

Probabilistic Graphical Modeling for Software Product Lines

A Framework for Modeling and Reasoning under Uncertainty

by

Anas Almharat

A thesis submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Informatics

In

 School of Architecture, Computing and Engineering

of the

University of East London

Supervisory team

Dr. Rabih Bashroush

Dr. Usman Naeem

London 2016

Probabilistic Graphical Modeling in Software Product Lines

A Framework for Modelling and Reasoning under uncertainty

Copyright 2016
by

Anas Almharat

1

Abstract

This work provides a holistic investigation into the realm of feature modeling within
software product lines. The work presented identifies limitations and challenges within
the current feature modeling approaches. Those limitations include, but not limited to,
the dearth of satisfactory cognitive presentation, inconveniency in scalable systems,
inflexibility in adapting changes, nonexistence of predictability of models behavior, as
well as the lack of probabilistic quantification of model’s implications and decision
support for reasoning under uncertainty. The work in this thesis addresses these
challenges by proposing a series of solutions. The first solution is the construction of a
Bayesian Belief Feature Model, which is a novel modeling approach capable of
quantifying the uncertainty measures in model parameters by a means of incorporating
probabilistic modeling with a conventional modeling approach. The Bayesian Belief
feature model presents a new enhanced feature modeling approach in terms of truth
quantification and visual expressiveness. The second solution takes into consideration
the unclear support for the reasoning under the uncertainty process, and the challenging
constraint satisfaction problem in software product lines. This has been done through the
development of a mathematical reasoner, which was designed to satisfy the model
constraints by considering probability weight for all involved parameters and quantify
the actual implications of the problem constraints. The developed Uncertain Constraint
Satisfaction Problem approach has been tested and validated through a set of designated
experiments.

Profoundly stating, the main contributions of this thesis include the following:

• Develop a framework for probabilistic graphical modeling to build the purported
Bayesian belief feature model.

• Extend the model to enhance visual expressiveness throughout the integration of
colour degree variation; in which the colour varies with respect to the predefined
probabilistic weights.

• Enhance the constraints satisfaction problem by the uncertainty measuring of the
parameters truth assumption.

• Validate the developed approach against different experimental settings to
determine its functionality and performance.

i

TO MY PARENTS

ii

Contents

Contents ii

List Of Figures v

List Of Tables vi

List Of Abbreviations x

Part I Motivation 1

1 Introduction 2

1.1. “DISCONTENT IS THE FIRST NECESSITY OF PROGRESS” ... 2

1.2. CHAOS ISN’T JUST A THEORY; IT IS LIKEWISE A LADDER .. 2

1.3. PROBLEM STATEMENT .. 3

1.4. DESIGNATED APPROACH ... 4

1.5. GOALS AND CONTRIBUTIONS ... 6

1.6. READER’S GUIDE MAP ... 7

iii

PART II Introduction 9

2 Background 10

2.1. SOFTWARE PRODUCT LINES: PITFALL OF ECONOMY AND RISE OF PRODUCT LINES 11
2.1.1. The Pitfall of Economics ... 11
2.1.2. Mass Customization Notion ... 12
2.1.3. Mass Customization and Mass Production ... 13
2.1.4. Mass customization Essentials Kit ... 14
2.2. THE PROMINENCE OF SOFTWARE PRODUCT LINES ... 15
2.2.1. SPL: Why and Wherefores .. 15
2.2.2. Myth versus Reality: SPLE as Lego construction .. 21
2.2.3. Drawbacks of SPLE .. 22

PART III Literature Review 23

3 Managing Variabilities 24

3.1. SPLE: A TALE OF VARIABILITIES .. 24
3.1.1. Domain engineering ... 25
3.1.2. Application engineering ... 25
3.1.3. Management ... 26
3.2. COMMONALITIES AND VARIABILITIES .. 27
3.3. MODELING SOFTWARE PRODUCT LINES’ VARIABLES ... 29
3.3.1. Feature Modeling .. 30
3.3.2. Decision Modeling .. 31
3.3.3. Orthogonal Variability Modeling ... 32
3.3.4. Other Modeling Approaches ... 33

4 Feature Modeling in Depth 34

4.1. FEATURE MODELING: AN EXPLICATION ... 35
4.1.1. Review method .. 35
4.1.2. Review goal ... 35

iv

4.1.3. Inclusion and exclusion criteria .. 36
4.1.4. Data basis and selection criteria ... 36
4.1.5. Data Hunt and assessment ... 38
4.1.6. Review Outcome ... 40
4.2. FEATURE MODELING EXPLORATION .. 44
4.2.1. Feature modeling notations .. 45
4.3. EVOLUTION AND EVALUATION OF FMS .. 50
4.3.1. Feature Oriented Domain Analysis .. 53
4.3.2. Feature-Oriented Reuse Method ... 54
4.3.3. FeatuRSEB .. 55
4.3.4. Generative programming .. 57
4.3.5. Van Gurp and Bosch Feature Model .. 58
4.4. DRAWBACKS OF FEATURE MODELING ... 59
4.4.1. Assessment criteria ... 59
4.4.2. Appraisal and results .. 61
4.5. AUTOMATED ANALYSIS OF FEATURE MODELS ... 66
4.5.1. Constraint Satisfaction Problem solver .. 67
4.5.2. SAT solvers ... 70
4.5.3. Binary Decision Diagram solvers ... 71
4.6. CONCLUDING REMARKS .. 71

PART IV Modeling 73

5 Modeling Under Uncertainties 74

5.1 THE NOTION OF FEATURE MODEL SEMANTIC ... 76
5.1.1. Feature Model Prominence ... 76
5.1.2. Relationships in Feature Model .. 77
5.2. THE NEED FOR NEW MODEL ... 80
5.3 BAYESIAN MODELING ... 82
5.3.1. Bayesian Belief Feature Model BBFM .. 85
5.4. MEASURING THE UNCERTAINTY LEVEL ... 94
5.4.1. Computing the Truth Assumption of Model Parameters ... 95

v

5.5. EXTENDED BBFM AND BELIEF INTENSIFICATION ... 114
5.5.1. Physics of Visual Expressiveness in BBFM ... 115
5.5.2. Use of “colour variation” to project the “belief variation” 117
5.6. FURTHER DISCUSSION AND APPLICABILITY ERROR! BOOKMARK NOT DEFINED.
5.7. SUMMARY .. ERROR! BOOKMARK NOT DEFINED.

PART V Reasoning 128

6 Reasoning Under Uncertainties 129

6.1. INTRODUCTION ... 129
6.1.1. Further Highlights .. 132
6.2. UNCERTAIN CONSTRAINTS SATISFACTION PROBLEM ... 133
6.3. PROBLEM EXTRACTION AND CONSTRAINTS FACTORIZATION 137
6.4. OPTIMIZING UNDER UNCERTAINTY .. 148
6.5. SEARCHING FOR OPTIMAL DECISION .. 151
6.6. EXPERIMENTAL RESULTS .. 157
6.7. DISCUSSION .. 170
6.5. SUMMARY AND DISCUSSION ... 173

PART VI Conclusion 174

7 Conclusion 175

7.1. FUTURE WORK .. 177

References 179

vi

List of Figures

2. 1 Customized 3D printed vases ... 12

2. 2 Mass production versus Mass customization dialogues ... 14

2. 3 Transition from conventional production to product lines .. 15

2. 4 Percentage of defects per number of reviews and testing .. 18

2. 5 Costs of SPL vs cost of single production system .. 19

2. 6 Time to market for SPL vs single production system .. 20

2. 7 Productivity of SPL vs productivity of single system ... 20

2. 8 SPL Lego myth .. 21

3. 1 Scheme of Software Product Lines Engineering .. 26

3. 2 Domain engineering versus Application engineering .. 29

3. 3 High heterogeneity of variability modeling notations .. 29

3. 4 Suggested Feature model for 3D Printer ... 30

3. 5 Examples of Decision modeling for 3D printers .. 31

3. 6 Suggested Orthogonal variability model for 3D printer ... 32

3. 7 Simplified UML Use case diagram for the 3D printer ... 33

4. 1 Review Data assessment .. 38

4. 2 Data classification matrix ... 39

4. 3 Feature's definition classification .. 41

4. 4 Feature modeling's definition classification .. 43

vii

4. 5 Feature diagram graphical notations ... 45

4. 6 Mandatory relationship ... 46

4. 7 Optional relationship .. 46

4. 8 Or relationship ... 47

4. 9 Alternative relationship ... 48

4. 10 Extended feature model notation (Benavides et al., 2009) .. 50

4. 11 Feature models evolution .. 52

4. 12 FODA modeling notation of 3D printer .. 53

4. 13 FORM modeling notation of 3D printer .. 55

4. 14 FeatuRSEB modeling notation of 3D printer .. 56

4. 15 GP modeling notation of 3D printer .. 57

4. 16 Van Gurp and Bosch feature modeling notation of 3D printer 58

4. 17 CSP mapping of feature model ... 67

4. 18 CSP mapping of 3D printer feature model .. 69

4. 19 PL mapping of feature model ... 70

5. 2 Graphical Representation of Bayesian Conjunction .. 87

5. 3 Truth Assumption change in Bayesian Conjunction ... 90

5. 4 Graphical Representation of Bayesian Disjunction .. 91

5. 5 Truth Assumption change in Bayesian Disjunction .. 92

5. 6 Graphical Representation of Bayesian Exclusive Disjunction 93

5. 7 Truth Assumption change in Bayesian Exclusive Disjunction 95

5. 8 Graphical Representation of Bayesian Tautology .. 96

5. 9 Truth Assumption value in Bayesian Tautology ... 97

5. 10 Translation from 3D Printer FM into 3D Printer BBFM .. 93

5. 11 probability of obtaining s number of features in valid Bayesian disjunction 106

5. 12 Translation from 3D Printer FM into BBFM 1. ... 113

5. 13 Translation from 3D Printer FM into BBFM 2. ... 116

5. 14 Graphical representation of Bayesian Belief Feature Model. 117

5. 15 Graphical anticipation with “use of colour” ... 118

5. 16 Colour use in BBFM .. 119

5. 17 Colour change 1 .. 121

viii

5. 18 Colour change 2 ... 122

5. 19 Colour change 3 ... 123

6. 1 Measure difference between weight and satweight .. 144

6. 2 Satweight response vs change in number of variables and constraints 144

6. 3 Measure difference between weight and satweight .. 150

6. 4 Satweight response versus change in number of variables and constraints 151

6. 5 Difference between satweight and weight & Satweight behavior in entry 6.2 160

6. 6 Difference between satweight and weight & Satweight behavior in entry 6.3 161

6. 7 Difference between satweight and weight & Satweight behavior in entry 6.4 162

6. 8 Difference between satweight and weight & Satweight behavior in entry 6.5 163

6. 9 Difference between satweight and weight & Satweight behavior in entry 6.6 164

6. 10 Difference between satweight and weight & Satweight behavior in entry 6.7 165

6. 11 Difference between satweight and weight & Satweight behavior in entry 6.8 166

6. 12 Difference between satweight and weight &Satweight behavior in entry 6.9 167

6. 13 Difference between satweight and weight & Satweight behavior in entry 6.10 168

6. 14 Difference between satweight and weight & Satweight behavior in entry 6.11 ... 169

6. 15 Difference between satweight and weight & Satweight behavior in entry 6.12 169

6. 16 Uncertain CSP behavior under different dependency configurations 171

ix

List of Tables

2. 1 Organizational and Business Advantages of PLs .. 17

2. 2 Drawbacks of SPLE ... 22

4. 1 Feature’s definition in literature ... 40

4. 2 Feature model's definition in literature ... 42

4. 3 Feature modeling notations timeline ... 51

4. 4 FODA notation specifications ... 53

4. 5 FORM notation specifications ... 55

4. 6 FeatuRSEB notation specifications ... 56

4. 7 GP notation specifications ... 57

4. 8 VBFM notation specifications .. 58

6. 1 Dependency Contexts and Constraints Truth Domain ... 141

6. 2 The obtained sat weight value for different Worlds .. 144

6. 4 Obtained success ratio of example 6.1 ... 146

6. 5 Dependency contexts truth domains ... 149

6. 6 Constraints truth domain ... 149

6. 7 Obtained results after the reasoning about all possible worlds 150

6. 8 Dependency contexts combinations, used in the experiment 158

x

List of Abbreviations

ADL..Architecture Description Language
BBFM...Bayesian Belief Feature Model
BDD..Binary Decision Diagram
CVL..Constraint Variability Language
CSP..Constraint Satisfaction Problem
DAG...Directed Acyclic Graph
DM..Domain Model
FD..Feature Diagram
FM..Feature Model
FODA..Feature Oriented Domain Analysis
FORM...Feature Oriented Reuse Method
GP...Generative Programming
OVM...Orthogonal Variability Modeling
PLP..Product Line Practice
SEI...Software Engineering Institute
SPL...Software Product Lines
SPLE..Software Product Lines Engineering
UML..Unified Modeling Language

xi

Acknowledgments

There are so many people to whom I owe credit for this thesis. This thesis, and the work
it documents, would not have seen the light without the support and the encouragement
from those who always had a faith in me.

During my PhD journey, I was blessed to meet new friends from all over the world.
Those, who always were there for me and became my family; family to have, and friends
to keep for lifetime.

If I may begin by acknowledging my director of study, Dr. Rabih Bashroush, who was
always a great inspiration, and would always receive admiration for his hard work,
leadership, bright ideas, dedication and encouragement, which he had been
continuously providing during my studies. It has become clear to me that having him, as
my first supervisor was invaluable bless.

I also would like to thank Dr. Usman Naeem for his incisive feedback during my
research.

I would also extend my acknowledgements to Dr. Ameer Al-Nemrat, who was always a
great support and pushed me to run the extra miles.

Finally, to my family back in Jordan, your unconditional love and support, had always
motivated me to wake up early in the morning and do what I had to do, thank you!

“We can’t solve problems by using the same thinking we used to create them”

 Albert Einstein -

1

Part I

Motivation

2

Chapter 1

Introduction

1.1. “Discontent is the first necessity of progress”

Thomas Alva Edison (1913-1947), a great influencer and inventor once said:
“Restlessness is discontent and discontent is the first necessity of progress. Show me a
thoroughly satisfied man and I'll show you a failure”.

This lone quotation ignited the vital spark of my thesis, the same way discontent ignited
revolutions, forward thinking and innovation as testified throughout history. Those
words of sage ought to be consciously noted, for in them I find the spur of what is
starting to take place in the realm of Software Product Line Engineering.

Linking this line of wisdom with Software Product Lines, the discontent with current
feature modeling approaches and satisfiability techniques in software product lines,
which are coupled with numerous problems, shaped the backbone in writing this thesis.
The necessity to have more optimized feature models with better satisfiability techniques
provided eagerness to writing this thesis.

1.2. Chaos isn’t just a theory; it is likewise a ladder

Chaos theory is a scientific theory best describing the unpredictability and randomness
of systems as mentioned by the French mathematician Henri Poincare (1854-1912). It
conveys that even negligible and unnoticeable variances in the beginning of any process

3

might produce significant and weighty differences at the end. In terms of software
product lines ‘SPL’ and Feature Modeling ‘FM’, any trivial error in the process can lead
to vast complications and untraceable failures. Then again, every system is subjected to
chaos. There’s a reasonable probability and potential for any system, no matter how well
designed, to fall into chaos.

Chaos is largely thought to be a drawback, obstacle and negativity. It is often related to
mislead, vagueness and disorder. In this dissertation, the term ‘Chaos’ doesn’t merely
relate to the chaos theory, instead chaos takes after the lack of precision and the high
level of complexity in terms of Data Modeling and automated analysis in software
product lines. This Chaos ought to be terminated and advancements must be provided in
view of software product lines. In terms of FM techniques, it implies that complexity
must cease to exist; the upheavals present in feature modelling discussed in this
dissertation are put under the lenses of study aiming to answer some questions and to
find more suitable solutions.

1.3. Problem Statement

As stressed out beforehand, the province of feature modelling, and its automated
analysis traverses great challenges and has considerable shortcomings.

In favor of tackling those shortcomings, this dissertation probes four questions scarcely
taken into consideration by related literature.

Those questions are researched in depth in the following chapters:

• Probe question 1: What are the modeling techniques used to capture variability
in Software product lines engineering?

• Probe question 2: How to quantify the occurrence uncertainty in model
parameters, while maintaining the existing semantics?

• Probe question 3: To what extent can we enhance the visual expressiveness of a
feature model?

4

• Probe question 4: How to improve the reasoning efficiency of constraints
satisfaction problem, by taking into consideration the degree of uncertainty of
model parameters?

1.4. Designated Approach

A concise view of the methods delivered in our dissertation is presented upon
considering the following steps:

Step one: Exploration

The first step lays in launching and establishing a meticulous groundwork to the
dissertation. This is pertained by means of extensive literature review, in which a state of
art of software product lines is presented, with an emphasize on feature modeling to
create a roadmap for the succeeding steps and derive queries to be systematically dealt
with accordingly:

• An overview to understand software product lines and feature modeling
techniques is targeted by investigating current approaches of feature modeling for
Software product Lines ‘SPL’ from previous literature work.

• After providing a clear background, setting out definitions, and identifying the
significance and substantiality of our addressed subject; an evaluation of feature
models in software product lines is undertaken.

• This evaluation emerges into an in-depth study of feature modeling approaches
by dismantling and analyzing them in practice, presentation and notations.
Throughout this study, a real life exemplar developed by the author as an
illustration and case to work on, is employed; which is the example of 3D Printer.
The evaluation is undertaken according to designated criteria taking into
consideration the existent glitches in selected feature modeling notations. The
evaluation covers a selection of criterions: scalability, traceability, articulacy,
comprehensiveness and visual presentation suitability.

• A systematic literature review is undertaken to provide a better understanding,
identify knowledge gap, pinpoint limitations in current feature models, and detect
the glitches and shortcomings associated. The knowledge gap lays in the truancy

5

of probabilistic feature models, absence of frameworks to capture uncertainties in
feature models of software product lines, and the lack of reasoning techniques.

• The overall review derives and leads to dealing with the research questions
answered using methods elaborated in the following steps.

Step two: Construction

The second step takes place as an attempt to find solutions to the glitches present in
current feature models, address the knowledge gap, and answer the research questions
resourcefully. This step show casts the opportunity of probabilistic modeling and the
potentials for evolving the current feature models by addition of probabilistic weighting
to quantify the existing uncertainty.

• An exploration of other relevant domains (machine learning, Data modeling, and
Bayesian belief networks) to investigate potential techniques that can fill up the
knowledge gap is undertaken.

• This leads to find inspiration and identify adequate techniques to employ in
solving problems and build up the evolved feature model.

• Bayesian belief network tends to be compatible; consequently it is set as the
approach to probabilistic modeling and the creation of Bayesian Belief Feature
Model (BBFM).

• Mathematical studies are commenced to capture semantics of the feature model
and reason about it.

• The proposed solution manages to exploit the problem, capture uncertainties and
quantify them. Consequently, semantic mapping is observed to capture the notion
of the feature model which facilitates the development of the BBFM.

• Subsequently, we form an approach for weighting parameters, features and
dependency flows among features. This approach studies various scenarios in
which mathematical analysis is applied to prove each theorem and validate it.

Step three: Substantiation

This step wraps up our approach to provide authentication and validation of the
work submitted in the first and second step.

6

• This step addresses and show casts the findings, in terms of solving the bridges
and providing an enhanced evolved feature model, in which the feasibility and
practicality of the solutions are pointed out.

• In order to demonstrate the outcomes, we provide a graphical presentation of our
feature model, which augments present feature models graphical presentation in
terms of visualization.

• We use gray scale mapping to better visualize the probabilistic value assigned to
each feature. Accordingly, shades of gray based on different weighting schemes
are assigned, such that the distinct weighting value is translated by the intensity
of the shade of gray.

• According to the assigned values in the weighting theorem, our work is extended
and developed to reason about uncertainties. Besides, the efficiency; our proposed
technique is scrutinized in terms of reducing problem size and reasoning time.

• This step finds closure by discussing the obtained results and forecasting any
future work or improvements.

1.5. Goals and Contributions

The dissertation intends to provide insightful exploration of the existing feature
modeling techniques in software product line engineering ‘SPLE’. Throughout a
systematic review, we were able to define, identify and analyze the current approaches
used to manage the variability in SPLE. After examining the current practices of SPLE
data modeling and reasoning, we were able to identify the knowledge gap as follow;

“To the best of our research we argue that; SPLE lacks to:

1. Probabilistic quantification of the data model parameters.
2. Actual quantification of features implications.
3. Framework to anticipate the degree of uncertainty of the satisfaction problem.
4. Mathematical approach to tackle the uncertainty problem and reason about it.”

To overcome the aforementioned gap of knowledge, this thesis was designed to:

1. Provide a comprehensive mathematical framework, to quantify the uncertainty
measure of model parameters.

7

A probabilistic modeling approach was developed to capture the dependency
semantic among model features, while assigning probability weight for all
features and dependency functions.

2. Employ the predefined probabilistic weights to enhance the visual expressiveness
the developed notation, by a sensible integration of the colour use.

3. Utilize the predefined probabilistic weights to improve the constraint satisfaction
process, by emphasizing the uncertainty measure of the problem space.
Subsequently, develop an algorithm to satisfy the model constraints under
uncertainty, and to anticipate the probability of obtaining a satisfiable
configuration amongst the problem space.

4. Experimentally validate the aforementioned findings. Moreover, we were able to
exploit the satisfaction problem behavior, allowing better understanding of the
constraints actual implications, and enlighten the possible techniques to improve
the reasoning process during the early stages of the model design.

1.6. Reader’s Guide Map

In this section, we establish and provide a guide map to the thesis for the ease of readers.
We start our dissertation by presenting a state of art for the variability modeling in
software product lines, the advances, knowledge gaps, and challenges discussed in
previous work. The Literature review will put an emphasize on feature modeling
notations of SPLE and its glitches to give a roadmap for the contribution. The research
questions proposed above are to be systematically dealt with throughout the review.

The subjects covered are systematized as follows:

• Chapter 2 “Background” gives a preface to the notion of Product Line Engineering
‘PLE’. It provides a background on the emergence of SPL, and the motives of its
emergence. It discusses SPLE in depth, provides a concise chronicle on the
attempts to advance in SPL development through software modeling, and offers
an insight to its benefits and limitations.

• Chapter 3 “Managing Variabilities” handles thoroughly the variability modeling
terminologies, principles and applications. It presents the types of variability
modeling in SPL.

8

• Chapter 4 “Feature Modeling in Depth” includes a critical review on features and
feature modeling notation and investigates the previous approaches to FM using a
scenario of 3D printer. This followed by a summary of the limitations and
challenges within feature modelling.

• Chapter 5 “Modeling under Uncertaint” will provide a comprehensive framework
for quantifying the uncertainty measure in SPL. The obtained measurements are
later used to structure Bayesian Belief Feature Model, with emphasis on the visual
expressiveness of the developed model, throughout “use of colour”.

• Chapter 6 “Reasoning under Uncertaint” will present the designed method to
tackle the Constraint Satisfaction Problem while taking into account the recomputed
uncertainty measures. To validate the developed algorithm, experiments were
conducted in order to validate the functionality of the proposed approach. This is
then followed by an extensive discussion of the results.

• Chapter 7 “Conclusion” section concludes the findings and identifies
improvements and future work

“Learning is more than absorbing facts, it is acquiring understanding”

 -William Arthur Ward

9

Part II

Introduction

10

Chapter 2

Background

Software Product Lines ’SPL’ is a favorable and providential paradigm for the
progression and prosperity of creating methodical and intensive software systems
(Clements, 2002). It aims to provide an organized SPL, in which it furnishes a collection
of products that shares lots of commonality rather than variability (Benavides, Segura, &
Ruiz-Cortés, 2009). In other words, SPLE brings about the commonalities and
variabilities in a set of reusable assets to provide a flexible efficient system with an ease
of use, management, configuration, and customization (Bachmann & Clements, 2005;
Van Gurp, Bosch, & Svahnberg, 2001). FM is a notation that illustrates the SPL; it
represents the Software products as set of features. It is an information model displaying
all core assets and variables that a customized software product can require (Rincón,
Giraldo, Mazo, Salinesi, & Diaz, 2015).

Because of the high complexity of feature models, it was proven that those models are
vulnerable and open to errors, complications and faults (Czarnecki & Wasowski, 2007;
Lee, Kang, & Lee, 2002; Thüm et al., 2012; Thüm, Batory, & Kästner, 2009; White et al.,
2010; White, Dougherty, Schmidt, & Benavides, 2009). Consequently, the automated
analysis of feature models derived as a support to cope with the challenges of FM.

Numerous works conveyed in the literature took in hand the identification of
shortcomings and faults in FMs and their automated support (Arcaini, Gargantini, &
Vavassori, 2015; Benavides, Segura, & Ruiz-Cortés, 2010; Gargantini & Fraser, 2011).

11

However, only few of these tenders are able to support a rigid account on dealing with
defects and complexities.

This part of the dissertation provides an in-depth literature review on the software
product lines followed by an insight on feature modeling. It scans through the work of
previous pioneers in the province of feature modeling to assemble all the approaches
mentioned in order of bestowing a solid starting point for this dissertation and ridding
bias and misperception.

2.1. Software product lines: pitfall of economy and the rise of PL

2.1.1. The Pitfall of Economics

According to Oxford dictionary, Economics is defined as the area of knowledge
concerned about the production, distribution and consumption of products and services
and the supply of money. It is the deliberation of the way choices are made under
circumstances of scarceness and resource limitations, and the results of those choices on
society. These definitions are to be very broad and generic.

When talking about the scale of economics, economics can be discussed on the basis of
two ranging: Wide and narrow ranging (Boehm, 1981).

Macroeconomics resembles the wide range of the economics study; it studies the
economics and decision made in scarcity of resources on a global scale. It takes into
consideration the effects and subsequence of those decisions on matters such as trade
policy, interest and tax rates. However, Microeconomics takes after the narrow range of
the economics study; it studies the decision made in scarcity of resources on a personal
and subjective scale. It takes into concern the effects of those decisions taken, either as a
person or as an organization, on matters specific attributes such as cost and insurance.

When talking about Software Products economics, it is deduced that it falls in the micro
economical scale. It is directly related to decisions taken from SPLE (Da Silveira,
Borenstein, & Fogliatto, 2001). These decisions are taken in scarcity of resources since

12

there’s always deficiency in time, money and feature selection. Moreover, critical
limitation in resources can be present in terms of computing capabilities such that the
software product features gets affected.

2.1.2. Mass Customization Notion

Mass customization in a broad-spectrum, is related to the capability to deliver
customized products or services through flexible and dynamic procedures in high
capacities coupled with cost efficiency (Da Silveira et al., 2001). The Notion arose in the
late 80's and was considered as a natural and expected trail to the procedures that
became high in flexibility and enhancements as regards the quality, quantity and costs
(Lau, 1995). Besides, mass customization appears as a mean for companies to step out in
a time of challenges and competitiveness (Kotler, 1989). Furthermore, Mass
Customization was termed as the capability to supply exclusive and individually-
tailored products or services through optimal time, integration and manageability
(Davis, 1989; Eastwood, 1996). Figure 2. 1 presents an example of mass customized vases
that varies from one another, and is tailored each exclusively.

Mass customization in a narrower spectrum, is a flexible process that organizes and
manages information technology and assets to bestow an extensive choice of products or
services in accordance to specific and precise requests of individual customers, at a cost
proximate to the one of items that aren’t specified according to personal needs (in other
words, mass produced products without individualization) (Hart, 1995; Joneja & Lee,
1998; Kay, 1993; Kotha, 1995; Ross, 1996).

Figure 2. 1 Customized 3D printed vases

13

The intent of mass customization is based on numerous ideas some of them are listed as
follows:

• Deliver high diversity of products at the minimal cost by means of flexibility in
production and information technologies (Åhlström & Westbrook, 1999).

• Response to the Growth in demand for product diversity and individualization by
customers (Kotler, 1989).

• Provide products which are more personal and meaningful, more appreciated by
customers.

• Present products that are feasible and practical in terms of planning, design,
production, distribution, and facilitating (Hart, 1995).

2.1.3. Mass Customization and Mass Production

Going through the literature, the topic of the correlation between mass production and
mass customization was always stressed out. The debate laid emphasis on whether mass
production and mass customization belonged to the same continuum or they were
independent of each other, taking into account, their functional and conceptual
differences and the likelihood of using both mass production and mass customization at
the same time.

On one hand, Authors including Lau (1995) sees that mass customization and mass
production belongs to the same continuum. They suggest that in order the mass
customization approaches to be effective, it must have a background on mass production
systems.
On the other hand, Pine, and Boynton (1993) see that mass customization and mass
production are two different entities and they can’t be at the same continuum. They have
different goals, approaches, and concerns. When talking about mass production, it is
noticed that the first concern is the product itself, preceded by the process of production.
However, Mass customization is concerned mainly about the process that allows the
diversity of products. Figure 2. 2 exemplifies the different dialogues of mass production
and mass customization. It shows that mass production is a one way dialogue, whereas
mass customization adapts an interactive progression dialogue.

14

2.1.4. Mass customization Essentials Kit

• Technology must be accessible and manageable; the employment of advanced
production machineries, technologies and tools is essential to enable to hand out
mass customized systems (Adamides, 1996; Hirsch, Thoben, & Hoheisel, 1998;
Kotha, 1996; Lau, 1995). Flexible and well managed Information technologies
process is a vital part for the customization of products.

• Products should be adaptable to alteration. Effective mass customization products
must be modularized, flexible, and constantly improved. Moreover, mass
customization processes need prompt product development and innovation
competences (Pine, Victor, & Boyton, 1993).

• Mass Customization system must have the ability to interpret new demands into
innovative products. This necessitates the development of flexible networks (Pine
et al., 1993), besides the production engineering knowledge and expertise, and
process technologies (Kotha, 1995).

 Customers

Mass Production

Customized Production Dialogue

Interactive

Customers
One way

Figure 2. 2 Mass production versus Mass customization dialogues

15

2.2. The Prominence of Software Product Lines

Software Product Lines gained attention after the emergence of software reuse
succeeding the blooming of mass customization. The idea of SPL, in other words, reusing
software for creating bespoke products (Kang, Cohen, Hess, Novak, & Peterson, 1990; K.
Pohl, Böckle, & van Der Linden, 2005), was an innovative and pioneering idea which
arose as an alternative to the conventional method of production (Eriksson & Hagglunds,
2003; Kotler, 1989). The conventional method of software production was based on
individual system development (Åhlström & Westbrook, 1999). Contrariwise, SPL transit
production to another broader level; it is based on families sharing common
functionalities (Bosch & Bosch-Sijtsema, 2010; L. M. Northrop, et al.). As a matter of fact,
Grouping those systems with common functionalities and producing SPL instead of
developing each system from beginning; prove to be more appealing and desired for the
industry (Clements, 2002; Gomaa, 2005; Van der Linden, Schmid, & Rommes, 2007).
Figure 2. 3 demonstrates the transition from conventional production to customized
product lines which provided a broader range of alternatives.

Figure 2. 3 Transition from conventional production to product lines

2.2.1. SPL: Why and Wherefores

The reasons of the prominence of product lines cannot be quantified given that it is a
vast discussion. However, in accord with previous literature (Clements, 2002; Cohen,
2003 2005, Mazo et al., 2008), statistics, and case studies (Clements, Cohen, Donohoe, &
Northrop, 2001), the main incentives and elements are synopsized in Table 2. 1
Organizational and Business Advantages of PLs.

16

2.2.1.1. Advantages of software product lines: Epigrammatic list

Organizational advantages of Product Lines

Tangible Advantages

Profitability
Further market agility and market shares are reached due to
product line approach. Moreover, Market presence is
maintained and competent growth is sustained (L. M.
Northrop, et al.).

Quality

Product defect density is highly reduced in Product lines. Also
resolving those defects and redundancies is mostly
unproblematic (Van der Linden et al., 2007)

Performance

Performance is significantly improved through prompter
dealing with algorithms and variation and circumventing
timing problems (Clements et al., 2001).

Time to Market

Time to field and to launch is reduced, because of the reuse of
assets and diminution of replicated mistakes and deficiencies
in the system (Heymans et al., 2008).

Productivity

More flexibility in meeting customer’s demands and more ease
in amendments and modifications. Product line Assets are
meant to be easily implemented, and thus regarded as
commercial off-the-shelf products (Thao, 2012).

Code Volume

Source code size and the quantity of design objects for
subsystems in product line systems are lessened in comparison
to that of the traditional single systems (Bosch et al., 2001).

Intangible Advantages
 Software

Developer
acceptance

The product lines tends to expect satisfaction and certitude
from the developer for the system as groundwork as well as
the approach itself (Clements, 2002; L. M. Northrop, et al.).

Professional
satisfaction

As the monotonous repetitive tasks that presented in
conventional systems are sidestepped by the reuse of assets in
Product lines System, The main focus is redirected to more

17

challenging, mission-specific requirements or on performance
adjusting and perfecting. Henceforth, professionals are more
contented (L. M. Northrop, et al.) .

Attrition rate

Staff resignation, turnover and renewal rate of staff is assumed
to be lower whilst adapting product lines systems, in
comparison to the conventional systems (Clements et al.,
2001).

Customer

satisfaction

Customers develop more sense of attachment; content and
comfort since product lines offers a more predictable approach
with less redundancies rates and better quality products
(Heymans et al., 2008).

Businesswise Advantages of software product lines

Production and

maintenance
costs

Using same approach, process, tools and techniques and with
less redundancies and complications production and
maintenance costs are relatively reduced. Compatibility of
objective system and products with evolving capabilities is
ensured. Wider interoperability and flexibility, before
executing subsystem and device production, are guaranteed
(Ardito et al., 2011).

efficiency in the

processes

Product lines promote improving the consistency and
reliability of the user interface. In addition, it offers more
efficient integration of the products by the use of common
standards and products to meet training, and test
requirements (Clements et al., 2001).

budget and time

planning

Product lines implementation provides a permanent
integrated and interoperable infrastructure, and thus it causes
decrease in risks, costs and schedule time for planning and
preparations (Heymans et al., 2008).

Table 2. 1 Organizational and Business Advantages of PLs

18

2.2.1.2. Advantages of software product lines: profound list

• Upturn of Quality

The common assets of the production line craft the core of the entire software family.
Those common assets are subjected to review, checking and testing in various products
to prove their optimal performance (Ebert & Smouts, 2003). The manifold and extensive
testing of common assets in the SPL leads to detecting faults, oversights and defects
(Figure 2. 4).
Consequently, all products of the software line are of a better quality (Lang, 2015; K. Pohl
et al., 2005). Figure 2. 4 evidences the upturn of quality in SPL, as a result of the decrease
in defects.

Figure 2. 4 Percentage of defects per number of reviews and testing (Ebert & Smouts, 2003)

• Ease of upgrades

The addition of new features, Alteration of existing features, amendment and upgrading
of assets in the product line provides an undemanding opportunity to upgrade the
software product line and its whole derived products.
In comparison to conventional single system productions, SPL has definitely more ease
of upgrades and less effort in making alterations (Ebert & Smouts, 2003; K. Pohl et al.,
2005).

19

• Cost Efficiency

Figure 2. 5 Costs of SPL vs cost of single production system (Ebert and Smout, 2003)

To a large extent, cost efficiency is one of the foremost motives for commencing software
product line engineering, as it allows creating solutions with fewer expenses and more
profits. The reuse of assets for multi production through a single software product line
system implies a significant cost reduction (Mazo & Salinesi, 2008).
Although SPL requires an upfront investment for planning and setting strategies, in the
long run the reuse of assets gives Software product line advantage over single
production systems in such a way that it has lower cost as the number of products
increase (Figure 2. 5).

• Time Saving

SPL lessens the time needed to launch the product in the market considerably. In
comparison with the conventional production systems, the latter system time to market
was approximately constant. Contrary, albeit at the outset product line systems takes
longer time to arrange and plan common features, the launching time in market is cut
down gradually as the number of systems and developments increase due to reuse
(Mazo & Salinesi, 2008) (Figure 2. 6).

20

Figure 2. 6 Time to market for SPL vs single production system (Ebert & Smouts, 2003)

• Leadership Supremacy

SPL unlock cutting-edge opportunity gateway in competitiveness, innovation,
productivity and profitability (Ardito et al., 2011).
It opens up new possibilities that don’t exist in conventional single production systems.
Accordingly, Leadership supremacy is achieved by the mean of SPL that promotes
delivering large number of customizable products in less time and effort, and higher
qualities (Figure 2. 7).

Figure 2. 7 Productivity of SPL vs productivity of single system (Biglever software inc)

21

2.2.2. Myth versus Reality: SPLE as Lego construction

2.2.2.1. The myth

 “And then we’ll be able to construct software systems by picking out parts and plugging
them together, just like Legos…” (Shaw, 1998). The myth states that the archetype model
of reusability and the best resemblance to software product lines is as simple as “Lego”
(Crnkovic & Larsson, 2002).

2.2.2.2. The Fact

It’s much more complicated and contains lots of incompatibility and bugs. It is consisted
of a complex system with specific function and characteristic specific compatibility (L. M.
Northrop, 2006). Figure 2. 8 iluustrate the difference between the myth and the reality of
SPL modeling, in terms of complexity.

Figure 2. 8 SPL Lego myth (Inspired from Crnkovic et al., 2002 ; Mohabbati, 2013)

22

2.2.3. Drawbacks of SPLE

After noting that software product lines isn’t an easy fix-all solution or as easy as a Lego
plugging game, it’s important to mention the costs and draw backs of SPLE. The table
below (Table 2. 2) points out some of the common disadvantages of SPLE:

Disadvantages of software Product Lines

Cost of
developing
core assets

The development of the common core features in the product
lines is costly and requires upfront investment (Bosch et al.,
2001). For the upfront investment money to pay off It usually
needs at least two to three products to be built as a family
(Mazo & Salinesi, 2008; L. M. Northrop, et al.) (Figure 2. 5).

Training staff

The training of staff in the new way of doing business is
considered to be an expensive mission (L. M. Northrop, et al.).
Those staff must not only be trained in software engineering
but also in corporate procedures to ensure that the product line
practice can and will be used in accordance with the current
process. Staff must be specifically trained for the product line
and new training materials must be created to address the
product line which all requires more costs (Eriksson &
Hagglunds, 2003).

institutionalizing

A risk associated with the institutionalizing of a product line
approach is resistance from personnel to the new way of doing
business. This type of resistance is often found in the middle
level management (L. M. Northrop, et al.) and might require
those persons to be reassigned to other tasks.

Marketing and
sales support

The success of SPL relatively depends on marketing and sales
support. The company must invest in long-term sales plan in
order to succeed (Ebert & Smouts, 2003).

Table 2. 2 Drawbacks of SPLE

“Employ your time in improving yourself by other men's writings, so that you shall gain easily

what others have labored hard for.”

 -Socrates

23

Part III

Literature Review

24

Chapter 3

Managing Variabilities

It is essential to unseal the paradigm of software product lines in sequence of breaking
it down into segments, to promote better comprehension of all its facets. This chapter
will approach variability modeling, the focal facet of software product lines, in all its
associations, foundations and applications.

3.1. SPLE: a tale of Variabilities

Software requires to be tailored to changeable requirements, since the customer
demands, markets, and hardware are changing and expanding (Muschevici, Proença,
& Clarke, 2015). If each and every altered product is handled individually, the
overhead of dealing with all the alternatives drastically converts to an infeasible
option (K. Pohl et al., 2005). As a solution for this dilemma, Software Produce Line
Engineering is present (Apel, Batory, Kästner, & Saake; Czarnecki & Eisenecker; K.
Pohl et al.).

Expounded by Bosch (2001.), Clements and Northrop (2001), and Pohl, Bockle and
Van Der Linden (2005), software product lines are basically an assembly of software

25

products holding mutual set of features that comply with the requirements of a
specific domain. SPL’s outcomes are delimited and implemented as a combination of
common and variable features subsequently bringing out the final software products
(Muschevici et al., 2015). A feature consequently is a property or functionality used to
capture commonalities or discriminate among systems in SPL (Czarnecki &
Eisenecker, 2000). Variability modeling is an important method to present and
represent common and variable features, and to decide which features to be
supported in a product line and which ones to be deserted (Glück & Lowry, 2005).

SPL are practically multifarious systems formulated from a treble process (Clements et
al., 2001; K. Pohl et al., 2005), Listed as follows:

3.1.1. Domain engineering

Also known as family engineering or core asset development (Heuser & Pernul, 2009),
the domain engineering phase is responsible for the production of software core assets
to be used in different products of the SPL. As mentioned by Pohl et al. (2005), and
Clements and Northrop (2001), the domain engineering goals lays as follows:

• Identifying the commonality and variability among the whole elements of the
SPL.

• Defining flexible architecture that addresses the commonalities and
variabilities.

• Establishing the set of application that the SPL is planned for.
• Modeling and defining the scope of the SPL.
• Constructing and implementing the reusable assets that leads to the desired

variability in application engineering.

3.1.2. Application engineering

Also known as product development or product derivation, the application
engineering phase is responsible of deriving products according to specific
combination of features which is based on the foundation of commonalities in
addition to variable asset selection (Clements et al., 2001). The goals of the application
engineering are stated as follows according to Pohl et al. (2005):

26

• Attaining a high reuse of the domain assets.
• Utilizing the commonalities and variabilities.
• Adjusting variabilities in consistent with the needs of the application.
• Producing individual systems from core assets in accordance to individual

needs.

3.1.3. Management

Imperative to both processes (domain and application engineering), is the
management of variability across the product line (Halmans & Pohl, 2003), in which
resources are given, coordination is assured and supervision on both domain, and
application engineering process is ensured (Benavides, Segura, Trinidad, & Cortés,
2007).

Figure 3. 1 clarifies and sheds the light on the process of SPLE as demonstrated below:

Figure 3. 1 Scheme of Software Product Line Engineering (Seke, 2013)

27

3.2. Commonalities and variabilities

As stressed out earlier, domain engineering and application engineering set the
foundation and groundwork for the software product line engineering. SPLE is in
charge of the variability management, in other words the process of identifying and
sorting out commonalities and systematizing the variabilities of software artifacts and
models (Berg, Bishop, & Muthig, 2005; L. Northrop & Clements, 2001).

Specialists in the province of SPLE, such as (Knauber, Muthig, Schmid, & Widen,
2000); (Macala, Stuckey Jr, & Gross, 1996); (Coplien, Hoffman, & Weiss, 1998); (Ahmed
& Capretz, 2011) lay emphasis on the essential role for the SPL in terms of taking in
hand the commonality and variability in the development of products. The scrutiny of
commonalities and variabilities provides the software engineers with an organized
methodical tactic of conceptualizing and pinpointing the product family they are
generating (Coplien et al., 1998).

Albeit a unique perception, characterization or meaning of variability is not
distinguishable, Literature points out several definitions of commonalities and
variabilities. This section will highlight abridged notions of them:

For instance, Coplien et al. (1998) consider the variability in SPL is the supposition of
how assets in product families can differ from one another. Henceforth, in their
standpoint, variability postulates the distinctiveness of a product line system in
accordance to certain expectancies of a customer. On the other hand, commonality
deals with the suppositions that are constantly existent in each product of the software
product line.

Svahnberg, Van Gurp, & Bosch (2005) outlines variability in terms of Software product
lines perspective, adopting the perception of variability as the capacity of a system or
product to be dynamic in terms of having the capability of proficiently changing,
extending, and being adaptable to alteration, customization and configuration for
specific uses in specific conditions and contexts.

28

According to Bosch et al. (2001), there are two different approaches to variability, first
approach as a subject, and the second as an object.

Variability as a subject is an assorted entity or a diverse property of this entity.
However, variability object is a precise illustration of a variability subject. The
variability object is managed to identify the different approaches in which the
variability subject can diverge.

For an instance, given the example in section 3.3, when considering 3D printers (see
Figure 3. 4), the variability subject may well be the model making, and a variability
object might be the diverse varieties of model making such as material, resolution and
volume.

Not only does the literature point out different definitions of commonalities and
variabilities, it also speaks about different categories of them;

Svahnberg et al. (2005) consider variabilities are made of five different stages,
Bachmann et al. (2005) suggest another distinct categories of variabilities. in addition
other researches categorizes variabilities by the notion of time and space (K. Pohl et
al., 2005; Van der Linden et al., 2007), or according to essential and technical categories
(Halmans & Pohl, 2003), externality and internality (K. Pohl et al., 2005), and finally
according to Software product line engineering (Metzger, Pohl, Heymans, Schobbens,
& Saval,2007).

Undoubtedly, research is challenged by the management of all the commonalities and
variabilities of product lines; nevertheless, variability modeling tends to be the
favorable option to facilitate their management (L. Chen, Ali Babar, & Ali, 2009).

Various approaches are suggested and put in use throughout the study of SPL to
tackle the challenge of variability, which are to be explored in the following section
3.3.

29

3.3. Modeling Software Product Lines’ Variables

In SPLE, it is evident that the domain engineering process is responsible of identifying
the commonalities and variabilities of the product line, developing the core reusable
assets, as well as modeling the variabilities of the SPL (K. Pohl et al., 2005), and thus
requires more effort (see Figure 3. 2).

Variability modeling is a significant mean that allows interpretation and perceiving
commonalities and variabilities in SPL, in addition to sustaining product
customization and derivation. Amongst the numerous approaches of variability
modeling identified in literature, Feature modeling ‘FM’ and decision modeling ‘DM’
are considered to be the most important approaches, in addition to Orthogonal
variability modeling and others (see Figure 3. 3).

Figure 3. 2 Domain engineering versus Application engineering (Deelstra et al., 2004)

To outline our approach, in this section a suggested motivating exemplar of 3D printer
product line is proposed and presented throughout the review. Based on this
exemplar, different types of variability modeling are explained.

Figure 3. 3 High heterogeneity of variability modeling notations (Berger, 2013)

30

3.3.1. Feature Modeling

Feature modeling is the most famous approach to modeling variability present in
literature (Czarnecki & Kim, 2005; Griss, Favaro, & Alessandro, 1998; Kang et al., 1998;
Männistö & Bosch, 2004; Riebisch, 2003; Schobbens, Heymans, & Trigaux, 2006).

Chapter “Feature Modeling in Depth” in this dissertation is dedicated to the
enlightenment of feature modeling in depth.
In brief, feature model presents the whole possible facets of a product, and thus
represents a diverse product line system. In other words, feature model aims to
identify all possible features and their possible relationships and constraints
(Benavides et al., 2010).

Figure 3. 4 is a proposed exemplar that portrays a suggested simplified feature model
driven from the inspiration of the 3D Printers. The model illustrates the approach of
feature model for modeling the variabilities of 3D printers and listing the common
features.
Based on the proposed model, all 3D printers include a software, body, model making
abilities and connectivity tools. However, accessories are optional and their presence
varies on demand. Moreover software in the printer can vary as there is a number of
software to choose from, and include or exclude.

Figure 3. 4 Suggested Feature model for 3D Printer

31

3.3.2. Decision Modeling

Alongside the Feature modeling approach, exist the Decision modeling approach,
which is also widely used to model variabilities. A decision model is a support
outlining the decisions needed to be done in order to identify an element in a specific
domain (Bézivin, 2001). Decision models are documents presenting decisions, their
attributes, and dependencies (Atkinson, Bayer, & Muthig, 2000). Consequently,
decision models brings about the diverse products by putting values to the decisions
through setting out questions and relating them with possible answers; as a response
of the arrangement of decisions dependencies.

Figure 3. 5 depicts a proposed decision model for the exemplar of the 3D printer, in a
textual and a tabular representation.

Figure 3. 5 Examples of Decision modeling for 3D printers

32

3.3.3. Orthogonal Variability Modeling

In addition to the Feature modeling and decision modeling, there’s also the
orthogonal variability model that is used to model variability descriptions. The
orthogonal variability model is presented by a graphical notation which describes the
variability points, variants and their dependencies (K. Pohl et al., 2005).

Figure 3. 6 presents a simplified orthogonal variability model approach of the
proposed exemplar of the 3D printer.

Figure 3. 6 Suggested Orthogonal variability model for 3D printer

33

3.3.4. Other Modeling Approaches

Variability model approaches are not limited to the feature, decision and orthogonal
variability model, instead it extends to include approaches such as UML based
variability model, and ADL based variability models, Constraints variability
languages CVL, COVAMOF, and ConIPF (Haugen, Moller-Pedersen, Oldev, Olse, &
Svendsen, 2008; Sinnema & Deelstra, 2008).

Figure 3. 7 presents a simplified UML Use Case diagram for the suggested 3D printer
variabilities.

Figure 3. 7 Simplified UML Use case diagram for the 3D printer

34

Chapter 4

Feature Modeling in Depth

Software Product Lines are extensively expressed in terms of “features”. Explaining a
feature as a term, is fundamental when it comes to variability modeling in software
product lines, as various definitions are present in respect to various points of views
(users, stakeholders, implementers). Thus, it is important to outline features and
feature models clearly, as well as identify their terminologies and comprehensions
accompanied by them. This chapter synthesizes a systematic review which aims to
unwrap and identify features and feature modeling. In addition, during the course of
this chapter, a state of the art of the present feature models is reflected thoroughly,
stressing out their core traits and peculiarities. Successively, a holistic study is to be
conducted for the evolution of feature models followed by their evaluation.

35

4.1. Feature Modeling: An Explication

Granting the frequent usage of the term “feature” in regards to the SPL, there is a
scarcity of clear understanding of the term. The systematic literature review is carried
out to firstly explore the varied definitions and potential utility of the term “feature”
and “feature models” in SPL researches. This is tracked down by detailed exploration
of feature modeling notations, approaches, specification to be shadowed by an
evaluation of selected FM notations.

4.1.1. Review method

The systematic literature review is carried out to set an in depth study of feature
modeling, starting with terming features, reaching a thorough investigation of FMs.

In accordance to a coordinated and systematic method, as per Keele (2007) guidelines
and Kitchenham et al. (2009), 152 reference records dated from 1990 to 2015 in
previous literature were identified as relevant with the research objectives. Those
identified records are then subjected to thorough inspection, via systematic literature
screening. Collected records are screened according to inclusion and exclusion criteria
and the screened records are subjected to further filtering which leads finally to a
selection of data records apt for synthesis in the literature review. Then narrative
syntheses of various definitions are conducted, followed by the identification of their
potential value for this examination.

4.1.2. Review goal

The systematic literature review is carried out to summarize the present literature in
respect to feature modeling in SPL. Evidences from previous literature are pointed out
to outline various definitions, explore and provide better understanding, and identify
any possible gaps in order to suggest areas for further investigation. In addition, this
review is carried out to have an in depth understanding of the evolution of the
available feature modeling notations. Also, this review helps in providing a solid
background to build on the following parts of the research.

36

4.1.3. Inclusion and exclusion criteria

The starting point for the adoption of the studies is the inclusion and exclusion
criteria.

We review studies from selected sources (listed in subsection 0) according to the
following inclusion criterion:

• IC1. Peer reviewed papers are included from year 1990 to 2015.
In this manner, papers from the dawn of FM until their most recent appearance are

considered.
• IC2. Full studies including literature reviews related to our topic and research

goals are included.
• IC3. Articles and papers in light of feature modeling notations in SPL.
These materials are precisely dedicated to our focus and abide to our review goals.

The studies that were included in our review were directly related to our topic with
clear defined structure founded on previous accurate studies or theoretical studies.
However our exclusion criterion is based as follows:

• EC1. Sketchy and superficial studies that lacks in-depth and exhaustive studies.
Like so, trivial and inconsequential considerations are avoided and eliminated.
• EC2. Incomplete studies, that ranges within extended abstracts, tutorials or

presentations.
These are disregarded as they provide curtailed and limited support as well as lack

in depth.
• EC3. Papers and studies that are published before the year 1990 and after the

year 2015.
As been rationalized in the inclusion criteria, the review takes an exclusive interest

in the published papers from the emergence of FM till the most recent work.
• EC4. Articles outside the subject discussed.
Those articles are omitted as they don’t fulfil our review goals and are irrelevant of

the theme of study.
• EC5. Studies that presents subjectivity in which the author presents a subjective

point of view or biased information.
In this way, preconceptions are avoided and integrity is maintained.

37

• EC6. Papers that doesn’t relate to SPL specifically.
As per example, papers only relating to computer science or artificial intelligence

are excluded, since they are not specific to our domain of study.

4.1.4. Data basis and selection criteria

According to Keele (2007), Primary data records are identified and screened in a
manner that the records provides distinct and direct connection to feature modeling in
SPL.

Subsequently, duplicates are removed and records are subjected to further
refinements which lead to further exclusion of records with bias and records with
insufficient information. Thus, the assessment provided reliable records proceeded by
clear interpretation of outcome.

The following sources of information are used as data basis and sources:

• Designated Noticeable and prominent conferences concerned of features and
feature modeling in SPL, which include:

International Software Product Line Conference (SPLC), IEEE International
Conference, , Requirements Engineering Conference (RE), International
Conference on Software Reuse, International Software Product Line Conference,
Conference in Computing Science, and International Conference on Software
Engineering (ICSE).

• Various leading journals and reports related to feature and feature modeling in
SPL, such as:

IEEE Transactions on Software Engineering1, ACM on Software Engineering2,
Journal of Systems and Software, Software Quality Journal, Journal of Theoretical
and Applied Information Technology, International Journal of Advanced
Manufacturing Technology, International Journal of Technology Management,
Overload Journal 78 and Software Quality Journal

1 http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
2 http://tosem.acm.org/

38

• Workshops in the aforementioned prominence, namely:

International Workshop on Domain Engineering, International Workshop on
Requirements Engineering for product lines, Workshop on Variability Modeling of
Software-Intensive Systems, International Workshop on Satisfiability Modulo
Theories, International Workshop on Requirements Reuse in System Family
Engineering, International Workshop on Software Factories, Workshop on
Software Variability Management for Product Derivation.

• Book Chapters and other significant sources are also considered in the review.
• References extracted from the preliminary journals are included in the

synthesis in order to incorporate former data sources.

4.1.5. Data Hunt and assessment

Figure 4. 1 illustrates the data hunt and further assessment of records, which are
undertaken according to the following criteria:

• Data are firstly collected and identified from the aforementioned journals,
conferences, book chapters, reports, workshops and other materials.

Figure 4. 1 Review Data assessment

39

• The Data hunt is initiated on the basis of titles and search words (key words)
related to feature modeling in SPL. The initial records identified formed 152
papers.

• Abstracts are then examined to figure out relevant sources and narrow down
the search (thorough examination for some sources is undertaken when
necessary). As a result, Duplicates are excluded.

• The final stage included examining the selected records judiciously to
determine if they fit the purpose of the review.

• In consequence, irrelevant materials are eliminated to narrow down the search
to 48 potential sources.

• References relevant to our search purpose (11 in total) are then identified and
screened to be narrowed down to 6 sources to be added to the assessed records.

• The total number of records involved in the review formed 56 records at the
end.

Figure 4. 2 shows a detailed classification matrix of the records used in the systematic
literature review in accordance to the year of publications, ranging from 1990 to 2015,
and the record type.

Figure 4. 2 Data classification matrix

40

the 56 records includes 3 technical reports, 26 journal papers, 11 conference papers, 3
workshop papers, 8 book chapter and 5 from other materials.

4.1.6. Review Outcome

• Terming “Feature”

In regards to the term feature, 15 records of the 56 records used the term feature as an
increment to function, 10 records referred to it as a specification in modeling in SPL,
Whereas, 9 papers identified feature as a property, behavior or quality of software
system. Table 4. 1 Feature’s definition in literature and Figure 4. 3 Feature's
definition classification illustrate the findings.

Feature definition in literature

Increment to function

Specification
Behavior or Quality of

Software System
(Cuevas, 2007)

(Benavides, Ruiz-Cortés,
Corchuelo, & Martín-Díaz, 2004)

(Kang et al., 1990)
(Benavides, Cortés, Trinidad, &

Segura, 2006)
(Batory, Benavides, & Ruiz-

Cortes, 2006)
(Dubslaff, Klüppeholz, & Baier,

2014)
(White et al., 2009)

(Metzger et al., 2007)
(White et al., 2014)

(White, Schmidt, Benavides,
Trinidad, & Ruiz-Cortés, 2008)

(Siegmund et al., 2012)
(Gomaa, 2005)
(Batory, 2005)

(Zave & Jackson, 1997)
(Gibson, 1997)

(Benavides et al., 2007)
(Benavides, Cortés, et al., 2006)
(Czarnecki & Eisenecker, 2000)

(Bailin, 1993)
(Svahnberg et al., 2005)

 (K. Chen, Zhang, Zhao, & Mei,
2005)

(Batory, 2005)
(Classen, Heymans, & Schobbens,

2008)
(Apel et al., 2013b)

(Beuche & Dalgarno, 2007)

(Kang et al., 1990)
(Lee et al., 2002)

(Griss et al., 1998)
(Kang et al., 1998)

(John & Muthig, 2002)
(Wang, Li, Sun, Zhang, &

Pan, 2005)
(Bosch et al., 2001)
(Rincón et al., 2015)

(Van Gurp et al., 2001)

Table 4. 1 Feature’s definition in literature

41

15

4

9 0

5

10

15

20
Specification

Increment to
function

Other Definitions

behaviour

Feature

Figure 4. 3 Feature's definition classification

• A selection of Notable definitions

It is important to point out notable terminologies for feature in SPL.
As per the systematic literature review, features are approached in accordance to three
main definitions which are;
features as an increment to function, features as specification for modeling in SPL, and
features as a behaviour or quality in software systems.
Other definitions identified in literature are also worthy to point out.

Starting with feature as increment to function, Kang et al. (1990) first defined Features
as distinguishable functional abstractions that must be incremented, established,
delivered, and maintained. Moreover, feature is defined as an increment in product
functionality in software systems according to Cuevas (2007).
Siegmund et al. (2012) , Zave and Jackson (1997) and Batory (2005) stresses out the
same definition of features as an increment to function which satisfies and fulfills
functional requirements.

Features are also referred as a specification, as per Benavides et al. (2007) software
systems are specified in terms of features. In addition, according to Kang et al. (1990),
a product of a product line is specified by a valid feature selection.

Moreover, features are seen to be unique user-visible aspect, quality, behavior or
characteristic of software system (Kang et al., 1990), Whereas Bosch et al. (2001), sees

42

feature as “a logical unit of behavior that is specified by a set of functional and quality
requirements“.

• Terming “Feature modeling”

Mainly, features in software product lines are expressed in feature models, which
bring out the importance of clearly defining feature models.
This part introduces various definitions and perceptions of feature models extracted
from previous literature.

 Feature models definitions
Info representation Commonalities and variability

tool
Specification member in

product lines
(Benavides et al., 2009)
(Benavides et al., 2004)

(Mendonca, Wąsowski, &
Czarnecki, 2009)

(Benavides, Cortés, et al., 2006)
(Batory, 2005)

(Benavides, Segura, Trinidad, &
Ruiz-Cortés, 2006a)

(Mendonca, Branco, & Cowan,
2009)

(Benavides, Segura, Trinidad, &
Ruiz-Cortés, 2006b)

(John & Muthig, 2002)
 (Mazo & Salinesi, 2008)

(Czarnecki, Grünbacher,
Rabiser, Schmid, & Wąsowski,

2012)
(Rincón et al., 2015)
(Arcaini et al., 2015)

(Heymans et al., 2008)
(Harman et al., 2014)

(Beuche & Dalgarno, 2007)
(Bak, 2013)

(Benavides et al., 2007)
(Czarnecki & Eisenecker,

2000)
(Batory et al., 2006)

(Mendonca, Wąsowski, et al.,
2009)

(Lee et al., 2002)
 (Kang et al., 1998)
(White et al., 2009)
(White et al., 2014)
(Mendonça, 2009)

(Czarnecki & Wasowski, 2007)
(R. Pohl, Lauenroth, & Pohl,

2011)
(Thüm et al., 2009)

(Czarnecki, Helsen, &
Eisenecker, 2004)

(Sun, Zhang, Fang, & Wang,
2005)

(Wang et al., 2005)
(Mazo & Salinesi, 2008)

(Beuche & Dalgarno, 2007)

(Mendonca, Wąsowski,
et al., 2009)

(Benavides, Cortés, et al.,
2006)

(Batory, 2005)
(Czarnecki & Eisenecker,

2000)
(Lee et al., 2002)

(Thüm et al., 2009)
(Thiel & Hein, 2002)

(Riebisch, 2003)
(Pleuss, Botterweck,
Dhungana, Polzer, &
Kowalewski, 2010)

(Arcaini et al., 2015)

Table 4. 2 Feature model's definition in literature

43

Figure 4. 4 and Table 4. 2 Feature model's definition in literature point out various
definitions and perceptions of feature modeling in SPL. According to the systematic
literature review, Feature modeling is regarded as information presentation for SPL in
17 records of the 56 records assessed. Whereas, the term feature modeling is referred
as a commonality and variability identification technique in 19 records. However,
FMs are also referred as specification member in SPL according to 10 records.

• A selection of Notable definitions

A feature model can be used to represent the similarities and differences within a
family of software systems (Mendonca, Branco, et al., 2009). The combination of
features represents all variability, thus forms FM (John & Muthig, 2002).
Czarnecki and Wasowski (2007), however, defines Feature modeling as a notation and
an approach for modeling commonality and variability in product families.
Furthermore, Lee at al. (2002) adopts a comprehensive approach in which he defines
FM as the activity of identifying externally visible characteristics of products in a
domain and organizing them into a model called a feature model.

• Concluding Remarks

It is apparent that clear common definitions for feature and feature modeling have not
been agreed on, in which features are considered as function, property and
specification (Classen et al., 2008). However, Tracking down a consensus on their
definition and clarifying the terminologies of “Feature” and “feature modeling” is an
essential step for more thoroughly investigating of its mechanisms. Although it seems

0
5

10
15
20

info
representation

Commonalitie
s and

variability
tool

Specification
member in PL

Feature Modeling

Figure 4. 4 Feature modeling's definition classification

44

an unfeasible task where biases and no uniformity in defining the terms exist,
Maturing a clearer understanding of the feature and feature modeling gives insights
essential to shaping the background for new approach to feature modeling to be
discussed in the following part of dissertation.
In this thesis, features are considered as properties, while FM is a mean to express
these features, their dependencies and constraints as well as commonalities and
variabilities.

4.2. Feature Modeling Exploration

Feature modeling weighs in greatly in SPL, in which it aims to present commonalities
and variabilities amongst features, as well as highlight their dependencies and
constraints (Czarnecki, Helsen, & Eisenecker, 2005; Kang et al., 1998; Riebisch, 2003).
This section helps to digest FM systems, principles and types.
As explicated, features display information of the SPL in the form of features and all
their relationships (Benavides et al., 2009). Represented by feature diagrams, the set of
features are arranged as follows:

• Hierarchically representing relationships between parent and child feature
(also defined as sub features).

• Crosstree constraints which shows inclusions and exclusions, feature
dependencies and interdependencies, requirements and alternative roots.

The Relations between a parent and the child features are considered as follows
(Batory, 2005) (see Figure 4. 5):

- And; in which all child features are to be chosen
- Alternative; in which one alternate child feature can be chosen,
- Or; in which one or more child feature can be chosen,
- Mandatory; in which the selection of specific features are compulsory,
- Optional; in which the selection of features are optional.

45

Figure 4. 5 Feature diagram graphical notations

4.2.1. Feature modeling notations

Notations of FMs are addressed as follow:

First we consider Basic FM, a primitive format of feature model.

4.2.1.1. Basic

In the basic notation, the FM is mostly a tree diagram which is diagrammatically
presented by means of nodes. These nodes cast out the relationship between parent
features and sub features and forms out the joints and connections between them.

Those relationships in the basic notation are considered to be primitive relations to be
explained as below (Batory, 2005; Benavides et al., 2009; Lee et al., 2002):

• Mandatory relationships

In Mandatory relationships, the sub features is necessary to be included when the
parent is included and in no means should the sub feature be excluded when the
parent is included.

This mandatory relationship is symbolized by a line connecting the parent feature
with the sub feature with a black filled circle above the sub feature connection. Figure
4. 6 illustrates a Mandatory relationship extruded from the exemplary 3D printer
feature model. In Figure 4. 6, we can point out the 3D printer mandatory comes with a
body, which consequently mandatory consists of an extruder and a case.

46

Figure 4. 6 Mandatory relationship

• The optional relationship

Optional relationship is the relationship between parent features and sub features, in
which the sub features inclusion is optional, hence the existence of this sub feature is
conditional.

The optional relationship is symbolized by a line connecting the parent feature with
the sub feature with an empty circle on top of the sub feature connection. Figure 4. 7
exemplifies the optional relationship extruded from the exemplary 3d printer FM.

The figure below demonstrates the 3d printer optional relationship in terms of
including accessories or excluding them. However on the other hand the inclusion of
the body, model, connectivity and software are a must.

Figure 4. 7 Optional relationship

47

• The or-relationship

The Or relationship presents the relationship between the parent and the sub feature,
in which minimum of one sub feature is to be selected in terms of the inclusion of the
parent feature. The Or relationship is symbolized by a black filled arc connecting the
array of lines connecting the parent feature and the sub features.

In Figure 4. 8, the Or relationship of a parent feature and its sub feature is
demonstrated, extracted from the 3d printer feature model example. In this case the
options of the software derive from choosing at least one feature (such as Sketchup)
till choosing all four features.

Figure 4. 8 Or relationship

• The alternative relationship

The Alternative relationship portrays the association of the parent and the sub
features, in which one and only one option of the sub features is to be selected, when
the parent feature is to be included, thus presents an alternate choice of sub features.
The alternative relationship, in other words is an Exclusive Or relationship XOR,
symbolized by an arc connecting the array of lines connecting the parent feature and
the sub features (see Figure 4. 9).

 The following figure demonstrates the Exclusive Or relationship of a parent feature
and its sub feature, also extracted from the 3D printer FM example. In terms of the
Exclusive Or relationship, The volume alternates from 240 inch, 360 inch and 720 inch,
in which only one volume is to be selected.

48

Figure 4. 9 Alternative relationship

In addition to the relationships explained above, basic feature models are
accompanied by constraints relationships:

• Requires constraint

When one feature is to be included, and this feature must be accompanied by another
feature, then “requires” constraint is present.

• Excludes constraint

When one feature is included in the diagram, and this feature requires the elimination
of the presence of another feature, then the exclusion is present, and hence “excludes”
constraint which resembles the incompatibility of 2 features.

4.2.1.2. Cardinal notation

The urge of the completeness in concept and the need of practical application
(Czarnecki & Eisenecker, 2000) formed a motivation for the extension of feature
modeling notation, and thus the existence of the cardinality based FM. This notation is
defined by the feature and group cardinalities as below (Czarnecki, 2005):

49

• Feature Cardinality

The extension of the feature model from basic to cardinal inserted some information
and labels to the relationship between parent feature and sub feature.

It inherited a UML-like multiplicity having the form of intervals [n, m], where an
upper and lower bounds are presented. This is mostly expressed by means of
arbitrary numbers. By these means, we can present, as well as limit the number of sub
features that are included, when the parent feature is included.

As an example, a mandatory relationship is expressed as [1, 1] meaning the sub
feature is to be compulsory selected. Whereas on the other hand, [0, 1] provides the
option of choosing from the upper to the lower bound, and thus resembling the
optional relationship.

• Group Cardinality

The group cardinalities is adopted when considering the Or relation and the Exclusive
Or relationship between parent feature and sub features. The interval in this case is
denoted by {n…m} having also n,m as limiting bounds of upper and lower limit of the
number of sub features to be selected when the parent feature is included.

When considering the Or relationship in which one and more sub features can be
selected, the interval is {1..N} in which N presents the number of sub features.
However, when considering the alternative relationship, in which only feature can be
selected the interval in this case is {1..1} showing the route of only selecting one sub
feature.

4.2.1.3. Extended Feature model

Besides the basic and the cardinality feature modeling notation, additional
information that distinguishes features traits are necessary to describe features
(Batory, 2005; Czarnecki & Kim, 2005; Kang et al., 1998). Originating from this point,
the extended feature modeling notation took place to add up those additional
information known as feature attributes. The extended feature model primitive

50

establishment was in present in FODA (Kang et al., 1998) in which additional
information is included in FODA feature model.

There have been no approved definition of what feature attribute is to include,
however, fundamentally speaking, the feature attribute must consist of domain, name
and value and it can add up any other trait distinguishing the feature such as cost,
size, speed…
 Figure 4. 10 illustrates an example of extended feature model presented by Benavides
et al. (Benavides et al.).

Figure 4. 10 Extended feature model notation (Benavides et al., 2009)

4.3. Evolution and evaluation of FMs

The rise of the FMs relatively is associated to the domain analysis in SPL. It firstly
emerged with the emergence of SPL systems in telecommunications and later on
extended to reach a vast array of fields (Pleuss et al., 2010).

FMs presented means of communication and demonstration of information about the
products in the system, which reveals requirements accompanied in the product,
hence providing a smoother and more transparent system for developers, customers
and stakeholders, as well as an ease in design. Moreover, feature models are used to
facilitate the selection of features, ease configuration and automate the formation of
the SPL. In addition, Feature models helps in capturing commonalities and
variabilities.

51

Kang (1990) is considered to be the initiating author who took the lead in feature
modeling. Feature modeling was firstly evolved from the feature oriented domain
analysis ‘FODA’ (Kang et al., 1990). The evolution formed different features models
developed by various authors, as to adapt to the evolving uses or to fix present
glitches in previous feature models.

A timeline of feature models is drawn to show their evolution starting from ‘FODA’
developed by Kang et al. in 1990 which is followed by Jacobson et al. attempt in 1997.
Later on, Kang developed the original feature model ‘FODA’ to ‘FORM’ (Feature
oriented reuse method) in 1998 which evolved to ‘FOPLE’ in 2002. Moreover in 1998,
Griss et al. developed the ‘FeatuRSEB’ feature model that was later evolved by Van
Gurp et al. in 2001 and Eriksson et al. in 2005. A huge leap in feature modeling
evolution is taken by Czarnecki et al. in 2000, in which generative programming
feature model ‘GP’ was developed which branched out and opened new opportunity
to evolve Riebisch et al. feature model in 2002, and GP extended feature model
developed by Czarnecki et al. in 2002. The GP extended Feature model was evolved
by Czarnecki et al. in 2004 to form Cardinality based feature model. It’s also important
to pinpoint Benavides et al. feature model in 2005. However, the list isn’t limited by
these feature models, various feature model were developed, but in this section we
shed the light on the most significant feature models that contributed in SPL systems
in order to evaluate and learn from them.
Table 4. 3 shows the timeline of various feature models present in SPL systems.

Feature Model YEAR Feature Model YEAR
Kang et al. FODA 1990 Czarnecki et al. GP extended 2002

Jacobson et al. 1997 Riebisch et al. FORE 2002
Kang et al. FORM 1998 Gomaa et al. 2004

Griss et al. FeatuRSEB 1998 Czarnecki et al. CBFM 2005
Czarnecki et al. GP 2000 Moon et al. 2005

Hein et al. 2000 Eriksson et al. PLUSS 2005
Van Gurp et al. 2001 Benavides et al. 2005

Kang et al. FOPLE 2002

Table 4. 3 Feature modeling notations timeline

52

Figure 4. 11 clarifies the evolution of feature model, in which FODA, the head of the
pyramid, presents the mere beginning of feature modeling attempts and is tracked
down by several extensions not limited to those presented.

Figure 4. 11 Feature models evolution

53

4.3.1. Feature Oriented Domain Analysis

FODA, the Feature Oriented Domain Analysis method (Kang et al., 1990), is the first
feature diagram notation to be introduced in SPL systems (L. Chen et al., 2009). FODA
was represented by a tree graph illustrating commonalities and variabilities in the
feature model. FODA provided an ease of use and a method of communication
between customers, developers and stakeholders.

The FODA diagram notations, compositions, relationships and constraints are
illustrated in the Figure 4. 12 and Table 4. 4 below and explained as follows:

Figure 4. 12 FODA modeling notation of 3D printer

Feature Relationships Constraints
Parent

feature
Mandatory optional And Or Xor Textual graphical

Table 4. 4 FODA notation specifications

54

4.3.1.1. Features

• The main feature, also known as root feature or concept; is a mandatory feature
that represents the whole system. According to the example above, the root
feature is 3D printer.

• Mandatory features exists by default; there is no graphical notation or
expression specific to mandatory features (example Body, Model, Material ...)

• Optional features are represented by an empty circle above the connected sub
feature, as per example accessories.

4.3.1.2. Relationships

• And relationship, implying that all subfeatures are to be selected in the system,
the “And” relationship doesn’t have any specific expression. It shows the
mandatory features to be included in the system.

• Xor relationship presents the relationship in which one and only one sub
features is to be selected, when the parent feature is to be included. The xor
relationship is expressed by an arc connecting the array of lines connecting the
parent feature and the sub features.
In Figure 4. 12 FODA modeling notation of 3D printer, the Xor relation is
demonstrated, in which only one volume can be selected from the alternatives:
240 inch, 360 inch and 720 inch.

4.3.1.3. Constraints

FODA model lacks any graphical representation of constraints, however textual
constraints are present describing requires and excludes constraints.

4.3.2. Feature-Oriented Reuse Method

FORM, the Feature-Oriented Reuse Method, is an add on of FODA developed by
Kang et al. (Kang et al.). It emerged as a necessity to widen the scope of feature
modeling in terms of domain analysis, and implementations.

FORM has managed to build upon the previous feature diagram by changing and
adding up elements, such as;

55

• The graphical representation can be directed acyclic graph, as well as tree
representation.

• Implemented “By” relationship, along with the And and Xor relationship.
• Generalization and specialization also exists in FORM model.
• The graphical representation of the feature and sub features themselves are

within boxes (see Figure 4. 13 and Table 4. 5).

However, FORM still lacks Or- relationship and graphical constraints.

Figure 4. 13 FORM modeling notation of 3D printer

Feature Relationships Constraints
Parent

feature
Mandatory optional And Or Xor Textual graphical

Table 4. 5 FORM notation specifications

4.3.3. FeatuRSEB

FeatuRSEB (Griss et al., 1998) is derived from the feature oriented domain analysis
method and the RSEB method, which depends on use cases as well as object models.
FeatuRSEB sheds the light on variation points and variants in the graphical
representation.

56

FeatuRSEB is distinguished as follows;

• The graphical representation is directed acyclic graph DAG.
• The And relationship is similar to that described in FODA.
• The Xor and or relationship are represented by means of parent features,

known as variation points and sub features, known as variants.
The Xor relationship is resembled by an empty diamond shape connecting the
variation points and the variants. Whereas, the Or relationship is presented by
a black diamond connecting the variation points and the variants (see Table 4. 6
and Figure 4. 14).

• Textual constraints, along with graphical constraints, are present which are
“requires” and “excludes”.

• FeatuRSEB provides binding time; which are reuse-time and use-time binding.

Figure 4. 14 FeatuRSEB modeling notation of 3D printer

Feature Relationships Constraints
Parent

feature

Mandatory optional And Or Xor Textual graphical

Table 4. 6 FeatuRSEB notation specifications

57

4.3.4. Generative programming

Generative programming GP was developed by Czarnecki et al. in 2000, deriving from
FODA, and creating a lead in terms of software automation programing.

The feature diagram is known as Generative Programming Feature Trees, GPFT.

As being derived from Kang et al feature model (Kang et al.), the generative
programming feature diagram adds up on FODA’s graphical representation.

• Or relationship is added, which presents the relationship in which at least one
or more subfeatures is to be selected, when the parent feature is to be included.
The Or relationship is expressed by a black filled arc connecting the array of
lines connecting the parent feature and the sub features (see Figure 4. 15 and
Table 4. 7).

• Mandatory features exist in the condition of the inclusion of its parent feature.
Mandatory features are represented by a black circle above the connected sub
feature.

Figure 4. 15 GP modeling notation of 3D printer

Feature Relationships Constraints
Parent

feature

Mandatory optional And Or Xor Textual graphical

Table 4. 7 GP notation specifications

58

4.3.5. Van Gurp and Bosch Feature Model

Van Gurp and Bosch developed a feature model as an extension of FeatuRSEB, in
which it evolves to add up more specifications and characteristics. The feature
diagram is known as van Gurp and Bosch Feature Diagrams VBFD (Van Gurp et al.,
2001).

• The Van Gurp and Bosch Feature diagram varies from FeatuRSEB in terms of
the Or and Xor notation, in which the Xor relationship is resembled by an
empty triangle (instead of diamond) connecting the variation points and the
variants. Whereas, the Or relationship is presented by a black filled triangle
connecting the variation points and the variants (see Table 4. 8 and Figure 4.
16).

• VBFD provides enhanced dealing with binding times, as per annotating
relationships between features.

• Features (the parent features and all subfeatures) are represented in a box,
Whereas, External features are boxed in dashed boxes.

Figure 4. 16 Van Gurp and Bosch feature modeling notation of 3D printer

Table 4. 8 VBFM notation specifications

Feature Relationships Constraints
Parent

feature

Mandatory optional And Or Xor Textual graphical

59

4.4. Drawbacks of Feature Modeling

Although Numerous Feature modeling notation exists in SPL systems, those current
FM notations are accompanied with shortcomings and glitches, limiting its efficiency
and performance. In this chapter, an assessment of selected FM notations is
undertaken to pinpoint the current problems in them.

The assessment takes place according to the criteria as set below.

4.4.1. Assessment criteria

When evaluating feature modeling notations glitches; the following criteria is to be
considered.

FM notations are appraised on the basis of 5 key criterions which are:
comprehensiveness, visual presentation suitability, traceability, scalability and
articulacy.

The key criterions are summarized as follows:

4.4.1.1. Comprehensiveness

This criterion is used to assess the completeness and inclusiveness of the FM
notations. It studies whether these notations fulfill a whole role in describing the
features, their relationships, dependencies, and constraints.

This key criterion assessments is carried out by determining the following:

• The presence and comprehensiveness in terms of adequate feature
relationships and constraints; which are but not limited to:

- Relationships: OR, AND, optional, alternative and cardinalities.
- Constraints: requires, excludes and/or textual constraints.

• Confusions and complications that accompanies the feature modeling notations
in terms of inconsistencies and contradictions between constraints and
relationships.

60

4.4.1.2. Visual presentation suitability

This key criterion takes into consideration the readability of the feature modeling
notations. It studies the visual representation in terms of comprehensibility and
adequacy.

This key criterion considerations are as follows:

• Completeness and entirety in information present in the FM notation.
• The graphical demonstration of interactions of features, in terms of the

presence and absence of adequate visual presentation of constraints,
relationships, variations and variation points...

• Readability and the ability to visually follow up, in which the FM graphical
presentation is assessed in terms of complexity and sophistication.

4.4.1.3. Traceability

Traceability is an essential criterion which determines to what extent a feature model
notation can be feasible and adaptive to changes. It takes into consideration the
practicality and reliability of the feature modeling notation.

This key criterion concerns are as follows:

• The ability to evolve over time, integrate and adapt to changes.
• Data consistency and reliability in the feature modeling notations.
• The manageability of linking between features and requirements.

4.4.1.4. Scalability

The scalability of the feature modeling notation deals with the capability of this
notation to handle large scale systems, as per dealing with complexity and large
number of features, with taking into consideration all dependencies and constraints
and satisfying the requirements.

This key criterion considerations are as follows:

• Determining to what extent the feature model notation can serve in large scale
systems.

61

• Determining whether the feature model notation requires a support tool to
handle scalability problems.

4.4.1.5. Articulacy

Uncertainties and ambiguities are key shortcomings in feature modeling notations.
This criterion takes into consideration the articulacy and clarity in the feature
modeling notations. It deals with glitches in term of misconstructions and
misunderstandings.

This criterion addresses the following points:

• Ambiguity in interpreting and presenting relationships such as errors, double
meanings, nonfunctional features and redundancies.

4.4.2. Appraisal and results

FODA, FORM, FeatuRSEB, GP, and VBFD Notations explained and demonstrated
previously in section 4.3, are assessed according to the assessment criteria set above to
determine their glitches and evaluate them.

The appraisal and results are summarized as follows:

4.4.2.1. Comprehensiveness

It is crucial to present a complete and inclusive interaction of features in the feature
modeling notations. Consequently, as per the necessity to present the dependencies
between features, their relationships and constraints, the lack of full presence of these
interactions notations leads to shortcomings in the feature modeling approach, as it
limits the interaction between features and leads to detrimental side effects. As
features tends to be dependent and correlated to other features, any modifications on
a sole feature, as per selection, deselection, addition or deletion, consequently has a
direct effect on other related features. Thus, full comprehensiveness in the feature
expressions as well as their interactions is crucial (Gibson, 1997).

When analyzing comprehensiveness of the selected features modeling notations, the
findings are listed as follows:

62

• FODA, to begin with, presents primitive attempt to model feature interactions.
Being a primitive feature modeling notation, FODA has shortage in modeling
and presenting relationships and constraints as well as confusion. FODA
modeling notation proved to lack completeness in concept associated with
multiple glitches and gaps in its representation. According to Figure 4. 12 and
Table 4. 4 FODA notation specifications, which illustrated the FODA feature
model of a 3D printer, FODA lacks graphical notation of the Or relationship
and the graphical constraints. The problematic concern is that information
aren’t well expressed in these structures, with a chance to overlook
dependencies or create confined presentation with lots of lost information, in
which relationships, dependencies and constraints are not expressed
thoroughly.

• FORM was brought up to advance FODA approach (Kang et al., 1998). Similar
to its predecessor FODA (Lee, Kang, Chae, & Choi, 2000), FORM has similar
glitches in terms of comprehensiveness. Although FORM surpasses FODA by
its encompassing to By relationship, in addition to the And and Xor
relationships (see Figure 4. 13 and Table 4. 5), where one feature is
implemented by means of another feature. Moreover, FORM puts in the
generalization and the specialization relationship.

• FeatuRSEB, GP and VBFD adds up the graphical constraints, in which
FeatuRSEB presents both textual and graphical “requires” and “excludes”
constraints (see Table 4. 6) whereas GP and VBFD have only graphical
constraints (see Table 4. 7 and Table 4. 8). Moreover, FeatuRSEB, GP and VBFD
adds the Or, whereas only GP presents the mandatory relationship.

Having that said, the existence of the constraints and other mentioned relationships
adds up the comprehensiveness in the model and promotes clearer understanding of
the feature dependencies relationships, and less confusion in terms of inconsistencies
and contradictions among constraints and relationships. However, the
incomprehensibility and obscurity are still present between compositions and requires
relations, and excludes and alternative. Thus, there’s a need to elaborate and add up
other dependencies expressions to avoid complications and confusions.

63

This implies that the considered feature modeling notations have glitches in terms of
completeness and inclusiveness, in which none are completely comprehensive and
expressive with a capability to achieve an unabridged role in providing clear
expressiveness of the features, their relationships, dependencies, and constraints.

4.4.2.2. Visual presentation suitability

When talking about visual presentation suitability, all the modeling approaches
assessed are graphically visualized and presented, knowingly it is crucial to spot the
light on the variables in the model, as well as have a readable construct.

However the type of visualization varies from one model to another, thus the
readability and the visual presentation suitability varies accordingly.

• As noted, FODA obeys a basic tree presentation which tends to be less inclusive
and more problematic to create (Berg & Muthig, 2005). On the other hand, FORM
and FeatuRSEB notations are Directed acrylic graph (Batory, 2005; Sun et al.,
2005). Whereas, GP and VBFM notations are of tree structure which is more
clear(Czarnecki & Helsen, 2003; Van Gurp et al., 2001).

• FeatuRSEB and VBFD (see Figure 4. 14 and Figure 4. 16) presented variations and
variation points instead of the tradition or and Xor relationships present in others.

• FODA and FORM represents less readable feature model as their notations
requires additional explanations. However, in terms of readability and simplicity,
GP tends to be more concise and has less constructs with clearer connections and
relationship. FeatuRSEB notation tends to be the simplest and the most adequate
assessed notation as it has UML constructs (Gomaa, 2005).

4.4.2.3. Traceability

The models ability to evolve and adapt to changes is an imperative aspect in modeling
SPL, as they are always prone to alteration and changes. Thus reliability on the feature
model in terms of manageability, data consistency and traceability is a requirement for
an efficacious system. Traceability to track down features is indispensable, as the
feature model needs to evolve by means of adding, updating, extending or integrating
new features or requirements (Berg & Muthig, 2005; Metzger et al., 2007).

64

• FODA, FORM, as well as GP lack to support product line adaptability and
growth. Moreover, the above-mentioned feature notations fail to promote
evolution and integration of features and requirement.

• While, even though FeatuRSEB and VBFD are more manageable in terms of
integrating features and requirements, in which VBFD provides enhanced
dealing with binding times, as per annotating relationships between features,
and FeatuRSEB provides binding time, which are reuse-time and use-time
binding. Still they don’t advocate complete traceability.

This infers that the feature modeling notations taken into consideration have
shortcomings when considering traceability. The feature modeling approaches falls
short in providing traceability, ability to evolve and adapt, and data consistency at the
same time.

4.4.2.4. Scalability

For every feature model, it is crucial to be scalable and expandable to serve large scale
SPL systems, as most organizations requires enormous SPL systems, and thus scalable
feature models (Berg & Muthig, 2005). However current feature models don’t seem to
provide feasibility when it comes to large scale systems (Lee et al., 2002; Riebisch,
2003).

• It is evident that FODA has glitches in terms scalability (Batory et al., 2006), in
which it only serves small scale systems and isn’t feasible in handling large
scale systems and complex ones. FODA and FORM present a lack of scalability
and extendibility. The feature models investigated doesn’t present feasibility in
terms of adding extensions or managing large complex scales. They lack ease of
management in such a way it is too complex to be handled on a scale other than
a small scale on their own.

• In order to achieve scalability, GP, FeatuRSEB and VBFM approaches might be
scalable under the condition of being supported and analyzed automatically.
CASE is a support tool that underpins feature modeling notations in terms of
scalability and capability to modeling all features and any extensions.

65

It is important here to stress out the perceptible lack of independency of current FM
notations when it comes to scalability and dealing with complex systems.

4.4.2.5. Articulacy

Ambiguities, uncertainties and misunderstandings create a blockage towards
providing an articulated feature modeling notation that facilitates the perception of
the SPL system proficiently.

• For an instance the lack of precision, as well as complexity and ambiguity
resulting from the lack of interdependency between features exists in FODA
and FORM (Van Gurp et al., 2001).
The Or relationship doesn’t exist, and alternative relationship isn’t clear.
Henceforth, Conflicts and ambiguities are present.
Alternative feature are occasionally misrepresented, in which it creates conflicts
and ambiguities by confounding it with optional or mandatory features
(Metzger et al., 2007; Riebisch, 2003).

• Moreover, FeatuRSEB presents vagueness and confusion in relationships
between features in terms of optional and the Or relationship, as well as Or and
Xor relationship.

• VBFM and FeatuRSEB are also accompanies with ambiguities related to
variants. In addition, there might present concomitance of the Or and Xor
relationships with the mandatory and optional features in the generative
programing model.

Having that said, the assessed feature models lacks to have an articulated and clear-
cut semantics and notations. Thus the approaches explored don’t lack inconsistent
interpretations and uncertainties.

66

4.5. Automated Analysis of Feature Models

The realm of software product lines currently has an intensifying prominence, as per
its proficiency to enhance software reuse and make the whole procedure more
feasible. Ever since the very first establishment of feature models (Kang et al., 1990
Novak, & Peterson, 1990), the manual management, operation and handling of the
feature models have always been challenging and error-prone mission.

The glitches in feature modeling approaches has been identified (refer to section 4.4),
in addition to the need to support operations related to void features, invalid or
partial configurations, lack of flexibility and simplicity in product line, optimization,
and undetected anomalies (Batory, 2005; Benavides et al., 2010 2010; Cuevas, 2007;
Mannion, 2002; Perez-Morago, Heradio, Fernandez-Amoros, Bean, & Cerrada, 2015
Bean, & Cerrada, 2015).

Consequently, as per knowing the importance of software product line systems, SPL
specialists have proposed a vast amount of validation techniques to endorse its
process (Amine, Mohamed, & Bellatreche, 2013 2013). Since these problems in feature
models cannot be detected manually and on the sole dependence on the FM approach
used, which is highly complex and difficult, analysis operations is needed. Thus, The
automated analysis operation on feature models allows the direct validation and
verification of the feature models in the SPL system.

Within here levitated the role of the automated support, which is responsible for the
analysis of feature models in SPL. Consequently, specialists in SPL proposed various
practices to deliver automated analysis of feature models. These proliferated
automated analysis of feature models aims to deliver techniques, algorithms and tools
that work towards an automated extraction of information from feature models, in
which features, dependencies and any incompatibilities are recognized, analyzed and
disentangled.

This section will provide a concise review of the foremost promising solvers and
approaches in the perspective of the automated analysis of feature models.

67

Those proposed automated analysis approaches ranges from propositional logic and
first order logic approaches (SAT solvers, BDD, Alloy…) (Mannion, 2002; Mendonça,
2009; Sun et al., 2005 & Wang, 2005), constraints programming (CSP solvers and its
derivatives) (Batory et al., 2006 2006; White et al., 2009 & Benavides, 2009), description
logic approaches, conceptual logic approaches, and heuristic solutions (Ad-hoc)
(Batory et al., 2006; Kiniry, 2007) . In particular, this section will consider the solvers
and approaches listed and explored as follows.

4.5.1. Constraint Satisfaction Problem solver

The constraint programing is made out of a set of techniques dealing with CSPs.
Those techniques can be algorithmic and heuristic (Tsang, 2014).

Feature models are transformed into Constraint satisfaction problem “CSP” which is
made of set of variables, coupled with their set of domains which are expressed by
integers and interval values, and constrained by the set of constraints (see Figure 4.
17).

Figure 4. 17 CSP mapping of feature model

68

A constraint satisfaction problem solver is a tool or software that formulates CSPs.
These solvers works by considering and modeling the problems. The modeling
elements are expressed as variables, domains and their constraints. The CSP solver
aims to study the problem and search for the existence of any possible solutions
following the next steps (Benavides, Segura, et al., 2006b):

• Features are mapped to CSP variables alongside the feature’s domains
according to the kind of support provided by the CSP solver, which is either
dependent on TRUE or FALSE or 0…1.

• Dependencies and constraints are then considered. In respect to that,
corresponding variables present.

• After identifying the variables, their domains and constraints, all the mentioned
entities will be assigned a value in accordance to their dependencies for
example parent feature = TRUE or Parent Feature = 1, which is governed by on
the domain variables.

Figure 4. 18 clarifies the CSP mapping in accordance to the 3D printer exemplar
designed and used throughout the whole thesis.

69

Figure 4. 18 CSP mapping of 3D printer feature model

70

4.5.2. SAT solvers

SAT solvers are propositional logic based analyses solvers. Propositional logic
analysis PL, to begin with, uses propositional formulas that are made up of sets of
symbols deciding the connections and constraints of the analyzed feature models.
Figure 4. 19 demonstrates the propositional logic mapping of a feature model, which
provides an illustration for the symbol used to decide the variables, domains and
constraints (Mannion, 2002; Mendonca, Wąsowski, et al., 2009).
SAT solver is a tool which translate the feature model by means of propositional
formula, to determine whether its Boolean expression is satisfiable or not, and reach a
solution to the SAT.
In the majority of SAT solvers, the propositional formulas are entered as Conjunctive
Normal Form CNF (Cook, 1971).

Figure 4. 19 PL mapping of feature model

71

4.5.3. Binary Decision Diagram solvers

Binary Decision Diagram BDD solvers, similar to SAT solvers, are propositional logic
based analysis solvers that translates propositional formulas into graphical
presentations. Those decision diagrams represent the Boolean functions in the form of
DAG, which consequently facilitates the automated analysis process of the feature
model. BDDs are computational tools that functions by figuring out the satisfiability
and deciding the algorithms that supports establishing feasible solutions.

Overall, when mapping feature models by means of propositional logic based
analysis, this mapping varies depending on the solver used for the automated
analysis. However the following approach is mostly considered (Benavides et al.,
2009):

• Features are mapped to propositional formula variables alongside the feature’s
relationships which are mapped to smaller formulas in accordance to the feature
model being analyzed.

• After identifying the variables, and any possible auxiliary variable resulting from
mapped relationships, a final formula is conveyed which is the result of the
conjunction of all the mentioned formulas and the constraints present in the
feature model.

• The final stage lies on assigning the truth value to the variable of the root feature.

4.6. Concluding Remarks

During the course of this chapter, Feature modeling in SPL has been explored, to
satisfy our intention in determining the glitches and shortcomings accompanying
previous notations and approaches.

72

The literature review first of all presented an insight of definitions and terminologies
of feature modeling, their different notations and constructs, to acquaint the reader
with our exploration by means of systematic literature review.

Throughout the whole chapter, an exemplar of 3D printer product line is used as
representation for feature models to express their various notations, constructs and
specifications. Moreover, using the same exemplar throughout the whole chapter
aided comparing and contrasting between various notations that were put under the
lens of assessment.

Glitches and shortcomings of the current feature modeling notations are identified,
wherein an assessment of selected FM notation is undertaken, which are FODA,
FORM, FeatuRSEB, GP, and VBFD Notations. The Notations are critically assessed in
terms of scalability, traceability, articulacy, comprehensiveness and visual
presentation suitability. The findings are recapped as follows:

• Current FM notations are frequented with complexity and obscurity in
relations and dependencies semantics. In this manner, there’s a serious need to
take into account further dependencies semantics to avoid misperceptions.

• Although there’s a discrepancy in the type of visualization in FM notation and
consequently a variation in the visual presentation, there are challenges in
attaining an all-inclusive readable and simple construct as marked in FODA
and FORM notations.

• The evaluated FM notations tend to be infeasible in terms of providing
traceability, ability to evolve and adapt, and data consistency concurrently.

• Evidently speaking, current FM notations can’t perform adroitly in large scale
and complex systems and have discernible scalability problems.

• The assessed feature models are deficient in terms of providing articulated
notations. Furthermore they exhibit some failures in terms of capturing some
existing semantics among the model parameters.

Subsequently, this leads us to our next part of the dissertation targeting to explore the
realm of probabilistic modeling which attempts to overcome the problems discussed
in this chapter.

 “It should perhaps be noted that the choice of variables in terms of which a given problem is formulated,

while a seemingly innocuous step, is often the most crucial step in the solution.”

-Callen, 1985

73

Part IV

Modeling

74

Chapter 5

Modeling under Uncertainty

In information theory, information integrated among a set of variables are a measure
of the variables’ capability of reducing the systems’ uncertainty (Kullback, 1968).
Variables with higher uncertainty contain more information than variables with lower
uncertainty. This notion motivated scientists to quantify information as per its
probability weight. Claude E. Shannon (1949) noticed that such that

is the probability weight of a certain variable and is the measure of information.
 This notion reveals three main properties of information:

1. Information is always none negative quantity,
2. Variables with Certain probability weight don’t provide any new information,
3. Information measure of Independent Variables is additive.

Clearly, to capture the semantic of any variable; it’s important to anticipate its
uncertainty level. The third property of information is effective, when we learn about
belief model, in which model variables are mutually independent.
To practically understand the dependency behavior and relationship among a set of
variables, its encouraged to structure data model defining the correlation among
variables, and quantifying the degree of belief for each variable. Moreover, data
models are very effective to predict the outcome of variables aggregation, and trace

I p() = − logb p() p

I

75

the dependency flow among the model parameters.

In SPLE, relationships among variables are captured via logical notation known as
Feature Model. Feature models are information models used to identify products of
product line. The information embedded in the model, are denoted as variables within
different dependency contexts and crosstree constraints among it. Variables can either
be core variables (which will be referred by core features throughout this chapter)
with definite probability weight to ensure its existence in all products configurations,
or varied variables (which will be referred by variables throughout this chapter) with
different uncertainty level. Observing core feature with probability weight equal one
doesn’t give us any new information about the expected products’ functionality.
On the contrary, observing a variable would increase the model uncertainty; as a
result provide new information about the expected product identity. This conceptual
notion is mathematically valid and semantically mapped with the first and second
property of the information as been identified in the information theory.
Due to its uncertainty nature, variables enrich FM with information. The more
variables the model has, the more information we can obtain from this model.
Information can be seen as non-functional or functional qualities of the model product
line. This implies that, more variables potentially bring about more products. When
modeling in SPLE, the uncertainty measure of any variables is due to its interaction
with the model parameters. The degree of uncertainty of any variable is a
representation of our intuitive belief about this variable probability when we start
constructing the model.

To capture the relationships and uncertainty measure of the model parameters; We
introduce Bayesian Belief Network BBN as framework to construct a variability
model, that doesn’t only capture the logical dependency among features, but also
anticipate the uncertainty measure of involved features. Providing belief model help
us to understand the information provided in the model and aids in the reasoning
process.

76

This Part of the dissertation will profoundly explore the semantic of FM in SPL, traced
down by an overview to our proposed Bayesian belief feature model. Moreover, this
part will draw out the semantic equivalence between the two distinct models as well
as define the mapping rules amongst both.

5.1 The Notion of Feature Model Semantic

Feature Model FM is information model (Benavides et al., 2010) used to identify
products in product line (Batory, 2005). Feature Model (FM) consists of features and
relationships among them. In Feature model, features are typically a distinctive visible
attribute used to indicate quality in the product functionality (Kang et al., 1990). In
Addition, relationship in Feature Model can typically be defined as a class of
dependency that indicates the interaction between at least two different features, see
Figure 3. 4 for an example of feature model. FM is known as variability model, such
that variables appear to interact throughout different dependency channels, allowing
the model to obtain different functionality each time we have a valid and complete
explicit set of variables.

Current practices compose features and dependency relationships into a hierarchical
graphical representation called Feature Diagram. In Feature Diagram FD, composition
rules that specify mutual dependencies and mutual exclusion between features (Kang
et al., 1990) appear as crosstree constraints (Benavides et al., 2010).

The main types of relationships to group a set of features can be identically
categorized as; Or, Optional, Mandatory, and Alternatives; which are used to maintain
the dependencies level between a compound feature and sub feature (Batory, 2005).

5.1.1. Feature Model Prominence

The key importance of FM is to elucidate the requirement space, in order to support
the development process and the reuse of notation. The two main components of any
feature model are Feature Diagram and Composition Rules (Benavides et al., 2010).

77

In the development process, FM could be used as a knowledge domain to indicate
what has to be parameterized in other models (Kang et al., 1990).

Feature Diagram is relatively easy to read rather the Model, which is solely composed
of composition rules (Kang et al., 1990). Therefore, Feature Diagrams are widely
adopted as accepted representation denoting all members of a given Product line
(Benavides et al., 2010).

To construct a Feature diagram, a data analysis should be first conducted to quantify
features and its corresponding functionality, with extensive emphasize on proposed
requirements of the anticipated products. The quantification process determines any
identified dependencies among different features. Moreover while identifying
features dependencies; grouping contexts could be introduced as a resolution of
multiple same level dependency channels among prior and posterior features. The
obtained information defines the problem domain knowledge.

Once the knowledge domain is clearly identified by naming all features and the
dependencies among these features, a feature diagram can be constructed in which the
semantic of knowledge domain is fully captured.

5.1.2. Relationships in Feature Model

A typical relationship between features in FM is a direct dependency between two
features or more. A consist-of relationship demonstrates a logical grouping of
dependent features (Kang et al., 1990).

Theoretically, any kind of relationship could be defined to capture the dependency
semantic between a set of features (P. P.-S. Chen, 1976).

In the interest of Software Product line Engineering SPLE, four structural relationships
are used to capture the dependencies between features that are:

• Mandatory AND Dependency.
• Inclusive OR Dependency.

78

• Exclusive OR Dependency.
• Optional Dependency.

And two composition rules typically named Crosstree Constraints that are:

• Mutual include.
• Mutual Exclude.

In the following we are going to carefully identify the semantic of each relationship.

• Mandatory AND dependency:

Mandatory AND dependency is a direct dependency between a compound
feature and subfeature, in which subfeature must be included in the system
specification wherever its compound feature is part of the system specification.

Let , be of a set subfeatures in mandatory AND dependency with

compound feature .

The truth semantic of this dependency context holds only when such
that can have a binary value of zero or one.

• Inclusive OR Dependency:

A set of subfeatures is composed by an Inclusive Or Dependency with a
compound feature, enforces that at least one subfeature must be included in the
system specification wherever the compound feature is included.

Let ,be of a set subfeatures in Inclusive OR dependency with compound

feature .
The truth semantic of this dependency context holds only when
such that can have a binary value of zero or one.

f1, f2{ }
fc

fc := f1. f2
f

f1, f2{ }
fc

fc := f1 + f2
f

79

• Exclusive OR Dependency:

A set of subfeature are composed together with a compound feature in
cardinality-based dependency, illustrating that only one subfeature must be
included in the system specification, whenever the compound feature is
included.

Let ,be of a set subfeatures in Exclusive OR dependency with

compound feature .
The truth semantic of this dependency context holds only when

 such that can have a binary value of zero or one.

• Optional dependency:

Optional dependency is a direct dependency between a compound features
and subfeature, in which, a subfeature can but doesn’t need to be part of the
system specification whenever the compound feature is included.

Let ,be of a set subfeatures in Optional dependency with compound

feature .

The truth semantic of this dependency context holds only when
 such that can have a binary value of zero or one.

• Mutual Include:

Mutual Include indicates all optional and alternative features that must be
included in the system specification whenever a given feature is included.

Let and be two features such that, mutually include when

, in a manner can have a binary value of zero or one.

f1, f2{ }
fc

fc := f1. f2 + f1. f2 f

f1, f2{ }
fc

fc := f1 + f1() + f2 + f2() f

f1 f2 f1 f2
f1 → f2 := f1. f2 + f2 f

80

• Mutual Exclude:

Mutual Exclude indicates all optional and alternative features that must be
excluded from the system specification whenever a given feature is included.

Let and be two features such that, both features are in mutual exclude

context whereas , such that can have a binary value of zero

or one.

5.2. The Need for New Model

The key innovation of Feature Model is to create a representation that specifically
captures the functionality of products, throughout exploiting the semantic existing
among the product components. Current methodologies, institute a good framework
in which basic representation is provided to capture the meaning of model
components, and including direct dependencies among features; while identifying
possible boundaries in the product line. Nevertheless, these representations mostly
exhibit shortcoming in the interest of non-direct interaction and the dependency
semantic among model components. Also, the predefined composition rules are
usually orienting around the direct dependencies between features in Feature Model.
Knowing that; the complete feature attribute is naturally inherited by its ancestors and
bounded by its mutual dependencies as well as its descendants, the need of
understanding the dependencies flow in the system specification has emerged as a
key issue (Apel, Batory, Kästner, & Saake, 2013a). According to (Benavides et al., 2010;
Kang et al., 1990), current representations exhibit obvious limitation in this regard,
and tend to leave some semantic to common sense, which usually become less
obvious and get lost overall complexity.
Moreover, current feature models usually assign equalized weight assignments for all
model components without indicating the likelihood of each component, or allowing
better understanding of the dependency flow; to consider any latent implication
raised by indirect dependencies.

f1 f2
f1 ↔ f2 := ¬ f1. f2() f

81

Proposing different weights values for feature model parameters, is a promising
technique aiding to quantify the intended implication of involved components.
By identifying the implication weight of each component in the feature model, we
advance our belief about the components interaction and the truth behavior of the
feature model.
By tracing the dependencies flow, and anticipate the truth assumption of each
parameter, we would be able to enhance the feature model performance throughout a
possible rearrangement of features integration, or by reducing some parameters as per
its probability weight, alongside with its integration and implication on the model
belief. Any reduction in feature model would reduce the reasoning problem space,
leading to an efficient reasoning process.
In addition, while advancing our belief about the model behavior, we will be able to
efficiently advance our design even in latter stages, when satisfying features
requirements.
For instance, if we observe a feature with a relatively low probability weight, we can
conclude that the chances of including this feature in a valid configuration would be
minimal. After that we might need to revise the feature attribute, such as; cost,
functionality, added complexity, size. By recalling the initiated knowledge domain,
and product line preference; we might decide either to omit this feature from the
model, consequently we reduce cost and problem size in addition to improve the
reasoning process. On the contrary, we might decide to increase the probability
weights of this feature (due to preferred functionality, variability) by either
incorporate some composition rules calling this feature or a potential rearrangement
of features integrations.
In both scenarios the belief model helps us to improve our design and utilize the
usage of model parameters.

The need of incorporating new components to the core components, or even remove
some variables without devastating the overall semantic, is another reason to start
thinking of developing a more dynamic modeling framework that gives the designer a
higher degree of freedom during the modeling stage.

82

Moreover, we take into consideration that tackling a problem from the problem space
into a designed model is also an art as much as a science. Therefore new modeling
techniques should be always considered to pair different solution dialects for different
problems contexts.

To conclude, the demand for a new model is pinpointed for the following motives:

• The need for capturing the actual implications of the existing features, and
quantifying of the occurrence likelihood of each feature.

• The need to quantify non-direct entanglements among model parameters,
throughout a determination of the truth flow and uncertainty variation among
different contexts and parameters.

• The necessity to support the automation analysis and reasoning process, by
exploiting the dependency strength and inferring the actual implication of the
embedded crosstree constraints.

• The aspiration of enhancing the model graphical representation, by the use the
variation of color to project variation in the uncertainty measure.

• The need to inform decisions when trying to derive new products in the
product line.

• The desire of having dynamic model that enable the user to easily incorporate
new features or remove some existing features from the original design, and yet
still can quantify the added implication of the new change.

5.3 Bayesian Modeling

Bayesian Belief Network “BNN” is famously known for its conveyance in artificial
intelligence as an attempt to model. BBN is thus a modeling approach which is
basically a directed acyclic graph that merges between both probability and graph
theory. Thus, BBN is an all in one approach to model, as well as, reason and handle
uncertainties at the same as been equipped with modeling and probabilistic methods.

83

In addition to that, BBN provides an advancement in the realm of information since
this belief network supports both qualitative and quantitative information captured
by means of a rationale technique. Throughout the usage of BNN, any new
information can swiftly be incorporated and added up to the information base as soon
as it’s present. However when it comes to dealing with conditional uncertainties and
the probabilistic aspect of the BBN, determination and reasoning is required. That
being said, the BBN is consequently associated with an extent of changeability and
variability when considering any model being developed by means of BBN approach.

Due to its precedence in terms of dealing with unpredictability, variabilities and
uncertainties, BBNs seems to be the most favorable and adequate approach to run
through the outcome of the highly tendency of occurrence in future scenarios.
The BBN functions by means of probabilistic inference, in which it computed the
probabilistic weighting of the considered variables in accordance to information about
other related variables and their conditions and contexts.

As been stressed out earlier, the prominence of BBN lays within the capability of
handling information coming from subjective judgment as well as objective ones.
So, in terms of objective data scarcity, it’s possible to use subjective data to form out
the initial material to be assessed and weighted probabilistically and later on, any
additional beneficial information could be encapsulated in the BBN and thus provide
an update and rebuild up the probabilistic outcome.

In conventional basic FM, a set of observed components always exist as a core
features, as well as, a set of varied components that usually alters from specification to
another within a context of dependencies. The more variables we have the higher
uncertainty level we reach. This is usually a desired aspect in any FM, but on the
downside this will raise range of complications regarding scalability, satisfiability,
visibility.

In feature modeling, the existence likelihood of any child subfeature is conditioned by
the existence state of its parent compound feature. The truth flow is directed from
parent compound features to child subfeatures in a casual flow. Thus, can be captured

84

using Bayes theorem, in which the truth probability of any posterior event is
conditioned by the truth probability of the prior event.

Both BBN and FM notations are directed acyclic graph in which the occurrence of any
posterior event is restricted by the occurrence of its prior event. BBN modeling is
effective when inferring a consistent conclusion from the given contexts, in which it
helps to inform decisions accordingly.

 In addition, integrating new features whenever available is a core advantage of BBN,
while also subjective assignment of the truth measure among the model parameters is
possible throughout different design stages of the model.

Moreover, BBN is an assimilation between graph theory and probability theory that
has been successfully implemented and evolved in science and engineering to
provide, not only a modeling framework, but also a predictive approach in which the
causality of events can be quantified and predicted easily.

We introduce Bayesian Belief Network based modeling technique to model basic FM
as a pioneering comprehensive framework to allow users to reason and model about
uncertainty.

Our approach is aided to:

1. Improve the design performance.
2. Capture the existence semantic between features throughout a comprehensive

belief network.
3. Reduce number of parameters in a given problem space.
4. Present Scalable prediction of features latent implication and occurrence

likelihood.
5. Quantify the crosstree constraints implication.
6. Reason and satisfy the resultant model with a sense of uncertainty.
7. Exploit component usage and influence.

85

Basic FM indicates what needs to be configured into the model and how the semantic
of configuration should be mapped (Kang et al., 1990). Therefore, we use existing FM
as our knowledge domain due to its simplicity and wide adoption.

In the next we introduce our BBN based modeling framework and define the
mathematical semantic of each component to assure that at least all semantic provided
by Basic FM are true and hold in the new proposed model.

5.3.1. Bayesian Belief Feature Model BBFM

Bayesian belief feature model BBFM is a belief representation of the knowledge
domain, such that a probability weight is assigned for each feature, to quantify its
implication on other model parameters. These assignments are used to specify the
probability of satisfying the existing semantic of the involved dependency contexts.
The identified probability weight helps to optimize the model behavior while
reasoning, also anticipates the probability weight of any given feature.

BBFM is composed of a set of dependency contexts that captures the existence
semantic among set of variables.

The developed model is inspired by the work of (Shwe et al., 1991) who pioneered a
Noisy-OR gate to model Quick Medical Reference QMR diagnostic decision support
tool. His model has gained a huge success by reducing number of involved
parameters significantly.

The developed Bayesian belief model BBM is composed of four main dependency
contexts namely; Bayesian Conjunction, Bayesian Disjunction, Bayesian Exclusive
Disjunction, Bayesian Tautology, in addition to direct mutual include and mutual
exclude dependency; fusing features constraints.

We can structure Bayesian Belief Feature Model BBFM by grouping each set of
variable within its dependency context in cardinal format, allowing the truth-value to
flow within dependencies context evidentially. The structure of the dependency

86

context must be valid and corresponding with the semantic of the equivalent Basic
feature model FM.

Figure 5. 9 illustrate a translated model from FM (refer to Section 3.3 and Figure 3. 4)
into BBFM of our designated example of 3D printer.

Definition 5.0. We define Bayesian Belief Feature Model BBFM, as a set of
interconnected dependency contexts, such that each dependency context must be
categorized as one the following Bayesian dependency context; Bayesian conjunction,
Bayesian disjunction, Bayesian exclusive disjunction or Bayesian tautology, And two
mutual dependency; Require and Exclude.

Different probability weights are distributed among belief model, providing a
measure of the parameters’ expected affect.

This notion is very crucial to give the designer the ability to emphasize on some
attributes rather than others, to meet some non-functional properties, or to reduce the
influence of some constraints..etc.
It also helps in latter development process, in which the need of incorporating a new
feature, or even drive the dependency flow between features, is emerged; to obtain a
desirable efficiency in the reasoning process.

In the following subsections, the mathematical semantic of the developed Bayesian
model will be explained thoroughly.

Definition 5.1. Bayesian dependency context; is a dependency configuration

composed of set of features and dependency function . Such that defines the

dependency semantic existing among compound feature and all its adjacent

subfeatures .

Each feature has probabilistic truth assumption denoting the entanglement

with other features via crosstree constraints, in the Bayesian Belief Feature Model.

f θ θ
fc

θ : fc , fs1... fsn{ }
f Cf

87

Where has probabilistic truth assumption denoting the probability of satisfying

the induced semantic in accordance with the model belief.

5.3.1.1. Bayesian Conjunction

Definition 5.2. A set of subfeatures is in Bayesian Conjunction

with compound feature , such that .

In which, the truth assignment of the compound feature is determined by the truth
assignment of all subfeatures, demanding all subfeatures must be true in all system
specifications wherever the compound feature is true.

Figure 5. 1 Graphical Representation of Bayesian Conjunction

Lemma 5.1. Let be generated via the Definition 5.2. Where

 is a subset of the set of all subfeatures. Such that,

θ γ

fs ,..., fsn{ } θ•

fc θ• : fc , fs1... fsn{ }

θ• : fc , fs1... fsn{ }
fs1,.., fsn{ }

88

fs1,.., fsn{ }∈ all subfeatures{ } .

Assuming that are observed subfeatures with valid truth assumption,

such that,

.

We define the probabilistic truth assignment of obtaining a valid

Proof and Semantic Proof is by semantic check; Definition 5.2 demands that all
subfeatures must be true to evaluate a truth assignment for the conjunction function.

Suppose we have set of observed subfeatures Lemma 5.1 evaluates the truth

assumption of observed subfeatures, such that if any observed subfeature has a

probabilistic truth assignment equal zero.

 This will directly result the product to be zero, which in its turn,

disqualify the conjunction function of being true and set its probability to zero.

Otherwise, if no observed subfeature had violated the conjunction requirement, i.e all

observed subfeatures had truth assumption greater than zero, is yet valid and have

a probabilistic truth assignment equal ;

Corollary 5.1. Let be a compound feature that’s generated via Definition 5.1

with a valid dependency function. We define the probabilistic truth assignment of

fs1,.., fsn{ }

P fs | cs() =ω s

θ•

P θ• | fs1,.., fsn() =
0, P fs | cs() = 0

s=1

n

∏

γ , P fs | cs() > 0
s=1

n

∏

⎧

⎨
⎪
⎪

⎩
⎪
⎪

fs
P fs | cs()

P fs | cs()
s=1

n

∏

θ•

γ

P θ• | fs1,.., fsn() = γ

fc
fc

89

Similarly,

Proof and Semantic Corollary 5.1 demonstrates that a compound feature can

only be true; if its truth assumption generalization and the truth assumption

specialization 3 of the adjacent observed subfeatures , exhibit truth-value.

Moreover, this notion implies that; the truth assignment for any feature in BBFM is
actually determined with two major flows of dependencies; which are global
dependencies and local dependencies:

• In global dependencies, we evaluate the casual dependency flow of observed
features. Such that, if one of the observed features exhibit unsatisfiable
crosstree constraint, this might jeopardies the truth assumption of its
compound feature.

• In local dependencies, we evaluate the truth assumption of succeeded features
and the dependency function, which can be seen as an evaluation of the feature
generalization. Such that, if the compound features of feature f was assigned
zero probabilistic weight, this will automatically disqualify feature f of having a
valid truth assignment.

3 feature f generalization is the evidential dependency’s flow of feature f.
 feature f specialization is the casual dependency’s flow of feature f.

P fc | cc ,θ() = 1−ω c() 1−γ()

P fc | cc ,θ() = 1− P fc | cc ,θ()

fc

fs

90

Figure 5. 2 Truth Assumption change in Bayesian Conjunction

Let θ• fc , f1.. f4() be a Bayesian conjunction dependency context such that, four

subfeatures are grouped in Bayesian conjunction dependency with a compound
feature.

Figure 5. 2 above demonstrates the belief change of Bayesian conjunction functions’
truth assumptions versus the number of observed subfeatures. Observing

subfeature with a valid truth assumption would increase our belief about the truth
assumption of the dependency function. Can only obtain a truth assignment

equal one, only and if only all involved subfeatures were observed with a valid truth
assumption.

5.3.1.2. Bayesian Disjunction

Definition 5.3. A set of subfeatures is in Bayesian Disjunction

with compound feature , such that .

In which, the truth assignment of the compound feature is determined by the truth

assignment of at least one subfeature, allowing that, one subfeatures can satisfy the

truth semantic of the Bayesian Disjunction .

Number of Observed Features
0 1 2 3 4

T
ru

th
 A

ss
u

m
p

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

γ

fs ,..., fsn{ } θ+

fc θ+ : fc , fs1... fsn{ }

θ+

91

Figure 5. 3 Graphical Representation of Bayesian Disjunction

Lemma 5.2. Let be generated via the Definition 5.3. Whereas

 is a subset of the set of all subfeatures. Such that,

fs1,.., fsn{ }∈ all subfeatures{ }

Assuming that observed subfeatures with known truth assumption,

such that,

We define the probabilistic truth assumption of obtaining valid

P θ+ | fs1,.., fsn() =
γ , P fs | cs() = 0

s=1

n

∑

1, P fs | cs() > 0
s=1

n

∑

⎧

⎨
⎪
⎪

⎩

⎪
⎪

Proof and Semantic Proof is by semantic check, Definition 5.3 requires that at least
one subfeatures must be true to evaluate a truth assignment for the disjunction
function.

θ+ : fc , fs1... fsn{ }
fs1,.., fsn{ }

fs1,.., fsn{ }

P fs | cs() =ω s

θ+

92

Lemma 5.2 evaluates the truth assignment of the observed subfeatures, such that if

any observed subfeature has a probabilistic truth assignment greater

than zero this will directly increment .

As a result, the sum will have a truth assumption greater than zero, which in its turn,
qualifies the disjunction function to be true with probabilistic truth assumption equal
1.

Otherwise, none of the observed subfeatures succeed to exhibit truth assumption, the

truth assumption of the disjunction function is still due till we are able to

determine the truth value of remaining subfeatures, henceγ .

Figure 5. 4 Truth Assumption change in Bayesian Disjunction

Let θ+ fc , f1.. f4() be a Bayesian Disjunction dependency context such that, four

subfeatures are grouped in Bayesian disjunction dependency with a compound
feature.

Figure 5. 4 above demonstrates the belief change of Bayesian disjunction functions’
truth assumptions versus observing a number of features with invalid truth

assumption. Observing subfeature with an invalid truth assumption ω = 0 , will
decrease our belief about the truth assumption of the dependency function.

fs P fs | cs()
P fs | cs()

S=1

n

∑

θ+

γ

Number of Features
0 1 2 3 4

T
ru

th
 A

ss
u
m

p
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

93

When observing that a given subfeature exhibit invalid truth assumption, this
observation implies a reduction in the truth domain of and by default decrease the

truth assumption value of the disjunction functions, the more invalid features we
observe; the lower truth assumption we achieve until we observe that all involved
subfeatures exhibit invalid truth assumption, in which the Bayesian disjunction
function will be semantically invalid with truth assumption equal zero.

5.3.1.3. Bayesian Exclusive Disjunction

Definition 5.4. A set of subfeatures is in Bayesian Exclusive

Disjunction with compound feature , such that, .

If the truth assumption of the compound feature is determined by the truth
assignment of one and only one subfeature, in which one subfeature must be true to

satisfy the truth semantic of the Bayesian Disjunction , whereas all other

subfeatures must be excluded from the system specification.

Graphically Bayesian Exclusive Disjunction is represented as follows;

Figure 5. 5 Graphical Representation of Bayesian Exclusive Disjunction

γ

fs ,..., fsn{ }
θ⊕ fc θ⊕ : fc , fs1... fsn{ }

θ⊕

94

Lemma 5.3. Let be generated via Definition 5.4. Whereas

 is a subset of set of all subfeatures. Such that,

fs1,.., fsn{ }∈ all subfeatures{ }

Assuming that observed subfeatures with known truth assignment

. We define the probabilistic truth assignment of obtaining valid

P θ⊕ | fs1,.., fsn() =
γ ,

∀P fs | cs()
P fs | cs()

s=1

n

∑
= 1

0, otherwise

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Proof and Semantic Proof is by semantic check, Definition 5.4 demands that one and
only one subfeatures must be true to evaluate a truth assignment for the exclusive
disjunction function.

In Lemma 5.3, we evaluate the truth assignment of the given subfeatures, such that if

the probabilistic truth assignment of a subfeature over the sum of the probabilistic

truth assignments for all observed subfeatures was exactly equal one.

This means only one subfeature has a truth assignment greater than zero, concluding
the observed subset doesn’t violate the induced semantic of Definition 5.4.

Therefore the exclusive disjunction function is yet valid with probabilistic truth
assignment equal .

Otherwise, if the given subset failed to meet the imposed semantic i.e more than one

subfeature had a truth assignment greater than zero, thereafter, is not true and

has a probabilistic truth assumption equal zero.

θ⊕ : fc , fs1... fsn{ }
fs1,.., fsn{ }

fs1,.., fsn{ }
P fs | cs() =ω s θ⊕

fs
P fs | cs()

γ

θ⊕

95

Figure 5. 6 Truth Assumption change in Bayesian Exclusive Disjunction

Let θ⊕ fc , f1.. f4() be a Bayesian exclusive disjunction dependency context such that,

four subfeatures are grouped in exclusive disjunction dependency with a
compound feature.

Figure 5. 6 above demonstrate the belief change of Bayesian exclusive disjunction
functions’ truth assumptions versus the number of observed subfeatures in a

given subset. The highest truth assumption is achieved when only one subfeature
observed and this subfeature exhibit a truth assumption.
If none of subfeature were observed we still obtain a truth assumption as we still
have the possibility to obtain one valid subfeature. If more than one subfeature is
observed with a truth assumption value greater than zero, this will violate the
semantic of exclusive disjunction function, hence disqualify the dependency
context of being valid and set to be zero.

5.3.1.4. Bayesian Tautology

Definition 5.5. A set of subfeatures is in Bayesian Tautology

with compound feature ,such that .

In which, the truth assignment for the set of subfeatures is actually doesn’t affect the

truth assumption for the tautology function; therefore the tautology function is

always satisfied.

Number of Observed Features
0 1 2 3 4

T
ru

th
 A

ss
u

m
p

tio
n

0

0.05

0.1

0.15

0.2

0.25

0.3

γ

γ

fs ,..., fsn{ } θ⊤
fc θ⊤ : fc , fs1... fsn{ }

 θ⊤

96

Graphically Bayesian tautology is represented as follow;

Figure 5. 7 Graphical Representation of Bayesian Tautology

Lemma 5.4. Let be generated via the Definition 3.5 ,whereas

 is a set of all subfeatures. Such that,

fs1,.., fsn{ } = all subfeatures{ }

Assuming that are observed subfeatures with a truth assignment

. The truth assumption of

1

Proof and Semantic The proof is by semantic check, Definition 5.5 guarantees all
problem space and any observation is in fact, a valid truth domain for the tautology
function.
In Lemma 5.4, we evaluate a truth assumption for the tautology function for any set in
the problem space.

 θ⊤ : fc , fs1... fsn{ }
fs1,.., fsn{ }

fs1,.., fsn{ }
P fs | cs() =ω s θ⊤

 P(θ⊤ | fs1,.., fsn) = γ

97

Figure 5. 8 Truth Assumption value in Bayesian Tautology

Let θΤ fc , f1.. f4() be a Bayesian tautology dependency context such that, four

subfeatures are grouped in Bayesian tautology dependency with a compound feature.

Figure 5. 8 above demonstrates the belief of Bayesian tautology functions’ truth
assumptions is always equal one.

This implies that the tautology function is satisfied under any observation.

Number of Observed Features
0 1 2 3 4

T
ru

th
 A

s
s
u
m

p
ti
o
n

0

0.2

0.4

0.6

0.8

1

93

Figure 5. 9 Translation from 3D Printer FM into 3D Printer BBFM

94

5.4. Measuring the Uncertainty Level

Like any belief model, Bayesian Belief Feature Model BBFM quantifies the truth
assignment for its parameters; throughout a collection of evidences and conclusions,
which forms the belief model.

BBFM could potentially contain some core parameters namely core features, these
must subsist in all valid configurations. A set of core features could derive the belief
flow in BBFM. Knowing it has to be satisfied among system configurations; might
imply a certain belief distribution all over the model.
This of course, would propose a truth assumption change amongst the model, by
increasing or decreasing the truth assumption weight for other variables.

The aforesaid does not only give a better understanding of system parameters truth
flow, but also it gives a possible truth evaluation for some parameters in the model by
either include it in the model belief base, or even opting it out of the BBFM, in order to
satisfy the belief base features requirements.

Definition 5.6. Truth Assumption is a quantified measure for a given
parameter, indicating its probability of obtaining satisfiable truth assignment after the
reasoning process. If the truth assumption was ultimately equal one, this implies, the
parameter is definitely existing in all products configurations.

In addition, belief base could be subjectively defined, such that we assign a truth
assignment to some non-core features, to emphasize some model preferences, or
obtain some non-functional qualities. The selection of the preferred features is also
serving in forming the truth flow of the belief model, which could be identified
judiciously to optimize the reasoning process in latter stages.

Belief base is a set of parameters in the belief model, such that each parameter is
assigned with truth assignment equal one; either as a part of core features or due to
subjective selection.

Having a belief base would improve the belief knowledge, concluding new degree of
certainty of other features’ truth assumptions.

95

To quantify the degree of certainty of all models’ parameters, we need to identify the
truth flow from belief base to all other parameters; while maintaining the existing
semantics of the involved dependency contexts.

In the following subsection, we propose the mathematical scheme, enabling us to
anticipate the truth assumption of all model parameters.

5.4.1. Computing the Truth Assumption of Model Parameters

Quantifying the truth assumption of any parameter is subject to the feature
dependencies, and its association with other parameters.

To thoroughly understand the implication of involved parameters on a given feature,
we will study all proposed dependency contexts and introduce the mathematical
approach identifying the truth assumptions in each.

Corollary 5.2. Let f be a feature generated via Definition 5.1, with a constraint
assignment . We define the truth assumption of f as follow;

P f | cf() =
0, cf = 0

ω c , 0 < cf <1

1, cf = 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

Proof and Semantic The truth assumption of any feature is constrained by the truth
assumption of its corresponding crosstree constraints. Whereas, if feature f exhibits an
exclusion dependency with another feature with truth assignment equal 1. Similarly,
its corresponding value equal zero. Consequently, this means feature must be

excluded from the system configurations, and therefore to be assigned zero
probability.

In the other scenario whereas 0 < cf <1 , the probability of obtaining a truth

assignment of feature would change accordingly as per , whereas is

determined in accordance with the semantic of the involved dependency context.

cf

cf f

f ω c ω c

96

Finally, when cf = 1 this implies that feature is required by a core feature with truth

assignment equal one, therefore it should be true in all model configurations; hence it
would be assigned truth assignment value equal one.

Definition 5.7. Let f be feature in BBFM, f has a probabilistic truth assumption

 ,whereas is a measure of the feature dependency’s generalization and any

crosstree constraints f might exhibit.

 In addition, is also determined by the nature of the dependency context, in which

it interacts with the adjacent compound feature and any sibling features.

To compute the truth assumption of any feature we would check its dependency
context semantic as follows;

5.4.1.1. Bayesian Conjunction

Proposition 5.1. Let be subfeature generated via definition 5.2, we defineω x

as;

ω x = P x | fc ,cs()θ• =
1 ,P fc() = 1

P fc() I c f()⎡⎣ ⎤⎦ ,otherwise

⎧
⎨
⎪

⎩⎪

Proof and Semantic Definition 5.2 requires that all subfeatures must be true in all
system configurations wherever its compound feature is true.

Proposition 5.1 meets the semantic of Definition 5.2 in which, if the compound feature
 has a truth assignment equal 1, this implies that the compound feature is true in

all system configurations; therefore all its generalization and specialization must be
within a valid dependency context.

To satisfy Definition 5.2 and Lemma 5.1; x must also be true in all system
configurations. Therefore, its probabilistic truth assignment must equal one,
regardless of any kind of crosstree constraints x might exhibit.

f

ω f ω f

ω f

fc

x

fc

fc fc

97

In this context x has the highest priority in the model belief system. Similarly, if x has
an exclusion dependency via crosstree constraint, ultimately the entangled feature
must be excluded from all models’ configurations.

In the other scenario, if the truth assumption of the adjacent compound feature
doesn’t qualify fc to be true in all system configurations, this semantically disqualify x

of being true in all systems’ configuration, whereas its truth assignment is determined
by the truth assumption generalization, as perP fc() .

Unlike the first scenario, here we should consider the implication of all crosstree
dependency. In which, its truth assumption might require to exclude x from system
configuration wherever applied.
To illustrate the implication of crosstree dependencies, we generate dependency array
I c f() ; combining all mutual crosstree constraints x might exhibit; quantifying the

implication of any crosstree constraint on x. such that I c f() equal the truth

assumption of features with requires dependency and truth assumption complement
of features with exclusion dependency.

Definition 5.8. Let E be a set of subfeatures grouped in Bayesian dependency
context with a compound feature f.

we denote the dependency function as such that, the semantic evaluation of the
dependency context , could be identified via ; where is a result of truth

assumption of all adjacent subfeatures. Is determined by the type of the

dependency context of the associated subfeatures and its specialization. Moreover, it
also figures out the righteousness truth evaluation in validating the dependency
context.

Proposition 5.2. Let be set of observed subfeatures generated via Definition
5.2; to evaluate truth assumption of the dependency context, we compute by

recalling Bayes theorem as follow;

θ
θ γ γ

γ

x
γ

γ x = P θ• | x() = P θ•()P x |θ•()
P θ•()P x |θ•() + P θ•()P x |θ•()

98

Proof and Semantic Definition 5.2 and Definition 5.8 imply that, the truth
assignment of the conjunction function is conditioned by the truth assumption of

its all its adjacent subfeatures.

Therefore, if we observed set of subfeatures in within a conjunction dependency
context, such that x{ }∈ all subfeatures{ } ,

We can evaluate the truth assumption of in accordance with its truth assumption

and Lemma 5.1.

All features in x will be evaluated via Corollary 5.2, such that if all features in the

set of observation , succeeded to have a truth assignment greater than zero

 such that . In Lemma 5.2 is satisfied, therefore will have a truth

assignment computed as per Proposition 5.2. Is determined by the number of truth

observations, and it only can achieve truth assignment equal one, and validate the
conjunction context ; if all subfeatures were observed with a truth assignment.

Likewise, if one or all observed subfeatures were detected with truth assumption
equal 0, cannot be valid with probabilistic truth assumption equal zero.

To validate , and achieve a truth assignment equal 1, such that =1; the second

term of denominator must be equal zero, .

Since our observation set is , we will investigate the settings, thus will set this term

to be zero i.e

To examine this notion, suppose we have a set of four subfeatures grouped in
conjunction function, as follow in which two subfeatures exhibit a

truth assignment; such that .

 Is , by recalling Definition 5.2 we conclude that can only be

assigned a truth assignment, if the set of all observed subfeatures combined all
subfeatures. Hence, only one set can contain all subfeature and assign a truth
assignment of the conjunction context.

θ•

x

θ•

f f

x{ }
∀f =ω f f ∈ x{ } γ θ•

γ

θ•

γ
θ• γ

P θ•()P x |θ•() = 0

x{ }
P x |θ•() = 0

θ• : fc , fsa fsb fsc fsd{ } x

x{ } = fsa , fsb{ }

P x |θ•() P x∩θ•()
P θ•() θ•

99

The probability of obtaining this set is , alternatively .

Similarly, we can infer thatP x∩θ•() = 3
2n −1

. This will not set to be zero. Only

one selection can do so, in which we observe all subfeatures with truth assumption
such that, x{ } = all subfeatures{ } .

In this case, ; as this is embedded by Definition 5.2. When ;

the term is also equal zero. Consequently, we can conclude

 .

This proves our assumption and Proposition 5.2, in which, only one set can assign a
truth assignment of the conjunction context, when all subfeatures are observed with a
truth assumption greater than zero.

In further discussion, to evaluate the truth assumption given that we observed set
of features . Such that,

 is the number of contained subfeatures in the observation set, and is the number
of all subfeatures.
Problem space is , only one event can evaluate to be true, as we have

explained earlier in this section. Therefore, .

Now to evaluate the truth assignment of given i, ; we will use Bayes

Theorems as follow:

1. Calculate how many subfeatures can be observed i. , whereas n is

the number of observed subfeatures in each combination.
2. Compute the probability of getting an event contain exactly i feature,

Such that;

P θ•() = 1
2n P θ•() = 2

n −1
2n

P x |θ•()

P x∩θ•() = 0 P x∩θ•() = 0
P θ•()P x |θ•()

γ x = P θ• | x() = 1

γ
x

x ∈ i = 0,i = 1,...,i = n{ }

i n

Ω 2n θ•

P θ•() = 1
2n

θ• P θ• | i()

i ∈ 0,1,2,..,n{ }

100

3. Compute the probability of observing all subfeatures,
Such that;

4. Compute the probability of getting at least i count of subfeature in an event
combined of j subfeatures. .

Such that;

Similarly, each event i has x possible combination whereas x = !
! And,

To normalize the measurement, we divide each term by the total and we get

Knowing we have already observed j subfeature, what is the probability to find
a combination that at least contain i number of subfeatures, in x number of
events, such that we have i number of features in each event. Where is i is the
number of possible observed subfeature.

P i() =
n
i

⎛
⎝⎜

⎞
⎠⎟

2n

P i() =
n
n

⎛
⎝⎜

⎞
⎠⎟

2n
= 1
2n

P i | j()

P i = 0()∪P i = 1()∪ ..∪P i = n()
=
P i = 0() + P i = 1() + ..+ P i = n()
= 1

Px! i = 0()∪Px! i = 1()∪ ...∪Px! i = n()
=

Px! i = 0() + Px! i = 1() + ...+ Px! i = n()

=

n
i

⎛
⎝⎜

⎞
⎠⎟

2n

px i = 0() + px i = 1() + ..+ px i = n()
= 1

101

In case we observed j was bigger than 𝑥! , this means number of observed features is
bigger than number of subfeatures contained in 𝑥!

𝑗 ∩ 𝑥! = ∅.

This means,

In case we observed j was equal or less than 𝑥! , this means number of observed
features is equal or less than number of subfeatures contained in 𝑥!, 𝑗 ∩ 𝑥! = 𝑥!.

Similarly,

Now giving that we computed all above, we can extend our calculations, to find
probability of the conjunction function giving an exact number of observed
subfeatures as follow;

Whereas j is number of observed subfeatures and n is the number of all subfeatures.

P(j∩ xi) = P(j∩ (xi=1∪ xi=2 ∪ ..∪ xi=x))
=
P(j∩ xi=1)∪P(j∩ xi=2)∪ ..∪P(j∩ xi=x)

P j∩ xi() = P ∅∩∅∩ ..∩∅()
= 0

P j∩ xi() = P xi ∩ xi() = 1

P θ• | j() = P j |θ•()
P j()

=
P j |θ•()P θ•()
P j | i()P i()

i=0

n

∑

102

5.4.1.2. Bayesian Disjunction

Proposition 5.3. Let be a set of number of observed subfeature, generated
via Definition 5.3 we define as;

ω x = P x | fc ,cs()θ+ =
2n−s

2n −1
P fc() I cs()⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟

Proof and Semantic Definition 5.3 demands that at least one subfeature must exhibit
a truth assignment, to evaluate the compound feature a truth assignment. The truth
assignment of any subfeature is independent from other subfeatures in the same
context.

To examine this proposition; assume that we have a set of four equiprobable
subfeatures grouped in disjunction function, such that,

.

Using the notation to denote the set of all subsets of . We want to define the

probability weight of subfeature , .

Since the subfeature is actually a set of all subsets such

that fsd ∈E which is in bijection with and , .

Similarly,

, and .

These values are a result of the hold independence assumption.

Define the problem space , such that; .

x s

ω

θ+ : fc , fsa fsb fsc fsd{ }
2x x

fsd P fsd()

fsd E ⊂ fsa , fsb , fsc , fsd{ }
fsa , fsb fsc P fsd() =

2 fsa , fsb , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
2

P fsb fsd() =
2 fsa , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
4

P fsd | fsc() = P fd ∩ fc()
P fsc() = 1

2

Ω Ω = 2n{ }

103

Since, Definition 5.3 implies that all subsets evaluate to be true except one subset,
in which none of the subfeatures is true ; the truth domain of is .

Moreover, the probability of any subfeature is actually number of events in

which is true over the problem space .

Similarly

 , Where is number of subfeatures in event .

As explained above, Now we can conclude that the probability of having subfeature
within true , is actually equal number of occurrences of the subfeature over

number of valid truth space .

In addition, we also know that, the truth assumption of , is determined by its truth
generalization, which is , alongside with the implication of all corresponding

constraints.

Considering all the aforementioned measurements, we can now compute as per
hold in Proposition 5.2.

Proposition 5.4. Let be set of observed subfeatures generated via Definition
5.3. To find out the truth assumption of the dependency context we recall Bayes

theorem as follows;

Proof and Semantic Definition 5.3 and Proposition 5.3 imply that, the truth
assumption of the disjunction function is conditioned by the truth assumption of

its succeeded adjacent subfeatures.

Therefore, if we observed set of subfeatures in within a disjunction context such
that,

θ+

∅ θ+ Ω−1

P f()

f P f() = #of occrances
2n

#of occrances = 2n P f()

P f() = 2
n−s

2n
s f

s

θ+

2n−s

2n −1

x

P fc()

ω

x
γ

γ x = P θ+ | x() = P θ+()P x |θ+()
P θ+()P x |θ+() + P θ+()P x |θ+()

θ+

x

104

x{ }∈ all subfeatures{ }

we can conclude the truth assignments of in accordance with our observation and

Lemma 5.2.

All observed features will be evaluated via Corollary 5.2, whereas if one feature

in the observation set succeeded to have a truth assignment greater than zero

 such that ; Lemma 5.2. is satisfied, therefore will be qualified to

have a truth assignment computed as per Proposition 5.3. is determined by the
truth observations of the involved subfeatures, and it only can achieve truth
assignment equal 1 and activate the disjunction function , when at least one
subfeatures exhibit a truth assignment. Likewise, if none of the subfeatures exhibits a
truth assumption, would be weighed a probabilistic truth assumption equal 0.

To activate and obtain a truth assignment such that =1, the second term of

denominator must be equal zero .

To examine this notion, assume that we have a set of four equiprobable subfeatures,
grouped in disjunction function, such that,

We observed set , such that contain at least one subfeature, probability of

 , will be .

Following Definition 5.3, can only be true if at least one subfeature exhibit a truth

assignment, therefore all sets that contain at least one true subfeature can validate the
disjunction function, with probability equal;

.

θ+

f f

x{ }
∃f =ω f f ∈ x{ } θ+

γ

θ+

γ

θ+ γ

P θ+()P x |θ+() = 0

θ+ : fc , fsa fsb fsc fsd{ }

x x

P x |θ+() P x∩θ+()
P θ+()

θ+

P θ+() =
ni

i!i=1

n

∑
2n

105

Having that said, = , whereas x has at least one subfeature with truth

assignment.

Consequently, , which will set the second term of the dominator to zero.

Thus, proves the semantic of our assumption and Proposition 5.4, which suggests that
if we observe at least one subfeature with truth assignment; disjunction function
would be assigned a valid truth assignment.

In further discussion, to compute the probability of obtaining set of subfeature, such
that consist of number of subfeatures and .

we recall conditional probability law as follows;

Alternatively,

Knowing that, and probability of obtaining P(s) =

ns

s!
2n

, we can conclude

that;

 P(s |θ+) =

ns

s!
n i

i!i=1

n

∑
 , s ≠ 0

Let θ+ fc , f1.. f4() be a Bayesian Disjunction dependency context such that, four

subfeatures are grouped in Bayesian disjunction dependency, with a compound
feature.

x∩θ+ ∅

P ∅() = 0

x

x s P s |θ+() s ≥1

P(θ+ | s) =
P θ+()P s |θ+()

P s()

P s |θ+() = P s()P(θ+ | s)
P θ+()

P θ+ | s() = 1 s

106

Giving that the dependency context is satisfied with a valid truth assignment, Figure
5. 10 shows the probability of obtaining s number of valid features, as per computed
above.

5.4.1.3. Bayesian Exclusive Disjunction

Proposition 5.5. Let be a set of observed subfeatures generated via
Definition 5.4, we define as;

ω f = P x | fc ,cs()θ⊕ =
1
n
P fc() I cs()⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟

Proof And Semantic Definition 5.4 demands that, only one subfeature must be true
to evaluate the compound feature a truth assignment. The truth assumption of any
subfeature in valid exclusive disjunction function could be dependent on the truth
assumption of other subfeatures in the same context.

To examine this proposition, assume that we have a set of four equiprobable
subfeatures, grouped in exclusive disjunction function, such that,

Using the notation , to denote the set of all subsets of . For instance, we want to

x s

ω

θ⊕ : fc , fsa fsb fsc fsd{ }

2x x

Number of Obtained Features
1 2 3 4

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Figure 5. 10 probability of obtaining s number of valid features in
valid Bayesian disjunction

107

define the probability weight of subfeature , . The problem space is

equal , only events with one valid subfeature will validate semantic.

We use binomial coefficient with falling factorial notation to find out how many

events in the problem space contain only one subfeature. is number of subfeatures
in each events; in our favor we need only one subfeature to appear in each event, to
meet exclusive disjunction semantic, such that .

Consequently, only events will consists only of one subfeature. Thus, form the
exclusive disjunction truth domain. The probability of obtaining a given subfeature in

a valid is . Such that, n is the number of subfeatres.

From above discussion we proved that Proposition 5.4 holds the semantic of Bayesian
exclusive Disjunction.

To understand the nature of dependency between subfeatures in different scenarios,
assume that truth assumption of is still unknown. In this case, the truth

assumption of involved subfeatures are independent of each other such that,

and the truth assignment of any subfeature doesn’t affect the truth assignment of

another subfeature .

When we observe that is valid dependency function, such that,

, and,

, where, .

Consequently, , which implies that if we observed a subfeature within

a valid Bayesian exclusive disjunction context; these infer a mutual exclusion all other
sibling subfeatures and set its truth assumption to zero, which semantically hold in
Definition 5.4 and Proposition 5.4.

fsd P fsd() Ω

2n θ⊕

ni

i!
i

i = 1

n

θ⊕

1
n

θ⊕

P fs() = 1
2

P fs1 | fsn() = P fs1() = 1
2

θ⊕

P fs()θ⊕ =ω f =
1
n

P fs1 | fs2()θ⊕ =
P fs1∩ fs2()
P fs2() fs1∩ fs2() =∅

P fs1 | fs2()θ⊕ = 0

108

Proposition 5.6. Let be an observed subfeature generated via definition 3.4

To find out the truth assignment of we recall Bayes theorem as follows;

Proof and Semantic Definition 5.4 and Proposition 5.5 imply that, the truth
assumption of the exclusive disjunction function is conditioned by the truth
assumption of its follow adjacent subfeatures.

Therefore if we observed an event in within an exclusive disjunction function, such
that, x{ }∈ all subfeatures{ } we can evaluate the truth assignments of , in accordance

with our observation and Lemma 5.3.

Features will be evaluated via Corollary 5.2 whereas if only one feature in the

observation set , succeeded to have a truth assignment greater than zero, such that

all other subfeatures were assigned a zero truth assumption.

Lemma 5.3 is satisfied, therefore will have a truth assignment computed as per

Proposition 5.6. is determined by the truth observations, and it only can achieve
truth assignment equal one, consequently, validate the exclusive disjunction function

 ; if and only if one subfeature were observed with a truth assignment.

By definition, if more than one observed subfeatures were observed with truth
assignment equal 1; cannot be valid with truth assumption equal 0.

To activate , and achieve the required truth assignment, in which = 1, the second

term of denominator must be equal zero, .

Since our observation is around the subfeatures , we will study how our

observation can set this term to zero i.e .

Firstly, we will highlight the semantic of this term, coupled with truth set of .

f
γ

γ f = P θ⊕ | f() = P θ⊕()P f |θ⊕()
P θ⊕()P f |θ⊕() + P θ⊕()P f |θ⊕()

θ⊕

x

θ⊕

f f

x{ }

θ⊕

γ

θ⊕

θ⊕ γ

θ⊕ γ

P θ⊕()P x |θ⊕() = 0

x{ }
P x |θ⊕() = 0

P x |θ⊕()

109

To answer this, assume we have a set of subfeatures E, grouped in an exclusive
disjunction function such that ,

Using the notation 2! ,to denote the set of all subsets of the set E, we have .

Events with only one subfeature will qualify a truth assignment such that

whereas .

As a result, we can see only E out of 2! events satisfy Definition 5.4.

Alternatively, all other observations disqualify the Bayesian exclusive disjunction of
being valid. All other observations are;

.

 Similarly,

.

Noticeably, to obtain we exclude all events that has only one subfeature in the

event, as per .

Thus, . Therefore, .

To conclude, t we can only achieve a valid exclusive disjunction function, such that

 . If our observation set contained only one subfeature and nothing else, which
is also, prove the semantic of Proposition 5.6.

Now, if we observed a certain subfeature with valid truth assignment (due to
subjective assignment or dependency requirement), to what extent this would affect
our belief about i.e !

E = fsa , fsb , fsc , fsd{ }

Ω = 2E{ }
θ⊕ x{ } = E

i

i!
i = 1

P θ⊕() = E
2E

x{ } = Ei

i!
⎛
⎝⎜

⎞
⎠⎟i=0

E

∑ − E1

1!
⎛
⎝⎜

⎞
⎠⎟
= 2E − E

P θ⊕() = 2
E − E
2E

P θ⊕()
E1

1!
⎛
⎝⎜

⎞
⎠⎟

x∩θ⊕()suchthat xi=1{ }is ∅ P x |θ⊕()suchthat xi=1{ }is 0

γ = 1 x

θ⊕ P θ⊕ | f()

110

Following proposition 5.6, is determined by the truth assignment of

.

Previously, we defined and . To compute the we recall

conditional probability law as follow ,

.

According to Proposition 5.5, we can conclude that whereas E is number

of involved subfeatures. In addition, our analysis above had shown that .

Consequently,

, and .

5.4.1.4. Bayesian Tautology Context

Proposition 5.7. Let be a set of observed subfeature generated via
Definition 5.5, We define as;

ω x = P x | fc ,cs()θT =
1
2
P fc() I cs()⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟

Proof And Semantic Definition 5.5 imply that the compound feature is qualified a
truth assumption, Regardless of the truth assignment of the adjacent subfeatures. The
truth assignment of any subfeature, is independent from other subfeatures in the same
context.

Therefore, all subfeatures typically have the same probabilistic truth assignment
(when no crosstree constraints are involved). In addition, observing a truth value of
compound feature, doesn’t necessary mean any of its subfeatures is true.

γ f

P θ⊕(),P θ⊕(),P f |θ⊕() and P f |θ⊕()

P θ⊕() P θ⊕() P f |θ⊕()

P f |θ⊕() = P f ∩θ⊕()
P θ⊕()

P f |θ⊕() = 1
E

P θ⊕() = E
2E

P f ∩θ⊕()
E
2E

= 1
E

P f ∩θ⊕() = 1
2E

x s

ω

111

To examine this proposition, we will assume that we have a set of four equiprobable
subfeatures grouped in Tautology function, such that .

Using the notation to denote the set of all subsets of .

The semantic of tautology context would be satisfied under any possible assignment.
Subfeatures are also independent of each other, and there’s absolutely no dependency
assumption between them (assuming they don’t exhibit any mutual dependency
among them).

 To define the probability weight of subfeature , . Such that , is actually

a set of all subsets ,

Similarly, . which is in bijection with and . .

Similarly, and .

Which concludes that; The probability of any subfeature equal .

In addition, we also know that, the truth assignment of is determined by its
generalization truth assignment, which is, P fc() and the implication of all involved

crosstree constraints.

The above analysis proves the semantic of Proposition 5.7.

Proposition 5.8. Let be set of observed subfeatures generated via Definition
5.5. ,To find out the truth assignment of , we recall Bayes theorem as follows,

 θ⊤ : fc , fsa fsb fsc fsd{ }

2x x

fsd P fsd() fsd
E ⊂ fsa , fsb , fsc , fsd{ }

fsd ⊂ E fsa , fsb fsc P fsd() =
2 fsa , fsb , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
2

P fsb fsd() =
2 fsa , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
4

P fsd | fsc() = P fd ∩ fc()
P fsc() = 1

2

1
2

x

x
γ

γ x = P θ⊤ | x() = P θ⊤()P x |θ⊤()
P θ⊤()P x |θ⊤() + P θ⊤()P x |θ⊤() = 1

112

Proof and Semantic Definition 5.5 and Proposition 5.5 imply that, the truth
assignment of the tautology function is true among all problem space.

Consequently, which evaluate to be always equal 1.

To examine this proposition, we will assume that we have a set of four equiprobable
subfeatures grouped in tautology function, such that;

.

When observing , such that . is following the

Definition 5.5 is always true.

We recall Bayes theorem as follow;

Whereas, is already computed via Proposition 5.6 and equal and is

equal equal 1.

By substituting these values, we conclude that .

 θ⊤

P θ⊤() =

ni

i!i=0

n

∑
2n

= 1

P θ⊤() = 0 γ x

 θ⊤ : fc , fsa fsb fsc fsd{ }

x x ∈ fsa , fsb , fsc , fsd{ } P x |θ⊤()

P x∩θ⊤()
P θ⊤()

 θ⊤

P x |θ⊤() = P x()P θ⊤ | x()
P x()P θ⊤ | x() + P x()P θ⊤ | x()

P x() 1
2 P θ⊤ | x()

 P θ⊤()

P x |θ⊤() = 1

2

113

Figure 5. 11 Translation from 3D Printer FM into BBFM. The truth assumption of each parameter is numerically
embedded.

114

5.5. Extended BBFM and Belief Intensification

Employing conditional probability law and Bayes theorem, among other probability
techniques; allowed us to develop Bayesian Belief Feature Model BBFM.

Truth assumptions of any parameter in BBFM could be computed using the proposed
mathematical notation. Parameters’ truth assumption is an indication of the parameter
implications and level of entanglement with other parameters in the same model.

While obtaining the truth assumption of model parameters, the model degree of belief
starts mounting. Features’ truth assumption served in identifying the level of
dependency among features, and the probability of obtaining the corresponding
feature in valid product configuration. Whereas, the truth assumption of dependency
contexts, aided to drive the dependency semantic of the involved features. Moreover,
It framed the degree of belief of the dependency context throughout anticipating its
satisfiability probability after reasoning.

Apparently, computing the truth assumption of model parameters stems the model
belief, which consequently, provides better understanding of the models’ behavior
and interaction flow among the model parameters.

We argue that, giving a probabilistic truth weight of each parameter will aid in the
satisfiability process while highlighting the features actual influence.

By quantifying the truth assumption of any feature, we allow the model designer to
adjust the model systematically to obtain certain functionality, or improve the
reasoning time through a change in the model belief, and subjectively intensify or
subside some parameters truth assumption; while maintaining the dependency
contexts legal semantic.

In addition, obtaining truth assumptions of system parameters will improve the
model expressiveness, by emphasizing the truth flow throughout the model
parameters.

115

5.5.1. Physics of Visual Expressiveness in BBFM

Visual expressiveness is distinguished by computing the number of visual variables
present in a representation. With conviction, colour tends to be the highest in
efficiency when it visual variables are considered. As evidenced through numerous
studies, human sight proved to be is highly sensitive, responsive and perceptive to the
variation in colour. The human eye captures and recognizes any variation in colour
faster and more accurate than distinguishing between shapes. For instance, the
variations in colour are identified three times faster than variation in shapes.
Moreover, colour tends to be more appealing and easier to remember (Moody, 2009).

Using the predefined probabilistic weights as a benchmark for colouring BBFM; is
likely to improve the cognitive understanding of the model truth belief.

After computing the truth assumption of features in BBFM, we will translate the
probabilistic weight of each feature into “shades of gray” colouring scheme.

Twelve shades are used to illustrate the intensity of the parameter truth assumption.
Parameters with higher truth assumptions’ value would be assigned more shades,
than ones with lower truth assumption.

Moreover, a parameter with white colour is an invalid parameter, such that its truth
assumptions’ value equal zero. Therefore it won’t be satisfied, neither exist in any
possible product configuration.
Whereas, parameters with black colour are core parameters, such that its truth
assumption is equal one. This implies that it must exist in all possible products
configurations.

To give better understanding of the proposed colouring technique; we will
incorporate the colouring scheme into the 3D printer exemplar used throughout the
whole dissertation. Figure 5. 12, shows a coloured version of Figure 5. 11.

Noticeably, features implication on the model belief is cognitively easily recognized
than before, where colours weren’t introduced to the model.
 In addition, to understand the dependency flow in the belief model; we can easily
trace the colour change, as per shown below. Semantically, features with higher truth
assumptions require more colour, and the opposite hold.

116

Figure 5. 12 Translation from 3D Printer FM into BBFM. The truth assumption of each parameter is denoted
with equivalent shade of gray.

117

5.5.2. Use of “colour variation” to project the “belief variation”

Figure 5. 13 represents a random BBFM with relatively higher degree of variability.
When colouring this model, we enable fast and effective recognition of the model
belief assumptions.
In the initial condition as per Figure 5. 13, not much information are given regarding
the model’s validation. Thus the satisfiability of the model is still unidentified.

Figure 5. 13 graphical representation of Bayesian Belief Feature Model. , before defining the uncertainty

measure of model paramters

118

Figure 5. 14 below, demonstrates the probability of meeting the intended semantic of
each all dependency contexts, in which the probability of having satisfiable
dependency context is demonstrated using the colouring method.

Figure 5. 14 graphical anticipation with “use of colour” for dependency contexts’ truth assumption in BBFM

119

When reasoning, at least all core features must be included in any valid configuration.
To satisfy this notion, a flow of change on the model belief would be enforced, and
thus translated “colour variation” on both; dependency contexts and features.

Figure 5. 15 illustrate these changes;

Figure 5. 15 Colour use in BBFM. Different shades of gray are used to denote different truth weights.

120

Any proposed change on the model belief might be proposed due to different factors.
Change might occur due to:

1. The system engineer or the stakeholder decided to include a new feature to the
belief base due to (evidentially reason about it) due to:

• Functionality: It’s a required or preferred feature for the targeted
functionality or product configuration.

• Design improvement: It has high probability weight with high
dependency influence on other features.
Therefore, including it in the belief base could reduce the degree of
variability of the model (reduce the problem space while enhancing the
reasoning process), while maintaining almost the same possible
outcomes

• Its convenience it terms of Availability, whereas other features are less
available.

2. The system engineer or the stakeholder decided to remove one of the variable
features due to:

• It’s no longer required in most configurations; it has low probability
assignment or even zero truth assumption.

• The features are overpriced or expensive.
• The features are inaccessible or unavailable.
• Efficient reasoning: throughout reducing the model complexity.

In the given example, if we decided to include features fm , fw in the model belief base,

by assigning truth-value equal 1 for both features, a flow of changes would result as
per shown in

Figure 5. 16.

121

Figure 5. 16 Colour change in figure 5.16, when including features fm , fw in the BBFM belief base

In the same fashion, we now decide to include features fy , fn in the model belief base.

Figure 5. 17 illustrates the new “colour variations” of the model belief assumptions.

122

Figure 5. 17 Colour change in figure 5.16, when including features fy , fn in the BBFM belief base

Finally, in Figure 5. 18 we decided to include feature f f in the model belief base.

123

Figure 5. 18 Colour change in figure 5.16, when including features f f in the BBFM belief base

5.6. Further Discussion and Applicability

In this chapter we thoroughly discussed the mathematical semantic of our developed
BBFM, in which we were able to quantify the uncertainty measure of all model
parameters. As argued previously, quantifying the uncertainty measure of model

124

parameter would provide a sound estimation of the model behavior, and estimate the
actual implication of all model parameters. Instead of assuming the same weight
distribution among model parameter, we now can obtain different probabilistic
weight for each parameter according to its dependency interaction throughout the
model parameters. This lone notion could derive many interesting applications for the
developed model.

By exploiting the pre-computed uncertainty measure, we would be able to perceive
the level of entanglement between any two features in the model. This enables us to
detect the latent non-functional interaction between these two features. Likewise, with
every attempt to alter any model by removing or incorporating new features into an
existing model, the implication of the new alteration can be detected easily. This
grades BBFM as a desirable model for dynamic and growing industries, in which the
need of incorporating and excluding some features is a constant need, such as
electronics and integrated circuits manufacturing, wherein features are constantly
added or removed from the original design.

The pre-computed uncertainty measures could also be used to enhance the physics of
the graphical representation of any model, by means of providing an advanced
visualization, benefiting from the uncertainty measure variation. Section 5.5 proposes
a new simple technique that can be deployed in any model to enhance its visual
expressiveness.

In addition, we can benefit from the obtained measure by providing an estimation of
the average cost of any product line, through multiplying the likelihood of obtaining
any feature and the cost of implementing this feature.

Moreover, BBFM can be integrated into any Variability Management tool to support
the decision-making process when configuring all possible products. By defining the
dependency flow and the uncertainty measure variation throughout the model, this
allow us to decide which parameters need to be included in the desired product, not
to only achieve the anticipated functionalities but also to obtain some non tangible
functionalities as per stability, complexity, redundancy or simplicity.

125

In chapter 6 we introduce one major application of the developed model, in which we
provide a systematic approach to satisfy the embedded constraints in any model by
exploiting the uncertainty measures of model parameters and utilize it to conclude the
most apt alternatives aiding in constraints satisfaction problem.

BBFM is based on the traditional notation of feature model; therefore any existing
feature model can be easily translated into BBFM using the provided mathematical
framework. Having that said, we can argue that BBFM has unrestricted potentials on
where to be employed in software product line real life applications. Such as,
automobile car manufacturing, diesel engines, electronics, avionics, military
technology, aerospace engineering, embedded systems and many more.

Although the focus of this dissertation was on software product line, BBFM can also
be used to model any system at which the need of decisions support and truth
quantification is a key importance. Therefore, this work can be extended and applied
extensively in machine learning, artificial intelligence, robotics, automated decisions
and diagnostics models (medical and troubleshooting).

BBFM raises high potentials in term of applicability on various industries, yet the lack
of automated computation remain a key challenge specially on large scale systems, at
which extensive analysis and computation need to be conducted to quantify the
uncertainty measure of the model parameters.

Although in chapter 6 we provide different techniques to ease the computations,
modeling on large-scale problem might be costly and difficult. This challenge is to be
tackled as a future work and extension of this dissertation.

5.7. Summary

In this chapter, we introduced Bayesian Belief Feature Model BBFM, and thoroughly
discussed the mathematical semantic behind it.

Firstly, we started by defining the notion of BBFM and the importance of capturing
the uncertainty nature of model parameters.

Having that said, we derived a set of mathematical notations; quantifying the

126

uncertainty measure of the model parameters. Any obtained measure is subject to the
model embedded belief. Model’s belief stems out of the existing semantics of the
introduced dependency contexts, therefore different dependency context allow
different truth domain.

To evaluate the truth assumption of any parameter, we need to evaluate its
dependency flow. Hence, we presented set of theorems to compute the probability
weight of any feature in different dependency contexts. Moreover, we proved the
semantic validity of the introduced dependency contexts using Bayes theorem and
other probability techniques. By investigating the semantic of the used contexts, we
were able to derive different mathematical notations to anticipate the truth
assumption of each.

After computing the probabilistic weight of all model parameters, we used the
predefined values to enhance the graphical representation of the developed model.
The obtained values were translated into shades of gray to improve the visual
expressiveness of BBFM.

To demonstrate our approach, we applied our analysis on different models, and
successfully validate the obtained results.

BBFM is a pioneering approach for modeling under uncertainty in SPL, in which;

1. Each parameter is assigned a probabilistic weight, quantifying its actual
implication on the model belief.

2. The truth assumption of any feature is a result of the feature specialization and
generalization dependency flow. Therefore, by evaluating the truth assumption
of each feature, we will be able to trace the truth flow of this feature throughout
the model. In other words, we will be able to measure the feature indirect
interaction with other features, and estimate any nonfunctional interaction
might arise.

3. Due to the uncertainty measure, incorporating and removing new features
would be more scalable and traceable in BBFM; as long as we maintain the
existing semantics.

127

The use of colour, made BBFM more Self-expressive, in a fashion were we can
understand the dependency flow, and the truth value of models’ parameters by
simply tracing the colour variation throughout the model

128

Part V

Reasoning

129

Chapter 6

Reasoning under Uncertainty

Reasoning about alternative decisions is a perplexity which presents a problematic
challenge to the Computer Science and Artificial intelligence community. Ever since
the earliest endeavors, there has always been a tendency between scientists and
researchers concerning the complications in alternatives and variable choices, which
are cross related to the complications in reasoning. The high complexity in variables
and dependencies amongst them points out conventional presentations and reasoning
methods are profoundly amiss. This chapter intends to bring about a contribution to
the state of the art in regards to this challenge.

6.1. Introduction

In Bayesian Belief Feature Models (BBFM), different variables represent different
functionality in the knowledge domain. Variables are grouped into different
dependency contexts; in such a way each context implies different logical interaction.

BBFM may need to reason about its own knowledge in the problem space, while
maintaining the proposed semantics in the introduced model.

130

Reasoning in Bayesian Belief Feature Model refers to the idea that the model take into
account not only core features in the problem space, but also other non-core features
identifying different legal configurations with different functionalities.

Whilst reasoning, decisions are made to choose between different variables and search
for alternatives that are consistent with introduced dependency contexts and any
involved constraints.

Due to the dependency nature and problem’s complexity, variables need to be
grouped in different settings. When sets of variables interact with each other in a
logically predefined dependency, whilst sharing the same ancestor variables, these set
of variables form a dependency context.

In account, dependency context is a logical representation for a set of variables, in
which the truth assignment of these variables is derived using propositional logic
axioms and inference rules.

By reason of the problem complexity and high level of dependency among variables,
classical logic gates fails to capture further interaction between variables from
different dependency contexts. All correlations among variables are imperative and
thus must be treated crucially, which infers it should be satisfied when evaluating the
truth assignment of involved variables. To avoid any contradiction in the belief model,
cross-tree constraints are introduced to the problem space model, Such that it captures
further dependencies among variables from different dependency contexts, or
enriches the existence semantic in a given dependency context to avoid any
information loss that subsequently might advance a false truth conclusion. Truth
conclusion is identified truth assignment for a set of variables in an explicit
configuration, such that the resulting evaluation is valid, complete and consistent with
the model predefined dependencies.

Not all truth assumptions are satisfiable even under the supposition it was initially
consistent with the introduced dependency context.

In consequence, when choosing a feature with given truth assumption, it is vital to
understand the implication of this assignment on the model behavior, taking into

131

consideration whether this assumption is supporting the constraints satisfaction
problem.

Moreover, decisions are highly influenced by the system requirements and the model
structure.

Accordingly, system requirements are a set of system qualities that are desirable by
the stakeholder or the design engineer; some of these qualities are primarily a matter
of possible functionalities, cost, efficiency, degree of variability, system complexity,
model scalability, configuration stability...etc.

Decisions are made to assign a truth value for any set of variables, these decisions
contains a set of preferred features that are ought to be present in the product final
configuration. However, different decisions aggregate to expose alternatives that are
most apt to the dependency flow and some preferred qualities and functionalities.

Uncertain occurrence of model variables coupled with the problems’ degree of
variability in BBFM increase the complexity of the constraints satisfaction problem in
SPLE.

This chapter addresses this problem as Uncertain Constraints Satisfaction Problem.
Unlike traditional constraints satisfaction problems, uncertain constraint satisfaction
problem reason about the problem space with a degree of belief, and rectify the
imposed belief by exposing it to the predefined constraints. Due to the uncertainty
nature of the satisfiability problem, probabilistic weight is imposed for each parameter
throughout defining a range of satisfiable assignments that are consistent with the
involved dependency context. Intrinsically, different probabilistic weights mean
different degree of belief. Also, higher degree of belief means higher certainty level.
This formulates a quite interesting observation, which is in fact actually perceived
everyday with real life problem. When encountering any problem carrying out
uncertainty on how to sort, this problem is firstly identified and analyzed followed by
an attempt to investigate all involved contributing factors. Accordingly, this builds up
having more knowledge about the problem, and the more knowledge we have the
higher our belief goes and the closer we come to the solution.

132

In the proposed approach, the problem is handled in the same concept. First, we
understand the problem dependency context as been modeled via BBFM. Then, we
compute the probabilistic weight of model parameters, to anticipate its’ occurrence
chances. Afterwards, we quantify the implication of the feature on empowering
constraints. Meaning, the higher the occurrence probability of any features the
stronger its constraints implication will be. In other words, if we find out that a
specific feature has a high occurrence probabilistic weight, we can conclude that the
implication of its involved constraints on the models’ parameters will be higher.
Respectively and in response to the aforementioned, any imposed belief would be
continuously revised in order to anticipate any proposed assignments’ success
possibility.

The proposed approach is centered on three different orientations; observation,
decision and conclusion.

The aforesaid are outlined as follows:

• Observation: Reflection is given on truth assignment for a set features, in
which we assign each feature maximum truth-value (in which probability
weight equal one) to include it in all possible configurations.

• Decision: Decision tends to be a domain of interest, in which we question the
truth assumption of a given parameter to anticipate its existence on the final
products configurations.

• Conclusion: Conclusion settles which decisions are satisifiable and consistent
with the model belief.

6.1.1. Further Highlights

This chapter tackles the problem of constraint satisfactions in SPLE by considering the
uncertainty of model parameters. Through predefined probability distribution that
has been obtained in using the introduced mathematical notations. The probability
distribution forms the benchmark of the model belief, confirming the intended
semantic of all dependency contexts and the dependency flow thorough out the
Bayesian Belief Feature Model. When reasoning, we assign new truth-values of the
features that are to be included perpetually on the product configurations.

133

Consequently, this will pilot to a new truth flow in the belief model; therefore, new
probabilistic distribution of all affected parameters. The new truth assignment is
called ‘hypothesis’ in which we enclose a set of features that are required by the system-
preferred configuration, whiles aiding in the reasoning efficiency. Moreover, when
including any feature in the hypothesis set, it is necessary to understand how this
selection utilities the problem satisfiability behavior. Therefore, it’s preferred to
include variables that imply a truth flow to some of the constraint, to help exposing
the constraints implication on the model behavior, or to simply intensify or soothe the
constraints implications on other parameters.

In addition, this chapter addresses the uncertain constraints satisfaction problem as an
automated reasoner of the previously introduced Bayesian belief feature model.

• Firstly, we provide an overview to the uncertain satisfaction problem alongside
its properties and assets.

• This will be tracked by our approach of reasoning under uncertainty. Our
proposed approach will consider factorizing all constraints and extract sub-
problems.

• Consequently, Assumptions that facilitate reducing the problem search size
will be presented, after extracting the sub-models.

• This is preceded by launching our optimization method to improve the
reasoning process in the next subsection.

• Successively, our approaches are tested by conducting in depth reflective
experiments to testify the effectiveness of our methods, as well as analyze the
results.

• We will finally provide a short summary in which we recapitulate and wrap up
this chapter by presenting headline of the used approaches and enlighten on
the aspects of the analysis and findings.

6.2. Uncertain Constraints Satisfaction Problem

Constraint satisfaction problem comprises of set of variables, each with valid truth
domain, along with a set of constraints that confine the encapsulated truth domains

134

when called. Each constraint must have valid truth domains that are coherent with the
involved variables’ truth assumptions. Constraints can be seen as a set of valid
assignment of a given variables in accordance with the truth assumption of another
correlated variable. In an uncertain constraints satisfaction problem, we drive the
implication of given constraints each by exposing the possible outcomes of its
dependency context. In addition, instead of constraining whole dependency context,
constraints will take effect only on affected domains, while unaffected domains would
be assigned a truth assumption in accordance to its dependency context.
Accordingly, a series of definitions associated with the uncertain constraints
satisfaction are expounded as below:

Definition 6.0. An uncertain constraints satisfaction problem is 5-uple
 where:

• Is a set of belief hypothesis (observation set), such that will

be assigned a certain truth assignment equal 1.

• Is a set of dependency contexts with satisfiable domains

(regardless cross-tree constraint). is descendent of and might arise a mutual
cross tree dependency with another dependency context that is also a
descendent of the same common ancestor variable .

• Is a set of interconnected variables, in which its truth assumption

and satisfiability domain is defined by the semantic of its dependency context
.

• Is a set of mutual dependency constraints (cross-tree constraints),

such that each vertex has two edges forming a mutual interaction between
two variables .

• Is a revised a probabilistic weight of and , after infusing the new
observation hypothesis in the problem belief.

When including variable in our belief hypothesis H, in which x forms a common
ancestor of at least two variables and from two different dependency contexts
and with a mutual cross–tree dependency; constraining the truth domain of both.

There’s at least one unsatisfiable assignment that might jeopardies our belief

P = H ,λ,V ,C,ω

H = x1, x2...xn x

λ = λ1,λ2...λn

λ x
λ

x
V = v1,v2..vn

λ
C = c1,c2..cn

c
v

ω v λ
H

x
v1 v2 λ1

λ2

135

assumption and invalidate it, which leaves us with the possibility of obtaining false
assignment. Hence, there are some assignments that will not evaluate to be 1, even
though all its fellow dependency contexts were initially consistent and satisfied.

When enabling with new truth assignment, such that ; a flow of truth
assumptions’ adjustments would be enforced on all specializations. This indeed
would infer a possible increment on the involved constraints’ implications.

In addition, all consequent dependency contexts must be satisfied and consistent with
the new belief upgrade. Therefore, all invalid truth domains must be excluded from
the problem truth space.

A set of complete, consistent and valid assignments of a group of variables V is called
world W. World W, is legal truth assignment of subset of the set of all variables V,
such that , in which all truth assumption of all variables in the subset W must
be consistent with the semantic of its dependency context, regardless of any mutual
dependency that V might exercise.

Definition 6.1. Let P be an Uncertain CSP , with a set of variables grouped
within the same dependency context. Possible World Poss(W), is a truth space of all
valid assignments that satisfies the logical semantics of the involved dependency

contexts, after ignoring any constraints such that .

All possible worlds must be consistent with its dependency context. Also, some of
these worlds might exercise mutual dependency with other dependency contexts. This
positively might reveal a false consistency in the problem space jeopardizing the
satisfiability assignments; possible world with mutual dependencies are to be called
Candidate Problem.

Definition 6.2. Let P be an Uncertain CSP with a set of possible worlds Poss(W).
Candidate Problem is a subset of set of all possible worlds

Candidate Problem Possible Worlds, such that each event entangled at least with one
mutual dependency via crosstree constraints.

x
λ

x ω = 1
x

W ⊆V

POSS W() = w1,w2,wn P w() > 0

⊆

136

Each Candidate Problem entitled a set of satisfiable assignments called Candidate
Domains. Thus, they are compatible with the truth semantic of the involved crosstree
constraints.

Definition 6.3. Let P be an uncertain CSP with set of Candidate Problem.
Candidate Domains are set of truth assumptions aroused in candidate problem, such
that, each truth assumption is consistent with the embedded semantic of the involved
crosstree constraints.

Definition 6.4. We define the satisfiability factor as the ratio of Candidate
Domain over Candidate,

Problem, satisfiability factor = Candidate Domain
Candidate Problem

.

Proposition 6.1. A problem with satisfiability factor equal one is undetermined
problem, such that the number of existence consistent assignments are not sufficient
enough to satisfy the given crosstree semantic.

Proof and semantic Proof by induction. Suppose we have a consistent sub-problem
with crosstree constraints, in which the maximum number of satisfiable domains
without considering the crosstree constraints’ implications equal V. When considering
the crosstree constraints implication, the maximum number of satisfiable domains
would drop to V-R, such that R is candidate domains. The difference between number
of satisfiable domains before and after introducing the constraint implications is equal
the number of constraints involved domains , when no implication is
found then R=0 and . This semantically holds with our claim as the

difference equal zero meaning no change occurred.

The maximum difference can be gained, when .

Suggesting, the maximum number of domains that can be imposed by constraint
would equal candidate problem.

V − (V − R) = R

V − (V − 0) = 0

V − (V − R) V = R

137

In that case, number of satisfiable domains would become zero meaning no satisfiable
domains can be found .

Therefore, if similarly , no satisfiable domains can be found identifying

undeterministic problem with satisfiability factor equal 1, which semantically proves
the proposition.

6.3. Problem Extraction and constraints factorization

Features in SPLE are base 2 binary numeral variables, with a truth domain of zero and
one for each singular variable. However, the truth assignments for one feature doesn’t
necessary imply a truth assignment of its dependent feature (specialization or
generalization). Nevertheless, it’s critical to determining the truth assignment of its
mutual dependent feature (cross-tree constrained). That being said, due to the
evidential and casual truth flow in BBFM, when observing a truth assignment of any
feature, the overall model belief would probably respond to the new observation,
concluding a new truth assumption for some dependent features (specializations and
generalizations). The new truth assumptions can only be quantified after evaluating
the dependency semantics of the involved dependency contexts.

While the truth assignment of most features can be determined by singular
observation; the truth assignment of Dependency Contexts is more demanding and
only can be assessed through multiple observations. Generally, the truth assignment
of Bayesian Conjunction and Bayesian Exclusive disjunction dependency contexts can
be evaluated by a set of truth assumptions for all involved features, extending the
binary truth assignment into a domain of truth assignment. This is unlike the case of
Bayesian Disjunction and Tautology Dependency context, in which its truth
assignment can be concluded from one truth observation.

When grouping set of features in a certain dependency context, the anticipated truth
assumptions might indicate the context truth domain. The resultant domain is a set of
valid assignments that are consistent with the dependency context, coupled with
invalid truth assumptions, which are inconsistent with the involved dependency

V − R =V −V = 0

R =V
R
V

= 1

138

context. Any obtained truth assumption is due to belief base, such as per core features
and observation set, and dependencys’ flow (features specializations, generalizations
and mutual dependencies).

Different degrees of variability develop different truth domains. Due to the
dependencies semantics, truth boundaries take place to limit the model behavior and
formulate the valid truth sets for any dependency context.

For an instance, any truth assumption of a given feature must be consistent with
dependency contexts’ valid truth domain as well as any coupled mutual dependency
contexts’ truth domain.

To satisfy both truth domains, a subset of the set of the aggregated truth domains
must be excluded from the model. This requires evaluation of the truth assumption of
all involved parameters, making the reasoning process one of the most complex and
expensive challenges in SPLE with ultimately an NP-complete satisfiability problem.

Beforehand, weighting techniques to anticipate the truth assumption and the
occurrence likelihood from one valid domain to another is by now introduced and
acquainted with.

In this chapter, we are going to extend our work by employing the acquired
probabilistic value in the reasoning process; emphasizing on reasoning under belief
uncertainty. Definition 6.0 specifies the attributes of uncertain constraints satisfaction
problem Uncertain CSP. When observing a new feature x in the problems’ belief
hypothesis H, this observation will advance our belief by assigning a truth assignment
of x and set its probabilistic weight to be 1.

To satisfy the new change in the model belief, only valid truth domains must be
included in the feature specializations; that are consistent with the new observation.
Moreover, any additional mutual dependency must be satisfied and consistent with
the new truth domains. This suggests a mutual exclusion for all truth assumptions
that are inconsistent with the new belief. Likewise, we guarantee that new observation
is robust and satisfiable in all possible configurations.

139

The new advancement in the model belief will assist in reducing the problem space,
through discounting a set of inconsistent truth domains, which in its turn, enhance the
reasoning performance.

In general, any truth assumption that’s consistent with the involved dependency
contexts’ truth domain, is in fact consistent with the model belief until it exhibits
mutual cross tree dependency, which semantically demand truth exclusion of any
assignment that doesn’t meet its semantic.

To this interest, we will marginally factories all succeeding dependencies contexts to
extract only cross tree constraints involved context. Consequently, we will reason
about truth domains with cross tree entanglements.

Definition 6.5. Let W be a possible world in Uncertain Constraints Satisfaction
Problem P. W has world weight such that,

whereas, world weight represents the probability weight of W occurrence.

Definition 6.6. Let W be a possible world in Uncertain Constraints Satisfaction
Problem P. W has a satisfiability weight Sat weight such that,

Whereas, Sat weight is a probabilistic measurements quantifying the truth weight of
all possible assignments that contain W and are consistent with all cross tree
constraints truth domain.

Alternatively, Sat Weight is the probability of having a satisfiable and only satisfiable
assignment of all truth domains that contain world W.

If Sat Weight equal zero, this ultimately means W is not consistent with the model
belief, therefor will not appear in any product configuration.

world weight ∈ 0,1(]

Sat weight ∈ 0,1[]

140

However, If Sat Weight equal one this means W is always satisfiable. Concluding that
any truth assumption contain W in its truth domain, such that W{ }∈ truth domain{ } is

ultimately can be satisfied.

• Semantic Differentiations between definitions 6.5 and 6.6

It is evidential that the more facts we know about any parameter, the more accurate
our anticipation about the parameter’s truth assignment will be.

When modeling, we can predict the probability of having a certain parameter in a
given set according to its dependency context, and the type of dependency correlation
it has with its ancestor parameter; through conditioning its existence by the existence
of other pre-specified parameter as have been utilized by Bayes’ theorem.

Such a notion can be denoted as , whereas is a child feature and is its

ancestor parent feature. This notion is of high practicality in estimating the likelihood
of selecting one feature by itself or among other sibling features. It is also highly
beneficial during the modeling phase to formulate our selection’s preference
throughout choosing dependency contexts that are more likely to conclude the desired
functionality by evaluating its valid truth domains. In addition, it’s vital to derive the
dependency semantic among set of sibling features.

 In Definition 6.5 we outlined this notion as world weight. Nonetheless, it is
indispensable to argue whether this notion sufficed to capture the truth state of the
given parameter or not. The response for this argument would inevitably be almost
certainly yes, until we perceive new information about some added constraints, or in
other case, until we observed that this parameter has a degree of association with
some cross tree constraints.

New information means new belief, which in its turn means a forward step toward
understanding the actual behavior of the parameter truth assignment. The new
information that contains a constraints association is captured by definition 6.6. In
which we anticipate the truth assumption that’s not only consistent with the involved
dependency context but also meets the crosstree dependency semantics.

P fc | fp() fc fp

141

In other words, we quantify the probability of getting a specific feature in the resulting
satisfiable configuration by opting out all its inconsistent assignments.

This notion is unquestionably more accurate than the former one, in which false truth
assumptions would be excluded from the prediction set.

Observing a constraint would change the truth performance of any associated feature.
In fact, it might conclude that a certain parameter or set of parameters will never
obtain a truth assignment on the reasoning process or the exact opposite.

The developed approach is deliberately studied in accordance to a designated
example as follows:

Example 6.1. Consider the following Uncertain Constraint Satisfaction Problem P.
of a given sub-problem of Bayesian Belief Feature Model. Such that,

•

•

•
•
• For a,b,c and d respectively.

 Cand(P) Cand(P)
a T c T
b T d T
ab T cd F
nil F nil T

c Cons(P) b Cons(P) ab Cons(P)
c a T b c F ab c F
c b F b d T ab d T
c ab F b nil T ab nil T

Table 6. 1 Dependency Contexts and Constraints Truth Domain

H = x1
λ = λ+ ,λ⊕

V = a,b()+ , c,d()⊕
C = (b∧ c) =∅

ω = 0.5,0.5,0.125,0.125

λ+ λ⊕

142

In example 6.1, the validity of any selected world of interest is checked to testify its
consistency with the model belief among the existence crosstree constraint.

When choosing any world w from the problem truth space, we start by breaking this
world into subsets x suchthat w is an element of x w∈x . After defining all possible
subsets; a consistency check is conducted, in which any subset that is not consistent
with the provided dependency context got excluded.

Now we establish a set of subsets that they are all;
i. Consistent with their dependency contexts.

ii. Entangled with world w.
We now advance the consistency check of the obtained set by factorizing each subset
with its corresponding constraint, to exclude any subset that doesn’t satisfy the
constraint truth domain, and the problem semantic. The attained set formulates the
problem satisfiable domain, likewise we have determined all possible and satisfiable
truth domains that are consistent with the problem dependency semantic, and don’t
break the infused constraints semantic. Using the predefined probabilistic weight of
all resulting subsets we can simply compute the satweight of world w.

The aforementioned technique describes the general functionality workflow of the
developed algorithm. The algorithm is sketched as Algorithm 1. 1.

Lets consider world w , such that ; by running Algorithm 1. 1 we can

breakdown the reasoning process as in the following:

• Decompose world w into subset, we get a,ab;c,cd .

• Exclude all inconsistent subsets, which fails to meet the dependency contexts’
semantic, we get a,ab;c .

• Next, aggregate the dependency contexts by product all consistent subset and
then remove any duplication, to get ac,abc

• Thenceforth, check the compatibility of the obtained set by factorizing it with
the constraints truth space, in which one subset doesn’t imply a valid truth
assumption and is excluded from the set, thus the remaining subsets formulate
the world w sastsifiable domain. Such that, satdomain is ac

W1 = a,c

143

• Given the predefined probability distribution, we now can compute the
satweight such that; satweight equal
Pr(a)× Pr(c)xPr(ca) = 0.5 × 0.125 × 0.333 = 0.0208

• Finally, the algorithm return ac ,0.0208

This allow us to conclude that if we want to reason about , there’s only one

domain out of all possible domains of that is satisfiable and consistent with all

constraints and local dependency with a probabilistic weight of obtaining this world
satweight, suchthat satweight equal .
Now when considering a new world, such that , the algorithm will return

b,ab ,0.1666 .

On another hand, when reason about a new world such that , the algorithm

will not return any satisfiable domain, implying that this world is not compatible with
the problem’s overall semantic, therefore doesn’t qualify any valid assignment.
Clearly W3 is a bad decision and should be avoided when choosing world of interest.

Choose w
Dec := Decompose w
Cons := Consistent Dec

 i =1 ; j =1
 Repeat

∀E ∈ Cons

Pj := Ei ∗ Cons − E ⊂ Ei()()
i = i +1
Pj → Product P

j = j +1

 until i = n();
Product P := Delete duplication Product P

SatDomain P := Factorization ∀P ∈Product P ∪Constraints
 z = 1 ;Satweight = 0
 Repeat

∀P ∈SatDomain P
Satweight = Satweight + productweight(Pz)
z = z +1

 until z = j();
Return(SatDomain P ,Satweight)

Algorithm 1. 1 Uncertain CSP reasoning algorithm

a,c

a,c

0.0208
W2 = b

W3 = b,c

144

World W World weight Satisfiable Domain Sat weight
 0.5
 0.5
 0.25
 0.0625
 0.0625 0
 0.03125 0
 0.0625
 0.0625
 0.03125

Table 6. 2 the obtained sat weight value for different Worlds

Figure 6. 1 measure difference between weight and satweight

Figure 6. 2 Satweight response versus change in number of variables and number of constraints

a a,ab{ } 0.333
b b,ab{ } 0.166
ab ab{ } 0.0833
a,c ac{ } 0.0208
b,c nil
ab,c nil
a,d ad,abd{ } 0.0416
b,d bd,abd{ } 0.0208
ab,d abd{ } 0.0104

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Weight

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SatWeight

32.82.62.42.221.8

Variables
1.61.41.210

0.5Constraints

1
1.5

2

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
tW
ei
gh
t

145

Lemma 6.1. Let P be Uncertain Constraints Satisfaction Problem P with no cross
tree constraints involved such that . P is satisfiable among all possible worlds.

To study lemma 6.1, we are going to revise the above analysis of example 6.1 while
ignoring the implication of the involved crosstree constraints, if Lemma 6.1 holds this
mean all possible worlds must obtain a valid sat weight value.

In according to the preceding approach, we achieve the following outcomes, as per
Table below which proves the validity of Lemma 6.1.

World W World weight Satisfiable Domain Sat weight

 0.5

 0.5

 0.25

 0.0625

 0.0625 0.0625

 0.03125 0.03125

 0.0625

 0.0625

 0.03125

Table the obtained satweight values when ignoring the constraints implications

Definition 6.7. Let W be a world of interest such that . The ratio between

the satisfiability weight and world weight of x is defined as the success ratio of x.

C := nil{ }

a a,ab{ } 0.5

b b,ab{ } 0.5

ab ab{ } 0.25

a,c ac,abc{ } 0.0625

b,c bc,abc{ }
ab,c abc{ }
a,d ad,abd{ } 0.0625

b,d bd,abd{ } 0.0625

ab,d abd{ } 0.03125

x ∈W

success ratio x() = sat x()
weight x()

146

In Table 6. 3, we present the obtained success ratio of example 6.1.

World W World weight Satisfiable Domain Sat weight Success Ratio
 0.5 0.666
 0.5 0.333
 0.25 0.333
 0.0625 0.333
 0.0625 0 0

 0.03125 0 0
 0.0625 0.666
 0.0625 0.333
 0.03125 0.333

Table 6. 3 obtained success ratio of example 6.1

The analysis commenced delivers a number of interesting properties explained as
below:

• By definition, we know that worlds with less degree of association with
crosstree constraint exhibit higher success ratio.

• On one hand, if the worlds’ set of all subsets doesn’t exhibit any crosstree
mutual dependency, such that , this would evaluate

success ratio equal 1. Implying that, any subset of all subset is valid

satisfiable, which also holds by the semantic of Lemma 6.1.
• On a different scenario, whereas any subset of the set of all subset is associated

with crosstree constraint, the success ratio will drop accordingly, which is a
result of the semantic of the involved context association.

• It is also noticeable that success ratio drops in anticipated patterns.

In example 6.1, we can conclude that if the world W isn’t directly entangled with
crosstree dependency constraint in a way that this world is a vertex of the constraint
edge, then the success ratio will be as twice as the success ratio of the world that has a
direct entanglement with crosstree dependency constraint.

a a,ab{ } 0.333
b b,ab{ } 0.166
ab ab{ } 0.0833
a,c ac{ } 0.0208
b,c nil
ab,c nil
a,d ad,abd{ } 0.0416
b,d bd,abd{ } 0.0208
ab,d abd{ } 0.0104

∀W x(), x Has no constraints

x ∈W x()

147

Moreover, different worlds with same degree of association with crosstree constrains
produce the same success ratio.

Finally, if all subsets of World W were entangled with a crosstree constraint, W is
inconsistent with the crosstree dependency semantic such that Satweight and success
ratio would be zero,which also holds by the semantic of propostion 6.1.

More analysis would be observed and explicated in the experimental section.

It is important to shed the light on this analysis as it is very vital to optimize the
satisfiabilty problem, which is also minimal comparing with the actual problem size
hence we reason about domain of interests.

When deciding what world would is fit to be included in belief hypothesis, success
ratio of this world might be a key quality among other qualities.

Definition 6.8. We define dominant feature as feature or set of features x,such
that:

i. x is subset of the set of the possible worlds .

ii. The success ratio of world x is equal one.

Proposition 6.2. If Possible world W, contained a dominant feature x, such that
 then w is satisfiable with satisfiability weight greater than zero.

Definition 6.9. A decision s is a subjective choice of selecting a possible world
to reason about. Decision s is bad decision such that the success ratio of .

In example 6.1, both of and are bad decisions and the only way to

optimize this decision is by changing constraints dependency semantic. This might
not be an option in most cases, especially at advanced stages as it might change the
product semantic dramatically and also expensive.
Henceforth, it is a recommended to avoid bad decisions completely in the reasoning
process.

x ∈ Poss W(){ }

x ∈w

W s() = 0

b,c ab,c

148

Definition 6.10. A decision s is good decision, only and if only, the success ratio
of . Decision s could be optimal decision if its success ratio was the highest

obtained ratio in the success ratios table.

In example 6.1, is an ultimate decision. Decision s could be a dominant decision if

its success ratio was equal one, which only occurred if the satisfiable domain doesn’t
have any degree of association with the introduced crosstree constraints.

6.4. Optimizing Under Uncertainty

In this section, selected methods to optimize the decision are introduced in order to
find good decisions s efficiently, and obtain higher success ratio. As evident, finding
an ultimate decision could be computationally costly; therefore the main focus in this
section is to attempt improving the success ratio values of all worlds to achieve this
goal with minimal cost.

When it comes to the semantic of dependency context, it is mostly flexible, in which
different contexts have different degree of variability.
 Deploying some assumption in the original semantic, without breaking the context
consistency, might be useful to exclude some invalid domains from the reasoning
evaluation and decrease the problem space. The most flexible semantic can be found
in the tautology dependency context. On the contrary, conjunction dependency
context is the stiffest dependency context.

Definition 6.11. Degree of variability DoV, is a quality of dependency context
that indicates the number possibly valid assignments for any set of variables grouped
in this dependency context, such that these assignments are legal and consistent with
dependency context semantic.

If we have a set of features x such that , we might group these features

within different dependency contexts to obtain deferent satisfiable truth domains. The
key matter in this regard is the common domain. That being said, we can find
common domains when producing different dependency contexts. This quality is to

W s() > 0

a

x = x1, x2...xn{ }

149

be beneficial, if we want reduce the search space for the optimal decision while
maintaining the original semantic of the dependency context and narrowing the
search space of the produced truth domain.

A profound investigation on some possible assumption and testing its reliability is
undertaken as follows:

Assumption 6.1. In a set of all subsets of features, in which these features are
connected via Bayesian Disjunction Dependency, we might minimize the problem
space by reasoning about truth domains that arise via Bayesian exclusive disjunction
dependency context. i.e considering that all features are mutually independent of each
other’s.
We argue that this assumption will optimize the reasoning process by reducing the
search space for good decision and ultimate decisions, without violating the semantic
requirements of the original problem context. However, employing assumption 1 will
conclude a naïve truth assumption for the actual problem truth space.

In example 6.1, we have two dependency contexts. and . When employing
assumption 6.1 both context would be Bayesian exclusive disjunction contexts , such
that;

 Cand(P) Cand(P)
a T c T
b T d T
ab F cd F
nil F nil T

Table 6. 4 dependency contexts truth domains

Although the mutual dependency semantic is still the same, constraints factorization
will be different. Such that;

c Cons(P) b Cons(P)
c a T b c F
c b F b d T
 b nil T

Table 6. 5 constraints truth domain

λ+ λ⊕

λ⊕ λ⊕

150

Table 6. 6 demonstrates the results achieved as per obeying the same reasoning and
pruning process:

World W World weight Satisfiable Domain Sat weight Success Ratio
 0.333 1
 0.333 0.333

 0.041625 0.5
 0.041625 0 0
 0.041625 1
 0.041625 0.333

Table 6. 6 obtained results after the reasoning about all possible worlds

As a result of employing assumption 6.1 in the given example, the implication of
crosstree constraints has been subsided, concluding an increment in the problem
success ratios as shown in Table 6. 6.

In the aforementioned example, the obtained decisions were two ultimate decision,
five good decisions and two bad decisions. However, when applying assumption 6.1,
the obtained decisions were two dominate decisions, three good decisions and one
bad decision.

Figure 6. 3 measure difference between weight and satweight

a a{ } 0.333
b b{ } 0.111
a,c ac{ } 0.0208
b,c nil
a,d ad{ } 0.041625
b,d bd{ } 0.013875

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Weight

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SatWeight

151

Figure 6. 4 satweight response versus change in number of variables and number of constraints

In the original problem space seven out of nine (almost 77%) decisions produced
satisfied domain. Whereas, after deploying assumption 6.1, five out of six (almost
83%) decisions produced satisfied domains. Hence, the probability of obtaining a
satisfiable domain is to be increased when employing assumption1.

In addition to that, after implementing assumption 6.1; the problem search space has
dropped by almost 33% after. This constructively fosters towards reducing the
computation cost significantly, particularly in large scale problems.

Moreover, all new obtained satisfiable domains are consistent and valid in the original
dependency context. As per our example, 71% of the originally satisfiable domains can
still be found even after applying assumption 6.1.

However, even though substantial advantages are present, there’s a single downfall
related to the assumption. This distinct downfall of recalling assumption 6.1 is the
reduction of problem degree of variability, and consequently the reduction of problem
number valid domains when compared with the original dependency context.

6.5. Searching for optimal decision

Undoubtedly, rummaging for optimal decision is known to be computationally costly,
as the problem space in worst scenarios could be exponential. Ultimately, some
problem might be NP complete problem. For instance, suppose we have 20 features

21.91.81.71.61.5

Variables
1.41.31.21.112

1.5Constraints
1

0.5
0

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Sa
tW
ei
gh
t

152

divided equally into two sets, such that each set grouped within Bayesian disjunction
dependency contexts. Moreover both contexts are also connected in Bayesian
disjunction dependency context. Given the fact that, there are some features in both
sets exhibit a mutual crosstree dependency.

Although we started with only 20 features with binary truth assignment for each, we
will conclude more than one million possible worlds due to the degree of variability of
the valid truth domains. Apparently, reasoning among such massive number can be
costly.
Problems with large search space motivate us to propose a new method in line of
finding conditional decisions in more practical way.

Definition 6.12. When employing assumption 6.1 in Uncertain CSP P, the world
with highest obtained assignment is called conditional decision.

In large size problems, assumption 6.1 is to be employed, as it allows a significant
decrease in the number of possible worlds. For an instance, in the aforementioned
example, we might be able decrease the problem size into almost only 1000 possible
worlds. Afterwards, we run Algorithm 1. 1 to find the problem optimal decision. The
newly obtained optimal decision will be the conditional decision of the original
problem context.

After determining the conditional decision of problem P; we might withhold
assumption 6.1 from the problem definition, consequently return to the problem
original definition, while running our algorithm subjectively. When choosing a new
world w, we might or might not consider worlds that are correlated with conditional
decisions potential.
In this condition, The key difference that will play a new role is that we already
established a new understanding about the anticipated new optimal weight. The new
threshold forms the comparison benchmark when quantifying satweight for any new
world. We can simply relate to the new threshold and possibly conclude how close we
are from the optimal decision. An optimal solution must be equal or less than
conditional solution,

Satweight optimal() ≤ Satweight conditional() .

153

Corollary 6.1. For a given a dependency context the satisfiability weight for any
optimal decision cannot exceed the satisfiability weight of the conditional decision of
the same problem. Such that;

Satweight optimal() ≤ Satweight conditional() .

Building on corollary 6.1, we can now anticipate the behavior of the dependency
context more effectively, by setting a new threshold to guide our expectations.

 Therefore, when reasoning about any possible world and after finding out the
satisfiability weight of this world, we can conclude whether this world produces an
optimal decision or not. Moreover, we can also quantify how far this world is from the
optimal worlds.

This method can be cost effective, in a sense the search can be stopped whenever we
get an optimal world or sense the proximity of an optimal closed-enough world.

In this way, time and effort are saved and instead of running through all possible
worlds, which might be considerably high number, there’s an opportunity to run the
algorithm within any time partition and terminate it at any desired time while
sustaining the outcome as being informative enough in terms of being optimal or not.

That being said, the satisfiability process can take any time. In addition, experiment
results shown that usually the optimal decision satisfiability weight is very close to
(90%-100%) to the conditional decision satisfiability weight.

Moreover, it is possible to find some of the unsatisfiable worlds in more cost
effectively way. Ultimately, When we recall this technique, we clearly reduce the
problem search space, hence we can find some of the unsatifiable worlds in shorter
time.

Last but not least, it’s observed that worlds that directly get affected by the
assumption have either increased its success ratio or at least maintain it.

154

Example 6.2 Let P be uncertain CSP of a given sub problem of probabilistic
feature model. Such that,

This particular example has the highest possible degree of variation for the given set
of features. which leaves us with a search space among 63 possible assignments.

When using our approach on all possible assignments, we can obtain the following
information:

• Number of unsatifiable assignments = 16 different assignment.
• Assignment with optimal decisions for singular selection is

with success ratio equal to 0.5625

• Assignment with optimal decisions for multiple selections is
with success ratio 0.3125.

Now, in order to reduce our search space, we recall assumption 6.1 to reform our
dependency context to become as follow:

By recalling this assumption, our search space is narrowed down from 63 to 31
assignments.

H = x1

V = a,b,c()+ , e,d, f()+

λ = λ
+
λ + ,λ+()

ω =
λ+ a b c
ω 0.25 0.25 0.25

,
λ+ e d f
ω 0.25 0.25 0.25

C = c()

C = (b∧ c) =∅

a , b , ab , d , f , df

a,d , a, f , b,d , b, f

λ = λ
+
λ + ,λ⊕()

155

When conducting the developed method, the following information will be obtained:

• Number of unsatifiable assignments = 4 different assignment.
• Assignment with optimal decisions for singular selection is

with success ratio equal to 0.625 and with success

ratio Equal 1,
• Assignment with optimal decisions for multiple selections is

with success ratio 0.375.

Clearly we can see the resemblance amongst, in much smaller search space (50%
smaller) we were able to hunt 8 out of 10 original optimal decision set (80% of the
original optimal decisions were obtained). Only two new optimal decisions were
generated. However these two new optimal decisions tend to have high degree of
optimality even in the original dependency context. This provides a good
approximation about the accuracy of our algorithm as well.

Considering this concept, optimal decisions can be achieved more efficiently by
reverse running the search process. In this case, instead of looking for the optimal
decision directly in the original dependency context and probing through all possible
assignments (which might be extremely vast and tedious task), we can employ
assumption 6.1 as an initial step and find all optimal decisions set, then point back to
the original dependency context and examine the resultant set there.

In the following example we demonstrate our suggested procedure in larger set of
features;

Example 6.3. Let P be uncertain CSP of a given sub problem of probabilistic
feature model. Such that,

a , b , ab,d , ab, f d , f

a,d , a, f , b,d , b, f

H = x1

V = a,b,c,d,e()+ , f , j,h()+
λ = λ

+
λ + ,λ+()

C = e∧ f()→∅

156

To find out the optimal decision of this problem, we need to examine 255 possible
assignments, which could be problematic and costly. Using the developed method,
the search space ought to be reduced to only 47 (only 18% of the original search
space), by considering simply recalling assumption 6.1, on the first set to be

.

Afterward, all possible worlds are listed to find out which worlds tend to have
optimal value as follows:

• Number of unsatifiable assignments = 4 out of 47 assignments
• Assignments with optimal decisions are with success ratio

equal 1. And with success ratio equal 0.79.

• with

success ratio 0.58.

Consequently, the resultant set of assignments is examined in the original dependency
context, the results are as follow:

• First group obtained satweight 0.140625 with success ratio 0.5625.
• Second group obtained sat weight 0.12890625 with success ratio 0.515625.
• Third group obtained satweight 0.00933203125 and 0.018066406 with

success ratio 0.2890625.

Potentially, when addressing all possible assignments, it is settled that no assignment
will have Satweight or success ratio higher than these obtained values, thus making
these assignments the optimal assignments.

In the above discussion, we demonstrated a practical technique to optimize the
reasoning process and reduce the search space for the developed algorithm.

Since our belief model is based on a set of uncertainties, any new information,
measurement, threshold or observation is a forward step toward more accurate
anticipation of the actual results.

V = a,b,c,d,e()⊕ , f , j,h()+

a , b , c , d

j , h

a, j , a,h , a,hj , b, j , b,h , b,hj , c, j , c,h , c,hj , d, j , d,h , d,hj

157

6.6. Experimental Results

In this section, we present the evaluation Uncertain CSP notion. Our method is
introduced in which a series of variations of a given Uncertain CSP P are experimented
to deliver better understanding to the reasoning process, in order to instigate the path
of the problem evaluation.

The experiment conducted facilitates the following:

• Pinpoint and define the uncertainty problem P.
• Evaluate and experiment the given problem within varying contexts

semantics.
• Document and analyze the outcomes.
• Gauge the reliability of our suggested approach and determine its

potentials.

By the mean of experimentation, we showcase how the method used is a constructive
step towards overcoming the problem addressed.
Furthermore, this section validates how our method can be used derive an efficient
reasoning strategies by taking into consideration the desired outputs and reason about
it. Understanding the problem behavior, during reasoning process, allow us to modify
the problem model in order to respond to the problem functioning and meet the
projected results.

 At first it is necessary to define and establish the problem to be considered in this
experiment;

• Problem Definition

Consider the following uncertain constraints problem P = H ,λ,V ,C,ω such that;

H = X

V = a,b,c(), d,e, f()
C = c∧ e→∅

158

When expending our designated method, we will be able to evaluate the given
problem by considering different variations of the same problem by changing the
degree of variability ‘DoV’ within it.

Bearing in mind the degree of variability of any problem is a result of the semantic of
the involved dependency context for the given set of variables, it is pragmatic to
adjust P by imposing different combinations of different dependency contexts , and
validate that all possible degree of variability are considered.

In the given experiment, 12 different combinations4 are to cover all possible degree of
variability and any possible combinations of dependency context. Table 6. 7
demonstrates all the experiments’ settings of the deliberated sets of dependency
contexts.

Table 6. 7 dependency contexts combinations, used in the experiment

It’s firmly comprehended that different combination of dependency contexts does not
exclusively imply different degree of variability.
Conversely, it also implies different levels of complexity along with different
probabilistic weight of the involved variables, in addition to varied implication of the
involved crosstree constraints. By varying the dependency context, it is likely to get
different numbers of possible truth assignments of the involved variables.
Subsequently, number of times that crosstree constraints implication took effect.

4 This excludes Bayesian Tautology Dependency Contexts, and any sub model using a combination of
only Bayesian Exclusive Disjunction Dependency Context.

λ

Dependency Context

λ•

λ• λ⊕

λ• λ+

λ• λ•

λ+ λ+

λ+ λ⊕

λ⊕ λ⊕

 Dependency Context

λ+

λ• λ⊕

λ• λ+

λ• λ•

λ+ λ+

λ+ λ⊕

λ⊕ λ⊕

159

In this manner, it is feasible to argue that by running the developed method on all
possible combinations within varying dependency context, we prove the reliability of
this approach and test its capability. In addition, we establish its likelihood to work on
any possible kind of problem to be probably encountered in real life application.

Entry 6.1. Firstly, consider the combination with lowest possible degree of
variability where only Bayesian Conjunction Dependency Context is allowed in the
problem definition such that;

Using our approach, it’s noticeable that this problem is unsatisfiable under the given
constraints assumption. This result doesn’t contradict with the semantic of this
problem; in fact, it’s rather anticipated and compatible with proposition 6.1, in which
we conclude that P is undeterministic problem with satisfiability factor equal.

Entry 6.2. We can only have satisfiable assignments by changing the involved
dependency context. Thus leading to entry 2 which implements the next variation of P
such that;

Using our approach, we can conclude that P is semantically valid with a possibility of
having two different satisfiable assignments, which are legally valid and consistent
with the problem semantic.

Figure 6. 5 demonstrates the graphical representation of the numerical data as part of
the obtained results when using our approach.

By examining Figure 6. 5(a), we will notice that, P succeeded two satisfiable
assignments and failed to satisfy one assumption.

Figure 6. 5(a) shows the probabilistic weight of all involved assignment s. In such a
manner, all worlds exhibit a truth assignment when crosstree constraints are ignored,
in which the three possible worlds had the same weight, which is equal 0.3333 (refer
to Figure 6. 5(a)).

λ = λ
•
λ • ,λ•()

λ = λ
•
λ • ,λ⊕()

160

Figure 6. 5 a) difference between satweight and weight in entry 6.2
b) Satweight behavior in entry 6.2

When considering the involved constraints, the probabilistic weight of these worlds
would drop significantly due to the constraints semantic as shown in SatWeight plot.
Accordingly, one world would be detected as unsatisfiable world.

Figure 6. 5(b) illustrates the influence of the number of variable and constraints on the
SatWeight value. Based on the plot evidence, we observe that when number of
associated constraints is zero, P obtains the highest SatWeight assignment.
Respectively, the SatWeight value drop when number of associated constraints
increases.

In the given problem settings, numbers of variables were fixed in all worlds.
Therefore, it is not feasible to detect the terms in which the change in number of
variables affect the SatWeight values.

Accordingly, we manage to understand the behavior of similar problems where the
value of SatWeight is always minimal with high potential to have unsatisfiable
assignment due to the low degree of variability.

Entry 6.3. Considers the case in which increasing the degree of variability is

desired, such that;

1 2 3
0

0.2

0.4

0.6

0.8

1
Weight

1 2 3
0

0.01

0.02

0.03

0.04

0.05
SatWeight

λ = λ
•
λ • ,λ+()

Sa
tW
eig

ht
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Constraints

11.11.21.31.41.51.61.71.81.92

Va
riab

les
3

3.5

4

4.5

5

(a) (b)

161

Apparently, this consideration will drive more possible assignments due to the
increase in the problem degree of variability.

Figure 6. 6 favors in supporting and confirming the above statement; as an elaboration
of the weight plot, we observe that the number of possible assignments has increased
from 3 in the previous settings to 7 assignments in the current setting.
However, when looking at the SatWeight, which is enforced by the constraints
semantic, constraints implication on P is highly noticeable. Relatively, it affects the
problem satisfiability behavior, not only by dropping the probabilistic weight from
0.3333 at max (as per entry 6.2) to 0.0634 at max (as per current entry), but also by
mounting four unsatisfiable assignments.

In Figure 6. 6, we observe logarithmic decay in the SatWeight value while changing
number of associated variables in the world of interest and when none of the variables
entangled with a constraint. The highest SatWeight value has been detected when the
number of variables where minimal.

The logarithmic response would change when variables exhibit association with
crosstree constraints; such that number of constraints is increasing.

Moreover, Figure 6. 6(b) demonstrates the linear relationship between number of
variables, SatWeight value, and the number of involved constraints in any world. On
one hand, the SatWeight has the highest value when the number of constraints is

(a) (b)
Figure 6. 6 a) difference between satweight and weight in entry 6.3

b) Satweight behavior in entry 6.3

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Weight

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SatWeight

Constraints
2

1.5
144.24.44.64.855.2

Variables
5.45.65.86

0.04

0.05

0.06

0.01

0

0.03

0.02

S
at
W
ei
gh
t

162

minimal. Oppositely, on the other hand, the SatWeight becomes zero when the
number of constraints reaches its maximum.

Entry 6.4. To have a better understanding of the constraints implications; we
will consider a new combination in which;

Figure 6. 7 demonstrates problem P behavior when inducing the new context
combination.

Due to the new context semantics, P exhibits higher degree of variability. Hence,
number of possible assignments has increased significantly from 7 (as per entry 6.3) to
21 assignments with highest weight of 0.0625 and the minimal is 0.01562.

When taking into consideration the crosstree constraints semantic, 4 out of the 21
assignments would exhibit unsatisfiable assignments. Noting that the difference
among world’s weight and SatWeight is not as high as in the other combinations, the
highest obtained SatWeight assignment is 0.041666.

Figure 6. 7(b) displays the change of SatWeight values with respect to the variation in
number of variables and involved constraints. As evident from the aforementioned
cases, SatWeight tend to exhibit logarithmic response as the number of variables
changes.

λ = λ
•
λ + ,λ⊕()

0 5 10 15 20 25
0.01

0.02

0.03

0.04

0.05

0.06

0.07
Weight

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05
SatWeight

0
0.5

Constraints
1

1.5
243.83.63.4

Variables
3.232.82.62.42.22

0

0.005

0.01

0.015

0.04

0.035

0.03

0.025

0.02

S
at
W
ei
gh
t

(a) (b)
Figure 6. 7 a) difference between satweight and weight in entry 6.4

b) Satweight behavior in entry 6.4

163

Adding up to the interpretations, an interesting observation displays the decay of the
usual logarithmic response SatWeight and number of variables becomes more linear
(at worlds with low SatWeight). This is because of the linear increment of the number
involved constraints. When number of constraints is maximal, SatWeight value
dropped to zero.

Furthermore, the plot also evinces that SatWeight value decreases in a linear
relationship when the number of the constraints increasing linearly.

Entry 6.5. Now we are going to increase the degree of the variability of P by
considering a new combination; such that;

Semantically speaking, higher degree of variability implies more possible
assignments, which is our case where the numbers of assignments have increased
from 21 (as per entry 6.4) to 49 possible assignments.

According to Figure 6. 8(a), when considering the crosstree constraint, 16 out of the 49
assignments will be unsatisfiable.

Moreover, we discern that the highest SatWeight assignment value is 0.0803, which is
significantly smaller than the equivalent weight value of the same world which was
equal 0.25.

Figure 6. 8 a) difference between satweight and weight in entry 6.5
b) Satweight behavior in entry 6.5

λ = λ
•
λ + ,λ+()

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25
Weight

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1
SatWeight

0
Constraints
1265.554.543.5

Varaibles
32.52

0

0.01

0.02

0.03

0.04

0.05

0.06

0.08

0.07

S
a
tW
e
ig
h
t

(a) (b)

164

Figure 6. 8(b) provides clear evidence how SatWeight responds logarithmically to
increase of the number of involved variables.

As a result of the strong logarithmic characteristics of P, the dominancy of the
logarithmic behavior extend its effect on the linear response between crosstree
constraints and SatWeight imposing some logarithmic decay along the linear
response, Figure 6. 8(b) marks that crosstree constraints tend to have semi logarithmic
behavior with Satweight value, however the slope of the decay is still relatively high.

Generally, we can establish that P tends to have a more logarithmic reasoning
behavior, when the degree of variability increases.

Entry 6.6. To have a better understanding of the previous observation, we are
now going to increase the degree of variability by considering the following
combination;

λ = λ
+
λ + ,λ+()

In this combination, P obtains its highest degree of variability with 63 possible truth
assignments.
As shown in Figure 6. 9(a), the highest obtained weight value is 0.25, whereas highest
assignment SatWeight value is 0.140625. Moreover, 16 assignments have zero
SatWeight value.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25
Weight

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15
SatWeight

0
Constraints

0.511.5265.554.543.53
Variables

2.521.51

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S
at
W
ei
gh
t

(a) (b)
Figure 6. 9 a) difference between satweight and weight in entry 6.6

b) Satweight behavior in entry 6.6

165

Figure 6. 9(b) confirms our previous observation, in which the increment in the degree
of variability enforces more logarithmic behavior of the satisfiability process.
In this problem setting, we observe the logarithmic response between the number of
constraints and SatWeight, inducing more logarithmic response between the number
of constraints and the number of variables.

Entry 6.7. Now we are going to consider a new combination whereas;

According to Figure 6. 10, the new combination leaves us with nine possible
assignments with equal probable weight value of 0.015625. After considering the
crosstree constraints implication, one of these assignments will be unsatisfiable with
zero SatWeight value.

Moreover, we observe that some assignments maintained the same probabilistic
weight before and after considering the crosstree constraints. Due to the high
independency level among variables (due to the problem dependency semantic)
constraints didn’t take affect on many possible worlds, achieving high Satweight
value comparing with other combinations.

This observation is compatible with assumption 6.1 and confirms that when imposing
Bayesian Exclusive Disjunction dependency context; crosstree constraints implication
would be reduced accordingly.

λ = λ
•
λ ⊕ ,λ⊕()

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1
Weight

1 2 3 4 5 6 7 8 9
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
SatWeight

(a) (b)

2
1.8

1.6
1.4

1.2
1

Constraints

0.8
0.6

0.4
0.2

01

2

3

Variables

4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

6

Sa
tW
eig

ht

Figure 6. 10 a) difference between satweight and weight in entry 6.7
b) Satweight behavior in entry 6.7

166

Entry 6.8. Now we will consider a new combination whereas;

Due to the low degree of variability the problem qualified only three assignments
with maximum weight of 0.5. When considering the crosstree constraints implication,
one of these assignments exhibit unsatisfiable assignment see Figure 6. 11(b).

As a result of the low degree of variability, the relationship among number of
variables, constraints and SatWeight tend to be linear as demonstrated in Figure 6.
11(b).

Accordingly, due to the low degree of variability, P would be highly influenced of the
linear correlation Satweight and number of involved constraints, extending this
behavior on overall problem behavior. Whereas, the expected logarithmic response
between number of variables and Satweight is weakly characterized as a result of the
lower degree of variability.

Entry 6.9. A higher degree of variability can be achieved when considering the
following combination;

λ = λ
+
λ • ,λ•()

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5
Weight

1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25
SatWeight

λ = λ
+
λ • ,λ⊕()

33.5
Variables
44.555.5261.91.81.71.61.51.4Constraints

1.31.21.11

0

0.05

0.1

0.15

0.2

0.25

Sa
tW
eig

ht

(a) (b)
Figure 6. 11 a) difference between satweight and weight in entry 6.8

b) Satweight behavior in entry 6.8

167

7 possible assignments are produced by this combination; highest weight value
achieved is 0.0625. After considering the constraints implication, one assignment
would be disqualified as valid assignments as shown in Figure 6. 12(a).

A very interesting observation to be noted is, when exclusively examine truth
assignments produced from context of higher independency level (in this case
exclusive disjunction), the obtained SatWeight values are either remain the same as its
correspondent weigh value or have been decreases in a reasonable amount. Whereas,
assignments produced via context with higher dependency level (Conjunction
dependency context) dropped its SatWeight significantly (almost forth of its
correspondent weight value).

Figure 6. 12(b) also confirms this observation, when four variables are present, which
are a result of incorporating the conjunction context to the inclusive disjunction
context, SatWeight curve decay linearly due to the prominence of the low degree
variability context behavior.

On the same note, if the number of variables was one, which only can be achieved
when we only consider the higher degree of variability exclusive disjunction,
SatWeight decay tend to be corresponding logarithmically as observed in Figure 6.
12(b). Still, the number of crosstree constraint has linear effect on the SatWeight value.

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Weight

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SatWeight

1

Variables
2

3
421.5Constraints

10.50
0

0.01

0.06

0.05

0.04

0.03

0.02S
at
W
ei
gh
t

(a) (b)
Figure 6. 12 a) difference between satweight and weight in entry 6.9

b) Satweight behavior in entry 6.9

168

Entry 6.10. Entry 10 shows a Higher degree of variability to be obtained by
considering the following combination such that;

λ = λ+ λ•,λ+()

Figure 6. 13 serves as a confirmation to the previous observations, in such a way it is
discerned that the difference between weight and SatWeight values is bigger for the
assignments coming from context with lower degree of variability, when judged
against the assignments coming from context with higher degree of variability.

In Figure 6. 13b, we remark upon the logarithmic response between SatWeight and
number of variables. When fixing number of constraint to 1, we encounter 8 possible
assignments in which 4 of these assignments are derived from context with higher
degree of variability (Bayesian disjunction), while the other 4 assignments are
composed from both contexts.

Patently, the higher degree of variability context is dominant on this sector and as a
result, the logarithmic relationship with satweight value is more visible at this sector,
unlike other sectors where’s the logarithmic behavior is not as visible.

Entry 6.11. In this entry we present the next combination in which we try to
increase the degree of variability such that;

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25
Weight

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2
SatWeight

λ = λ
+
λ + ,λ⊕()

00.20.40.60.81

Constraints

1.21.41.61.82
6

4
2

0.15

0

0.05

0.1

V
ar
ia
bl
es

S
at
W
ei
gh
t

(a) (b)
Figure 6. 13 a) difference between satweight and weight in entry 6.10

b) Satweight behavior in entry 6.10

169

As manifestly marked from Figure 6. 14, and due to the achieved high degree of
variability coupled with the degree of independency, SatWeight tends to respond
more logarithmically with the change in number constraints and number of involved
variables.

Also, the effect of the constraints have been reduced in which only 4 out of 31
assignments are classified as invalid assignments, which is due to the independency
nature of the imposed exclusive disjunction.

Entry 6.12. In sequence of formulating a clearer understanding, entry 12 impose
more independence contexts whereas;

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25
Weight

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
SatWeight

λ = λ
+
λ ⊕ ,λ⊕()

2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Weight

2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SatWeight

21.81.61.41.210.8
Constraints
0.60.40.20

4
3

V
ar
ia
bl
es2

1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

S
at
W
ei
gh
t

00.20.40.60.811.2
Constraints
1.41.61.822Variables

1.5
1

0.06

0.05

0.04

0.03

0.02

0.01

0

Sa
tW
ei
gh
t

(a) (b)

(a) (b)

Figure 6. 14 a) difference between satweight and weight in entry 6.11
b) Satweight behavior in entry 6.11

Figure 6. 15 a) difference between satweight and weight in entry 6.12
b) Satweight behavior in entry 6.12

170

Figure 6. 15 presents an interesting observation, due to nature of the exclusive
disjunction context; the independency level in this problem has been increased.
Consequently, this succeeded to reduce the degree of variability.

However, on the other hand, it also has a direct effect on subsidizing the constraints
implication on SatWeight value.

From Figure 6. 15(a), we only detect one assignment out of 15 assignments, thus
disqualify the crosstree constraints requirement.

In addition, when referring to Figure 6. 15(b), we distinguish the logarithmic behavior
between number of constraints and SatWeight value. Besides, as a result of decreasing
the degree of variability, the relationship between number of variables and SatWeight
conspicuously has become more linear.

6.7. Discussion

From the analysis above we were able to determine some observations as discussed
below:

In any uncertain CSP, interaction between variables is limited by the involved
constraints and existing dependency context. Different dependency context allow
different interface of the problem. In addition to that, each dependency context has
different degree of variability, resulting higher or lower set of truth assignments.
When two or more dependency contexts aggregate together, the crosstree constraints
effect on the satisfiability of the problem become more prominent. Different
techniques can be imposed to minimize the constraints effect and achieve optimized
satisfiable problem.

Moreover, It’s also important to notice that the arrangement of dependency context
combinations has a crucial effect on the system’s satisfiability behavior. Different
arrangements of dependency contexts result in different degree of variability, which
in its turn has a direct effect on the constraints impact; as have been shown above and
demonstrated in Figure 6. 16.

171

Considering these observations, we argue that not only we achieve better
understanding of the problem reasoning behavior, but at same time we introduce
some techniques to optimize the reasoning process and reduce complexity time
during the modeling stage and even after.

The analysis above evidenced that in any Uncertain CSP, SatWeight value responds
linearly with the change of number of involved crosstree constraints. Besides, the
problem degree of variability tends to have logarithmic effect on the SatWeight value.
Higher degree of variability means more logarithmic response, and vice versa.

Figure 6. 16 Uncertain CSP behavior under different dependency configurations

Manifestly, problems with low degree of variability and high number of constraints
have an obvious linear reasoning behavior. This results in the likelihood of the
SatWeight value to drop faster and the chances of having unsatisfiable assignments to

172

be relatively high. On the contrary, problems with high degree of variability and low
number of constraints will tend to have logarithmic reasoning behavior with higher
success chances.

Having that said, we argue that we can optimize the satisfiability outcome by
inducing higher degree of variability in the problem, which will result to increase the
logarithmic behavior in the problem and enforce this change on the linear response
between number of constraints and Satweight value, making it more logarithmic as
have been revealed in the analysis above.

Introducing a new degree of variability coupled with degree of independency in the
problem will reduce the crosstree constraints effect as well as formulating a
logarithmic effect on the SatWeight value.

In this manner, the degree of variability can be increased by either introducing
disjunction dependency or exclusive disjunction dependency into the problem.

When engaging exclusive disjunction dependency to the problem, a significant
decrease to the crosstree constraints effect will take place , due to the independency
nature, will exist, and the change between weight and SatWeight value would be
minimal and sometimes zero (see entry 6,7 and 6.12). However, the downfall would
be arising as a reduction in number of possible assignments.

Moreover, there is a great possibility to reduce the effect of crosstree constraints and
make it even logarithmic by inducing Disjunction dependency to the problem (for
instance see entry 6.4, 6.5 and 6.11). Likewise, we will allow SatWeight to respond
logarithmically with number of constraints and number of variables in addition of
having more possible assignments. Conversely, when speaking of its downfall, the
change between weight and SatWeight will be higher in comparison to the previous
case as evident throughout the whole experiment.

173

6.5. Summary

In this chapter, we were able to extend our work by introducing a new reasoning
mechanism, tailored for the developed BBFM.

We started by highlighting Uncertain CSP characteristics. Thereafter, an extensive
elaboration of the developed method had been discussed thoroughly.

Reasoning in SPL is one of the most expensive challenges. When it comes to
constraints satisfaction, reasoning might arise NP-complete problem.

In our approach, we first extract the problem dependency context; to specify its truth
domain. The obtained truth domains are, thereafter, marginally factorized with the
truth assignment of the involved crosstree constraints. While taking into account the
predefined uncertainty measure; the developed algorithm finally conclude the valid
assignments that satisfy the existing dependency, constraints semantic and any
observations. Moreover, each satisfiable assignment is to be coupled with uncertainty
measure in accordance with the embedded observation.

To enhance the algorithm performance, we introduced several techniques aiding in
reducing the problem space size, and the search for optimal observations.

Finally, we validated the developed algorithm through out set of experiments, each
representing a new sub-model with different dependencies, variability, and
complexity. The obtained results demonstrated that, the developed algorithm is
reliable and efficiently help the designer to understand the problem behavior under
different sittings.

174

Part VI

Conclusion

175

Chapter 7

Conclusion

Important decisions are made based on Feature Models. After decades of research in
SPLE, different approaches have emerged for creating and managing variability
models in SPLE (see chapter Managing Variabilities). Nevertheless, all proposed
techniques exhibit some sort of limitations concerning dependencies’ semantic and
non-direct interaction among model parameters. (Apel et al., 2013a; Benavides et al.,
2010), and consequently, provide unclear support for the reasoning process thereafter.

To capture the actual semantic existing in the feature model, one should consider the
valid implication for each parameter on the overall model. Moreover, when defining
each parameter real implication, we will be able to anticipate the model outcome and
features behavior in the latter stages. By underlining features behavior, we would be
able to quantify the model possible functionalities in the early design stage.

This thesis presented a novel approach to quantify features implications and
anticipate the truth assignment for these features in all possible products
configurations. After assigning truth weights for all features, we use these
measurements to enhance the graphical representation of the introduced feature
model by integrating the developed model with use of colour, such that each colour
emphasize different truth value.

176

The predefined measurements are used later during the reasoning process, in which
we developed a mathematical reasoner to satisfy about the model constraints
throughout a consideration of the given probabilistic weight for each parameter.

First, we started this research by conducting a Systematic Literature Review
identifying the current modeling techniques used in SPLE. Next, we evaluate each
technique to highlight its qualities and determine its usage and limitation as been
instituted in the literature. After defining each modeling technique and highlight its
shortcomings, we drafted a comparative study to conclude the pros and cons of each
used model.

Based on the findings of the previous study, we were able to identify the Knowledge
Gap as have been discussed in section 4.4.

To overcome the knowledge gap, we integrated the use of Bayesian Belief Networks
BBN with Feature Model FM, producing a probabilistic feature model capable of
capturing the introduced dependency semantic found in FM.

The developed Bayesian Belief Feature Model BBFM is a mathematical framework to
model and manage variability model in SPLE by quantifying the truth uncertainty of
all model parameters. BBFM support a set of theorems and mathematical notions, in
which we enable the model designer to assign a probabilistic weight for each feature,
indicating the truth assumptions and the occurrence likelihood for all features in
BBFM. While quantifying the truth probabilistic weight for models’ parameters, we
can anticipate the truth flow throughout the model parameters.

Afterwards, we extent these analysis to compute the truth assumption of model
dependency contexts by anticipating the probability of obtaining valid context in
which the dependency semantic is met and all involved constraints are satisfied.

The obtained analysis formulates the model belief network, which mainly originated
from the truth assignment of core features and bounded by the semantic of crosstree
constraints. Thus are used to colour the BBFM in shades of gray fashion, where each
model parameters will be assigned a colour shade in corresponding with its truth
assumption. This allows better visualization of the model belief base, while

177

emphasizing the truth flow, features implications and interaction throughout the
model.

Successively, we demonstrated how the model belief could be changed subjectively
when deciding to include some model parameters in the belief base and trace the
anticipated changes graphically in the same exact fashion discussed above.

After developing BBFM, we continued this work by creating a mathematical reasoner
to tackle the problem of constraints satisfaction in SPLE. The developed reasoner is a
state of art reasoning technique; the designed approach is a result of integrating the
traditional constraints satisfaction problem and reasoning under uncertainty
theorems. Nevertheless, it was specially designed and tailored to reason about BBFM.
We were able to mathematically prove the validity of the developed approach and
demonstrate its functionality through out set of examples. When reasoning using the
developed algorithm, we will be able to anticipate the probability of having a
satisfiable assignment for any set features in BBFM. Moreover, the any unsatisfiablity
would be detected when using the developed approach.

To testify the developed approach, we conduct a set of experiments compiling
different satisfaction problems with different attributes. The outcome of the
experiments proved the model functionality and provided insightful observations
about the satisfaction problem behavior under different settings.

In the next section, we highlight the directions of our planned future work.

7.1. Future Work

As future work, we will continue to extend this work by creating a MatLab Toolbox to
automate the introduced analysis. For example, after defining the problem knowledge
domain, we translate the intended semantics into blind BBFM, in which we don’t
quantify the model parameters probability weight. Afterward, we define the model
belief base, then use the existing semantics and the belief base to derive our
calculation using the designed toolbox. The toolbox is a mathematical implementation
of the aforementioned theorems and techniques, it consist of all the introduced
equations and theorems.

178

We also encourage the researchers to develop variability management tool, such that
we will be able to manage the modeling problem by considering the probabilistic
weight for all model parameters.

The developed tool must be a comprehensive management tool, in which we cover all
different key aspects of SPL ranging from the model design to products configuration.
This enables the user to enhance the design accordingly, by either providing
subjective truth assignments for some model parameters or highlighting
inconsistencies and dead features when quantifying the uncertainty measurements.

Different theorems can be employed in this framework to quantify new attributes of
any software product line. Such as the use information theory to project the model
entropy into countable information whereas, the key input is the computed
uncertainty measures.

In addition, we would extend this work by providing a mathematical approach to
estimate the number of possible valid products under different settings (observation
and contexts).

Ultimately, our goal is to inspire other researchers to incorporate this work with other
automated analysis, whereas the uncertainty nature of model parameters is a key
attribute and should be considered in all stages. Moreover we urge to design a
comprehensive tool capable of managing the variability, modeling and reasoning SPL
while considering the degree of uncertainty arisen in each problem.

179

References

Adamides, E. D. (1996). Responsibility-based manufacturing. The International Journal
of Advanced Manufacturing Technology, 11(6), 439-448.

Åhlström, P., & Westbrook, R. (1999). Implications of mass customization for

operations management: an exploratory survey. International Journal of
Operations & Production Management, 19(3), 262-275.

Ahmed, F., & Capretz, L. F. (2011). An architecture process maturity model of

software product line engineering. Innovations in Systems and Software
Engineering, 7(3), 191-207.

Alencar, P. (2012). Handbook of Research on Mobile Software Engineering: Design,

Implementation, and Emergent Applications: Design, Implementation, and
Emergent Applications, IGI Global.

Alves, V., et al. (2006). Refactoring product lines. Proceedings of the 5th international

conference on Generative programming and component engineering, ACM.

Amine, A., Mohamed, O. A., & Bellatreche, L. (2013). Modeling Approaches and

Algorithms for Advanced Computer Applications (Vol. 488): Springer.

180

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013a). A Development Process for
Feature-Oriented Product Lines Feature-Oriented Software Product Lines (pp. 17-
44): Springer.

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013b). Feature-oriented software product

lines: concepts and implementation: Springer Science & Business Media.

Arcaini, P., Gargantini, A., & Vavassori, P. (2015). Generating tests for detecting faults in

feature models. Paper presented at the Software Testing, Verification and
Validation (ICST), 2015 IEEE 8th International Conference.

Ardito, C., Barricelli, B. R., Buono, P., Costabile, M. F., Lanzilotti, R., Piccinno, A., &

Valtolina, S. (2011). An ontology-based approach to product customization End-
User Development (pp. 92-106): Springer.

Atkinson, C., Bayer, J., & Muthig, D. (2000). Component-based product line

development: the KobrA approach Software Product Lines (pp. 289-309):
Springer.

Bachmann, F., & Clements, P. C. (2005). Variability in software product lines.

Bak, K. (2013). Modeling and analysis of software product line variability in Clafer.

Batory, D. (2005). Feature models, grammars, and propositional formulas: Springer.

Batory, D., Benavides, D., & Ruiz-Cortes, A. (2006). Automated analysis of feature

models: challenges ahead. Communications of the ACM, 49(12), 45-47.

Benavides, D., Cortés, A. R., Trinidad, P., & Segura, S. (2006). A Survey on the

Automated Analyses of Feature Models. Paper presented at the JISBD.

181

Benavides, D., Ruiz-Cortés, A., Corchuelo, R., & Martín-Díaz, O. (2004). Spl needs an
automatic holistic model for software reasoning with feature models. Paper presented
at the International Workshop on Requirements Reuse in System Family
Engineering.

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2009). Automated analysis of feature

models: A detailed literature review. Techn. Ber. ISA-09-TR-04. Seville, Spain:
Applied Software Engineering Research Group, University of Seville.

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature

models 20 years later: A literature review. Information Systems, 35(6), 615-636.

Benavides, D., Segura, S., Trinidad, P., & Cortés, A. R. (2007). FAMA: Tooling a

Framework for the Automated Analysis of Feature Models. VaMoS, 2007, 01.

Benavides, D., Segura, S., Trinidad, P., & Ruiz-Cortés, A. (2006a). A first step towards

a framework for the automated analysis of feature models. Proc. Managing
Variability for Software Product Lines: Working With Variability Mechanisms, 39-47.

Benavides, D., Segura, S., Trinidad, P., & Ruiz-Cortés, A. (2006b). Using Java CSP

solvers in the automated analyses of feature models Generative and
Transformational Techniques in Software Engineering (pp. 399-408): Springer.

Berg, K., Bishop, J., & Muthig, D. (2005). Tracing software product line variability: from

problem to solution space. Paper presented at the Proceedings of the 2005 annual
research conference of the South African institute of computer scientists and
information technologists on IT research in developing countries.

Berg, K., & Muthig, D. (2005). A critical analysis of using feature models for variability

management. Submitted to SPLC-Europe.

Berger, T. (2013). Variability Modeling in the Real-An Empirical Journey from Software

Product Lines to Software Ecosystems.

182

Beuche, D., et al. (2004). "Variability management with feature models." Science of

Computer Programming 53(3): 333-352.

Beuche, D., & Dalgarno, M. (2007). Software product line engineering with feature

models. Overload Journal, 78, 5-8.

Bézivin, J. (2001). From object composition to model transformation with the MDA. Paper

presented at the tools.

Biglever software inc. Product Line Engineering Solutions for Systems and Software.

Retrieved from
http://www.biglever.com/extras/BigLever_Solution_Brochure.pdf

Boehm, B. W. (1981). Software engineering economics (Vol. 197): Prentice-hall Englewood

Cliffs (NJ).

Bontemps, Y., et al. (2005). Generic Semantics of Feature Diagrams Variants. FIW.

Bosch, J., & Bosch-Sijtsema, P. (2010). From integration to composition: On the impact

of software product lines, global development and ecosystems. Journal of
Systems and Software, 83(1), 67-76.

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J. H., & Pohl, K. (2001).

Variability issues in software product lines Software Product-Family Engineering
(pp. 13-21): Springer.

Chastek, G., et al. (2001). Product line analysis: a practical introduction, DTIC Document.

183

Chen, K., Zhang, W., Zhao, H., & Mei, H. (2005). An approach to constructing feature
models based on requirements clustering. Paper presented at the Requirements
Engineering, 2005. Proceedings. 13th IEEE International Conference.

Chen, L., Ali Babar, M., & Ali, N. (2009). Variability management in software product lines:

a systematic review. Paper presented at the Proceedings of the 13th International
Software Product Line Conference.

Chen, P. P.-S. (1976). The entity-relationship model—toward a unified view of data.

ACM Transactions on Database Systems (TODS), 1(1), 9-36.

Classen, A., Heymans, P., & Schobbens, P.-Y. (2008). What’s in a feature: A

requirements engineering perspective Fundamental Approaches to Software
Engineering (pp. 16-30): Springer.

Clements, P. C. (2002). Software architecture in practice. Software Engineering Institute.

Clements, P. C., Cohen, S., Donohoe, P., & Northrop, L. (2001). Control channel

toolkit: a software product line case study.

Clements, P. and L. Northrop (2015). Software product lines, Addison-Wesley.

Cohen, S. (2003). Predicting when product line investment pays.

Cook, S. A. (1971). The complexity of theorem-proving procedures. Paper presented at the

Proceedings of the third annual ACM symposium on Theory of computing.

Coplien, J., Hoffman, D., & Weiss, D. (1998). Commonality and variability in software

engineering. Software, IEEE, 15(6), 37-45.

Crnkovic, I., & Larsson, M. P. H. (2002). Building reliable component-based software

systems: Artech House.

184

Cuevas, D. B. (2007). On the Automated Analysis of Software Product Lines Using Feature

Models. Citeseer.

Czarnecki, K., & Eisenecker, U. W. (2000). Generative programming. Edited by G. Goos,

J. Hartmanis, and J. van Leeuwen, 15.

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., & Wąsowski, A. (2012). Cool

features and tough decisions: a comparison of variability modeling approaches. Paper
presented at the Proceedings of the sixth international workshop on variability
modeling of software-intensive systems.

Czarnecki, K., & Helsen, S. (2003). Classification of model transformation approaches.

Paper presented at the Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Architecture.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2004). Staged configuration using feature

models Software Product Lines (pp. 266-283): Springer.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality‐based

feature models and their specialization. Software process: Improvement and
practice, 10(1), 7-29.

Czarnecki, K., & Kim, C. H. P. (2005). Cardinality-based feature modeling and constraints:

A progress report. Paper presented at the International Workshop on Software
Factories.

Czarnecki, K., & Wasowski, A. (2007). Feature diagrams and logics: There and back again.

Paper presented at the Software Product Line Conference, 2007. SPLC 2007.
11th International.

185

Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature
review and research directions. International journal of production economics,
72(1), 1-13.

Davis, S. M. (1989). From “future perfect”: Mass customizing. Planning review, 17(2),

16-21.

Dermeval, D., et al. (2015). "Ontology-based feature modeling: An empirical study in

changing scenarios." Expert Systems with Applications 42(11): 4950-4964.

Donohoe, P. (2012). Software product lines: Experience and research directions, Springer

Science & Business Media.

Dubslaff, C., Klüppeholz, S., & Baier, C. (2014a). Probabilistic Software Product Line

Model Checking.

Dubslaff, C., et al. (2014b). Probabilistic model checking for energy analysis in software

product lines. Proceedings of the 13th international conference on Modularity,
ACM.

Dubslaff, C. (2015). Advances in Quantitative Software Product Line Analysis. Software

Engineering & Management.

Eastwood, M. A. (1996). Implementing mass customization. Computers in industry,

30(3), 171-174.

Ebert, C., & Smouts, M. (2003). Tricks and traps of initiating a product line concept in

existing products. Paper presented at the Proceedings of the 25th International
Conference on Software Engineering.

186

Elfaki, A. O., et al. (2012). "Review and future directions of the automated validation in
software product line engineering." Journal of Theoretical and Applied
Information Technology 42(1).

Eriksson, M., & Hagglunds, A. (2003). An Introduction to Software Product Line

Development. Paper presented at the Proceedings of Umeå's Seventh Student
Conference in Computing Science.

Ferber, S., et al. (2002). Feature interaction and dependencies: Modeling features for

reengineering a legacy product line. Software product lines, Springer: 235-256.

Ferré, X. and S. Vegas (1999). An evaluation of domain analysis methods. 4th CASE/IFIP8

International Workshop in Evaluation of Modeling in System Analysis and Design,
Citeseer.

Gacek, C. and M. Anastasopoules (2001). Implementing product line variabilities. ACM

SIGSOFT Software Engineering Notes, ACM.

Gargantini, A., & Fraser, G. (2011). Generating minimal fault detecting test suites for

general boolean specifications. Information and Software Technology, 53(11), 1263-
1273.

Gibson, J. P. (1997). Feature Requirements Models: Understanding Interactions. Paper

presented at the FIW.

Gil, R. H. and D. F. Amorós (2009). Towards a time-efficient algorithm to calculate the

total number of products of a Software Product Line. Proceedings of the 1st
International Workshop on Domain Engineering, Citeseer.

Glück, R., & Lowry, M. (2005). Generative Programming and Component Engineering: 4th

International Conference, GPCE 2005, Tallinn, Estonia, September 29-October 1,
2005, Proceedings (Vol. 3676): Springer.

187

Gomaa, H. (2005). Designing software product lines with UML: IEEE.

Griss, M. L., Favaro, J., & Alessandro, M. D. (1998). Integrating feature modeling with the

RSEB. Paper presented at the Software Reuse, 1998. Proceedings. Fifth
International Conference.

Halmans, G., & Pohl, K. (2003). Communicating the variability of a software-product

family to customers. Software and Systems Modeling, 2(1), 15-36.

Harman, M., Jia, Y., Krinke, J., Langdon, W. B., Petke, J., & Zhang, Y. (2014). Search

based software engineering for software product line engineering: a survey and
directions for future work. Paper presented at the Proceedings of the 18th
International Software Product Line Conference-Volume 1.

Hart, C. W. (1995). Mass customization: conceptual underpinnings, opportunities and

limits. International Journal of Service Industry Management, 6(2), 36-45.

Haugen, Ø., Moller-Pedersen, B., Oldev, J., Olse, G. K., & Svendsen, A. (2008). Adding

standardized variability to domain specific languages. Paper presented at the
Software Product Line Conference, 2008. SPLC'08. 12th International.

Heuser, C. A., & Pernul, G. (2009). Advances in Conceptual Modeling-Challenging

Perspectives: ER 2009 Workshops CoMoL, ETheCoM, FP-UML, MOST-ONISW,
QoIS, RIGiM, SeCoGIS, Gramado, Brazil, November 9-12, 2009, Proceedings (Vol.
5833): Springer.

Heymans, P., Schobbens, P.-Y., Trigaux, J.-C., Bontemps, Y., Matulevicius, R., &

Classen, A. (2008). Evaluating formal properties of feature diagram languages.
Software, IET, 2(3), 281-302.

188

Hirsch, B., Thoben, K.-D., & Hoheisel, J. (1998). Requirements upon human
competencies in globally distributed manufacturing. Computers in industry,
36(1), 49-54.

Hubaux, A. (2012). Feature-based configuration: Collaborative, dependable, and

controlled, FUNDP.

Hubaux, A., et al. (2010). Evaluating a textual feature modelling language: four industrial

case studies. Software Language Engineering, Springer: 337-356.

Hubaux, A., et al. (2010). "A Preliminary Review on the Application of Feature Diagrams

in Practice." VaMoS 10: 53-59.

Hubaux, A., et al. (2008). Variability modeling challenges from the trenches of an open

source product line re-engineering project. Software Product Line Conference,
2008. SPLC'08. 12th International, IEEE.

Hubaux, A., et al. (2013). "Supporting multiple perspectives in feature-based

configuration." Software & Systems Modeling 12(3): 641-663.

Hutchesson, S. and J. McDermid (2013). "Trusted product lines." Information and

Software Technology 55(3): 525-540.

John, I., & Muthig, D. (2002). Tailoring use cases for product line modeling. Paper

presented at the Proceedings of the International Workshop on Requirements
Engineering for product lines.

Joneja, A., & Lee, N. K. (1998). Automated configuration of parametric feeding tools

for mass customization. Computers & industrial engineering, 35(3), 463-466.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-

oriented domain analysis (FODA) feasibility study.

189

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1998). FORM: A feature-;
oriented reuse method with domain-; specific reference architectures. Annals of
Software Engineering, 5(1), 143-168.

Kay, M. J. (1993). Making mass customization happen: Lessons for implementation.

Planning review, 21(4), 14-18.

Keele, S. (2007). Guidelines for performing systematic literature reviews in software

engineering Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

Kiniry, J. (2007). Reasoning about feature models in higher-order logic. Paper presented at

the Proceedings of the 11th International Software Product Line Conference,
SPLC’07. IEEE Computer Society.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S.

(2009). Systematic literature reviews in software engineering–a systematic
literature review. Information and Software Technology, 51(1), 7-15.

Knauber, P., Muthig, D., Schmid, K., & Widen, T. (2000). Applying product line

concepts in small and medium-sized companies. Software, IEEE, 17(5), 88-95.

Kotha, S. (1995). Mass customization: implementing the emerging paradigm for

competitive advantage. Strategic Management Journal, 16(S1), 21-42.

Kotha, S. (1996). Mass–customization: a strategy for knowledge creation and

organizational learning. International Journal of Technology Management, 11(7-8),
846-858.

Kotler, P. (1989). From mass marketing to mass customization. Planning review, 17(5),

10-47.

Kullback, S. (1968). Information theory and statistics: Courier Corporation.

190

Lang, M. (2015). Design of a Portfolio Management System for Software Line Development:

Merging the Gap between Software Project and Product Management: diplom. de.

Lau, R. S. (1995). Mass customization: the next industrial revolution. Industrial

Management; Norcross, 37(5), 18.

Lee, K., Kang, K. C., Chae, W., & Choi, B. W. (2000). Feature-based approach to object-

oriented engineering of applications for reuse. Software-Practice and Experience,
30(9), 1025-1046.

Lee, K., Kang, K. C., & Lee, J. (2002). Concepts and guidelines of feature modeling for

product line software engineering Software Reuse: Methods, Techniques, and Tools
(pp. 62-77): Springer.

Macala, R. R., Stuckey Jr, L. D., & Gross, D. C. (1996). Managing domain-specific,

product-line development. Software, IEEE, 13(3), 57-67.

Mannion, M. (2002). Using first-order logic for product line model validation Software

Product Lines (pp. 176-187): Springer.

Männistö, T., & Bosch, J. (2004). Workshop on Software Variability Management for

Product Derivation—Towards Tool Support Software Product Lines (pp. 331-
331): Springer.

Mazo, R., & Salinesi, C. (2008). Methods, techniques and tools for product line model

verification.

McGregor, J. D. (2005). "Preparing for automated derivation of products in a software

product line."

191

Mendonça, M. (2009). Efficient reasoning techniques for large scale feature models.
University of Waterloo.

Mendonca, M., Branco, M., & Cowan, D. (2009). SPLOT: software product lines online

tools. Paper presented at the Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and
applications.

Mendonca, M., Wąsowski, A., & Czarnecki, K. (2009). SAT-based analysis of feature

models is easy. Paper presented at the Proceedings of the 13th International
Software Product Line Conference.

Metzger, A., Pohl, K., Heymans, P., Schobbens, P.-Y., & Saval, G. (2007).

Disambiguating the documentation of variability in software product lines: A
separation of concerns, formalization and automated analysis. Paper presented at the
Requirements Engineering Conference, 2007. RE'07. 15th IEEE International.

Moody, D. L. (2009). The “physics” of notations: toward a scientific basis for

constructing visual notations in software engineering. Software Engineering,
IEEE Transactions on, 35(6), 756-779.

Muschevici, R., Proença, J., & Clarke, D. (2015). Feature Nets: behavioural modelling

of software product lines. Software & Systems Modeling, 1-26.

Northrop, L., & Clements, P. (2001). Software product lines. URL http://www. sei. cmu.

edu/library/assets/Philips, 4(05).

Northrop, L. M. (2006). Software product lines: reuse that makes business sense. Paper

presented at the Software Engineering Conference, 2006. Australian.

Northrop, L. M., et al. . A Framework for Software Product Line Practice, Version 5.0

Software Engineering Institute, PLPI. Retrieved from
http://www.sei.cmu.edu/productlines/frame_report/index.html

192

Perez-Morago, H., Heradio, R., Fernandez-Amoros, D., Bean, R., & Cerrada, C. (2015).

Efficient Identification of Core and Dead Features in Variability Models. Access,
IEEE, 3, 2333-2340.

PINE, J., VICTOR, B., & BOYTON, A. (1993). Making mass customization work. .

Harvard Business Review., Vol. 71(no. 5,), p. 108-111.

Pleuss, A., Botterweck, G., Dhungana, D., Polzer, A., & Kowalewski, S. (2010).

Featureoriented modelling of product line evolution.

Pohl, K., Böckle, G., & van Der Linden, F. J. (2005). Software product line engineering:

foundations, principles and techniques: Springer Science & Business Media.

Pohl, R., Lauenroth, K., & Pohl, K. (2011). A performance comparison of contemporary

algorithmic approaches for automated analysis operations on feature models. Paper
presented at the Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering.

Riebisch, M. (2003). Towards a more precise definition of feature models. Modelling

Variability for Object-Oriented Product Lines, 64-76.

Rincón, L., Giraldo, G., Mazo, R., Salinesi, C., & Diaz, D. (2015). Method to identify

corrections of defects on product line models. Electronic Notes in Theoretical
Computer Science, 314, 61-81.

Ross, A. (1996). Selling uniqueness. Manufacturing Engineer, 75(6), 260-263.

Schobbens, P.-Y., Heymans, P., & Trigaux, J.-C. (2006). Feature diagrams: A survey and a

formal semantics. Paper presented at the Requirements Engineering, 14th IEEE
international conference.

193

Shannon, C. E. (1949). Communication theory of secrecy systems*. Bell system technical
journal, 28(4), 656-715.

Shaw, M. (1998). Constructing Systems from Parts: What Students Should Learn about

Software Architecture" and "Architectural Mismatch, Interoperability, and the
Prospects for Electronic Commerce in Software Parts and Services. Retrieved from
Software Architecture and Design: Proceedings of the Joint International
Computers Limited/University of Newcastle Seminar.

Shwe, M. A., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., Lehmann, H., &

Cooper, G. (1991). Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base. Methods of information in Medicine, 30(4),
241-255.

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., & Saake, G.

(2012). SPL Conqueror: Toward optimization of non-functional properties in
software product lines. Software Quality Journal, 20(3-4), 487-517.

Sinnema, M., & Deelstra, S. (2008). Industrial validation of COVAMOF. Journal of

Systems and Software, 81(4), 584-600.

Sun, J., Zhang, H., Fang, Y., & Wang, H. (2005). Formal semantics and verification for

feature modeling. Paper presented at the Engineering of Complex Computer
Systems, 2005. ICECCS 2005. Proceedings. 10th IEEE International Conference

Svahnberg, M., Van Gurp, J., & Bosch, J. (2005). A taxonomy of variability realization

techniques. Software: Practice and Experience, 35(8), 705-754.

Thao, C. (2012). A configuration management system for software product lines.

Thiel, S., & Hein, A. (2002). Modeling and using product line variability in automotive

systems. IEEE software, 19(4), 66.

194

Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., & Saake, G. (2012).
Analysis strategies for software product lines. School of Computer Science,
University of Magdeburg, Tech. Rep. FIN-004-2012.

Thüm, T., Batory, D., & Kästner, C. (2009). Reasoning about edits to feature models. Paper

presented at the Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference.

Tsang, E. (2014). Foundations of Constraint Satisfaction: The Classic Text: BoD–Books on

Demand.

Van der Linden, F. J., Schmid, K., & Rommes, E. (2007). Software product lines in action:

the best industrial practice in product line engineering: Springer Science & Business
Media.

Van Gurp, J., Bosch, J., & Svahnberg, M. (2001). On the notion of variability in software

product lines. Paper presented at the Software Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference.

Wang, H., Li, Y. F., Sun, J., Zhang, H., & Pan, J. (2005). A semantic web approach to

feature modeling and verification. Paper presented at the Workshop on Semantic
Web Enabled Software Engineering (SWESE’05).

White, J., Benavides, D., Schmidt, D. C., Trinidad, P., Dougherty, B., & Ruiz-Cortes, A.

(2010). Automated diagnosis of feature model configurations. Journal of Systems
and Software, 83(7), 1094-1107.

White, J., Dougherty, B., Schmidt, D. C., & Benavides, D. (2009). Automated reasoning

for multi-step feature model configuration problems. Paper presented at the
Proceedings of the 13th International Software Product Line Conference.

195

White, J., Galindo, J. A., Saxena, T., Dougherty, B., Benavides, D., & Schmidt, D. C.
(2014). Evolving feature model configurations in software product lines. Journal
of Systems and Software, 87, 119-136.

White, J., Schmidt, D. C., Benavides, D., Trinidad, P., & Ruiz-Cortés, A. (2008).

Automated diagnosis of product-line configuration errors in feature models. Paper
presented at the Software Product Line Conference, 2008. SPLC'08. 12th
International.

Zave, P., & Jackson, M. (1997). Four dark corners of requirements engineering. ACM

transactions on Software Engineering and Methodology (TOSEM), 6(1), 1-30.

