
Software, Architecture, and
Participatory Design

Stephen Rank, Carl O’Coill, Cornelia Boldyreff, and Mark Doughty

srank@lincoln.ac.uk

University of Lincoln



Questions

Alexander’s work in architecture (The Timeless Way
Of Building, A Pattern Language, etc.) are
widely-referred to in the software engineering
literature, but not in architecture

Why is this so?

Participation of the “end-user” in software
engineering and in architecture are becoming
increasingly important

What can software engineering and architecture
learn from each other?

Software, Architecture, and Participatory Design – p.1



Design Patterns

Software, Architecture, and Participatory Design – p.2



Alexander and Architecture

From The Timeless Way of Building:

“There is one timeless way of building.
It is thousands of years old, and the same today as it
has always been.
. . .
And there is no other way in which a building or a
town which lives can possible be made.” (pp 7–8)

“[The timeless way is] a process, which lies deep
within us: and only needs to be released.” (p 14)

Software, Architecture, and Participatory Design – p.3



Reactions: Software Engineers

From Gamma et al, Design Patterns:

“Even though Alexander was talking about patterns
in buildings and towns, what he says is true about
object-oriented design patterns.” (p 2)

“[Alexander’s] work has inspired us time and again.”
(p 356)

“[Alexander’s] descriptions of how patterns generate
designs implies that a pattern language can make the
design process deterministic and repeatable.” (p 356)

Software, Architecture, and Participatory Design – p.4



Reactions: Architecture

W S Saunders, “Book Reviews: A Pattern Language”,
Harvard Design Magazine 16, Winter/Spring 2002:

“ [Alexander] has little ‘cultural capital’. . . belief in
timeless and universal human needs is considered
naïve.”

“He is—in part—a wild anarchist, but A Pattern
Language is overwhelmingly authoritarian. . . its
ambitions are totalitarian. . . profoundly paternalistic”

“His book is based on observation, but it is really
observation without methodology”

Software, Architecture, and Participatory Design – p.5



But. . .

From the same article:

“A Pattern Language is imaginative, lively,
spontaneous, and abundant, overflowing with quickly
sketched, informed intuitions. Alexander keeps his
eyes on the prize of particular daily experiences; this
gives the book a pervasive warmth and humanity”

“among the few books about architecture that won’t
and shouldn’t go away”

“bounty of delightful details and insights”

“deserve[s], despite all its serious problems, to be
treated as a ‘classic.’”

Software, Architecture, and Participatory Design – p.6



Reactions: (DIY) Architecture

From (erm) Amazon’s reviews of A Pattern Language:

“Overall, a must have for any planner, architect, or
home-improver!”

“Every home project, from designing a new house
through to putting up a simple shelf, will take on
richer and deeper meaning.”

“Read this book if you’re designing [a] house,
working with an architect, looking for a new house, or
contributing to your city’s planning commission.”

“Many times I have stopped in mid hammerswing and
climbed down a ladder to consult this bible.”

Software, Architecture, and Participatory Design – p.7



Reuse and Patterns in Architecture

Patterns are not considered architecture

Usually considered ‘features’, small-scale reusable
details (such as cornices)

Reuse of larger-scale patterns is considered gauche;
large identikit housing estates, for example, are not
‘good architecture’ (at the æsthetic level)

Appearance

Software, Architecture, and Participatory Design – p.8



What’s the difference?

Why are architects and software engineers in such
disagreement?

Suggestion: Structuralism in social theory is
out-of-date and considered unhelpful, and Alexander
has no coherent theoretical foundation. On the other
hand, the a structuralist view of software is part of our
current view; components in a software system have
deterministic behaviour and are not prone to revolt.

Changing power structures in society belie the “one
timeless way”; power structures in software do not
often change.

Software, Architecture, and Participatory Design – p.9



What can we learn?

Software engineering has made much use of a
technique that is, at best, considered with
ambivalence in its original field

There is no direct analogy between software and
buildings: there is complexity of different kinds in
each field

Exploring the areas where the analogies break down
can bring out some useful ideas

Software, Architecture, and Participatory Design – p.10



Participatory Design

Software, Architecture, and Participatory Design – p.11



What is Participation?

Involve the user community in the design and
development of urban areas/buildings/software

Most often used in public works such as urban
regeneration

Encourage ‘ownership’ by the community

An approach to social development; aims to increase
social cohesion

Software, Architecture, and Participatory Design – p.12



PD in Architecture

From Henry Sanoff, Community Participation Methods in
Design and Planning, 2000

“[Participation] is commonly associated with the idea
of involving local people in social development.”

“integrates traditional top-down approaches with
bottom-up, resident-driven initiatives to create a
network of partnerships.”

“This collaborative involvement builds social capital.”

“Mediation [in conflict resolution] is a participatory
process. . . primary responsibility for the resolution of
a dispute rests on the parties themselves.”

Software, Architecture, and Participatory Design – p.13



e.g: Planning for RealTM

From New Economics Foundation, Participation Works,
1998

“Using the ‘Planning for Real’ process, a large 3D
model of the neighbourhood is made and used by the
people who live there to show their needs in a
non-confrontational way.”

“At the ‘Planning for Real’ exercise lots of illustrated
suggestion cards are available, covering community
facilities, crime and safety, the local environment,
health, housing, leisure, traffic and transport, work,
training and the local economy. Blank cards are also
available for people to make their own suggestions.”

Software, Architecture, and Participatory Design – p.14



PD in Software

Most often used in HCI

e.g., using prototypes with real users to drive the
development of the user interface

However. . .
Usually (so far) only used in interface
development, where it can be very successful
Use of homogeneous user groups does not
address conflicting needs of different groups.
There is work in CSCW to address these conflicts,
but not in very-large-scale projects (NHS?)

Software, Architecture, and Participatory Design – p.15



PD: Breaking Barriers

Traditional architecture has been the preserve of
“star architects”

PD opposes this, but can be done superficially; cf
Byker Wall: “This is clearly an ‘Erskine’ building, and
not something designed collectively by the Byker
residents. Yet an elaborate charade was gone
through. . . ” (G Towers, Building Democracy, 1995

Designers vs Users: “us” and “them” attitudes are
seen as unhelpful in PD

Software, Architecture, and Participatory Design – p.16



Participation in Action?

(Perceived as) expensive: “two years of community
involvement on an East London Estate”; can we do
this with software?

More democratic than traditional methods, which is
seen as essential in some contexts

Demystifies design, allowing lay people to break
through the barriers of professional jargon and
notations

Software, Architecture, and Participatory Design – p.17



Conclusions

Software, Architecture, and Participatory Design – p.18



Conclusions

Software and architecture have many differences. . .
The use of design patterns is almost completely
different. . .
. . . because software engineers and architects are
concerned with different things

. . . and much to learn from each other!
conflict resolution in Participatory Design
computer-supported PD in urban regeneration

Software, Architecture, and Participatory Design – p.19



Comparisons

Software Architects Physical Architects

Concerned with structure Concerned with
appearance as well

Aim to reuse Aim to be original
Patterns considered Patterns not always
valuable considered helpful
End result’s structure End result’s appearance
invisible to users very important
Collaboration-in-the-small Collaboration-in-the-large

Software, Architecture, and Participatory Design – p.20


	Questions
	Design Patterns
	Alexander and Architecture
	Reactions: Software Engineers
	Reactions: Architecture
	Butldots 
	Reactions: (DIY)
Architecture
	Reuse and Patterns in Architecture
	What's the difference?
	What can we learn?
	Participatory Design
	What is Participation?
	PD in Architecture
	emph {e.g}: Planning for Real${}^{mathrm {TM}}$
	PD in Software
	PD: Breaking Barriers
	Participation in Action?
	Conclusions
	Conclusions
	Comparisons

