Enhancing Accuracy in London's Air Quality Data Analysis: Addressing Bias through A Comprehensive Framework ### **Ejaz Hussain** Senior Data Scientist (UK Civil Services) M.Sc., MBCS, FHEA, MCSE, PhD Researcher (DS) # Why Data Science is Crucial for Climate Change Crisis? - Predictive Modelling And Forecasting - Data-driven Policy Making - Monitoring And Tracking Climate Changes - Measuring Carbon Footprint - Public Awareness And Education "Data science and Al represent two of our most powerful assets in the fight against climate change. Now is the time to re-imagine the way we conduct climate science research and address the crisis head-on" # The Research Problem - Identify How and What to Statistically Measure? For i.e. merging multiple air quality datasets with incorrect pollutant scales or replacing too many outliers for machine learning models. - Evaluate Existing Frameworks: like, IBM AI Fairness 360 [2] - **Bridge BIAS:** Does existing frameworks include data bias? What are those gaps? - A Scoring Ladder: Apply a novel statistical approach to reduce BIAS in air quality outcomes - Re-Evaluate the Difference # The Research Scope London, United Kingdom ## The Research Lab & Methodology ### Air Quality Data Analysis 8 Key Stages Awareness on Air Quality Variables and Pollutant Scales – S1 Data Collection Methods and Techniques – S2 Data Cleaning and Preparation – S3 Exploratory Data Analysis – S4 Statistical Data Analysis – S5 Time-Series Predictive ML Modelling – S6 An example of a typical air quality monitoring station [3] Data Validation – S7 Deployment & Communication – S8 # The Research Lab & Methodology Air Quality Data Analysis Life-Cycle ## A Scoring Ladder (Algorithm) A Contribution to Research A step-by-step statistical method to detect and score BIAS in Air Quality Data Analysis **Bias Check** Bias Scoring ## A Scoring Ladder (Algorithm) A Contribution to Research A step-by-step statistical method to detect and score BIAS in Air Quality Data Analysis | Bias Index | Classification of Bias | Data Anaysis Stage | Known AQ Bias Risks | Checklist for AQ Bias and
Scoring | Supported
References | |------------|---|--------------------|--|--|---| | 1 | Historical Bias | S1 S2 | Under-repsentation of air quality
pollutant Unreasonable timeline selection for a
Dataset United States of the State States Sites (Hot Spot) Selections | To evaluate AQ pollutant(s) Representation Analysis in S1,S4 2) To determine sufficient timeline for data extraction in S2 3) To examine AQ Monitoring Sites in S1,S2 | Check Overhall Chapter 3 for Supported Chapters | | 2 | Business-Orientated Bias | S1 S2 | Business own Aims and Objectives for
desired Outcomes Jo Data Selection Preferred Criteria Monitoring Site Preference for
Targeted Outcomes Hereing Site Preference for
Targeted Outcomes Hereing Site Preferred Data Samples (Closed Datasets rather than Open Datasets) Juban vs. Rural Area's Reprsentations | 1) Question and Reasoning on Business Context and Objectives 2) Fair Selction of Data Samples 3) To examine AQ Monitoring Sites in \$1,52 | | | 3 | Policy-driven Bias | S1 | Inappropraite use of Supplied
Sampling Data Negative Policy-driven Illusions &
Opinions Blind Trust | AQ Policy Awareness Contribution of Local AQ Factors AQ Broader-Context Policy Awareness | | | 4 | Environmental Bias | S1 S4 S5 | Humidity Factor Temperature Factor Weather Conditions Physical Obstacles Unstable Power Supply | AQ Sensor(s) Sensitivity Analysis Awareness on Physical Location and any Known Obstacles Statistical Data Consistency Checks | | | 5 | Data Measurement Bias | S1 S2 S3 S4 S5 | 1) Unfair Feature(s) Selection 2) Lack of Awamess & Subject Matter Expertise 3) Air Pollutant(s) Incorrect Measuring UNITS 4) Preferred Selection Criteria on Data 5) Feature Rep. Not not meeting RWD Interests | 1) Domain Expertise and Awarness
2) Fair Feature(s) Selection Process
3) Statiscial Based Test for Feature(s)
Correlational Sudy | | | 6 | Algorithmic Bias | S3 S4 S5 | Unfair Feature(s) Selection Biased Test and Evaluation Data sets Flawed AD Training Data set Heaved AC Training Data set Heaved AC Selection Criteria Prejudicated Assumptions Preferred Decision Making Outcomes | Data and Model Transparency Fair Feature(s) Selection Process Algorithm Accountability | | | 7 | Aggregation Bias | | 1) Unfair AQ Data Aggregation(s) 2) AQ Time Period Miscalculations 3) Flawed Relationsrips biw Air Pollutant's (Variables) 4) Judgmental Assumptions 5) Inappropriate Data Practices 6) Outcomes Focused | Sensitivity Analysis for Correlational
Patterns blw Nir Pollutant's
2) Fair Use of Aggregations in Data
Analysis 3) Effective use of Data Visualisations
(Relationships blw Pollutant's, Variable
Representation in EDA and then SDA
Stages) | | | 8 | Sensor-led Bias | S2 S3 S4 S5 | Noisy Factors Poor Sensor Sensitivity Strength Poor Data Accuracy & Reliability Data Interruptions Data Corruption & Inconsistencies Data Processing & Extraction Conflicts | AQ Sensor(s) Sensitivity Analysis AQ Sensor Network(s) Awareness Statistical based Data Consistency Checks | | | 9 | Evaluation Bias | S5 S6 S7 | Imbalanced Test Data Inappropriate use of Metrics Domain Specific Negligence Outdated Benchmarking | Environmental Specific Awareness & Expertise Use of Balanced Test Dataset Use of Appropriate Statistical Practice | | | 10 | Deployment Bias | S8 | Infrastructure Incapabilities Real-World Data Challenges Revelopment Environment Conflicts Hend Users & Legacy Systems Challenges Ethical & Legal Challenges | Real-World Data Awareness & Expertise during Pre and Post Deployment Phases 2) Stable Deployment Infrastructure 3) Awareness and Understanding on Legal and Social Implications | | | 11 | Communication or
Interpretation Bias | S8 | Lack of Context Ambiquity in Presentation Over-simplifications Audience Understanding Level Selective Reporting Use of Impapropriate Metrics Lack of Domain Expertise | Fair use of Metrics, Visuals & Communication Channels Domain Expertise on all relevant Subjects Tranparent Reporting w/o 'Pick and Choose' Criteria | | | | | | | | | ### 1.1.2 Step 2: Define the bias variables The research has highlighted 11 biases and each bias is assigned with a weight: $$B_i = \begin{cases} 1 & \text{if bias } i \text{ is present} \\ 0 & \text{if bias } i \text{ is absent} \end{cases}$$ The weights w, for each bias are $$w_i = \begin{cases} 0.5 & \text{if bias } i \text{ is business-oriented or policy-driven,} \\ 1 & \text{otherwise.} \end{cases}$$ The total bias score S is calculated as: $$\{S = \sum^{11} w_i \cdot B_i$$ where $S \in [0, 10]$. #### 1.1.3 Step 3: Expanded Bias Formula The research has identified 11 types of biases B_l in air quality data analysis, where: $$B_i = \begin{cases} 1 & \text{if bias } i \text{ is present} \\ 0 & \text{or } i \end{cases}$$ The weights w_i are defined as: $$w_i = \begin{cases} 0.5 & \text{if bias } i \text{ is business-oriented or policy-driven,} \\ 1 & \text{otherwise.} \end{cases}$$ Thus, the total bias score S is calculated as: $$S = \sum_{i=1}^{11} w_i \cdot E$$ Expanding this for all 11 biases: $$S = B_1 + B_2 + B_3 + B_4 + B_5 + B_6 + B_7 + B_8 + B_9 + 0.5B_{10} + 0.5B_{11},$$ Since the maximum score is: $$S_{\text{max}} = 9 \cdot 1 + 2 \cdot 0.5 = 10,$$ the score $S \in [0, 10]$. #### 1.1.4 Step 4: An Example For example, 6 out of the first 9 biases are present, the business-oriented bias (B_{10}) is present, and the policy-driven bias (B_{11}) is absent. In this case, formula calculation is: $$S = 6 + 0.5 \cdot 1 + 0.5 \cdot 0 = 6.5.$$ Therefore, the total bias score is $$S=6.5$$ out of 10. ### References: - 1. Conner, A., S. Hosking, J. Lloyd, A. Rao, G. Shaddick & M. Sharan, Tackling climate change with data science and Al. Mar. 2023. - 2. Bellamy, R.K., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mojsilović, A. and Nagar, S., 2019. Al Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM Journal of Research and Development, 63(4/5), pp.4-1. - 3. DEFRA, UK AIR Air Information Resource. Department for Environment Food andRural Affairs.