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Why Data Science is
Crucial for Climate Change
Crisis?

» Predictive Modelling And Forecasting

Data-driven Policy Making

Monitoring And Tracking Climate Changes

“Data science and Al represent two of our most

» Measuring Carbon Footprint powerful assets in the fight against climate
change. Now is the time to re-imagine the way
= Public Awareness And Education we conduct climate science research and

address the crisis head-on”

Dr. Alden Conner et al. The Alan Turing Institute [1]



The Research
Problem

» |dentify How and What to Statistically Measure? For
i.e. merging multiple air quality datasets with incorrect pollutant scales
or replacing too many outliers for machine learning models.

= Evaluate Existing Frameworks: like, IBM Al Fairness 360 [2]

» Bridge BIAS: Does existing frameworks include data bias? What
are those gaps?

= A Scoring Ladder: Apply a novel statistical approach to reduce
BIAS in air quality outcomes

= Re-Evaluate the Difference
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The Research Scope
London, United Kingdom

Hot Spot Locations

London Air Quality Hot Spots Map
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The Research Lab & Methodology
Air Quality Data Analysis 8 Key Stages

Data Collection
Methods and
Techniques — S2

Awareness on Air
Quality Variables and
Pollutant Scales — S1

Data Cleaning and
Preparation - S3

Exploratory Data Statistical Data Tlme.-S.erles
Analysis — S4 Analysis — S5 Predictive ML A le of ical ai
\' \% Modelling—86 n example of a typical air

quality monitoring station [3]

Deployment &
Communication — S8

Data Validation - S7
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Air Quality Data Analysis Lifecycle 7 Historical

Bias

A A

An Overarching Logical Workflow Process
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Algorithmic
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The Research Lab & Methodology

Air Quality Data Analysis Life-Cycle




A Scoring Ladder (Algorithm)
A Contribution to Research

A step-by-step statistical method to detect and score BIAS in Air Quality Data Analysis

Bias Check

Bias Scoring




A Scoring Ladder (Algorithm)
A Contribution to Research

A step-by-step statistical method to detect and score BIAS in Air Quality Data Analysis

Bias Index Classification of Bias Data Anaysis Stage

Known AQ Bias Risks

Checklist for AQ Bias and

coring
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Scoring
Weight

1.1.2 Step 2: Define the bias variables

: The research has highlighted 11 biases and each bias is assigned with a weight:
1 if bias i is present,
0 if bias § is absent.
05 The weights wy for sach bias are:
0.5 if bias i is business-oriented or policy-driven,
W=
Tt otherwise.
05 The total bias score § is calculated as:
1
5=%w-B
1 =1
where § € |0, 10].
1.1.3 Step 3: Expanded Bias Formula
1
The research has identified 11 types of biases B, in air quality data analysis, where:
B, 1 if bias i is present,
"7 |0 i bias i is absent.
' The weights w; are defined as:
 [0.5 if bias i is business-oriented or policy-driven,
T otherwise.
Thus, the total bias score § is calculated as:
1 >
5= w8
=l
this for all 11 biases:
By+ Byv By v By By s By v By + By v By + 058,y + 0,58,
! Since the maximum score is:
S =9-1+2-05=10,
1 the score § & [0, 10].
1.1.4 Step 4: An Example
1 For example, 6 out of the first 9 biases are present, the business-oriented bias (8)q) is present,
and the policy-driven bias (#11) is absent. In this case, formula calculatio
=6405-1+05-0=6.5.
Therefore, the total bias score is § = 6.5 out of 10.
1
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