology	2004;42:1123‐8.	
84.	 Larsson	C,	Lundqvist	J,	van	Rooijen	N,	Bergstr√∂m	S.	A	Novel	Animal	Model	of	
<italic>Borrelia	recurrentis</italic>	Louse‐Borne	Relapsing	Fever	Borreliosis	Using	
Immunodeficient	Mice.	PLoS	Negl	Trop	Dis	2009;3:e522.	
85.	 Barbour	A.	Isolation	and	cultivation	of	Lyme	disease	spirochetes.	Yale	J	Biol	Med	
1984;57:521‐5.	
86.	 Wagemakers	A,	Oei	A,	Fikrig	MM,	Miellet	WR,	Hovius	JW.	The	relapsing	fever	
spirochete	Borrelia	miyamotoi	is	cultivable	in	a	modified	Kelly‐Pettenkofer	medium,	
and	is	resistant	to	human	complement.	Parasites	and	Vectors	2014;7.	
87.	 Cutler	SJ,	Jones	SE,	Wright	DJM,	Zhang	H.	Cultivation	of	East	African	relapsing	
fever	Borrelia	and	review	of	preceding	events.	Journal	of	Spirochetal	and	Tick‐borne	
Diseases	2000;7:52‐8.	
88.	 Cutler	SJ,	Akintunde	COK,	Moss	J,	et	al.	Successful	in	vitro	cultivation	of	Borrelia	
duttonii	and	its	comparison	with	Borrelia	recurrentis.	International	Journal	of	
Systematic	Bacteriology	1999;49:1793‐9.	
89.	 Cutler	S,	Moss	J,	Fukunaga	M,	Wright	D,	Fekade	D,	Warrell	D.	Borrelia	recurrentis	
characterization	and	comparison	with	relapsing‐	fever,	Lyme‐associated,	and	other	
Borrelia	spp.	Int	J	Syst	Bacteriol	1997;47:958‐68.	
90.	 Cutler	SJ,	Fekade	D,	Hussein	K,	et	al.	Successful	in‐vitro	cultivation	of	Borrelia	
recurrentis.	Lancet	1994;343:242.	
91.	 Schwan	TG,	Schrumpf	ME,	Hinnebusch	BJ,	Anderson	Jr	DE,	Konkel	ME.	GlpQ:	An	
antigen	for	serological	discrimination	between	relapsing	fever	and	Lyme	borreliosis.	
Journal	of	Clinical	Microbiology	1996;34:2483‐92.	



	 27

92.	 Lopez	J,	Schrumpf	M,	Nagarajan	V,	Raffel	S,	McCoy	B,	Schwan	T.	A	novel	surface	
antigen	of	relapsing	fever	spirochetes	can	discriminate	between	relapsing	fever	and	
Lyme	borreliosis.	Clin	Vaccine	Immunol	2010;17:564‐71.	
93.	 Fukunaga	M,	Ushijima	Y,	Aoki	L,	Talbert	A.	Detection	of	Borrelia	duttonii,	a	tick‐
borne	relapsing	fever	agent	in	central	Tanzania,	within	ticks	by	flagellin	gene‐based	
nested	polymerase	chain	reaction.	Vector	Borne	Zoonotic	Dis	2001;1:331‐8.	
94.	 Assous	MV,	Wilamowski	A,	Bercovier	H,	Marva	E.	Molecular	characterization	of	
tickborne	relapsing	fever	Borrelia,	Israel.	Emerging	Infectious	Diseases	2006;12:1740‐
3.	
95.	 Elbir	H,	Henry	M,	Diatta	G,	et	al.	Multiplex	Real‐Time	PCR	Diagnostic	of	Relapsing	
Fevers	in	Africa.	PLoS	Neglected	Tropical	Diseases	2013;7.	
96.	 Elbir	H,	Gimenez	G,	Sokhna	C,	et	al.	Multispacer	sequence	typing	relapsing	fever	
Borreliae	in	Africa.	PLoS	neglected	tropical	diseases	2012;6.	
97.	 Fotso	Fotso	A,	Mediannikov	O,	Diatta	G,	et	al.	MALDI‐TOF	Mass	Spectrometry	
Detection	of	Pathogens	in	Vectors:	The	Borrelia	crocidurae/Ornithodoros	sonrai	
Paradigm.	PLoS	Negl	Trop	Dis	2014;8:e2984.	
98.	 Talbert	A,	Nyange	A,	Molteni	F.	Spraying	tick‐infested	houses	with	lambda‐
cyhalothrin	reduces	the	incidence	of	tick‐borne	relapsing	fever	in	children	under	five	
years	old.	Transactions	of	the	Royal	Society	of	Tropical	Medicine	and	Hygiene	
1998;92:251‐3.	
99.	 Díaz‐Martín	V,	Manzano‐Román	R,	Obolo‐Mvoulouga	P,	Oleaga	A,	Pérez‐Sánchez	
R.	Development	of	vaccines	against	Ornithodoros	soft	ticks:	An	update.	Ticks	and	Tick‐
borne	Diseases	2015;6:211‐20.	
100.	 D'Alessandro	WB,	Humber	RA,	Luz	C.	Occurrence	of	pathogenic	fungi	to	
Amblyomma	cajennense	in	a	rural	area	of	Central	Brazil	and	their	activities	against	
vectors	of	Rocky	Mountain	spotted	fever.	Veterinary	Parasitology	2012;188:156‐9.	
101.	 Greengarten	PJ,	Tuininga	AR,	Morath	SU,	Falco	RC,	Norelus	H,	Daniels	TJ.	
Occurrence	of	soil‐	and	tick‐borne	fungi	and	related	virulence	tests	for	pathogenicity	to	
Ixodes	scapularis	(Acari:	Ixodidae).	Journal	of	Medical	Entomology	2011;48:337‐44.	
102.	 Tavassoli	M,	Malekifard	F,	Soleimanzadeh	A,	Pourseyed	SH,	Bernousi	I,	Mardani	
K.	Susceptibility	of	different	life	stages	of	Ornithodoros	lahorensis	to	entomopathogenic	
fungi	Metarhizium	anisopliae	and	Beauveria	bassiana.	Parasitology	Research	
2012;111:1779‐83.	
103.	 Assous	MV,	Wilamowski	A.	Relapsing	fever	borreliosis	in	Eurasia	‐	Forgotten,	but	
certainly	not	gone!	Clinical	Microbiology	and	Infection	2009;15:407‐14.	
	

	

	

	 	



	 28

	Figure	Legends	

Figure	1:	Ornithodoros	moubata	tick.	
	
Figure	2:	Life	cycle	of	Ornithodoros	moubata	ticks,	the	vector	of	B.	duttonii.	
	
Figure	3:	Ethiopian	dwelling.	
	
Figure	4:	Street	beggar	in	Ethiopia.	
	
Figure	5:	Pediculus	humanus	clothing	lice	showing	adult	and	sub‐adult	stages.	
	
Figure	6:	Pediculus	humanus	clothing	lice	showing	eggs	cemented	to	clothing	and	
recently	hatched	lice.	
	
Figure	7:	Blood	film	showing	Giemsa‐staining	magnification	x400.	
	
Table	1:	Relapsing	fever	group	species,	their	vectors	and	geographical	location.	
	
Table	2:	Treatment	options	commonly	used	for	relapsing	fever	management.
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