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Abstract 

 

This work provides a holistic investigation into the realm of feature modeling within 
software product lines. The work presented identifies limitations and challenges within 
the current feature modeling approaches. Those limitations include, but not limited to, 
the dearth of satisfactory cognitive presentation, inconveniency in scalable systems, 
inflexibility in adapting changes, nonexistence of predictability of models behavior, as 
well as the lack of probabilistic quantification of model’s implications and decision 
support for reasoning under uncertainty. The work in this thesis addresses these 
challenges by proposing a series of solutions. The first solution is the construction of a 
Bayesian Belief Feature Model, which is a novel modeling approach capable of 
quantifying the uncertainty measures in model parameters by a means of incorporating 
probabilistic modeling with a conventional modeling approach. The Bayesian Belief 
feature model presents a new enhanced feature modeling approach in terms of truth 
quantification and visual expressiveness.  The second solution takes into consideration 
the unclear support for the reasoning under the uncertainty process, and the challenging 
constraint satisfaction problem in software product lines. This has been done through the 
development of a mathematical reasoner, which was designed to satisfy the model 
constraints by considering probability weight for all involved parameters and quantify 
the actual implications of the problem constraints. The developed Uncertain Constraint 
Satisfaction Problem approach has been tested and validated through a set of designated 
experiments. 

Profoundly stating, the main contributions of this thesis include the following: 

• Develop a framework for probabilistic graphical modeling to build the purported 
Bayesian belief feature model. 

• Extend the model to enhance visual expressiveness throughout the integration of 
colour degree variation; in which the colour varies with respect to the predefined 
probabilistic weights.  

• Enhance the constraints satisfaction problem by the uncertainty measuring of the 
parameters truth assumption. 

• Validate the developed approach against different experimental settings to 
determine its functionality and performance. 
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Chapter 1 

Introduction                                                                                  

1.1. “Discontent is the first necessity of progress”  

Thomas Alva Edison (1913-1947), a great influencer and inventor once said: 
“Restlessness is discontent and discontent is the first necessity of progress.  Show me a 
thoroughly satisfied man and I'll show you a failure”.  

This lone quotation ignited the vital spark of my thesis, the same way discontent ignited 
revolutions, forward thinking and innovation as testified throughout history. Those 
words of sage ought to be consciously noted, for in them I find the spur of what is 
starting to take place in the realm of Software Product Line Engineering.  

Linking this line of wisdom with Software Product Lines, the discontent with current 
feature modeling approaches and satisfiability techniques in software product lines, 
which are coupled with numerous problems, shaped the backbone in writing this thesis. 
The necessity to have more optimized feature models with better satisfiability techniques 
provided eagerness to writing this thesis.   

1.2. Chaos isn’t just a theory; it is likewise a ladder   

Chaos theory is a scientific theory best describing the unpredictability and randomness 
of systems as mentioned by the French mathematician Henri Poincare (1854-1912).  It 
conveys that even negligible and unnoticeable variances in the beginning of any process 
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might produce significant and weighty differences at the end.  In terms of software 
product lines ‘SPL’ and Feature Modeling ‘FM’, any trivial error in the process can lead 
to vast complications and untraceable failures. Then again, every system is subjected to 
chaos. There’s a reasonable probability and potential for any system, no matter how well 
designed, to fall into chaos.  

Chaos is largely thought to be a drawback, obstacle and negativity. It is often related to 
mislead, vagueness and disorder. In this dissertation, the term ‘Chaos’ doesn’t merely 
relate to the chaos theory, instead chaos takes after the lack of precision and the high 
level of complexity in terms of Data Modeling and automated analysis in software 
product lines. This Chaos ought to be terminated and advancements must be provided in 
view of software product lines. In terms of FM techniques, it implies that complexity 
must cease to exist; the upheavals present in feature modelling discussed in this 
dissertation are put under the lenses of study aiming to answer some questions and to 
find more suitable solutions. 

1.3. Problem Statement  

As stressed out beforehand, the province of feature modelling, and its automated 
analysis traverses great challenges and has considerable shortcomings.   

In favor of tackling those shortcomings, this dissertation probes four questions scarcely 
taken into consideration by related literature.  
 
Those questions are researched in depth in the following chapters: 

• Probe question 1:    What are the modeling techniques used to capture variability 
in Software product lines engineering? 
 

• Probe question 2: How to quantify the occurrence uncertainty in model 
parameters, while maintaining the existing semantics?  
 

• Probe question 3:  To what extent can we enhance the visual expressiveness of a 
feature model?  
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• Probe question 4: How to improve the reasoning efficiency of constraints 
satisfaction problem, by taking into consideration the degree of uncertainty of 
model parameters? 

1.4.  Designated Approach 

A concise view of the methods delivered in our dissertation is presented upon 
considering the following steps: 

Step one: Exploration 

The first step lays in launching and establishing a meticulous groundwork to the 
dissertation. This is pertained by means of extensive literature review, in which a state of 
art of software product lines is presented, with an emphasize on feature modeling to 
create a roadmap for the succeeding steps and derive queries to be systematically dealt 
with accordingly:  

• An overview to understand software product lines and feature modeling 
techniques is targeted by investigating current approaches of feature modeling for 
Software product Lines ‘SPL’ from previous literature work.  

• After providing a clear background, setting out definitions, and identifying the 
significance and substantiality of our addressed subject; an evaluation of feature 
models in software product lines is undertaken.  

• This evaluation emerges into an in-depth study of feature modeling approaches 
by dismantling and analyzing them in practice, presentation and notations. 
Throughout this study, a real life exemplar developed by the author as an 
illustration and case to work on, is employed; which is the example of 3D Printer. 
The evaluation is undertaken according to designated criteria taking into 
consideration the existent glitches in selected feature modeling notations. The 
evaluation covers a selection of criterions: scalability, traceability, articulacy, 
comprehensiveness and visual presentation suitability. 

• A systematic literature review is undertaken to provide a better understanding, 
identify knowledge gap, pinpoint limitations in current feature models, and detect 
the glitches and shortcomings associated. The knowledge gap lays in the truancy 
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of probabilistic feature models, absence of frameworks to capture uncertainties in 
feature models of software product lines, and the lack of reasoning techniques.  

• The overall review derives and leads to dealing with the research questions 
answered using methods elaborated in the following steps.  

Step two: Construction  

The second step takes place as an attempt to find solutions to the glitches present in 
current feature models, address the knowledge gap, and answer the research questions 
resourcefully. This step show casts the opportunity of probabilistic modeling and the 
potentials for evolving the current feature models by addition of probabilistic weighting 
to quantify the existing uncertainty.  

• An exploration of other relevant domains (machine learning, Data modeling, and 
Bayesian belief networks) to investigate potential techniques that can fill up the 
knowledge gap is undertaken.   

• This leads to find inspiration and identify adequate techniques to employ in 
solving problems and build up the evolved feature model.  

• Bayesian belief network tends to be compatible; consequently it is set as the 
approach to probabilistic modeling and the creation of Bayesian Belief Feature 
Model (BBFM). 

•  Mathematical studies are commenced to capture semantics of the feature model 
and reason about it. 

• The proposed solution manages to exploit the problem, capture uncertainties and 
quantify them. Consequently, semantic mapping is observed to capture the notion 
of the feature model which facilitates the development of the BBFM. 

• Subsequently, we form an approach for weighting parameters, features and 
dependency flows among features. This approach studies various scenarios in 
which mathematical analysis is applied to prove each theorem and validate it. 
 

Step three: Substantiation  

This step wraps up our approach to provide authentication and validation of the 
work submitted in the first and second step.  
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• This step addresses and show casts the findings, in terms of solving the bridges 
and providing an enhanced evolved feature model, in which the feasibility and 
practicality of the solutions are pointed out. 

• In order to demonstrate the outcomes, we provide a graphical presentation of our 
feature model, which augments present feature models graphical presentation in 
terms of visualization.  

• We use gray scale mapping to better visualize the probabilistic value assigned to 
each feature. Accordingly, shades of gray based on different weighting schemes 
are assigned, such that the distinct weighting value is translated by the intensity 
of the shade of gray. 

• According to the assigned values in the weighting theorem, our work is extended 
and developed to reason about uncertainties. Besides, the efficiency; our proposed 
technique is scrutinized in terms of reducing problem size and reasoning time.  

• This step finds closure by discussing the obtained results and forecasting any 
future work or improvements. 

1.5. Goals and Contributions 

The dissertation intends to provide insightful exploration of the existing feature 
modeling techniques in software product line engineering ‘SPLE’. Throughout a 
systematic review, we were able to define, identify and analyze the current approaches 
used to manage the variability in SPLE. After examining the current practices of SPLE 
data modeling and reasoning, we were able to identify the knowledge gap as follow; 

“To the best of our research we argue that; SPLE lacks to: 

1. Probabilistic quantification of the data model parameters. 
2. Actual quantification of features implications. 
3. Framework to anticipate the degree of uncertainty of the satisfaction problem. 
4. Mathematical approach to tackle the uncertainty problem and reason about it.” 

To overcome the aforementioned gap of knowledge, this thesis was designed to: 

1. Provide a comprehensive mathematical framework, to quantify the uncertainty 
measure of model parameters. 
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A probabilistic modeling approach was developed to capture the dependency 
semantic among model features, while assigning probability weight for all 
features and dependency functions. 

2. Employ the predefined probabilistic weights to enhance the visual expressiveness 
the developed notation, by a sensible integration of the colour use.  

3. Utilize the predefined probabilistic weights to improve the constraint satisfaction 
process, by emphasizing the uncertainty measure of the problem space. 
Subsequently, develop an algorithm to satisfy the model constraints under 
uncertainty, and to anticipate the probability of obtaining a satisfiable 
configuration amongst the problem space. 

4. Experimentally validate the aforementioned findings. Moreover, we were able to 
exploit the satisfaction problem behavior, allowing better understanding of the 
constraints actual implications, and enlighten the possible techniques to improve 
the reasoning process during the early stages of the model design. 

1.6. Reader’s Guide Map  

In this section, we establish and provide a guide map to the thesis for the ease of readers. 
We start our dissertation by presenting a state of art for the variability modeling in 
software product lines, the advances, knowledge gaps, and challenges discussed in 
previous work. The Literature review will put an emphasize on feature modeling 
notations of SPLE and its glitches to give a roadmap for the contribution. The research 
questions proposed above are to be systematically dealt with throughout the review. 

The subjects covered are systematized as follows:  

• Chapter 2 “Background” gives a preface to the notion of Product Line Engineering 
‘PLE’. It provides a background on the emergence of SPL, and the motives of its 
emergence. It discusses SPLE in depth, provides a concise chronicle on the 
attempts to advance in SPL development through software modeling, and offers 
an insight to its benefits and limitations.  

• Chapter 3 “Managing Variabilities” handles thoroughly the variability modeling 
terminologies, principles and applications.  It presents the types of variability 
modeling in SPL. 
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• Chapter 4   “Feature Modeling in Depth” includes a critical review on features and 
feature modeling notation and investigates the previous approaches to FM using a 
scenario of 3D printer. This followed by a summary of the limitations and 
challenges within feature modelling. 

• Chapter 5 “Modeling under Uncertaint” will provide a comprehensive framework 
for quantifying the uncertainty measure in SPL. The obtained measurements are 
later used to structure Bayesian Belief Feature Model, with emphasis on the visual 
expressiveness of the developed model, throughout “use of colour”. 

• Chapter 6   “Reasoning under Uncertaint” will present the designed method to 
tackle the Constraint Satisfaction Problem while taking into account the recomputed 
uncertainty measures. To validate the developed algorithm, experiments were 
conducted in order to validate the functionality of the proposed approach. This is 
then followed by an extensive discussion of the results. 

• Chapter 7 “Conclusion” section concludes the findings and identifies 
improvements and future work 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Learning is more than absorbing facts, it is acquiring understanding”              

 -William Arthur Ward 
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Chapter 2 

Background 

 

Software Product Lines ’SPL’ is a favorable and providential paradigm for the 
progression and prosperity of creating methodical and intensive software systems 
(Clements, 2002). It aims to provide an organized SPL, in which it furnishes a collection 
of products that shares lots of commonality rather than variability (Benavides, Segura, & 
Ruiz-Cortés, 2009). In other words, SPLE brings about the commonalities and 
variabilities in a set of reusable assets to provide a flexible efficient system with an ease 
of use, management, configuration, and customization (Bachmann & Clements, 2005; 
Van Gurp, Bosch, & Svahnberg, 2001).  FM is a notation that illustrates the SPL; it 
represents the Software products as set of features. It is an information model displaying 
all core assets and variables that a customized software product can require (Rincón, 
Giraldo, Mazo, Salinesi, & Diaz, 2015). 

Because of the high complexity of feature models, it was proven that those models are 
vulnerable and open to errors, complications and faults (Czarnecki & Wasowski, 2007; 
Lee, Kang, & Lee, 2002; Thüm et al., 2012; Thüm, Batory, & Kästner, 2009; White et al., 
2010; White, Dougherty, Schmidt, & Benavides, 2009).  Consequently, the automated 
analysis of feature models derived as a support to cope with the challenges of FM.  

Numerous works conveyed in the literature took in hand the identification of 
shortcomings and faults in FMs and their automated support (Arcaini, Gargantini, & 
Vavassori, 2015; Benavides, Segura, & Ruiz-Cortés, 2010; Gargantini & Fraser, 2011). 
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However, only few of these tenders are able to support a rigid account on dealing with 
defects and complexities. 

This part of the dissertation provides an in-depth literature review on the software 
product lines followed by an insight on feature modeling. It scans through the work of 
previous pioneers in the province of feature modeling to assemble all the approaches 
mentioned in order of bestowing a solid starting point for this dissertation and ridding 
bias and misperception.   

 

2.1. Software product lines: pitfall of economy and the rise of PL 

2.1.1. The Pitfall of Economics  

According to Oxford dictionary, Economics is defined as the area of knowledge 
concerned about the production, distribution and consumption of products and services 
and the supply of money. It is the deliberation of the way choices are made under 
circumstances of scarceness and resource limitations, and the results of those choices on 
society. These definitions are to be very broad and generic.  

When talking about the scale of economics, economics can be discussed on the basis of 
two ranging: Wide and narrow ranging (Boehm, 1981). 

Macroeconomics resembles the wide range of the economics study; it studies the 
economics and decision made in scarcity of resources on a global scale. It takes into 
consideration the effects and subsequence of those decisions on matters such as trade 
policy, interest and tax rates. However, Microeconomics takes after the narrow range of 
the economics study; it studies the decision made in scarcity of resources on a personal 
and subjective scale. It takes into concern the effects of those decisions taken, either as a 
person or as an organization, on matters specific attributes such as cost and insurance. 

When talking about Software Products economics, it is deduced that it falls in the micro 
economical scale. It is directly related to decisions taken from SPLE (Da Silveira, 
Borenstein, & Fogliatto, 2001). These decisions are taken in scarcity of resources since 
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there’s always deficiency in time, money and feature selection. Moreover, critical 
limitation in resources can be present in terms of computing capabilities such that the 
software product features gets affected.  

2.1.2. Mass Customization Notion      

Mass customization in a broad-spectrum, is related to the capability to deliver 
customized products or services through flexible and dynamic procedures in high 
capacities coupled with cost efficiency (Da Silveira et al., 2001). The Notion arose in the 
late 80's and was considered as a natural and expected trail to the procedures that 
became high in flexibility and enhancements as regards the quality, quantity and costs 
(Lau, 1995). Besides, mass customization appears as a mean for companies to step out in 
a time of challenges and competitiveness (Kotler, 1989).  Furthermore, Mass 
Customization was termed as the capability to supply exclusive and individually- 
tailored products or services through optimal time, integration and manageability 
(Davis, 1989; Eastwood, 1996). Figure 2. 1 presents an example of mass customized vases 
that varies from one another, and is tailored each exclusively. 

Mass customization in a narrower spectrum, is a flexible process that organizes and 
manages information technology and assets to bestow an extensive choice of products or 
services in accordance to specific and precise requests of individual customers, at a cost 
proximate to the one of items that aren’t specified according to personal needs (in other 
words, mass produced products without individualization) (Hart, 1995; Joneja & Lee, 
1998; Kay, 1993; Kotha, 1995; Ross, 1996).  

 

Figure 2. 1   Customized 3D printed vases 
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The intent of mass customization is based on numerous ideas some of them are listed as 
follows:   

• Deliver high diversity of products at the minimal cost by means of flexibility in 
production and information technologies (Åhlström & Westbrook, 1999).  

• Response to the Growth in demand for product diversity and individualization by 
customers (Kotler, 1989). 

• Provide products which are more personal and meaningful, more appreciated by 
customers. 

• Present products that are feasible and practical in terms of planning, design, 
production, distribution, and facilitating (Hart, 1995).  

2.1.3. Mass Customization and Mass Production 

Going through the literature, the topic of the correlation between mass production and 
mass customization was always stressed out. The debate laid emphasis on whether mass 
production and mass customization belonged to the same continuum or they were 
independent of each other, taking into account, their functional and conceptual 
differences and the likelihood of using both mass production and mass customization at 
the same time.  

On one hand, Authors including Lau (1995) sees that mass customization and mass 
production belongs to the same continuum. They suggest that in order the mass 
customization approaches to be effective, it must have a background on mass production 
systems.  
On the other hand, Pine, and Boynton (1993) see that mass customization and mass 
production are two different entities and they can’t be at the same continuum. They have 
different goals, approaches, and concerns. When talking about mass production, it is 
noticed that the first concern is the product itself, preceded by the process of production. 
However, Mass customization is concerned mainly about the process that allows the 
diversity of products. Figure 2. 2 exemplifies the different dialogues of mass production 
and mass customization. It shows that mass production is a one way dialogue, whereas 
mass customization adapts an interactive progression dialogue.  
 



 
 

14 
 

 

 

 

 

 

 

 

 

 

 

2.1.4.  Mass customization Essentials Kit 

• Technology must be accessible and manageable; the employment of advanced 
production machineries, technologies and tools is essential to enable to hand out 
mass customized systems  (Adamides, 1996; Hirsch, Thoben, & Hoheisel, 1998; 
Kotha, 1996; Lau, 1995). Flexible and well managed Information technologies 
process is a vital part for the customization of products. 

• Products should be adaptable to alteration. Effective mass customization products 
must be modularized, flexible, and constantly improved. Moreover, mass 
customization processes need prompt product development and innovation 
competences (Pine, Victor, & Boyton, 1993). 

• Mass Customization system must have the ability to interpret new demands into 
innovative products. This necessitates the development of flexible networks (Pine 
et al., 1993), besides the production engineering knowledge and expertise, and 
process technologies (Kotha, 1995).  

 

                                Customers 

Mass Production 

Customized Production Dialogue 

Interactive 

 

 

Customers 
One way 

Figure 2. 2   Mass production versus Mass customization dialogues 
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2.2. The Prominence of Software Product Lines 

Software Product Lines gained attention after the emergence of software reuse 
succeeding the blooming of mass customization. The idea of SPL, in other words, reusing 
software for creating bespoke products (Kang, Cohen, Hess, Novak, & Peterson, 1990; K. 
Pohl, Böckle, & van Der Linden, 2005), was an innovative and pioneering idea which 
arose as an alternative to the conventional method of production (Eriksson & Hagglunds, 
2003; Kotler, 1989). The conventional method of software production was based on 
individual system development (Åhlström & Westbrook, 1999). Contrariwise, SPL transit 
production to another broader level; it is based on families sharing common 
functionalities (Bosch & Bosch-Sijtsema, 2010; L. M. Northrop, et al. ). As a matter of fact, 
Grouping those systems with common functionalities and producing SPL instead of 
developing each system from beginning; prove to be more appealing and desired for the 
industry (Clements, 2002; Gomaa, 2005; Van der Linden, Schmid, & Rommes, 2007). 
Figure 2. 3 demonstrates the transition from conventional production to customized 
product lines which provided a broader range of alternatives. 
 

 

Figure 2. 3   Transition from conventional production to product lines 

2.2.1. SPL: Why and Wherefores 

The reasons of the prominence of product lines cannot be quantified given that it is a 
vast discussion. However, in accord with previous literature (Clements, 2002; Cohen, 
2003 2005, Mazo et al., 2008), statistics, and case studies (Clements, Cohen, Donohoe, & 
Northrop, 2001), the main incentives and elements are synopsized in Table 2. 1   
Organizational and Business Advantages of PLs.  
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2.2.1.1. Advantages of software product lines: Epigrammatic list 
 

Organizational advantages of Product Lines  

Tangible Advantages 
  

Profitability 
Further market agility and market shares are reached due to 
product line approach. Moreover, Market presence is 
maintained and competent growth is sustained (L. M. 
Northrop, et al. ).  

  
Quality 

Product defect density is highly reduced in Product lines. Also 
resolving those defects and redundancies is mostly 
unproblematic (Van der Linden et al., 2007)    

  
Performance 

Performance is significantly improved through prompter 
dealing with algorithms and variation and circumventing 
timing problems (Clements et al., 2001).  

  
Time to Market 

Time to field and to launch is reduced, because of the reuse of 
assets and diminution of replicated mistakes and deficiencies 
in the system (Heymans et al., 2008). 

  
Productivity 

More flexibility in meeting customer’s demands and more ease 
in amendments and modifications.  Product line Assets are 
meant to be easily implemented, and thus regarded as 
commercial off-the-shelf  products (Thao, 2012). 

  
Code Volume 

Source code size and the quantity of design objects for 
subsystems in product line systems are lessened in comparison 
to that of the traditional single systems (Bosch et al., 2001).  

Intangible Advantages 
 Software 

Developer 
acceptance 

The product lines tends to expect satisfaction and certitude 
from the developer for the system as groundwork as well as 
the approach itself (Clements, 2002; L. M. Northrop, et al. ). 

  
Professional 
satisfaction 

As the monotonous repetitive tasks that presented in 
conventional systems are sidestepped by the reuse of assets in 
Product lines System, The main focus is redirected to more 
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challenging, mission-specific requirements or on performance 
adjusting and perfecting. Henceforth, professionals are more 
contented (L. M. Northrop, et al. ) . 

  
Attrition rate 

Staff resignation, turnover and renewal rate of staff is assumed 
to be lower whilst adapting product lines systems, in 
comparison to the conventional systems (Clements et al., 
2001).  

  
Customer 

satisfaction 

Customers develop more sense of attachment; content and 
comfort since product lines offers a more predictable approach 
with less redundancies rates and better quality products 
(Heymans et al., 2008). 

Businesswise Advantages of software product lines 
  

 
Production and 

maintenance 
costs 

Using same approach, process, tools and techniques and with 
less redundancies and complications production and 
maintenance costs are relatively reduced. Compatibility of 
objective system and products with evolving capabilities is 
ensured. Wider interoperability and flexibility, before 
executing subsystem and device production, are guaranteed 
(Ardito et al., 2011). 

  
efficiency in the 

processes 

Product lines promote improving the consistency and 
reliability of the user interface. In addition, it offers more 
efficient integration of the products by the use of common 
standards and products to meet training, and test 
requirements (Clements et al., 2001).  

  
budget and time 

planning 

Product lines implementation provides a permanent 
integrated and interoperable infrastructure, and thus it causes 
decrease in risks, costs and schedule time for planning and 
preparations (Heymans et al., 2008). 

 

Table 2. 1   Organizational and Business Advantages of PLs 
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2.2.1.2. Advantages of software product lines: profound list 
 

• Upturn of Quality 

The common assets of the production line craft the core of the entire software family. 
Those common assets are subjected to review, checking and testing in various products 
to prove their optimal performance (Ebert & Smouts, 2003). The manifold and extensive 
testing of common assets in the SPL leads to detecting faults, oversights and defects 
(Figure 2. 4).  
Consequently, all products of the software line are of a better quality (Lang, 2015; K. Pohl 
et al., 2005). Figure 2. 4 evidences the upturn of quality in SPL, as a result of the decrease 
in defects.  

 

Figure 2. 4   Percentage of defects per number of reviews and testing  (Ebert & Smouts, 2003) 
 

• Ease of upgrades 

The addition of new features, Alteration of existing features, amendment and upgrading 
of assets in the product line provides an undemanding opportunity to upgrade the 
software product line and its whole derived products.   
In comparison to conventional single system productions, SPL has definitely more ease 
of upgrades and less effort in  making alterations (Ebert & Smouts, 2003; K. Pohl et al., 
2005).  
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• Cost Efficiency  

 

Figure 2. 5   Costs of SPL vs cost of single production system (Ebert and Smout, 2003) 

 

To a large extent, cost efficiency is one of the foremost motives for commencing software 
product line engineering, as it allows creating solutions with fewer expenses and more 
profits. The reuse of assets for multi production through a single software product line 
system implies a significant cost reduction (Mazo & Salinesi, 2008).  
Although SPL requires an upfront investment for planning and setting strategies, in the 
long run the reuse of assets gives Software product line advantage over single 
production systems in such a way that it has lower cost as the number of products 
increase (Figure 2. 5).  

• Time Saving 

SPL lessens the time needed to launch the product in the market considerably. In 
comparison with the conventional production systems, the latter system time to market 
was approximately constant.  Contrary, albeit at the outset product line systems takes 
longer time to arrange and plan common features, the launching time in market is cut 
down gradually as the number of systems and developments increase due to reuse 
(Mazo & Salinesi, 2008) (Figure 2. 6).  
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Figure 2. 6   Time to market for SPL vs single production system (Ebert & Smouts, 2003) 
 

• Leadership Supremacy 

SPL unlock cutting-edge opportunity gateway in competitiveness, innovation, 
productivity and profitability (Ardito et al., 2011).  
It opens up new possibilities that don’t exist in conventional single production systems. 
Accordingly, Leadership supremacy is achieved by the mean of SPL that promotes 
delivering large number of customizable products in less time and effort, and higher 
qualities (Figure 2. 7).  
 

 

Figure 2. 7   Productivity of SPL vs productivity of single system (Biglever software inc) 
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2.2.2. Myth versus Reality: SPLE as Lego construction  

2.2.2.1. The myth 

 “And then we’ll be able to construct software systems by picking out parts and plugging 
them together, just like Legos…” (Shaw, 1998). The myth states that the archetype model 
of reusability and the best resemblance to software product lines is as simple as “Lego” 
(Crnkovic & Larsson, 2002).  

2.2.2.2. The Fact 

It’s much more complicated and contains lots of incompatibility and bugs. It is consisted 
of a complex system with specific function and characteristic specific compatibility (L. M. 
Northrop, 2006). Figure 2. 8 iluustrate the difference between the myth and the reality of 
SPL modeling, in terms of complexity.  

 

Figure 2. 8   SPL Lego myth (Inspired from Crnkovic et al., 2002 ; Mohabbati, 2013) 
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2.2.3. Drawbacks of SPLE  

After noting that software product lines isn’t an easy fix-all solution or as easy as a Lego 
plugging game, it’s important to mention the costs and draw backs of SPLE. The table 
below (Table 2. 2) points out some of the common disadvantages of SPLE: 
 

Disadvantages of software Product Lines  
  

Cost of 
developing 
core assets  

The development of the common core features in the product 
lines is costly and requires upfront investment (Bosch et al., 
2001). For the upfront investment money to pay off It usually 
needs at least two to three products to be built as a family 
(Mazo & Salinesi, 2008; L. M. Northrop, et al. ) (Figure 2. 5).  

  
 
 
 

Training staff 

The training of staff in the new way of doing business is 
considered to be an expensive mission (L. M. Northrop, et al. ). 
Those staff must not only be trained in software engineering 
but also in corporate procedures to ensure that the product line 
practice can and will be used in accordance with the current 
process. Staff must be specifically trained for the product line 
and new training materials must be created to address the 
product line which all requires more costs (Eriksson & 
Hagglunds, 2003). 

  
 

institutionalizing 

A risk associated with the institutionalizing of a product line 
approach is resistance from personnel to the new way of doing 
business. This type of resistance is often found in the middle 
level management (L. M. Northrop, et al. ) and might require 
those persons to be reassigned to other tasks. 

  
Marketing and 
sales support 

The success of SPL relatively depends on marketing and sales 
support. The company must invest in long-term sales plan in 
order to succeed (Ebert & Smouts, 2003). 

 

Table 2. 2   Drawbacks of SPLE 



 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Employ your time in improving yourself by other men's writings, so that you shall gain easily 

what others have labored hard for.” 

  -Socrates 
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Chapter 3 

Managing Variabilities 

 

It is essential to unseal the paradigm of software product lines in sequence of breaking 
it down into segments, to promote better comprehension of all its facets. This chapter 
will approach variability modeling, the focal facet of software product lines, in all its 
associations, foundations and applications.  

3.1. SPLE: a tale of Variabilities 

Software requires to be tailored to changeable requirements, since the customer 
demands, markets, and hardware are changing and expanding (Muschevici, Proença, 
& Clarke, 2015). If each and every altered product is handled individually, the 
overhead of dealing with all the alternatives drastically converts to an infeasible 
option (K. Pohl et al., 2005). As a solution for this dilemma, Software Produce Line 
Engineering is present (Apel, Batory, Kästner, & Saake; Czarnecki & Eisenecker; K. 
Pohl et al.).  

Expounded by Bosch (2001.), Clements and Northrop (2001), and Pohl, Bockle and 
Van Der Linden (2005), software product lines are basically an assembly of software 
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products holding mutual set of features that comply with the requirements of a 
specific domain. SPL’s outcomes are delimited and implemented as a combination of 
common and variable features subsequently bringing out the final software products 
(Muschevici et al., 2015). A feature consequently is a property or functionality used to 
capture commonalities or discriminate among systems in SPL (Czarnecki & 
Eisenecker, 2000). Variability  modeling is an important method to present and 
represent common and variable features, and to decide which features to be 
supported in a product line and which ones to be deserted (Glück & Lowry, 2005). 

SPL are practically multifarious systems formulated from a treble process (Clements et 
al., 2001; K. Pohl et al., 2005), Listed as follows: 

3.1.1. Domain engineering 

Also known as family engineering or core asset development (Heuser & Pernul, 2009), 
the domain engineering phase is responsible for the production of software core assets 
to be used in different products of the SPL. As mentioned by Pohl et al. (2005), and 
Clements and Northrop (2001), the domain engineering goals lays as follows: 

• Identifying the commonality and variability among the whole elements of the 
SPL. 

• Defining flexible architecture that addresses the commonalities and 
variabilities.  

• Establishing the set of application that the SPL is planned for. 
• Modeling and defining the scope of the SPL.  
• Constructing and implementing the reusable assets that leads to the desired 

variability in application engineering.  

3.1.2. Application engineering 

Also known as product development or product derivation, the application 
engineering phase is responsible of deriving products according to specific 
combination of features which is based on the foundation of commonalities in 
addition to variable asset selection (Clements et al., 2001).  The goals of the application 
engineering are stated as follows according to Pohl et al. (2005):  
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• Attaining a high reuse of the domain assets. 
• Utilizing the commonalities and variabilities. 
• Adjusting variabilities in consistent with the needs of the application. 
• Producing individual systems from core assets in accordance to individual 

needs. 

3.1.3. Management 

Imperative to both processes (domain and application engineering), is the 
management of variability across the product line (Halmans & Pohl, 2003), in which 
resources are given, coordination is assured and supervision on both domain, and 
application engineering process is ensured (Benavides, Segura, Trinidad, & Cortés, 
2007).  

Figure 3. 1 clarifies and sheds the light on the process of SPLE as demonstrated below: 
 

 

Figure 3. 1   Scheme of Software Product Line Engineering (Seke, 2013) 
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3.2. Commonalities and variabilities 

As stressed out earlier, domain engineering and application engineering set the 
foundation and groundwork for the software product line engineering. SPLE is in 
charge of the variability management, in other words the process of identifying and 
sorting out commonalities and systematizing the variabilities of software artifacts and 
models (Berg, Bishop, & Muthig, 2005; L. Northrop & Clements, 2001). 

Specialists in the province of SPLE, such as (Knauber, Muthig, Schmid, & Widen, 
2000); (Macala, Stuckey Jr, & Gross, 1996); (Coplien, Hoffman, & Weiss, 1998); (Ahmed 
& Capretz, 2011) lay emphasis on the essential role for the SPL in terms of taking in 
hand the commonality and variability in the development of products. The scrutiny of 
commonalities and variabilities provides the software engineers with an organized 
methodical tactic of conceptualizing and pinpointing the product family they are 
generating (Coplien et al., 1998).  

Albeit a unique perception, characterization or meaning of variability is not 
distinguishable, Literature points out several definitions of commonalities and 
variabilities. This section will highlight abridged notions of them:  

For instance, Coplien et al. (1998) consider the variability in SPL is the supposition of 
how assets in product families can differ from one another.  Henceforth, in their 
standpoint, variability postulates the distinctiveness of a product line system in 
accordance to certain expectancies of a customer. On the other hand, commonality 
deals with the suppositions that are constantly existent in each product of the software 
product line. 

Svahnberg, Van Gurp, & Bosch (2005) outlines variability in terms of Software product 
lines perspective, adopting the perception of variability as the capacity of a system or 
product to be dynamic in terms of having the capability of proficiently changing, 
extending, and being adaptable to alteration, customization  and configuration for 
specific uses in specific conditions and contexts.  
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According to Bosch et al. (2001), there are two different approaches to variability, first 
approach as a subject, and the second as an object.  

Variability as a subject is an assorted entity or a diverse property of this entity. 
However, variability object is a precise illustration of a variability subject. The 
variability object is managed to identify the different approaches in which the 
variability subject can diverge.  

For an instance, given the example in section 3.3, when considering 3D printers (see 
Figure 3. 4), the variability subject may well be the model making, and a variability 
object might be the diverse varieties of model making such as material, resolution and 
volume.  

Not only does the literature point out different definitions of commonalities and 
variabilities, it also speaks about different categories of them; 

Svahnberg et al. (2005) consider variabilities are made of five different stages, 
Bachmann et al. (2005) suggest another distinct categories of variabilities. in addition 
other researches categorizes variabilities by the notion of time and space (K. Pohl et 
al., 2005; Van der Linden et al., 2007), or according to essential and technical categories 
(Halmans & Pohl, 2003), externality and internality (K. Pohl et al., 2005), and finally 
according to Software product line engineering (Metzger, Pohl, Heymans, Schobbens, 
& Saval,2007).  

Undoubtedly, research is challenged by the management of all the commonalities and 
variabilities of product lines; nevertheless, variability modeling tends to be the 
favorable option to facilitate their management (L. Chen, Ali Babar, & Ali, 2009).  

Various approaches are suggested and put in use throughout the study of SPL to 
tackle the challenge of variability, which are to be explored in the following section 
3.3.  
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3.3. Modeling Software Product Lines’ Variables 

In SPLE, it is evident that the domain engineering process is responsible of identifying 
the commonalities and variabilities of the product line, developing the core reusable 
assets, as well as modeling the variabilities of the SPL (K. Pohl et al., 2005), and thus 
requires more effort (see Figure 3. 2). 

Variability modeling is a significant mean that allows interpretation and perceiving 
commonalities and variabilities in SPL, in addition to sustaining product 
customization and derivation. Amongst the numerous approaches of variability 
modeling identified in literature, Feature modeling ‘FM’ and decision modeling ‘DM’ 
are considered to be the most important approaches, in addition to Orthogonal 
variability modeling and others (see Figure 3. 3).  
 

 
Figure 3. 2   Domain engineering versus Application engineering (Deelstra et al., 2004) 

To outline our approach, in this section a suggested motivating exemplar of 3D printer 
product line is proposed and presented throughout the review. Based on this 
exemplar, different types of variability modeling are explained.   
 

 
Figure 3. 3   High heterogeneity of variability modeling notations (Berger, 2013) 
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3.3.1. Feature Modeling 

Feature modeling is the most famous approach to modeling variability present in 
literature (Czarnecki & Kim, 2005; Griss, Favaro, & Alessandro, 1998; Kang et al., 1998; 
Männistö & Bosch, 2004; Riebisch, 2003; Schobbens, Heymans, & Trigaux, 2006).  

Chapter “Feature Modeling in Depth” in this dissertation is dedicated to the 
enlightenment of feature modeling in depth.  
In brief, feature model presents the whole possible facets of a product, and thus 
represents a diverse product line system. In other words, feature model aims to 
identify all possible features and their possible relationships and constraints 
(Benavides et al., 2010).  
 

Figure 3. 4 is a proposed exemplar that portrays a suggested simplified feature model 
driven from the inspiration of the 3D Printers. The model illustrates the approach of 
feature model for modeling the variabilities of 3D printers and listing the common 
features.  
Based on the proposed model, all 3D printers include a software, body, model making 
abilities and connectivity tools. However, accessories are optional and their presence 
varies on demand. Moreover software in the printer can vary as there is a number of 
software to choose from, and include or exclude.  
 

 

Figure 3. 4   Suggested Feature model for 3D Printer 
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3.3.2. Decision Modeling 

Alongside the Feature modeling approach, exist the Decision modeling approach, 
which is also widely used to model variabilities. A decision model is a support 
outlining the decisions needed to be done in order to identify an element in a specific 
domain (Bézivin, 2001). Decision models are documents presenting decisions, their 
attributes, and dependencies (Atkinson, Bayer, & Muthig, 2000). Consequently, 
decision models brings about the diverse products by putting values to the decisions 
through setting out questions and relating them with possible answers; as a response 
of the arrangement of decisions dependencies. 

Figure 3. 5 depicts a proposed decision model for the exemplar of the 3D printer, in a 
textual and a tabular representation. 

 

 

Figure 3. 5   Examples of Decision modeling for 3D printers 
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3.3.3. Orthogonal Variability Modeling 

In addition to the Feature modeling and decision modeling, there’s also the 
orthogonal variability model that is used to model variability descriptions. The 
orthogonal variability model is presented by a graphical notation which describes the 
variability points, variants and their dependencies (K. Pohl et al., 2005).  

Figure 3. 6 presents a simplified orthogonal variability model approach of the 
proposed exemplar of the 3D printer.  

 

 

Figure 3. 6   Suggested Orthogonal variability model for 3D printer 
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3.3.4. Other Modeling Approaches 

Variability model approaches are not limited to the feature, decision and orthogonal 
variability model, instead it extends to include approaches such as UML based 
variability model, and ADL based variability models, Constraints variability 
languages CVL, COVAMOF, and ConIPF (Haugen, Moller-Pedersen, Oldev, Olse, & 
Svendsen, 2008; Sinnema & Deelstra, 2008).  

Figure 3. 7 presents a simplified UML Use Case diagram for the suggested 3D printer 
variabilities.  

 

Figure 3. 7   Simplified UML Use case diagram for the 3D printer 
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Chapter 4 

Feature Modeling in Depth 

 

Software Product Lines are extensively expressed in terms of “features”. Explaining a 
feature as a term, is fundamental when it comes to variability modeling in software 
product lines, as various definitions are present in respect to various points of views 
(users, stakeholders, implementers). Thus, it is important to outline features and 
feature models clearly, as well as identify their terminologies and comprehensions 
accompanied by them.  This chapter synthesizes a systematic review which aims to 
unwrap and identify features and feature modeling.  In addition, during the course of 
this chapter, a state of the art of the present feature models is reflected thoroughly, 
stressing out their core traits and peculiarities. Successively, a holistic study is to be 
conducted for the evolution of feature models followed by their evaluation. 
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4.1. Feature Modeling: An Explication 

Granting the frequent usage of the term “feature” in regards to the SPL, there is a 
scarcity of clear understanding of the term. The systematic literature review is carried 
out to firstly explore the varied definitions and potential utility of the term “feature” 
and “feature models” in SPL researches. This is tracked down by detailed exploration 
of feature modeling notations, approaches, specification to be shadowed by an 
evaluation of selected FM notations. 

4.1.1. Review method 

The systematic literature review is carried out to set an in depth study of feature 
modeling, starting with terming features, reaching a thorough investigation of FMs. 

In accordance to a coordinated and systematic method, as per Keele (2007) guidelines 
and Kitchenham et al. (2009), 152 reference records dated from 1990 to 2015 in 
previous literature were identified as relevant with the research objectives. Those 
identified records are then subjected to thorough inspection, via systematic literature 
screening.  Collected records are screened according to inclusion and exclusion criteria 
and the screened records are subjected to further filtering which leads finally to a 
selection of data records apt for synthesis in the literature review. Then narrative 
syntheses of various definitions are conducted, followed by the identification of their 
potential value for this examination. 

4.1.2. Review goal 

The systematic literature review is carried out to summarize the present literature in 
respect to feature modeling in SPL. Evidences from previous literature are pointed out 
to outline various definitions, explore and provide better understanding, and identify 
any possible gaps in order to suggest areas for further investigation. In addition, this 
review is carried out to have an in depth understanding of the evolution of the 
available feature modeling notations.  Also, this review helps in providing a solid 
background to build on the following parts of the research.  
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4.1.3. Inclusion and exclusion criteria  

The starting point for the adoption of the studies is the inclusion and exclusion 
criteria.  

We review studies from selected sources (listed in subsection 0) according to the 
following inclusion criterion:  

• IC1. Peer reviewed papers are included from year 1990 to 2015. 
In this manner, papers from the dawn of FM until their most recent appearance are 

considered.  
• IC2. Full studies including literature reviews related to our topic and research 

goals are included.  
• IC3. Articles and papers in light of feature modeling notations in SPL. 
These materials are precisely dedicated to our focus and abide to our review goals. 

The studies that were included in our review were directly related to our topic with 
clear defined structure founded on previous accurate studies or theoretical studies. 
However our exclusion criterion is based as follows: 

• EC1. Sketchy and superficial studies that lacks in-depth and exhaustive studies. 
Like so, trivial and inconsequential considerations are avoided and eliminated. 
• EC2. Incomplete studies, that ranges within extended abstracts, tutorials or 

presentations. 
These are disregarded as they provide curtailed and limited support as well as lack 

in depth.  
• EC3. Papers and studies that are published before the year 1990 and after the 

year 2015. 
As been rationalized in the inclusion criteria, the review takes an exclusive interest 

in the published papers from the emergence of FM till the most recent work. 
• EC4. Articles outside the subject discussed. 
Those articles are omitted as they don’t fulfil our review goals and are irrelevant of 

the theme of study. 
• EC5. Studies that presents subjectivity in which the author presents a subjective 

point of view or biased information. 
In this way, preconceptions are avoided and integrity is maintained.  
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• EC6. Papers that doesn’t relate to SPL specifically. 
As per example, papers only relating to computer science or artificial intelligence 

are excluded, since they are not specific to our domain of study.  

4.1.4. Data basis and selection criteria  

According to Keele (2007), Primary data records are identified and screened in a 
manner that the records provides distinct and direct connection to feature modeling in 
SPL.  

Subsequently, duplicates are removed and records are subjected to further 
refinements which lead to further exclusion of records with bias and records with 
insufficient information. Thus, the assessment provided reliable records proceeded by 
clear interpretation of outcome.  

The following sources of information are used as data basis and sources: 

• Designated Noticeable and prominent conferences concerned of features and 
feature modeling in SPL, which include:  

International Software Product Line Conference (SPLC), IEEE International 
Conference, , Requirements Engineering Conference (RE), International 
Conference on Software Reuse, International Software Product Line Conference, 
Conference in Computing Science, and International Conference on Software 
Engineering (ICSE). 

• Various leading journals and reports related to feature and feature modeling in 
SPL, such as:  

IEEE Transactions on Software Engineering1, ACM on Software Engineering2, 
Journal of Systems and Software, Software Quality Journal, Journal of Theoretical 
and Applied Information Technology, International Journal of Advanced 
Manufacturing Technology, International Journal of Technology Management, 
Overload Journal 78 and Software Quality Journal 

                                                
1 http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32 
2 http://tosem.acm.org/ 
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• Workshops in the aforementioned prominence, namely: 

International Workshop on Domain Engineering, International Workshop on 
Requirements Engineering for product lines, Workshop on Variability Modeling of 
Software-Intensive Systems, International Workshop on Satisfiability Modulo 
Theories, International Workshop on Requirements Reuse in System Family 
Engineering, International Workshop on Software Factories, Workshop on 
Software Variability Management for Product Derivation.  

• Book Chapters and other significant sources are also considered in the review.  
• References extracted from the preliminary journals are included in the 

synthesis in order to incorporate former data sources.  

4.1.5. Data Hunt and assessment 

 

 

 

 

 

 

 

 

 

Figure 4. 1 illustrates the data hunt and further assessment of records, which are 
undertaken according to the following criteria: 

• Data are firstly collected and identified from the aforementioned journals, 
conferences, book chapters, reports, workshops and other materials.  

Figure 4. 1   Review Data assessment 
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• The Data hunt is initiated on the basis of titles and search words (key words) 
related to feature modeling in SPL. The initial records identified formed 152 
papers. 

• Abstracts are then examined to figure out relevant sources and narrow down 
the search (thorough examination for some sources is undertaken when 
necessary).  As a result, Duplicates are excluded. 

• The final stage included examining the selected records judiciously to 
determine if they fit the purpose of the review.   

• In consequence, irrelevant materials are eliminated to narrow down the search 
to 48 potential sources. 

• References relevant to our search purpose (11 in total) are then identified and 
screened to be narrowed down to 6 sources to be added to the assessed records. 

• The total number of records involved in the review formed 56 records at the 
end. 

 

Figure 4. 2 shows a detailed classification matrix of the records used in the systematic 
literature review in accordance to the year of publications, ranging from 1990 to 2015, 
and the record type.  

Figure 4. 2   Data classification matrix 
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the 56 records includes 3 technical reports, 26 journal papers, 11 conference papers, 3 
workshop papers, 8 book chapter and 5 from other materials.  

4.1.6. Review Outcome 

• Terming “Feature” 

In regards to the term feature, 15 records of the 56 records used the term feature as an 
increment to function, 10 records referred to it as a specification in modeling in SPL, 
Whereas, 9 papers identified feature as a property, behavior or quality of software 
system. Table 4. 1   Feature’s definition in literature and Figure 4. 3   Feature's 
definition classification  illustrate the findings. 

Feature definition in literature 
 

Increment to function 
 

Specification 
Behavior or Quality of 

Software System 
(Cuevas, 2007)  

(Benavides, Ruiz-Cortés, 
Corchuelo, & Martín-Díaz, 2004)  

(Kang et al., 1990)  
(Benavides, Cortés, Trinidad, & 

Segura, 2006)  
(Batory, Benavides, & Ruiz-

Cortes, 2006)   
(Dubslaff, Klüppeholz, & Baier, 

2014)  
(White et al., 2009) 

(Metzger et al., 2007)  
(White et al., 2014)  

(White, Schmidt, Benavides, 
Trinidad, & Ruiz-Cortés, 2008)  

(Siegmund et al., 2012) 
(Gomaa, 2005)  
(Batory, 2005)  

(Zave & Jackson, 1997)  
(Gibson, 1997)  

(Benavides et al., 2007)  
(Benavides, Cortés, et al., 2006)  
(Czarnecki & Eisenecker, 2000) 

(Bailin, 1993)   
(Svahnberg et al., 2005) 

 (K. Chen, Zhang, Zhao, & Mei, 
2005)   

(Batory, 2005) 
(Classen, Heymans, & Schobbens, 

2008)   
(Apel et al., 2013b)   

(Beuche & Dalgarno, 2007)  

(Kang et al., 1990)  
(Lee et al., 2002) 

(Griss et al., 1998)  
(Kang et al., 1998) 

(John & Muthig, 2002)  
(Wang, Li, Sun, Zhang, & 

Pan, 2005)  
(Bosch et al., 2001)  
(Rincón et al., 2015)  

(Van Gurp et al., 2001)  
 

 

Table 4. 1   Feature’s definition in literature 
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Figure 4. 3   Feature's definition classification 
 

• A selection of Notable definitions 

It is important to point out notable terminologies for feature in SPL.  
As per the systematic literature review, features are approached in accordance to three 
main definitions which are; 
features as an increment to function, features as specification for modeling in SPL, and 
features as a behaviour or quality in software systems.  
Other definitions identified in literature are also worthy to point out. 

Starting with feature as increment to function, Kang et al. (1990)  first defined Features 
as distinguishable functional abstractions that must be incremented,  established, 
delivered, and maintained. Moreover, feature is defined as an increment in product 
functionality in software systems according to Cuevas (2007).  
Siegmund et al. (2012) , Zave and Jackson (1997) and Batory (2005) stresses out the 
same definition of features as an increment to function which satisfies and fulfills 
functional requirements.  

Features are also referred as a specification, as per Benavides et al. (2007) software 
systems are specified in terms of features. In addition, according to Kang et al.  (1990 ), 
a product of a product line is specified by a valid feature selection.  

Moreover, features are seen to be unique user-visible aspect, quality, behavior or 
characteristic of software system (Kang et al., 1990), Whereas Bosch et al. (2001), sees 
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feature as “a logical unit of behavior that is specified by a set of functional and quality 
requirements“. 

• Terming “Feature modeling”  

Mainly, features in software product lines are expressed in feature models, which 
bring out the importance of clearly defining feature models.  
This part introduces various definitions and perceptions of feature models extracted 
from previous literature. 

 Feature models definitions   
Info representation Commonalities and variability 

tool 
Specification member in 

product lines 
(Benavides et al., 2009) 
(Benavides et al., 2004)  

(Mendonca, Wąsowski, & 
Czarnecki, 2009)   

(Benavides, Cortés, et al., 2006)  
(Batory, 2005)       

(Benavides, Segura, Trinidad, & 
Ruiz-Cortés, 2006a)  

(Mendonca, Branco, & Cowan, 
2009)   

(Benavides, Segura, Trinidad, & 
Ruiz-Cortés, 2006b)  

(John & Muthig, 2002) 
  (Mazo & Salinesi, 2008) 

(Czarnecki, Grünbacher, 
Rabiser, Schmid, & Wąsowski, 

2012) 
(Rincón et al., 2015) 
(Arcaini et al., 2015)  

(Heymans et al., 2008) 
(Harman et al., 2014) 

(Beuche & Dalgarno, 2007) 
(Bak, 2013) 

(Benavides et al., 2007) 
(Czarnecki & Eisenecker, 

2000)  
(Batory et al., 2006)        

(Mendonca, Wąsowski, et al., 
2009)   

(Lee et al., 2002) 
 (Kang et al., 1998)  
(White et al., 2009)  
(White et al., 2014) 
(Mendonça, 2009)   

(Czarnecki & Wasowski, 2007)  
(R. Pohl, Lauenroth, & Pohl, 

2011) 
(Thüm et al., 2009) 

(Czarnecki, Helsen, & 
Eisenecker, 2004)  

(Sun, Zhang, Fang, & Wang, 
2005)  

(Wang et al., 2005)  
(Mazo & Salinesi, 2008)  

(Beuche & Dalgarno, 2007) 

(Mendonca, Wąsowski, 
et al., 2009)   

(Benavides, Cortés, et al., 
2006)  

(Batory, 2005)       
(Czarnecki & Eisenecker, 

2000)  
(Lee et al., 2002)  

(Thüm et al., 2009) 
(Thiel & Hein, 2002)  

(Riebisch, 2003) 
(Pleuss, Botterweck, 
Dhungana, Polzer, & 
Kowalewski, 2010)  

(Arcaini et al., 2015) 
 

 

Table 4. 2   Feature model's definition in literature 
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Figure 4. 4 and Table 4. 2   Feature model's definition in literature point out various 
definitions and perceptions of feature modeling in SPL. According to the systematic 
literature review, Feature modeling is regarded as information presentation for SPL in 
17 records of the 56 records assessed. Whereas, the term feature modeling is referred 
as a commonality and variability identification technique in 19 records.  However, 
FMs are also referred as specification member in SPL according to 10 records.  

 

 

 

 

 
 

• A selection of Notable definitions 

A feature model can be used to represent the similarities and differences within a 
family of software systems (Mendonca, Branco, et al., 2009). The combination of 
features represents all variability, thus forms FM (John & Muthig, 2002).  
Czarnecki and Wasowski (2007), however, defines Feature modeling as a notation and 
an approach for modeling commonality and variability in product families.  
Furthermore, Lee at al. (2002) adopts a comprehensive approach in which he defines 
FM as the activity of identifying externally visible characteristics of products in a 
domain and organizing them into a model called a feature model. 

• Concluding Remarks 

It is apparent that clear common definitions for feature and feature modeling have not 
been agreed on, in which features are considered as function, property and 
specification (Classen et al., 2008). However, Tracking down a consensus on their 
definition and clarifying the terminologies of “Feature” and “feature modeling” is an 
essential step for more thoroughly investigating of its mechanisms. Although it seems 
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Figure 4. 4   Feature modeling's definition classification 
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an unfeasible task where biases and no uniformity in defining the terms exist, 
Maturing a clearer understanding of the feature and feature modeling gives insights 
essential to shaping the background for new approach to feature modeling to be 
discussed in the following part of dissertation. 
In this thesis, features are considered as properties, while FM is a mean to express 
these features, their dependencies and constraints as well as commonalities and 
variabilities.  

4.2. Feature Modeling Exploration 

Feature modeling weighs in greatly in SPL, in which it aims to present commonalities 
and variabilities amongst features, as well as highlight their dependencies and 
constraints (Czarnecki, Helsen, & Eisenecker, 2005; Kang et al., 1998; Riebisch, 2003). 
This section helps to digest FM systems, principles and types.  
As explicated, features display information of the SPL in the form of features and all 
their relationships (Benavides et al., 2009). Represented by feature diagrams, the set of 
features are arranged as follows: 

• Hierarchically representing relationships between parent and child feature 
(also defined as sub features). 

• Crosstree constraints which shows inclusions and exclusions, feature 
dependencies and interdependencies, requirements and alternative roots.   

The Relations between a parent and the child features are considered as follows 
(Batory, 2005) (see Figure 4. 5): 

- And; in which all child features are to be chosen 
- Alternative; in which one alternate child feature can be chosen,  
- Or; in which one or more child feature can be chosen, 
-  Mandatory; in which the selection of specific features are compulsory,  
- Optional; in which the selection of features are optional. 
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Figure 4. 5   Feature diagram graphical notations 
 

4.2.1. Feature modeling notations 

Notations of FMs are addressed as follow:  

First we consider Basic FM, a primitive format of feature model.  

4.2.1.1. Basic   

In the basic notation, the FM is mostly a tree diagram which is diagrammatically 
presented by means of nodes. These nodes cast out the relationship between parent 
features and sub features and forms out the joints and connections between them. 

Those relationships in the basic notation are considered to be primitive relations to be 
explained as below (Batory, 2005; Benavides et al., 2009; Lee et al., 2002):  

• Mandatory relationships  

In Mandatory relationships, the sub features is necessary to be included when the 
parent is included and in no means should the sub feature be excluded when the 
parent is included.  

This mandatory relationship is symbolized by a line connecting the parent feature 
with the sub feature with a black filled circle above the sub feature connection. Figure 
4. 6 illustrates a Mandatory relationship extruded from the exemplary 3D printer 
feature model. In Figure 4. 6, we can point out the 3D printer mandatory comes with a 
body, which consequently mandatory consists of an extruder and a case.  
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Figure 4. 6   Mandatory relationship 

• The optional relationship  

Optional relationship is the relationship between parent features and sub features, in 
which the sub features inclusion is optional, hence the existence of this sub feature is 
conditional.  

The optional relationship is symbolized by a line connecting the parent feature with 
the sub feature with an empty circle on top of the sub feature connection. Figure 4. 7 
exemplifies the optional relationship extruded from the exemplary 3d printer FM.  

The figure below demonstrates the 3d printer optional relationship in terms of 
including accessories or excluding them. However on the other hand the inclusion of 
the body, model, connectivity and software are a must.   

 

Figure 4. 7   Optional relationship 
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• The or-relationship 

The Or relationship presents the relationship between the parent and the sub feature, 
in which minimum of one sub feature is to be selected in terms of the inclusion of the 
parent feature. The Or relationship is symbolized by a black filled arc connecting the 
array of lines connecting the parent feature and the sub features.  

In Figure 4. 8, the Or relationship of a parent feature and its sub feature is 
demonstrated, extracted from the 3d printer feature model example. In this case the 
options of the software derive from choosing at least one feature (such as Sketchup) 
till choosing all four features.  

 

Figure 4. 8   Or relationship 

• The alternative relationship  

The Alternative relationship portrays the association of the parent and the sub 
features, in which one and only one option of the sub features is to be selected, when 
the parent feature is to be included, thus presents an alternate choice of sub features. 
The alternative relationship, in other words is an Exclusive Or relationship XOR, 
symbolized by an arc connecting the array of lines connecting the parent feature and 
the sub features (see Figure 4. 9). 

 The following figure demonstrates the Exclusive Or relationship of a parent feature 
and its sub feature, also extracted from the 3D printer FM example. In terms of the 
Exclusive Or relationship, The volume alternates from 240 inch, 360 inch and 720 inch, 
in which only one volume is to be selected.   
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Figure 4. 9   Alternative relationship 
 

In addition to the relationships explained above, basic feature models are 
accompanied by constraints relationships: 

• Requires constraint 

When one feature is to be included, and this feature must be accompanied by another 
feature, then “requires” constraint is present.  

• Excludes constraint 

When one feature is included in the diagram, and this feature requires the elimination 
of the presence of another feature, then the exclusion is present, and hence “excludes” 
constraint which resembles the incompatibility of 2 features.  

4.2.1.2. Cardinal notation 

The urge of the completeness in concept and the need of practical application 
(Czarnecki & Eisenecker, 2000) formed a motivation for the extension of feature 
modeling notation, and thus the existence of the cardinality based FM. This notation is 
defined by the feature and group cardinalities as below (Czarnecki, 2005):  
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• Feature Cardinality 

The extension of the feature model from basic to cardinal inserted some information 
and labels to the relationship between parent feature and sub feature.  

It inherited a UML-like multiplicity having the form of intervals [n, m], where an 
upper and lower bounds are presented. This is mostly expressed by means of 
arbitrary numbers. By these means, we can present, as well as limit the number of sub 
features that are included, when the parent feature is included.  

As an example, a mandatory relationship is expressed as [1, 1] meaning the sub 
feature is to be compulsory selected. Whereas on the other hand, [0, 1] provides the 
option of choosing from the upper to the lower bound, and thus resembling the 
optional relationship.  

• Group Cardinality 

The group cardinalities is adopted when considering the Or relation and the Exclusive 
Or relationship between parent feature and sub features. The interval in this case is 
denoted by {n…m} having also n,m as limiting bounds of upper and lower limit of the 
number of sub features to be selected when the parent feature is included.  

When considering the Or relationship in which one and more sub features can be 
selected, the interval is {1..N} in which N presents the number of sub features. 
However, when considering the alternative relationship, in which only feature can be 
selected the interval in this case is {1..1} showing the route of only selecting one sub 
feature.  

4.2.1.3. Extended Feature model 

Besides the basic and the cardinality feature modeling notation, additional 
information that distinguishes features traits are necessary to describe features 
(Batory, 2005; Czarnecki & Kim, 2005; Kang et al., 1998). Originating from this point, 
the extended feature modeling notation took place to add up those additional 
information known as feature attributes. The extended feature model primitive 
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establishment was in present in FODA (Kang et al., 1998) in which additional 
information is included in FODA feature model.  

There have been no approved definition of what feature attribute is to include, 
however, fundamentally speaking, the feature attribute must consist of domain, name 
and value and it can add up any other trait distinguishing the feature such as cost, 
size, speed… 
 Figure 4. 10 illustrates an example of extended feature model presented by Benavides 
et al. (Benavides et al.).  

 

Figure 4. 10   Extended feature model notation (Benavides et al., 2009) 

4.3. Evolution and evaluation of FMs 

The rise of the FMs relatively is associated to the domain analysis in SPL. It firstly 
emerged with the emergence of SPL systems in telecommunications and later on 
extended to reach a vast array of fields (Pleuss et al., 2010).  

FMs presented means of communication and demonstration of information about the 
products in the system, which reveals requirements accompanied in the product, 
hence providing a smoother and more transparent system for developers, customers 
and stakeholders, as well as an ease in design. Moreover, feature models are used to 
facilitate the selection of features, ease configuration and automate the formation of 
the SPL. In addition, Feature models helps in capturing commonalities and 
variabilities. 
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Kang (1990) is considered to be the initiating author who took the lead in feature 
modeling. Feature modeling was firstly evolved from the feature oriented domain 
analysis ‘FODA’ (Kang et al., 1990). The evolution formed different features models 
developed by various authors, as to adapt to the evolving uses or to fix present 
glitches in previous feature models.  

A timeline of feature models is drawn to show their evolution starting from ‘FODA’ 
developed by Kang et al. in 1990 which is followed by Jacobson et al. attempt in 1997. 
Later on, Kang developed the original feature model ‘FODA’ to ‘FORM’ (Feature 
oriented reuse method) in 1998 which evolved to ‘FOPLE’ in 2002. Moreover in 1998, 
Griss et al. developed the ‘FeatuRSEB’ feature model that was later evolved by Van 
Gurp et al. in 2001 and Eriksson et al. in 2005. A huge leap in feature modeling 
evolution is taken by Czarnecki et al. in 2000, in which generative programming 
feature model ‘GP’ was developed which branched out and opened new opportunity 
to evolve Riebisch et al. feature model in 2002, and GP extended feature model 
developed by Czarnecki et al. in 2002. The GP extended Feature model was evolved 
by Czarnecki et al. in 2004 to form Cardinality based feature model. It’s also important 
to pinpoint Benavides et al. feature model in 2005. However, the list isn’t limited by 
these feature models, various feature model were developed, but in this section we 
shed the light on the most significant feature models that contributed in SPL systems 
in order to evaluate and learn from them.  
Table 4. 3 shows the timeline of various feature models present in SPL systems.  

Feature Model YEAR Feature Model YEAR 
Kang et al. FODA 1990 Czarnecki et al. GP extended 2002 

Jacobson et al. 1997 Riebisch et al. FORE  2002 
Kang et al.  FORM 1998 Gomaa et al. 2004 

Griss et al. FeatuRSEB 1998 Czarnecki et al. CBFM 2005 
Czarnecki et al. GP 2000 Moon et al.  2005 

Hein et al. 2000 Eriksson et al. PLUSS  2005  
Van Gurp et al. 2001 Benavides et al.  2005 

Kang et al. FOPLE 2002   
 

Table 4. 3   Feature modeling notations timeline 
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Figure 4. 11 clarifies the evolution of feature model, in which FODA, the head of the 
pyramid, presents the mere beginning of feature modeling attempts and is tracked 
down by several extensions not limited to those presented.  

 

Figure 4. 11   Feature models evolution 



 
 

53 
 
 

4.3.1. Feature Oriented Domain Analysis  

FODA, the Feature Oriented Domain Analysis method (Kang et al., 1990), is the first 
feature diagram notation to be introduced in SPL systems (L. Chen et al., 2009). FODA 
was represented by a tree graph illustrating commonalities and variabilities in the 
feature model. FODA provided an ease of use and a method of communication 
between customers, developers and stakeholders.  

The FODA diagram notations, compositions, relationships and constraints are 
illustrated in the Figure 4. 12 and Table 4. 4  below and explained as follows:  

 

 

Figure 4. 12   FODA modeling notation of 3D printer 

 

Feature Relationships Constraints 
Parent 

feature 
Mandatory optional And Or Xor Textual graphical 

 

 
  

 

 

 

 
 

 

 

Table 4. 4   FODA notation specifications 
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4.3.1.1. Features 

• The main feature, also known as root feature or concept; is a mandatory feature 
that represents the whole system. According to the example above, the root 
feature is 3D printer. 

• Mandatory features exists by default; there is no graphical notation or 
expression specific to mandatory features (example Body, Model, Material  ...)  

• Optional features are represented by an empty circle above the connected sub 
feature, as per example accessories.  

4.3.1.2. Relationships 

• And relationship, implying that all subfeatures are to be selected in the system, 
the “And” relationship doesn’t have any specific expression. It shows the 
mandatory features to be included in the system. 

• Xor relationship presents the relationship in which one and only one sub 
features is to be selected, when the parent feature is to be included. The xor 
relationship is expressed by an arc connecting the array of lines connecting the 
parent feature and the sub features.  
In Figure 4. 12   FODA modeling notation of 3D printer, the Xor relation is 
demonstrated, in which only one volume can be selected from the alternatives: 
240 inch, 360 inch and 720 inch.   

4.3.1.3. Constraints 

FODA model lacks any graphical representation of constraints, however textual 
constraints are present describing requires and excludes constraints.  

4.3.2. Feature-Oriented Reuse Method  

FORM, the Feature-Oriented Reuse Method, is an add on of FODA developed by 
Kang et al. (Kang et al.). It emerged as a necessity to widen the scope of feature 
modeling in terms of domain analysis, and implementations.   

FORM has managed to build upon the previous feature diagram by changing and 
adding up elements, such as;  
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• The graphical representation can be directed acyclic graph, as well as tree 
representation.  

• Implemented “By” relationship, along with the And and Xor relationship. 
• Generalization and specialization also exists in FORM model.  
• The graphical representation of the feature and sub features themselves are 

within boxes (see Figure 4. 13 and Table 4. 5).  

However, FORM still lacks Or- relationship and graphical constraints.  

 

Figure 4. 13   FORM modeling notation of 3D printer 

 

Feature Relationships Constraints 
Parent 

feature 
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Table 4. 5   FORM notation specifications 

4.3.3. FeatuRSEB 

FeatuRSEB (Griss et al., 1998) is derived from the feature oriented domain analysis 
method and the RSEB method, which depends on use cases as well as object models. 
FeatuRSEB sheds the light on variation points and variants in the graphical 
representation.  
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FeatuRSEB is distinguished as follows; 

• The graphical representation is directed acyclic graph DAG.  
• The And relationship is similar to that described in FODA. 
• The Xor and or relationship are represented by means of parent features, 

known as variation points and sub features, known as variants.  
The Xor relationship is resembled by an empty diamond shape connecting the 
variation points and the variants. Whereas, the Or relationship is presented by 
a black diamond connecting the variation points and the variants (see Table 4. 6 
and Figure 4. 14).  

• Textual constraints, along with graphical constraints, are present which are 
“requires” and “excludes”.  

• FeatuRSEB provides binding time; which are reuse-time and use-time binding. 

 

 

Figure 4. 14   FeatuRSEB modeling notation of 3D printer 
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Table 4. 6   FeatuRSEB notation specifications 



 
 

57 
 

4.3.4. Generative programming 

Generative programming GP was developed by Czarnecki et al. in 2000, deriving from 
FODA, and creating a lead in terms of software automation programing.   

The feature diagram is known as Generative Programming Feature Trees, GPFT.  

As being derived from Kang et al feature model (Kang et al.), the generative 
programming feature diagram adds up on FODA’s graphical representation. 

• Or relationship is added, which presents the relationship in which at least one 
or more subfeatures is to be selected, when the parent feature is to be included. 
The Or relationship is expressed by a black filled arc connecting the array of 
lines connecting the parent feature and the sub features (see Figure 4. 15 and 
Table 4. 7). 

• Mandatory features exist in the condition of the inclusion of its parent feature.  
Mandatory features are represented by a black circle above the connected sub 
feature. 

 
Figure 4. 15   GP modeling notation of 3D printer 
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Table 4. 7   GP notation specifications 
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4.3.5. Van Gurp and Bosch Feature Model 

Van Gurp and Bosch developed a feature model as an extension of FeatuRSEB, in 
which it evolves to add up more specifications and characteristics. The feature 
diagram is known as van Gurp and Bosch Feature Diagrams VBFD (Van Gurp et al., 
2001). 

• The Van Gurp and Bosch Feature diagram varies from FeatuRSEB in terms of 
the Or and Xor notation, in which the Xor relationship is resembled by an 
empty triangle (instead of diamond) connecting the variation points and the 
variants. Whereas, the Or relationship is presented by a black filled triangle 
connecting the variation points and the variants (see Table 4. 8 and Figure 4. 
16).  

• VBFD provides enhanced dealing with binding times, as per annotating 
relationships between features.  

• Features (the parent features and all subfeatures) are represented in a box, 
Whereas, External features are boxed in dashed boxes. 
 

 

Figure 4. 16   Van Gurp and Bosch feature modeling notation of 3D printer 
 

Table 4. 8   VBFM notation specifications 

Feature Relationships Constraints 
Parent 

feature 

 

Mandatory optional And Or Xor Textual graphical 
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4.4. Drawbacks of Feature Modeling 

Although Numerous Feature modeling notation exists in SPL systems, those current 
FM notations are accompanied with shortcomings and glitches, limiting its efficiency 
and performance. In this chapter, an assessment of selected FM notations is 
undertaken to pinpoint the current problems in them.  

The assessment takes place according to the criteria as set below. 

4.4.1. Assessment criteria 

When evaluating feature modeling notations glitches; the following criteria is to be 
considered.  

FM notations are appraised on the basis of 5 key criterions which are: 
comprehensiveness, visual presentation suitability, traceability, scalability and 
articulacy.  

The key criterions are summarized as follows: 

4.4.1.1. Comprehensiveness 

This criterion is used to assess the completeness and inclusiveness of the FM 
notations. It studies whether these notations fulfill a whole role in describing the 
features, their relationships, dependencies, and constraints.  

This key criterion assessments is carried out by determining the following: 

• The presence and comprehensiveness in terms of adequate feature 
relationships and constraints; which are but not limited to: 

- Relationships: OR, AND, optional, alternative and cardinalities. 
- Constraints: requires, excludes and/or textual constraints. 

• Confusions and complications that accompanies the feature modeling notations 
in terms of inconsistencies and contradictions between constraints and 
relationships.  
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4.4.1.2. Visual presentation suitability 

This key criterion takes into consideration the readability of the feature modeling 
notations. It studies the visual representation in terms of comprehensibility and 
adequacy.  

This key criterion considerations are as follows:  

• Completeness and entirety in information present in the FM notation. 
• The graphical demonstration of interactions of features, in terms of the 

presence and absence of adequate visual presentation of constraints, 
relationships, variations and variation points...  

• Readability and the ability to visually follow up, in which the FM graphical 
presentation is assessed in terms of complexity and sophistication.  

4.4.1.3. Traceability  

Traceability is an essential criterion which determines to what extent a feature model 
notation can be feasible and adaptive to changes. It takes into consideration the 
practicality and reliability of the feature modeling notation.   

This key criterion concerns are as follows:  

• The ability to evolve over time, integrate and adapt to changes. 
• Data consistency and reliability in the feature modeling notations. 
• The manageability of linking between features and requirements.  

4.4.1.4. Scalability  

The scalability of the feature modeling notation deals with the capability of this 
notation to handle large scale systems, as per dealing with complexity and large 
number of features, with taking into consideration all dependencies and constraints 
and satisfying the requirements.    

This key criterion considerations are as follows:  

• Determining to what extent the feature model notation can serve in large scale 
systems.  
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• Determining whether the feature model notation requires a support tool to 
handle scalability problems.  

4.4.1.5. Articulacy  

Uncertainties and ambiguities are key shortcomings in feature modeling notations. 
This criterion takes into consideration the articulacy and clarity in the feature 
modeling notations. It deals with glitches in term of misconstructions and 
misunderstandings.  

This criterion addresses the following points: 

• Ambiguity in interpreting and presenting relationships such as errors, double 
meanings, nonfunctional features and redundancies. 

4.4.2. Appraisal and results  

FODA, FORM, FeatuRSEB, GP, and VBFD Notations explained and demonstrated 
previously in section 4.3, are assessed according to the assessment criteria set above to 
determine their glitches and evaluate them.  

The appraisal and results are summarized as follows:  

4.4.2.1. Comprehensiveness 

It is crucial to present a complete and inclusive interaction of features in the feature 
modeling notations. Consequently, as per the necessity to present the dependencies 
between features, their relationships and constraints, the lack of full presence of these 
interactions notations leads to shortcomings in the feature modeling approach, as it 
limits the interaction between features and leads to detrimental side effects. As 
features tends to be dependent and correlated to other features, any modifications on 
a sole feature, as per selection, deselection, addition or deletion, consequently has a 
direct effect on other related features. Thus, full comprehensiveness in the feature 
expressions as well as their interactions is crucial (Gibson, 1997). 

When analyzing comprehensiveness of the selected features modeling notations, the 
findings are listed as follows: 
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• FODA, to begin with, presents primitive attempt to model feature interactions. 
Being a primitive feature modeling notation, FODA has shortage in modeling 
and presenting relationships and constraints as well as confusion. FODA 
modeling notation proved to lack completeness in concept associated with 
multiple glitches and gaps in its representation. According to Figure 4. 12 and 
Table 4. 4   FODA notation specifications, which illustrated the FODA feature 
model of a 3D printer, FODA lacks graphical notation of the Or relationship 
and the graphical constraints. The problematic concern is that information 
aren’t well expressed in these structures, with a chance to overlook 
dependencies or create confined presentation with lots of lost information, in 
which relationships, dependencies and constraints are not expressed 
thoroughly. 

• FORM was brought up to advance FODA approach (Kang et al., 1998). Similar 
to its predecessor FODA (Lee, Kang, Chae, & Choi, 2000), FORM has similar 
glitches in terms of comprehensiveness. Although FORM surpasses FODA by 
its encompassing to By relationship, in addition to the And and Xor 
relationships (see Figure 4. 13 and Table 4. 5), where one feature is 
implemented by means of another feature. Moreover, FORM puts in the 
generalization and the specialization relationship. 

• FeatuRSEB, GP and VBFD adds up the graphical constraints, in which 
FeatuRSEB presents both textual and graphical “requires” and “excludes” 
constraints (see Table 4. 6) whereas GP and VBFD have only graphical 
constraints (see Table 4. 7 and Table 4. 8). Moreover, FeatuRSEB, GP and VBFD 
adds the Or, whereas only GP presents the mandatory relationship. 

Having that said, the existence of the constraints and other mentioned relationships 
adds up the comprehensiveness in the model and promotes clearer understanding of 
the feature dependencies relationships, and less confusion in terms of inconsistencies 
and contradictions among constraints and relationships. However, the 
incomprehensibility and obscurity are still present between compositions and requires 
relations, and excludes and alternative. Thus, there’s a need to elaborate and add up 
other dependencies expressions to avoid complications and confusions.  
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This implies that the considered feature modeling notations have glitches in terms of 
completeness and inclusiveness, in which none are completely comprehensive and 
expressive with a capability to achieve an unabridged role in providing clear 
expressiveness of the features, their relationships, dependencies, and constraints.  

4.4.2.2. Visual presentation suitability 

When talking about visual presentation suitability, all the modeling approaches 
assessed are graphically visualized and presented, knowingly it is crucial to spot the 
light on the variables in the model, as well as have a readable construct.  

However the type of visualization varies from one model to another, thus the 
readability and the visual presentation suitability varies accordingly.  

• As noted, FODA obeys a basic tree presentation which tends to be less inclusive 
and more problematic to create (Berg & Muthig, 2005). On the other hand, FORM 
and FeatuRSEB notations are Directed acrylic graph (Batory, 2005; Sun et al., 
2005).  Whereas, GP and VBFM notations are of tree structure which is more 
clear(Czarnecki & Helsen, 2003; Van Gurp et al., 2001). 

• FeatuRSEB and VBFD (see Figure 4. 14 and Figure 4. 16) presented variations and 
variation points instead of the tradition or and Xor relationships present in others.  

• FODA and FORM represents less readable feature model as their notations 
requires additional explanations. However, in terms of readability and simplicity, 
GP tends to be more concise and has less constructs with clearer connections and 
relationship. FeatuRSEB notation tends to be the simplest and the most adequate 
assessed notation as it has UML constructs (Gomaa, 2005).  

4.4.2.3. Traceability  

The models ability to evolve and adapt to changes is an imperative aspect in modeling 
SPL, as they are always prone to alteration and changes. Thus reliability on the feature 
model in terms of manageability, data consistency and traceability is a requirement for 
an efficacious system. Traceability to track down features is indispensable, as the 
feature model needs to evolve by means of adding, updating, extending or integrating 
new features or requirements (Berg & Muthig, 2005; Metzger et al., 2007). 
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• FODA, FORM, as well as GP lack to support product line adaptability and 
growth. Moreover, the above-mentioned feature notations fail to promote 
evolution and integration of features and requirement.  

• While, even though FeatuRSEB and VBFD are more manageable in terms of 
integrating features and requirements, in which VBFD provides enhanced 
dealing with binding times, as per annotating relationships between features, 
and FeatuRSEB provides binding time, which are reuse-time and use-time 
binding. Still they don’t advocate complete traceability.  

This infers that the feature modeling notations taken into consideration have 
shortcomings when considering traceability. The feature modeling approaches falls 
short in providing traceability, ability to evolve and adapt, and data consistency at the 
same time.  

4.4.2.4. Scalability  

For every feature model, it is crucial to be scalable and expandable to serve large scale 
SPL systems, as most organizations requires enormous SPL systems, and thus scalable 
feature models (Berg & Muthig, 2005).  However current feature models don’t seem to 
provide feasibility when it comes to large scale systems (Lee et al., 2002; Riebisch, 
2003). 

• It is evident that FODA has glitches in terms scalability (Batory et al., 2006), in 
which it only serves small scale systems and isn’t feasible in handling large 
scale systems and complex ones. FODA and FORM present a lack of scalability 
and extendibility. The feature models investigated doesn’t present feasibility in 
terms of adding extensions or managing large complex scales. They lack ease of 
management in such a way it is too complex to be handled on a scale other than 
a small scale on their own. 

•  In order to achieve scalability, GP, FeatuRSEB and VBFM approaches might be 
scalable under the condition of being supported and analyzed automatically. 
CASE is a support tool that underpins feature modeling notations in terms of 
scalability and capability to modeling all features and any extensions.  
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It is important here to stress out the perceptible lack of independency of current FM 
notations when it comes to scalability and dealing with complex systems.  

4.4.2.5. Articulacy  

Ambiguities, uncertainties and misunderstandings create a blockage towards 
providing an articulated feature modeling notation that facilitates the perception of 
the SPL system proficiently.  

• For an instance the lack of precision, as well as complexity and ambiguity 
resulting from the lack of interdependency between features exists in FODA 
and FORM (Van Gurp et al., 2001).   
The Or relationship doesn’t exist, and alternative relationship isn’t clear. 
Henceforth, Conflicts and ambiguities are present.  
Alternative feature are occasionally misrepresented, in which it creates conflicts 
and ambiguities by confounding it with optional or mandatory features 
(Metzger et al., 2007; Riebisch, 2003).  

• Moreover, FeatuRSEB presents vagueness and confusion in relationships 
between features in terms of optional and the Or relationship, as well as Or and 
Xor relationship.  

• VBFM and FeatuRSEB are also accompanies with ambiguities related to 
variants. In addition, there might present concomitance of the Or and Xor 
relationships with the mandatory and optional features in the generative 
programing model.  

Having that said, the assessed feature models lacks to have an articulated and clear-
cut semantics and notations. Thus the approaches explored don’t lack inconsistent 
interpretations and uncertainties. 
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4.5. Automated Analysis of Feature Models 

The realm of software product lines currently has an intensifying prominence, as per 
its proficiency to enhance software reuse and make the whole procedure more 
feasible. Ever since the very first establishment of feature models (Kang et al., 1990 
Novak, & Peterson, 1990), the manual management, operation and handling of the 
feature models have always been challenging and error-prone mission.  

The glitches in feature modeling approaches has been identified (refer to section 4.4), 
in addition to the need to support operations related to void features, invalid or 
partial configurations, lack of flexibility and simplicity in product line, optimization, 
and undetected anomalies (Batory, 2005; Benavides et al., 2010 2010; Cuevas, 2007; 
Mannion, 2002; Perez-Morago, Heradio, Fernandez-Amoros, Bean, & Cerrada, 2015 
Bean, & Cerrada, 2015).  

Consequently, as per knowing the importance of software product line systems, SPL 
specialists have proposed a vast amount of validation techniques to endorse its 
process (Amine, Mohamed, & Bellatreche, 2013 2013). Since these problems in feature 
models cannot be detected manually and on the sole dependence on the FM approach 
used, which is highly complex and difficult, analysis operations is needed. Thus, The 
automated analysis operation on feature models allows the direct validation and 
verification of the feature models in the SPL system.  

Within here levitated the role of the automated support, which is responsible for the 
analysis of feature models in SPL. Consequently, specialists in SPL proposed various 
practices to deliver automated analysis of feature models. These proliferated 
automated analysis of feature models aims to deliver techniques, algorithms and tools 
that work towards an automated extraction of information from feature models, in 
which features, dependencies and any incompatibilities are recognized, analyzed and 
disentangled.  

This section will provide a concise review of the foremost promising solvers and 
approaches in the perspective of the automated analysis of feature models.  
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Those proposed automated analysis approaches ranges from propositional logic and 
first order logic approaches (SAT solvers, BDD, Alloy…) (Mannion, 2002; Mendonça, 
2009; Sun et al., 2005 & Wang, 2005), constraints programming (CSP solvers and its 
derivatives) (Batory et al., 2006 2006; White et al., 2009 & Benavides, 2009), description 
logic approaches, conceptual logic approaches,  and heuristic solutions (Ad-hoc) 
(Batory et al., 2006; Kiniry, 2007) . In particular, this section will consider the solvers 
and approaches listed and explored as follows.   

4.5.1. Constraint Satisfaction Problem solver  

The constraint programing is made out of a set of techniques dealing with CSPs. 
Those techniques can be algorithmic and heuristic (Tsang, 2014).  

Feature models are transformed into Constraint satisfaction problem “CSP” which is 
made of set of variables, coupled with their set of domains which are expressed by 
integers and interval values, and constrained by the set of constraints (see Figure 4. 
17). 

  

Figure 4. 17   CSP mapping of feature model 
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A constraint satisfaction problem solver is a tool or software that formulates CSPs. 
These solvers works by considering and modeling the problems. The modeling 
elements are expressed as variables, domains and their constraints. The CSP solver 
aims to study the problem and search for the existence of any possible solutions 
following the next steps (Benavides, Segura, et al., 2006b):  

• Features are mapped to CSP variables alongside the feature’s domains 
according to the kind of support provided by the CSP solver, which is either 
dependent on TRUE or FALSE or 0…1.  

• Dependencies and constraints are then considered. In respect to that, 
corresponding variables present.  

• After identifying the variables, their domains and constraints, all the mentioned 
entities will be assigned a value in accordance to their dependencies for 
example parent feature = TRUE or Parent Feature = 1, which is governed by on 
the domain variables. 

Figure 4. 18 clarifies the CSP mapping in accordance to the 3D printer exemplar 
designed and used throughout the whole thesis.  
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Figure 4. 18   CSP mapping of 3D printer feature model 
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4.5.2. SAT solvers  

SAT solvers are propositional logic based analyses solvers. Propositional logic 
analysis PL, to begin with, uses propositional formulas that are made up of sets of 
symbols deciding the connections and constraints of the analyzed feature models. 
Figure 4. 19 demonstrates the propositional logic mapping of a feature model, which 
provides an illustration for the symbol used to decide the variables, domains and 
constraints (Mannion, 2002; Mendonca, Wąsowski, et al., 2009). 
SAT solver is a tool which translate the feature model by means of propositional 
formula, to determine whether its Boolean expression is satisfiable or not, and reach a 
solution to the SAT.   
In the majority of SAT solvers, the propositional formulas are entered as Conjunctive 
Normal Form CNF (Cook, 1971).  
 

Figure 4. 19   PL mapping of feature model 
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4.5.3. Binary Decision Diagram solvers  

 
Binary Decision Diagram BDD solvers, similar to SAT solvers, are propositional logic 
based analysis solvers that translates propositional formulas into graphical 
presentations. Those decision diagrams represent the Boolean functions in the form of 
DAG, which consequently facilitates the automated analysis process of the feature 
model. BDDs are computational tools that functions by figuring out the satisfiability 
and deciding the algorithms that supports establishing feasible solutions.  

Overall, when mapping feature models by means of propositional logic based 
analysis, this mapping varies depending on the solver used for the automated 
analysis. However the following approach is mostly considered (Benavides et al., 
2009):  

• Features are mapped to propositional formula variables alongside the feature’s 
relationships which are mapped to smaller formulas in accordance to the feature 
model being analyzed. 

• After identifying the variables, and any possible auxiliary variable resulting from 
mapped relationships, a final formula is conveyed which is the result of the 
conjunction of all the mentioned formulas and the constraints present in the 
feature model.  

• The final stage lies on assigning the truth value to the variable of the root feature.  

 

4.6. Concluding Remarks 

During the course of this chapter, Feature modeling in SPL has been explored, to 
satisfy our intention in determining the glitches and shortcomings accompanying 
previous notations and approaches.  
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The literature review first of all presented an insight of definitions and terminologies 
of feature modeling, their different notations and constructs, to acquaint the reader 
with our exploration by means of systematic literature review.  

Throughout the whole chapter, an exemplar of 3D printer product line is used as 
representation for feature models to express their various notations, constructs and 
specifications. Moreover, using the same exemplar throughout the whole chapter 
aided comparing and contrasting between various notations that were put under the 
lens of assessment. 

Glitches and shortcomings of the current feature modeling notations are identified, 
wherein an assessment of selected FM notation is undertaken, which are FODA, 
FORM, FeatuRSEB, GP, and VBFD Notations. The Notations are critically assessed in 
terms of scalability, traceability, articulacy, comprehensiveness and visual 
presentation suitability. The findings are recapped as follows: 

• Current FM notations are frequented with complexity and obscurity in 
relations and dependencies semantics. In this manner, there’s a serious need to 
take into account further dependencies semantics to avoid misperceptions.  

• Although there’s a discrepancy in the type of visualization in FM notation and 
consequently a variation in the visual presentation, there are challenges in 
attaining an all-inclusive readable and simple construct as marked in FODA 
and FORM notations. 

• The evaluated FM notations tend to be infeasible in terms of providing 
traceability, ability to evolve and adapt, and data consistency concurrently.  

• Evidently speaking, current FM notations can’t perform adroitly in large scale 
and complex systems and have discernible scalability problems.  

• The assessed feature models are deficient in terms of providing articulated 
notations. Furthermore they exhibit some failures in terms of capturing some 
existing semantics among the model parameters. 

Subsequently, this leads us to our next part of the dissertation targeting to explore the 
realm of probabilistic modeling which attempts to overcome the problems discussed 
in this chapter.  

 



 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 “It should perhaps be noted that the choice of variables in terms of which a given problem is formulated, 

while a seemingly innocuous step, is often the most crucial step in the solution.”                         

-Callen, 1985
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Part IV 

Modeling  
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Chapter 5 

Modeling under Uncertainty 

 

In information theory, information integrated among a set of variables are a measure 
of the variables’ capability of reducing the systems’ uncertainty (Kullback, 1968). 
Variables with higher uncertainty contain more information than variables with lower 
uncertainty. This notion motivated scientists to quantify information as per its 
probability weight. Claude E. Shannon (1949) noticed that  such that  

is the probability weight of a certain variable and  is the measure of information. 
 This notion reveals three main properties of information: 

1. Information is always none negative quantity,  
2. Variables with Certain probability weight don’t provide any new information, 
3. Information measure of Independent Variables is additive. 

Clearly, to capture the semantic of any variable; it’s important to anticipate its 
uncertainty level. The third property of information is effective, when we learn about 
belief model, in which model variables are mutually independent.  
To practically understand the dependency behavior and relationship among a set of 
variables, its encouraged to structure data model defining the correlation among 
variables, and quantifying the degree of belief for each variable. Moreover, data 
models are very effective to predict the outcome of variables aggregation, and trace 

I p( ) = − logb p( ) p

I
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the dependency flow among the model parameters.  

In SPLE, relationships among variables are captured via logical notation known as 
Feature Model. Feature models are information models used to identify products of 
product line. The information embedded in the model, are denoted as variables within 
different dependency contexts and crosstree constraints among it. Variables can either 
be core variables (which will be referred by core features throughout this chapter) 
with definite probability weight to ensure its existence in all products configurations, 
or varied variables (which will be referred by variables throughout this chapter) with 
different uncertainty level. Observing core feature with probability weight equal one 
doesn’t give us any new information about the expected products’ functionality.  
On the contrary, observing a variable would increase the model uncertainty; as a 
result provide new information about the expected product identity. This conceptual 
notion is mathematically valid and semantically mapped with the first and second 
property of the information as been identified in the information theory.  
Due to its uncertainty nature, variables enrich FM with information. The more 
variables the model has, the more information we can obtain from this model. 
Information can be seen as non-functional or functional qualities of the model product 
line. This implies that, more variables potentially bring about more products. When 
modeling in SPLE, the uncertainty measure of any variables is due to its interaction 
with the model parameters. The degree of uncertainty of any variable is a 
representation of our intuitive belief about this variable probability when we start 
constructing the model. 

To capture the relationships and uncertainty measure of the model parameters; We 
introduce Bayesian Belief Network BBN as framework to construct a variability 
model, that doesn’t only capture the logical dependency among features, but also 
anticipate the uncertainty measure of involved features. Providing belief model help 
us to understand the information provided in the model and aids in the reasoning 
process. 
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This Part of the dissertation will profoundly explore the semantic of FM in SPL, traced 
down by an overview to our proposed Bayesian belief feature model. Moreover, this 
part will draw out the semantic equivalence between the two distinct models as well 
as define the mapping rules amongst both. 

5.1 The Notion of Feature Model Semantic  

Feature Model FM is information model  (Benavides et al., 2010) used to identify 
products in product line (Batory, 2005). Feature Model (FM) consists of features and 
relationships among them. In Feature model, features are typically a distinctive visible 
attribute used to indicate quality in the product functionality (Kang et al., 1990). In 
Addition, relationship in Feature Model can typically be defined as a class of 
dependency that indicates the interaction between at least two different features, see 
Figure 3. 4 for an example of feature model. FM is known as variability model, such 
that variables appear to interact throughout different dependency channels, allowing 
the model to obtain different functionality each time we have a valid and complete 
explicit set of variables.  

Current practices compose features and dependency relationships into a hierarchical 
graphical representation called Feature Diagram. In Feature Diagram FD, composition 
rules that specify mutual dependencies and mutual exclusion between features (Kang 
et al., 1990) appear as crosstree constraints (Benavides et al., 2010). 

The main types of relationships to group a set of features can be identically 
categorized as; Or, Optional, Mandatory, and Alternatives; which are used to maintain 
the dependencies level between a compound feature and sub feature (Batory, 2005). 

5.1.1. Feature Model Prominence  

The key importance of FM is to elucidate the requirement space, in order to support 
the development process and the reuse of notation. The two main components of any 
feature model are Feature Diagram and Composition Rules (Benavides et al., 2010).  
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In the development process, FM could be used as a knowledge domain to indicate 
what has to be parameterized in other models (Kang et al., 1990). 

Feature Diagram is relatively easy to read rather the Model, which is solely composed 
of composition rules (Kang et al., 1990). Therefore, Feature Diagrams are widely 
adopted as accepted representation denoting all members of a given Product line 
(Benavides et al., 2010). 

To construct a Feature diagram, a data analysis should be first conducted to quantify 
features and its corresponding functionality, with extensive emphasize on proposed 
requirements of the anticipated products. The quantification process determines any 
identified dependencies among different features. Moreover while identifying 
features dependencies; grouping contexts could be introduced as a resolution of 
multiple same level dependency channels among prior and posterior features. The 
obtained information defines the problem domain knowledge.    

Once the knowledge domain is clearly identified by naming all features and the 
dependencies among these features, a feature diagram can be constructed in which the 
semantic of knowledge domain is fully captured. 

5.1.2. Relationships in Feature Model 

A typical relationship between features in FM is a direct dependency between two 
features or more. A consist-of relationship demonstrates a logical grouping of 
dependent features (Kang et al., 1990). 

Theoretically, any kind of relationship could be defined to capture the dependency 
semantic between a set of features (P. P.-S. Chen, 1976). 

In the interest of Software Product line Engineering SPLE, four structural relationships 
are used to capture the dependencies between features that are: 

• Mandatory AND Dependency. 
• Inclusive OR Dependency. 
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• Exclusive OR Dependency. 
• Optional Dependency. 

And two composition rules typically named Crosstree Constraints that are: 

• Mutual include. 
• Mutual Exclude. 

In the following we are going to carefully identify the semantic of each relationship. 

• Mandatory AND dependency:  
 
Mandatory AND dependency is a direct dependency between a compound 
feature and subfeature, in which subfeature must be included in the system 
specification wherever its compound feature is part of the system specification. 
 

Let , be of a set subfeatures in mandatory AND dependency with 

compound feature .  

The truth semantic of this dependency context holds only when  such 
that can have a binary value of zero or one.  

 
• Inclusive OR Dependency: 

 
A set of subfeatures is composed by an Inclusive Or Dependency with a 
compound feature, enforces that at least one subfeature must be included in the 
system specification wherever the compound feature is included. 
 

Let ,be of a set subfeatures in Inclusive OR dependency with compound 

feature  .  
The truth semantic of this dependency context holds only when  
such that can have a binary value of zero or one.  

 

f1, f2{ }
fc

fc := f1.  f2
f

f1, f2{ }
fc

fc := f1 +  f2
f
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• Exclusive OR Dependency:  
 
A set of subfeature are composed together with a compound feature in 
cardinality-based dependency, illustrating that only one subfeature must be 
included in the system specification, whenever the compound feature is 
included. 
  

Let ,be of a set  subfeatures in Exclusive OR dependency with 

compound feature  . 
The truth semantic of this dependency context holds only when 

 such that can have a binary value of zero or one. 

 
• Optional dependency: 

 
Optional dependency is a direct dependency between a compound features 
and subfeature, in which, a subfeature can but doesn’t need to be part of the 
system specification whenever the compound feature is included. 
 

Let ,be of a set subfeatures in Optional dependency with compound 

feature  .  

The truth semantic of this dependency context holds only when 
 such that can have a binary value of zero or one. 

 

• Mutual Include: 
 
Mutual Include indicates all optional and alternative features that must be 
included in the system specification whenever a given feature is included. 
 

Let  and  be two features such that,  mutually include  when 

, in a manner can have a binary value of zero or one. 

f1, f2{ }
fc

fc := f1.  f2 + f1.  f2 f

f1, f2{ }
fc

fc := f1 + f1( ) +  f2 +  f2( ) f

f1 f2 f1 f2
f1 → f2 := f1.  f2 + f2 f
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• Mutual Exclude: 
 
Mutual Exclude indicates all optional and alternative features that must be 
excluded from the system specification whenever a given feature is included. 
 

Let  and  be two features such that, both features are in mutual exclude 

context whereas  , such that can have a binary value of zero 

or one. 

5.2. The Need for New Model 

The key innovation of Feature Model is to create a representation that specifically 
captures the functionality of products, throughout exploiting the semantic existing 
among the product components. Current methodologies, institute a good framework 
in which basic representation is provided to capture the meaning of model 
components, and including direct dependencies among features; while identifying 
possible boundaries in the product line. Nevertheless, these representations mostly 
exhibit shortcoming in the interest of non-direct interaction and the dependency 
semantic among model components. Also, the predefined composition rules are 
usually orienting around the direct dependencies between features in Feature Model.  
Knowing that; the complete feature attribute is naturally inherited by its ancestors and 
bounded by its mutual dependencies as well as its descendants, the need of 
understanding the dependencies flow in the system specification has emerged as a 
key issue (Apel, Batory, Kästner, & Saake, 2013a). According to (Benavides et al., 2010; 
Kang et al., 1990), current representations exhibit obvious limitation in this regard, 
and tend to leave some semantic to common sense, which usually become less 
obvious and get lost overall complexity.  
Moreover, current feature models usually assign equalized weight assignments for all 
model components without indicating the likelihood of each component, or allowing 
better understanding of the dependency flow; to consider any latent implication 
raised by indirect dependencies. 

f1 f2
f1 ↔ f2 := ¬ f1.  f2( ) f
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Proposing different weights values for feature model parameters, is a promising 
technique aiding to quantify the intended implication of involved components.  
By identifying the implication weight of each component in the feature model, we 
advance our belief about the components interaction and the truth behavior of the 
feature model.    
By tracing the dependencies flow, and anticipate the truth assumption of each 
parameter, we would be able to enhance the feature model performance throughout a 
possible rearrangement of features integration, or by reducing some parameters as per 
its probability weight, alongside with its integration and implication on the model 
belief. Any reduction in feature model would reduce the reasoning problem space, 
leading to an efficient reasoning process.  
In addition, while advancing our belief about the model behavior, we will be able to 
efficiently advance our design even in latter stages, when satisfying features 
requirements.  
For instance, if we observe a feature with a relatively low probability weight, we can 
conclude that the chances of including this feature in a valid configuration would be 
minimal. After that we might need to revise the feature attribute, such as; cost, 
functionality, added complexity, size. By recalling the initiated knowledge domain, 
and product line preference; we might decide either to omit this feature from the 
model, consequently we reduce cost and problem size in addition to improve the 
reasoning process. On the contrary, we might decide to increase the probability 
weights of this feature (due to preferred functionality, variability) by either 
incorporate some composition rules calling this feature or a potential rearrangement 
of features integrations.  
In both scenarios the belief model helps us to improve our design and utilize the 
usage of model parameters. 

The need of incorporating new components to the core components, or even remove 
some variables without devastating the overall semantic, is another reason to start 
thinking of developing a more dynamic modeling framework that gives the designer a 
higher degree of freedom during the modeling stage. 



 
 

82 
 

 

Moreover, we take into consideration that tackling a problem from the problem space 
into a designed model is also an art as much as a science. Therefore new modeling 
techniques should be always considered to pair different solution dialects for different 
problems contexts. 

To conclude, the demand for a new model is pinpointed for the following motives: 

• The need for capturing the actual implications of the existing features, and 
quantifying of the occurrence likelihood of each feature. 

• The need to quantify non-direct entanglements among model parameters, 
throughout a determination of the truth flow and uncertainty variation among 
different contexts and parameters. 

• The necessity to support the automation analysis and reasoning process, by 
exploiting the dependency strength and inferring the actual implication of the 
embedded crosstree constraints. 

• The aspiration of enhancing the model graphical representation, by the use the 
variation of color to project variation in the uncertainty measure. 

• The need to inform decisions when trying to derive new products in the 
product line. 

• The desire of having dynamic model that enable the user to easily incorporate 
new features or remove some existing features from the original design, and yet 
still can quantify the added implication of the new change. 

 

5.3 Bayesian Modeling  

Bayesian Belief Network “BNN” is famously known for its conveyance in artificial 
intelligence as an attempt to model. BBN is thus a modeling approach which is 
basically a directed acyclic graph that merges between both probability and graph 
theory. Thus, BBN is an all in one approach to model, as well as, reason and handle 
uncertainties at the same as been equipped with modeling and probabilistic methods. 
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In addition to that, BBN provides an advancement in the realm of information since 
this belief network supports both qualitative and quantitative information captured 
by means of a rationale technique. Throughout the usage of BNN, any new 
information can swiftly be incorporated and added up to the information base as soon 
as it’s present. However when it comes to dealing with conditional uncertainties and 
the probabilistic aspect of the BBN, determination and reasoning is required. That 
being said, the BBN is consequently associated with an extent of changeability and 
variability when considering any model being developed by means of BBN approach.  

Due to its precedence in terms of dealing with unpredictability, variabilities and 
uncertainties, BBNs seems to be the most favorable and adequate approach to run 
through the outcome of the highly tendency of occurrence in future scenarios.  
The BBN functions by means of probabilistic inference, in which it computed the 
probabilistic weighting of the considered variables in accordance to information about 
other related variables and their conditions and contexts. 

As been stressed out earlier, the prominence of BBN lays within the capability of 
handling information coming from subjective judgment as well as objective ones.  
So, in terms of objective data scarcity, it’s possible to use subjective data to form out 
the initial material to be assessed and weighted probabilistically and later on, any 
additional beneficial information could be encapsulated in the BBN and thus provide 
an update and rebuild up the probabilistic outcome.  

In conventional basic FM, a set of observed components always exist as a core 
features, as well as, a set of varied components that usually alters from specification to 
another within a context of dependencies. The more variables we have the higher 
uncertainty level we reach. This is usually a desired aspect in any FM, but on the 
downside this will raise range of complications regarding scalability, satisfiability, 
visibility.  

In feature modeling, the existence likelihood of any child subfeature is conditioned by 
the existence state of its parent compound feature. The truth flow is directed from 
parent compound features to child subfeatures in a casual flow. Thus, can be captured 
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using Bayes theorem, in which the truth probability of any posterior event is 
conditioned by the truth probability of the prior event. 

Both BBN and FM notations are directed acyclic graph in which the occurrence of any 
posterior event is restricted by the occurrence of its prior event. BBN modeling is 
effective when inferring a consistent conclusion from the given contexts, in which it 
helps to inform decisions accordingly. 

 In addition, integrating new features whenever available is a core advantage of BBN, 
while also subjective assignment of the truth measure among the model parameters is 
possible throughout different design stages of the model. 

Moreover, BBN is an assimilation between graph theory and probability theory that 
has been successfully implemented and evolved in science and engineering to 
provide, not only a modeling framework, but also a predictive approach in which the 
causality of events can be quantified and predicted easily.  

We introduce Bayesian Belief Network based modeling technique to model basic FM 
as a pioneering comprehensive framework to allow users to reason and model about 
uncertainty. 

Our approach is aided to: 

1. Improve the design performance. 
2. Capture the existence semantic between features throughout a comprehensive 

belief network. 
3. Reduce number of parameters in a given problem space. 
4. Present Scalable prediction of features latent implication and occurrence 

likelihood. 
5. Quantify the crosstree constraints implication. 
6. Reason and satisfy the resultant model with a sense of uncertainty. 
7. Exploit component usage and influence. 
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Basic FM indicates what needs to be configured into the model and how the semantic 
of configuration should be mapped (Kang et al., 1990). Therefore, we use existing FM 
as our knowledge domain due to its simplicity and wide adoption.  

In the next we introduce our BBN based modeling framework and define the 
mathematical semantic of each component to assure that at least all semantic provided 
by Basic FM are true and hold in the new proposed model. 

5.3.1. Bayesian Belief Feature Model BBFM 

Bayesian belief feature model BBFM is a belief representation of the knowledge 
domain, such that a probability weight is assigned for each feature, to quantify its 
implication on other model parameters. These assignments are used to specify the 
probability of satisfying the existing semantic of the involved dependency contexts. 
The identified probability weight helps to optimize the model behavior while 
reasoning, also anticipates the probability weight of any given feature. 

BBFM is composed of a set of dependency contexts that captures the existence 
semantic among set of variables. 

The developed model is inspired by the work of (Shwe et al., 1991) who pioneered a 
Noisy-OR gate to model Quick Medical Reference QMR diagnostic decision support 
tool. His model has gained a huge success by reducing number of involved 
parameters significantly. 

The developed Bayesian belief model BBM is composed of four main dependency 
contexts namely; Bayesian Conjunction, Bayesian Disjunction, Bayesian Exclusive 
Disjunction, Bayesian Tautology, in addition to direct mutual include and mutual 
exclude dependency; fusing features constraints.  

We can structure Bayesian Belief Feature Model BBFM by grouping each set of 
variable within its dependency context in cardinal format, allowing the truth-value to 
flow within dependencies context evidentially. The structure of the dependency 
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context must be valid and corresponding with the semantic of the equivalent Basic 
feature model FM. 

Figure 5. 9    illustrate a translated model from FM (refer to Section 3.3 and Figure 3. 4) 
into BBFM of our designated example of 3D printer. 

Definition 5.0.       We define Bayesian Belief Feature Model BBFM, as a set of 
interconnected dependency contexts, such that each dependency context must be 
categorized as one the following Bayesian dependency context; Bayesian conjunction, 
Bayesian disjunction, Bayesian exclusive disjunction or Bayesian tautology, And two 
mutual dependency; Require and Exclude.  

Different probability weights are distributed among belief model, providing a 
measure of the parameters’ expected affect. 

This notion is very crucial to give the designer the ability to emphasize on some 
attributes rather than others, to meet some non-functional properties, or to reduce the 
influence of some constraints..etc.  
It also helps in latter development process, in which the need of incorporating a new 
feature, or even drive the dependency flow between features, is emerged; to obtain a 
desirable efficiency in the reasoning process. 

In the following subsections, the mathematical semantic of the developed Bayesian 
model will be explained thoroughly.  

Definition 5.1.       Bayesian dependency context; is a dependency configuration 

composed of set of features  and dependency function . Such that  defines the 

dependency semantic existing among compound feature  and all its adjacent 

subfeatures .  

Each feature  has probabilistic truth assumption  denoting the entanglement 

with other features via crosstree constraints, in the Bayesian Belief Feature Model. 

f θ θ
fc

θ : fc , fs1... fsn{ }
f Cf
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Where  has probabilistic truth assumption  denoting the probability of satisfying 

the induced semantic in accordance with the model belief.  

5.3.1.1. Bayesian Conjunction 
 

Definition 5.2.       A set of subfeatures  is in Bayesian Conjunction  

with compound feature , such that .  

In which, the truth assignment of the compound feature is determined by the truth 
assignment of all subfeatures, demanding all subfeatures must be true in all system 
specifications wherever the compound feature is true. 
 
 

 
Figure 5. 1 Graphical Representation of Bayesian Conjunction  

 

Lemma 5.1.       Let   be generated via the Definition 5.2. Where 

 is a subset of the set of all subfeatures. Such that, 

θ γ

fs ,..., fsn{ } θ•

fc θ• : fc , fs1... fsn{ }

θ• : fc , fs1... fsn{ }
fs1,.., fsn{ }
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fs1,.., fsn{ }∈ all  subfeatures{ } . 

Assuming that  are observed subfeatures with valid truth assumption, 

such that,  

. 

We define the probabilistic truth assignment of obtaining a valid    

                                    

                                       

Proof and Semantic   Proof is by semantic check; Definition 5.2 demands that all 
subfeatures must be true to evaluate a truth assignment for the conjunction function.  

Suppose we have set of observed subfeatures Lemma 5.1 evaluates the truth 

assumption of observed subfeatures, such that if any observed subfeature  has a 

probabilistic truth assignment  equal zero. 

 This will directly result the product  to be zero, which in its turn, 

disqualify the conjunction function of being true and set its probability to zero. 

Otherwise, if no observed subfeature had violated the conjunction requirement, i.e all 

observed subfeatures had truth assumption greater than zero,  is yet valid and have 

a probabilistic truth assignment equal ; 

 

Corollary 5.1.       Let  be a compound feature that’s generated via Definition 5.1 

with a valid dependency function. We define the probabilistic truth assignment of   

fs1,.., fsn{ }

P fs | cs( ) =ω s

θ•

P θ• | fs1,.., fsn( ) =
0, P fs | cs( ) = 0

s=1

n

∏

γ , P fs | cs( ) > 0
s=1

n

∏

⎧

⎨
⎪
⎪

⎩
⎪
⎪

fs
P fs | cs( )

P fs | cs( )
s=1

n

∏

θ•

γ

P θ• | fs1,.., fsn( ) = γ

fc
fc
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Similarly, 

 

 
Proof and Semantic   Corollary 5.1 demonstrates that a compound feature  can 

only be true; if its truth assumption generalization and the truth assumption 

specialization 3 of the adjacent observed subfeatures , exhibit truth-value. 

Moreover, this notion implies that; the truth assignment for any feature in BBFM is 
actually determined with two major flows of dependencies; which are global 
dependencies and local dependencies:  
 

• In global dependencies, we evaluate the casual dependency flow of observed 
features. Such that, if one of the observed features exhibit unsatisfiable 
crosstree constraint, this might jeopardies the truth assumption of its 
compound feature. 

• In local dependencies, we evaluate the truth assumption of succeeded features 
and the dependency function, which can be seen as an evaluation of the feature 
generalization. Such that, if the compound features of feature f was assigned 
zero probabilistic weight, this will automatically disqualify feature f of having a 
valid truth assignment. 

                                                
3 feature f generalization is the evidential dependency’s flow of feature f. 
   feature f specialization is the casual dependency’s flow of feature f. 
 

P fc | cc ,θ( ) = 1−ω c( ) 1−γ( )

P fc | cc ,θ( ) = 1− P fc | cc ,θ( )

fc

fs
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Figure 5. 2   Truth Assumption change in Bayesian Conjunction 

Let θ• fc , f1.. f4( )  be a Bayesian conjunction dependency context such that, four 

subfeatures are grouped in Bayesian conjunction dependency with a compound 
feature.  

Figure 5. 2 above demonstrates the belief change of Bayesian conjunction functions’ 
truth assumptions  versus the number of observed subfeatures. Observing 

subfeature with a valid truth assumption would increase our belief about the truth 
assumption of the dependency function.     Can only obtain a truth assignment 

equal one, only and if only all involved subfeatures were observed with a valid truth 
assumption. 

5.3.1.2. Bayesian Disjunction 

Definition 5.3.       A set of subfeatures  is in Bayesian Disjunction  

with compound feature , such that .  

In which, the truth assignment of the compound feature is determined by the truth 

assignment of at least one subfeature, allowing that, one subfeatures can satisfy the 

truth semantic of the Bayesian Disjunction . 
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Figure 5. 3   Graphical Representation of Bayesian Disjunction 
 

Lemma 5.2.       Let  be generated via the Definition 5.3. Whereas 

 is a subset of the set of all subfeatures. Such that, 

fs1,.., fsn{ }∈ all  subfeatures{ }  

Assuming that  observed subfeatures with known truth assumption, 

such that, 

 

We define the probabilistic truth assumption of obtaining valid   

P θ+ | fs1,.., fsn( ) =
γ , P fs | cs( ) = 0

s=1

n

∑

1, P fs | cs( ) > 0
s=1

n

∑

⎧

⎨
⎪
⎪

⎩

⎪
⎪

 

Proof and Semantic   Proof is by semantic check, Definition 5.3 requires that at least 
one subfeatures must be true to evaluate a truth assignment for the disjunction 
function.  

θ+ : fc , fs1... fsn{ }
fs1,.., fsn{ }

fs1,.., fsn{ }

P fs | cs( ) =ω s

θ+
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Lemma 5.2 evaluates the truth assignment of the observed subfeatures, such that if 

any observed subfeature  has a probabilistic truth assignment  greater 

than zero this will directly increment . 

As a result, the sum will have a truth assumption greater than zero, which in its turn, 
qualifies the disjunction function to be true with probabilistic truth assumption equal 
1. 

Otherwise, none of the observed subfeatures succeed to exhibit truth assumption, the 

truth assumption of the disjunction function  is still due till we are able to 

determine the truth value of remaining subfeatures, henceγ . 

 

Figure 5. 4   Truth Assumption change in Bayesian Disjunction 

Let θ+ fc , f1.. f4( )  be a Bayesian Disjunction dependency context such that, four 

subfeatures are grouped in Bayesian disjunction dependency with a compound 
feature.  

Figure 5. 4 above demonstrates the belief change of Bayesian disjunction functions’ 
truth assumptions  versus observing a number of features with invalid truth 

assumption. Observing subfeature with an invalid truth assumption ω = 0 , will 
decrease our belief about the truth assumption of the dependency function.  
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When observing that a given subfeature exhibit invalid truth assumption, this 
observation implies a reduction in the truth domain of and by default decrease the 

truth assumption value of the disjunction functions, the more invalid features we 
observe; the lower truth assumption we achieve until we observe that all involved 
subfeatures exhibit invalid truth assumption, in which the Bayesian disjunction 
function will be semantically invalid with truth assumption equal zero. 

5.3.1.3. Bayesian Exclusive Disjunction 
 

Definition 5.4.       A set of subfeatures  is in Bayesian Exclusive 

Disjunction  with compound feature  , such that,  . 

If the truth assumption of the compound feature is determined by the truth 
assignment of one and only one subfeature, in which one subfeature must be true to 

satisfy the truth semantic of the Bayesian Disjunction , whereas all other 

subfeatures must be excluded from the system specification. 
 
Graphically Bayesian Exclusive Disjunction is represented as follows; 

 

Figure 5. 5   Graphical Representation of Bayesian Exclusive Disjunction 

γ

fs ,..., fsn{ }
θ⊕ fc θ⊕ : fc , fs1... fsn{ }

θ⊕
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Lemma 5.3.       Let   be generated via Definition 5.4. Whereas 

 is a subset of set of all subfeatures. Such that, 

fs1,.., fsn{ }∈ all  subfeatures{ }  

Assuming that  observed subfeatures with known truth assignment

. We define the probabilistic truth assignment of obtaining valid   

P θ⊕ | fs1,.., fsn( ) =
γ ,

∀P fs | cs( )
P fs | cs( )

s=1

n

∑
= 1

0, otherwise

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  

Proof and Semantic   Proof is by semantic check, Definition 5.4 demands that one and 
only one subfeatures must be true to evaluate a truth assignment for the exclusive 
disjunction function.  

In Lemma 5.3, we evaluate the truth assignment of the given subfeatures, such that if 

the probabilistic truth assignment of a subfeature  over the sum of the probabilistic 

truth assignments for all observed subfeatures   was exactly equal one. 

This means only one subfeature has a truth assignment greater than zero, concluding 
the observed subset doesn’t violate the induced semantic of Definition 5.4.  

Therefore the exclusive disjunction function is yet valid with probabilistic truth 
assignment equal . 

 
Otherwise, if the given subset failed to meet the imposed semantic i.e more than one 

subfeature had a truth assignment greater than zero, thereafter,  is not true and 

has a probabilistic truth assumption equal zero.  

θ⊕ : fc , fs1... fsn{ }
fs1,.., fsn{ }

fs1,.., fsn{ }
P fs | cs( ) =ω s θ⊕

fs
P fs | cs( )

γ

θ⊕
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Figure 5. 6   Truth Assumption change in Bayesian Exclusive Disjunction 

 

Let θ⊕ fc , f1.. f4( )  be a Bayesian exclusive disjunction dependency context such that, 

four subfeatures are grouped in exclusive disjunction dependency with a 
compound feature.  

Figure 5. 6 above demonstrate the belief change of Bayesian exclusive disjunction 
functions’ truth assumptions versus the number of observed subfeatures in a 

given subset. The highest truth assumption is achieved when only one subfeature 
observed and this subfeature exhibit a truth assumption.  
If none of subfeature were observed we still obtain a truth assumption as we still 
have the possibility to obtain one valid subfeature. If more than one subfeature is 
observed with a truth assumption value greater than zero, this will violate the 
semantic of exclusive disjunction function, hence disqualify the dependency 
context of being valid and set to be zero. 

5.3.1.4. Bayesian   Tautology 
 

Definition 5.5.       A set of subfeatures  is in Bayesian Tautology  

with compound feature  ,such that  .  

In which, the truth assignment for the set of subfeatures is actually doesn’t affect the 

truth assumption for the tautology function; therefore the tautology function  is 

always satisfied. 
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Graphically Bayesian tautology is represented as follow; 
 
 

 

Figure 5. 7  Graphical Representation of Bayesian Tautology 

Lemma 5.4.       Let  be generated via the Definition 3.5 ,whereas 

 is a set of all subfeatures. Such that, 

fs1,.., fsn{ } = all  subfeatures{ }  

Assuming that  are observed subfeatures with a truth assignment

. The truth assumption of   

1  

Proof and Semantic   The proof is by semantic check, Definition 5.5 guarantees all 
problem space and any observation is in fact, a valid truth domain for the tautology 
function.  
In Lemma 5.4, we evaluate a truth assumption for the tautology function for any set in 
the problem space. 

 θ⊤ : fc , fs1... fsn{ }
fs1,.., fsn{ }

fs1,.., fsn{ }
P fs | cs( ) =ω s  θ⊤

 P(θ⊤ | fs1,.., fsn ) = γ
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Figure 5. 8   Truth Assumption value in Bayesian Tautology 

 

Let  θΤ fc , f1.. f4( )  be a Bayesian tautology dependency context such that, four 

subfeatures are grouped in Bayesian tautology dependency with a compound feature. 

Figure 5. 8 above demonstrates the belief of Bayesian tautology functions’ truth 
assumptions is always equal one.  

This implies that the tautology function is satisfied under any observation.  
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Figure 5. 9    Translation from 3D Printer FM into 3D Printer BBFM 
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5.4. Measuring the Uncertainty Level 

Like any belief model, Bayesian Belief Feature Model BBFM quantifies the truth 
assignment for its parameters; throughout a collection of evidences and conclusions, 
which forms the belief model.  

BBFM could potentially contain some core parameters namely core features, these 
must subsist in all valid configurations. A set of core features could derive the belief 
flow in BBFM. Knowing it has to be satisfied among system configurations; might 
imply a certain belief distribution all over the model.  
This of course, would propose a truth assumption change amongst the model, by 
increasing or decreasing the truth assumption weight for other variables. 

The aforesaid does not only give a better understanding of system parameters truth 
flow, but also it gives a possible truth evaluation for some parameters in the model by 
either include it in the model belief base, or even opting it out of the BBFM, in order to 
satisfy the belief base features requirements. 

Definition 5.6.       Truth Assumption is a quantified measure for a given 
parameter, indicating its probability of obtaining satisfiable truth assignment after the 
reasoning process. If the truth assumption was ultimately equal one, this implies, the 
parameter is definitely existing in all products configurations. 

In addition, belief base could be subjectively defined, such that we assign a truth 
assignment to some non-core features, to emphasize some model preferences, or 
obtain some non-functional qualities. The selection of the preferred features is also 
serving in forming the truth flow of the belief model, which could be identified 
judiciously to optimize the reasoning process in latter stages. 

Belief base is a set of parameters in the belief model, such that each parameter is 
assigned with truth assignment equal one; either as a part of core features or due to 
subjective selection.  

Having a belief base would improve the belief knowledge, concluding new degree of 
certainty of other features’ truth assumptions. 
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To quantify the degree of certainty of all models’ parameters, we need to identify the 
truth flow from belief base to all other parameters; while maintaining the existing 
semantics of the involved dependency contexts. 

In the following subsection, we propose the mathematical scheme, enabling us to 
anticipate the truth assumption of all model parameters. 

5.4.1. Computing the Truth Assumption of Model Parameters 

Quantifying the truth assumption of any parameter is subject to the feature 
dependencies, and its association with other parameters.  

To thoroughly understand the implication of involved parameters on a given feature, 
we will study all proposed dependency contexts and introduce the mathematical 
approach identifying the truth assumptions in each. 

Corollary 5.2.       Let f be a feature generated via Definition 5.1, with a constraint 
assignment . We define the truth assumption of  f as follow; 

P f | cf( ) =
0, cf = 0

ω c , 0 < cf <1

1, cf = 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

  

Proof and Semantic   The truth assumption of any feature is constrained by the truth 
assumption of its corresponding crosstree constraints. Whereas, if feature f exhibits an 
exclusion dependency with another feature with truth assignment equal 1. Similarly, 
its corresponding  value equal zero. Consequently, this means feature  must be 

excluded from the system configurations, and therefore to be assigned zero 
probability.  

In the other scenario whereas 0 < cf <1  , the probability of obtaining a truth 

assignment of feature  would change accordingly as per , whereas  is 

determined in accordance with the semantic of the involved dependency context.   

cf

cf f

f ω c ω c
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Finally, when cf = 1 this implies that feature is required by a core feature with truth 

assignment equal one, therefore it should be true in all model configurations; hence it 
would be assigned truth assignment value equal one. 

Definition 5.7.       Let f be feature in BBFM, f has a probabilistic truth assumption 

 ,whereas  is a measure of the feature dependency’s generalization and any 

crosstree constraints f might exhibit. 

 In addition,  is also determined by the nature of the dependency context, in which 

it interacts with the adjacent compound feature  and any sibling features. 

To compute the truth assumption of any feature we would check its dependency 
context semantic as follows; 

5.4.1.1. Bayesian Conjunction 

Proposition 5.1.       Let  be subfeature generated via definition 5.2, we defineω x  

as; 

ω x = P x | fc ,cs( )θ• =
1 ,P fc( ) = 1

P fc( ) I c f( )⎡⎣ ⎤⎦ ,otherwise

⎧
⎨
⎪

⎩⎪
 

Proof and Semantic   Definition 5.2 requires that all subfeatures must be true in all 
system configurations wherever its compound feature  is true.  

Proposition 5.1 meets the semantic of Definition 5.2 in which, if the compound feature 
 has a truth assignment equal 1, this implies that the compound feature  is true in 

all system configurations; therefore all its generalization and specialization must be 
within a valid dependency context. 

To satisfy Definition 5.2 and Lemma 5.1; x must also be true in all system 
configurations. Therefore, its probabilistic truth assignment must equal one, 
regardless of any kind of crosstree constraints x might exhibit.  

 

f

ω f ω f

ω f

fc

x

fc

fc fc
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In this context x has the highest priority in the model belief system. Similarly, if x has 
an exclusion dependency via crosstree constraint, ultimately the entangled feature 
must be excluded from all models’ configurations. 

In the other scenario, if the truth assumption of the adjacent compound feature 
doesn’t qualify fc  to be true in all system configurations, this semantically disqualify x 

of being true in all systems’ configuration, whereas its truth assignment is determined 
by the truth assumption generalization, as perP fc( ) .  

Unlike the first scenario, here we should consider the implication of all crosstree 
dependency. In which, its truth assumption might require to exclude x from system 
configuration wherever applied.  
To illustrate the implication of crosstree dependencies, we generate dependency array
I c f( ) ; combining all mutual crosstree constraints x might exhibit; quantifying the 

implication of any crosstree constraint on x. such that I c f( )  equal the truth 

assumption of features with requires dependency and truth assumption complement 
of features with exclusion dependency. 

Definition 5.8.       Let E be a set of subfeatures grouped in Bayesian dependency 
context with a compound feature f.  

we denote the dependency function as  such that, the semantic evaluation of the 
dependency context , could be identified via  ; where  is a result of truth 

assumption of all adjacent subfeatures.  Is determined by the type of the 

dependency context of the associated subfeatures and its specialization. Moreover, it 
also figures out the righteousness truth evaluation in validating the dependency 
context. 

Proposition 5.2.       Let  be set of observed subfeatures generated via Definition 
5.2; to evaluate truth assumption of the dependency context, we compute  by 

recalling Bayes theorem as follow;  

   

θ
θ γ γ

γ

x
γ

γ x = P θ• | x( ) = P θ•( )P x |θ•( )
P θ•( )P x |θ•( ) + P θ•( )P x |θ•( )
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Proof and Semantic   Definition 5.2 and Definition 5.8 imply that, the truth 
assignment of the conjunction function  is conditioned by the truth assumption of 

its all its adjacent subfeatures.  

Therefore, if we observed set of subfeatures  in within a conjunction dependency 
context, such that x{ }∈ all  subfeatures{ } ,  

We can evaluate the truth assumption of  in accordance with its truth assumption 

and Lemma 5.1.  

All features  in x will be evaluated via Corollary 5.2, such that if all features  in the 

set of observation , succeeded to have a truth assignment greater than zero 

 such that .  In Lemma 5.2 is satisfied, therefore  will have a truth 

assignment computed as per Proposition 5.2.  Is determined by the number of truth 

observations, and it only can achieve truth assignment equal one, and validate the 
conjunction context ;  if all subfeatures were observed with a truth assignment. 

Likewise, if one or all observed subfeatures were detected with truth assumption 
equal 0,  cannot be valid with probabilistic truth assumption equal zero.  

To validate , and achieve a truth assignment equal 1, such that =1; the second 

term of denominator must be equal zero, .  

Since our observation set is , we will investigate the settings, thus will set this term 

to be zero i.e   

To examine this notion, suppose we have a set of four subfeatures grouped in 
conjunction function, as follow in which two subfeatures exhibit a 

truth assignment; such that .  

 Is  , by recalling Definition 5.2 we conclude that  can only be 

assigned a truth assignment, if the set of all observed subfeatures combined all 
subfeatures. Hence, only one set can contain all subfeature and assign a truth 
assignment of the conjunction context. 

θ•

x

θ•

f f

x{ }
∀f =ω f f ∈ x{ } γ θ•

γ

θ•

γ
θ• γ

P θ•( )P x |θ•( ) = 0

x{ }
P x |θ•( ) = 0

θ• : fc , fsa fsb fsc fsd{ } x

x{ } = fsa , fsb{ }

P x |θ•( ) P x∩θ•( )
P θ•( ) θ•
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The probability of obtaining this set is  , alternatively . 

Similarly, we can infer thatP x∩θ•( ) = 3
2n −1

. This will not set  to be zero. Only 

one selection can do so, in which we observe all subfeatures with truth assumption 
such that, x{ } = all  subfeatures{ } . 

In this case, ; as this is embedded by Definition 5.2. When  ; 

the term  is also equal zero. Consequently, we can conclude 

 .  

This proves our assumption and Proposition 5.2, in which, only one set can assign a 
truth assignment of the conjunction context, when all subfeatures are observed with a 
truth assumption greater than zero.  
 
In further discussion, to evaluate the truth assumption  given that we observed set 
of features . Such that, 

 

 is the number of contained subfeatures in the observation set, and  is the number 
of all subfeatures. 
Problem space  is , only one event can evaluate  to be true, as we have 

explained earlier in this section. Therefore, . 

Now to evaluate the truth assignment of  given i, ; we will use Bayes 

Theorems as follow: 

1. Calculate how many subfeatures can be observed i.  , whereas n is 

the number of observed subfeatures in each combination. 
2. Compute the probability of getting an event contain exactly i feature,  

Such that; 

P θ•( ) = 1
2n P θ•( ) = 2

n −1
2n

P x |θ•( )

P x∩θ•( ) = 0 P x∩θ•( ) = 0
P θ•( )P x |θ•( )

γ x = P θ• | x( ) = 1

γ
x

x ∈ i = 0,i = 1,...,i = n{ }

i n

Ω 2n θ•

P θ•( ) = 1
2n

θ• P θ• | i( )

i ∈ 0,1,2,..,n{ }
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3. Compute the probability of observing all subfeatures, 
Such that; 

 
 

4. Compute the probability of getting at least i count of subfeature in an event 
combined of j subfeatures. . 

Such that; 

 

Similarly, each event i has x possible combination whereas x = !
!  And, 

  

To normalize the measurement, we divide each term by the total and we get 

 

Knowing we have already observed j subfeature, what is the probability to find 
a combination that at least contain i number of subfeatures, in x number of 
events, such that we have i number of features in each event. Where is i is the 
number of possible observed subfeature. 

P i( ) =
n
i

⎛
⎝⎜

⎞
⎠⎟

2n

P i( ) =
n
n

⎛
⎝⎜

⎞
⎠⎟

2n
= 1
2n

P i | j( )

P i = 0( )∪P i = 1( )∪ ..∪P i = n( )
=
P i = 0( ) + P i = 1( ) + ..+ P i = n( )
= 1

 

Px! i = 0( )∪Px! i = 1( )∪ ...∪Px! i = n( )
=

Px! i = 0( ) + Px! i = 1( ) + ...+ Px! i = n( )

=

n
i

⎛
⎝⎜

⎞
⎠⎟

2n

px i = 0( ) + px i = 1( ) + ..+ px i = n( )
= 1
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In case we observed j was bigger than 𝑥! , this means number of observed features is 
bigger than number of subfeatures contained in 𝑥! 

𝑗 ∩ 𝑥! = ∅. 

This means, 

 
 

In case we observed j was equal or less than 𝑥! , this means number of observed 
features is equal or less than number of subfeatures contained in 𝑥!, 𝑗 ∩ 𝑥! = 𝑥!. 

Similarly, 

 

Now giving that we computed all above, we can extend our calculations, to find 
probability of the conjunction function giving an exact number of observed 
subfeatures as follow; 

 

Whereas j is number of observed subfeatures and n is the number of all subfeatures. 

 

P( j∩ xi ) = P( j∩ (xi=1∪ xi=2 ∪ ..∪ xi=x ))
=
P( j∩ xi=1)∪P( j∩ xi=2 )∪ ..∪P( j∩ xi=x )

P j∩ xi( ) = P ∅∩∅∩ ..∩∅( )
= 0

P j∩ xi( ) = P xi ∩ xi( ) = 1

P θ• | j( ) = P j |θ•( )
P j( )

=
P j |θ•( )P θ•( )
P j | i( )P i( )

i=0

n

∑
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5.4.1.2. Bayesian Disjunction  
 

Proposition 5.3.       Let  be a set of  number of observed subfeature, generated 
via Definition 5.3 we define  as; 

ω x = P x | fc ,cs( )θ+ =
2n−s

2n −1
P fc( ) I cs( )⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟

 

Proof and Semantic   Definition 5.3 demands that at least one subfeature must exhibit 
a truth assignment, to evaluate the compound feature a truth assignment. The truth 
assignment of any subfeature is independent from other subfeatures in the same 
context.  

To examine this proposition; assume that we have a set of four equiprobable 
subfeatures grouped in disjunction function, such that, 

. 

Using the notation to denote the set of all subsets of . We want to define the 

probability weight of subfeature , . 

Since the subfeature  is actually a set of all subsets  such 

that fsd ∈E  which is in bijection with and , . 

Similarly, 

, and . 

These values are a result of the hold independence assumption.  

Define the problem space , such that; .  

x s

ω

θ+ : fc , fsa fsb fsc fsd{ }
2x x

fsd P fsd( )

fsd E ⊂ fsa , fsb , fsc , fsd{ }
fsa , fsb fsc P fsd( ) =

2 fsa , fsb , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
2

P fsb fsd( ) =
2 fsa , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
4

P fsd | fsc( ) = P fd ∩ fc( )
P fsc( ) = 1

2

Ω Ω = 2n{ }



 
 

103 
 

Since, Definition 5.3 implies that all subsets evaluate to be true except one subset,  
in which none of the subfeatures is true ; the truth domain of is .  

Moreover, the probability of any subfeature  is actually number of events in 

which  is true over the problem space .  

Similarly  

 , Where  is number of subfeatures in event .  

As explained above, Now we can conclude that the probability of having  subfeature 
within true  , is actually equal number of occurrences of the subfeature over 

number of valid truth space . 

In addition, we also know that, the truth assumption of , is determined by its truth 
generalization, which is , alongside with the implication of all corresponding 

constraints. 

Considering all the aforementioned measurements, we can now compute  as per 
hold in Proposition 5.2. 

Proposition 5.4.       Let  be set of observed subfeatures generated via Definition 
5.3. To find out the truth assumption of the dependency context  we recall Bayes 

theorem as follows;  

 

Proof and Semantic   Definition 5.3 and Proposition 5.3 imply that, the truth 
assumption of the disjunction function  is conditioned by the truth assumption of 

its succeeded adjacent subfeatures.  

Therefore, if we observed set of subfeatures  in within a disjunction context such 
that, 

θ+

∅ θ+ Ω−1

P f( )

f P f( ) = #of  occrances
2n

#of  occrances = 2n P f( )

P f( ) = 2
n−s

2n
s f

s

θ+

2n−s

2n −1

x

P fc( )

ω

x
γ

γ x = P θ+ | x( ) = P θ+( )P x |θ+( )
P θ+( )P x |θ+( ) + P θ+( )P x |θ+( )

θ+

x
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x{ }∈ all  subfeatures{ }  

we can conclude the truth assignments of  in accordance with our observation and 

Lemma 5.2.  

All observed features  will be evaluated via Corollary 5.2, whereas if one feature  

in the observation set  succeeded to have a truth assignment greater than zero 

 such that ; Lemma 5.2. is satisfied, therefore  will be qualified to 

have a truth assignment computed as per Proposition 5.3.  is determined by the 
truth observations of the involved subfeatures, and it only can achieve truth 
assignment equal 1 and activate the disjunction function  , when at least one 
subfeatures exhibit a truth assignment. Likewise, if none of the subfeatures exhibits a 
truth assumption,  would be weighed a probabilistic truth assumption equal 0.  

To activate  and obtain a truth assignment such that =1, the second term of 

denominator must be equal zero .  

To examine this notion, assume that we have a set of four equiprobable subfeatures, 
grouped in disjunction function, such that, 

 

We observed set , such that    contain at least one subfeature, probability of 

 , will be  .  

Following Definition 5.3,  can only be true if at least one subfeature exhibit a truth 

assignment, therefore all sets that contain at least one true subfeature can validate the 
disjunction function, with probability equal; 

. 

θ+

f f

x{ }
∃f =ω f f ∈ x{ } θ+

γ

θ+

γ

θ+ γ

P θ+( )P x |θ+( ) = 0

θ+ : fc , fsa fsb fsc fsd{ }

x x

P x |θ+( ) P x∩θ+( )
P θ+( )

θ+

P θ+( ) =
ni

i!i=1

n

∑
2n
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Having that said, = , whereas x has at least one subfeature with truth 

assignment.  

Consequently,  , which will set the second term of the dominator to zero. 

Thus, proves the semantic of our assumption and Proposition 5.4, which suggests that 
if we observe at least one subfeature with truth assignment; disjunction function 
would be assigned a valid truth assignment. 

In further discussion, to compute the probability of obtaining  set of subfeature, such 
that  consist of  number of subfeatures  and . 

we recall conditional probability law as follows; 

 

Alternatively, 

  

Knowing that,  and probability of obtaining P(s) =

ns

s!
2n

, we can conclude 

that; 

 P(s |θ+ ) =

ns

s!
n i

i!i=1

n

∑
   , s ≠ 0   

 

Let θ+ fc , f1.. f4( )  be a Bayesian Disjunction dependency context such that, four 

subfeatures are grouped in Bayesian disjunction dependency, with a compound 
feature.  

 

x∩θ+ ∅

P ∅( ) = 0

x

x s P s |θ+( ) s ≥1

P(θ+ | s) =
P θ+( )P s |θ+( )

P s( )

P s |θ+( ) = P s( )P(θ+ | s)
P θ+( )

P θ+ | s( ) = 1 s
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Giving that the dependency context is satisfied with a valid truth assignment, Figure 
5. 10 shows the probability of obtaining s number of valid features, as per computed 
above.  

 

 

5.4.1.3. Bayesian Exclusive Disjunction  
 

Proposition 5.5.       Let  be a set of  observed subfeatures generated via 
Definition 5.4, we define  as; 

ω f = P x | fc ,cs( )θ⊕ =
1
n
P fc( ) I cs( )⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟

 

Proof And Semantic   Definition 5.4 demands that, only one subfeature must be true 
to evaluate the compound feature a truth assignment. The truth assumption of any 
subfeature in valid exclusive disjunction function could be dependent on the truth 
assumption of other subfeatures in the same context.  

To examine this proposition, assume that we have a set of four equiprobable 
subfeatures, grouped in exclusive disjunction function, such that, 

 

Using the notation , to denote the set of all subsets of . For instance, we want to 

x s

ω

θ⊕ : fc , fsa fsb fsc fsd{ }

2x x

Number of Obtained Features
1 2 3 4

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Figure 5. 10   probability of obtaining s number of valid features in 
valid Bayesian disjunction  
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define the probability weight of subfeature ,  . The problem space  is 

equal , only events with one valid subfeature will validate  semantic.  

We use binomial coefficient with falling factorial notation  to find out how many 

events in the problem space contain only one subfeature.  is number of subfeatures 
in each events; in our favor we need only one subfeature to appear in each event, to 
meet exclusive disjunction semantic, such that . 

Consequently, only  events will consists only of one subfeature. Thus, form the 
exclusive disjunction truth domain. The probability of obtaining a given subfeature in 

a valid  is . Such that, n is the number of subfeatres.  

 
From above discussion we proved that Proposition 5.4 holds the semantic of Bayesian 
exclusive Disjunction. 

To understand the nature of dependency between subfeatures in different scenarios, 
assume that truth assumption of  is still unknown. In this case, the truth 

assumption of involved subfeatures are independent of each other such that,  

and the truth assignment of any subfeature doesn’t affect the truth assignment of 

another subfeature .  

When we observe that  is valid dependency function, such that, 

, and, 
 
, where, . 

 

Consequently, , which implies that if we observed a subfeature within 

a valid Bayesian exclusive disjunction context; these infer a mutual exclusion all other 
sibling subfeatures and set its truth assumption to zero, which semantically hold in 
Definition 5.4 and Proposition 5.4. 

fsd P fsd( ) Ω

2n θ⊕

ni

i!
i

i = 1

n

θ⊕

1
n

θ⊕

P fs( ) = 1
2

P fs1 | fsn( ) = P fs1( ) = 1
2

θ⊕

P fs( )θ⊕ =ω f =
1
n

P fs1 | fs2( )θ⊕ =
P fs1∩ fs2( )
P fs2( ) fs1∩ fs2( ) =∅

P fs1 | fs2( )θ⊕ = 0
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Proposition 5.6.       Let  be an observed subfeature generated via definition 3.4 

To find out the truth assignment of  we recall Bayes theorem as follows; 

 

Proof and Semantic   Definition 5.4 and Proposition 5.5 imply that, the truth 
assumption of the exclusive disjunction function  is conditioned by the truth 
assumption of its follow adjacent subfeatures.  

Therefore if we observed an event  in within an exclusive disjunction function, such 
that, x{ }∈ all  subfeatures{ }  we can evaluate the truth assignments of  , in accordance 

with our observation and Lemma 5.3.  

Features  will be evaluated via Corollary 5.2 whereas if only one feature  in the 

observation set  , succeeded to have a truth assignment greater than zero, such that 

all other subfeatures were assigned a zero truth assumption.  

Lemma 5.3 is satisfied, therefore  will have a truth assignment computed as per 

Proposition 5.6.  is determined by the truth observations, and it only can achieve 
truth assignment equal one,  consequently, validate the exclusive disjunction function 

 ; if and only if one subfeature were observed with a truth assignment.  

By definition, if more than one observed subfeatures were observed with truth 
assignment equal 1;  cannot be valid with truth assumption  equal 0.  

To activate  , and achieve the required truth assignment, in which  = 1, the second 

term of denominator must be equal zero,  . 

Since our observation is around the subfeatures , we will study how our 

observation can set this term to zero i.e . 

Firstly, we will highlight the semantic of this term, coupled with truth set of . 

f
γ

γ f = P θ⊕ | f( ) = P θ⊕( )P f |θ⊕( )
P θ⊕( )P f |θ⊕( ) + P θ⊕( )P f |θ⊕( )

θ⊕

x

θ⊕

f f

x{ }

θ⊕

γ

θ⊕

θ⊕ γ

θ⊕ γ

P θ⊕( )P x |θ⊕( ) = 0

x{ }
P x |θ⊕( ) = 0

P x |θ⊕( )
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To answer this, assume we have a set of subfeatures E, grouped in an exclusive 
disjunction function such that ,  

Using the notation 2! ,to denote the set of all subsets of the set E, we have .  

Events with only one subfeature will qualify  a truth assignment such that  

whereas .  

As a result, we can see only E out of 2! events satisfy Definition 5.4.  

 

Alternatively, all other observations disqualify the Bayesian exclusive disjunction of 
being valid. All other observations are; 

. 

 Similarly, 

. 

Noticeably, to obtain  we exclude all events that has only one subfeature in the 

event, as per .  

Thus, . Therefore, .  

 
To conclude, t we can only achieve a valid exclusive disjunction function, such that 

 . If our observation set  contained only one subfeature and nothing else, which 
is also, prove the semantic of Proposition 5.6. 

Now, if we observed a certain subfeature with valid truth assignment (due to 
subjective assignment or dependency requirement), to what extent this would affect 
our belief about i.e ! 

E = fsa , fsb , fsc , fsd{ }

Ω = 2E{ }
θ⊕ x{ }  = E

i

i!
i = 1

P θ⊕( ) = E
2E

x{ } = Ei

i!
⎛
⎝⎜

⎞
⎠⎟i=0

E

∑ − E1

1!
⎛
⎝⎜

⎞
⎠⎟
= 2E − E

P θ⊕( ) = 2
E − E
2E

P θ⊕( )
E1

1!
⎛
⎝⎜

⎞
⎠⎟

x∩θ⊕( )suchthat  xi=1{ }is ∅ P x |θ⊕( )suchthat  xi=1{ }is 0

γ = 1 x

θ⊕ P θ⊕ | f( )
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Following proposition 5.6,   is determined by the truth assignment of 

.  

Previously, we defined  and . To compute the  we recall 

conditional probability law as follow , 

. 

According to Proposition 5.5, we can conclude that  whereas E is number 

of involved subfeatures. In addition, our analysis above had shown that .  

Consequently, 

 

, and . 

5.4.1.4. Bayesian Tautology Context 

 

Proposition 5.7.       Let  be a set of  observed subfeature generated via 
Definition 5.5, We define  as; 

ω x = P x | fc ,cs( )θT =
1
2
P fc( ) I cs( )⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟  

Proof And Semantic   Definition 5.5 imply that the compound feature is qualified a 
truth assumption, Regardless of the truth assignment of the adjacent subfeatures.  The 
truth assignment of any subfeature, is independent from other subfeatures in the same 
context.   

Therefore, all subfeatures typically have the same probabilistic truth assignment 
(when no crosstree constraints are involved). In addition, observing a truth value of 
compound feature, doesn’t necessary mean any of its subfeatures is true.   

γ f

P θ⊕( ),P θ⊕( ),P f |θ⊕( )  and  P f |θ⊕( )

P θ⊕( ) P θ⊕( ) P f |θ⊕( )

P f |θ⊕( ) = P f ∩θ⊕( )
P θ⊕( )

P f |θ⊕( ) = 1
E

P θ⊕( ) = E
2E

P f ∩θ⊕( )
E
2E

= 1
E

P f ∩θ⊕( ) = 1
2E

x s

ω
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To examine this proposition, we will assume that we have a set of four equiprobable 
subfeatures grouped in Tautology function, such that .  

Using the notation  to denote the set of all subsets of . 

The semantic of tautology context would be satisfied under any possible assignment. 
Subfeatures are also independent of each other, and there’s absolutely no dependency 
assumption between them (assuming they don’t exhibit any mutual dependency 
among them). 

 To define the probability weight of subfeature ,  . Such that , is actually 

a set of all subsets ,  

Similarly, . which is in bijection with and .  . 

Similarly,  and . 

Which concludes that; The probability of any subfeature equal  . 

In addition, we also know that, the truth assignment of  is determined by its 
generalization truth assignment, which is, P fc( )  and the implication of all involved 

crosstree constraints. 

The above analysis proves the semantic of Proposition 5.7. 

 

Proposition 5.8.       Let  be set of observed subfeatures generated via Definition 
5.5. ,To find out the truth assignment of , we recall Bayes theorem as follows, 

  

 

 θ⊤ : fc , fsa fsb fsc fsd{ }

2x x

fsd P fsd( ) fsd
E ⊂ fsa , fsb , fsc , fsd{ }

fsd ⊂ E fsa , fsb fsc P fsd( ) =
2 fsa , fsb , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
2

P fsb fsd( ) =
2 fsa , fsc{ }

2 fsa , fsb , fsc , fsd{ } = 1
4

P fsd | fsc( ) = P fd ∩ fc( )
P fsc( ) = 1

2

1
2

x

x
γ

 

γ x = P θ⊤ | x( ) = P θ⊤( )P x |θ⊤( )
P θ⊤( )P x |θ⊤( ) + P θ⊤( )P x |θ⊤( ) = 1
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Proof and Semantic   Definition 5.5 and Proposition 5.5 imply that, the truth 
assignment of the tautology function  is true among all problem space. 

 

Consequently,  which evaluate  to be always equal 1.  

To examine this proposition, we will assume that we have a set of four equiprobable 
subfeatures grouped in tautology function, such that; 

. 

When observing , such that .   is  following the 

Definition 5.5  is always true.  

We recall Bayes theorem as follow; 

 

Whereas,  is already computed via Proposition 5.6 and equal and  is 

equal  equal 1.  

By substituting these values, we conclude that . 

 θ⊤

 
P θ⊤( ) =

ni

i!i=0

n

∑
2n

= 1

 
P θ⊤( ) = 0 γ x

 θ⊤ : fc , fsa fsb fsc fsd{ }

x x ∈ fsa , fsb , fsc , fsd{ }  P x |θ⊤( )
 

P x∩θ⊤( )
P θ⊤( )

 θ⊤

 

P x |θ⊤( ) = P x( )P θ⊤ | x( )
P x( )P θ⊤ | x( ) + P x( )P θ⊤ | x( )

P x( ) 1
2  P θ⊤ | x( )

 P θ⊤( )

 
P x |θ⊤( ) = 1

2
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Figure 5. 11 Translation from 3D Printer FM into BBFM. The truth assumption of each parameter is numerically 
embedded. 

  



 
 

114 
 

5.5. Extended BBFM and Belief Intensification 

Employing conditional probability law and Bayes theorem, among other probability 
techniques; allowed us to develop Bayesian Belief Feature Model BBFM.  

Truth assumptions of any parameter in BBFM could be computed using the proposed 
mathematical notation. Parameters’ truth assumption is an indication of the parameter 
implications and level of entanglement with other parameters in the same model.  

While obtaining the truth assumption of model parameters, the model degree of belief 
starts mounting. Features’ truth assumption served in identifying the level of 
dependency among features, and the probability of obtaining the corresponding 
feature in valid product configuration. Whereas, the truth assumption of dependency 
contexts, aided to drive the dependency semantic of the involved features. Moreover, 
It framed the degree of belief of the dependency context throughout anticipating its 
satisfiability probability after reasoning. 

Apparently, computing the truth assumption of model parameters stems the model 
belief, which consequently, provides better understanding of the models’ behavior 
and interaction flow among the model parameters. 

We argue that, giving a probabilistic truth weight of each parameter will aid in the 
satisfiability process while highlighting the features actual influence.  

By quantifying the truth assumption of any feature, we allow the model designer to 
adjust the model systematically to obtain certain functionality, or improve the 
reasoning time through a change in the model belief, and subjectively intensify or 
subside some parameters truth assumption; while maintaining the dependency 
contexts legal semantic. 

In addition, obtaining truth assumptions of system parameters will improve the 
model expressiveness, by emphasizing the truth flow throughout the model 
parameters. 
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5.5.1. Physics of Visual Expressiveness in BBFM  

Visual expressiveness is distinguished by computing the number of visual variables 
present in a representation. With conviction, colour tends to be the highest in 
efficiency when it visual variables are considered. As evidenced through numerous 
studies, human sight proved to be is highly sensitive, responsive and perceptive to the 
variation in colour. The human eye captures and recognizes any variation in colour 
faster and more accurate than distinguishing between shapes. For instance, the 
variations in colour are identified three times faster than variation in shapes. 
Moreover, colour tends to be more appealing and easier to remember (Moody, 2009). 

Using the predefined probabilistic weights as a benchmark for colouring BBFM; is 
likely to improve the cognitive understanding of the model truth belief.  

After computing the truth assumption of features in BBFM, we will translate the 
probabilistic weight of each feature into “shades of gray” colouring scheme. 

Twelve shades are used to illustrate the intensity of the parameter truth assumption. 
Parameters with higher truth assumptions’ value would be assigned more shades, 
than ones with lower truth assumption.  

Moreover, a parameter with white colour is an invalid parameter, such that its truth 
assumptions’ value equal zero. Therefore it won’t be satisfied, neither exist in any 
possible product configuration.  
Whereas, parameters with black colour are core parameters, such that its truth 
assumption is equal one.  This implies that it must exist in all possible products 
configurations. 

To give better understanding of the proposed colouring technique; we will 
incorporate the colouring scheme into the 3D printer exemplar used throughout the 
whole dissertation. Figure 5. 12, shows a coloured version of Figure 5. 11. 

Noticeably, features implication on the model belief is cognitively easily recognized 
than before, where colours weren’t  introduced to the model. 
 In addition, to understand the dependency flow in the belief model; we can easily 
trace the colour change, as per shown below. Semantically, features with higher truth 
assumptions require more colour, and the opposite hold.  
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Figure 5. 12   Translation from 3D Printer FM into BBFM. The truth assumption of each parameter is denoted 
with equivalent shade of gray.
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5.5.2. Use of “colour variation” to project the “belief variation” 

 

Figure 5. 13 represents a random BBFM with relatively higher degree of variability. 
When colouring this model, we enable fast and effective recognition of the model 
belief assumptions.  
In the initial condition as per Figure 5. 13, not much information are given regarding 
the model’s validation. Thus the satisfiability of the model is still unidentified.  

 
Figure 5. 13 graphical representation of Bayesian Belief Feature Model. , before  defining the uncertainty 

measure  of model paramters 
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Figure 5. 14    below, demonstrates the probability of meeting the intended semantic of 
each all dependency contexts, in which the probability of having satisfiable 
dependency context is demonstrated using the colouring method.  

 

 

 

Figure 5. 14   graphical anticipation with “use of colour” for dependency contexts’ truth assumption in BBFM 
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When reasoning, at least all core features must be included in any valid configuration. 
To satisfy this notion, a flow of change on the model belief would be enforced, and 
thus translated   “colour variation” on both; dependency contexts and features.  

Figure 5. 15 illustrate these changes; 

 

 

 

Figure 5. 15 Colour use in BBFM. Different shades of gray are used to denote different truth weights. 
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Any proposed change on the model belief might be proposed due to different factors. 
Change might occur due to: 

1. The system engineer or the stakeholder decided to include a new feature to the 
belief base due to (evidentially reason about it) due to: 

• Functionality: It’s a required or preferred feature for the targeted 
functionality or product configuration. 

• Design improvement: It has high probability weight with high 
dependency influence on other features.  
Therefore, including it in the belief base could reduce the degree of 
variability of the model (reduce the problem space while enhancing the 
reasoning process), while maintaining almost the same possible 
outcomes  

• Its convenience it terms of Availability, whereas other features are less 
available.  
 

2. The system engineer or the stakeholder decided to remove one of the variable 
features due to: 

• It’s no longer required in most configurations; it has low probability 
assignment or even zero truth assumption. 

• The features are overpriced or expensive.  
• The features are inaccessible or unavailable. 
• Efficient reasoning: throughout reducing the model complexity. 

In the given example, if we decided to include features fm , fw in the model belief base, 

by assigning truth-value equal 1 for both features, a flow of changes would result as 
per shown in  

 

Figure 5. 16. 
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Figure 5. 16   Colour change in figure 5.16, when including features fm , fw in the BBFM belief base 

 

In the same fashion, we now decide to include features fy , fn in the model belief base. 

Figure 5. 17 illustrates the new “colour variations” of the model belief assumptions. 
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Figure 5. 17   Colour change in figure 5.16, when including features fy , fn in the BBFM belief base 

 

Finally, in Figure 5. 18 we decided to include feature f f in the model belief base. 
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Figure 5. 18   Colour change in figure 5.16, when including features f f in the BBFM belief base 

 

 

5.6. Further Discussion and Applicability  

In this chapter we thoroughly discussed the mathematical semantic of our developed 
BBFM, in which we were able to quantify the uncertainty measure of all model 
parameters. As argued previously, quantifying the uncertainty measure of model 
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parameter would provide a sound estimation of the model behavior, and estimate the 
actual implication of all model parameters. Instead of assuming the same weight 
distribution among model parameter, we now can obtain different probabilistic 
weight for each parameter according to its dependency interaction throughout the 
model parameters. This lone notion could derive many interesting applications for the 
developed model. 

By exploiting the pre-computed uncertainty measure, we would be able to perceive 
the level of entanglement between any two features in the model. This enables us to 
detect the latent non-functional interaction between these two features. Likewise, with 
every attempt to alter any model by removing or incorporating new features into an 
existing model, the implication of the new alteration can be detected easily. This 
grades BBFM as a desirable model for dynamic and growing industries, in which the 
need of incorporating and excluding some features is a constant need, such as 
electronics and integrated circuits manufacturing, wherein features are constantly 
added or removed from the original design. 

The pre-computed uncertainty measures could also be used to enhance the physics of 
the graphical representation of any model, by means of providing an advanced 
visualization, benefiting from the uncertainty measure variation. Section 5.5 proposes 
a new simple technique that can be deployed in any model to enhance its visual 
expressiveness. 

In addition, we can benefit from the obtained measure by providing an estimation of 
the average cost of any product line, through multiplying the likelihood of obtaining 
any feature and the cost of implementing this feature. 

Moreover, BBFM can be integrated into any Variability Management tool to support 
the decision-making process when configuring all possible products. By defining the 
dependency flow and the uncertainty measure variation throughout the model, this 
allow us to decide which parameters need to be included in the desired product, not 
to only achieve the anticipated functionalities but also to obtain some non tangible 
functionalities as per stability, complexity, redundancy or simplicity. 
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In chapter 6 we introduce one major application of the developed model, in which we 
provide a systematic approach to satisfy the embedded constraints in any model by 
exploiting the uncertainty measures of model parameters and utilize it to conclude the 
most apt alternatives aiding in constraints satisfaction problem. 

BBFM is based on the traditional notation of feature model; therefore any existing 
feature model can be easily translated into BBFM using the provided mathematical 
framework. Having that said, we can argue that BBFM has unrestricted potentials on 
where to be employed in software product line real life applications. Such as, 
automobile car manufacturing, diesel engines, electronics, avionics, military 
technology, aerospace engineering, embedded systems and many more. 

Although the focus of this dissertation was on software product line, BBFM can also 
be used to model any system at which the need of decisions support and truth 
quantification is a key importance. Therefore, this work can be extended and applied 
extensively in machine learning, artificial intelligence, robotics, automated decisions 
and diagnostics models (medical and troubleshooting). 

BBFM raises high potentials in term of applicability on various industries, yet the lack 
of automated computation remain a key challenge specially on large scale systems, at 
which extensive analysis and computation need to be conducted to quantify the 
uncertainty measure of the model parameters. 

Although in chapter 6 we provide different techniques to ease the computations, 
modeling on large-scale problem might be costly and difficult. This challenge is to be 
tackled as a future work and extension of this dissertation. 

5.7. Summary  

In this chapter, we introduced Bayesian Belief Feature Model BBFM, and thoroughly 
discussed the mathematical semantic behind it. 

Firstly, we started by defining the notion of BBFM and the importance of capturing 
the uncertainty nature of model parameters. 

Having that said, we derived a set of mathematical notations; quantifying the 
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uncertainty measure of the model parameters. Any obtained measure is subject to the 
model embedded belief. Model’s belief stems out of the existing semantics of the 
introduced dependency contexts, therefore different dependency context allow 
different truth domain. 

To evaluate the truth assumption of any parameter, we need to evaluate its 
dependency flow. Hence, we presented set of theorems to compute the probability 
weight of any feature in different dependency contexts. Moreover, we proved the 
semantic validity of the introduced dependency contexts using Bayes theorem and 
other probability techniques. By investigating the semantic of the used contexts, we 
were able to derive different mathematical notations to anticipate the truth 
assumption of each.  

After computing the probabilistic weight of all model parameters, we used the 
predefined values to enhance the graphical representation of the developed model. 
The obtained values were translated into shades of gray to improve the visual 
expressiveness of BBFM.  

To demonstrate our approach, we applied our analysis on different models, and 
successfully validate the obtained results.  

BBFM is a pioneering approach for modeling under uncertainty in SPL, in which; 

1. Each parameter is assigned a probabilistic weight, quantifying its actual 
implication on the model belief. 

2. The truth assumption of any feature is a result of the feature specialization and 
generalization dependency flow. Therefore, by evaluating the truth assumption 
of each feature, we will be able to trace the truth flow of this feature throughout 
the model. In other words, we will be able to measure the feature indirect 
interaction with other features, and estimate any nonfunctional interaction 
might arise. 

3. Due to the uncertainty measure, incorporating and removing new features 
would be more scalable and traceable in BBFM; as long as we maintain the 
existing semantics.  
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The use of colour, made BBFM more Self-expressive, in a fashion were we can 
understand the dependency flow, and the truth value of models’ parameters by 
simply tracing the colour variation throughout the model 
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Part V 

Reasoning 
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Chapter 6 

Reasoning under Uncertainty 

 

 

Reasoning about alternative decisions is a perplexity which presents a problematic 
challenge to the Computer Science and Artificial intelligence community. Ever since 
the earliest endeavors, there has always been a tendency between scientists and 
researchers concerning the complications in alternatives and variable choices, which 
are cross related to the complications in reasoning. The high complexity in variables 
and dependencies amongst them points out conventional presentations and reasoning 
methods are profoundly amiss. This chapter intends to bring about a contribution to 
the state of the art in regards to this challenge.  

6.1. Introduction  

In Bayesian Belief Feature Models (BBFM), different variables represent different 
functionality in the knowledge domain. Variables are grouped into different 
dependency contexts; in such a way each context implies different logical interaction. 

BBFM may need to reason about its own knowledge in the problem space, while 
maintaining the proposed semantics in the introduced model. 
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Reasoning in Bayesian Belief Feature Model refers to the idea that the model take into 
account not only core features in the problem space, but also other non-core features 
identifying different legal configurations with different functionalities. 

Whilst reasoning, decisions are made to choose between different variables and search 
for alternatives that are consistent with introduced dependency contexts and any 
involved constraints.  

Due to the dependency nature and problem’s complexity, variables need to be 
grouped in different settings. When sets of variables interact with each other in a 
logically predefined dependency, whilst sharing the same ancestor variables, these set 
of variables form a dependency context. 

In account, dependency context is a logical representation for a set of variables, in 
which the truth assignment of these variables is derived using propositional logic 
axioms and inference rules.  

By reason of the problem complexity and high level of dependency among variables, 
classical logic gates fails to capture further interaction between variables from 
different dependency contexts. All correlations among variables are imperative and 
thus must be treated crucially, which infers it should be satisfied when evaluating the 
truth assignment of involved variables. To avoid any contradiction in the belief model, 
cross-tree constraints are introduced to the problem space model, Such that it captures 
further dependencies among variables from different dependency contexts, or 
enriches the existence semantic in a given dependency context to avoid any 
information loss that subsequently might advance a false truth conclusion. Truth 
conclusion is identified truth assignment for a set of variables in an explicit 
configuration, such that the resulting evaluation is valid, complete and consistent with 
the model predefined dependencies.  

Not all truth assumptions are satisfiable even under the supposition it was initially 
consistent with the introduced dependency context.  

In consequence, when choosing a feature with given truth assumption, it is vital to 
understand the implication of this assignment on the model behavior, taking into 
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consideration whether this assumption is supporting the constraints satisfaction 
problem. 

Moreover, decisions are highly influenced by the system requirements and the model 
structure.  

Accordingly, system requirements are a set of system qualities that are desirable by 
the stakeholder or the design engineer; some of these qualities are primarily a matter 
of possible functionalities, cost, efficiency, degree of variability, system complexity, 
model scalability, configuration stability...etc.  

Decisions are made to assign a truth value for any set of variables, these decisions 
contains a set of preferred features that are ought to be present in the product final 
configuration. However, different decisions aggregate to expose alternatives that are 
most apt to the dependency flow and some preferred qualities and functionalities. 

Uncertain occurrence of model variables coupled with the problems’ degree of 
variability in BBFM increase the complexity of the constraints satisfaction problem in 
SPLE.  

This chapter addresses this problem as Uncertain Constraints Satisfaction Problem. 
Unlike traditional constraints satisfaction problems, uncertain constraint satisfaction 
problem reason about the problem space with a degree of belief, and rectify the 
imposed belief by exposing it to the predefined constraints. Due to the uncertainty 
nature of the satisfiability problem, probabilistic weight is imposed for each parameter 
throughout defining a range of satisfiable assignments that are consistent with the 
involved dependency context. Intrinsically, different probabilistic weights mean 
different degree of belief. Also, higher degree of belief means higher certainty level. 
This formulates a quite interesting observation, which is in fact actually perceived 
everyday with real life problem. When encountering any problem carrying out 
uncertainty on how to sort, this problem is firstly identified and analyzed followed by 
an attempt to investigate all involved contributing factors. Accordingly, this builds up 
having more knowledge about the problem, and the more knowledge we have the 
higher our belief goes and the closer we come to the solution. 
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In the proposed approach, the problem is handled in the same concept. First, we 
understand the problem dependency context as been modeled via BBFM. Then, we 
compute the probabilistic weight of model parameters, to anticipate its’ occurrence 
chances. Afterwards, we quantify the implication of the feature on empowering 
constraints. Meaning, the higher the occurrence probability of any features the 
stronger its constraints implication will be. In other words, if we find out that a 
specific feature has a high occurrence probabilistic weight, we can conclude that the 
implication of its involved constraints on the models’ parameters will be higher. 
Respectively and in response to the aforementioned, any imposed belief would be 
continuously revised in order to anticipate any proposed assignments’ success 
possibility. 

The proposed approach is centered on three different orientations; observation, 
decision and conclusion.  

The aforesaid are outlined as follows: 

• Observation: Reflection is given on truth assignment for a set features, in 
which we assign each feature maximum truth-value (in which probability 
weight equal one) to include it in all possible configurations. 

• Decision: Decision tends to be a domain of interest, in which we question the 
truth assumption of a given parameter to anticipate its existence on the final 
products configurations. 

• Conclusion: Conclusion settles which decisions are satisifiable and consistent 
with the model belief. 

6.1.1. Further Highlights  

This chapter tackles the problem of constraint satisfactions in SPLE by considering the 
uncertainty of model parameters. Through predefined probability distribution that 
has been obtained in using the introduced mathematical notations. The probability 
distribution forms the benchmark of the model belief, confirming the intended 
semantic of all dependency contexts and the dependency flow thorough out the 
Bayesian Belief Feature Model. When reasoning, we assign new truth-values of the 
features that are to be included perpetually on the product configurations. 
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Consequently, this will pilot to a new truth flow in the belief model; therefore, new 
probabilistic distribution of all affected parameters. The new truth assignment is 
called ‘hypothesis’ in which we enclose a set of features that are required by the system-
preferred configuration, whiles aiding in the reasoning efficiency. Moreover, when 
including any feature in the hypothesis set, it is necessary to understand how this 
selection utilities the problem satisfiability behavior. Therefore, it’s preferred to 
include variables that imply a truth flow to some of the constraint, to help exposing 
the constraints implication on the model behavior, or to simply intensify or soothe the 
constraints implications on other parameters.  

In addition, this chapter addresses the uncertain constraints satisfaction problem as an 
automated reasoner of the previously introduced Bayesian belief feature model.  

• Firstly, we provide an overview to the uncertain satisfaction problem alongside 
its properties and assets. 

• This will be tracked by our approach of reasoning under uncertainty. Our 
proposed approach will consider factorizing all constraints and extract sub-
problems.  

• Consequently, Assumptions that facilitate reducing the problem search size 
will be presented, after extracting the sub-models. 

• This is preceded by launching our optimization method to improve the 
reasoning process in the next subsection.  

• Successively, our approaches are tested by conducting in depth reflective 
experiments to testify the effectiveness of our methods, as well as analyze the 
results.  

• We will finally provide a short summary in which we recapitulate and wrap up 
this chapter by presenting headline of the used approaches and enlighten on 
the aspects of the analysis and findings. 

 

6.2. Uncertain Constraints Satisfaction Problem 

Constraint satisfaction problem comprises of set of variables, each with valid truth 
domain, along with a set of constraints that confine the encapsulated truth domains 
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when called. Each constraint must have valid truth domains that are coherent with the 
involved variables’ truth assumptions. Constraints can be seen as a set of valid 
assignment of a given variables in accordance with the truth assumption of another 
correlated variable. In an uncertain constraints satisfaction problem, we drive the 
implication of given constraints each by exposing the possible outcomes of its 
dependency context. In addition, instead of constraining whole dependency context, 
constraints will take effect only on affected domains, while unaffected domains would 
be assigned a truth assumption in accordance to its dependency context.  
Accordingly, a series of definitions associated with the uncertain constraints 
satisfaction are expounded as below: 

Definition 6.0.       An uncertain constraints satisfaction problem is 5-uple 
 where: 

•   Is a set of belief hypothesis (observation set), such that  will 

be assigned a certain truth assignment equal 1. 

•  Is a set of dependency contexts with satisfiable domains 

(regardless cross-tree constraint). is descendent of and might arise a mutual 
cross tree dependency with another dependency context  that is also a 
descendent of the same common ancestor variable . 

•   Is a set of interconnected variables, in which its truth assumption 

and satisfiability domain is defined by the semantic of its dependency context 
. 

•  Is a set of mutual dependency constraints (cross-tree constraints), 

such that each vertex  has two edges forming a mutual interaction between 
two variables . 

•  Is a revised a probabilistic weight of  and , after infusing the new 
observation hypothesis  in the problem belief.  

When including variable  in our belief hypothesis H, in which x forms a common 
ancestor of at least two variables and from two different dependency contexts  
and  with a mutual cross–tree dependency; constraining the truth domain of both. 

There’s at least one unsatisfiable assignment that might jeopardies our belief 
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assumption and invalidate it, which leaves us with the possibility of obtaining false 
assignment. Hence, there are some assignments that will not evaluate  to be 1, even 
though all its fellow dependency contexts  were initially consistent and satisfied. 

When enabling  with new truth assignment, such that ; a flow of truth 
assumptions’ adjustments would be enforced on all  specializations. This indeed 
would infer a possible increment on the involved constraints’ implications.   

In addition, all consequent dependency contexts must be satisfied and consistent with 
the new belief upgrade. Therefore, all invalid truth domains must be excluded from 
the problem truth space. 

A set of complete, consistent and valid assignments of a group of variables V is called 
world W. World W, is legal truth assignment of subset of the set of all variables V, 
such that , in which all truth assumption of all variables in the subset W must 
be consistent with the semantic of its dependency context, regardless of any mutual 
dependency that V might exercise.  

Definition 6.1.        Let P be an Uncertain CSP , with a set of variables grouped 
within the same dependency context. Possible World Poss(W),  is a truth space of all 
valid assignments that satisfies the logical semantics of the involved dependency 

contexts, after ignoring any constraints  such that . 

All possible worlds must be consistent with its dependency context. Also, some of 
these worlds might exercise mutual dependency with other dependency contexts. This 
positively might reveal a false consistency in the problem space jeopardizing the 
satisfiability assignments; possible world with mutual dependencies are to be called 
Candidate Problem.  

Definition 6.2.        Let P be an Uncertain CSP with a set of possible worlds Poss(W). 
Candidate Problem is a subset of set of all possible worlds  

Candidate Problem  Possible Worlds, such that each event entangled at least with one 
mutual dependency via crosstree constraints.  

x
λ

x ω = 1
x

W ⊆V

POSS W( ) = w1,w2,wn P w( ) > 0
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Each Candidate Problem entitled a set of satisfiable assignments called Candidate 
Domains. Thus, they are compatible with the truth semantic of the involved crosstree 
constraints. 

 

Definition 6.3.       Let P be an uncertain CSP with set of Candidate Problem. 
Candidate Domains are set of truth assumptions aroused in candidate problem, such 
that, each truth assumption is consistent with the embedded semantic of the involved 
crosstree constraints. 

Definition 6.4.       We define the satisfiability factor as the ratio of Candidate 
Domain over Candidate, 

Problem, satisfiability factor = Candidate Domain
Candidate Problem

. 

Proposition 6.1.       A problem with satisfiability factor equal one is undetermined 
problem, such that the number of existence consistent assignments are not sufficient 
enough to satisfy the given crosstree semantic. 

Proof and semantic   Proof by induction. Suppose we have a consistent sub-problem 
with crosstree constraints, in which the maximum number of satisfiable domains 
without considering the crosstree constraints’ implications equal V. When considering 
the crosstree constraints implication, the maximum number of satisfiable domains 
would drop to V-R, such that R is candidate domains. The difference between number 
of satisfiable domains before and after introducing the constraint implications is equal 
the number of constraints involved domains  , when no implication is 
found then R=0 and  . This semantically holds with our claim as the 

difference equal zero meaning no change occurred.  

The maximum difference can be gained, when .  

Suggesting, the maximum number of domains that can be imposed by constraint 
would equal candidate problem.  

V − (V − R) = R

V − (V − 0) = 0

V − (V − R) V = R
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In that case, number of satisfiable domains would become zero meaning no satisfiable 
domains can be found .  

Therefore, if similarly , no satisfiable domains can be found identifying 

undeterministic problem with satisfiability factor equal 1, which semantically proves 
the proposition. 

 

6.3. Problem Extraction and constraints factorization  

Features in SPLE are base 2 binary numeral variables, with a truth domain of zero and 
one for each singular variable. However, the truth assignments for one feature doesn’t 
necessary imply a truth assignment of its dependent feature (specialization or 
generalization). Nevertheless, it’s critical to determining the truth assignment of its 
mutual dependent feature (cross-tree constrained). That being said, due to the 
evidential and casual truth flow in BBFM, when observing a truth assignment of any 
feature, the overall model belief would probably respond to the new observation, 
concluding a new truth assumption for some dependent features (specializations and 
generalizations). The new truth assumptions can only be quantified after evaluating 
the dependency semantics of the involved dependency contexts. 

While the truth assignment of most features can be determined by singular 
observation; the truth assignment of Dependency Contexts is more demanding and 
only can be assessed through multiple observations. Generally, the truth assignment 
of Bayesian Conjunction and Bayesian Exclusive disjunction dependency contexts can 
be evaluated by a set of truth assumptions for all involved features, extending the 
binary truth assignment into a domain of truth assignment. This is unlike the case of 
Bayesian Disjunction and Tautology Dependency context, in which its truth 
assignment can be concluded from one truth observation.  

When grouping set of features in a certain dependency context, the anticipated truth 
assumptions might indicate the context truth domain. The resultant domain is a set of 
valid assignments that are consistent with the dependency context, coupled with 
invalid truth assumptions, which are inconsistent with the involved dependency 

V − R =V −V = 0

R =V
R
V

= 1
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context. Any obtained truth assumption is due to belief base, such as per core features 
and observation set, and dependencys’ flow (features specializations, generalizations 
and mutual dependencies).  

Different degrees of variability develop different truth domains. Due to the 
dependencies semantics, truth boundaries take place to limit the model behavior and 
formulate the valid truth sets for any dependency context.  

For an instance, any truth assumption of a given feature must be consistent with 
dependency contexts’ valid truth domain as well as any coupled mutual dependency 
contexts’ truth domain. 

To satisfy both truth domains, a subset of the set of the aggregated truth domains 
must be excluded from the model. This requires evaluation of the truth assumption of 
all involved parameters, making the reasoning process one of the most complex and 
expensive challenges in SPLE with ultimately an NP-complete satisfiability problem.  

Beforehand, weighting techniques to anticipate the truth assumption and the 
occurrence likelihood from one valid domain to another is by now introduced and 
acquainted with.  

In this chapter, we are going to extend our work by employing the acquired 
probabilistic value in the reasoning process; emphasizing on reasoning under belief 
uncertainty. Definition 6.0 specifies the attributes of uncertain constraints satisfaction 
problem Uncertain CSP. When observing a new feature x in the problems’ belief 
hypothesis H, this observation will advance our belief by assigning a truth assignment 
of x and set its probabilistic weight to be 1.  

To satisfy the new change in the model belief, only valid truth domains must be 
included in the feature specializations; that are consistent with the new observation. 
Moreover, any additional mutual dependency must be satisfied and consistent with 
the new truth domains. This suggests a mutual exclusion for all truth assumptions 
that are inconsistent with the new belief. Likewise, we guarantee that new observation 
is robust and satisfiable in all possible configurations.  
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The new advancement in the model belief will assist in reducing the problem space, 
through discounting a set of inconsistent truth domains, which in its turn, enhance the 
reasoning performance.  

In general, any truth assumption that’s consistent with the involved dependency 
contexts’ truth domain, is in fact consistent with the model belief until it exhibits 
mutual cross tree dependency, which semantically demand truth exclusion of any 
assignment that doesn’t meet its semantic. 

To this interest, we will marginally factories all succeeding dependencies contexts to 
extract only cross tree constraints involved context. Consequently, we will reason 
about truth domains with cross tree entanglements. 

Definition 6.5.       Let W be a possible world in Uncertain Constraints Satisfaction 
Problem P.   W has world weight such that, 

 

whereas, world weight represents the probability weight of W occurrence.  

Definition 6.6.       Let W be a possible world in Uncertain Constraints Satisfaction 
Problem P.   W has a satisfiability weight Sat weight such that, 

 

Whereas, Sat weight is a probabilistic measurements quantifying the truth weight of 
all possible assignments that contain W and are consistent with all cross tree 
constraints truth domain. 

Alternatively, Sat Weight is the probability of having a satisfiable and only satisfiable 
assignment of all truth domains that contain world W. 

If Sat Weight equal zero, this ultimately means W is not consistent with the model 
belief, therefor will not appear in any product configuration. 

world  weight ∈ 0,1( ]

Sat  weight ∈ 0,1[ ]
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However, If Sat Weight equal one this means W is always satisfiable. Concluding that 
any truth assumption contain W in its truth domain, such that W{ }∈ truth domain{ }  is 

ultimately can be satisfied. 

• Semantic Differentiations between definitions 6.5 and 6.6 

It is evidential that the more facts we know about any parameter, the more accurate 
our anticipation about the parameter’s truth assignment will be.  

When modeling, we can predict the probability of having a certain parameter in a 
given set according to its dependency context, and the type of dependency correlation 
it has with its ancestor parameter; through conditioning its existence by the existence 
of other pre-specified parameter as have been utilized by Bayes’ theorem.  

Such a notion can be denoted as  , whereas is a child feature and is its 

ancestor parent feature. This notion is of high practicality in estimating the likelihood 
of selecting one feature by itself or among other sibling features. It is also highly 
beneficial during the modeling phase to formulate our selection’s preference 
throughout choosing dependency contexts that are more likely to conclude the desired 
functionality by evaluating its valid truth domains. In addition, it’s vital to derive the 
dependency semantic among set of sibling features. 

 In Definition 6.5 we outlined this notion as world weight. Nonetheless, it is 
indispensable to argue whether this notion sufficed to capture the truth state of the 
given parameter or not.  The response for this argument would inevitably be almost 
certainly yes, until we perceive new information about some added constraints, or in 
other case, until we observed that this parameter has a degree of association with 
some cross tree constraints.  

New information means new belief, which in its turn means a forward step toward 
understanding the actual behavior of the parameter truth assignment. The new 
information that contains a constraints association is captured by definition 6.6. In 
which we anticipate the truth assumption that’s not only consistent with the involved 
dependency context but also meets the crosstree dependency semantics.  

P fc | fp( ) fc fp
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In other words, we quantify the probability of getting a specific feature in the resulting 
satisfiable configuration by opting out all its inconsistent assignments.  

This notion is unquestionably more accurate than the former one, in which false truth 
assumptions would be excluded from the prediction set.  

Observing a constraint would change the truth performance of any associated feature. 
In fact, it might conclude that a certain parameter or set of parameters will never 
obtain a truth assignment on the reasoning process or the exact opposite. 

The developed approach is deliberately studied in accordance to a designated 
example as follows: 

Example 6.1.       Consider the following Uncertain Constraint Satisfaction Problem P. 
of a given sub-problem of Bayesian Belief Feature Model. Such that, 

•  

•  

•  
•  
• For a,b,c and d respectively. 

 

 Cand(P)   Cand(P) 
a T  c T 
b T  d T 
ab T  cd F 
nil F  nil T 

 

c Cons(P)  b Cons(P)  ab Cons(P) 
c a T  b c F  ab c F 
c b F  b d T  ab d T 
c ab F  b nil T  ab nil T 

 

Table 6. 1   Dependency Contexts and Constraints Truth Domain  

H = x1
λ = λ+ ,λ⊕

V = a,b( )+ , c,d( )⊕
C = (b∧ c) =∅

ω = 0.5,0.5,0.125,0.125

λ+ λ⊕
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In example 6.1, the validity of any selected world of interest is checked to testify its 
consistency with the model belief among the existence crosstree constraint. 

When choosing any world w from the problem truth space, we start by breaking this 
world into subsets x suchthat w is an element of x w∈x . After defining all possible 
subsets; a consistency check is conducted, in which any subset that is not consistent 
with the provided dependency context got excluded. 

Now we establish a set of subsets that they are all;  
i.      Consistent with their dependency contexts.  

ii. Entangled with world w.  
We now advance the consistency check of the obtained set by factorizing each subset 
with its corresponding constraint, to exclude any subset that doesn’t satisfy the 
constraint truth domain, and the problem semantic. The attained set formulates the 
problem satisfiable domain, likewise we have determined all possible and satisfiable 
truth domains that are consistent with the problem dependency semantic, and don’t 
break the infused constraints semantic. Using the predefined probabilistic weight of 
all resulting subsets we can simply compute the satweight of world w.  

The aforementioned technique describes the general functionality workflow of the 
developed algorithm. The algorithm is sketched as Algorithm 1. 1.  

Lets consider world w , such that ; by running Algorithm 1. 1 we can 

breakdown the reasoning process as in the following: 

• Decompose world w into subset, we get a,ab;c,cd . 

• Exclude all inconsistent subsets, which fails to meet the dependency contexts’ 
semantic, we get a,ab;c . 

• Next, aggregate the dependency contexts by product all consistent subset and 
then remove any duplication, to get ac,abc  

• Thenceforth, check the compatibility of the obtained set by factorizing it with 
the constraints truth space, in which one subset doesn’t imply a valid truth 
assumption and is excluded from the set, thus the remaining subsets formulate 
the world w sastsifiable domain. Such that,  satdomain is ac  

W1 = a,c
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• Given the predefined probability distribution, we now can compute the 
satweight such that; satweight equal 
Pr(a)× Pr(c)xPr(ca) = 0.5 × 0.125 × 0.333 = 0.0208  

• Finally, the algorithm return ac ,0.0208  

This allow us to conclude that if we want to reason about , there’s only one 

domain out of all possible domains of  that is satisfiable and consistent with all 

constraints and local dependency with a probabilistic weight of obtaining this world 
satweight, suchthat satweight equal . 
Now when considering a new world, such that , the algorithm will return 

b,ab ,0.1666 . 

On another hand, when reason about a new world such that , the algorithm 

will not return any satisfiable domain, implying that this world is not compatible with 
the problem’s overall semantic, therefore doesn’t qualify any valid assignment. 
Clearly W3  is a bad decision and should be avoided when choosing world of interest.  

 

Choose w
Dec := Decompose w   
Cons := Consistent Dec

           i =1 ; j =1
           Repeat

             

∀E ∈ Cons                           

Pj := Ei ∗ Cons − E ⊂ Ei( )( )
i = i +1                                  
Pj → Product P                    

j = j +1                                   
    

          until i = n( );
Product P := Delete duplication Product P

SatDomain P := Factorization ∀P ∈Product P ∪Constraints
           z = 1 ;Satweight = 0
           Repeat

             
∀P ∈SatDomain P                                     
Satweight = Satweight + productweight(Pz )
z = z +1                                                       

         until z = j( );
Return(SatDomain P ,Satweight)

 

Algorithm 1. 1 Uncertain CSP reasoning algorithm 

a,c

a,c

0.0208
W2 = b

W3 = b,c
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World W World weight Satisfiable Domain Sat weight 
 0.5   
 0.5   
 0.25   
 0.0625   
 0.0625  0 
 0.03125  0 
 0.0625   
 0.0625   
 0.03125   

 

Table 6. 2   the obtained sat weight value for different Worlds 

 

Figure 6. 1   measure difference between weight and satweight  

 

Figure 6. 2   Satweight response versus change in number of variables and number of constraints 

a a,ab{ } 0.333
b b,ab{ } 0.166
ab ab{ } 0.0833
a,c ac{ } 0.0208
b,c nil
ab,c nil
a,d ad,abd{ } 0.0416
b,d bd,abd{ } 0.0208
ab,d abd{ } 0.0104
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Lemma 6.1.       Let P be Uncertain Constraints Satisfaction Problem P with no cross 
tree constraints involved such that . P is satisfiable among all possible worlds. 

To study lemma 6.1, we are going to revise the above analysis of example 6.1 while 
ignoring the implication of the involved crosstree constraints, if Lemma 6.1 holds this 
mean all possible worlds must obtain a valid sat weight value. 

In according to the preceding approach, we achieve the following outcomes, as per  
Table  below which proves the validity of Lemma 6.1. 

 

World W World weight Satisfiable Domain Sat weight 

 0.5   

 0.5   

 0.25   

 0.0625   

 0.0625  0.0625 

 0.03125  0.03125 

 0.0625   

 0.0625   

 0.03125   

 

Table the obtained satweight values when ignoring the constraints implications  

Definition 6.7.       Let W be a world of interest such that . The ratio between 

the satisfiability weight and world weight of x is defined as the success ratio of x.  

 

 

C := nil{ }

a a,ab{ } 0.5

b b,ab{ } 0.5

ab ab{ } 0.25

a,c ac,abc{ } 0.0625

b,c bc,abc{ }
ab,c abc{ }
a,d ad,abd{ } 0.0625

b,d bd,abd{ } 0.0625

ab,d abd{ } 0.03125

x ∈W

success ratio x( ) = sat x( )
weight x( )
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In Table 6. 3, we present the obtained success ratio of example 6.1. 
 

World W World weight Satisfiable Domain   Sat weight Success Ratio 
 0.5   0.666 
 0.5   0.333 
 0.25   0.333 
 0.0625   0.333 
 0.0625  0 0 

 0.03125  0 0 
 0.0625   0.666 
 0.0625   0.333 
 0.03125   0.333 

 

Table 6. 3   obtained success ratio of example 6.1 

The analysis commenced delivers a number of interesting properties explained as 
below: 

• By definition, we know that worlds with less degree of association with 
crosstree constraint exhibit higher success ratio.  

• On one hand, if the worlds’ set of all subsets doesn’t exhibit any crosstree 
mutual dependency, such that , this would evaluate 

success ratio equal 1. Implying that, any subset of all subset  is valid 

satisfiable, which also holds by the semantic of Lemma 6.1. 
• On a different scenario, whereas any subset of the set of all subset is associated 

with crosstree constraint, the success ratio will drop accordingly, which is a 
result of the semantic of the involved context association.  

• It is also noticeable that success ratio drops in anticipated patterns. 

In example 6.1, we can conclude that if the world W isn’t directly entangled with 
crosstree dependency constraint in a way that this world is a vertex of the constraint 
edge, then the success ratio will be as twice as the success ratio of the world that has a 
direct entanglement with crosstree dependency constraint. 

a a,ab{ } 0.333
b b,ab{ } 0.166
ab ab{ } 0.0833
a,c ac{ } 0.0208
b,c nil
ab,c nil
a,d ad,abd{ } 0.0416
b,d bd,abd{ } 0.0208
ab,d abd{ } 0.0104

∀W x( ), x Has no constraints

x ∈W x( )
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Moreover, different worlds with same degree of association with crosstree constrains 
produce the same success ratio.  

Finally, if all subsets of World W were entangled with a crosstree constraint, W is 
inconsistent with the crosstree dependency semantic such that Satweight and success 
ratio would be zero,which also holds by the semantic of propostion 6.1. 

More analysis would be observed and explicated in the experimental section. 

It is important to shed the light on this analysis as it is very vital to optimize the 
satisfiabilty problem, which is also minimal comparing with the actual problem size 
hence we reason about domain of interests.  

When deciding what world would is fit to be included in belief hypothesis, success 
ratio of this world might be a key quality among other qualities. 

Definition 6.8.       We define dominant feature as feature or set of features  x,such 
that: 

i. x is subset of the set of the possible worlds . 

ii. The success ratio of world x is equal one. 
 

Proposition 6.2.       If Possible world W, contained a dominant feature x, such that 
 then w is satisfiable with satisfiability weight greater than zero. 

Definition 6.9.       A decision s is a subjective choice of selecting a possible world 
to reason about. Decision s is bad decision such that the success ratio of .  

In example 6.1, both of  and  are bad decisions and the only way to 

optimize this decision is by changing constraints dependency semantic. This might 
not be an option in most cases, especially at advanced stages as it might change the 
product semantic dramatically and also expensive.  
Henceforth, it is a recommended to avoid bad decisions completely in the reasoning 
process.   

x ∈ Poss W( ){ }

x ∈w

W s( ) = 0

b,c ab,c
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Definition 6.10.       A decision s is good decision, only and if only, the success ratio 
of . Decision s could be optimal decision if its success ratio was the highest 

obtained ratio in the success ratios table. 

In example 6.1,  is an ultimate decision. Decision s could be a dominant decision if 

its success ratio was equal one, which only occurred if the satisfiable domain doesn’t 
have any degree of association with the introduced crosstree constraints. 

 

6.4. Optimizing Under Uncertainty 

In this section, selected methods to optimize the decision are introduced in order to 
find good decisions s efficiently, and obtain higher success ratio. As evident, finding 
an ultimate decision could be computationally costly; therefore the main focus in this 
section is to attempt improving the success ratio values of all worlds to achieve this 
goal with minimal cost.  

When it comes to the semantic of dependency context, it is mostly flexible, in which 
different contexts have different degree of variability. 
 Deploying some assumption in the original semantic, without breaking the context 
consistency, might be useful to exclude some invalid domains from the reasoning 
evaluation and decrease the problem space. The most flexible semantic can be found 
in the tautology dependency context. On the contrary, conjunction dependency 
context is the stiffest dependency context. 

Definition 6.11.       Degree of variability DoV, is a quality of dependency context 
that indicates the number possibly valid assignments for any set of variables grouped 
in this dependency context, such that these assignments are legal and consistent with 
dependency context semantic. 

If we have a set of features x such that , we might group these features 

within different dependency contexts to obtain deferent satisfiable truth domains. The 
key matter in this regard is the common domain. That being said, we can find 
common domains when producing different dependency contexts. This quality is to 

W s( ) > 0

a

x = x1, x2...xn{ }
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be beneficial, if we want reduce the search space for the optimal decision while 
maintaining the original semantic of the dependency context and narrowing the 
search space of the produced truth domain. 

A profound investigation on some possible assumption and testing its reliability is 
undertaken as follows:  

Assumption 6.1.       In a set of all subsets of features, in which these features are 
connected via Bayesian Disjunction Dependency, we might minimize the problem 
space by reasoning about truth domains that arise via Bayesian exclusive disjunction 
dependency context. i.e considering that all features are mutually independent of each 
other’s. 
We argue that this assumption will optimize the reasoning process by reducing the 
search space for good decision and ultimate decisions, without violating the semantic 
requirements of the original problem context. However, employing assumption 1 will 
conclude a naïve truth assumption for the actual problem truth space. 

In example 6.1, we have two dependency contexts. and . When employing 
assumption 6.1 both context would be Bayesian exclusive disjunction contexts , such 
that; 

 Cand(P)    Cand(P) 
a T  c T 
b T  d T 
ab F  cd F 
nil F  nil T 

 
Table 6. 4   dependency contexts truth domains 

Although the mutual dependency semantic is still the same, constraints factorization 
will be different. Such that; 
 

c Cons(P)  b Cons(P) 
c a T  b c F 
c b F  b d T 
    b nil T 

 

Table 6. 5   constraints truth domain 

λ+ λ⊕

λ⊕ λ⊕
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Table 6. 6 demonstrates the results achieved as per obeying the same reasoning and 
pruning process:  

 

World W World weight Satisfiable Domain   Sat weight Success Ratio 
 0.333   1 
 0.333   0.333 

 0.041625   0.5 
 0.041625  0 0 
 0.041625   1 
 0.041625   0.333 

 

Table 6. 6 obtained results after the reasoning about all possible worlds 

As a result of employing assumption 6.1 in the given example, the implication of 
crosstree constraints has been subsided, concluding an increment in the problem 
success ratios as shown in Table 6. 6.  

In the aforementioned example, the obtained decisions were two ultimate decision, 
five good decisions and two bad decisions. However, when applying assumption 6.1, 
the obtained decisions were two dominate decisions, three good decisions and one 
bad decision.  

 

 

Figure 6. 3    measure difference between weight and satweight 

a a{ } 0.333
b b{ } 0.111
a,c ac{ } 0.0208
b,c nil
a,d ad{ } 0.041625
b,d bd{ } 0.013875
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Figure 6. 4    satweight response versus change in number of variables and number of constraints 

In the original problem space seven out of nine (almost 77%) decisions produced 
satisfied domain. Whereas, after deploying assumption 6.1, five out of six (almost 
83%) decisions produced satisfied domains. Hence, the probability of obtaining a 
satisfiable domain is to be increased when employing assumption1. 

In addition to that, after implementing assumption 6.1; the problem search space has 
dropped by almost 33% after. This constructively fosters towards reducing the 
computation cost significantly, particularly in large scale problems.  

Moreover, all new obtained satisfiable domains are consistent and valid in the original 
dependency context. As per our example, 71% of the originally satisfiable domains can 
still be found even after applying assumption 6.1.  

However, even though substantial advantages are present, there’s a single downfall 
related to the assumption. This distinct downfall of recalling assumption 6.1 is the 
reduction of problem degree of variability, and consequently the reduction of problem 
number valid domains when compared with the original dependency context.  

 

6.5.  Searching for optimal decision  

Undoubtedly, rummaging for optimal decision is known to be computationally costly, 
as the problem space in worst scenarios could be exponential. Ultimately, some 
problem might be NP complete problem. For instance, suppose we have 20 features 
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divided equally into two sets, such that each set grouped within Bayesian disjunction 
dependency contexts. Moreover both contexts are also connected in Bayesian 
disjunction dependency context. Given the fact that, there are some features in both 
sets exhibit a mutual crosstree dependency.  

Although we started with only 20 features with binary truth assignment for each, we 
will conclude more than one million possible worlds due to the degree of variability of 
the valid truth domains. Apparently, reasoning among such massive number can be 
costly. 
Problems with large search space motivate us to propose a new method in line of 
finding conditional decisions in more practical way.  

Definition 6.12.       When employing assumption 6.1 in Uncertain CSP P, the world 
with highest obtained assignment is called conditional decision. 

In large size problems, assumption 6.1 is to be employed, as it allows a significant 
decrease in the number of possible worlds. For an instance, in the aforementioned 
example, we might be able decrease the problem size into almost only 1000 possible 
worlds. Afterwards, we run Algorithm 1. 1 to find the problem optimal decision. The 
newly obtained optimal decision will be the conditional decision of the original 
problem context.  

After determining the conditional decision of problem P; we might withhold 
assumption 6.1 from the problem definition, consequently return to the problem 
original definition, while running our algorithm subjectively. When choosing a new 
world w, we might or might not consider worlds that are correlated with conditional 
decisions potential.  
In this condition, The key difference that will play a new role is that we already 
established a new understanding about the anticipated new optimal weight. The new 
threshold forms the comparison benchmark when quantifying satweight for any new 
world. We can simply relate to the new threshold and possibly conclude how close we 
are from the optimal decision. An optimal solution must be equal or less than 
conditional solution, 

Satweight optimal( ) ≤ Satweight conditional( ) . 
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Corollary 6.1.       For a given a dependency context the satisfiability weight for any 
optimal decision cannot exceed the satisfiability weight of the conditional decision of 
the same problem. Such that;  

Satweight optimal( ) ≤ Satweight conditional( ) . 

Building on corollary 6.1, we can now anticipate the behavior of the dependency 
context more effectively, by setting a new threshold to guide our expectations. 

 Therefore, when reasoning about any possible world and after finding out the 
satisfiability weight of this world, we can conclude whether this world produces an 
optimal decision or not. Moreover, we can also quantify how far this world is from the 
optimal worlds.  

This method can be cost effective, in a sense the search can be stopped whenever we 
get an optimal world or sense the proximity of an optimal closed-enough world.  

In this way, time and effort are saved and instead of running through all possible 
worlds, which might be considerably high number, there’s an opportunity to run the 
algorithm within any time partition and terminate it at any desired time while 
sustaining the outcome as being informative enough in terms of being optimal or not. 

That being said, the satisfiability process can take any time. In addition, experiment 
results shown that usually the optimal decision satisfiability weight is very close to 
(90%-100%) to the conditional decision satisfiability weight. 

Moreover, it is possible to find some of the unsatisfiable worlds in more cost 
effectively way. Ultimately, When we recall this technique, we clearly reduce the 
problem search space, hence we can find some of the unsatifiable worlds in shorter 
time.  

Last but not least, it’s observed that worlds that directly get affected by the 
assumption have either increased its success ratio or at least maintain it.  
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Example 6.2       Let P be uncertain CSP of a given sub problem of probabilistic 
feature model. Such that, 

 

 

 

 

 
 

This particular example has the highest possible degree of variation for the given set 
of features. which leaves us with a search space among 63 possible assignments.  

When using our approach on all possible assignments, we can obtain the following 
information: 

• Number of unsatifiable assignments = 16 different assignment. 
• Assignment with optimal decisions for singular selection is  

with success ratio equal to 0.5625  

• Assignment with optimal decisions for multiple selections is
with success ratio 0.3125. 

Now, in order to reduce our search space, we recall assumption 6.1 to reform our 
dependency context to become as follow: 

 

By recalling this assumption, our search space is narrowed down from 63 to 31 
assignments.  

 

H = x1

V = a,b,c( )+ , e,d, f( )+

λ = λ
+
λ + ,λ+( )

ω =
λ+ a b c
ω 0.25 0.25 0.25

,
λ+ e d f
ω 0.25 0.25 0.25

C = c( )

C = (b∧ c) =∅

a , b , ab , d , f , df

a,d , a, f , b,d , b, f

λ = λ
+
λ + ,λ⊕( )
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When conducting the developed method, the following information will be obtained: 

• Number of unsatifiable assignments =  4 different assignment. 
• Assignment with optimal decisions for singular selection is  

with success ratio equal to 0.625 and  with success 

ratio Equal 1,  
• Assignment with optimal decisions for multiple selections is

with success ratio 0.375. 

Clearly we can see the resemblance amongst, in much smaller search space (50% 
smaller) we were able to hunt 8 out of 10 original optimal decision set (80% of the 
original optimal decisions were obtained). Only two new optimal decisions were 
generated. However these two new optimal decisions tend to have high degree of 
optimality even in the original dependency context. This provides a good 
approximation about the accuracy of our algorithm as well.  

Considering this concept, optimal decisions can be achieved more efficiently by 
reverse running the search process. In this case, instead of looking for the optimal 
decision directly in the original dependency context and probing through all possible 
assignments (which might be extremely vast and tedious task), we can employ 
assumption 6.1 as an initial step and find all optimal decisions set, then point back to 
the original dependency context and examine the resultant set there.  

In the following example we demonstrate our suggested procedure in larger set of 
features; 

Example 6.3.       Let P be uncertain CSP of a given sub problem of probabilistic 
feature model. Such that, 

 

 

 

 

a , b , ab,d , ab, f d , f

a,d , a, f , b,d , b, f

H = x1

V = a,b,c,d,e( )+ , f , j,h( )+
λ = λ

+
λ + ,λ+( )

C = e∧ f( )→∅
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To find out the optimal decision of this problem, we need to examine 255 possible 
assignments, which could be problematic and costly. Using the developed method, 
the search space ought to be reduced to only 47 (only 18% of the original search 
space), by considering simply recalling assumption 6.1, on the first set to be

.  

Afterward, all possible worlds are listed to find out which worlds tend to have 
optimal value as follows:  

• Number of unsatifiable assignments = 4 out of  47 assignments   
• Assignments with optimal decisions are  with success ratio 

equal 1. And  with success ratio equal 0.79. 

•  with 

success ratio 0.58. 

Consequently, the resultant set of assignments is examined in the original dependency 
context, the results are as follow: 

• First group obtained satweight 0.140625 with success ratio 0.5625. 
• Second group obtained sat weight 0.12890625 with success ratio 0.515625. 
• Third group obtained satweight 0.00933203125 and 0.018066406 with 

success ratio 0.2890625. 

Potentially, when addressing all possible assignments, it is settled that no assignment 
will have Satweight or success ratio higher than these obtained values, thus making 
these assignments the optimal assignments. 

In the above discussion, we demonstrated a practical technique to optimize the 
reasoning process and reduce the search space for the developed algorithm. 

Since our belief model is based on a set of uncertainties, any new information, 
measurement, threshold or observation is a forward step toward more accurate 
anticipation of the actual results. 

V = a,b,c,d,e( )⊕ , f , j,h( )+

a , b , c , d

j , h

a, j , a,h , a,hj , b, j , b,h , b,hj , c, j , c,h , c,hj , d, j , d,h , d,hj
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6.6. Experimental Results 

In this section, we present the evaluation Uncertain CSP notion.  Our method is 
introduced in which a series of variations of a given Uncertain CSP P are experimented 
to deliver better understanding to the reasoning process, in order to instigate the path 
of the problem evaluation.  

The experiment conducted facilitates the following: 

• Pinpoint and define the uncertainty problem P. 
• Evaluate and experiment the given problem within varying contexts 

semantics. 
• Document and analyze the outcomes. 
• Gauge the reliability of our suggested approach and determine its 

potentials. 

By the mean of experimentation, we showcase how the method used is a constructive 
step towards overcoming the problem addressed.   
Furthermore, this section validates how our method can be used derive an efficient 
reasoning strategies by taking into consideration the desired outputs and reason about 
it. Understanding the problem behavior, during reasoning process, allow us to modify 
the problem model in order to respond to the problem functioning and meet the 
projected results. 

 At first it is necessary to define and establish the problem to be considered in this 
experiment; 

• Problem Definition  

Consider the following uncertain constraints problem P = H ,λ,V ,C,ω  such that; 

 

 

 

H = X

V = a,b,c( ), d,e, f( )
C = c∧ e→∅
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When expending our designated method, we will be able to evaluate the given 
problem by considering different variations of the same problem by changing the 
degree of variability ‘DoV’ within it.  

Bearing in mind the degree of variability of any problem is a result of the semantic of 
the involved dependency context for the given set of variables, it is pragmatic to 
adjust P by imposing different combinations of different dependency contexts , and 
validate that all possible degree of variability are considered. 

In the given experiment, 12 different combinations4 are to cover all possible degree of 
variability and any possible combinations of dependency context. Table 6. 7 
demonstrates all the experiments’ settings of the deliberated sets of dependency 
contexts.   

 

Table 6. 7   dependency contexts combinations, used in the experiment 

 

It’s firmly comprehended that different combination of dependency contexts does not 
exclusively imply different degree of variability.  
Conversely, it also implies different levels of complexity along with different 
probabilistic weight of the involved variables, in addition to varied implication of the 
involved crosstree constraints. By varying the dependency context, it is likely to get 
different numbers of possible truth assignments of the involved variables. 
Subsequently, number of times that crosstree constraints implication took effect.  

                                                
4 This excludes Bayesian Tautology Dependency Contexts, and any sub model using a combination of 
only Bayesian Exclusive Disjunction Dependency Context.  

λ

Dependency Context

λ•

λ• λ⊕

λ• λ+

λ• λ•

λ+ λ+

λ+ λ⊕

λ⊕ λ⊕

                               Dependency Context

λ+

λ• λ⊕

λ• λ+

λ• λ•

λ+ λ+

λ+ λ⊕

λ⊕ λ⊕
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In this manner, it is feasible to argue that by running the developed method on all 
possible combinations within varying dependency context, we prove the reliability of 
this approach and test its capability. In addition, we establish its likelihood to work on 
any possible kind of problem to be probably encountered in real life application.  

Entry 6.1.       Firstly, consider the combination with lowest possible degree of 
variability where only Bayesian Conjunction Dependency Context is allowed in the 
problem definition such that; 

 

Using our approach, it’s noticeable that this problem is unsatisfiable under the given 
constraints assumption. This result doesn’t contradict with the semantic of this 
problem; in fact, it’s rather anticipated and compatible with proposition 6.1, in which 
we conclude that P is undeterministic problem with satisfiability factor equal.  

Entry 6.2.        We can only have satisfiable assignments by changing the involved 
dependency context. Thus leading to entry 2 which implements the next variation of P 
such that;  

 

Using our approach, we can conclude that P is semantically valid with a possibility of 
having two different satisfiable assignments, which are legally valid and consistent 
with the problem semantic.  

Figure 6. 5 demonstrates the graphical representation of the numerical data as part of 
the obtained results when using our approach.  

By examining Figure 6. 5(a), we will notice that, P succeeded two satisfiable 
assignments and failed to satisfy one assumption. 

Figure 6. 5(a) shows the probabilistic weight of all involved assignment s. In such a 
manner, all worlds exhibit a truth assignment when crosstree constraints are ignored, 
in which the three possible worlds had the same weight, which is equal 0.3333 (refer 
to Figure 6. 5(a)). 
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Figure 6. 5   a) difference between satweight and weight in entry 6.2  
b) Satweight behavior in entry 6.2 

When considering the involved constraints, the probabilistic weight of these worlds 
would drop significantly due to the constraints semantic as shown in SatWeight plot. 
Accordingly, one world would be detected as unsatisfiable world.  

Figure 6. 5(b)  illustrates the influence of the number of variable and constraints on the 
SatWeight value. Based on the plot evidence, we observe that when number of 
associated constraints is zero, P obtains the highest SatWeight assignment. 
Respectively, the SatWeight value drop when number of associated constraints 
increases. 

In the given problem settings, numbers of variables were fixed in all worlds. 
Therefore, it is not feasible to detect the terms in which the change in number of 
variables affect the SatWeight values. 

Accordingly, we manage to understand the behavior of similar problems where the 
value of SatWeight is always minimal with high potential to have unsatisfiable 
assignment due to the low degree of variability. 

Entry 6.3.       Considers the case in which increasing the degree of variability is 

desired, such that; 
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Apparently, this consideration will drive more possible assignments due to the 
increase in the problem degree of variability. 

 
  

 
Figure 6. 6 favors in supporting and confirming the above statement; as an elaboration 
of the weight plot, we observe that the number of possible assignments has increased 
from 3 in the previous settings to 7 assignments in the current setting.  
However, when looking at the SatWeight, which is enforced by the constraints 
semantic, constraints implication on P is highly noticeable. Relatively, it affects the 
problem satisfiability behavior, not only by dropping the probabilistic weight from 
0.3333 at max (as per entry 6.2) to 0.0634 at max (as per current entry), but also by 
mounting four unsatisfiable assignments.  

In Figure 6. 6, we observe logarithmic decay in the SatWeight value while changing 
number of associated variables in the world of interest and when none of the variables 
entangled with a constraint. The highest SatWeight value has been detected when the 
number of variables where minimal. 

The logarithmic response would change when variables exhibit association with 
crosstree constraints; such that number of constraints is increasing.  

Moreover, Figure 6. 6(b) demonstrates the linear relationship between number of 
variables, SatWeight value, and the number of involved constraints in any world.  On 
one hand, the SatWeight has the highest value when the number of constraints is 

(a) (b) 
Figure 6. 6   a) difference between satweight and weight in entry 6.3  

b) Satweight behavior in entry 6.3 
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minimal.  Oppositely, on the other hand, the SatWeight becomes zero when the 
number of constraints reaches its maximum. 

Entry 6.4.        To have a better understanding of the constraints implications; we 
will consider a new combination in which; 

 

Figure 6. 7 demonstrates problem P behavior when inducing the new context 
combination.  

Due to the new context semantics, P exhibits higher degree of variability. Hence, 
number of possible assignments has increased significantly from 7 (as per entry 6.3) to 
21 assignments with highest weight of 0.0625 and the minimal is 0.01562.  

 

 

 

 

 

 

 

When taking into consideration the crosstree constraints semantic, 4 out of the 21 
assignments would exhibit unsatisfiable assignments. Noting that the difference 
among world’s weight and SatWeight is not as high as in the other combinations, the 
highest obtained SatWeight assignment is 0.041666. 
 

Figure 6. 7(b) displays the change of SatWeight values with respect to the variation in 
number of variables and involved constraints. As evident from the aforementioned 
cases, SatWeight tend to exhibit logarithmic response as the number of variables 
changes. 
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Figure 6. 7   a) difference between satweight and weight in entry 6.4  

b) Satweight behavior in entry 6.4 
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Adding up to the interpretations, an interesting observation displays the decay of the 
usual logarithmic response SatWeight and number of variables becomes more linear 
(at worlds with low SatWeight). This is because of the linear increment of the number 
involved constraints. When number of constraints is maximal, SatWeight value 
dropped to zero.  
 

Furthermore, the plot also evinces that SatWeight value decreases in a linear 
relationship when the number of the constraints increasing linearly.  

Entry 6.5.       Now we are going to increase the degree of the variability of P by 
considering a new combination; such that; 

 

Semantically speaking, higher degree of variability implies more possible 
assignments, which is our case where the numbers of assignments have increased 
from 21 (as per entry 6.4) to 49 possible assignments. 

According to Figure 6. 8(a), when considering the crosstree constraint, 16 out of the 49 
assignments will be unsatisfiable.  

Moreover, we discern that the highest SatWeight assignment value is 0.0803, which is 
significantly smaller than the equivalent weight value of the same world which was 
equal 0.25. 

  

Figure 6. 8   a) difference between satweight and weight in entry 6.5  
b) Satweight behavior in entry 6.5 
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Figure 6. 8(b) provides clear evidence how SatWeight responds logarithmically to 
increase of the number of involved variables.  

As a result of the strong logarithmic characteristics of P, the dominancy of the 
logarithmic behavior extend its effect on the linear response between crosstree 
constraints and SatWeight imposing some logarithmic decay along the linear 
response, Figure 6. 8(b) marks that crosstree constraints tend to have semi logarithmic 
behavior with Satweight value, however the slope of the decay is still relatively high. 

Generally, we can establish that P tends to have a more logarithmic reasoning 
behavior, when the degree of variability increases.  

Entry 6.6.       To have a better understanding of the previous observation, we are 
now going to increase the degree of variability by considering the following 
combination;  

λ = λ
+
λ + ,λ+( )  

In this combination, P obtains its highest degree of variability with 63 possible truth 
assignments.  
As shown in Figure 6. 9(a), the highest obtained weight value is 0.25, whereas highest 
assignment SatWeight value is 0.140625. Moreover, 16 assignments have zero 
SatWeight value. 
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Figure 6. 9   a) difference between satweight and weight in entry 6.6  

b) Satweight behavior in entry 6.6 
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Figure 6. 9(b) confirms our previous observation, in which the increment in the degree 
of variability enforces more logarithmic behavior of the satisfiability process.  
In this problem setting, we observe the logarithmic response between the number of 
constraints and SatWeight, inducing more logarithmic response between the number 
of constraints and the number of variables.  

Entry 6.7.       Now we are going to consider a new combination whereas;  

 

According to Figure 6. 10, the new combination leaves us with nine possible 
assignments with equal probable weight value of 0.015625. After considering the 
crosstree constraints implication, one of these assignments will be unsatisfiable with 
zero SatWeight value.  

Moreover, we observe that some assignments maintained the same probabilistic 
weight before and after considering the crosstree constraints. Due to the high 
independency level among variables (due to the problem dependency semantic) 
constraints didn’t take affect on many possible worlds, achieving high Satweight 
value comparing with other combinations.  

This observation is compatible with assumption 6.1 and confirms that when imposing 
Bayesian Exclusive Disjunction dependency context; crosstree constraints implication 
would be reduced accordingly.   
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b) Satweight behavior in entry 6.7 
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Entry 6.8.       Now we will consider a new combination whereas; 

 

Due to the low degree of variability the problem qualified only three assignments 
with maximum weight of 0.5. When considering the crosstree constraints implication, 
one of these assignments exhibit unsatisfiable assignment see Figure 6. 11(b).  

 

 

 

As a result of the low degree of variability, the relationship among number of 
variables, constraints and SatWeight tend to be linear as demonstrated in Figure 6. 
11(b).  

Accordingly, due to the low degree of variability, P would be highly influenced of the 
linear correlation Satweight and number of involved constraints, extending this 
behavior on overall problem behavior. Whereas, the expected logarithmic response 
between number of variables and Satweight is weakly characterized as a result of the 
lower degree of variability. 

Entry 6.9.       A higher degree of variability can be achieved when considering the 
following combination; 
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Figure 6. 11   a) difference between satweight and weight in entry 6.8  

b) Satweight behavior in entry 6.8 
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7 possible assignments are produced by this combination; highest weight value 
achieved is 0.0625. After considering the constraints implication, one assignment 
would be disqualified as valid assignments as shown in Figure 6. 12(a).  

 
 

 

A very interesting observation to be noted is, when exclusively examine truth 
assignments produced from context of higher independency level (in this case 
exclusive disjunction), the obtained SatWeight values are either remain the same as its 
correspondent weigh value or have been decreases in a reasonable amount. Whereas, 
assignments produced via context with higher dependency level (Conjunction 
dependency context) dropped its SatWeight significantly (almost forth of its 
correspondent weight value). 

Figure 6. 12(b) also confirms this observation, when four variables are present, which 
are a result of incorporating the conjunction context to the inclusive disjunction 
context, SatWeight curve decay linearly due to the prominence of the low degree 
variability context behavior. 

On the same note, if the number of variables was one, which only can be achieved 
when we only consider the higher degree of variability exclusive disjunction, 
SatWeight decay tend to be corresponding logarithmically as observed in Figure 6. 
12(b). Still, the number of crosstree constraint has linear effect on the SatWeight value.  
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Figure 6. 12   a) difference between satweight and weight in entry 6.9  

b) Satweight behavior in entry 6.9 
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Entry 6.10.       Entry 10 shows a Higher degree of variability to be obtained by 
considering the following combination such that; 

λ = λ+ λ•,λ+( )  

 

 

Figure 6. 13 serves as a confirmation to the previous observations, in such a way it is 
discerned that the difference between weight and SatWeight values is bigger for the 
assignments coming from context with lower degree of variability, when judged 
against the assignments coming from context with higher degree of variability.  

In Figure 6. 13b, we remark upon the logarithmic response between SatWeight and 
number of variables. When fixing number of constraint to 1, we encounter 8 possible 
assignments in which 4 of these assignments are derived from context with higher 
degree of variability (Bayesian disjunction), while the other 4 assignments are 
composed from both contexts. 

Patently, the higher degree of variability context is dominant on this sector and as a 
result, the logarithmic relationship with satweight value is more visible at this sector, 
unlike other sectors where’s the logarithmic behavior is not as visible. 

Entry 6.11.       In this entry we present the next combination in which we try to 
increase the degree of variability such that; 
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Figure 6. 13   a) difference between satweight and weight in entry 6.10  

b) Satweight behavior in entry 6.10 
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As manifestly marked from Figure 6. 14, and due to the achieved high degree of 
variability coupled with the degree of independency, SatWeight tends to respond 
more logarithmically with the change in number constraints and number of involved 
variables.  

Also, the effect of the constraints have been reduced in which only 4 out of 31 
assignments are classified as invalid assignments, which is due to the independency 
nature of the imposed exclusive disjunction.  

Entry 6.12.       In sequence of formulating a clearer understanding, entry 12 impose 
more independence contexts whereas; 
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Figure 6. 14   a) difference between satweight and weight in entry 6.11  
b) Satweight behavior in entry 6.11 

Figure 6. 15   a) difference between satweight and weight in entry 6.12  
b) Satweight behavior in entry 6.12 
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Figure 6. 15 presents an interesting observation, due to nature of the exclusive 
disjunction context; the independency level in this problem has been increased. 
Consequently, this succeeded to reduce the degree of variability.  

However, on the other hand, it also has a direct effect on subsidizing the constraints 
implication on SatWeight value.  

From Figure 6. 15(a), we only detect one assignment out of 15 assignments, thus 
disqualify the crosstree constraints requirement.  

In addition, when referring to Figure 6. 15(b), we distinguish the logarithmic behavior 
between number of constraints and SatWeight value. Besides, as a result of decreasing 
the degree of variability, the relationship between number of variables and SatWeight 
conspicuously has become more linear. 

 

6.7. Discussion  

From the analysis above we were able to determine some observations as discussed 
below: 

In any uncertain CSP, interaction between variables is limited by the involved 
constraints and existing dependency context. Different dependency context allow 
different interface of the problem. In addition to that, each dependency context has 
different degree of variability, resulting higher or lower set of truth assignments. 
When two or more dependency contexts aggregate together, the crosstree constraints 
effect on the satisfiability of the problem become more prominent.  Different 
techniques can be imposed to minimize the constraints effect and achieve optimized 
satisfiable problem. 

Moreover, It’s also important to notice that the arrangement of dependency context 
combinations has a crucial effect on the system’s satisfiability behavior. Different 
arrangements of dependency contexts result in different degree of variability, which 
in its turn has a direct effect on the constraints impact; as have been shown above and 
demonstrated in Figure 6. 16.  



 
 

171 
 

Considering these observations, we argue that not only we achieve better 
understanding of the problem reasoning behavior, but at same time we introduce 
some techniques to optimize the reasoning process and reduce complexity time 
during the modeling stage and even after. 

The analysis above evidenced that in any Uncertain CSP, SatWeight value responds 
linearly with the change of number of involved crosstree constraints. Besides, the 
problem degree of variability tends to have logarithmic effect on the SatWeight value. 
Higher degree of variability means more logarithmic response, and vice versa. 

 

 

Figure 6. 16   Uncertain CSP behavior under different dependency configurations 
 

Manifestly, problems with low degree of variability and high number of constraints 
have an obvious linear reasoning behavior. This results in the likelihood of the 
SatWeight value to drop faster and the chances of having unsatisfiable assignments to 
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be relatively high. On the contrary, problems with high degree of variability and low 
number of constraints will tend to have logarithmic reasoning behavior with higher 
success chances. 

Having that said, we argue that we can optimize the satisfiability outcome by 
inducing higher degree of variability in the problem, which will result to increase the 
logarithmic behavior in the problem and enforce this change on the linear response 
between number of constraints and Satweight value, making it more logarithmic as 
have been revealed in the analysis above.  

Introducing a new degree of variability coupled with degree of independency in the 
problem will reduce the crosstree constraints effect as well as formulating a 
logarithmic effect on the SatWeight value. 

In this manner, the degree of variability can be increased by either introducing 
disjunction dependency or exclusive disjunction dependency into the problem. 

When engaging exclusive disjunction dependency to the problem, a significant 
decrease to the crosstree constraints effect will take place , due to the independency 
nature, will exist, and the change between weight and SatWeight value would be 
minimal and sometimes zero (see entry 6,7 and 6.12). However, the downfall would 
be arising as a reduction in number of possible assignments.  

Moreover, there is a great possibility to reduce the effect of crosstree constraints and 
make it even logarithmic by inducing Disjunction dependency to the problem (for 
instance see entry 6.4, 6.5 and 6.11). Likewise, we will allow SatWeight to respond 
logarithmically with number of constraints and number of variables in addition of 
having more possible assignments. Conversely, when speaking of its downfall, the 
change between weight and SatWeight will be higher in comparison to the previous 
case as evident throughout the whole experiment.  
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6.5. Summary  

In this chapter, we were able to extend our work by introducing a new reasoning 
mechanism, tailored for the developed BBFM. 

We started by highlighting Uncertain CSP characteristics. Thereafter, an extensive 
elaboration of the developed method had been discussed thoroughly. 

Reasoning in SPL is one of the most expensive challenges. When it comes to 
constraints satisfaction, reasoning might arise NP-complete problem. 

In our approach, we first extract the problem dependency context; to specify its truth 
domain. The obtained truth domains are, thereafter, marginally factorized with the 
truth assignment of the involved crosstree constraints. While taking into account the 
predefined uncertainty measure; the developed algorithm finally conclude the valid 
assignments that satisfy the existing dependency, constraints semantic and any 
observations. Moreover, each satisfiable assignment is to be coupled with uncertainty 
measure in accordance with the embedded observation. 

To enhance the algorithm performance, we introduced several techniques aiding in 
reducing the problem space size, and the search for optimal observations. 

Finally, we validated the developed algorithm through out set of experiments, each 
representing a new sub-model with different dependencies, variability, and 
complexity. The obtained results demonstrated that, the developed algorithm is 
reliable and efficiently help the designer to understand the problem behavior under 
different sittings. 
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Conclusion 

 

 

 

 

 

 

 



 
 

175 
 

 

 

 
 

Chapter 7 

Conclusion 

 

Important decisions are made based on Feature Models. After decades of research in 
SPLE, different approaches have emerged for creating and managing variability 
models in SPLE (see chapter Managing Variabilities). Nevertheless, all proposed 
techniques exhibit some sort of limitations concerning dependencies’ semantic and 
non-direct interaction among model parameters. (Apel et al., 2013a; Benavides et al., 
2010), and consequently, provide unclear support for the reasoning process thereafter.  

To capture the actual semantic existing in the feature model, one should consider the 
valid implication for each parameter on the overall model. Moreover, when defining 
each parameter real implication, we will be able to anticipate the model outcome and 
features behavior in the latter stages. By underlining features behavior, we would be 
able to quantify the model possible functionalities in the early design stage. 

This thesis presented a novel approach to quantify features implications and 
anticipate the truth assignment for these features in all possible products 
configurations. After assigning truth weights for all features, we use these 
measurements to enhance the graphical representation of the introduced feature 
model by integrating the developed model with use of colour, such that each colour 
emphasize different truth value. 
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The predefined measurements are used later during the reasoning process, in which 
we developed a mathematical reasoner to satisfy about the model constraints 
throughout a consideration of the given probabilistic weight for each parameter.  

First, we started this research by conducting a Systematic Literature Review 
identifying the current modeling techniques used in SPLE. Next, we evaluate each 
technique to highlight its qualities and determine its usage and limitation as been 
instituted in the literature. After defining each modeling technique and highlight its 
shortcomings, we drafted a comparative study to conclude the pros and cons of each 
used model.  

Based on the findings of the previous study, we were able to identify the Knowledge 
Gap as have been discussed in section 4.4. 

To overcome the knowledge gap, we integrated the use of Bayesian Belief Networks 
BBN with Feature Model FM, producing a probabilistic feature model capable of 
capturing the introduced dependency semantic found in FM. 

The developed Bayesian Belief Feature Model BBFM is a mathematical framework to 
model and manage variability model in SPLE by quantifying the truth uncertainty of 
all model parameters. BBFM support a set of theorems and mathematical notions, in 
which we enable the model designer to assign a probabilistic weight for each feature, 
indicating the truth assumptions and the occurrence likelihood for all features in 
BBFM. While quantifying the truth probabilistic weight for models’ parameters, we 
can anticipate the truth flow throughout the model parameters.  

Afterwards, we extent these analysis to compute the truth assumption of model 
dependency contexts by anticipating the probability of obtaining valid context in 
which the dependency semantic is met and all involved constraints are satisfied. 

The obtained analysis formulates the model belief network, which mainly originated 
from the truth assignment of core features and bounded by the semantic of crosstree 
constraints. Thus are used to colour the BBFM in shades of gray fashion, where each 
model parameters will be assigned a colour shade in corresponding with its truth 
assumption. This allows better visualization of the model belief base, while 
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emphasizing the truth flow, features implications and interaction throughout the 
model. 

Successively, we demonstrated how the model belief could be changed subjectively 
when deciding to include some model parameters in the belief base and trace the 
anticipated changes graphically in the same exact fashion discussed above. 

After developing BBFM, we continued this work by creating a mathematical reasoner 
to tackle the problem of constraints satisfaction in SPLE. The developed reasoner is a 
state of art reasoning technique; the designed approach is a result of integrating the 
traditional constraints satisfaction problem and reasoning under uncertainty 
theorems. Nevertheless, it was specially designed and tailored to reason about BBFM. 
We were able to mathematically prove the validity of the developed approach and 
demonstrate its functionality through out set of examples. When reasoning using the 
developed algorithm, we will be able to anticipate the probability of having a 
satisfiable assignment for any set features in BBFM. Moreover, the any unsatisfiablity 
would be detected when using the developed approach. 

To testify the developed approach, we conduct a set of experiments compiling 
different satisfaction problems with different attributes. The outcome of the 
experiments proved the model functionality and provided insightful observations 
about the satisfaction problem behavior under different settings. 

In the next section, we highlight the directions of our planned future work. 

7.1. Future Work  

As future work, we will continue to extend this work by creating a MatLab Toolbox to 
automate the introduced analysis. For example, after defining the problem knowledge 
domain, we translate the intended semantics into blind BBFM, in which we don’t 
quantify the model parameters probability weight. Afterward, we define the model 
belief base, then use the existing semantics and the belief base to derive our 
calculation using the designed toolbox. The toolbox is a mathematical implementation 
of the aforementioned theorems and techniques, it consist of all the introduced 
equations and theorems.  
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We also encourage the researchers to develop variability management tool, such that 
we will be able to manage the modeling problem by considering the probabilistic 
weight for all model parameters.  

The developed tool must be a comprehensive management tool, in which we cover all 
different key aspects of SPL ranging from the model design to products configuration. 
This enables the user to enhance the design accordingly, by either providing 
subjective truth assignments for some model parameters or highlighting 
inconsistencies and dead features when quantifying the uncertainty measurements. 

Different theorems can be employed in this framework to quantify new attributes of 
any software product line. Such as the use information theory to project the model 
entropy into countable information whereas, the key input is the computed 
uncertainty measures. 

In addition, we would extend this work by providing a mathematical approach to 
estimate the number of possible valid products under different settings (observation 
and contexts). 

Ultimately, our goal is to inspire other researchers to incorporate this work with other 
automated analysis, whereas the uncertainty nature of model parameters is a key 
attribute and should be considered in all stages. Moreover we urge to design a 
comprehensive tool capable of managing the variability, modeling and reasoning SPL 
while considering the degree of uncertainty arisen in each problem. 
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