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Max Planck Society, Frankfurt am Main 60528, Germany, 3School of Psychology, University of East London, London E15 4LZ, United Kingdom,
4Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid 28223, Spain,
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Schizophrenia is characterized by dysfunctions in neural circuits that can be investigated with electrophysiological methods, such as EEG
and MEG. In the present human study, we examined event-related fields (ERFs), in a sample of medication-naive, first-episode schizo-
phrenia (FE-ScZ) patients (n � 14) and healthy control participants (n � 17) during perception of Mooney faces to investigate the
integrity of neuromagnetic responses and their experience-dependent modification. ERF responses were analyzed for M100, M170, and
M250 components at the sensor and source levels. In addition, we analyzed peak latency and adaptation effects due to stimulus repetition.
FE-ScZ patients were characterized by significantly impaired sensory processing, as indicated by a reduced discrimination index (A�). At
the sensor level, M100 and M170 responses in FE-ScZ were within the normal range, whereas the M250 response was impaired. However,
source localization revealed widespread elevated activity for M100 and M170 in FE-ScZ and delayed peak latencies for the M100 and M250
responses. In addition, M170 source activity in FE-ScZ was not modulated by stimulus repetitions. The present findings suggest that
neural circuits in FE-ScZ may be characterized by a disturbed balance between excitation and inhibition that could lead to a failure to gate
information flow and abnormal spreading of activity, which is compatible with dysfunctional glutamatergic neurotransmission.
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Introduction
Event-related potentials (ERPs) and their neuromagnetic coun-
terparts, event-related fields (ERFs), reveal the timing of neuro-
nal events underlying sensory and cognitive processes with
millisecond precision. In addition to important insights into nor-

mal brain functioning, ERPs/ERFs have been used to identify
aberrant cortical processes in schizophrenia (ScZ; Luck et al.,
2011). These studies have revealed impairments both in the la-
tency and amplitude of ERP/ERF components for early, sensory-
driven potentials, such as the P50 (Freedman et al., 1983) and
P/M100 (Doniger et al., 2002), and later components, such as
N/M170 (Herrmann et al., 2004) and P/M300 (Ford, 1999),
which are involved in higher cognitive functions such as face
processing and decision making (Onitsuka et al., 2006; Lee et al.,
2010).

The large majority of studies investigating ERP/ERF compo-
nents have been conducted in chronically medicated ScZ pa-
tients. Because antipsychotic medication has an immediate
impact on brain activity (Tost et al., 2010) and may affect GABA
and glutamate levels (Kegeles et al., 2012), data from medicated
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patient populations need to be complemented by patient samples
that are free from the confounding influence of antipsychotics,
ideally, in first-episode (FE) patients that are medication naive.
Indeed, evidence on the presence of ERP/ERF abnormalities in
FE-ScZ has been less consistent, suggesting potential differences
in the underlying pathophysiological mechanisms during differ-
ent illness stages. For example, mismatch negativity aberrations
have been found to be more impaired in chronic than in FE-ScZ
patients (Umbricht et al., 2006), with some studies failing to find
a deficit at illness onset (Salisbury et al., 2002). Similarly, P50 and
N100 responses during sensory gating have been found to be
intact in FE-ScZ patients (Bachmann et al., 2010).

In the present study, we examined ERFs during perception of
Mooney faces in a sample of never-medicated FE-ScZ patients.
Mooney faces are two-tone images of human faces that are asso-
ciated with face-sensitive ERP/ERF responses such as the
N/M100 and N/M170 (George et al., 2005; Eimer et al., 2011) and
a negative deflection occurring between 200 and 250 ms indexing
the “closure” of incomplete visual information (Grützner et al.,
2010; Castelhano et al., 2013). Previously, we had reported that
FE-ScZ patients in the present sample are characterized by a dys-
regulation of beta/gamma-band activity during Mooney face per-
ception (Sun et al., 2013).

To further investigate the neurophysiology of visual dysfunc-
tion in ScZ, we examined ERFs in combination with advanced
source localization of face-sensitive MEG components (M100,
M170, and M250) to identify the cortical regions and processing
stages underlying impaired Mooney face perception in FE-ScZ
patients. Previous work highlighted the possibility that abnor-
malities in early sensory-driven potentials, such as the P100,
could drive impairments in higher cortical areas during percep-
tual tasks (Doniger et al., 2002; Dias et al., 2011) and that this
pattern of dysfunction is consistent with abnormal dorsal stream
activity and glutamatergic abnormalities caused by NMDAR def-
icits (Bickel and Javitt, 2009). In addition, neural responses of
visual perceptual learning were investigated to test the
experience-dependent modifications of neural responses, a pro-
cess critically mediated by NMDARs (Kleinschmidt et al., 1987;
Philpot et al., 2007).

Materials and Methods
Participants
Fourteen antipsychotic-naive ScZ patients (4 females) who were experi-
encing their first hospitalization were recruited from the Department of
Psychiatry and Psychotherapy, University of Cologne, and the Depart-
ment of Psychiatry, Psychosomatics and Psychotherapy, Goethe University
Frankfurt. All FE-ScZ patients met DSM-IV criteria for paranoid-ScZ and the
duration of untreated psychosis was 10.2 months (5.17 SD). Seventeen
healthy controls (4 females) were recruited from the local community and
screened for psychopathology with the German version of Structured Clin-
ical Interview for DSM-IV-R (SCID; for demographic information for pa-
tients and controls, see Table 1). Premorbid verbal intelligence was assessed
with the Mehrfachwahl-Wortschatz-Intelligenztest (MWT; Lehrl, 2005).

The study was performed according to the Declaration of Helsinki and
approved by the ethical committees of the Goethe University Frankfurt
and the University of Cologne. After complete description of the study to
the participants, written informed consent was obtained. DSM-IV diag-
nosis of ScZ was established with the SCID by thorough chart review and
in consultation with the treating psychiatrists. Patients and controls were
excluded if they had any neurological or ophthalmologic disorders that
might have affected performance or if they met criteria for alcohol or
substance dependence within the last month. Current psychopathology
was assessed with the Positive and Negative Syndrome Scale (PANSS; Kay
et al., 1986) and symptoms were grouped into five factors according to
the model of Lindenmayer et al. (1995), including the factors “positive,”

“negative,” “depression,” “excitement,” and “cognitive.” Patients with
first episode and healthy controls were of similar age.

Stimuli and task
Mooney and Ferguson (1951) developed a visual closure task consisting
of degraded pictures of human faces in which all shades of gray are
removed. Perception of Mooney faces involves the grouping of the frag-
mentary parts into coherent images based on the Gestalt principle of
closure. We used a set of 160 different stimuli consisting of the 40 original
Mooney stimuli presented in the upright orientation, mirrored at the
vertical axis, and in corresponding versions mirrored at the horizontal
axis (Fig. 1). The inverted stimuli were scrambled by moving single,
contiguous white or black foreground patches across the black or white
background areas, respectively. Participants were presented with a ran-
dom sequence of upright and inverted-scrambled stimuli that were
shown for 200 ms. The interstimulus interval ranged between 3500 and
4500 ms. Participants indicated via button press whether a face or a
no-face was presented. The hand assignment (left/right hand; face/no-
face response) was counterbalanced across subjects.

All participants completed four experimental runs, each of which was
composed of 60 upright and 30 inverted-scrambled stimuli. The stimuli
were displayed in the center of a translucent screen at a viewing distance
of 53 cm and subtended 19 degrees of visual angle. An LCD projector
located outside of the magnetically shielded room of the MEG was used
to project the stimuli onto the screen via two front-silvered mirrors.
Stimulus presentation was controlled using the Presentation software
package (Neurobehavioral Systems).

MEG data acquisition
MEG data were acquired using a 275-sensor whole-head system (Omega
2005; VSM MedTech) with a sampling rate of 600 Hz in a synthetic

Table 1. Biographical information, MWT, performance on face/no-face stimuli, and
A� of healthy control participants and FE-ScZ patients and PANSS scores for FE-ScZ
patients

Controls (n � 17) FE-ScZ (n � 14)

Mean SD Mean SD

Age (years) 22.71 2.44 25.64 5.33
Education (years) 15.53 4.89 13.43 5.03
Handedness 52.08 41.28 66.61 27.36
MWT 27.18 10.54 27.36 8.76
Face (%) 83.13 6.54 82.87 10.45
No-face (%) 84.25 13.01 72.87 12.52
Face (ms) 612 116 702 217
No-face (ms) 766 136 913 255
A� 0.90 0.01 0.86 0.01
PANSS

Negative — — 18.00 8.01
Excitement — — 8.79 4.82
Cognitive — — 12.64 6.57
Positive — — 12.86 5.20
Depression — — 15.29 5.88

Figure 1. Mooney stimuli: example trial sequence. A fixation cross, not represented in the
figure, was shown between each trial.
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third-order axial gradiometer configuration. Data were offline band-pass
filtered between 1 and 40 Hz and participants’ head movements were
monitored before and after each run using coils placed in the nasion and
1 cm anterior to the tragus of the left and right hear. Runs with movement
larger than 5 mm were excluded from further analysis.

Anatomical (MRI) data acquisition
A high-resolution anatomical MRI scan was acquired for each partici-
pant using a 3D magnetization-prepared rapid-acquisition gradient echo
sequence (160 slices; voxel size: 1�1�1 mm; FOV: 256 mm; TR: 2300
ms; TE: 3.93 ms). During the structural scan, vitamin E pills were applied
to the nasion and 1 cm anterior to the tragus of the right and left ear to
allow for coregistration of the MEG and MRI data. Scanning was per-
formed with a 3 tesla Siemens Trio scanner.

Behavioral data
Reaction times (RTs) and detection rates were analyzed using a 2 � 2
ANOVA with “group” (controls vs FE-ScZ) as the between-subject factor
and “condition” (face vs no-face) as the within-subject factor. In addi-
tion, we examined changes in behavioral parameters for face responses
during the first versus the second half of trials to test for changes in
perceptual learning. Statistically significant interactions were followed by
post hoc t tests. We also calculated the discrimination index A� (Grier,
1971) and compared it across groups using a t test.

MEG data processing and analysis
The preprocessing routines and calculation of ERFs was performed with
Fieldtrip software (http://fieldtrip.fcdonders.nl/). Trials were defined
through a �1000 ms prestimulus and 1000 ms poststimulus interval and

only trials with correct responses were consid-
ered for data analysis. Trials containing eye
blinks or artifact due to muscle activity or sen-
sors (SQUIDs) jumps were discarded using au-
tomatic artifact rejection routines. To control
for the higher number of trials in the face con-
dition versus the no-face condition, we ran-
domly excluded face trials to obtain the same
number of trials in the two conditions for each
participant. Overall, controls had a mean of 79
trials (SEM � 5.5) for each condition, whereas
FE-ScZ had 58 trials (SEM � 3.8). Statistics at
the sensor and at source level were calculated
within three time windows: M100 (70 –100
ms), M170 (140 –190 ms), and M250 (250 –300
ms; Figs. 2, Fig. 3) and baseline corrected (base-
line window: from �500 until �100 ms pre-
stimulus onset).

Sensor-level statistics. A nonparametric mixed-design two-way
ANOVA based on a permutation approach (Anderson and Ter Braak,
2003; Suckling and Bullmore, 2004) with one between-subject factor,
“group” (controls vs FE-ScZ), and one within-subject factor, “condi-
tion” (face vs no-face), was used for the statistical analysis at the sensor
level. The analysis was performed considering all MEG sensors. Sensors
were selected when the F-value surpassed an F-value corresponding to an
� level of 0.05 and assigned to clusters based on their spatial adjacency
defined by the template implemented in Fieldtrip. Cluster-level statistics
were calculated by taking the sum of the F-values within each cluster.
These calculations were performed for each main effect and the interac-
tion individually.

The observed cluster-level statistics were than tested against the distri-
bution of the maximum cluster-level statistics obtained from Monte
Carlo simulations with 1000 permutations for each effect. For each per-
mutation, group and condition assignments were shuffled and the esti-
mation of F-values and the clustering procedure were repeated on the
resampled data. The resulting maximum cluster values were used to
construct the maximum cluster-level distribution under the null hypoth-
esis. Clusters were considered to be significant at an � level of 0.05 if the
initially observed cluster value was greater than the 95th percentile of the
maximum cluster-level statistic distribution. Post hoc comparisons on
channels showing statistically significant interactions were computed
with nonparametric t tests based on a permutation approach (1000
permutations).

Source-level statistics. The statistical analysis at the source level was
computed with Statistical Parametrical Mapping (SPM8; http://www.fil.
ion.ucl.ac.uk/spm/), adopting a Bayesian inversion of hierarchical
Gaussian process models (Litvak et al., 2011). For each participant, a
head mesh with 8196 vertices was obtained by computing the nonlinear
transformation from the individual MRI to the template (MNI) space. In
a second step, we coregistered the sensor positions to the individual MRI
using the nasion and the preauricular points as fiducials and calculated
the forward solution by computing the lead field for each dipole (vertex)
on the cortical mesh with a “single shell” model. Finally, the inverse
solution was calculated using the multiple sparse priors algorithm. For all
components of interest (M100, M170, and M250), we calculated the
condition � group interaction and the main effect of condition (face vs
no-face) of a full-factorial 2 � 2 ANOVA model (two tails, �: 0.05). We
further performed post hoc contrasts (t tests, two tails, � Bonferroni
corrected to 0.008) to test the direction of the statistically significant
effects of the ANOVA.

Peak latency analysis
For each ERF-component, we extracted latency values over the anatom-
ical regions showing the strongest source group � condition interaction
(ANOVA; Tables 2, 3). These were defined based on the size of the
p-value. When two or more regions had the same p-value, the region with
the biggest cluster size was selected. A 2 � 2 ANOVA with one between-
subject factor,“group” (controls vs FE-ScZ), and one within-subject fac-

Figure 2. Corresponding ERF traces for all sensors and all trials. Black, Face condition; red, no-face condition.

Figure 3. Sensor-level analysis. Shown are ERF topographical distributions for the M100,
M170, and M250 for both controls and FE-ScZ (in femto-teslas, fT).

Rivolta et al. • Source MEG Activity in First-Episode Psychosis J. Neurosci., April 23, 2014 • 34(17):5909 –5917 • 5911

http://fieldtrip.fcdonders.nl/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


tor, “condition” (face vs no-face), was used for the latencies statistical
analysis.

Perceptual learning
To examine the effects of stimulus repetition on ERF responses, we per-
formed a within-group median-split analysis of amplitude values in the
face condition. In particular, for each subject, we divided trials in first
and second half according to their presentation order and compared

them at the source level using multiple t tests with SPM. We restricted the
analysis to those anatomical regions that previously showed significant
main effects of condition and interactions at the source level (for a list of
the masks adopted, see Table 4). The ROI selection was performed using
the WFU-PickAtlas (http://fmri.wfubmc.edu/software/PickAtlas). Be-
cause of the multiple t tests involved, the � level was set at 0.0083.

Correlations of MEG activity, behavior variables, and
PANSS ratings
For each ERF component, we extracted amplitude and latency values
over the anatomical regions showing the strongest source group � con-
dition interaction (Table 3). We then calculated Pearson correlation co-
efficients between amplitude values and Mooney face accuracy and RT
data (� � 0.025). We also calculated Pearson correlation coefficients
between amplitude values and the five PANSS subscales (negative, excite-
ment, cognitive, positive, depression; � � 0.01).

Results
Behavioral results
A main effect of group showed that controls were overall more
accurate than FE-ScZ patients (F(1,29) � 6.76, p � 0.015). How-
ever, there was no effect of condition (F(1,29) � 1.90, p � 0.179)
nor a group by condition interaction (F(1,29) � 2.97, p � 0.095).
RTs showed a main effect of condition (F(1,29) � 50.12, p �
0.001), with face responses being faster than RTs for no-faces.
There was a trend for slowed responses in the FE-ScZ group

Table 3. Anatomical regions showing the strongest group � category interaction
(ANOVA)

Name Side x y z p-value kE MEG

Middle orbitofrontal cortex L �18 50 �13 �0.001 548 M100
Parahippocampal gyrus L �22 �20 �24 �0.001 765 M170
Inferior frontal gyrus R 50 38 2 �0.001 204 M250

Amplitude and peak latencies values of these regions were extracted for the calculation of correlation with PANSS
scores. Side (right, R; left, L), MNI coordinates (x, y, and z), p values, cluster size (kE), and MEG component showing
the effect are reported.

Table 4. Anatomical regions selected for the preparations of anatomical masks
adopted in the calculation of the stimulus repetition effect because they showed a
main effect of condition and/or a group � condition interaction

M100 M170 M250

Name Side Name Side Name Side

Angular R Angular R Angular L
Calcarine L Calcarine R Angular R
Calcarine R Cingulate mid L Calcarine L
Frontal inf orb L Cingulate mid R Calcarine R
Frontal inf tri R Cuneus L Cingulate ant R
Frontal mid orb L Cuneus R Frontal inf oper L
Fusiform L Frontal inf orb L Frontal inf tri R
Fusiform R Frontal inf orb R Frontal mid L
Lingual R Frontal inf tri R Frontal mid R
Parietal inf R Frontal mid L Postcentral R
Parietal sup R Frontal sup orb L Precuneus L
Postcentral L Fusiform R Precuneus R
Postcentral R Lingual L
Precentral R Occipital inf L
Precuneus L Occipital mid L
Rolandic oper R Parahippocampal L
Supp motor area R Postcentral L
Supramarginal L Postcentral R
Supramarginal R Precentral R
Temporal inf L Supramarginal R
Temporal inf R Temporal sup L
Temporal mid L
Temporal mid L

Abbreviations: inf, inferior; sup, superior; mid, middle; orb, orbital; tri, pars triangularis; oper, operculum; ant,
anterior.

Table 2. Anatomical regions showing statistically significant post-hoc (t)
comparisons for the M100, M170, and M250

Name Side x y z p-value kE

M100
No-face FE-ScZ � no-face

controls (t)
Angular R 44 �52 30 �0.001 54
Frontal inf orb L �36 30 �12 �0.001 138
Frontal inf orb R 44 28 �14 �0.001 102
Postcentral R 24 �40 54 �0.001 129
Precentral R 24 �32 68 �0.001 52
Supramarginal L �52 �50 24 �0.001 102
Supramarginal R 34 �36 40 �0.001 86
Temporal Inf R 38 �2 �46 �0.001 311

No-face controls � no-face
FE-ScZ (t)

Temporal pole mid L �28 12 �36 �0.001 247
No-face � face (t)

Parietal sup R 20 �70 52 �0.001 143
Temporal inf R 38 �2 �46 �0.001 265
Temporal mid L �50 �32 �6 0.002 4
Temporal pole mid L �28 12 �36 �0.001 191

M170
No-face FE-ScZ � no-face

controls (t)
Cingulum mid L �8 14 38 �0.001 229
Cingulum mid R 10 18 38 �0.001 274
Frontal inf orb L �44 28 �14 �0.001 44
Frontal sup orb L �24 60 �4 �0.001 203
Postcentral R 36 �36 58 0.003 27
Precentral R 24 �32 68 �0.001 24
Supramarginal L �56 �50 30 0.007 40

No-face controls � no-face
FE-ScZ (t)

Frontal inf tri R 46 38 2 �0.001 218
Occipital inf L �20 �98 �6 �0.001 179

No-face � face (t)
Cingulum mid L �8 14 38 �0.001 194
Cingulum mid R 10 18 38 �0.001 221
Frontal sup orb L �24 60 �4 �0.001 159
Frontal inf tri R 48 38 2 0.001 113
Occipital inf L �20 �96 �6 0.004 65

M250
No-face FE-ScZ � no-face

controls (t)
Frontal inf oper L �54 14 12 �0.001 159
Frontal sup L �18 2 54 �0.001 68
Precuneus R 8 �60 60 �0.001 191
Precuneus L �8 �62 60 �0.001 203

No-face controls � no-face
FE-ScZ (t)

Postcentral R 22 �38 58 �0.001 173
No-face � face (t)

Frontal inf oper L �54 14 12 �0.001 110
Postcentral R 24 �38 56 �0.001 183
Precuneus L �8 �62 60 �0.001 169
Precuneus R 8 �60 62 �0.001 148

Side (right, R; left, L), coordinates (x, y, and z) in MNI space, p values, and cluster size (kE) are reported.

Abbreviations: inf, inferior; sup, superior; mid, middle; orb, orbital; tri, pars triangularis; oper, operculum.
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(F(1,29) � 3.73, p � 0.063), but no group by condition interaction
(F(1,29) � 1.22, p � 0.278). The discrimination index A�(Grier,
1971) indicated that controls had a better discrimination perfor-
mance compared with FE-ScZ patients (t(29) � 2.41, p � 0.023;
Table 1).

The 2 � 2 ANOVA to examine differences in perceptual learn-
ing showed a trend toward a statistically significant group �
presentation interaction for RTs (F(1,29) � 3.88, p � 0.059), indi-
cating that RTs did not improve in FE-ScZ patients through stim-
ulus repititions. No main effect was statistically significant (p �
0.05). The analysis of accuracy did not reveal main effects nor
interaction (p � 0.05).

MEG results: sensor data
A main effect of condition for the amplitude of the M100 com-
ponent was found, with face responses showing higher positive

amplitude in occipitoparietal sensors (Fig. 4). Similarly, there was
a main effect of condition for the M170 and face responses were
characterized by higher negative amplitude in frontocentral sen-
sors compared with no-face responses (Fig. 4). There were no
main effects of group or group � condition interactions for ei-
ther the M100 or the M170 amplitudes. In contrast, a main effect
of condition for the M250 indicated that the no-face condition
elicited higher activity in temporoparietal sensors bilaterally (Fig.
4). There also was a condition � group interaction over fronto-
temporal sensors, indicating that controls had increased M250
responses for no-faces relative to the FE-ScZ group (Fig. 5).

MEG results: source data
For condition effects (face vs no-face responses), there were sta-
tistically significant main effects of condition for any component.
Post hoc comparisons showed increased M100 responses for face
versus no-face responses in the left middle orbitofrontal lobe,
right inferior frontal gyrus (pars triangularis), left precuneus, and
right and left fusiform gyrus. M170 responses were higher in the
face condition in a network including the fusiform gyrus (bilat-
eral), the left parahippocampal gyrus, the right cuneus, the left
medial occipital gyrus, and the postcentral gyrus (bilateral). Fi-
nally, M250 face activity was elevated in the right inferior frontal
gyrus (pars triangularis) compared with the no-face condition
(Fig. 6).

For the condition � group interaction (controls vs FE-ScZ),
source analysis revealed statistically significant condition �
group interactions for M100, M170, and M250. Post hoc compar-
isons showed that FE-ScZ generated stronger M100 responses
than controls to stimuli in the face condition within the left mid-
dle orbitofrontal lobe, bilateral right inferior frontal gyrus (pars
triangularis), left precuneus, right fusiform gyrus, and left calca-
rine area (Fig. 7). Similarly, activity in the no-face condition was
elevated in FE-ScZ patients in the orbitofrontal cortex bilaterally,
supramarginal gyrus (bilateral), inferior temporal gyrus, and
right angular gyrus (Table 2). The only region where controls

Figure 4. Sensor-level statistics. Shown is the main effect of condition (face vs no-face) for the M100 (left), M170 (middle), and M250 (right). Top, Topoplot indicating the F-map distribution.
Statistically significant channels are highlighted. *p � 0.01; x � p � 0.05. Bottom, Face and no-face ERFs averages over sensors showing a statistically significant F-value.

Figure 5. Sensor-level statistics: Shown is the group � condition interaction for the M250.
Left, F-value (top) and T-value (bottom) distribution highlighting, respectively, the statistically
significant channels for the ANOVA and for the post hoc analysis. *p � 0.01; x � p � 0.05.
Right, ERF averages for the face and no-face conditions in controls and FE-ScZ over sensors
showing statistically significant effects.
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showed increased activity relative to the FE-ScZ group was within
the left middle temporal pole during the no-face condition (Table
2).

M170 amplitudes to face responses in FE-ScZ patients gener-
ated stronger activity than in controls within the fusiform gyrus
(bilateral), left parahippocampal gyrus, lingual gyrus, and middle
frontal gyrus. Conversely, controls showed higher face activity in
the left medial occipital gyrus and the right cuneus (Fig. 7). In the
no-face condition, FE-ScZ patients were characterized by ele-
vated activity within the left frontal superior and inferior orbital
cortex, cingulate cortex (bilateral), left supramarginal gyrus, and
right precentral and postcentral gyri. In contrast, controls
showed higher no-face activity within the left inferior occipital
gyrus and the right inferior frontal lobe (pars triangularis) rela-
tive to the FE-ScZ group (Table 2).

The analysis of the M250 indicated higher face-related activity
in controls in the medial frontal gyrus (bilateral) and the right
inferior frontal gyrus (pars triangularis; Fig. 7), whereas FE-ScZ
were characterized by a circumscribed increase relative to con-
trols within the precuneus (bilaterally), left inferior frontal lobe
(pars opercularis), and the medial part of the left superior frontal
lobe during the no-face condition. In addition, controls showed
higher no-face activity than FE-ScZ within the right postcentral
gyrus (Table 2).

ERF latencies
The analysis of the M100 revealed a main effect of group, with
controls showing an earlier M100 peak than FE-ScZ patients
(controls: mean � 80 ms, SEM � 2.1; FE-ScZ: mean � 96 ms,
SEM � 2.3; F(1, 29) � 25.74, p � 0.001). The group � condition

interaction indicated that the difference between controls and
FE-ScZ was higher in the no-face (mean � 21 ms, SEM � 3.2) than
the face condition (mean � 11 ms, SEM � 4.5; F(1,29) � 4.53, p �
0.042). However, there was no main effect or interaction for the
M170. In contrast, the analysis of the M250 showed a main effect of
condition (face: mean � 271 ms, SEM � 3.2; no-face: mean � 280
ms, SEM � 3.5; F(1,29) � 5.91, p � 0.021) and a group � condition
interaction (F(1,29) � 14.00, p � 0.001). Post hoc analysis showed that
controls (mean � 261 ms, SEM � 4.3) had an earlier peak latency in
the face condition than FE-ScZ (mean � 280 ms, SEM � 4.8; p �
0.007), and that the face component (mean � 261 ms, SEM � 4.3)
peaked faster than the no-face component (mean � 285 ms, SEM �
4.6) in controls only (p � 0.001).

Perceptual learning
M100 and M250 components showed no differences between the
first and the second half of trials in both groups. However, the
M170 was characterized by significantly reduced activity in later
trials in controls within the medial cingulate cortex (bilateral),
the right fusiform gyrus, and the left parahippocampal gyrus (Fig.
8). In contrast to controls, no change in the M170 amplitude was
observed in FE-ScZ during stimulus repetition.

Correlation between MEG activity and
behavioral performance
Results showed a negative correlation between no-face M100 ac-
tivity and ratings on the excitement (r(14) � �0.66, p � 0.010)
and cognitive dimensions (r(14) � �0.679, p � 0.008). No addi-
tional correlation reached statistical significance.

Discussion
Here, we demonstrate that source-reconstructed ERFs in
medication-naive FE-ScZ patients reveal a complex pattern of
hyperfunction and hypofunction of early visual regions and
higher cortical areas, which suggests the possibility of a disturbed
balance in excitation and inhibition (E/I balance). This contrasts
with the prominent evidence of reduced amplitudes of ERP/ERF
responses in ScZ, especially in chronic ScZ patients (Onitsuka et
al., 2006; Lee et al., 2010). In addition, given the aberrant percep-
tual learning during repetition suppression, a process that impli-
cates NMDARs (Schmidt et al., 2013b), our results are potentially
compatible with abnormal glutamatergic neurotransmission
during the early stages of psychosis.

Mooney faces and ERFs: sensor- and source-level analysis
Consistent with previous electrophysiological studies (Liu et al.,
2002; Schweinberger et al., 2002; Rivolta et al., 2012c), face-
sensitive MEG components (M100, M170, and M250) showed
prominent activity over posterior-lateral sensors (Fig. 3). In ad-
dition to the sensor-level analysis, we used an advanced source-
localization approach (Litvak et al., 2011) for the detection of
ERF components.

M100 is the earliest face component and is crucial for face
detection (Liu et al., 2002) and familiarity processing (Rivolta et
al., 2012c). M100 activity to face stimuli was elevated in the fron-
tal (i.e., left orbitofrontal cortex and right inferior frontal cortex),
temporal (i.e., bilateral fusiform gyri), and parietal (i.e., left pre-
cuneus) regions. The activation of frontal circuits with a latency
�100 ms is consistent with previous intracranial recordings (Bar-
beau et al., 2008) and MEG studies (Bar et al., 2006), suggesting
an initial matching of feedforward-mediated sensory processing
with memory templates in frontal regions (Liu et al., 2010), which

Figure 6. Source reconstructions: t-contrasts for face versus no-face. For M100: (1) left mid-
dle orbitofrontal lobe (�18, 50, �16); (2) right inferior frontal gyrus (pars triangularis; 48, 38,
2); (3) left precuneus (�8, �54, 14); (4) right fusiform gyrus (44, �34, �20); and (5) left
fusiform gyrus (�44, �38, �20). For M170: (1) left parahippocampal gyrus (�22, �24,
�22); (2) right cuneus (16, �70, 30); (3) left middle occipital gyrus (�24, �62, 32); (4) right
postcentral gyrus (�62, �12, 26); (5) left postcentral gyrus (64, �10, 18); (6) right fusiform
gyrus (42, �38, �24); and (7) left fusiform gyrus (�44, �40, 22). For M250: (1) right inferior
frontal gyrus (pars triangularis; 50, 60, 4). L, Left hemisphere; R, right hemisphere.
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could guide further processing in posterior brain areas (Lafon-
taine et al., 2013).

The M/N170 has been previously shown to mediate the pro-
cessing of face features, holistic processing, and memory for faces
(Harris and Aguirre, 2008; Harris and Nakayama, 2008; Caharel
et al., 2011; Rivolta et al., 2012b). Consistent with these functions,
the sources of the M170 originated in the left middle occipital
gyrus, fusiform gyri, and left parahippocampal gyrus (Gorno-
Tempini et al., 1998; Leveroni et al., 2000). Previous evidence
suggested that activity in the latency range of the M250 mediates
perceptual closure (Doniger et al., 2002), which is likely relevant
for the perception of Mooney faces (Grützner et al., 2010). In our
study, the M250 was localized to the right inferior frontal gyrus, a
region that has been shown to be involved in perceptual closure
(Sehatpour et al., 2006).

Aberrant network activity in ScZ patients during Mooney
face perception
FE-ScZ patients were characterized by a reduced discrimination
ability (A�) and a decrease in detection accuracy for both catego-
ries of stimuli. In addition, there was a trend toward an impaired
ability to improve RTs during stimulus repetition, suggesting
dysfunctional perceptual learning in the FE-ScZ group.

Sensor-level M100 and M170 responses were intact in FE-ScZ,
which contrasts with previous studies in chronic ScZ reporting
reduced ERP responses during face processing (Lee et al., 2010).
The only difference for sensor-level ERF components was observed

for the M250, which has been related to clo-
sure processes during perception of frag-
mentary/incomplete visual information
(Doniger et al., 2002).

The source analysis of ERF compo-
nents revealed, however, a more extended
pattern of dysfunctions in FE-ScZ. We
found increased M100 amplitudes in FE-
ScZ patients in response to face stimuli
relative to controls, in sensory (primary
motor and primary somatosensory cor-
tex), face (fusiform gyrus, orbitofrontal
cortex), and memory (precuneus) re-
gions. Similar to the M100 component,
face-related M170 amplitudes were also
elevated in FE-ScZ within the left parahip-
pocampal and right inferior occipital gyri
and within the postcentral, fusiform, lin-
gual, and superior temporal gyri bilater-
ally. Contrary to early MEG components,
the M250 amplitude in FE-SCZ was re-
duced over medial frontal gyri, the right

inferior frontal gyrus, and earlier peak latencies relative to
FE-ScZ.

Overall, the increased amplitudes and delayed latency of the
M100 to both face and no-face stimuli highlight that the earliest
stage of face identification is impaired in FE-ScZ patients. Early
face-processing abnormalities are furthermore supported by the
increased M170 amplitude in FE-ScZ. These findings are consis-
tent with a large body of work implicating impaired sensory sig-
naling in ScZ as a mechanism for impaired perceptual and
cognitive processes. (Javitt, 2009; Yeap et al., 2009; Rissling et al.,
2010). This reduced bottom-up-driven sensory precision could
lead to a compensatory excessive reliance on top-down informa-
tion, as reflected by the M250, thus potentially causing a state of
aberrant salience, the tendency to assign meaning to otherwise
irrelevant information (Kapur, 2003). This is further supported
by our data showing reduced behavioral accuracy and discrimi-
nation ability in FE-ScZ with respect to controls.

To examine whether the abnormalities in ERF responses in
FE-ScZ are related to impaired perceptual learning, we compared
ERF responses to the first versus the second half of trials. Results
showed that the increased M100 and M170 responses in FE-ScZ
can only be partially explained by a failure to adapt to repeated
stimulus presentation. In controls, the M170 face activity was
significantly decreased between the first and second half of trials
within the left/right middle cingulate cortex, left middle frontal
gyrus, left parahippocampal gyrus, and right fusiform gyrus,
whereas in the FE-ScZ group, this effect was absent. Specific rep-
etition suppression of the M170 component is consistent with
evidence that neural populations in the ventral stream use predic-
tions regarding expected inputs that lead to reduced activation in
face-sensitive areas such as the fusiform gyrus (Yovel and Kanwisher,
2004). In FE-ScZ, this mechanism seems to be impaired, because the
M170 was not modulated by repeated exposure to face stimuli,
which is in agreement with previous EEG and fMRI studies (Onit-
suka et al., 2009; Schwartz et al., 2013) and with the behavioral evi-
dence of a failure to adapt RTs during stimulus repetition.

Impaired E/I balance of neural circuits in FE-ScZ: relationship to
previous research and pathophysiological hypotheses
Elevated M100 and M170 responses in FE-ScZ are potentially
compatible with the possible role of aberrant glutamatergic neu-

Figure 7. Source reconstructions of the face condition showing t-maps of FE-ScZ � controls (a) and controls � FE-ScZ (b). a,
For M100: (1) left mid-orbitofrontal gyrus (�18, 50, �16); (2) left precuneus (�8, �52, 12); (3) right inferior frontal gyrus (pars
triangularis; 54, 24, 4); (4) right fusiform gyrus (44, �34, �20); (5) right superior temporal lobe (56, �42, 14); (6) left inferior
temporal gyrus (�42, �34, �18); (7) left rolandic operculum (�46, �28, 16); and (8) left calcarine cortex (�4, �92, �12).
For M170: (1) left parahippocampal gyrus (�22, �24, �22); (2) right postcentral gyrus (64, �10, 18); (3) left postcentral (�62,
�12, 26); (4) left fusiform gyrus (�44,�40, 22); (5) right fusiform gyrus (42,�38,�24); (6) right lingual gyrus (10,�82,�8);
(7) right inferior occipital gyrus (38, �82, �16); (8) left lingual gyrus (�12, �94, �18); (9) right superior temporal gyrus (62,
�42, 22); and (10) left superior temporal gyrus (�50, �36, 12). b, For M170: (1) left middle occipital gyrus (�24, �62, 32); (2)
right cuneus (18, �68, 28). For M250: (1) right inferior frontal gyrus (pars triangularis; 50, 38, 2); (2) right middle frontal gyrus (26,
48, 2); and (3) left middle frontal gyrus (�26, 46, 2). L, Left hemisphere; R, right hemisphere.

Figure 8. Source reconstruction for the M170. Shown are T-contrasts between the first (Half
1) and the second (Half 2) half of trials showing activity in: (1) left middle cingulate cortex (�4,
0, 34); (2) right middle cingulate cortex (4, �8, 32); (3) left middle frontal gyrus (�36, 26,
�42); (4) left parahippocampal gyrus (�22, �8, �32); and (5) right fusiform gyrus (34, 0,
�38). L, Left hemisphere; R, right hemisphere.

Rivolta et al. • Source MEG Activity in First-Episode Psychosis J. Neurosci., April 23, 2014 • 34(17):5909 –5917 • 5915



rotransmission at illness onset. Schobel et al. (2013) demon-
strated glutamatergic-mediated hypermetabolism as an early
marker for the beginning of psychosis. Ketamine, an antagonist
of the NMDAR, reproduces this pattern and furthermore leads to
a disturbance in E/I-balance parameters, as demonstrated
through elevated firing rates, BOLD activity, and neural oscilla-
tions (Abel et al., 2003; De Simoni et al., 2013). Moreover, there is
preliminary evidence that ketamine leads to an increase of ERP
amplitudes and latencies (Church and Gritzke, 1987; Connolly et
al., 2004; Schmidt et al., 2013a) and impairs perceptual learning,
both of which are compatible with the present findings. Finally, it
is also conceivable that deficits in NMDARs effect circuit func-
tions by affecting GABAergic interneurons (Behrens et al., 2007),
thus inducing a transitory state of disinhibition (Schobel et al.,
2013). Because E/I balance parameters are crucial for the emer-
gence of coordinated network oscillations, in particular at beta/
gamma-band frequencies (Uhlhaas and Singer, 2012), the
present findings are potentially compatible with the observation
of reduced gamma-band activity and a failure to downregulate
beta-band activity during Mooney face processing (Sun et al.,
2013).

Our results are also consistent with previous fMRI work dem-
onstrating increased activity during face perception in people at
risk of psychosis (Seiferth et al., 2008), thus highlighting the im-
portance of early perceptual deficits in the explanation of face-
related processing impairments in ScZ. Although previous work
has highlighted impairments in dorsal stream functioning under-
lying early visual processing deficits (Doniger et al., 2002; Butler
et al., 2007), the high-contrast levels of Mooney faces are mainly
targeting parvocellular pathways that project predominantly to
the ventral stream. Therefore, it is likely that, in addition to dorsal
stream impairments, ventral stream dysfunctions are also in-
volved in perceptual deficits in FE-ScZ (Plomp et al., 2013).

Summary
Our study shows that source reconstructed ERF responses in
MEG data may allow novel insights into the neurophysiological
basis of complex visual processing deficits in ScZ. The results
demonstrate that individuals with FE-ScZ are characterized by a
dysregulation of neuronal activity, as indicated by increase ERF
responses during early face processing (i.e., M100 and M170) and
by an hypoactivity of regions involved in late face processing (i.e.,
M250). We suggest that the early hyperactivity could be due to a
shift of the excitation/inhibition balance toward excitation,
which can be potentially driven by NMDAR hypofunction and
is furthermore consistent with impaired perceptual learning
in FE-ScZ.

The difference between sensor- and source-level results may
reflect the fact that sensor-level data can be complicated due to
the cancellation of sources (Hari and Salmelin, 2012). MRI-
constrained source reconstruction of MEG data may thus allow a
clearer insight into the electrophysiological dysfunctions (Gross
et al., 2013). Future studies could investigate the potential con-
tribution of low-frequency (theta/�) activity and compare
source-level ERF responses between chronic and FE-ScZ patients
and the effects of NMDAR antagonists such as ketamine on neu-
romagnetic activity.
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