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Abstract

Two-dimensional interpolation – or surface fitting – is an approximation tool with applications in geodetic datumtransformations, terrain modelling and geoid determination. It can also be applied to many other forms of geographic point data,including rainfall, chemical concentrations and noise levels. The problem of fitting of a smooth continuous interpolant to abivariate function is particularly difficult if the dataset of control points is scattered irregularly. A typical approach is a weightedsum of data values where the sum of the weights is always unity. Weighting by inverse distance to a power is one approach,although a power greater than 1 is needed to ensure smooth results. One advantage over other methods is that data values can beincorporated into the interpolated surface. One disadvantage is the influence of distant points. A simple cut-off limit on distancewould affect continuity. This study proposes a transition range of accelerated decline bymeans of an adjoining polynomial. Thispreserves smoothness and continuity in the interpolating surface. Case studies indicate accuracy advantages over standardversions of inverse-distance weighting.
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1 Introduction

A formula which covers a wide range of interpolation methods canbe categorised as "weighted average". The general form is

fP =
∑wifi∑wi

. (1)
In this formula, P is the point of interest, {Pi} is a set of scatteredcontrol points andwi is a weight dependent on P and Pi. The divisorin (1) ensures that the interpolation is exact at every control point.The divisor turns the coefficient of each fi into a normalised weight.If the weights are non-negative, as is the case if wi is derivedfrom the distance between P and Pi, then the interpolated functionis constrained by the range of values in {fi}. This is a limitation ifthe user wants some allowance for extrapolation, but at the sametime it is a safeguard against instability.

Two-dimensional problems where weighted-average interpo-lation is used include several from geomatics. Gradka and Kwinta(2018) apply it to terrain modelling, Soycan and Soycan (2003)apply it to geoid determination, Ligas et al. (2022) apply it to quasi-geoid modelling, and Grgić et al. (2016) apply it to geodetic datumtransformations. Applications outside geomatics include air tem-peratures (Musashi et al., 2018), rainfall measurements (Tomczak,1998), and housing growth (Cho et al., 2005).

2 Inverse distance to a power

Inverse-distance weighting is a scattered-data interpolation algo-rithm proposed by Shepard (1968). It is very easy to implement.The normalised weights are non-negative quantities whose sum is1, and this ensures the interpolating function never strays outsidethe range of the interpolated values being interpolated. Themethodis considered in all the weighted-average applications quoted above.
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Figure 1. Characteristics of inverse distance interpolation using powers1, 2, 3 and 4

A continuous and smooth function f is interpolated at scatteredcontrol points {Pi} by the formula

fP =
∑ fi/dµi∑ 1/dµi , (2)

where di denotes the distance from P to Pi. The formula takes thelimiting value fj when P coincides with a control point Pj.For implementation purposes, there is an alternative form of(2):

fP = fj +
∑
i ̸=j fi ·

(
dj/di)µ

1 +∑
i ̸=j

(
dj/di)µ , (3)

where
j = value of i that minimises di. (4)

The summations in (3) omit the control point nearest to thepoint of interest. This avoids zero divisors and the processing oflarge numbers.The value ofµ in formula (2), and hence in (3),must be at least 2to ensure smooth interpolation. If µ is exactly 2, the control pointsare said to be weighted by inverse square distances. One argumentfor having µ greater than 2 is that it limits the influence of distantpoints.Figure 1 illustrates the effect of inverse distance interpolationon data which depends on a single variable. None of the data fits istotally satisfactory. Increasing the powerµ reduces the dip betweenthe 3rd and 4th points, but accentuates the changes in curvaturebetween other control points. The increased flatness at the controlpoints causes steeper slopes elsewhere, and that steepness is animprobable interpretation of the control data.In the caseswhereµ > 1, themain drawback of inverse-distanceweighting is that it imposes zero gradients at the control points.When it is used to fit a surface, it has the tendency to generateconcentric contours around the control points. This is describedby several authors, among them Attaouia et al. (2017) and Musashiet al. (2018), as a bullseye effect. Franke and Nielson (1991) preferthe term "flat spots". As in the one-dimensional case illustrated inFigure 1, the increased flatness at control points that comes fromraising µ causes increased steepness elsewhere.The flat-spots effect can be reduced by splitting the functioninto a trendmodel and a signal (analogous to the noise-free versionof least-squares collocation; see Ruffhead (1987)). If a suitable trendmodel is identified, its parameters can be obtained by least-squaresoptimisation. The residual variable, or signal, is interpolated exactlyby inverse distance to a power. The interpolated signal will havezero gradient at the control points, but the overall interpolant atthose pointswill have the same gradient as the trendmodel. Inversedistance to a power would become a means of interpolating (and

thereby eliminating) residuals from the data minus the model.This researcher believes that extracting a trendmodel can im-prove the accuracy of inverse-distance weighting, although he hasnot seen an explicit statement to that effect in any publication. Itwas probably regarded as intuitively obvious by Grgić et al. (2016)and Ligas et al. (2022). Both studies used inverse-distance weight-ing – amongst other methods – to interpolate residuals from atrend model. This paper will test the proposition in its case studies.A variation of (2) can be applied to control points which haveweights based on their perceived reliability:

fP =
∑wifi/dµi∑wi/dµi . (5)

Control points with the highest weights will influence the inter-polated f within a larger local radius than control points with thelowest weights.Grgić et al. (2016) apply inverse-distance-to-a-power to in-terpolate residual transformations. Given that the residual datumshifts are smaller than the original datum shifts, the drawbackof zero gradients at control points is less of a problem than in itwould be if the method had been applied to the original datumshifts. When inverse square distances were used (µ = 2), the accu-racy over Croatia was comparable to that achieved by Kriging andminimum curvature.In passing, it should be noted that inverse-distance weightingcanbemodifiedby introducing a"smoothing factor" into the valuesof the weights. The control points closest to point Pwill have thegreatest influence on the value of fP but f will not interpolate thecontrol points exactly. One version is given by Tomczak (1998)which claims Keckler (1995) as its source. The latter is a user guideto Surfer Version 6 (Keckler, 1995). The other version is given onpage 115 of Surfer (2002). A trial-and-error process for derivingthe smoothing factor is suggested in Woodson (2016).This paper only considers the method of inverse-distanceweighting as an exact interpolator. The generic form in Surfer canbe used as such provided the smoothing factor to set to zero.The method of "inverse distance to a power" can be used togenerate a rectangular mesh of pseudo-data points from whichfurther interpolation is done bymeans of bilinear or bicubic func-tions. This may be unnecessary because of the simplicity of theinverse-distance method itself.In geospatial science, data is often defined over a region of theEarth represented by an ellipsoid, with coordinates given in lati-tude and longitude. The method can be applied is one of two ways.A projection could be applied to generate plane coordinates fromwhich distances between points are computed using Pythagoras’stheorem. Alternatively, ellipsoidal distances can be computed, ei-ther by a rigorous formula for geodesics such as the one in Sodano(1965) or by an approximate formula, such as a Pythagorean esti-mate using the arc lengths between the latitudes and longitudes ofthe respective points.

3 Hybrid inverse power function embodying ac-
celerated decline (HIPFEAD)

One of the serious deficiencies of inverse-distanceweighting forµ >1, noted by Franke and Nielson (1991), is "undue influence of pointswhich are far away" especially for µ = 2. Simply removing theinfluenceofpoints beyonda certaindistancewould affect continuityand smoothness.The newmethod offers a solution to this problem. It involves anew process for calculating weights of function values for distance-related interpolation. It resembles inverse distance to a power. How-ever, it imposes a limit-of-influence, removing the influence ofcontrol points beyond a given distance rmax from the point of in-
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Figure 2. Effect of radial partitioning on the weights defined by the hy-brid inverse square function for interpolation at P

terest. It does this by a smooth join (at r = rjoin) between inversedistance to a power and a low-degree polynomial function of dis-tance. The latter accelerates the decline of the weighting function,hence its name.For the weighting of function values at control points on a sur-face around point P, the effect can best be illustrated by Figure 2.The circles defined by r = rjoin and r = rmax can be regarded as"radial partitioning" of the area of interest. The unlabelled dots areillustrative control points.The simplest form of the polynomial component is c (rmax – r)µwhere c is a constant. For the weighting function to be continuousand smooth at r = rjoin, the following equations need to be satisfied:
1/rµjoin = c

(
rmax – rjoin)µ ; (6)

–µ/rµ+1join = –µc
(
rmax – rjoin)µ–1 . (7)

From these equations, it is easily deduced that
rjoin = rmax – rjoin. (8)

Substituting into (6),
c = 1/r2µjoin. (9)

Rearranging (8),
rmax = 2rjoin. (10)

This ensures a balance between a gradual tapering-off and ex-clusion of influence from faraway points. A value of rmax smallerthan 2rjoin would make the transition from 1/r2 to zero relativelyabrupt. A value of rmax larger than 2rjoin would compromise theobjective of limiting the number of points used in the interpolant.The HIPFEAD version of interpolation formula (1) defines thedistance-dependent weights as follows:

w(r) =

1/rµ if 0 ≤ r ≤ rjoin;[(2rjoin – r) /r2join]µ if rjoin ≤ r ≤ 2rjoin;
0 if r ≥ 2rjoin.

(11)

The smoothness of the weighting function ensures thatHIPFEAD generates a C1 surface. Figures 3 and 4 illustrate the

Figure 3. HISFEAD with rjoin as the defining constant

Figure 4. HICFEAD with rjoin as the defining constant

HIPFEADweighting function in the cases µ = 2 and µ = 3. Theseare the subtypes of HIPFEAD considered in this project:
• Hybrid inverse square function embodying accelerated decline(HISFEAD), in which inverse square distance is joined smoothlyto a quadratic polynomial. HISFEAD can be considered a modifi-cation of weighting by inverse square distance.• Hybrid inverse cubic function embodying accelerated decline(HICFEAD), in which inverse cubic distance is joined smoothlyto a cubic polynomial. HICFEAD can be considered a modifica-tion of weighting by inverse cubic distance.
The application of HIPFEAD has a similar problem to inversedistance to a power, namely a near-zero divisor when the point ofinterest is close to a control point. In (11), wi = ∞when di = 0.The solution is similar to that used in (3) and (4). Define j byequation (4), making it the subscript of the nearest control point. If

dj ≥ rjoin the proximity problem does not arise. If dj < rjoin, whichmeans the reciprocal ofwj is dµj , then formula (1) can be replacedby
fP = [fj +∑

i ̸=j
dµj wifi]/[1 +∑

i̸=j
dµj wi]. (12)

This avoids the need to computewj.Onepotential characteristic ofHIPFEAD is the interpolant takinga constant value over one or more sub-areas. This will happen ifthere is an area for which for which only one control point is withindistance rmax; the interpolant will take the value of f at that controlpoint for the whole of that area. (This is, of course, a characteristicof all sub-areas in the case of nearest-neighbour interpolation.)A problem arises if a point of interest is more than rmax from
every control point. There are two would-be solutions, but each ofthem is problematic:
• Setting the interpolated f to zero in sub-areas which are at least
rmax from all control points; but this introduces discontinuitiesat the boundaries of those sub-areas.• Setting the interpolated f to nearest neighbour in sub-areaswhich are at least rmax from all control points; but this intro-duces discontinuities across lines which are equidistant fromtwo control points.
It is therefore a prerequisite forHIPFEAD that rmax is sufficientlylarge to ensure that every possible point of interest is within rmaxof at least one control point. One way of ensuring this is to imposea rectangular grid over the area of interest, setting a grid interval
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of∆l. This ensures that every point in the area is within∆l
√2 of amesh point. The distance to the nearest control point is computedfor eachmesh point. The largest of these values is set to dmin. Thenany value of rmax that exceeds dmin + ∆l

√2 will ensure that everypoint is within rmax of a control point. The quantity dmin + ∆l
√2can be considered as a grid-based lower limit on rmax.The upper limit on the choice of rmax depends on how far isconsidered too far to have an influence on the interpolated valueof f.

4 Case studies

The case studies are all simulated. They are defined in subsets ofthe (x, y) plane. Coordinates are in linear units such as (but notnecessarily) metres. The function f(x, y) being interpolated can bevisualised as a surface, so in terms of graphical representation f canbe visualised as a "height".Data points were generated in the chosen areas using pseudo-random numbers. "Height" values were created by combiningsmooth continuous functions of different types (exponential, log-arithmic, rational, trigonometric, etc) so as to imitate a non-mathematical physical surface. The advantage of so doing is thatthe accuracy of the interpolants can be measured against the samecombinations of functions.The methods compared were inverse-distance weighting (in-verse square and inverse cubic)) and HIPFEAD (HISFEAD andHICFEAD). They were applied initially to the original data and thento the "signal" after the removal of a trend model. In each case,the latter was a bivariate quadratic polynomial of the normalisedcoordinates that gave the best least-squares fit to the control points.
4.1 Case study 1

The first study considered a square region defined by 0 ≤ x ≤40000 and 0 ≤ y ≤ 40000. Pseudo-random numbers were used togenerate 1525 data points in the region. 1681 computation pointswere defined at 1000-unit intersections, so that 160 were boundarypoints and 1521 were non-boundary points.The pseudo-physical surface was generated by the followingcombination of functions:
f = 15 + 1.3 sin(x/4000) + 2.3 cos(y/5500) + 261/(x + 123.5)
+ 416.9/(40280 – y) + (20000 – x)/(y + 12000)
+ 0.9 exp[–{(x – 21452)2 + (y – 33461)2}/4000000]
– 1.3 exp[–{(x – 15436)2 + (y – 22786)2}/3000000]
+ exp[–{1.2 (x – 37755)2 + 0.8 (y – 28044)2}/3500000]
– exp[–{0.86 (x – 11458)2 + 1.14 (y – 3865)2}/5500000].

(13)

An overviewof the surface is given in Figure 5. The grid points inthe defined region coincide with the decimal points of the "height"values. They are 2500 units apart, whichmeans that the diagramdoes not capture all the complexities of the surface generated byequation (13).The trend model obtained from the control data for the purposeof deriving a signal was
Model = 13.48677 – 0.85755U + 0.85864V

+ 1.50270U2 + 0.55667UV + 4.67250V2. (14)

The normalised coordinates U and V in (14) are defined by
U = (x – 20000)/20000 and V = (y – 20000)/20000. (15)
The results from the four methods are shown in Table 1.

Figure 5. General-pattern surface map for case study 1

4.2 Case study 2

The second study considered a circular region defined by x2 + y2 ≤250002. Pseudo-random numbers were used to generate 1564 datapoints in the region. 1625 computation points were defined on con-centric circles with radii 1000, 2000, . . . , 25000 units so that the ithcircle has 5i equally-spaced computation points. That created 125boundary points on the outermost circle and 1500 non-boundarypoints on the inner circles.The pseudo-physical surface was generated by the followingcombination of functions:
f = (250000 – 3x)/(25000 + 0.00004x2)
+ (0.00012y – 2)2 /√2 + 0.00004y
+ 3 cos[0.0004 (x + y)]
+ 50000/(750000 + x – y).

(16)

Anoverviewof the surface is given inFigure 6. Thegrid points inthe defined region coincide with the decimal points of the "height"values. They are 2500 units apart, whichmeans that the diagramdoes not capture all the complexities of the surface generated byequation (16).The trend model obtained from the control data for the purposeof deriving a signal was
Model = 12.23124 – 1.95742U – 10.61535V

– 5.21667U2 + 1.00573UV + 10.27861V2. (17)

The normalised coordinates U and V in (17) are defined by
U = x/25000 and V = y/25000. (18)

The results from the four methods are shown in Table 2.
4.3 Case study 3

The third study considered the trapezoidal region illustrated inFigure 7. Pseudo-randomnumbers were used to generate 1504 datapoints in the region. 1126 computation points were defined whereunits-of-1000 gridlines crossed each other (except less than 500units from the boundary) and where they crossed the boundary.That created 131 boundary points and 995 non-boundary points.The pseudo-physical surface was generated by the following
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Table 1. Quality of fit from the different interpolation methods for Case Study 1
Inv Square Inv Cubic HISFEAD HICFEAD

RMS for 160 boundary points 1.351 (0.844) 0.906 (0.655) 0.825 (0.674) 0.816 (0.682)
RMS for 1521 non-boundary points 0.512 (0.380) 0.135 (0.124) 0.091 (0.099) 0.086 (0.088)
RMS for all 1681 computation points 0.641 (0.446) 0.308 (0.234) 0.269 (0.228) 0.264 (0.226)
Figures in brackets give the "signal" RMS when the 6-parameter trendmodel is removed.

Table 2. Quality of fit from the different interpolation methods for Case Study 2
Inv Square Inv Cubic HISFEAD HICFEAD

RMS for 125 boundary points 3.044 (1.329) 1.238 (0.866) 0.993 (0.855) 0.844 (0.735)
RMS for 1500 non-boundary points 1.447 (1.129) 0.571 (0.537) 0.460 (0.427) 0.399 (0.364)
RMS for all 1625 computation points 1.626 (1.146) 0.647 (0.569) 0.521 (0.471) 0.450 (0.405)
Figures in brackets give the "signal" RMS when the 6-parameter trendmodel is removed.

Figure 6. General-pattern surface map for case study 2

Figure 7. Trapezoidal region for Case Study 3

Figure 8. General-pattern surface map for case study 3

combination of functions:
f = (x/8000 + 3)2 + (y/6000 – 5)2√4 + x/8000 – y/18000
+ (y/18000 – 0.2)2 ln(14 + x/1600)
+ (x/16000 + 0.3)2 ln(16 + y/1800)
+√7 – x/5333 exp(y/18000 – 1)
+√5 – y/9000 exp(x/16000 – 1).

(19)

Anoverviewof the surface is given in Figure 8. The grid points inthe defined region coincide with the decimal points of the "height"values. They are 2000 units apart, whichmeans that the diagramdoes not capture all the complexities of the surface generated byequation (19).The trend model obtained from the control data for the purposeof deriving a signal was
Model = 19.18808 + 3.92375U – 12.78205V

+ 5.29684U2 + 2.64749UV + 5.97880V2. (20)
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Table 3. Quality of fit from the different interpolation methods for Case Study 3
Inv Square Inv Cubic HISFEAD HICFEAD

RMS for 131 boundary points 3.491 (0.161) 1.281 (0.085) 0.651 (0.061) 0.579 (0.053)
RMS for 995 non-boundary points 1.176 (0.037) 0.241 (0.011) 0.163 (0.009) 0.172 (0.008)
RMS for all 1126 computation points 1.625 (0.065) 0.492 (0.031) 0.270 (0.022) 0.255 (0.020)
Figures in brackets give the "signal" RMS when the 6-parameter trendmodel is removed.

The normalised coordinates U and V in (20) are defined by
U = x/16000 and V = y/18000. (21)

The results from the four methods are shown in Table 3.

5 Discussion

In all three case studies the most accurate interpolation method isHICFEAD, followed by HISFEAD, inverse cubic and inverse square.Although this applies to Case Study 3 overall, HISFEAD gives a 5%better fit thanHICFEAD at the non-boundary points, but onlywhenthere is no trendmodel.The case studies confirm the expectation that introducing atrendmodel and treating the residuals as a signal to be interpolatedimproves the accuracy of all four methods. The extent dependson the variations in the data and the type of trend model that ischosen. The improvement is least (14% to 30%) in Case Study 1,where the HIPFEADmethods show a slight accuracy reduction atthe non-boundary points.The case studies showa tendency forHICFEAD to give a better fitthan HISFEAD. This is part of a general tendency for inverse cubicdistance to give a better fit than inverse square distance. Given thatthe former has a tendency to produce wider flat areas and steeperslopes, it may not always be a better interpolator. The study byMusashi et al. (2018) favoured 2 as the best value of µ, although itshould be noted that the interpolationmade no use of trendmodels.One problem which is common to all the methods based oninverse distance to a power (including HIPFEAD) is the absence ofextrapolation outside the bounding polygon of control points. Thisis the reason for the fit at boundary points being inferior to that atnon-boundary points, which are more likely to be in the boundingpolygon. This is, in fact, a further reason for using a trendmodel,since a suitably chosen one will have an element of extrapolationaround the bounding polygon.Inverse-distance weighting and the enhanced versions pro-posed in this paper are exact interpolants with respect to thosedata points used as control points. As with other surface-fittingmethods, in order to have an independent estimate of accuracy,some data points will need to be set aside as test points or verifi-cation points, where the interpolation will produce residuals. Incases where the data is a finite set of actual physically-generated"height" values, interpolation cannot be exact at all of them if thereis to be a meaningful accuracy estimate for the region as a whole.Themain conclusion of this study is that a transition range ofaccelerated decline improves the accuracy of by inverse-distance-weighting 2D interpolation. The diminished influence of distancepoints is achieved by an adjoining polynomial of the same power asthat applied to inverse distance.As a result, comparisons between inverse-distance weightingand other methods of interpolation need to be reconsidered in thelight of the accuracy improvements obtainable using HIPFEAD. Toillustrate this point, consider the datum transformation exampleof Grgić et al. (2016). Inverse square distance weighting was foundto give comparable accuracy to Kriging andminimum curvature,

and better accuracy than the other methods obtainable from Surfersoftware. This strongly suggests that HIPFEAD (with µ = 2 or
µ = 3) would give superior results to anymethod in that study.
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